xref: /freebsd/sys/kern/kern_switch.c (revision 0f4ad91810d3a800a74c2f370a32e980563419c2)
1 /*
2  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /***
28 Here is the logic..
29 
30 If there are N processors, then there are at most N KSEs (kernel
31 schedulable entities) working to process threads that belong to a
32 KSEGROUP (kg). If there are X of these KSEs actually running at the
33 moment in question, then there are at most M (N-X) of these KSEs on
34 the run queue, as running KSEs are not on the queue.
35 
36 Runnable threads are queued off the KSEGROUP in priority order.
37 If there are M or more threads runnable, the top M threads
38 (by priority) are 'preassigned' to the M KSEs not running. The KSEs take
39 their priority from those threads and are put on the run queue.
40 
41 The last thread that had a priority high enough to have a KSE associated
42 with it, AND IS ON THE RUN QUEUE is pointed to by
43 kg->kg_last_assigned. If no threads queued off the KSEGROUP have KSEs
44 assigned as all the available KSEs are activly running, or because there
45 are no threads queued, that pointer is NULL.
46 
47 When a KSE is removed from the run queue to become runnable, we know
48 it was associated with the highest priority thread in the queue (at the head
49 of the queue). If it is also the last assigned we know M was 1 and must
50 now be 0. Since the thread is no longer queued that pointer must be
51 removed from it. Since we know there were no more KSEs available,
52 (M was 1 and is now 0) and since we are not FREEING our KSE
53 but using it, we know there are STILL no more KSEs available, we can prove
54 that the next thread in the ksegrp list will not have a KSE to assign to
55 it, so we can show that the pointer must be made 'invalid' (NULL).
56 
57 The pointer exists so that when a new thread is made runnable, it can
58 have its priority compared with the last assigned thread to see if
59 it should 'steal' its KSE or not.. i.e. is it 'earlier'
60 on the list than that thread or later.. If it's earlier, then the KSE is
61 removed from the last assigned (which is now not assigned a KSE)
62 and reassigned to the new thread, which is placed earlier in the list.
63 The pointer is then backed up to the previous thread (which may or may not
64 be the new thread).
65 
66 When a thread sleeps or is removed, the KSE becomes available and if there
67 are queued threads that are not assigned KSEs, the highest priority one of
68 them is assigned the KSE, which is then placed back on the run queue at
69 the approipriate place, and the kg->kg_last_assigned pointer is adjusted down
70 to point to it.
71 
72 The following diagram shows 2 KSEs and 3 threads from a single process.
73 
74  RUNQ: --->KSE---KSE--...    (KSEs queued at priorities from threads)
75               \    \____
76                \        \
77     KSEGROUP---thread--thread--thread    (queued in priority order)
78         \                 /
79          \_______________/
80           (last_assigned)
81 
82 The result of this scheme is that the M available KSEs are always
83 queued at the priorities they have inherrited from the M highest priority
84 threads for that KSEGROUP. If this situation changes, the KSEs are
85 reassigned to keep this true.
86 ***/
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 #include "opt_full_preemption.h"
92 
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/kdb.h>
96 #include <sys/kernel.h>
97 #include <sys/ktr.h>
98 #include <sys/lock.h>
99 #include <sys/mutex.h>
100 #include <sys/proc.h>
101 #include <sys/queue.h>
102 #include <sys/sched.h>
103 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
104 #include <sys/smp.h>
105 #endif
106 #include <machine/critical.h>
107 
108 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
109 
110 void panc(char *string1, char *string2);
111 
112 #if 0
113 static void runq_readjust(struct runq *rq, struct kse *ke);
114 #endif
115 /************************************************************************
116  * Functions that manipulate runnability from a thread perspective.	*
117  ************************************************************************/
118 /*
119  * Select the KSE that will be run next.  From that find the thread, and
120  * remove it from the KSEGRP's run queue.  If there is thread clustering,
121  * this will be what does it.
122  */
123 struct thread *
124 choosethread(void)
125 {
126 	struct kse *ke;
127 	struct thread *td;
128 	struct ksegrp *kg;
129 
130 #if defined(SMP) && (defined(__i386__) || defined(__amd64__))
131 	if (smp_active == 0 && PCPU_GET(cpuid) != 0) {
132 		/* Shutting down, run idlethread on AP's */
133 		td = PCPU_GET(idlethread);
134 		ke = td->td_kse;
135 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
136 		ke->ke_flags |= KEF_DIDRUN;
137 		TD_SET_RUNNING(td);
138 		return (td);
139 	}
140 #endif
141 
142 retry:
143 	ke = sched_choose();
144 	if (ke) {
145 		td = ke->ke_thread;
146 		KASSERT((td->td_kse == ke), ("kse/thread mismatch"));
147 		kg = ke->ke_ksegrp;
148 		if (td->td_proc->p_flag & P_SA) {
149 			if (kg->kg_last_assigned == td) {
150 				kg->kg_last_assigned = TAILQ_PREV(td,
151 				    threadqueue, td_runq);
152 			}
153 			TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
154 			kg->kg_runnable--;
155 		}
156 		CTR2(KTR_RUNQ, "choosethread: td=%p pri=%d",
157 		    td, td->td_priority);
158 	} else {
159 		/* Simulate runq_choose() having returned the idle thread */
160 		td = PCPU_GET(idlethread);
161 		ke = td->td_kse;
162 		CTR1(KTR_RUNQ, "choosethread: td=%p (idle)", td);
163 	}
164 	ke->ke_flags |= KEF_DIDRUN;
165 
166 	/*
167 	 * If we are in panic, only allow system threads,
168 	 * plus the one we are running in, to be run.
169 	 */
170 	if (panicstr && ((td->td_proc->p_flag & P_SYSTEM) == 0 &&
171 	    (td->td_flags & TDF_INPANIC) == 0)) {
172 		/* note that it is no longer on the run queue */
173 		TD_SET_CAN_RUN(td);
174 		goto retry;
175 	}
176 
177 	TD_SET_RUNNING(td);
178 	return (td);
179 }
180 
181 /*
182  * Given a surplus KSE, either assign a new runable thread to it
183  * (and put it in the run queue) or put it in the ksegrp's idle KSE list.
184  * Assumes that the original thread is not runnable.
185  */
186 void
187 kse_reassign(struct kse *ke)
188 {
189 	struct ksegrp *kg;
190 	struct thread *td;
191 	struct thread *original;
192 
193 	mtx_assert(&sched_lock, MA_OWNED);
194 	original = ke->ke_thread;
195 	KASSERT(original == NULL || TD_IS_INHIBITED(original),
196     	    ("reassigning KSE with runnable thread"));
197 	kg = ke->ke_ksegrp;
198 	if (original)
199 		original->td_kse = NULL;
200 
201 	/*
202 	 * Find the first unassigned thread
203 	 */
204 	if ((td = kg->kg_last_assigned) != NULL)
205 		td = TAILQ_NEXT(td, td_runq);
206 	else
207 		td = TAILQ_FIRST(&kg->kg_runq);
208 
209 	/*
210 	 * If we found one, assign it the kse, otherwise idle the kse.
211 	 */
212 	if (td) {
213 		kg->kg_last_assigned = td;
214 		td->td_kse = ke;
215 		ke->ke_thread = td;
216 		CTR2(KTR_RUNQ, "kse_reassign: ke%p -> td%p", ke, td);
217 		sched_add(td);
218 		return;
219 	}
220 
221 	ke->ke_state = KES_IDLE;
222 	ke->ke_thread = NULL;
223 	TAILQ_INSERT_TAIL(&kg->kg_iq, ke, ke_kgrlist);
224 	kg->kg_idle_kses++;
225 	CTR1(KTR_RUNQ, "kse_reassign: ke%p on idle queue", ke);
226 	return;
227 }
228 
229 #if 0
230 /*
231  * Remove a thread from its KSEGRP's run queue.
232  * This in turn may remove it from a KSE if it was already assigned
233  * to one, possibly causing a new thread to be assigned to the KSE
234  * and the KSE getting a new priority.
235  */
236 static void
237 remrunqueue(struct thread *td)
238 {
239 	struct thread *td2, *td3;
240 	struct ksegrp *kg;
241 	struct kse *ke;
242 
243 	mtx_assert(&sched_lock, MA_OWNED);
244 	KASSERT((TD_ON_RUNQ(td)), ("remrunqueue: Bad state on run queue"));
245 	kg = td->td_ksegrp;
246 	ke = td->td_kse;
247 	CTR1(KTR_RUNQ, "remrunqueue: td%p", td);
248 	TD_SET_CAN_RUN(td);
249 	/*
250 	 * If it is not a threaded process, take the shortcut.
251 	 */
252 	if ((td->td_proc->p_flag & P_SA) == 0) {
253 		/* Bring its kse with it, leave the thread attached */
254 		sched_rem(td);
255 		ke->ke_state = KES_THREAD;
256 		return;
257 	}
258    	td3 = TAILQ_PREV(td, threadqueue, td_runq);
259 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
260 	kg->kg_runnable--;
261 	if (ke) {
262 		/*
263 		 * This thread has been assigned to a KSE.
264 		 * We need to dissociate it and try assign the
265 		 * KSE to the next available thread. Then, we should
266 		 * see if we need to move the KSE in the run queues.
267 		 */
268 		sched_rem(td);
269 		ke->ke_state = KES_THREAD;
270 		td2 = kg->kg_last_assigned;
271 		KASSERT((td2 != NULL), ("last assigned has wrong value"));
272 		if (td2 == td)
273 			kg->kg_last_assigned = td3;
274 		kse_reassign(ke);
275 	}
276 }
277 #endif
278 
279 /*
280  * Change the priority of a thread that is on the run queue.
281  */
282 void
283 adjustrunqueue( struct thread *td, int newpri)
284 {
285 	struct ksegrp *kg;
286 	struct kse *ke;
287 
288 	mtx_assert(&sched_lock, MA_OWNED);
289 	KASSERT((TD_ON_RUNQ(td)), ("adjustrunqueue: Bad state on run queue"));
290 
291 	ke = td->td_kse;
292 	CTR1(KTR_RUNQ, "adjustrunqueue: td%p", td);
293 	/*
294 	 * If it is not a threaded process, take the shortcut.
295 	 */
296 	if ((td->td_proc->p_flag & P_SA) == 0) {
297 		/* We only care about the kse in the run queue. */
298 		td->td_priority = newpri;
299 		if (ke->ke_rqindex != (newpri / RQ_PPQ)) {
300 			sched_rem(td);
301 			sched_add(td);
302 		}
303 		return;
304 	}
305 
306 	/* It is a threaded process */
307 	kg = td->td_ksegrp;
308 	TD_SET_CAN_RUN(td);
309 	if (ke) {
310 		if (kg->kg_last_assigned == td) {
311 			kg->kg_last_assigned =
312 			    TAILQ_PREV(td, threadqueue, td_runq);
313 		}
314 		sched_rem(td);
315 	}
316 	TAILQ_REMOVE(&kg->kg_runq, td, td_runq);
317 	kg->kg_runnable--;
318 	td->td_priority = newpri;
319 	setrunqueue(td);
320 }
321 
322 void
323 setrunqueue(struct thread *td)
324 {
325 	struct kse *ke;
326 	struct ksegrp *kg;
327 	struct thread *td2;
328 	struct thread *tda;
329 	int count;
330 
331 	CTR4(KTR_RUNQ, "setrunqueue: td:%p ke:%p kg:%p pid:%d",
332 	    td, td->td_kse, td->td_ksegrp, td->td_proc->p_pid);
333 	mtx_assert(&sched_lock, MA_OWNED);
334 	KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
335 	    ("setrunqueue: bad thread state"));
336 	TD_SET_RUNQ(td);
337 	kg = td->td_ksegrp;
338 	if ((td->td_proc->p_flag & P_SA) == 0) {
339 		/*
340 		 * Common path optimisation: Only one of everything
341 		 * and the KSE is always already attached.
342 		 * Totally ignore the ksegrp run queue.
343 		 */
344 		sched_add(td);
345 		return;
346 	}
347 
348 	tda = kg->kg_last_assigned;
349 	if ((ke = td->td_kse) == NULL) {
350 		if (kg->kg_idle_kses) {
351 			/*
352 			 * There is a free one so it's ours for the asking..
353 			 */
354 			ke = TAILQ_FIRST(&kg->kg_iq);
355 			CTR2(KTR_RUNQ, "setrunqueue: kg:%p: Use free ke:%p",
356 			    kg, ke);
357 			TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist);
358 			ke->ke_state = KES_THREAD;
359 			kg->kg_idle_kses--;
360 		} else if (tda && (tda->td_priority > td->td_priority)) {
361 			/*
362 			 * None free, but there is one we can commandeer.
363 			 */
364 			ke = tda->td_kse;
365 			CTR3(KTR_RUNQ,
366 			    "setrunqueue: kg:%p: take ke:%p from td: %p",
367 			    kg, ke, tda);
368 			sched_rem(tda);
369 			tda->td_kse = NULL;
370 			ke->ke_thread = NULL;
371 			tda = kg->kg_last_assigned =
372 		    	    TAILQ_PREV(tda, threadqueue, td_runq);
373 		}
374 	} else {
375 		/*
376 		 * Temporarily disassociate so it looks like the other cases.
377 		 */
378 		ke->ke_thread = NULL;
379 		td->td_kse = NULL;
380 	}
381 
382 	/*
383 	 * Add the thread to the ksegrp's run queue at
384 	 * the appropriate place.
385 	 */
386 	count = 0;
387 	TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
388 		if (td2->td_priority > td->td_priority) {
389 			kg->kg_runnable++;
390 			TAILQ_INSERT_BEFORE(td2, td, td_runq);
391 			break;
392 		}
393 		/* XXX Debugging hack */
394 		if (++count > 10000) {
395 			printf("setrunqueue(): corrupt kq_runq, td= %p\n", td);
396 			panic("deadlock in setrunqueue");
397 		}
398 	}
399 	if (td2 == NULL) {
400 		/* We ran off the end of the TAILQ or it was empty. */
401 		kg->kg_runnable++;
402 		TAILQ_INSERT_TAIL(&kg->kg_runq, td, td_runq);
403 	}
404 
405 	/*
406 	 * If we have a ke to use, then put it on the run queue and
407 	 * If needed, readjust the last_assigned pointer.
408 	 */
409 	if (ke) {
410 		if (tda == NULL) {
411 			/*
412 			 * No pre-existing last assigned so whoever is first
413 			 * gets the KSE we brought in.. (maybe us)
414 			 */
415 			td2 = TAILQ_FIRST(&kg->kg_runq);
416 			KASSERT((td2->td_kse == NULL),
417 			    ("unexpected ke present"));
418 			td2->td_kse = ke;
419 			ke->ke_thread = td2;
420 			kg->kg_last_assigned = td2;
421 		} else if (tda->td_priority > td->td_priority) {
422 			/*
423 			 * It's ours, grab it, but last_assigned is past us
424 			 * so don't change it.
425 			 */
426 			td->td_kse = ke;
427 			ke->ke_thread = td;
428 		} else {
429 			/*
430 			 * We are past last_assigned, so
431 			 * put the new kse on whatever is next,
432 			 * which may or may not be us.
433 			 */
434 			td2 = TAILQ_NEXT(tda, td_runq);
435 			kg->kg_last_assigned = td2;
436 			td2->td_kse = ke;
437 			ke->ke_thread = td2;
438 		}
439 		sched_add(ke->ke_thread);
440 	} else {
441 		CTR3(KTR_RUNQ, "setrunqueue: held: td%p kg%p pid%d",
442 			td, td->td_ksegrp, td->td_proc->p_pid);
443 	}
444 }
445 
446 /*
447  * Kernel thread preemption implementation.  Critical sections mark
448  * regions of code in which preemptions are not allowed.
449  */
450 void
451 critical_enter(void)
452 {
453 	struct thread *td;
454 
455 	td = curthread;
456 	if (td->td_critnest == 0)
457 		cpu_critical_enter(td);
458 	td->td_critnest++;
459 }
460 
461 void
462 critical_exit(void)
463 {
464 	struct thread *td;
465 
466 	td = curthread;
467 	KASSERT(td->td_critnest != 0,
468 	    ("critical_exit: td_critnest == 0"));
469 	if (td->td_critnest == 1) {
470 #ifdef PREEMPTION
471 		mtx_assert(&sched_lock, MA_NOTOWNED);
472 		if (td->td_pflags & TDP_OWEPREEMPT) {
473 			mtx_lock_spin(&sched_lock);
474 			mi_switch(SW_INVOL, NULL);
475 			mtx_unlock_spin(&sched_lock);
476 		}
477 #endif
478 		td->td_critnest = 0;
479 		cpu_critical_exit(td);
480 	} else {
481 		td->td_critnest--;
482 	}
483 }
484 
485 /*
486  * This function is called when a thread is about to be put on run queue
487  * because it has been made runnable or its priority has been adjusted.  It
488  * determines if the new thread should be immediately preempted to.  If so,
489  * it switches to it and eventually returns true.  If not, it returns false
490  * so that the caller may place the thread on an appropriate run queue.
491  */
492 int
493 maybe_preempt(struct thread *td)
494 {
495 #ifdef PREEMPTION
496 	struct thread *ctd;
497 	int cpri, pri;
498 #endif
499 
500 	mtx_assert(&sched_lock, MA_OWNED);
501 #ifdef PREEMPTION
502 	/*
503 	 * The new thread should not preempt the current thread if any of the
504 	 * following conditions are true:
505 	 *
506 	 *  - The current thread has a higher (numerically lower) or
507 	 *    equivalent priority.  Note that this prevents curthread from
508 	 *    trying to preempt to itself.
509 	 *  - It is too early in the boot for context switches (cold is set).
510 	 *  - The current thread has an inhibitor set or is in the process of
511 	 *    exiting.  In this case, the current thread is about to switch
512 	 *    out anyways, so there's no point in preempting.  If we did,
513 	 *    the current thread would not be properly resumed as well, so
514 	 *    just avoid that whole landmine.
515 	 *  - If the new thread's priority is not a realtime priority and
516 	 *    the current thread's priority is not an idle priority and
517 	 *    FULL_PREEMPTION is disabled.
518 	 *
519 	 * If all of these conditions are false, but the current thread is in
520 	 * a nested critical section, then we have to defer the preemption
521 	 * until we exit the critical section.  Otherwise, switch immediately
522 	 * to the new thread.
523 	 */
524 	ctd = curthread;
525 	pri = td->td_priority;
526 	cpri = ctd->td_priority;
527 	if (pri >= cpri || cold /* || dumping */ || TD_IS_INHIBITED(ctd) ||
528 	    td->td_kse->ke_state != KES_THREAD)
529 		return (0);
530 #ifndef FULL_PREEMPTION
531 	if (!(pri >= PRI_MIN_ITHD && pri <= PRI_MAX_ITHD) &&
532 	    !(cpri >= PRI_MIN_IDLE))
533 		return (0);
534 #endif
535 	if (ctd->td_critnest > 1) {
536 		CTR1(KTR_PROC, "maybe_preempt: in critical section %d",
537 		    ctd->td_critnest);
538 		ctd->td_pflags |= TDP_OWEPREEMPT;
539 		return (0);
540 	}
541 
542 	/*
543 	 * Our thread state says that we are already on a run queue, so
544 	 * update our state as if we had been dequeued by choosethread().
545 	 */
546 	MPASS(TD_ON_RUNQ(td));
547 	TD_SET_RUNNING(td);
548 	CTR3(KTR_PROC, "preempting to thread %p (pid %d, %s)\n", td,
549 	    td->td_proc->p_pid, td->td_proc->p_comm);
550 	mi_switch(SW_INVOL, td);
551 	return (1);
552 #else
553 	return (0);
554 #endif
555 }
556 
557 #if 0
558 #ifndef PREEMPTION
559 /* XXX: There should be a non-static version of this. */
560 static void
561 printf_caddr_t(void *data)
562 {
563 	printf("%s", (char *)data);
564 }
565 static char preempt_warning[] =
566     "WARNING: Kernel preemption is disabled, expect reduced performance.\n";
567 SYSINIT(preempt_warning, SI_SUB_COPYRIGHT, SI_ORDER_ANY, printf_caddr_t,
568     preempt_warning)
569 #endif
570 #endif
571 
572 /************************************************************************
573  * SYSTEM RUN QUEUE manipulations and tests				*
574  ************************************************************************/
575 /*
576  * Initialize a run structure.
577  */
578 void
579 runq_init(struct runq *rq)
580 {
581 	int i;
582 
583 	bzero(rq, sizeof *rq);
584 	for (i = 0; i < RQ_NQS; i++)
585 		TAILQ_INIT(&rq->rq_queues[i]);
586 }
587 
588 /*
589  * Clear the status bit of the queue corresponding to priority level pri,
590  * indicating that it is empty.
591  */
592 static __inline void
593 runq_clrbit(struct runq *rq, int pri)
594 {
595 	struct rqbits *rqb;
596 
597 	rqb = &rq->rq_status;
598 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
599 	    rqb->rqb_bits[RQB_WORD(pri)],
600 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
601 	    RQB_BIT(pri), RQB_WORD(pri));
602 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
603 }
604 
605 /*
606  * Find the index of the first non-empty run queue.  This is done by
607  * scanning the status bits, a set bit indicates a non-empty queue.
608  */
609 static __inline int
610 runq_findbit(struct runq *rq)
611 {
612 	struct rqbits *rqb;
613 	int pri;
614 	int i;
615 
616 	rqb = &rq->rq_status;
617 	for (i = 0; i < RQB_LEN; i++)
618 		if (rqb->rqb_bits[i]) {
619 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
620 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
621 			    rqb->rqb_bits[i], i, pri);
622 			return (pri);
623 		}
624 
625 	return (-1);
626 }
627 
628 /*
629  * Set the status bit of the queue corresponding to priority level pri,
630  * indicating that it is non-empty.
631  */
632 static __inline void
633 runq_setbit(struct runq *rq, int pri)
634 {
635 	struct rqbits *rqb;
636 
637 	rqb = &rq->rq_status;
638 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
639 	    rqb->rqb_bits[RQB_WORD(pri)],
640 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
641 	    RQB_BIT(pri), RQB_WORD(pri));
642 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
643 }
644 
645 /*
646  * Add the KSE to the queue specified by its priority, and set the
647  * corresponding status bit.
648  */
649 void
650 runq_add(struct runq *rq, struct kse *ke)
651 {
652 	struct rqhead *rqh;
653 	int pri;
654 
655 	pri = ke->ke_thread->td_priority / RQ_PPQ;
656 	ke->ke_rqindex = pri;
657 	runq_setbit(rq, pri);
658 	rqh = &rq->rq_queues[pri];
659 	CTR5(KTR_RUNQ, "runq_add: td=%p ke=%p pri=%d %d rqh=%p",
660 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
661 	TAILQ_INSERT_TAIL(rqh, ke, ke_procq);
662 }
663 
664 /*
665  * Return true if there are runnable processes of any priority on the run
666  * queue, false otherwise.  Has no side effects, does not modify the run
667  * queue structure.
668  */
669 int
670 runq_check(struct runq *rq)
671 {
672 	struct rqbits *rqb;
673 	int i;
674 
675 	rqb = &rq->rq_status;
676 	for (i = 0; i < RQB_LEN; i++)
677 		if (rqb->rqb_bits[i]) {
678 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
679 			    rqb->rqb_bits[i], i);
680 			return (1);
681 		}
682 	CTR0(KTR_RUNQ, "runq_check: empty");
683 
684 	return (0);
685 }
686 
687 /*
688  * Find the highest priority process on the run queue.
689  */
690 struct kse *
691 runq_choose(struct runq *rq)
692 {
693 	struct rqhead *rqh;
694 	struct kse *ke;
695 	int pri;
696 
697 	mtx_assert(&sched_lock, MA_OWNED);
698 	while ((pri = runq_findbit(rq)) != -1) {
699 		rqh = &rq->rq_queues[pri];
700 		ke = TAILQ_FIRST(rqh);
701 		KASSERT(ke != NULL, ("runq_choose: no proc on busy queue"));
702 		CTR3(KTR_RUNQ,
703 		    "runq_choose: pri=%d kse=%p rqh=%p", pri, ke, rqh);
704 		return (ke);
705 	}
706 	CTR1(KTR_RUNQ, "runq_choose: idleproc pri=%d", pri);
707 
708 	return (NULL);
709 }
710 
711 /*
712  * Remove the KSE from the queue specified by its priority, and clear the
713  * corresponding status bit if the queue becomes empty.
714  * Caller must set ke->ke_state afterwards.
715  */
716 void
717 runq_remove(struct runq *rq, struct kse *ke)
718 {
719 	struct rqhead *rqh;
720 	int pri;
721 
722 	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
723 		("runq_remove: process swapped out"));
724 	pri = ke->ke_rqindex;
725 	rqh = &rq->rq_queues[pri];
726 	CTR5(KTR_RUNQ, "runq_remove: td=%p, ke=%p pri=%d %d rqh=%p",
727 	    ke->ke_thread, ke, ke->ke_thread->td_priority, pri, rqh);
728 	KASSERT(ke != NULL, ("runq_remove: no proc on busy queue"));
729 	TAILQ_REMOVE(rqh, ke, ke_procq);
730 	if (TAILQ_EMPTY(rqh)) {
731 		CTR0(KTR_RUNQ, "runq_remove: empty");
732 		runq_clrbit(rq, pri);
733 	}
734 }
735 
736 #if 0
737 void
738 panc(char *string1, char *string2)
739 {
740 	printf("%s", string1);
741 	kdb_enter(string2);
742 }
743 
744 void
745 thread_sanity_check(struct thread *td, char *string)
746 {
747 	struct proc *p;
748 	struct ksegrp *kg;
749 	struct kse *ke;
750 	struct thread *td2 = NULL;
751 	unsigned int prevpri;
752 	int	saw_lastassigned = 0;
753 	int unassigned = 0;
754 	int assigned = 0;
755 
756 	p = td->td_proc;
757 	kg = td->td_ksegrp;
758 	ke = td->td_kse;
759 
760 
761 	if (ke) {
762 		if (p != ke->ke_proc) {
763 			panc(string, "wrong proc");
764 		}
765 		if (ke->ke_thread != td) {
766 			panc(string, "wrong thread");
767 		}
768 	}
769 
770 	if ((p->p_flag & P_SA) == 0) {
771 		if (ke == NULL) {
772 			panc(string, "non KSE thread lost kse");
773 		}
774 	} else {
775 		prevpri = 0;
776 		saw_lastassigned = 0;
777 		unassigned = 0;
778 		assigned = 0;
779 		TAILQ_FOREACH(td2, &kg->kg_runq, td_runq) {
780 			if (td2->td_priority < prevpri) {
781 				panc(string, "thread runqueue unosorted");
782 			}
783 			if ((td2->td_state == TDS_RUNQ) &&
784 			    td2->td_kse &&
785 			    (td2->td_kse->ke_state != KES_ONRUNQ)) {
786 				panc(string, "KSE wrong state");
787 			}
788 			prevpri = td2->td_priority;
789 			if (td2->td_kse) {
790 				assigned++;
791 				if (unassigned) {
792 					panc(string, "unassigned before assigned");
793 				}
794  				if  (kg->kg_last_assigned == NULL) {
795 					panc(string, "lastassigned corrupt");
796 				}
797 				if (saw_lastassigned) {
798 					panc(string, "last assigned not last");
799 				}
800 				if (td2->td_kse->ke_thread != td2) {
801 					panc(string, "mismatched kse/thread");
802 				}
803 			} else {
804 				unassigned++;
805 			}
806 			if (td2 == kg->kg_last_assigned) {
807 				saw_lastassigned = 1;
808 				if (td2->td_kse == NULL) {
809 					panc(string, "last assigned not assigned");
810 				}
811 			}
812 		}
813 		if (kg->kg_last_assigned && (saw_lastassigned == 0)) {
814 			panc(string, "where on earth does lastassigned point?");
815 		}
816 #if 0
817 		FOREACH_THREAD_IN_GROUP(kg, td2) {
818 			if (((td2->td_flags & TDF_UNBOUND) == 0) &&
819 			    (TD_ON_RUNQ(td2))) {
820 				assigned++;
821 				if (td2->td_kse == NULL) {
822 					panc(string, "BOUND thread with no KSE");
823 				}
824 			}
825 		}
826 #endif
827 #if 0
828 		if ((unassigned + assigned) != kg->kg_runnable) {
829 			panc(string, "wrong number in runnable");
830 		}
831 #endif
832 	}
833 	if (assigned == 12345) {
834 		printf("%p %p %p %p %p %d, %d",
835 		    td, td2, ke, kg, p, assigned, saw_lastassigned);
836 	}
837 }
838 #endif
839 
840