xref: /freebsd/sys/kern/kern_switch.c (revision 0b37c1590418417c894529d371800dfac71ef887)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Jake Burkholder <jake@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_sched.h"
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kdb.h>
38 #include <sys/kernel.h>
39 #include <sys/ktr.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/queue.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/sysctl.h>
47 
48 #include <machine/cpu.h>
49 
50 /* Uncomment this to enable logging of critical_enter/exit. */
51 #if 0
52 #define	KTR_CRITICAL	KTR_SCHED
53 #else
54 #define	KTR_CRITICAL	0
55 #endif
56 
57 #ifdef FULL_PREEMPTION
58 #ifndef PREEMPTION
59 #error "The FULL_PREEMPTION option requires the PREEMPTION option"
60 #endif
61 #endif
62 
63 CTASSERT((RQB_BPW * RQB_LEN) == RQ_NQS);
64 
65 /*
66  * kern.sched.preemption allows user space to determine if preemption support
67  * is compiled in or not.  It is not currently a boot or runtime flag that
68  * can be changed.
69  */
70 #ifdef PREEMPTION
71 static int kern_sched_preemption = 1;
72 #else
73 static int kern_sched_preemption = 0;
74 #endif
75 SYSCTL_INT(_kern_sched, OID_AUTO, preemption, CTLFLAG_RD,
76     &kern_sched_preemption, 0, "Kernel preemption enabled");
77 
78 /*
79  * Support for scheduler stats exported via kern.sched.stats.  All stats may
80  * be reset with kern.sched.stats.reset = 1.  Stats may be defined elsewhere
81  * with SCHED_STAT_DEFINE().
82  */
83 #ifdef SCHED_STATS
84 SYSCTL_NODE(_kern_sched, OID_AUTO, stats, CTLFLAG_RW, 0, "switch stats");
85 
86 /* Switch reasons from mi_switch(). */
87 DPCPU_DEFINE(long, sched_switch_stats[SWT_COUNT]);
88 SCHED_STAT_DEFINE_VAR(uncategorized,
89     &DPCPU_NAME(sched_switch_stats[SWT_NONE]), "");
90 SCHED_STAT_DEFINE_VAR(preempt,
91     &DPCPU_NAME(sched_switch_stats[SWT_PREEMPT]), "");
92 SCHED_STAT_DEFINE_VAR(owepreempt,
93     &DPCPU_NAME(sched_switch_stats[SWT_OWEPREEMPT]), "");
94 SCHED_STAT_DEFINE_VAR(turnstile,
95     &DPCPU_NAME(sched_switch_stats[SWT_TURNSTILE]), "");
96 SCHED_STAT_DEFINE_VAR(sleepq,
97     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQ]), "");
98 SCHED_STAT_DEFINE_VAR(sleepqtimo,
99     &DPCPU_NAME(sched_switch_stats[SWT_SLEEPQTIMO]), "");
100 SCHED_STAT_DEFINE_VAR(relinquish,
101     &DPCPU_NAME(sched_switch_stats[SWT_RELINQUISH]), "");
102 SCHED_STAT_DEFINE_VAR(needresched,
103     &DPCPU_NAME(sched_switch_stats[SWT_NEEDRESCHED]), "");
104 SCHED_STAT_DEFINE_VAR(idle,
105     &DPCPU_NAME(sched_switch_stats[SWT_IDLE]), "");
106 SCHED_STAT_DEFINE_VAR(iwait,
107     &DPCPU_NAME(sched_switch_stats[SWT_IWAIT]), "");
108 SCHED_STAT_DEFINE_VAR(suspend,
109     &DPCPU_NAME(sched_switch_stats[SWT_SUSPEND]), "");
110 SCHED_STAT_DEFINE_VAR(remotepreempt,
111     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEPREEMPT]), "");
112 SCHED_STAT_DEFINE_VAR(remotewakeidle,
113     &DPCPU_NAME(sched_switch_stats[SWT_REMOTEWAKEIDLE]), "");
114 
115 static int
116 sysctl_stats_reset(SYSCTL_HANDLER_ARGS)
117 {
118 	struct sysctl_oid *p;
119 	uintptr_t counter;
120         int error;
121 	int val;
122 	int i;
123 
124         val = 0;
125         error = sysctl_handle_int(oidp, &val, 0, req);
126         if (error != 0 || req->newptr == NULL)
127                 return (error);
128         if (val == 0)
129                 return (0);
130 	/*
131 	 * Traverse the list of children of _kern_sched_stats and reset each
132 	 * to 0.  Skip the reset entry.
133 	 */
134 	SLIST_FOREACH(p, oidp->oid_parent, oid_link) {
135 		if (p == oidp || p->oid_arg1 == NULL)
136 			continue;
137 		counter = (uintptr_t)p->oid_arg1;
138 		CPU_FOREACH(i) {
139 			*(long *)(dpcpu_off[i] + counter) = 0;
140 		}
141 	}
142 	return (0);
143 }
144 
145 SYSCTL_PROC(_kern_sched_stats, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_WR, NULL,
146     0, sysctl_stats_reset, "I", "Reset scheduler statistics");
147 #endif
148 
149 /************************************************************************
150  * Functions that manipulate runnability from a thread perspective.	*
151  ************************************************************************/
152 /*
153  * Select the thread that will be run next.
154  */
155 
156 static __noinline struct thread *
157 choosethread_panic(struct thread *td)
158 {
159 
160 	/*
161 	 * If we are in panic, only allow system threads,
162 	 * plus the one we are running in, to be run.
163 	 */
164 retry:
165 	if (((td->td_proc->p_flag & P_SYSTEM) == 0 &&
166 	    (td->td_flags & TDF_INPANIC) == 0)) {
167 		/* note that it is no longer on the run queue */
168 		TD_SET_CAN_RUN(td);
169 		td = sched_choose();
170 		goto retry;
171 	}
172 
173 	TD_SET_RUNNING(td);
174 	return (td);
175 }
176 
177 struct thread *
178 choosethread(void)
179 {
180 	struct thread *td;
181 
182 	td = sched_choose();
183 
184 	if (KERNEL_PANICKED())
185 		return (choosethread_panic(td));
186 
187 	TD_SET_RUNNING(td);
188 	return (td);
189 }
190 
191 /*
192  * Kernel thread preemption implementation.  Critical sections mark
193  * regions of code in which preemptions are not allowed.
194  *
195  * It might seem a good idea to inline critical_enter() but, in order
196  * to prevent instructions reordering by the compiler, a __compiler_membar()
197  * would have to be used here (the same as sched_pin()).  The performance
198  * penalty imposed by the membar could, then, produce slower code than
199  * the function call itself, for most cases.
200  */
201 void
202 critical_enter_KBI(void)
203 {
204 #ifdef KTR
205 	struct thread *td = curthread;
206 #endif
207 	critical_enter();
208 	CTR4(KTR_CRITICAL, "critical_enter by thread %p (%ld, %s) to %d", td,
209 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
210 }
211 
212 void __noinline
213 critical_exit_preempt(void)
214 {
215 	struct thread *td;
216 	int flags;
217 
218 	/*
219 	 * If td_critnest is 0, it is possible that we are going to get
220 	 * preempted again before reaching the code below. This happens
221 	 * rarely and is harmless. However, this means td_owepreempt may
222 	 * now be unset.
223 	 */
224 	td = curthread;
225 	if (td->td_critnest != 0)
226 		return;
227 	if (kdb_active)
228 		return;
229 
230 	/*
231 	 * Microoptimization: we committed to switch,
232 	 * disable preemption in interrupt handlers
233 	 * while spinning for the thread lock.
234 	 */
235 	td->td_critnest = 1;
236 	thread_lock(td);
237 	td->td_critnest--;
238 	flags = SW_INVOL | SW_PREEMPT;
239 	if (TD_IS_IDLETHREAD(td))
240 		flags |= SWT_IDLE;
241 	else
242 		flags |= SWT_OWEPREEMPT;
243 	mi_switch(flags);
244 }
245 
246 void
247 critical_exit_KBI(void)
248 {
249 #ifdef KTR
250 	struct thread *td = curthread;
251 #endif
252 	critical_exit();
253 	CTR4(KTR_CRITICAL, "critical_exit by thread %p (%ld, %s) to %d", td,
254 	    (long)td->td_proc->p_pid, td->td_name, td->td_critnest);
255 }
256 
257 /************************************************************************
258  * SYSTEM RUN QUEUE manipulations and tests				*
259  ************************************************************************/
260 /*
261  * Initialize a run structure.
262  */
263 void
264 runq_init(struct runq *rq)
265 {
266 	int i;
267 
268 	bzero(rq, sizeof *rq);
269 	for (i = 0; i < RQ_NQS; i++)
270 		TAILQ_INIT(&rq->rq_queues[i]);
271 }
272 
273 /*
274  * Clear the status bit of the queue corresponding to priority level pri,
275  * indicating that it is empty.
276  */
277 static __inline void
278 runq_clrbit(struct runq *rq, int pri)
279 {
280 	struct rqbits *rqb;
281 
282 	rqb = &rq->rq_status;
283 	CTR4(KTR_RUNQ, "runq_clrbit: bits=%#x %#x bit=%#x word=%d",
284 	    rqb->rqb_bits[RQB_WORD(pri)],
285 	    rqb->rqb_bits[RQB_WORD(pri)] & ~RQB_BIT(pri),
286 	    RQB_BIT(pri), RQB_WORD(pri));
287 	rqb->rqb_bits[RQB_WORD(pri)] &= ~RQB_BIT(pri);
288 }
289 
290 /*
291  * Find the index of the first non-empty run queue.  This is done by
292  * scanning the status bits, a set bit indicates a non-empty queue.
293  */
294 static __inline int
295 runq_findbit(struct runq *rq)
296 {
297 	struct rqbits *rqb;
298 	int pri;
299 	int i;
300 
301 	rqb = &rq->rq_status;
302 	for (i = 0; i < RQB_LEN; i++)
303 		if (rqb->rqb_bits[i]) {
304 			pri = RQB_FFS(rqb->rqb_bits[i]) + (i << RQB_L2BPW);
305 			CTR3(KTR_RUNQ, "runq_findbit: bits=%#x i=%d pri=%d",
306 			    rqb->rqb_bits[i], i, pri);
307 			return (pri);
308 		}
309 
310 	return (-1);
311 }
312 
313 static __inline int
314 runq_findbit_from(struct runq *rq, u_char pri)
315 {
316 	struct rqbits *rqb;
317 	rqb_word_t mask;
318 	int i;
319 
320 	/*
321 	 * Set the mask for the first word so we ignore priorities before 'pri'.
322 	 */
323 	mask = (rqb_word_t)-1 << (pri & (RQB_BPW - 1));
324 	rqb = &rq->rq_status;
325 again:
326 	for (i = RQB_WORD(pri); i < RQB_LEN; mask = -1, i++) {
327 		mask = rqb->rqb_bits[i] & mask;
328 		if (mask == 0)
329 			continue;
330 		pri = RQB_FFS(mask) + (i << RQB_L2BPW);
331 		CTR3(KTR_RUNQ, "runq_findbit_from: bits=%#x i=%d pri=%d",
332 		    mask, i, pri);
333 		return (pri);
334 	}
335 	if (pri == 0)
336 		return (-1);
337 	/*
338 	 * Wrap back around to the beginning of the list just once so we
339 	 * scan the whole thing.
340 	 */
341 	pri = 0;
342 	goto again;
343 }
344 
345 /*
346  * Set the status bit of the queue corresponding to priority level pri,
347  * indicating that it is non-empty.
348  */
349 static __inline void
350 runq_setbit(struct runq *rq, int pri)
351 {
352 	struct rqbits *rqb;
353 
354 	rqb = &rq->rq_status;
355 	CTR4(KTR_RUNQ, "runq_setbit: bits=%#x %#x bit=%#x word=%d",
356 	    rqb->rqb_bits[RQB_WORD(pri)],
357 	    rqb->rqb_bits[RQB_WORD(pri)] | RQB_BIT(pri),
358 	    RQB_BIT(pri), RQB_WORD(pri));
359 	rqb->rqb_bits[RQB_WORD(pri)] |= RQB_BIT(pri);
360 }
361 
362 /*
363  * Add the thread to the queue specified by its priority, and set the
364  * corresponding status bit.
365  */
366 void
367 runq_add(struct runq *rq, struct thread *td, int flags)
368 {
369 	struct rqhead *rqh;
370 	int pri;
371 
372 	pri = td->td_priority / RQ_PPQ;
373 	td->td_rqindex = pri;
374 	runq_setbit(rq, pri);
375 	rqh = &rq->rq_queues[pri];
376 	CTR4(KTR_RUNQ, "runq_add: td=%p pri=%d %d rqh=%p",
377 	    td, td->td_priority, pri, rqh);
378 	if (flags & SRQ_PREEMPTED) {
379 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
380 	} else {
381 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
382 	}
383 }
384 
385 void
386 runq_add_pri(struct runq *rq, struct thread *td, u_char pri, int flags)
387 {
388 	struct rqhead *rqh;
389 
390 	KASSERT(pri < RQ_NQS, ("runq_add_pri: %d out of range", pri));
391 	td->td_rqindex = pri;
392 	runq_setbit(rq, pri);
393 	rqh = &rq->rq_queues[pri];
394 	CTR4(KTR_RUNQ, "runq_add_pri: td=%p pri=%d idx=%d rqh=%p",
395 	    td, td->td_priority, pri, rqh);
396 	if (flags & SRQ_PREEMPTED) {
397 		TAILQ_INSERT_HEAD(rqh, td, td_runq);
398 	} else {
399 		TAILQ_INSERT_TAIL(rqh, td, td_runq);
400 	}
401 }
402 /*
403  * Return true if there are runnable processes of any priority on the run
404  * queue, false otherwise.  Has no side effects, does not modify the run
405  * queue structure.
406  */
407 int
408 runq_check(struct runq *rq)
409 {
410 	struct rqbits *rqb;
411 	int i;
412 
413 	rqb = &rq->rq_status;
414 	for (i = 0; i < RQB_LEN; i++)
415 		if (rqb->rqb_bits[i]) {
416 			CTR2(KTR_RUNQ, "runq_check: bits=%#x i=%d",
417 			    rqb->rqb_bits[i], i);
418 			return (1);
419 		}
420 	CTR0(KTR_RUNQ, "runq_check: empty");
421 
422 	return (0);
423 }
424 
425 /*
426  * Find the highest priority process on the run queue.
427  */
428 struct thread *
429 runq_choose_fuzz(struct runq *rq, int fuzz)
430 {
431 	struct rqhead *rqh;
432 	struct thread *td;
433 	int pri;
434 
435 	while ((pri = runq_findbit(rq)) != -1) {
436 		rqh = &rq->rq_queues[pri];
437 		/* fuzz == 1 is normal.. 0 or less are ignored */
438 		if (fuzz > 1) {
439 			/*
440 			 * In the first couple of entries, check if
441 			 * there is one for our CPU as a preference.
442 			 */
443 			int count = fuzz;
444 			int cpu = PCPU_GET(cpuid);
445 			struct thread *td2;
446 			td2 = td = TAILQ_FIRST(rqh);
447 
448 			while (count-- && td2) {
449 				if (td2->td_lastcpu == cpu) {
450 					td = td2;
451 					break;
452 				}
453 				td2 = TAILQ_NEXT(td2, td_runq);
454 			}
455 		} else
456 			td = TAILQ_FIRST(rqh);
457 		KASSERT(td != NULL, ("runq_choose_fuzz: no proc on busy queue"));
458 		CTR3(KTR_RUNQ,
459 		    "runq_choose_fuzz: pri=%d thread=%p rqh=%p", pri, td, rqh);
460 		return (td);
461 	}
462 	CTR1(KTR_RUNQ, "runq_choose_fuzz: idleproc pri=%d", pri);
463 
464 	return (NULL);
465 }
466 
467 /*
468  * Find the highest priority process on the run queue.
469  */
470 struct thread *
471 runq_choose(struct runq *rq)
472 {
473 	struct rqhead *rqh;
474 	struct thread *td;
475 	int pri;
476 
477 	while ((pri = runq_findbit(rq)) != -1) {
478 		rqh = &rq->rq_queues[pri];
479 		td = TAILQ_FIRST(rqh);
480 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
481 		CTR3(KTR_RUNQ,
482 		    "runq_choose: pri=%d thread=%p rqh=%p", pri, td, rqh);
483 		return (td);
484 	}
485 	CTR1(KTR_RUNQ, "runq_choose: idlethread pri=%d", pri);
486 
487 	return (NULL);
488 }
489 
490 struct thread *
491 runq_choose_from(struct runq *rq, u_char idx)
492 {
493 	struct rqhead *rqh;
494 	struct thread *td;
495 	int pri;
496 
497 	if ((pri = runq_findbit_from(rq, idx)) != -1) {
498 		rqh = &rq->rq_queues[pri];
499 		td = TAILQ_FIRST(rqh);
500 		KASSERT(td != NULL, ("runq_choose: no thread on busy queue"));
501 		CTR4(KTR_RUNQ,
502 		    "runq_choose_from: pri=%d thread=%p idx=%d rqh=%p",
503 		    pri, td, td->td_rqindex, rqh);
504 		return (td);
505 	}
506 	CTR1(KTR_RUNQ, "runq_choose_from: idlethread pri=%d", pri);
507 
508 	return (NULL);
509 }
510 /*
511  * Remove the thread from the queue specified by its priority, and clear the
512  * corresponding status bit if the queue becomes empty.
513  * Caller must set state afterwards.
514  */
515 void
516 runq_remove(struct runq *rq, struct thread *td)
517 {
518 
519 	runq_remove_idx(rq, td, NULL);
520 }
521 
522 void
523 runq_remove_idx(struct runq *rq, struct thread *td, u_char *idx)
524 {
525 	struct rqhead *rqh;
526 	u_char pri;
527 
528 	KASSERT(td->td_flags & TDF_INMEM,
529 		("runq_remove_idx: thread swapped out"));
530 	pri = td->td_rqindex;
531 	KASSERT(pri < RQ_NQS, ("runq_remove_idx: Invalid index %d\n", pri));
532 	rqh = &rq->rq_queues[pri];
533 	CTR4(KTR_RUNQ, "runq_remove_idx: td=%p, pri=%d %d rqh=%p",
534 	    td, td->td_priority, pri, rqh);
535 	TAILQ_REMOVE(rqh, td, td_runq);
536 	if (TAILQ_EMPTY(rqh)) {
537 		CTR0(KTR_RUNQ, "runq_remove_idx: empty");
538 		runq_clrbit(rq, pri);
539 		if (idx != NULL && *idx == pri)
540 			*idx = (pri + 1) % RQ_NQS;
541 	}
542 }
543