xref: /freebsd/sys/kern/kern_switch.c (revision 40a8ac8f62b535d30349faf28cf47106b7041b83)
1 /*-
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include "opt_sched.h"
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kdb.h>
36 #include <sys/kernel.h>
37 #include <sys/ktr.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/queue.h>
42 #include <sys/sched.h>
43 #include <sys/smp.h>
44 #include <sys/sysctl.h>
45 
46 #include <machine/cpu.h>
47 
48 /* Uncomment this to enable logging of critical_enter/exit. */
49 #if 0
50 #define	KTR_CRITICAL	KTR_SCHED
51 #else
52 #define	KTR_CRITICAL	0
53 #endif
54 
55 #ifdef FULL_PREEMPTION
56 #ifndef PREEMPTION
57 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
58 #endif
59 #endif
60 
61 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
62 
63 /*
64  * kern.sched.preemption allows user space to determine if preemption support
65  * is compiled in or not.  It is not currently a boot or runtime flag that
66  * can be changed.
67  */
68 #ifdef PREEMPTION
69 static int kern_sched_preemption = 1;
70 #else
71 static int kern_sched_preemption = 0;
72 #endif
73 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
74     &kern_sched_preemption, 0, "Kernel preemption enabled");
75 
76 /*
77  * Support for scheduler stats exported via kern.sched.stats.  All stats may
78  * be reset with kern.sched.stats.reset = 1.  Stats may be defined elsewhere
79  * with SCHED_STAT_DEFINE().
80  */
81 #ifdef SCHED_STATS
82 SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
83 
84 /* Switch reasons from mi_switch(). */
85 DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
86 SCHED_STAT_DEFINE_VAR(uncategorized,
87     &DPCPU_NAME(sched_switch_stats[SWT_NONE]), "");
88 SCHED_STAT_DEFINE_VAR(preempt,
89     &DPCPU_NAME(sched_switch_stats[SWT_PREEMPT]), "");
90 SCHED_STAT_DEFINE_VAR(owepreempt,
91     &DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
92 SCHED_STAT_DEFINE_VAR(turnstile,
93     &DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
94 SCHED_STAT_DEFINE_VAR(sleepq,
95     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
96 SCHED_STAT_DEFINE_VAR(sleepqtimo,
97     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQTIMO]), "");
98 SCHED_STAT_DEFINE_VAR(relinquish,
99     &DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
100 SCHED_STAT_DEFINE_VAR(needresched,
101     &DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
102 SCHED_STAT_DEFINE_VAR(idle,
103     &DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
104 SCHED_STAT_DEFINE_VAR(iwait,
105     &DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
106 SCHED_STAT_DEFINE_VAR(suspend,
107     &DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
108 SCHED_STAT_DEFINE_VAR(remotepreempt,
109     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
110 SCHED_STAT_DEFINE_VAR(remotewakeidle,
111     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
112 
113 static int
114 sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
115 {
116 	struct sysctl_oid *p;
117 	uintptr_t counter;
118         int error;
119 	int val;
120 	int i;
121 
122         val = 0;
123         error = sysctl_handle_int(oidp, &val, 0, req);
124         if (error != 0 || req->newptr == NULL)
125                 return (error);
126         if (val == 0)
127                 return (0);
128 	/*
129 	 * Traverse the list of children of _kern_sched_stats and reset each
130 	 * to 0.  Skip the reset entry.
131 	 */
132 	SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
133 		if (p == oidp || p->oid_arg1 == NULL)
134 			continue;
135 		counter = (uintptr_t)p->oid_arg1;
136 		CPU_FOREACH(i) {
137 			*(long *)(dpcpu_off[i] + counter) = 0;
138 		}
139 	}
140 	return (0);
141 }
142 
143 SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
144     0, sysctl_stats_reset, "I", "Reset scheduler statistics");
145 #endif
146 
147 /************************************************************************
148  * Functions that manipulate runnability from a thread perspective.	*
149  ************************************************************************/
150 /*
151  * Select the thread that will be run next.
152  */
153 struct thread *
154 choosethread(void)
155 {
156 	struct thread *td;
157 
158 retry:
159 	td = sched_choose();
160 
161 	/*
162 	 * If we are in panic, only allow system threads,
163 	 * plus the one we are running in, to be run.
164 	 */
165 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
166 	    (td->td_flags & TDF_INPANIC) == 0)) {
167 		/* note that it is no longer on the run queue */
168 		TD_SET_CAN_RUN(td);
169 		goto retry;
170 	}
171 
172 	TD_SET_RUNNING(td);
173 	return (td);
174 }
175 
176 /*
177  * Kernel thread preemption implementation.  Critical sections mark
178  * regions of code in which preemptions are not allowed.
179  *
180  * It might seem a good idea to inline critical_enter() but, in order
181  * to prevent instructions reordering by the compiler, a __compiler_membar()
182  * would have to be used here (the same as sched_pin()).  The performance
183  * penalty imposed by the membar could, then, produce slower code than
184  * the function call itself, for most cases.
185  */
186 void
187 critical_enter(void)
188 {
189 	struct thread *td;
190 
191 	td = curthread;
192 	td->td_critnest++;
193 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
194 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
195 }
196 
197 void
198 critical_exit(void)
199 {
200 	struct thread *td;
201 	int flags;
202 
203 	td = curthread;
204 	KASSERT(td->td_critnest != 0,
205 	    ("critical_exit: td_critnest == 0"));
206 
207 	if (td->td_critnest == 1) {
208 		td->td_critnest = 0;
209 		if (td->td_owepreempt && !kdb_active) {
210 			td->td_critnest = 1;
211 			thread_lock(td);
212 			td->td_critnest--;
213 			flags = SW_INVOL | SW_PREEMPT;
214 			if (TD_IS_IDLETHREAD(td))
215 				flags |= SWT_IDLE;
216 			else
217 				flags |= SWT_OWEPREEMPT;
218 			mi_switch(flags, NULL);
219 			thread_unlock(td);
220 		}
221 	} else
222 		td->td_critnest--;
223 
224 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
225 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
226 }
227 
228 /************************************************************************
229  * SYSTEM RUN QUEUE manipulations and tests				*
230  ************************************************************************/
231 /*
232  * Initialize a run structure.
233  */
234 void
235 runq_init(struct runq *rq)
236 {
237 	int i;
238 
239 	bzero(rq, sizeof *rq);
240 	for (i = 0; i < RQ_NQS; i++)
241 		TAILQ_INIT(&rq->rq_queues[i]);
242 }
243 
244 /*
245  * Clear the status bit of the queue corresponding to priority level pri,
246  * indicating that it is empty.
247  */
248 static __inline void
249 runq_clrbit(struct runq *rq, int pri)
250 {
251 	struct rqbits *rqb;
252 
253 	rqb = &rq->rq_status;
254 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
255 	    rqb->rqb_bits[RQB_WORD(pri)],
256 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
257 	    RQB_BIT(pri), RQB_WORD(pri));
258 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
259 }
260 
261 /*
262  * Find the index of the first non-empty run queue.  This is done by
263  * scanning the status bits, a set bit indicates a non-empty queue.
264  */
265 static __inline int
266 runq_findbit(struct runq *rq)
267 {
268 	struct rqbits *rqb;
269 	int pri;
270 	int i;
271 
272 	rqb = &rq->rq_status;
273 	for (i = 0; i < RQB_LEN; i++)
274 		if (rqb->rqb_bits[i]) {
275 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
276 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
277 			    rqb->rqb_bits[i], i, pri);
278 			return (pri);
279 		}
280 
281 	return (-1);
282 }
283 
284 static __inline int
285 runq_findbit_from(struct runq *rq, u_char pri)
286 {
287 	struct rqbits *rqb;
288 	rqb_word_t mask;
289 	int i;
290 
291 	/*
292 	 * Set the mask for the first word so we ignore priorities before 'pri'.
293 	 */
294 	mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
295 	rqb = &rq->rq_status;
296 again:
297 	for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
298 		mask = rqb->rqb_bits[i] & mask;
299 		if (mask == 0)
300 			continue;
301 		pri = RQB_FFS(mask) + (i << RQB_L2BPW);
302 		CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
303 		    mask, i, pri);
304 		return (pri);
305 	}
306 	if (pri == 0)
307 		return (-1);
308 	/*
309 	 * Wrap back around to the beginning of the list just once so we
310 	 * scan the whole thing.
311 	 */
312 	pri = 0;
313 	goto again;
314 }
315 
316 /*
317  * Set the status bit of the queue corresponding to priority level pri,
318  * indicating that it is non-empty.
319  */
320 static __inline void
321 runq_setbit(struct runq *rq, int pri)
322 {
323 	struct rqbits *rqb;
324 
325 	rqb = &rq->rq_status;
326 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
327 	    rqb->rqb_bits[RQB_WORD(pri)],
328 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
329 	    RQB_BIT(pri), RQB_WORD(pri));
330 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
331 }
332 
333 /*
334  * Add the thread to the queue specified by its priority, and set the
335  * corresponding status bit.
336  */
337 void
338 runq_add(struct runq *rq, struct thread *td, int flags)
339 {
340 	struct rqhead *rqh;
341 	int pri;
342 
343 	pri = td->td_priority / RQ_PPQ;
344 	td->td_rqindex = pri;
345 	runq_setbit(rq, pri);
346 	rqh = &rq->rq_queues[pri];
347 	CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
348 	    td, td->td_priority, pri, rqh);
349 	if (flags & SRQ_PREEMPTED) {
350 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
351 	} else {
352 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
353 	}
354 }
355 
356 void
357 runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
358 {
359 	struct rqhead *rqh;
360 
361 	KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
362 	td->td_rqindex = pri;
363 	runq_setbit(rq, pri);
364 	rqh = &rq->rq_queues[pri];
365 	CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
366 	    td, td->td_priority, pri, rqh);
367 	if (flags & SRQ_PREEMPTED) {
368 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
369 	} else {
370 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
371 	}
372 }
373 /*
374  * Return true if there are runnable processes of any priority on the run
375  * queue, false otherwise.  Has no side effects, does not modify the run
376  * queue structure.
377  */
378 int
379 runq_check(struct runq *rq)
380 {
381 	struct rqbits *rqb;
382 	int i;
383 
384 	rqb = &rq->rq_status;
385 	for (i = 0; i < RQB_LEN; i++)
386 		if (rqb->rqb_bits[i]) {
387 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
388 			    rqb->rqb_bits[i], i);
389 			return (1);
390 		}
391 	CTR0(KTR_RUNQ, "runq_check: empty");
392 
393 	return (0);
394 }
395 
396 /*
397  * Find the highest priority process on the run queue.
398  */
399 struct thread *
400 runq_choose_fuzz(struct runq *rq, int fuzz)
401 {
402 	struct rqhead *rqh;
403 	struct thread *td;
404 	int pri;
405 
406 	while ((pri = runq_findbit(rq)) != -1) {
407 		rqh = &rq->rq_queues[pri];
408 		/* fuzz == 1 is normal.. 0 or less are ignored */
409 		if (fuzz > 1) {
410 			/*
411 			 * In the first couple of entries, check if
412 			 * there is one for our CPU as a preference.
413 			 */
414 			int count = fuzz;
415 			int cpu = PCPU_GET(cpuid);
416 			struct thread *td2;
417 			td2 = td = TAILQ_FIRST(rqh);
418 
419 			while (count-- && td2) {
420 				if (td2->td_lastcpu == cpu) {
421 					td = td2;
422 					break;
423 				}
424 				td2 = TAILQ_NEXT(td2, td_runq);
425 			}
426 		} else
427 			td = TAILQ_FIRST(rqh);
428 		KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
429 		CTR3(KTR_RUNQ,
430 		    "runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
431 		return (td);
432 	}
433 	CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
434 
435 	return (NULL);
436 }
437 
438 /*
439  * Find the highest priority process on the run queue.
440  */
441 struct thread *
442 runq_choose(struct runq *rq)
443 {
444 	struct rqhead *rqh;
445 	struct thread *td;
446 	int pri;
447 
448 	while ((pri = runq_findbit(rq)) != -1) {
449 		rqh = &rq->rq_queues[pri];
450 		td = TAILQ_FIRST(rqh);
451 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
452 		CTR3(KTR_RUNQ,
453 		    "runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
454 		return (td);
455 	}
456 	CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
457 
458 	return (NULL);
459 }
460 
461 struct thread *
462 runq_choose_from(struct runq *rq, u_char idx)
463 {
464 	struct rqhead *rqh;
465 	struct thread *td;
466 	int pri;
467 
468 	if ((pri = runq_findbit_from(rq, idx)) != -1) {
469 		rqh = &rq->rq_queues[pri];
470 		td = TAILQ_FIRST(rqh);
471 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
472 		CTR4(KTR_RUNQ,
473 		    "runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
474 		    pri, td, td->td_rqindex, rqh);
475 		return (td);
476 	}
477 	CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
478 
479 	return (NULL);
480 }
481 /*
482  * Remove the thread from the queue specified by its priority, and clear the
483  * corresponding status bit if the queue becomes empty.
484  * Caller must set state afterwards.
485  */
486 void
487 runq_remove(struct runq *rq, struct thread *td)
488 {
489 
490 	runq_remove_idx(rq, td, NULL);
491 }
492 
493 void
494 runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
495 {
496 	struct rqhead *rqh;
497 	u_char pri;
498 
499 	KASSERT(td->td_flags & TDF_INMEM,
500 		("runq_remove_idx: thread swapped out"));
501 	pri = td->td_rqindex;
502 	KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
503 	rqh = &rq->rq_queues[pri];
504 	CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
505 	    td, td->td_priority, pri, rqh);
506 	TAILQ_REMOVE(rqh, td, td_runq);
507 	if (TAILQ_EMPTY(rqh)) {
508 		CTR0(KTR_RUNQ, "runq_remove_idx: empty");
509 		runq_clrbit(rq, pri);
510 		if (idx != NULL && *idx == pri)
511 			*idx = (pri + 1) % RQ_NQS;
512 	}
513 }
514