xref: /freebsd/sys/kern/kern_switch.c (revision 4a6404dfc1ee7e7a0daef4f41fdd93f78ae54988)
1 /*
2  * Copyright (c) 1999 Peter Wemm <peter@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/kernel.h>
32 #include <sys/ktr.h>
33 #include <sys/proc.h>
34 #include <sys/rtprio.h>
35 #include <sys/queue.h>
36 
37 #include <machine/mutex.h>
38 
39 /*
40  * We have NQS (32) run queues per scheduling class.  For the normal
41  * class, there are 128 priorities scaled onto these 32 queues.  New
42  * processes are added to the last entry in each queue, and processes
43  * are selected for running by taking them from the head and maintaining
44  * a simple FIFO arrangement.
45  *
46  * Interrupt, real time and idle priority processes have and explicit
47  * 0-31 priority which maps directly onto their class queue index.
48  * When a queue has something in it, the corresponding bit is set in
49  * the queuebits variable, allowing a single read to determine the
50  * state of all 32 queues and then a ffs() to find the first busy
51  * queue.
52  *
53  * XXX This needs fixing.  First, we only have one idle process, so we
54  * hardly need 32 queues for it.  Secondly, the number of classes
55  * makes things unwieldy.  We should be able to merge them into a
56  * single 96 or 128 entry queue.
57  */
58 struct rq itqueues[NQS];		/* interrupt threads */
59 struct rq rtqueues[NQS];		/* real time processes */
60 struct rq queues[NQS];			/* time sharing processes */
61 struct rq idqueues[NQS];		/* idle process */
62 u_int32_t itqueuebits;
63 u_int32_t rtqueuebits;
64 u_int32_t queuebits;
65 u_int32_t idqueuebits;
66 
67 /*
68  * Initialize the run queues at boot time.
69  */
70 static void
71 rqinit(void *dummy)
72 {
73 	int i;
74 
75 	for (i = 0; i < NQS; i++) {
76 		TAILQ_INIT(&itqueues[i]);
77 		TAILQ_INIT(&rtqueues[i]);
78 		TAILQ_INIT(&queues[i]);
79 		TAILQ_INIT(&idqueues[i]);
80 	}
81 }
82 SYSINIT(runqueue, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, rqinit, NULL)
83 
84 /*
85  * setrunqueue() examines a process priority and class and inserts it on
86  * the tail of it's appropriate run queue (based on class and priority).
87  * This sets the queue busy bit.
88  * The process must be runnable.
89  * This must be called at splhigh().
90  */
91 void
92 setrunqueue(struct proc *p)
93 {
94 	struct rq *q;
95 	u_int8_t pri;
96 
97 	mtx_assert(&sched_lock, MA_OWNED);
98 	KASSERT(p->p_stat == SRUN, ("setrunqueue: proc %p (%s) not SRUN", p, \
99 	    p->p_comm));
100 
101 	/*
102 	 * Decide which class we want to run.  We now have four
103 	 * queues, and this is becoming ugly.  We should be able to
104 	 * collapse the first three classes into a single contiguous
105 	 * queue.  XXX FIXME.
106 	 */
107 	CTR4(KTR_PROC, "setrunqueue: proc %p (pid %d, %s), schedlock %lx",
108 		p, p->p_pid, p->p_comm, (long)sched_lock.mtx_lock);
109 	if (p->p_rtprio.type == RTP_PRIO_ITHREAD) {	/* interrupt thread */
110 		pri = p->p_rtprio.prio;
111 		q = &itqueues[pri];
112 		itqueuebits |= 1 << pri;
113 	} else if (p->p_rtprio.type == RTP_PRIO_REALTIME || /* real time */
114 		   p->p_rtprio.type == RTP_PRIO_FIFO) {
115 		pri = p->p_rtprio.prio;
116 		q = &rtqueues[pri];
117 		rtqueuebits |= 1 << pri;
118 	} else if (p->p_rtprio.type == RTP_PRIO_NORMAL) {   /* time sharing */
119 		pri = p->p_priority >> 2;
120 		q = &queues[pri];
121 		queuebits |= 1 << pri;
122 	} else if (p->p_rtprio.type == RTP_PRIO_IDLE) {	    /* idle proc */
123 		pri = p->p_rtprio.prio;
124 		q = &idqueues[pri];
125 		idqueuebits |= 1 << pri;
126 	} else {
127 		panic("setrunqueue: invalid rtprio type %d", p->p_rtprio.type);
128 	}
129 	p->p_rqindex = pri;		/* remember the queue index */
130 	TAILQ_INSERT_TAIL(q, p, p_procq);
131 }
132 
133 /*
134  * remrunqueue() removes a given process from the run queue that it is on,
135  * clearing the queue busy bit if it becomes empty.
136  * This must be called at splhigh().
137  */
138 void
139 remrunqueue(struct proc *p)
140 {
141 	struct rq *q;
142 	u_int32_t *which;
143 	u_int8_t pri;
144 
145 	CTR4(KTR_PROC, "remrunqueue: proc %p (pid %d, %s), schedlock %lx",
146 		p, p->p_pid, p->p_comm, (long)sched_lock.mtx_lock);
147 	mtx_assert(&sched_lock, MA_OWNED);
148 	pri = p->p_rqindex;
149 	if (p->p_rtprio.type == RTP_PRIO_ITHREAD) {
150 		q = &itqueues[pri];
151 		which = &itqueuebits;
152 	} else if (p->p_rtprio.type == RTP_PRIO_REALTIME ||
153 		   p->p_rtprio.type == RTP_PRIO_FIFO) {
154 		q = &rtqueues[pri];
155 		which = &rtqueuebits;
156 	} else if (p->p_rtprio.type == RTP_PRIO_NORMAL) {
157 		q = &queues[pri];
158 		which = &queuebits;
159 	} else if (p->p_rtprio.type == RTP_PRIO_IDLE) {
160 		q = &idqueues[pri];
161 		which = &idqueuebits;
162 	} else {
163 		panic("remrunqueue: invalid rtprio type");
164 	}
165 	TAILQ_REMOVE(q, p, p_procq);
166 	if (TAILQ_EMPTY(q)) {
167 		KASSERT((*which & (1 << pri)) != 0,
168 			("remrunqueue: remove from empty queue"));
169 		*which &= ~(1 << pri);
170 	}
171 }
172 
173 /*
174  * procrunnable() returns a boolean true (non-zero) value if there are
175  * any runnable processes.  This is intended to be called from the idle
176  * loop to avoid the more expensive (and destructive) chooseproc().
177  *
178  * MP SAFE.  CALLED WITHOUT THE MP LOCK
179  *
180  * XXX I doubt this.  It's possibly fail-safe, but there's obviously
181  * the case here where one of the bits words gets loaded, the
182  * processor gets preempted, and by the time it returns from this
183  * function, some other processor has picked the runnable process.
184  * What am I missing?  (grog, 23 July 2000).
185  */
186 u_int32_t
187 procrunnable(void)
188 {
189 	return (itqueuebits || rtqueuebits || queuebits || idqueuebits);
190 }
191 
192 /*
193  * chooseproc() selects the next process to run.  Ideally, cpu_switch()
194  * would have determined that there is a process available before calling
195  * this, but it is not a requirement.  The selected process is removed
196  * from it's queue, and the queue busy bit is cleared if it becomes empty.
197  * This must be called at splhigh().
198  *
199  * For SMP, trivial affinity is implemented by locating the first process
200  * on the queue that has a matching lastcpu id.  Since normal priorities
201  * are mapped four priority levels per queue, this may allow the cpu to
202  * choose a slightly lower priority process in order to preserve the cpu
203  * caches.
204  */
205 struct proc *
206 chooseproc(void)
207 {
208 	struct proc *p;
209 	struct rq *q;
210 	u_int32_t *which;
211 	u_int32_t pri;
212 #ifdef SMP
213 	u_char id;
214 #endif
215 
216 	mtx_assert(&sched_lock, MA_OWNED);
217 	if (itqueuebits) {
218 		pri = ffs(itqueuebits) - 1;
219 		q = &itqueues[pri];
220 		which = &itqueuebits;
221 	} else if (rtqueuebits) {
222 		pri = ffs(rtqueuebits) - 1;
223 		q = &rtqueues[pri];
224 		which = &rtqueuebits;
225 	} else if (queuebits) {
226 		pri = ffs(queuebits) - 1;
227 		q = &queues[pri];
228 		which = &queuebits;
229 	} else if (idqueuebits) {
230 		pri = ffs(idqueuebits) - 1;
231 		q = &idqueues[pri];
232 		which = &idqueuebits;
233 	} else {
234 		CTR1(KTR_PROC, "chooseproc: idleproc, schedlock %lx",
235 			(long)sched_lock.mtx_lock);
236 		idleproc->p_stat = SRUN;
237 		return idleproc;
238 	}
239 	p = TAILQ_FIRST(q);
240 #ifdef SMP
241 	/* wander down the current run queue for this pri level for a match */
242 	id = cpuid;
243 	while (p->p_lastcpu != id) {
244 		p = TAILQ_NEXT(p, p_procq);
245 		if (p == NULL) {
246 			p = TAILQ_FIRST(q);
247 			break;
248 		}
249 	}
250 #endif
251 	CTR4(KTR_PROC, "chooseproc: proc %p (pid %d, %s), schedlock %lx",
252 		p, p->p_pid, p->p_comm, (long)sched_lock.mtx_lock);
253 	KASSERT(p, ("chooseproc: no proc on busy queue"));
254 	TAILQ_REMOVE(q, p, p_procq);
255 	if (TAILQ_EMPTY(q))
256 		*which &= ~(1 << pri);
257 	return p;
258 }
259