xref: /freebsd/sys/kern/kern_switch.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_sched.h"
92 
93 #ifndef KERN_SWITCH_INCLUDE
94 #include <sys/param.h>
95 #include <sys/systm.h>
96 #include <sys/kdb.h>
97 #include <sys/kernel.h>
98 #include <sys/ktr.h>
99 #include <sys/lock.h>
100 #include <sys/mutex.h>
101 #include <sys/proc.h>
102 #include <sys/queue.h>
103 #include <sys/sched.h>
104 #else  /* KERN_SWITCH_INCLUDE */
105 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
106 #include <sys/smp.h>
107 #endif
108 #if defined(SMP) && defined(SCHED_4BSD)
109 #include <sys/sysctl.h>
110 #endif
111 
112 #ifdef FULL_PREEMPTION
113 #ifndef PREEMPTION
114 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
115 #endif
116 #endif
117 
118 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
119 
120 #define td_kse td_sched
121 
122 /*
123  * kern.sched.preemption allows user space to determine if preemption support
124  * is compiled in or not.  It is not currently a boot or runtime flag that
125  * can be changed.
126  */
127 #ifdef PREEMPTION
128 static int kern_sched_preemption = 1;
129 #else
130 static int kern_sched_preemption = 0;
131 #endif
132 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
133     &kern_sched_preemption, 0, "Kernel preemption enabled");
134 
135 /************************************************************************
136  * Functions that manipulate runnability from a thread perspective.	*
137  ************************************************************************/
138 /*
139  * Select the KSE that will be run next.  From that find the thread, and
140  * remove it from the KSEGRP's run queue.  If there is thread clustering,
141  * this will be what does it.
142  */
143 struct thread *
144 choosethread(void)
145 {
146 	struct kse *ke;
147 	struct thread *td;
148 	struct ksegrp *kg;
149 
150 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
151 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
152 		/* Shutting down, run idlethread on AP's */
153 		td = PCPU_GET(idlethread);
154 		ke = td->td_kse;
155 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
156 		ke->ke_flags |= KEF_DIDRUN;
157 		TD_SET_RUNNING(td);
158 		return (td);
159 	}
160 #endif
161 
162 retry:
163 	ke = sched_choose();
164 	if (ke) {
165 		td = ke->ke_thread;
166 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
167 		kg = ke->ke_ksegrp;
168 		if (td->td_proc->p_flag & P_HADTHREADS) {
169 			if (kg->kg_last_assigned == td) {
170 				kg->kg_last_assigned = TAILQ_PREV(td,
171 				    threadqueue, td_runq);
172 			}
173 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
174 		}
175 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
176 		    td, td->td_priority);
177 	} else {
178 		/* Simulate runq_choose() having returned the idle thread */
179 		td = PCPU_GET(idlethread);
180 		ke = td->td_kse;
181 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
182 	}
183 	ke->ke_flags |= KEF_DIDRUN;
184 
185 	/*
186 	 * If we are in panic, only allow system threads,
187 	 * plus the one we are running in, to be run.
188 	 */
189 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
190 	    (td->td_flags & TDF_INPANIC) == 0)) {
191 		/* note that it is no longer on the run queue */
192 		TD_SET_CAN_RUN(td);
193 		goto retry;
194 	}
195 
196 	TD_SET_RUNNING(td);
197 	return (td);
198 }
199 
200 /*
201  * Given a surplus system slot, try assign a new runnable thread to it.
202  * Called from:
203  *  sched_thread_exit()  (local)
204  *  sched_switch()  (local)
205  *  sched_thread_exit()  (local)
206  *  remrunqueue()  (local)  (not at the moment)
207  */
208 static void
209 slot_fill(struct ksegrp *kg)
210 {
211 	struct thread *td;
212 
213 	mtx_assert(&sched_lock, MA_OWNED);
214 	while (kg->kg_avail_opennings > 0) {
215 		/*
216 		 * Find the first unassigned thread
217 		 */
218 		if ((td = kg->kg_last_assigned) != NULL)
219 			td = TAILQ_NEXT(td, td_runq);
220 		else
221 			td = TAILQ_FIRST(&kg->kg_runq);
222 
223 		/*
224 		 * If we found one, send it to the system scheduler.
225 		 */
226 		if (td) {
227 			kg->kg_last_assigned = td;
228 			sched_add(td, SRQ_YIELDING);
229 			CTR2(KTR_RUNQ, "slot_fill: td%p -> kg%p", td, kg);
230 		} else {
231 			/* no threads to use up the slots. quit now */
232 			break;
233 		}
234 	}
235 }
236 
237 #ifdef	SCHED_4BSD
238 /*
239  * Remove a thread from its KSEGRP's run queue.
240  * This in turn may remove it from a KSE if it was already assigned
241  * to one, possibly causing a new thread to be assigned to the KSE
242  * and the KSE getting a new priority.
243  */
244 static void
245 remrunqueue(struct thread *td)
246 {
247 	struct thread *td2, *td3;
248 	struct ksegrp *kg;
249 	struct kse *ke;
250 
251 	mtx_assert(&sched_lock, MA_OWNED);
252 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
253 	kg = td->td_ksegrp;
254 	ke = td->td_kse;
255 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
256 	TD_SET_CAN_RUN(td);
257 	/*
258 	 * If it is not a threaded process, take the shortcut.
259 	 */
260 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
261 		/* remve from sys run queue and free up a slot */
262 		sched_rem(td);
263 		ke->ke_state = KES_THREAD;
264 		return;
265 	}
266    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
267 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
268 	if (ke->ke_state == KES_ONRUNQ) {
269 		/*
270 		 * This thread has been assigned to the system run queue.
271 		 * We need to dissociate it and try assign the
272 		 * KSE to the next available thread. Then, we should
273 		 * see if we need to move the KSE in the run queues.
274 		 */
275 		sched_rem(td);
276 		ke->ke_state = KES_THREAD;
277 		td2 = kg->kg_last_assigned;
278 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
279 		if (td2 == td)
280 			kg->kg_last_assigned = td3;
281 		/* slot_fill(kg); */ /* will replace it with another */
282 	}
283 }
284 #endif
285 
286 /*
287  * Change the priority of a thread that is on the run queue.
288  */
289 void
290 adjustrunqueue( struct thread *td, int newpri)
291 {
292 	struct ksegrp *kg;
293 	struct kse *ke;
294 
295 	mtx_assert(&sched_lock, MA_OWNED);
296 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
297 
298 	ke = td->td_kse;
299 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
300 	/*
301 	 * If it is not a threaded process, take the shortcut.
302 	 */
303 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
304 		/* We only care about the kse in the run queue. */
305 		td->td_priority = newpri;
306 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
307 			sched_rem(td);
308 			sched_add(td, SRQ_BORING);
309 		}
310 		return;
311 	}
312 
313 	/* It is a threaded process */
314 	kg = td->td_ksegrp;
315 	if (ke->ke_state == KES_ONRUNQ) {
316 		if (kg->kg_last_assigned == td) {
317 			kg->kg_last_assigned =
318 			    TAILQ_PREV(td, threadqueue, td_runq);
319 		}
320 		sched_rem(td);
321 	}
322 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
323 	TD_SET_CAN_RUN(td);
324 	td->td_priority = newpri;
325 	setrunqueue(td, SRQ_BORING);
326 }
327 
328 /*
329  * This function is called when a thread is about to be put on a
330  * ksegrp run queue because it has been made runnable or its
331  * priority has been adjusted and the ksegrp does not have a
332  * free kse slot.  It determines if a thread from the same ksegrp
333  * should be preempted.  If so, it tries to switch threads
334  * if the thread is on the same cpu or notifies another cpu that
335  * it should switch threads.
336  */
337 
338 static void
339 maybe_preempt_in_ksegrp(struct thread *td)
340 #if  !defined(SMP)
341 {
342 	struct thread *running_thread;
343 
344 #ifndef FULL_PREEMPTION
345 	int pri;
346 	pri = td->td_priority;
347 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
348 		return;
349 #endif
350 	mtx_assert(&sched_lock, MA_OWNED);
351 	running_thread = curthread;
352 
353 	if (running_thread->td_ksegrp != td->td_ksegrp)
354 		return;
355 
356 	if (td->td_priority >= running_thread->td_priority)
357 		return;
358 #ifdef PREEMPTION
359 	if (running_thread->td_critnest > 1)
360 		running_thread->td_owepreempt = 1;
361 	 else
362 		 mi_switch(SW_INVOL, NULL);
363 
364 #else
365 	running_thread->td_flags |= TDF_NEEDRESCHED;
366 #endif
367 	return;
368 }
369 
370 #else /* SMP */
371 {
372 	struct thread *running_thread;
373 	int worst_pri;
374 	struct ksegrp *kg;
375 	cpumask_t cpumask,dontuse;
376 	struct pcpu *pc;
377 	struct pcpu *best_pcpu;
378 	struct thread *cputhread;
379 
380 #ifndef FULL_PREEMPTION
381 	int pri;
382 	pri = td->td_priority;
383 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD))
384 		return;
385 #endif
386 
387 	mtx_assert(&sched_lock, MA_OWNED);
388 
389 	running_thread = curthread;
390 
391 #if !defined(KSEG_PEEMPT_BEST_CPU)
392 	if (running_thread->td_ksegrp != td->td_ksegrp) {
393 #endif
394 		kg = td->td_ksegrp;
395 
396 		/* if someone is ahead of this thread, wait our turn */
397 		if (td != TAILQ_FIRST(&kg->kg_runq))
398 			return;
399 
400 		worst_pri = td->td_priority;
401 		best_pcpu = NULL;
402 		dontuse   = stopped_cpus | idle_cpus_mask;
403 
404 		/*
405 		 * Find a cpu with the worst priority that runs at thread from
406 		 * the same  ksegrp - if multiple exist give first the last run
407 		 * cpu and then the current cpu priority
408 		 */
409 
410 		SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
411 			cpumask   = pc->pc_cpumask;
412 			cputhread = pc->pc_curthread;
413 
414 			if ((cpumask & dontuse)  ||
415 			    cputhread->td_ksegrp != kg)
416 				continue;
417 
418 			if (cputhread->td_priority > worst_pri) {
419 				worst_pri = cputhread->td_priority;
420 				best_pcpu = pc;
421 				continue;
422 			}
423 
424 			if (cputhread->td_priority == worst_pri &&
425 			    best_pcpu != NULL &&
426 			    (td->td_lastcpu == pc->pc_cpuid ||
427 				(PCPU_GET(cpumask) == cpumask &&
428 				    td->td_lastcpu != best_pcpu->pc_cpuid)))
429 			    best_pcpu = pc;
430 		}
431 
432 		/* Check if we need to preempt someone */
433 		if (best_pcpu == NULL)
434 			return;
435 
436 		if (PCPU_GET(cpuid) != best_pcpu->pc_cpuid) {
437 			best_pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED;
438 			ipi_selected(best_pcpu->pc_cpumask, IPI_AST);
439 			return;
440 		}
441 #if !defined(KSEG_PEEMPT_BEST_CPU)
442 	}
443 #endif
444 
445 	if (td->td_priority >= running_thread->td_priority)
446 		return;
447 #ifdef PREEMPTION
448 	if (running_thread->td_critnest > 1)
449 		running_thread->td_owepreempt = 1;
450 	 else
451 		 mi_switch(SW_INVOL, NULL);
452 
453 #else
454 	running_thread->td_flags |= TDF_NEEDRESCHED;
455 #endif
456 	return;
457 }
458 #endif /* !SMP */
459 
460 
461 int limitcount;
462 void
463 setrunqueue(struct thread *td, int flags)
464 {
465 	struct ksegrp *kg;
466 	struct thread *td2;
467 	struct thread *tda;
468 
469 	CTR3(KTR_RUNQ, "setrunqueue: td:%p kg:%p pid:%d",
470 	    td, td->td_ksegrp, td->td_proc->p_pid);
471 	CTR5(KTR_SCHED, "setrunqueue: %p(%s) prio %d by %p(%s)",
472             td, td->td_proc->p_comm, td->td_priority, curthread,
473             curthread->td_proc->p_comm);
474 	mtx_assert(&sched_lock, MA_OWNED);
475 	KASSERT((td->td_inhibitors == 0),
476 			("setrunqueue: trying to run inhibitted thread"));
477 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
478 	    ("setrunqueue: bad thread state"));
479 	TD_SET_RUNQ(td);
480 	kg = td->td_ksegrp;
481 	if ((td->td_proc->p_flag & P_HADTHREADS) == 0) {
482 		/*
483 		 * Common path optimisation: Only one of everything
484 		 * and the KSE is always already attached.
485 		 * Totally ignore the ksegrp run queue.
486 		 */
487 		if (kg->kg_avail_opennings != 1) {
488 			if (limitcount < 1) {
489 				limitcount++;
490 				printf("pid %d: corrected slot count (%d->1)\n",
491 				    td->td_proc->p_pid, kg->kg_avail_opennings);
492 
493 			}
494 			kg->kg_avail_opennings = 1;
495 		}
496 		sched_add(td, flags);
497 		return;
498 	}
499 
500 	/*
501 	 * If the concurrency has reduced, and we would go in the
502 	 * assigned section, then keep removing entries from the
503 	 * system run queue, until we are not in that section
504 	 * or there is room for us to be put in that section.
505 	 * What we MUST avoid is the case where there are threads of less
506 	 * priority than the new one scheduled, but it can not
507 	 * be scheduled itself. That would lead to a non contiguous set
508 	 * of scheduled threads, and everything would break.
509 	 */
510 	tda = kg->kg_last_assigned;
511 	while ((kg->kg_avail_opennings <= 0) &&
512 	    (tda && (tda->td_priority > td->td_priority))) {
513 		/*
514 		 * None free, but there is one we can commandeer.
515 		 */
516 		CTR2(KTR_RUNQ,
517 		    "setrunqueue: kg:%p: take slot from td: %p", kg, tda);
518 		sched_rem(tda);
519 		tda = kg->kg_last_assigned =
520 		    TAILQ_PREV(tda, threadqueue, td_runq);
521 	}
522 
523 	/*
524 	 * Add the thread to the ksegrp's run queue at
525 	 * the appropriate place.
526 	 */
527 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
528 		if (td2->td_priority > td->td_priority) {
529 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
530 			break;
531 		}
532 	}
533 	if (td2 == NULL) {
534 		/* We ran off the end of the TAILQ or it was empty. */
535 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
536 	}
537 
538 	/*
539 	 * If we have a slot to use, then put the thread on the system
540 	 * run queue and if needed, readjust the last_assigned pointer.
541 	 * it may be that we need to schedule something anyhow
542 	 * even if the availabel slots are -ve so that
543 	 * all the items < last_assigned are scheduled.
544 	 */
545 	if (kg->kg_avail_opennings > 0) {
546 		if (tda == NULL) {
547 			/*
548 			 * No pre-existing last assigned so whoever is first
549 			 * gets the slot.. (maybe us)
550 			 */
551 			td2 = TAILQ_FIRST(&kg->kg_runq);
552 			kg->kg_last_assigned = td2;
553 		} else if (tda->td_priority > td->td_priority) {
554 			td2 = td;
555 		} else {
556 			/*
557 			 * We are past last_assigned, so
558 			 * give the next slot to whatever is next,
559 			 * which may or may not be us.
560 			 */
561 			td2 = TAILQ_NEXT(tda, td_runq);
562 			kg->kg_last_assigned = td2;
563 		}
564 		sched_add(td2, flags);
565 	} else {
566 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
567 			td, td->td_ksegrp, td->td_proc->p_pid);
568 		if ((flags & SRQ_YIELDING) == 0)
569 			maybe_preempt_in_ksegrp(td);
570 	}
571 }
572 
573 /*
574  * Kernel thread preemption implementation.  Critical sections mark
575  * regions of code in which preemptions are not allowed.
576  */
577 void
578 critical_enter(void)
579 {
580 	struct thread *td;
581 
582 	td = curthread;
583 	td->td_critnest++;
584 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
585 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
586 }
587 
588 void
589 critical_exit(void)
590 {
591 	struct thread *td;
592 
593 	td = curthread;
594 	KASSERT(td->td_critnest != 0,
595 	    ("critical_exit: td_critnest == 0"));
596 #ifdef PREEMPTION
597 	if (td->td_critnest == 1) {
598 		td->td_critnest = 0;
599 		mtx_assert(&sched_lock, MA_NOTOWNED);
600 		if (td->td_owepreempt) {
601 			td->td_critnest = 1;
602 			mtx_lock_spin(&sched_lock);
603 			td->td_critnest--;
604 			mi_switch(SW_INVOL, NULL);
605 			mtx_unlock_spin(&sched_lock);
606 		}
607 	} else
608 #endif
609 		td->td_critnest--;
610 
611 
612 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
613 	    (long)td->td_proc->p_pid, td->td_proc->p_comm, td->td_critnest);
614 }
615 
616 /*
617  * This function is called when a thread is about to be put on run queue
618  * because it has been made runnable or its priority has been adjusted.  It
619  * determines if the new thread should be immediately preempted to.  If so,
620  * it switches to it and eventually returns true.  If not, it returns false
621  * so that the caller may place the thread on an appropriate run queue.
622  */
623 int
624 maybe_preempt(struct thread *td)
625 {
626 #ifdef PREEMPTION
627 	struct thread *ctd;
628 	int cpri, pri;
629 #endif
630 
631 	mtx_assert(&sched_lock, MA_OWNED);
632 #ifdef PREEMPTION
633 	/*
634 	 * The new thread should not preempt the current thread if any of the
635 	 * following conditions are true:
636 	 *
637 	 *  - The kernel is in the throes of crashing (panicstr).
638 	 *  - The current thread has a higher (numerically lower) or
639 	 *    equivalent priority.  Note that this prevents curthread from
640 	 *    trying to preempt to itself.
641 	 *  - It is too early in the boot for context switches (cold is set).
642 	 *  - The current thread has an inhibitor set or is in the process of
643 	 *    exiting.  In this case, the current thread is about to switch
644 	 *    out anyways, so there's no point in preempting.  If we did,
645 	 *    the current thread would not be properly resumed as well, so
646 	 *    just avoid that whole landmine.
647 	 *  - If the new thread's priority is not a realtime priority and
648 	 *    the current thread's priority is not an idle priority and
649 	 *    FULL_PREEMPTION is disabled.
650 	 *
651 	 * If all of these conditions are false, but the current thread is in
652 	 * a nested critical section, then we have to defer the preemption
653 	 * until we exit the critical section.  Otherwise, switch immediately
654 	 * to the new thread.
655 	 */
656 	ctd = curthread;
657 	KASSERT ((ctd->td_kse != NULL && ctd->td_kse->ke_thread == ctd),
658 	  ("thread has no (or wrong) sched-private part."));
659 	KASSERT((td->td_inhibitors == 0),
660 			("maybe_preempt: trying to run inhibitted thread"));
661 	pri = td->td_priority;
662 	cpri = ctd->td_priority;
663 	if (panicstr != NULL || pri >= cpri || cold /* || dumping */ ||
664 	    TD_IS_INHIBITED(ctd) || td->td_kse->ke_state != KES_THREAD)
665 		return (0);
666 #ifndef FULL_PREEMPTION
667 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
668 	    !(cpri >= PRI_MIN_IDLE))
669 		return (0);
670 #endif
671 	if (ctd->td_critnest > 1) {
672 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
673 		    ctd->td_critnest);
674 		ctd->td_owepreempt = 1;
675 		return (0);
676 	}
677 
678 	/*
679 	 * Thread is runnable but not yet put on system run queue.
680 	 */
681 	MPASS(TD_ON_RUNQ(td));
682 	MPASS(td->td_sched->ke_state != KES_ONRUNQ);
683 	if (td->td_proc->p_flag & P_HADTHREADS) {
684 		/*
685 		 * If this is a threaded process we actually ARE on the
686 		 * ksegrp run queue so take it off that first.
687 		 * Also undo any damage done to the last_assigned pointer.
688 		 * XXX Fix setrunqueue so this isn't needed
689 		 */
690 		struct ksegrp *kg;
691 
692 		kg = td->td_ksegrp;
693 		if (kg->kg_last_assigned == td)
694 			kg->kg_last_assigned =
695 			    TAILQ_PREV(td, threadqueue, td_runq);
696 		TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
697 	}
698 
699 	TD_SET_RUNNING(td);
700 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
701 	    td->td_proc->p_pid, td->td_proc->p_comm);
702 	mi_switch(SW_INVOL|SW_PREEMPT, td);
703 	return (1);
704 #else
705 	return (0);
706 #endif
707 }
708 
709 #if 0
710 #ifndef PREEMPTION
711 /* XXX: There should be a non-static version of this. */
712 static void
713 printf_caddr_t(void *data)
714 {
715 	printf("%s", (char *)data);
716 }
717 static char preempt_warning[] =
718     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
719 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
720     preempt_warning)
721 #endif
722 #endif
723 
724 /************************************************************************
725  * SYSTEM RUN QUEUE manipulations and tests				*
726  ************************************************************************/
727 /*
728  * Initialize a run structure.
729  */
730 void
731 runq_init(struct runq *rq)
732 {
733 	int i;
734 
735 	bzero(rq, sizeof *rq);
736 	for (i = 0; i < RQ_NQS; i++)
737 		TAILQ_INIT(&rq->rq_queues[i]);
738 }
739 
740 /*
741  * Clear the status bit of the queue corresponding to priority level pri,
742  * indicating that it is empty.
743  */
744 static __inline void
745 runq_clrbit(struct runq *rq, int pri)
746 {
747 	struct rqbits *rqb;
748 
749 	rqb = &rq->rq_status;
750 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
751 	    rqb->rqb_bits[RQB_WORD(pri)],
752 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
753 	    RQB_BIT(pri), RQB_WORD(pri));
754 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
755 }
756 
757 /*
758  * Find the index of the first non-empty run queue.  This is done by
759  * scanning the status bits, a set bit indicates a non-empty queue.
760  */
761 static __inline int
762 runq_findbit(struct runq *rq)
763 {
764 	struct rqbits *rqb;
765 	int pri;
766 	int i;
767 
768 	rqb = &rq->rq_status;
769 	for (i = 0; i < RQB_LEN; i++)
770 		if (rqb->rqb_bits[i]) {
771 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
772 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
773 			    rqb->rqb_bits[i], i, pri);
774 			return (pri);
775 		}
776 
777 	return (-1);
778 }
779 
780 /*
781  * Set the status bit of the queue corresponding to priority level pri,
782  * indicating that it is non-empty.
783  */
784 static __inline void
785 runq_setbit(struct runq *rq, int pri)
786 {
787 	struct rqbits *rqb;
788 
789 	rqb = &rq->rq_status;
790 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
791 	    rqb->rqb_bits[RQB_WORD(pri)],
792 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
793 	    RQB_BIT(pri), RQB_WORD(pri));
794 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
795 }
796 
797 /*
798  * Add the KSE to the queue specified by its priority, and set the
799  * corresponding status bit.
800  */
801 void
802 runq_add(struct runq *rq, struct kse *ke, int flags)
803 {
804 	struct rqhead *rqh;
805 	int pri;
806 
807 	pri = ke->ke_thread->td_priority / RQ_PPQ;
808 	ke->ke_rqindex = pri;
809 	runq_setbit(rq, pri);
810 	rqh = &rq->rq_queues[pri];
811 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
812 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
813 	if (flags & SRQ_PREEMPTED) {
814 		TAILQ_INSERT_HEAD(rqh, ke, ke_procq);
815 	} else {
816 		TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
817 	}
818 }
819 
820 /*
821  * Return true if there are runnable processes of any priority on the run
822  * queue, false otherwise.  Has no side effects, does not modify the run
823  * queue structure.
824  */
825 int
826 runq_check(struct runq *rq)
827 {
828 	struct rqbits *rqb;
829 	int i;
830 
831 	rqb = &rq->rq_status;
832 	for (i = 0; i < RQB_LEN; i++)
833 		if (rqb->rqb_bits[i]) {
834 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
835 			    rqb->rqb_bits[i], i);
836 			return (1);
837 		}
838 	CTR0(KTR_RUNQ, "runq_check: empty");
839 
840 	return (0);
841 }
842 
843 #if defined(SMP) && defined(SCHED_4BSD)
844 int runq_fuzz = 1;
845 SYSCTL_INT(_kern_sched, OID_AUTO, runq_fuzz, CTLFLAG_RW, &runq_fuzz, 0, "");
846 #endif
847 
848 /*
849  * Find the highest priority process on the run queue.
850  */
851 struct kse *
852 runq_choose(struct runq *rq)
853 {
854 	struct rqhead *rqh;
855 	struct kse *ke;
856 	int pri;
857 
858 	mtx_assert(&sched_lock, MA_OWNED);
859 	while ((pri = runq_findbit(rq)) != -1) {
860 		rqh = &rq->rq_queues[pri];
861 #if defined(SMP) && defined(SCHED_4BSD)
862 		/* fuzz == 1 is normal.. 0 or less are ignored */
863 		if (runq_fuzz > 1) {
864 			/*
865 			 * In the first couple of entries, check if
866 			 * there is one for our CPU as a preference.
867 			 */
868 			int count = runq_fuzz;
869 			int cpu = PCPU_GET(cpuid);
870 			struct kse *ke2;
871 			ke2 = ke = TAILQ_FIRST(rqh);
872 
873 			while (count-- && ke2) {
874 				if (ke->ke_thread->td_lastcpu == cpu) {
875 					ke = ke2;
876 					break;
877 				}
878 				ke2 = TAILQ_NEXT(ke2, ke_procq);
879 			}
880 		} else
881 #endif
882 			ke = TAILQ_FIRST(rqh);
883 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
884 		CTR3(KTR_RUNQ,
885 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
886 		return (ke);
887 	}
888 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
889 
890 	return (NULL);
891 }
892 
893 /*
894  * Remove the KSE from the queue specified by its priority, and clear the
895  * corresponding status bit if the queue becomes empty.
896  * Caller must set ke->ke_state afterwards.
897  */
898 void
899 runq_remove(struct runq *rq, struct kse *ke)
900 {
901 	struct rqhead *rqh;
902 	int pri;
903 
904 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
905 		("runq_remove: process swapped out"));
906 	pri = ke->ke_rqindex;
907 	rqh = &rq->rq_queues[pri];
908 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
909 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
910 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
911 	TAILQ_REMOVE(rqh, ke, ke_procq);
912 	if (TAILQ_EMPTY(rqh)) {
913 		CTR0(KTR_RUNQ, "runq_remove: empty");
914 		runq_clrbit(rq, pri);
915 	}
916 }
917 
918 /****** functions that are temporarily here ***********/
919 #include <vm/uma.h>
920 extern struct mtx kse_zombie_lock;
921 
922 /*
923  *  Allocate scheduler specific per-process resources.
924  * The thread and ksegrp have already been linked in.
925  * In this case just set the default concurrency value.
926  *
927  * Called from:
928  *  proc_init() (UMA init method)
929  */
930 void
931 sched_newproc(struct proc *p, struct ksegrp *kg, struct thread *td)
932 {
933 
934 	/* This can go in sched_fork */
935 	sched_init_concurrency(kg);
936 }
937 
938 /*
939  * thread is being either created or recycled.
940  * Fix up the per-scheduler resources associated with it.
941  * Called from:
942  *  sched_fork_thread()
943  *  thread_dtor()  (*may go away)
944  *  thread_init()  (*may go away)
945  */
946 void
947 sched_newthread(struct thread *td)
948 {
949 	struct td_sched *ke;
950 
951 	ke = (struct td_sched *) (td + 1);
952 	bzero(ke, sizeof(*ke));
953 	td->td_sched     = ke;
954 	ke->ke_thread	= td;
955 	ke->ke_state	= KES_THREAD;
956 }
957 
958 /*
959  * Set up an initial concurrency of 1
960  * and set the given thread (if given) to be using that
961  * concurrency slot.
962  * May be used "offline"..before the ksegrp is attached to the world
963  * and thus wouldn't need schedlock in that case.
964  * Called from:
965  *  thr_create()
966  *  proc_init() (UMA) via sched_newproc()
967  */
968 void
969 sched_init_concurrency(struct ksegrp *kg)
970 {
971 
972 	CTR1(KTR_RUNQ,"kg %p init slots and concurrency to 1", kg);
973 	kg->kg_concurrency = 1;
974 	kg->kg_avail_opennings = 1;
975 }
976 
977 /*
978  * Change the concurrency of an existing ksegrp to N
979  * Called from:
980  *  kse_create()
981  *  kse_exit()
982  *  thread_exit()
983  *  thread_single()
984  */
985 void
986 sched_set_concurrency(struct ksegrp *kg, int concurrency)
987 {
988 
989 	CTR4(KTR_RUNQ,"kg %p set concurrency to %d, slots %d -> %d",
990 	    kg,
991 	    concurrency,
992 	    kg->kg_avail_opennings,
993 	    kg->kg_avail_opennings + (concurrency - kg->kg_concurrency));
994 	kg->kg_avail_opennings += (concurrency - kg->kg_concurrency);
995 	kg->kg_concurrency = concurrency;
996 }
997 
998 /*
999  * Called from thread_exit() for all exiting thread
1000  *
1001  * Not to be confused with sched_exit_thread()
1002  * that is only called from thread_exit() for threads exiting
1003  * without the rest of the process exiting because it is also called from
1004  * sched_exit() and we wouldn't want to call it twice.
1005  * XXX This can probably be fixed.
1006  */
1007 void
1008 sched_thread_exit(struct thread *td)
1009 {
1010 
1011 	SLOT_RELEASE(td->td_ksegrp);
1012 	slot_fill(td->td_ksegrp);
1013 }
1014 
1015 #endif /* KERN_SWITCH_INCLUDE */
1016