1 /* 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /*** 28 Here is the logic.. 29 30 If there are N processors, then there are at most N KSEs (kernel 31 schedulable entities) working to process threads that belong to a 32 KSEGROUP (kg). If there are X of these KSEs actually running at the 33 moment in question, then there are at most M (N-X) of these KSEs on 34 the run queue, as running KSEs are not on the queue. 35 36 Runnable threads are queued off the KSEGROUP in priority order. 37 If there are M or more threads runnable, the top M threads 38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 39 their priority from those threads and are put on the run queue. 40 41 The last thread that had a priority high enough to have a KSE associated 42 with it, AND IS ON THE RUN QUEUE is pointed to by 43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 44 assigned as all the available KSEs are activly running, or because there 45 are no threads queued, that pointer is NULL. 46 47 When a KSE is removed from the run queue to become runnable, we know 48 it was associated with the highest priority thread in the queue (at the head 49 of the queue). If it is also the last assigned we know M was 1 and must 50 now be 0. Since the thread is no longer queued that pointer must be 51 removed from it. Since we know there were no more KSEs available, 52 (M was 1 and is now 0) and since we are not FREEING our KSE 53 but using it, we know there are STILL no more KSEs available, we can prove 54 that the next thread in the ksegrp list will not have a KSE to assign to 55 it, so we can show that the pointer must be made 'invalid' (NULL). 56 57 The pointer exists so that when a new thread is made runnable, it can 58 have its priority compared with the last assigned thread to see if 59 it should 'steal' its KSE or not.. i.e. is it 'earlier' 60 on the list than that thread or later.. If it's earlier, then the KSE is 61 removed from the last assigned (which is now not assigned a KSE) 62 and reassigned to the new thread, which is placed earlier in the list. 63 The pointer is then backed up to the previous thread (which may or may not 64 be the new thread). 65 66 When a thread sleeps or is removed, the KSE becomes available and if there 67 are queued threads that are not assigned KSEs, the highest priority one of 68 them is assigned the KSE, which is then placed back on the run queue at 69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 70 to point to it. 71 72 The following diagram shows 2 KSEs and 3 threads from a single process. 73 74 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 75 \ \____ 76 \ \ 77 KSEGROUP---thread--thread--thread (queued in priority order) 78 \ / 79 \_______________/ 80 (last_assigned) 81 82 The result of this scheme is that the M available KSEs are always 83 queued at the priorities they have inherrited from the M highest priority 84 threads for that KSEGROUP. If this situation changes, the KSEs are 85 reassigned to keep this true. 86 ***/ 87 88 #include <sys/cdefs.h> 89 __FBSDID("$FreeBSD$"); 90 91 #include "opt_full_preemption.h" 92 93 #include <sys/param.h> 94 #include <sys/systm.h> 95 #include <sys/kernel.h> 96 #include <sys/ktr.h> 97 #include <sys/lock.h> 98 #include <sys/mutex.h> 99 #include <sys/proc.h> 100 #include <sys/queue.h> 101 #include <sys/sched.h> 102 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 103 #include <sys/smp.h> 104 #endif 105 #include <machine/critical.h> 106 107 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 108 109 void panc(char *string1, char *string2); 110 111 #if 0 112 static void runq_readjust(struct runq *rq, struct kse *ke); 113 #endif 114 /************************************************************************ 115 * Functions that manipulate runnability from a thread perspective. * 116 ************************************************************************/ 117 /* 118 * Select the KSE that will be run next. From that find the thread, and 119 * remove it from the KSEGRP's run queue. If there is thread clustering, 120 * this will be what does it. 121 */ 122 struct thread * 123 choosethread(void) 124 { 125 struct kse *ke; 126 struct thread *td; 127 struct ksegrp *kg; 128 129 #if defined(SMP) && (defined(__i386__) || defined(__amd64__)) 130 if (smp_active == 0 && PCPU_GET(cpuid) != 0) { 131 /* Shutting down, run idlethread on AP's */ 132 td = PCPU_GET(idlethread); 133 ke = td->td_kse; 134 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 135 ke->ke_flags |= KEF_DIDRUN; 136 TD_SET_RUNNING(td); 137 return (td); 138 } 139 #endif 140 141 retry: 142 ke = sched_choose(); 143 if (ke) { 144 td = ke->ke_thread; 145 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 146 kg = ke->ke_ksegrp; 147 if (td->td_proc->p_flag & P_SA) { 148 if (kg->kg_last_assigned == td) { 149 kg->kg_last_assigned = TAILQ_PREV(td, 150 threadqueue, td_runq); 151 } 152 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 153 } 154 kg->kg_runnable--; 155 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 156 td, td->td_priority); 157 } else { 158 /* Simulate runq_choose() having returned the idle thread */ 159 td = PCPU_GET(idlethread); 160 ke = td->td_kse; 161 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 162 } 163 ke->ke_flags |= KEF_DIDRUN; 164 165 /* 166 * If we are in panic, only allow system threads, 167 * plus the one we are running in, to be run. 168 */ 169 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 170 (td->td_flags & TDF_INPANIC) == 0)) { 171 /* note that it is no longer on the run queue */ 172 TD_SET_CAN_RUN(td); 173 goto retry; 174 } 175 176 TD_SET_RUNNING(td); 177 return (td); 178 } 179 180 /* 181 * Given a surplus KSE, either assign a new runable thread to it 182 * (and put it in the run queue) or put it in the ksegrp's idle KSE list. 183 * Assumes that the original thread is not runnable. 184 */ 185 void 186 kse_reassign(struct kse *ke) 187 { 188 struct ksegrp *kg; 189 struct thread *td; 190 struct thread *original; 191 192 mtx_assert(&sched_lock, MA_OWNED); 193 original = ke->ke_thread; 194 KASSERT(original == NULL || TD_IS_INHIBITED(original), 195 ("reassigning KSE with runnable thread")); 196 kg = ke->ke_ksegrp; 197 if (original) 198 original->td_kse = NULL; 199 200 /* 201 * Find the first unassigned thread 202 */ 203 if ((td = kg->kg_last_assigned) != NULL) 204 td = TAILQ_NEXT(td, td_runq); 205 else 206 td = TAILQ_FIRST(&kg->kg_runq); 207 208 /* 209 * If we found one, assign it the kse, otherwise idle the kse. 210 */ 211 if (td) { 212 kg->kg_last_assigned = td; 213 td->td_kse = ke; 214 ke->ke_thread = td; 215 sched_add(td); 216 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td); 217 return; 218 } 219 220 ke->ke_state = KES_IDLE; 221 ke->ke_thread = NULL; 222 TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist); 223 kg->kg_idle_kses++; 224 CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke); 225 return; 226 } 227 228 #if 0 229 /* 230 * Remove a thread from its KSEGRP's run queue. 231 * This in turn may remove it from a KSE if it was already assigned 232 * to one, possibly causing a new thread to be assigned to the KSE 233 * and the KSE getting a new priority. 234 */ 235 static void 236 remrunqueue(struct thread *td) 237 { 238 struct thread *td2, *td3; 239 struct ksegrp *kg; 240 struct kse *ke; 241 242 mtx_assert(&sched_lock, MA_OWNED); 243 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 244 kg = td->td_ksegrp; 245 ke = td->td_kse; 246 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 247 kg->kg_runnable--; 248 TD_SET_CAN_RUN(td); 249 /* 250 * If it is not a threaded process, take the shortcut. 251 */ 252 if ((td->td_proc->p_flag & P_SA) == 0) { 253 /* Bring its kse with it, leave the thread attached */ 254 sched_rem(td); 255 ke->ke_state = KES_THREAD; 256 return; 257 } 258 td3 = TAILQ_PREV(td, threadqueue, td_runq); 259 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 260 if (ke) { 261 /* 262 * This thread has been assigned to a KSE. 263 * We need to dissociate it and try assign the 264 * KSE to the next available thread. Then, we should 265 * see if we need to move the KSE in the run queues. 266 */ 267 sched_rem(td); 268 ke->ke_state = KES_THREAD; 269 td2 = kg->kg_last_assigned; 270 KASSERT((td2 != NULL), ("last assigned has wrong value")); 271 if (td2 == td) 272 kg->kg_last_assigned = td3; 273 kse_reassign(ke); 274 } 275 } 276 #endif 277 278 /* 279 * Change the priority of a thread that is on the run queue. 280 */ 281 void 282 adjustrunqueue( struct thread *td, int newpri) 283 { 284 struct ksegrp *kg; 285 struct kse *ke; 286 287 mtx_assert(&sched_lock, MA_OWNED); 288 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 289 290 ke = td->td_kse; 291 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 292 /* 293 * If it is not a threaded process, take the shortcut. 294 */ 295 if ((td->td_proc->p_flag & P_SA) == 0) { 296 /* We only care about the kse in the run queue. */ 297 td->td_priority = newpri; 298 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 299 sched_rem(td); 300 sched_add(td); 301 } 302 return; 303 } 304 305 /* It is a threaded process */ 306 kg = td->td_ksegrp; 307 kg->kg_runnable--; 308 TD_SET_CAN_RUN(td); 309 if (ke) { 310 if (kg->kg_last_assigned == td) { 311 kg->kg_last_assigned = 312 TAILQ_PREV(td, threadqueue, td_runq); 313 } 314 sched_rem(td); 315 } 316 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 317 td->td_priority = newpri; 318 setrunqueue(td); 319 } 320 321 void 322 setrunqueue(struct thread *td) 323 { 324 struct kse *ke; 325 struct ksegrp *kg; 326 struct thread *td2; 327 struct thread *tda; 328 329 CTR1(KTR_RUNQ, "setrunqueue: td%p", td); 330 mtx_assert(&sched_lock, MA_OWNED); 331 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 332 ("setrunqueue: bad thread state")); 333 TD_SET_RUNQ(td); 334 kg = td->td_ksegrp; 335 kg->kg_runnable++; 336 if ((td->td_proc->p_flag & P_SA) == 0) { 337 /* 338 * Common path optimisation: Only one of everything 339 * and the KSE is always already attached. 340 * Totally ignore the ksegrp run queue. 341 */ 342 sched_add(td); 343 return; 344 } 345 346 tda = kg->kg_last_assigned; 347 if ((ke = td->td_kse) == NULL) { 348 if (kg->kg_idle_kses) { 349 /* 350 * There is a free one so it's ours for the asking.. 351 */ 352 ke = TAILQ_FIRST(&kg->kg_iq); 353 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 354 ke->ke_state = KES_THREAD; 355 kg->kg_idle_kses--; 356 } else if (tda && (tda->td_priority > td->td_priority)) { 357 /* 358 * None free, but there is one we can commandeer. 359 */ 360 ke = tda->td_kse; 361 sched_rem(tda); 362 tda->td_kse = NULL; 363 ke->ke_thread = NULL; 364 tda = kg->kg_last_assigned = 365 TAILQ_PREV(tda, threadqueue, td_runq); 366 } 367 } else { 368 /* 369 * Temporarily disassociate so it looks like the other cases. 370 */ 371 ke->ke_thread = NULL; 372 td->td_kse = NULL; 373 } 374 375 /* 376 * Add the thread to the ksegrp's run queue at 377 * the appropriate place. 378 */ 379 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 380 if (td2->td_priority > td->td_priority) { 381 TAILQ_INSERT_BEFORE(td2, td, td_runq); 382 break; 383 } 384 } 385 if (td2 == NULL) { 386 /* We ran off the end of the TAILQ or it was empty. */ 387 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 388 } 389 390 /* 391 * If we have a ke to use, then put it on the run queue and 392 * If needed, readjust the last_assigned pointer. 393 */ 394 if (ke) { 395 if (tda == NULL) { 396 /* 397 * No pre-existing last assigned so whoever is first 398 * gets the KSE we brought in.. (maybe us) 399 */ 400 td2 = TAILQ_FIRST(&kg->kg_runq); 401 KASSERT((td2->td_kse == NULL), 402 ("unexpected ke present")); 403 td2->td_kse = ke; 404 ke->ke_thread = td2; 405 kg->kg_last_assigned = td2; 406 } else if (tda->td_priority > td->td_priority) { 407 /* 408 * It's ours, grab it, but last_assigned is past us 409 * so don't change it. 410 */ 411 td->td_kse = ke; 412 ke->ke_thread = td; 413 } else { 414 /* 415 * We are past last_assigned, so 416 * put the new kse on whatever is next, 417 * which may or may not be us. 418 */ 419 td2 = TAILQ_NEXT(tda, td_runq); 420 kg->kg_last_assigned = td2; 421 td2->td_kse = ke; 422 ke->ke_thread = td2; 423 } 424 sched_add(ke->ke_thread); 425 } 426 } 427 428 /* 429 * Kernel thread preemption implementation. Critical sections mark 430 * regions of code in which preemptions are not allowed. 431 */ 432 void 433 critical_enter(void) 434 { 435 struct thread *td; 436 437 td = curthread; 438 if (td->td_critnest == 0) 439 cpu_critical_enter(); 440 td->td_critnest++; 441 } 442 443 void 444 critical_exit(void) 445 { 446 struct thread *td; 447 448 td = curthread; 449 KASSERT(td->td_critnest != 0, 450 ("critical_exit: td_critnest == 0")); 451 if (td->td_critnest == 1) { 452 #ifdef PREEMPTION 453 if (td->td_flags & TDF_OWEPREEMPT) { 454 mtx_lock_spin(&sched_lock); 455 mi_switch(SW_INVOL, NULL); 456 mtx_unlock_spin(&sched_lock); 457 } 458 #endif 459 td->td_critnest = 0; 460 cpu_critical_exit(); 461 } else { 462 td->td_critnest--; 463 } 464 } 465 466 /* 467 * This function is called when a thread is about to be put on run queue 468 * because it has been made runnable or its priority has been adjusted. It 469 * determines if the new thread should be immediately preempted to. If so, 470 * it switches to it and eventually returns true. If not, it returns false 471 * so that the caller may place the thread on an appropriate run queue. 472 */ 473 int 474 maybe_preempt(struct thread *td) 475 { 476 #ifdef PREEMPTION 477 struct thread *ctd; 478 int cpri, pri; 479 #endif 480 481 mtx_assert(&sched_lock, MA_OWNED); 482 #ifdef PREEMPTION 483 /* 484 * The new thread should not preempt the current thread if any of the 485 * following conditions are true: 486 * 487 * - The current thread has a higher (numerically lower) priority. 488 * - It is too early in the boot for context switches (cold is set). 489 * - The current thread has an inhibitor set or is in the process of 490 * exiting. In this case, the current thread is about to switch 491 * out anyways, so there's no point in preempting. If we did, 492 * the current thread would not be properly resumed as well, so 493 * just avoid that whole landmine. 494 * - If the new thread's priority is not a realtime priority and 495 * the current thread's priority is not an idle priority and 496 * FULL_PREEMPTION is disabled. 497 * 498 * If all of these conditions are false, but the current thread is in 499 * a nested critical section, then we have to defer the preemption 500 * until we exit the critical section. Otherwise, switch immediately 501 * to the new thread. 502 */ 503 ctd = curthread; 504 pri = td->td_priority; 505 cpri = ctd->td_priority; 506 if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) || 507 td->td_kse->ke_state != KES_THREAD) 508 return (0); 509 #ifndef FULL_PREEMPTION 510 if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) && 511 !(cpri >= PRI_MIN_IDLE)) 512 return (0); 513 #endif 514 if (ctd->td_critnest > 1) { 515 CTR1(KTR_PROC, "maybe_preempt: in critical section %d", 516 ctd->td_critnest); 517 ctd->td_flags |= TDF_OWEPREEMPT; 518 return (0); 519 } 520 521 /* 522 * Our thread state says that we are already on a run queue, so 523 * update our state as if we had been dequeued by choosethread(). 524 */ 525 MPASS(TD_ON_RUNQ(td)); 526 TD_SET_RUNNING(td); 527 CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td, 528 td->td_proc->p_pid, td->td_proc->p_comm); 529 mi_switch(SW_INVOL, td); 530 return (1); 531 #else 532 return (0); 533 #endif 534 } 535 536 #ifndef PREEMPTION 537 /* XXX: There should be a non-static version of this. */ 538 static void 539 printf_caddr_t(void *data) 540 { 541 printf("%s", (char *)data); 542 } 543 static char preempt_warning[] = 544 "WARNING: Kernel preemption is disabled, expect reduced performance.\n"; 545 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t, 546 preempt_warning) 547 #endif 548 549 /************************************************************************ 550 * SYSTEM RUN QUEUE manipulations and tests * 551 ************************************************************************/ 552 /* 553 * Initialize a run structure. 554 */ 555 void 556 runq_init(struct runq *rq) 557 { 558 int i; 559 560 bzero(rq, sizeof *rq); 561 for (i = 0; i < RQ_NQS; i++) 562 TAILQ_INIT(&rq->rq_queues[i]); 563 } 564 565 /* 566 * Clear the status bit of the queue corresponding to priority level pri, 567 * indicating that it is empty. 568 */ 569 static __inline void 570 runq_clrbit(struct runq *rq, int pri) 571 { 572 struct rqbits *rqb; 573 574 rqb = &rq->rq_status; 575 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 576 rqb->rqb_bits[RQB_WORD(pri)], 577 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 578 RQB_BIT(pri), RQB_WORD(pri)); 579 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 580 } 581 582 /* 583 * Find the index of the first non-empty run queue. This is done by 584 * scanning the status bits, a set bit indicates a non-empty queue. 585 */ 586 static __inline int 587 runq_findbit(struct runq *rq) 588 { 589 struct rqbits *rqb; 590 int pri; 591 int i; 592 593 rqb = &rq->rq_status; 594 for (i = 0; i < RQB_LEN; i++) 595 if (rqb->rqb_bits[i]) { 596 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 597 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 598 rqb->rqb_bits[i], i, pri); 599 return (pri); 600 } 601 602 return (-1); 603 } 604 605 /* 606 * Set the status bit of the queue corresponding to priority level pri, 607 * indicating that it is non-empty. 608 */ 609 static __inline void 610 runq_setbit(struct runq *rq, int pri) 611 { 612 struct rqbits *rqb; 613 614 rqb = &rq->rq_status; 615 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 616 rqb->rqb_bits[RQB_WORD(pri)], 617 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 618 RQB_BIT(pri), RQB_WORD(pri)); 619 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 620 } 621 622 /* 623 * Add the KSE to the queue specified by its priority, and set the 624 * corresponding status bit. 625 */ 626 void 627 runq_add(struct runq *rq, struct kse *ke) 628 { 629 struct rqhead *rqh; 630 int pri; 631 632 pri = ke->ke_thread->td_priority / RQ_PPQ; 633 ke->ke_rqindex = pri; 634 runq_setbit(rq, pri); 635 rqh = &rq->rq_queues[pri]; 636 CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p", 637 ke->ke_proc, ke->ke_thread->td_priority, pri, rqh); 638 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 639 } 640 641 /* 642 * Return true if there are runnable processes of any priority on the run 643 * queue, false otherwise. Has no side effects, does not modify the run 644 * queue structure. 645 */ 646 int 647 runq_check(struct runq *rq) 648 { 649 struct rqbits *rqb; 650 int i; 651 652 rqb = &rq->rq_status; 653 for (i = 0; i < RQB_LEN; i++) 654 if (rqb->rqb_bits[i]) { 655 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 656 rqb->rqb_bits[i], i); 657 return (1); 658 } 659 CTR0(KTR_RUNQ, "runq_check: empty"); 660 661 return (0); 662 } 663 664 /* 665 * Find the highest priority process on the run queue. 666 */ 667 struct kse * 668 runq_choose(struct runq *rq) 669 { 670 struct rqhead *rqh; 671 struct kse *ke; 672 int pri; 673 674 mtx_assert(&sched_lock, MA_OWNED); 675 while ((pri = runq_findbit(rq)) != -1) { 676 rqh = &rq->rq_queues[pri]; 677 ke = TAILQ_FIRST(rqh); 678 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 679 CTR3(KTR_RUNQ, 680 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 681 return (ke); 682 } 683 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 684 685 return (NULL); 686 } 687 688 /* 689 * Remove the KSE from the queue specified by its priority, and clear the 690 * corresponding status bit if the queue becomes empty. 691 * Caller must set ke->ke_state afterwards. 692 */ 693 void 694 runq_remove(struct runq *rq, struct kse *ke) 695 { 696 struct rqhead *rqh; 697 int pri; 698 699 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 700 ("runq_remove: process swapped out")); 701 pri = ke->ke_rqindex; 702 rqh = &rq->rq_queues[pri]; 703 CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p", 704 ke, ke->ke_thread->td_priority, pri, rqh); 705 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 706 TAILQ_REMOVE(rqh, ke, ke_procq); 707 if (TAILQ_EMPTY(rqh)) { 708 CTR0(KTR_RUNQ, "runq_remove: empty"); 709 runq_clrbit(rq, pri); 710 } 711 } 712 713 #if 0 714 void 715 panc(char *string1, char *string2) 716 { 717 printf("%s", string1); 718 Debugger(string2); 719 } 720 721 void 722 thread_sanity_check(struct thread *td, char *string) 723 { 724 struct proc *p; 725 struct ksegrp *kg; 726 struct kse *ke; 727 struct thread *td2 = NULL; 728 unsigned int prevpri; 729 int saw_lastassigned = 0; 730 int unassigned = 0; 731 int assigned = 0; 732 733 p = td->td_proc; 734 kg = td->td_ksegrp; 735 ke = td->td_kse; 736 737 738 if (ke) { 739 if (p != ke->ke_proc) { 740 panc(string, "wrong proc"); 741 } 742 if (ke->ke_thread != td) { 743 panc(string, "wrong thread"); 744 } 745 } 746 747 if ((p->p_flag & P_SA) == 0) { 748 if (ke == NULL) { 749 panc(string, "non KSE thread lost kse"); 750 } 751 } else { 752 prevpri = 0; 753 saw_lastassigned = 0; 754 unassigned = 0; 755 assigned = 0; 756 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 757 if (td2->td_priority < prevpri) { 758 panc(string, "thread runqueue unosorted"); 759 } 760 if ((td2->td_state == TDS_RUNQ) && 761 td2->td_kse && 762 (td2->td_kse->ke_state != KES_ONRUNQ)) { 763 panc(string, "KSE wrong state"); 764 } 765 prevpri = td2->td_priority; 766 if (td2->td_kse) { 767 assigned++; 768 if (unassigned) { 769 panc(string, "unassigned before assigned"); 770 } 771 if (kg->kg_last_assigned == NULL) { 772 panc(string, "lastassigned corrupt"); 773 } 774 if (saw_lastassigned) { 775 panc(string, "last assigned not last"); 776 } 777 if (td2->td_kse->ke_thread != td2) { 778 panc(string, "mismatched kse/thread"); 779 } 780 } else { 781 unassigned++; 782 } 783 if (td2 == kg->kg_last_assigned) { 784 saw_lastassigned = 1; 785 if (td2->td_kse == NULL) { 786 panc(string, "last assigned not assigned"); 787 } 788 } 789 } 790 if (kg->kg_last_assigned && (saw_lastassigned == 0)) { 791 panc(string, "where on earth does lastassigned point?"); 792 } 793 #if 0 794 FOREACH_THREAD_IN_GROUP(kg, td2) { 795 if (((td2->td_flags & TDF_UNBOUND) == 0) && 796 (TD_ON_RUNQ(td2))) { 797 assigned++; 798 if (td2->td_kse == NULL) { 799 panc(string, "BOUND thread with no KSE"); 800 } 801 } 802 } 803 #endif 804 #if 0 805 if ((unassigned + assigned) != kg->kg_runnable) { 806 panc(string, "wrong number in runnable"); 807 } 808 #endif 809 } 810 if (assigned == 12345) { 811 printf("%p %p %p %p %p %d, %d", 812 td, td2, ke, kg, p, assigned, saw_lastassigned); 813 } 814 } 815 #endif 816 817