1 /* 2 * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 /*** 30 31 Here is the logic.. 32 33 If there are N processors, then there are at most N KSEs (kernel 34 schedulable entities) working to process threads that belong to a 35 KSEGOUP (kg). If there are X of these KSEs actually running at the 36 moment in question, then there are at most M (N-X) of these KSEs on 37 the run queue, as running KSEs are not on the queue. 38 39 Runnable threads are queued off the KSEGROUP in priority order. 40 If there are M or more threads runnable, the top M threads 41 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take 42 their priority from those threads and are put on the run queue. 43 44 The last thread that had a priority high enough to have a KSE associated 45 with it, AND IS ON THE RUN QUEUE is pointed to by 46 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs 47 assigned as all the available KSEs are activly running, or because there 48 are no threads queued, that pointer is NULL. 49 50 When a KSE is removed from the run queue to become runnable, we know 51 it was associated with the highest priority thread in the queue (at the head 52 of the queue). If it is also the last assigned we know M was 1 and must 53 now be 0. Since the thread is no longer queued that pointer must be 54 removed from it. Since we know there were no more KSEs available, 55 (M was 1 and is now 0) and since we are not FREEING our KSE 56 but using it, we know there are STILL no more KSEs available, we can prove 57 that the next thread in the ksegrp list will not have a KSE to assign to 58 it, so we can show that the pointer must be made 'invalid' (NULL). 59 60 The pointer exists so that when a new thread is made runnable, it can 61 have its priority compared with the last assigned thread to see if 62 it should 'steal' its KSE or not.. i.e. is it 'earlier' 63 on the list than that thread or later.. If it's earlier, then the KSE is 64 removed from the last assigned (which is now not assigned a KSE) 65 and reassigned to the new thread, which is placed earlier in the list. 66 The pointer is then backed up to the previous thread (which may or may not 67 be the new thread). 68 69 When a thread sleeps or is removed, the KSE becomes available and if there 70 are queued threads that are not assigned KSEs, the highest priority one of 71 them is assigned the KSE, which is then placed back on the run queue at 72 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down 73 to point to it. 74 75 The following diagram shows 2 KSEs and 3 threads from a single process. 76 77 RUNQ: --->KSE---KSE--... (KSEs queued at priorities from threads) 78 \ \____ 79 \ \ 80 KSEGROUP---thread--thread--thread (queued in priority order) 81 \ / 82 \_______________/ 83 (last_assigned) 84 85 The result of this scheme is that the M available KSEs are always 86 queued at the priorities they have inherrited from the M highest priority 87 threads for that KSEGROUP. If this situation changes, the KSEs are 88 reassigned to keep this true. 89 90 */ 91 92 #include <sys/param.h> 93 #include <sys/systm.h> 94 #include <sys/kernel.h> 95 #include <sys/ktr.h> 96 #include <sys/lock.h> 97 #include <sys/mutex.h> 98 #include <sys/proc.h> 99 #include <sys/queue.h> 100 #include <sys/sched.h> 101 #include <machine/critical.h> 102 103 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS); 104 105 void panc(char *string1, char *string2); 106 107 #if 0 108 static void runq_readjust(struct runq *rq, struct kse *ke); 109 #endif 110 /************************************************************************ 111 * Functions that manipulate runnability from a thread perspective. * 112 ************************************************************************/ 113 /* 114 * Select the KSE that will be run next. From that find the thread, and 115 * remove it from the KSEGRP's run queue. If there is thread clustering, 116 * this will be what does it. 117 */ 118 struct thread * 119 choosethread(void) 120 { 121 struct kse *ke; 122 struct thread *td; 123 struct ksegrp *kg; 124 125 retry: 126 if ((ke = sched_choose())) { 127 td = ke->ke_thread; 128 KASSERT((td->td_kse == ke), ("kse/thread mismatch")); 129 kg = ke->ke_ksegrp; 130 if (td->td_proc->p_flag & P_KSES) { 131 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 132 if (kg->kg_last_assigned == td) { 133 kg->kg_last_assigned = TAILQ_PREV(td, 134 threadqueue, td_runq); 135 } 136 } 137 kg->kg_runnable--; 138 CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d", 139 td, td->td_priority); 140 } else { 141 /* Simulate runq_choose() having returned the idle thread */ 142 td = PCPU_GET(idlethread); 143 ke = td->td_kse; 144 CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td); 145 } 146 ke->ke_flags |= KEF_DIDRUN; 147 148 /* 149 * Only allow non system threads to run in panic 150 * if they are the one we are tracing. (I think.. [JRE]) 151 */ 152 if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 && 153 (td->td_flags & TDF_INPANIC) == 0)) 154 goto retry; 155 156 TD_SET_RUNNING(td); 157 return (td); 158 } 159 160 /* 161 * Given a surplus KSE, either assign a new runable thread to it 162 * (and put it in the run queue) or put it in the ksegrp's idle KSE list. 163 * Or maybe give it back to its owner if it's been loaned. 164 * Assumes that the original thread is either not runnable or 165 * already on the run queue 166 */ 167 void 168 kse_reassign(struct kse *ke) 169 { 170 struct ksegrp *kg; 171 struct thread *td; 172 struct thread *original; 173 struct kse_upcall *ku; 174 175 mtx_assert(&sched_lock, MA_OWNED); 176 original = ke->ke_thread; 177 KASSERT(original == NULL || TD_IS_INHIBITED(original), 178 ("reassigning KSE with runnable thread")); 179 kg = ke->ke_ksegrp; 180 if (original) { 181 /* 182 * If the outgoing thread is in threaded group and has never 183 * scheduled an upcall, decide whether this is a short 184 * or long term event and thus whether or not to schedule 185 * an upcall. 186 * If it is a short term event, just suspend it in 187 * a way that takes its KSE with it. 188 * Select the events for which we want to schedule upcalls. 189 * For now it's just sleep. 190 * XXXKSE eventually almost any inhibition could do. 191 */ 192 if (TD_CAN_UNBIND(original) && (original->td_standin) && 193 TD_ON_SLEEPQ(original)) { 194 /* 195 * Release ownership of upcall, and schedule an upcall 196 * thread, this new upcall thread becomes the owner of 197 * the upcall structure. 198 */ 199 ku = original->td_upcall; 200 ku->ku_owner = NULL; 201 original->td_upcall = NULL; 202 original->td_flags &= ~TDF_CAN_UNBIND; 203 thread_schedule_upcall(original, ku); 204 } 205 original->td_kse = NULL; 206 } 207 208 /* 209 * Find the first unassigned thread 210 */ 211 if ((td = kg->kg_last_assigned) != NULL) 212 td = TAILQ_NEXT(td, td_runq); 213 else 214 td = TAILQ_FIRST(&kg->kg_runq); 215 216 /* 217 * If we found one, assign it the kse, otherwise idle the kse. 218 */ 219 if (td) { 220 kg->kg_last_assigned = td; 221 td->td_kse = ke; 222 ke->ke_thread = td; 223 sched_add(ke); 224 CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td); 225 return; 226 } 227 228 ke->ke_state = KES_IDLE; 229 ke->ke_thread = NULL; 230 TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist); 231 kg->kg_idle_kses++; 232 CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke); 233 return; 234 } 235 236 #if 0 237 /* 238 * Remove a thread from its KSEGRP's run queue. 239 * This in turn may remove it from a KSE if it was already assigned 240 * to one, possibly causing a new thread to be assigned to the KSE 241 * and the KSE getting a new priority. 242 */ 243 static void 244 remrunqueue(struct thread *td) 245 { 246 struct thread *td2, *td3; 247 struct ksegrp *kg; 248 struct kse *ke; 249 250 mtx_assert(&sched_lock, MA_OWNED); 251 KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue")); 252 kg = td->td_ksegrp; 253 ke = td->td_kse; 254 CTR1(KTR_RUNQ, "remrunqueue: td%p", td); 255 kg->kg_runnable--; 256 TD_SET_CAN_RUN(td); 257 /* 258 * If it is not a threaded process, take the shortcut. 259 */ 260 if ((td->td_proc->p_flag & P_KSES) == 0) { 261 /* Bring its kse with it, leave the thread attached */ 262 sched_rem(ke); 263 ke->ke_state = KES_THREAD; 264 return; 265 } 266 td3 = TAILQ_PREV(td, threadqueue, td_runq); 267 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 268 if (ke) { 269 /* 270 * This thread has been assigned to a KSE. 271 * We need to dissociate it and try assign the 272 * KSE to the next available thread. Then, we should 273 * see if we need to move the KSE in the run queues. 274 */ 275 sched_rem(ke); 276 ke->ke_state = KES_THREAD; 277 td2 = kg->kg_last_assigned; 278 KASSERT((td2 != NULL), ("last assigned has wrong value")); 279 if (td2 == td) 280 kg->kg_last_assigned = td3; 281 kse_reassign(ke); 282 } 283 } 284 #endif 285 286 /* 287 * Change the priority of a thread that is on the run queue. 288 */ 289 void 290 adjustrunqueue( struct thread *td, int newpri) 291 { 292 struct ksegrp *kg; 293 struct kse *ke; 294 295 mtx_assert(&sched_lock, MA_OWNED); 296 KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue")); 297 298 ke = td->td_kse; 299 CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td); 300 /* 301 * If it is not a threaded process, take the shortcut. 302 */ 303 if ((td->td_proc->p_flag & P_KSES) == 0) { 304 /* We only care about the kse in the run queue. */ 305 td->td_priority = newpri; 306 if (ke->ke_rqindex != (newpri / RQ_PPQ)) { 307 sched_rem(ke); 308 sched_add(ke); 309 } 310 return; 311 } 312 313 /* It is a threaded process */ 314 kg = td->td_ksegrp; 315 kg->kg_runnable--; 316 TD_SET_CAN_RUN(td); 317 if (ke) { 318 if (kg->kg_last_assigned == td) { 319 kg->kg_last_assigned = 320 TAILQ_PREV(td, threadqueue, td_runq); 321 } 322 sched_rem(ke); 323 } 324 TAILQ_REMOVE(&kg->kg_runq, td, td_runq); 325 td->td_priority = newpri; 326 setrunqueue(td); 327 } 328 329 void 330 setrunqueue(struct thread *td) 331 { 332 struct kse *ke; 333 struct ksegrp *kg; 334 struct thread *td2; 335 struct thread *tda; 336 337 CTR1(KTR_RUNQ, "setrunqueue: td%p", td); 338 mtx_assert(&sched_lock, MA_OWNED); 339 KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), 340 ("setrunqueue: bad thread state")); 341 TD_SET_RUNQ(td); 342 kg = td->td_ksegrp; 343 kg->kg_runnable++; 344 if ((td->td_proc->p_flag & P_KSES) == 0) { 345 /* 346 * Common path optimisation: Only one of everything 347 * and the KSE is always already attached. 348 * Totally ignore the ksegrp run queue. 349 */ 350 sched_add(td->td_kse); 351 return; 352 } 353 354 tda = kg->kg_last_assigned; 355 if ((ke = td->td_kse) == NULL) { 356 if (kg->kg_idle_kses) { 357 /* 358 * There is a free one so it's ours for the asking.. 359 */ 360 ke = TAILQ_FIRST(&kg->kg_iq); 361 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 362 ke->ke_state = KES_THREAD; 363 kg->kg_idle_kses--; 364 } else if (tda && (tda->td_priority > td->td_priority)) { 365 /* 366 * None free, but there is one we can commandeer. 367 */ 368 ke = tda->td_kse; 369 tda->td_kse = NULL; 370 ke->ke_thread = NULL; 371 tda = kg->kg_last_assigned = 372 TAILQ_PREV(tda, threadqueue, td_runq); 373 sched_rem(ke); 374 } 375 } else { 376 /* 377 * Temporarily disassociate so it looks like the other cases. 378 */ 379 ke->ke_thread = NULL; 380 td->td_kse = NULL; 381 } 382 383 /* 384 * Add the thread to the ksegrp's run queue at 385 * the appropriate place. 386 */ 387 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 388 if (td2->td_priority > td->td_priority) { 389 TAILQ_INSERT_BEFORE(td2, td, td_runq); 390 break; 391 } 392 } 393 if (td2 == NULL) { 394 /* We ran off the end of the TAILQ or it was empty. */ 395 TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq); 396 } 397 398 /* 399 * If we have a ke to use, then put it on the run queue and 400 * If needed, readjust the last_assigned pointer. 401 */ 402 if (ke) { 403 if (tda == NULL) { 404 /* 405 * No pre-existing last assigned so whoever is first 406 * gets the KSE we brought in.. (maybe us) 407 */ 408 td2 = TAILQ_FIRST(&kg->kg_runq); 409 KASSERT((td2->td_kse == NULL), 410 ("unexpected ke present")); 411 td2->td_kse = ke; 412 ke->ke_thread = td2; 413 kg->kg_last_assigned = td2; 414 } else if (tda->td_priority > td->td_priority) { 415 /* 416 * It's ours, grab it, but last_assigned is past us 417 * so don't change it. 418 */ 419 td->td_kse = ke; 420 ke->ke_thread = td; 421 } else { 422 /* 423 * We are past last_assigned, so 424 * put the new kse on whatever is next, 425 * which may or may not be us. 426 */ 427 td2 = TAILQ_NEXT(tda, td_runq); 428 kg->kg_last_assigned = td2; 429 td2->td_kse = ke; 430 ke->ke_thread = td2; 431 } 432 sched_add(ke); 433 } 434 } 435 436 /************************************************************************ 437 * Critical section marker functions * 438 ************************************************************************/ 439 /* Critical sections that prevent preemption. */ 440 void 441 critical_enter(void) 442 { 443 struct thread *td; 444 445 td = curthread; 446 if (td->td_critnest == 0) 447 cpu_critical_enter(); 448 td->td_critnest++; 449 } 450 451 void 452 critical_exit(void) 453 { 454 struct thread *td; 455 456 td = curthread; 457 if (td->td_critnest == 1) { 458 td->td_critnest = 0; 459 cpu_critical_exit(); 460 } else { 461 td->td_critnest--; 462 } 463 } 464 465 466 /************************************************************************ 467 * SYSTEM RUN QUEUE manipulations and tests * 468 ************************************************************************/ 469 /* 470 * Initialize a run structure. 471 */ 472 void 473 runq_init(struct runq *rq) 474 { 475 int i; 476 477 bzero(rq, sizeof *rq); 478 for (i = 0; i < RQ_NQS; i++) 479 TAILQ_INIT(&rq->rq_queues[i]); 480 } 481 482 /* 483 * Clear the status bit of the queue corresponding to priority level pri, 484 * indicating that it is empty. 485 */ 486 static __inline void 487 runq_clrbit(struct runq *rq, int pri) 488 { 489 struct rqbits *rqb; 490 491 rqb = &rq->rq_status; 492 CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d", 493 rqb->rqb_bits[RQB_WORD(pri)], 494 rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri), 495 RQB_BIT(pri), RQB_WORD(pri)); 496 rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri); 497 } 498 499 /* 500 * Find the index of the first non-empty run queue. This is done by 501 * scanning the status bits, a set bit indicates a non-empty queue. 502 */ 503 static __inline int 504 runq_findbit(struct runq *rq) 505 { 506 struct rqbits *rqb; 507 int pri; 508 int i; 509 510 rqb = &rq->rq_status; 511 for (i = 0; i < RQB_LEN; i++) 512 if (rqb->rqb_bits[i]) { 513 pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW); 514 CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d", 515 rqb->rqb_bits[i], i, pri); 516 return (pri); 517 } 518 519 return (-1); 520 } 521 522 /* 523 * Set the status bit of the queue corresponding to priority level pri, 524 * indicating that it is non-empty. 525 */ 526 static __inline void 527 runq_setbit(struct runq *rq, int pri) 528 { 529 struct rqbits *rqb; 530 531 rqb = &rq->rq_status; 532 CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d", 533 rqb->rqb_bits[RQB_WORD(pri)], 534 rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri), 535 RQB_BIT(pri), RQB_WORD(pri)); 536 rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri); 537 } 538 539 /* 540 * Add the KSE to the queue specified by its priority, and set the 541 * corresponding status bit. 542 */ 543 void 544 runq_add(struct runq *rq, struct kse *ke) 545 { 546 struct rqhead *rqh; 547 int pri; 548 549 pri = ke->ke_thread->td_priority / RQ_PPQ; 550 ke->ke_rqindex = pri; 551 runq_setbit(rq, pri); 552 rqh = &rq->rq_queues[pri]; 553 CTR4(KTR_RUNQ, "runq_add: p=%p pri=%d %d rqh=%p", 554 ke->ke_proc, ke->ke_thread->td_priority, pri, rqh); 555 TAILQ_INSERT_TAIL(rqh, ke, ke_procq); 556 } 557 558 /* 559 * Return true if there are runnable processes of any priority on the run 560 * queue, false otherwise. Has no side effects, does not modify the run 561 * queue structure. 562 */ 563 int 564 runq_check(struct runq *rq) 565 { 566 struct rqbits *rqb; 567 int i; 568 569 rqb = &rq->rq_status; 570 for (i = 0; i < RQB_LEN; i++) 571 if (rqb->rqb_bits[i]) { 572 CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d", 573 rqb->rqb_bits[i], i); 574 return (1); 575 } 576 CTR0(KTR_RUNQ, "runq_check: empty"); 577 578 return (0); 579 } 580 581 /* 582 * Find the highest priority process on the run queue. 583 */ 584 struct kse * 585 runq_choose(struct runq *rq) 586 { 587 struct rqhead *rqh; 588 struct kse *ke; 589 int pri; 590 591 mtx_assert(&sched_lock, MA_OWNED); 592 while ((pri = runq_findbit(rq)) != -1) { 593 rqh = &rq->rq_queues[pri]; 594 ke = TAILQ_FIRST(rqh); 595 KASSERT(ke != NULL, ("runq_choose: no proc on busy queue")); 596 CTR3(KTR_RUNQ, 597 "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh); 598 return (ke); 599 } 600 CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri); 601 602 return (NULL); 603 } 604 605 /* 606 * Remove the KSE from the queue specified by its priority, and clear the 607 * corresponding status bit if the queue becomes empty. 608 * Caller must set ke->ke_state afterwards. 609 */ 610 void 611 runq_remove(struct runq *rq, struct kse *ke) 612 { 613 struct rqhead *rqh; 614 int pri; 615 616 KASSERT(ke->ke_proc->p_sflag & PS_INMEM, 617 ("runq_remove: process swapped out")); 618 pri = ke->ke_rqindex; 619 rqh = &rq->rq_queues[pri]; 620 CTR4(KTR_RUNQ, "runq_remove: p=%p pri=%d %d rqh=%p", 621 ke, ke->ke_thread->td_priority, pri, rqh); 622 KASSERT(ke != NULL, ("runq_remove: no proc on busy queue")); 623 TAILQ_REMOVE(rqh, ke, ke_procq); 624 if (TAILQ_EMPTY(rqh)) { 625 CTR0(KTR_RUNQ, "runq_remove: empty"); 626 runq_clrbit(rq, pri); 627 } 628 } 629 630 #if 0 631 void 632 panc(char *string1, char *string2) 633 { 634 printf("%s", string1); 635 Debugger(string2); 636 } 637 638 void 639 thread_sanity_check(struct thread *td, char *string) 640 { 641 struct proc *p; 642 struct ksegrp *kg; 643 struct kse *ke; 644 struct thread *td2 = NULL; 645 unsigned int prevpri; 646 int saw_lastassigned = 0; 647 int unassigned = 0; 648 int assigned = 0; 649 650 p = td->td_proc; 651 kg = td->td_ksegrp; 652 ke = td->td_kse; 653 654 655 if (ke) { 656 if (p != ke->ke_proc) { 657 panc(string, "wrong proc"); 658 } 659 if (ke->ke_thread != td) { 660 panc(string, "wrong thread"); 661 } 662 } 663 664 if ((p->p_flag & P_KSES) == 0) { 665 if (ke == NULL) { 666 panc(string, "non KSE thread lost kse"); 667 } 668 } else { 669 prevpri = 0; 670 saw_lastassigned = 0; 671 unassigned = 0; 672 assigned = 0; 673 TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) { 674 if (td2->td_priority < prevpri) { 675 panc(string, "thread runqueue unosorted"); 676 } 677 if ((td2->td_state == TDS_RUNQ) && 678 td2->td_kse && 679 (td2->td_kse->ke_state != KES_ONRUNQ)) { 680 panc(string, "KSE wrong state"); 681 } 682 prevpri = td2->td_priority; 683 if (td2->td_kse) { 684 assigned++; 685 if (unassigned) { 686 panc(string, "unassigned before assigned"); 687 } 688 if (kg->kg_last_assigned == NULL) { 689 panc(string, "lastassigned corrupt"); 690 } 691 if (saw_lastassigned) { 692 panc(string, "last assigned not last"); 693 } 694 if (td2->td_kse->ke_thread != td2) { 695 panc(string, "mismatched kse/thread"); 696 } 697 } else { 698 unassigned++; 699 } 700 if (td2 == kg->kg_last_assigned) { 701 saw_lastassigned = 1; 702 if (td2->td_kse == NULL) { 703 panc(string, "last assigned not assigned"); 704 } 705 } 706 } 707 if (kg->kg_last_assigned && (saw_lastassigned == 0)) { 708 panc(string, "where on earth does lastassigned point?"); 709 } 710 #if 0 711 FOREACH_THREAD_IN_GROUP(kg, td2) { 712 if (((td2->td_flags & TDF_UNBOUND) == 0) && 713 (TD_ON_RUNQ(td2))) { 714 assigned++; 715 if (td2->td_kse == NULL) { 716 panc(string, "BOUND thread with no KSE"); 717 } 718 } 719 } 720 #endif 721 #if 0 722 if ((unassigned + assigned) != kg->kg_runnable) { 723 panc(string, "wrong number in runnable"); 724 } 725 #endif 726 } 727 if (assigned == 12345) { 728 printf("%p %p %p %p %p %d, %d", 729 td, td2, ke, kg, p, assigned, saw_lastassigned); 730 } 731 } 732 #endif 733 734