1 /* 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /*** 28 Here is the logic.. 29 30 If there are N processors, then there are at most N KSEs (kernel 31 schedulable entities) working to process threads that belong to a 32 KSEGOUP (kg). If there are X of these KSEs actually running at the 33 moment in question, then there are at most M (N-X) of these KSEs on 34 the run queue, as running KSEs are not on the queue. 35 36 Runnable threads are queued off the KSEGROUP in priority order. 37 If there are M or more threads runnable, the top M threads 38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 39 their priority from those threads and are put on the run queue. 40 41 The last thread that had a priority high enough to have a KSE associated 42 with it, AND IS ON THE RUN QUEUE is pointed to by 43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 44 assigned as all the available KSEs are activly running, or because there 45 are no threads queued, that pointer is NULL. 46 47 When a KSE is removed from the run queue to become runnable, we know 48 it was associated with the highest priority thread in the queue (at the head 49 of the queue). If it is also the last assigned we know M was 1 and must 50 now be 0. Since the thread is no longer queued that pointer must be 51 removed from it. Since we know there were no more KSEs available, 52 (M was 1 and is now 0) and since we are not FREEING our KSE 53 but using it, we know there are STILL no more KSEs available, we can prove 54 that the next thread in the ksegrp list will not have a KSE to assign to 55 it, so we can show that the pointer must be made 'invalid' (NULL). 56 57 The pointer exists so that when a new thread is made runnable, it can 58 have its priority compared with the last assigned thread to see if 59 it should 'steal' its KSE or not.. i.e. is it 'earlier' 60 on the list than that thread or later.. If it's earlier, then the KSE is 61 removed from the last assigned (which is now not assigned a KSE) 62 and reassigned to the new thread, which is placed earlier in the list. 63 The pointer is then backed up to the previous thread (which may or may not 64 be the new thread). 65 66 When a thread sleeps or is removed, the KSE becomes available and if there 67 are queued threads that are not assigned KSEs, the highest priority one of 68 them is assigned the KSE, which is then placed back on the run queue at 69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 70 to point to it. 71 72 The following diagram shows 2 KSEs and 3 threads from a single process. 73 74 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 75 \ \____ 76 \ \ 77 KSEGROUP---thread--thread--thread (queued in priority order) 78 \ / 79 \_______________/ 80 (last_assigned) 81 82 The result of this scheme is that the M available KSEs are always 83 queued at the priorities they have inherrited from the M highest priority 84 threads for that KSEGROUP. If this situation changes, the KSEs are 85 reassigned to keep this true. 86 ***/ 87 88 #include <sys/cdefs.h> 89 __FBSDID("$FreeBSD$"); 90 91 #include <sys/param.h> 92 #include <sys/systm.h> 93 #include <sys/kernel.h> 94 #include <sys/ktr.h> 95 #include <sys/lock.h> 96 #include <sys/mutex.h> 97 #include <sys/proc.h> 98 #include <sys/queue.h> 99 #include <sys/sched.h> 100 #if defined(SMP) && defined(__i386__) 101 #include <sys/smp.h> 102 #endif 103 #include <machine/critical.h> 104 105 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 106 107 void panc(char *string1, char *string2); 108 109 #if 0 110 static void runq_readjust(struct runq *rq, struct kse *ke); 111 #endif 112 /************************************************************************ 113 * Functions that manipulate runnability from a thread perspective. * 114 ************************************************************************/ 115 /* 116 * Select the KSE that will be run next. From that find the thread, and 117 * remove it from the KSEGRP's run queue. If there is thread clustering, 118 * this will be what does it. 119 */ 120 struct thread * 121 choosethread(void) 122 { 123 struct kse *ke; 124 struct thread *td; 125 struct ksegrp *kg; 126 127 #if defined(SMP) && defined(__i386__) 128 if (smp_active == 0 && PCPU_GET(cpuid) != 0) { 129 /* Shutting down, run idlethread on AP's */ 130 td = PCPU_GET(idlethread); 131 ke = td->td_kse; 132 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 133 ke->ke_flags |= KEF_DIDRUN; 134 TD_SET_RUNNING(td); 135 return (td); 136 } 137 #endif 138 139 retry: 140 ke = sched_choose(); 141 if (ke) { 142 td = ke->ke_thread; 143 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 144 kg = ke->ke_ksegrp; 145 if (td->td_proc->p_flag & P_SA) { 146 if (kg->kg_last_assigned == td) { 147 kg->kg_last_assigned = TAILQ_PREV(td, 148 threadqueue, td_runq); 149 } 150 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 151 } 152 kg->kg_runnable--; 153 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 154 td, td->td_priority); 155 } else { 156 /* Simulate runq_choose() having returned the idle thread */ 157 td = PCPU_GET(idlethread); 158 ke = td->td_kse; 159 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 160 } 161 ke->ke_flags |= KEF_DIDRUN; 162 163 /* 164 * If we are in panic, only allow system threads, 165 * plus the one we are running in, to be run. 166 */ 167 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 168 (td->td_flags & TDF_INPANIC) == 0)) { 169 /* note that it is no longer on the run queue */ 170 TD_SET_CAN_RUN(td); 171 goto retry; 172 } 173 174 TD_SET_RUNNING(td); 175 return (td); 176 } 177 178 /* 179 * Given a surplus KSE, either assign a new runable thread to it 180 * (and put it in the run queue) or put it in the ksegrp's idle KSE list. 181 * Assumes that the original thread is not runnable. 182 */ 183 void 184 kse_reassign(struct kse *ke) 185 { 186 struct ksegrp *kg; 187 struct thread *td; 188 struct thread *original; 189 190 mtx_assert(&sched_lock, MA_OWNED); 191 original = ke->ke_thread; 192 KASSERT(original == NULL || TD_IS_INHIBITED(original), 193 ("reassigning KSE with runnable thread")); 194 kg = ke->ke_ksegrp; 195 if (original) 196 original->td_kse = NULL; 197 198 /* 199 * Find the first unassigned thread 200 */ 201 if ((td = kg->kg_last_assigned) != NULL) 202 td = TAILQ_NEXT(td, td_runq); 203 else 204 td = TAILQ_FIRST(&kg->kg_runq); 205 206 /* 207 * If we found one, assign it the kse, otherwise idle the kse. 208 */ 209 if (td) { 210 kg->kg_last_assigned = td; 211 td->td_kse = ke; 212 ke->ke_thread = td; 213 sched_add(ke); 214 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td); 215 return; 216 } 217 218 ke->ke_state = KES_IDLE; 219 ke->ke_thread = NULL; 220 TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist); 221 kg->kg_idle_kses++; 222 CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke); 223 return; 224 } 225 226 #if 0 227 /* 228 * Remove a thread from its KSEGRP's run queue. 229 * This in turn may remove it from a KSE if it was already assigned 230 * to one, possibly causing a new thread to be assigned to the KSE 231 * and the KSE getting a new priority. 232 */ 233 static void 234 remrunqueue(struct thread *td) 235 { 236 struct thread *td2, *td3; 237 struct ksegrp *kg; 238 struct kse *ke; 239 240 mtx_assert(&sched_lock, MA_OWNED); 241 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 242 kg = td->td_ksegrp; 243 ke = td->td_kse; 244 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 245 kg->kg_runnable--; 246 TD_SET_CAN_RUN(td); 247 /* 248 * If it is not a threaded process, take the shortcut. 249 */ 250 if ((td->td_proc->p_flag & P_SA) == 0) { 251 /* Bring its kse with it, leave the thread attached */ 252 sched_rem(ke); 253 ke->ke_state = KES_THREAD; 254 return; 255 } 256 td3 = TAILQ_PREV(td, threadqueue, td_runq); 257 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 258 if (ke) { 259 /* 260 * This thread has been assigned to a KSE. 261 * We need to dissociate it and try assign the 262 * KSE to the next available thread. Then, we should 263 * see if we need to move the KSE in the run queues. 264 */ 265 sched_rem(ke); 266 ke->ke_state = KES_THREAD; 267 td2 = kg->kg_last_assigned; 268 KASSERT((td2 != NULL), ("last assigned has wrong value")); 269 if (td2 == td) 270 kg->kg_last_assigned = td3; 271 kse_reassign(ke); 272 } 273 } 274 #endif 275 276 /* 277 * Change the priority of a thread that is on the run queue. 278 */ 279 void 280 adjustrunqueue( struct thread *td, int newpri) 281 { 282 struct ksegrp *kg; 283 struct kse *ke; 284 285 mtx_assert(&sched_lock, MA_OWNED); 286 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 287 288 ke = td->td_kse; 289 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 290 /* 291 * If it is not a threaded process, take the shortcut. 292 */ 293 if ((td->td_proc->p_flag & P_SA) == 0) { 294 /* We only care about the kse in the run queue. */ 295 td->td_priority = newpri; 296 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 297 sched_rem(ke); 298 sched_add(ke); 299 } 300 return; 301 } 302 303 /* It is a threaded process */ 304 kg = td->td_ksegrp; 305 kg->kg_runnable--; 306 TD_SET_CAN_RUN(td); 307 if (ke) { 308 if (kg->kg_last_assigned == td) { 309 kg->kg_last_assigned = 310 TAILQ_PREV(td, threadqueue, td_runq); 311 } 312 sched_rem(ke); 313 } 314 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 315 td->td_priority = newpri; 316 setrunqueue(td); 317 } 318 319 void 320 setrunqueue(struct thread *td) 321 { 322 struct kse *ke; 323 struct ksegrp *kg; 324 struct thread *td2; 325 struct thread *tda; 326 327 CTR1(KTR_RUNQ, "setrunqueue: td%p", td); 328 mtx_assert(&sched_lock, MA_OWNED); 329 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 330 ("setrunqueue: bad thread state")); 331 TD_SET_RUNQ(td); 332 kg = td->td_ksegrp; 333 kg->kg_runnable++; 334 if ((td->td_proc->p_flag & P_SA) == 0) { 335 /* 336 * Common path optimisation: Only one of everything 337 * and the KSE is always already attached. 338 * Totally ignore the ksegrp run queue. 339 */ 340 sched_add(td->td_kse); 341 return; 342 } 343 344 tda = kg->kg_last_assigned; 345 if ((ke = td->td_kse) == NULL) { 346 if (kg->kg_idle_kses) { 347 /* 348 * There is a free one so it's ours for the asking.. 349 */ 350 ke = TAILQ_FIRST(&kg->kg_iq); 351 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 352 ke->ke_state = KES_THREAD; 353 kg->kg_idle_kses--; 354 } else if (tda && (tda->td_priority > td->td_priority)) { 355 /* 356 * None free, but there is one we can commandeer. 357 */ 358 ke = tda->td_kse; 359 tda->td_kse = NULL; 360 ke->ke_thread = NULL; 361 tda = kg->kg_last_assigned = 362 TAILQ_PREV(tda, threadqueue, td_runq); 363 sched_rem(ke); 364 } 365 } else { 366 /* 367 * Temporarily disassociate so it looks like the other cases. 368 */ 369 ke->ke_thread = NULL; 370 td->td_kse = NULL; 371 } 372 373 /* 374 * Add the thread to the ksegrp's run queue at 375 * the appropriate place. 376 */ 377 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 378 if (td2->td_priority > td->td_priority) { 379 TAILQ_INSERT_BEFORE(td2, td, td_runq); 380 break; 381 } 382 } 383 if (td2 == NULL) { 384 /* We ran off the end of the TAILQ or it was empty. */ 385 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 386 } 387 388 /* 389 * If we have a ke to use, then put it on the run queue and 390 * If needed, readjust the last_assigned pointer. 391 */ 392 if (ke) { 393 if (tda == NULL) { 394 /* 395 * No pre-existing last assigned so whoever is first 396 * gets the KSE we brought in.. (maybe us) 397 */ 398 td2 = TAILQ_FIRST(&kg->kg_runq); 399 KASSERT((td2->td_kse == NULL), 400 ("unexpected ke present")); 401 td2->td_kse = ke; 402 ke->ke_thread = td2; 403 kg->kg_last_assigned = td2; 404 } else if (tda->td_priority > td->td_priority) { 405 /* 406 * It's ours, grab it, but last_assigned is past us 407 * so don't change it. 408 */ 409 td->td_kse = ke; 410 ke->ke_thread = td; 411 } else { 412 /* 413 * We are past last_assigned, so 414 * put the new kse on whatever is next, 415 * which may or may not be us. 416 */ 417 td2 = TAILQ_NEXT(tda, td_runq); 418 kg->kg_last_assigned = td2; 419 td2->td_kse = ke; 420 ke->ke_thread = td2; 421 } 422 sched_add(ke); 423 } 424 } 425 426 /************************************************************************ 427 * Critical section marker functions * 428 ************************************************************************/ 429 /* Critical sections that prevent preemption. */ 430 void 431 critical_enter(void) 432 { 433 struct thread *td; 434 435 td = curthread; 436 if (td->td_critnest == 0) 437 cpu_critical_enter(); 438 td->td_critnest++; 439 } 440 441 void 442 critical_exit(void) 443 { 444 struct thread *td; 445 446 td = curthread; 447 if (td->td_critnest == 1) { 448 td->td_critnest = 0; 449 cpu_critical_exit(); 450 } else { 451 td->td_critnest--; 452 } 453 } 454 455 456 /************************************************************************ 457 * SYSTEM RUN QUEUE manipulations and tests * 458 ************************************************************************/ 459 /* 460 * Initialize a run structure. 461 */ 462 void 463 runq_init(struct runq *rq) 464 { 465 int i; 466 467 bzero(rq, sizeof *rq); 468 for (i = 0; i < RQ_NQS; i++) 469 TAILQ_INIT(&rq->rq_queues[i]); 470 } 471 472 /* 473 * Clear the status bit of the queue corresponding to priority level pri, 474 * indicating that it is empty. 475 */ 476 static __inline void 477 runq_clrbit(struct runq *rq, int pri) 478 { 479 struct rqbits *rqb; 480 481 rqb = &rq->rq_status; 482 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 483 rqb->rqb_bits[RQB_WORD(pri)], 484 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 485 RQB_BIT(pri), RQB_WORD(pri)); 486 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 487 } 488 489 /* 490 * Find the index of the first non-empty run queue. This is done by 491 * scanning the status bits, a set bit indicates a non-empty queue. 492 */ 493 static __inline int 494 runq_findbit(struct runq *rq) 495 { 496 struct rqbits *rqb; 497 int pri; 498 int i; 499 500 rqb = &rq->rq_status; 501 for (i = 0; i < RQB_LEN; i++) 502 if (rqb->rqb_bits[i]) { 503 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 504 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 505 rqb->rqb_bits[i], i, pri); 506 return (pri); 507 } 508 509 return (-1); 510 } 511 512 /* 513 * Set the status bit of the queue corresponding to priority level pri, 514 * indicating that it is non-empty. 515 */ 516 static __inline void 517 runq_setbit(struct runq *rq, int pri) 518 { 519 struct rqbits *rqb; 520 521 rqb = &rq->rq_status; 522 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 523 rqb->rqb_bits[RQB_WORD(pri)], 524 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 525 RQB_BIT(pri), RQB_WORD(pri)); 526 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 527 } 528 529 /* 530 * Add the KSE to the queue specified by its priority, and set the 531 * corresponding status bit. 532 */ 533 void 534 runq_add(struct runq *rq, struct kse *ke) 535 { 536 struct rqhead *rqh; 537 int pri; 538 539 pri = ke->ke_thread->td_priority / RQ_PPQ; 540 ke->ke_rqindex = pri; 541 runq_setbit(rq, pri); 542 rqh = &rq->rq_queues[pri]; 543 CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p", 544 ke->ke_proc, ke->ke_thread->td_priority, pri, rqh); 545 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 546 } 547 548 /* 549 * Return true if there are runnable processes of any priority on the run 550 * queue, false otherwise. Has no side effects, does not modify the run 551 * queue structure. 552 */ 553 int 554 runq_check(struct runq *rq) 555 { 556 struct rqbits *rqb; 557 int i; 558 559 rqb = &rq->rq_status; 560 for (i = 0; i < RQB_LEN; i++) 561 if (rqb->rqb_bits[i]) { 562 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 563 rqb->rqb_bits[i], i); 564 return (1); 565 } 566 CTR0(KTR_RUNQ, "runq_check: empty"); 567 568 return (0); 569 } 570 571 /* 572 * Find the highest priority process on the run queue. 573 */ 574 struct kse * 575 runq_choose(struct runq *rq) 576 { 577 struct rqhead *rqh; 578 struct kse *ke; 579 int pri; 580 581 mtx_assert(&sched_lock, MA_OWNED); 582 while ((pri = runq_findbit(rq)) != -1) { 583 rqh = &rq->rq_queues[pri]; 584 ke = TAILQ_FIRST(rqh); 585 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 586 CTR3(KTR_RUNQ, 587 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 588 return (ke); 589 } 590 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 591 592 return (NULL); 593 } 594 595 /* 596 * Remove the KSE from the queue specified by its priority, and clear the 597 * corresponding status bit if the queue becomes empty. 598 * Caller must set ke->ke_state afterwards. 599 */ 600 void 601 runq_remove(struct runq *rq, struct kse *ke) 602 { 603 struct rqhead *rqh; 604 int pri; 605 606 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 607 ("runq_remove: process swapped out")); 608 pri = ke->ke_rqindex; 609 rqh = &rq->rq_queues[pri]; 610 CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p", 611 ke, ke->ke_thread->td_priority, pri, rqh); 612 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 613 TAILQ_REMOVE(rqh, ke, ke_procq); 614 if (TAILQ_EMPTY(rqh)) { 615 CTR0(KTR_RUNQ, "runq_remove: empty"); 616 runq_clrbit(rq, pri); 617 } 618 } 619 620 #if 0 621 void 622 panc(char *string1, char *string2) 623 { 624 printf("%s", string1); 625 Debugger(string2); 626 } 627 628 void 629 thread_sanity_check(struct thread *td, char *string) 630 { 631 struct proc *p; 632 struct ksegrp *kg; 633 struct kse *ke; 634 struct thread *td2 = NULL; 635 unsigned int prevpri; 636 int saw_lastassigned = 0; 637 int unassigned = 0; 638 int assigned = 0; 639 640 p = td->td_proc; 641 kg = td->td_ksegrp; 642 ke = td->td_kse; 643 644 645 if (ke) { 646 if (p != ke->ke_proc) { 647 panc(string, "wrong proc"); 648 } 649 if (ke->ke_thread != td) { 650 panc(string, "wrong thread"); 651 } 652 } 653 654 if ((p->p_flag & P_SA) == 0) { 655 if (ke == NULL) { 656 panc(string, "non KSE thread lost kse"); 657 } 658 } else { 659 prevpri = 0; 660 saw_lastassigned = 0; 661 unassigned = 0; 662 assigned = 0; 663 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 664 if (td2->td_priority < prevpri) { 665 panc(string, "thread runqueue unosorted"); 666 } 667 if ((td2->td_state == TDS_RUNQ) && 668 td2->td_kse && 669 (td2->td_kse->ke_state != KES_ONRUNQ)) { 670 panc(string, "KSE wrong state"); 671 } 672 prevpri = td2->td_priority; 673 if (td2->td_kse) { 674 assigned++; 675 if (unassigned) { 676 panc(string, "unassigned before assigned"); 677 } 678 if (kg->kg_last_assigned == NULL) { 679 panc(string, "lastassigned corrupt"); 680 } 681 if (saw_lastassigned) { 682 panc(string, "last assigned not last"); 683 } 684 if (td2->td_kse->ke_thread != td2) { 685 panc(string, "mismatched kse/thread"); 686 } 687 } else { 688 unassigned++; 689 } 690 if (td2 == kg->kg_last_assigned) { 691 saw_lastassigned = 1; 692 if (td2->td_kse == NULL) { 693 panc(string, "last assigned not assigned"); 694 } 695 } 696 } 697 if (kg->kg_last_assigned && (saw_lastassigned == 0)) { 698 panc(string, "where on earth does lastassigned point?"); 699 } 700 #if 0 701 FOREACH_THREAD_IN_GROUP(kg, td2) { 702 if (((td2->td_flags & TDF_UNBOUND) == 0) && 703 (TD_ON_RUNQ(td2))) { 704 assigned++; 705 if (td2->td_kse == NULL) { 706 panc(string, "BOUND thread with no KSE"); 707 } 708 } 709 } 710 #endif 711 #if 0 712 if ((unassigned + assigned) != kg->kg_runnable) { 713 panc(string, "wrong number in runnable"); 714 } 715 #endif 716 } 717 if (assigned == 12345) { 718 printf("%p %p %p %p %p %d, %d", 719 td, td2, ke, kg, p, assigned, saw_lastassigned); 720 } 721 } 722 #endif 723 724