xref: /freebsd/sys/kern/kern_sig.c (revision f8b865d1d62d17626ab993212963277c06cc25b8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 	struct proc *p;
609 
610 	p = td->td_proc;
611 
612 	PROC_LOCK_ASSERT(p, MA_OWNED);
613 
614 	if (SIGPENDING(td)) {
615 		thread_lock(td);
616 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
617 		thread_unlock(td);
618 	}
619 }
620 
621 int
622 sigonstack(size_t sp)
623 {
624 	struct thread *td = curthread;
625 
626 	return ((td->td_pflags & TDP_ALTSTACK) ?
627 #if defined(COMPAT_43)
628 	    ((td->td_sigstk.ss_size == 0) ?
629 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
630 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
631 #else
632 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
633 #endif
634 	    : 0);
635 }
636 
637 static __inline int
638 sigprop(int sig)
639 {
640 
641 	if (sig > 0 && sig < nitems(sigproptbl))
642 		return (sigproptbl[sig]);
643 	return (0);
644 }
645 
646 int
647 sig_ffs(sigset_t *set)
648 {
649 	int i;
650 
651 	for (i = 0; i < _SIG_WORDS; i++)
652 		if (set->__bits[i])
653 			return (ffs(set->__bits[i]) + (i * 32));
654 	return (0);
655 }
656 
657 static bool
658 sigact_flag_test(const struct sigaction *act, int flag)
659 {
660 
661 	/*
662 	 * SA_SIGINFO is reset when signal disposition is set to
663 	 * ignore or default.  Other flags are kept according to user
664 	 * settings.
665 	 */
666 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
667 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
668 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
669 }
670 
671 /*
672  * kern_sigaction
673  * sigaction
674  * freebsd4_sigaction
675  * osigaction
676  */
677 int
678 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
679     struct sigaction *oact, int flags)
680 {
681 	struct sigacts *ps;
682 	struct proc *p = td->td_proc;
683 
684 	if (!_SIG_VALID(sig))
685 		return (EINVAL);
686 	if (act != NULL && act->sa_handler != SIG_DFL &&
687 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
688 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
689 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
690 		return (EINVAL);
691 
692 	PROC_LOCK(p);
693 	ps = p->p_sigacts;
694 	mtx_lock(&ps->ps_mtx);
695 	if (oact) {
696 		memset(oact, 0, sizeof(*oact));
697 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
698 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
699 			oact->sa_flags |= SA_ONSTACK;
700 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
701 			oact->sa_flags |= SA_RESTART;
702 		if (SIGISMEMBER(ps->ps_sigreset, sig))
703 			oact->sa_flags |= SA_RESETHAND;
704 		if (SIGISMEMBER(ps->ps_signodefer, sig))
705 			oact->sa_flags |= SA_NODEFER;
706 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
707 			oact->sa_flags |= SA_SIGINFO;
708 			oact->sa_sigaction =
709 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
710 		} else
711 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
712 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
713 			oact->sa_flags |= SA_NOCLDSTOP;
714 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
715 			oact->sa_flags |= SA_NOCLDWAIT;
716 	}
717 	if (act) {
718 		if ((sig == SIGKILL || sig == SIGSTOP) &&
719 		    act->sa_handler != SIG_DFL) {
720 			mtx_unlock(&ps->ps_mtx);
721 			PROC_UNLOCK(p);
722 			return (EINVAL);
723 		}
724 
725 		/*
726 		 * Change setting atomically.
727 		 */
728 
729 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
730 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
731 		if (sigact_flag_test(act, SA_SIGINFO)) {
732 			ps->ps_sigact[_SIG_IDX(sig)] =
733 			    (__sighandler_t *)act->sa_sigaction;
734 			SIGADDSET(ps->ps_siginfo, sig);
735 		} else {
736 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
737 			SIGDELSET(ps->ps_siginfo, sig);
738 		}
739 		if (!sigact_flag_test(act, SA_RESTART))
740 			SIGADDSET(ps->ps_sigintr, sig);
741 		else
742 			SIGDELSET(ps->ps_sigintr, sig);
743 		if (sigact_flag_test(act, SA_ONSTACK))
744 			SIGADDSET(ps->ps_sigonstack, sig);
745 		else
746 			SIGDELSET(ps->ps_sigonstack, sig);
747 		if (sigact_flag_test(act, SA_RESETHAND))
748 			SIGADDSET(ps->ps_sigreset, sig);
749 		else
750 			SIGDELSET(ps->ps_sigreset, sig);
751 		if (sigact_flag_test(act, SA_NODEFER))
752 			SIGADDSET(ps->ps_signodefer, sig);
753 		else
754 			SIGDELSET(ps->ps_signodefer, sig);
755 		if (sig == SIGCHLD) {
756 			if (act->sa_flags & SA_NOCLDSTOP)
757 				ps->ps_flag |= PS_NOCLDSTOP;
758 			else
759 				ps->ps_flag &= ~PS_NOCLDSTOP;
760 			if (act->sa_flags & SA_NOCLDWAIT) {
761 				/*
762 				 * Paranoia: since SA_NOCLDWAIT is implemented
763 				 * by reparenting the dying child to PID 1 (and
764 				 * trust it to reap the zombie), PID 1 itself
765 				 * is forbidden to set SA_NOCLDWAIT.
766 				 */
767 				if (p->p_pid == 1)
768 					ps->ps_flag &= ~PS_NOCLDWAIT;
769 				else
770 					ps->ps_flag |= PS_NOCLDWAIT;
771 			} else
772 				ps->ps_flag &= ~PS_NOCLDWAIT;
773 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
774 				ps->ps_flag |= PS_CLDSIGIGN;
775 			else
776 				ps->ps_flag &= ~PS_CLDSIGIGN;
777 		}
778 		/*
779 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
780 		 * and for signals set to SIG_DFL where the default is to
781 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
782 		 * have to restart the process.
783 		 */
784 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
785 		    (sigprop(sig) & SIGPROP_IGNORE &&
786 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
787 			/* never to be seen again */
788 			sigqueue_delete_proc(p, sig);
789 			if (sig != SIGCONT)
790 				/* easier in psignal */
791 				SIGADDSET(ps->ps_sigignore, sig);
792 			SIGDELSET(ps->ps_sigcatch, sig);
793 		} else {
794 			SIGDELSET(ps->ps_sigignore, sig);
795 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
796 				SIGDELSET(ps->ps_sigcatch, sig);
797 			else
798 				SIGADDSET(ps->ps_sigcatch, sig);
799 		}
800 #ifdef COMPAT_FREEBSD4
801 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
802 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
803 		    (flags & KSA_FREEBSD4) == 0)
804 			SIGDELSET(ps->ps_freebsd4, sig);
805 		else
806 			SIGADDSET(ps->ps_freebsd4, sig);
807 #endif
808 #ifdef COMPAT_43
809 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
810 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
811 		    (flags & KSA_OSIGSET) == 0)
812 			SIGDELSET(ps->ps_osigset, sig);
813 		else
814 			SIGADDSET(ps->ps_osigset, sig);
815 #endif
816 	}
817 	mtx_unlock(&ps->ps_mtx);
818 	PROC_UNLOCK(p);
819 	return (0);
820 }
821 
822 #ifndef _SYS_SYSPROTO_H_
823 struct sigaction_args {
824 	int	sig;
825 	struct	sigaction *act;
826 	struct	sigaction *oact;
827 };
828 #endif
829 int
830 sys_sigaction(struct thread *td, struct sigaction_args *uap)
831 {
832 	struct sigaction act, oact;
833 	struct sigaction *actp, *oactp;
834 	int error;
835 
836 	actp = (uap->act != NULL) ? &act : NULL;
837 	oactp = (uap->oact != NULL) ? &oact : NULL;
838 	if (actp) {
839 		error = copyin(uap->act, actp, sizeof(act));
840 		if (error)
841 			return (error);
842 	}
843 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
844 	if (oactp && !error)
845 		error = copyout(oactp, uap->oact, sizeof(oact));
846 	return (error);
847 }
848 
849 #ifdef COMPAT_FREEBSD4
850 #ifndef _SYS_SYSPROTO_H_
851 struct freebsd4_sigaction_args {
852 	int	sig;
853 	struct	sigaction *act;
854 	struct	sigaction *oact;
855 };
856 #endif
857 int
858 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
859 {
860 	struct sigaction act, oact;
861 	struct sigaction *actp, *oactp;
862 	int error;
863 
864 
865 	actp = (uap->act != NULL) ? &act : NULL;
866 	oactp = (uap->oact != NULL) ? &oact : NULL;
867 	if (actp) {
868 		error = copyin(uap->act, actp, sizeof(act));
869 		if (error)
870 			return (error);
871 	}
872 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
873 	if (oactp && !error)
874 		error = copyout(oactp, uap->oact, sizeof(oact));
875 	return (error);
876 }
877 #endif	/* COMAPT_FREEBSD4 */
878 
879 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
880 #ifndef _SYS_SYSPROTO_H_
881 struct osigaction_args {
882 	int	signum;
883 	struct	osigaction *nsa;
884 	struct	osigaction *osa;
885 };
886 #endif
887 int
888 osigaction(struct thread *td, struct osigaction_args *uap)
889 {
890 	struct osigaction sa;
891 	struct sigaction nsa, osa;
892 	struct sigaction *nsap, *osap;
893 	int error;
894 
895 	if (uap->signum <= 0 || uap->signum >= ONSIG)
896 		return (EINVAL);
897 
898 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
899 	osap = (uap->osa != NULL) ? &osa : NULL;
900 
901 	if (nsap) {
902 		error = copyin(uap->nsa, &sa, sizeof(sa));
903 		if (error)
904 			return (error);
905 		nsap->sa_handler = sa.sa_handler;
906 		nsap->sa_flags = sa.sa_flags;
907 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
908 	}
909 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
910 	if (osap && !error) {
911 		sa.sa_handler = osap->sa_handler;
912 		sa.sa_flags = osap->sa_flags;
913 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
914 		error = copyout(&sa, uap->osa, sizeof(sa));
915 	}
916 	return (error);
917 }
918 
919 #if !defined(__i386__)
920 /* Avoid replicating the same stub everywhere */
921 int
922 osigreturn(struct thread *td, struct osigreturn_args *uap)
923 {
924 
925 	return (nosys(td, (struct nosys_args *)uap));
926 }
927 #endif
928 #endif /* COMPAT_43 */
929 
930 /*
931  * Initialize signal state for process 0;
932  * set to ignore signals that are ignored by default.
933  */
934 void
935 siginit(struct proc *p)
936 {
937 	int i;
938 	struct sigacts *ps;
939 
940 	PROC_LOCK(p);
941 	ps = p->p_sigacts;
942 	mtx_lock(&ps->ps_mtx);
943 	for (i = 1; i <= NSIG; i++) {
944 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
945 			SIGADDSET(ps->ps_sigignore, i);
946 		}
947 	}
948 	mtx_unlock(&ps->ps_mtx);
949 	PROC_UNLOCK(p);
950 }
951 
952 /*
953  * Reset specified signal to the default disposition.
954  */
955 static void
956 sigdflt(struct sigacts *ps, int sig)
957 {
958 
959 	mtx_assert(&ps->ps_mtx, MA_OWNED);
960 	SIGDELSET(ps->ps_sigcatch, sig);
961 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
962 		SIGADDSET(ps->ps_sigignore, sig);
963 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
964 	SIGDELSET(ps->ps_siginfo, sig);
965 }
966 
967 /*
968  * Reset signals for an exec of the specified process.
969  */
970 void
971 execsigs(struct proc *p)
972 {
973 	sigset_t osigignore;
974 	struct sigacts *ps;
975 	int sig;
976 	struct thread *td;
977 
978 	/*
979 	 * Reset caught signals.  Held signals remain held
980 	 * through td_sigmask (unless they were caught,
981 	 * and are now ignored by default).
982 	 */
983 	PROC_LOCK_ASSERT(p, MA_OWNED);
984 	ps = p->p_sigacts;
985 	mtx_lock(&ps->ps_mtx);
986 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
987 		sig = sig_ffs(&ps->ps_sigcatch);
988 		sigdflt(ps, sig);
989 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
990 			sigqueue_delete_proc(p, sig);
991 	}
992 
993 	/*
994 	 * As CloudABI processes cannot modify signal handlers, fully
995 	 * reset all signals to their default behavior. Do ignore
996 	 * SIGPIPE, as it would otherwise be impossible to recover from
997 	 * writes to broken pipes and sockets.
998 	 */
999 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1000 		osigignore = ps->ps_sigignore;
1001 		while (SIGNOTEMPTY(osigignore)) {
1002 			sig = sig_ffs(&osigignore);
1003 			SIGDELSET(osigignore, sig);
1004 			if (sig != SIGPIPE)
1005 				sigdflt(ps, sig);
1006 		}
1007 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1008 	}
1009 
1010 	/*
1011 	 * Reset stack state to the user stack.
1012 	 * Clear set of signals caught on the signal stack.
1013 	 */
1014 	td = curthread;
1015 	MPASS(td->td_proc == p);
1016 	td->td_sigstk.ss_flags = SS_DISABLE;
1017 	td->td_sigstk.ss_size = 0;
1018 	td->td_sigstk.ss_sp = 0;
1019 	td->td_pflags &= ~TDP_ALTSTACK;
1020 	/*
1021 	 * Reset no zombies if child dies flag as Solaris does.
1022 	 */
1023 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1024 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1025 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1026 	mtx_unlock(&ps->ps_mtx);
1027 }
1028 
1029 /*
1030  * kern_sigprocmask()
1031  *
1032  *	Manipulate signal mask.
1033  */
1034 int
1035 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1036     int flags)
1037 {
1038 	sigset_t new_block, oset1;
1039 	struct proc *p;
1040 	int error;
1041 
1042 	p = td->td_proc;
1043 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1044 		PROC_LOCK_ASSERT(p, MA_OWNED);
1045 	else
1046 		PROC_LOCK(p);
1047 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1048 	    ? MA_OWNED : MA_NOTOWNED);
1049 	if (oset != NULL)
1050 		*oset = td->td_sigmask;
1051 
1052 	error = 0;
1053 	if (set != NULL) {
1054 		switch (how) {
1055 		case SIG_BLOCK:
1056 			SIG_CANTMASK(*set);
1057 			oset1 = td->td_sigmask;
1058 			SIGSETOR(td->td_sigmask, *set);
1059 			new_block = td->td_sigmask;
1060 			SIGSETNAND(new_block, oset1);
1061 			break;
1062 		case SIG_UNBLOCK:
1063 			SIGSETNAND(td->td_sigmask, *set);
1064 			signotify(td);
1065 			goto out;
1066 		case SIG_SETMASK:
1067 			SIG_CANTMASK(*set);
1068 			oset1 = td->td_sigmask;
1069 			if (flags & SIGPROCMASK_OLD)
1070 				SIGSETLO(td->td_sigmask, *set);
1071 			else
1072 				td->td_sigmask = *set;
1073 			new_block = td->td_sigmask;
1074 			SIGSETNAND(new_block, oset1);
1075 			signotify(td);
1076 			break;
1077 		default:
1078 			error = EINVAL;
1079 			goto out;
1080 		}
1081 
1082 		/*
1083 		 * The new_block set contains signals that were not previously
1084 		 * blocked, but are blocked now.
1085 		 *
1086 		 * In case we block any signal that was not previously blocked
1087 		 * for td, and process has the signal pending, try to schedule
1088 		 * signal delivery to some thread that does not block the
1089 		 * signal, possibly waking it up.
1090 		 */
1091 		if (p->p_numthreads != 1)
1092 			reschedule_signals(p, new_block, flags);
1093 	}
1094 
1095 out:
1096 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1097 		PROC_UNLOCK(p);
1098 	return (error);
1099 }
1100 
1101 #ifndef _SYS_SYSPROTO_H_
1102 struct sigprocmask_args {
1103 	int	how;
1104 	const sigset_t *set;
1105 	sigset_t *oset;
1106 };
1107 #endif
1108 int
1109 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1110 {
1111 	sigset_t set, oset;
1112 	sigset_t *setp, *osetp;
1113 	int error;
1114 
1115 	setp = (uap->set != NULL) ? &set : NULL;
1116 	osetp = (uap->oset != NULL) ? &oset : NULL;
1117 	if (setp) {
1118 		error = copyin(uap->set, setp, sizeof(set));
1119 		if (error)
1120 			return (error);
1121 	}
1122 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1123 	if (osetp && !error) {
1124 		error = copyout(osetp, uap->oset, sizeof(oset));
1125 	}
1126 	return (error);
1127 }
1128 
1129 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1130 #ifndef _SYS_SYSPROTO_H_
1131 struct osigprocmask_args {
1132 	int	how;
1133 	osigset_t mask;
1134 };
1135 #endif
1136 int
1137 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1138 {
1139 	sigset_t set, oset;
1140 	int error;
1141 
1142 	OSIG2SIG(uap->mask, set);
1143 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1144 	SIG2OSIG(oset, td->td_retval[0]);
1145 	return (error);
1146 }
1147 #endif /* COMPAT_43 */
1148 
1149 int
1150 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1151 {
1152 	ksiginfo_t ksi;
1153 	sigset_t set;
1154 	int error;
1155 
1156 	error = copyin(uap->set, &set, sizeof(set));
1157 	if (error) {
1158 		td->td_retval[0] = error;
1159 		return (0);
1160 	}
1161 
1162 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1163 	if (error) {
1164 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1165 			error = ERESTART;
1166 		if (error == ERESTART)
1167 			return (error);
1168 		td->td_retval[0] = error;
1169 		return (0);
1170 	}
1171 
1172 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1173 	td->td_retval[0] = error;
1174 	return (0);
1175 }
1176 
1177 int
1178 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1179 {
1180 	struct timespec ts;
1181 	struct timespec *timeout;
1182 	sigset_t set;
1183 	ksiginfo_t ksi;
1184 	int error;
1185 
1186 	if (uap->timeout) {
1187 		error = copyin(uap->timeout, &ts, sizeof(ts));
1188 		if (error)
1189 			return (error);
1190 
1191 		timeout = &ts;
1192 	} else
1193 		timeout = NULL;
1194 
1195 	error = copyin(uap->set, &set, sizeof(set));
1196 	if (error)
1197 		return (error);
1198 
1199 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1200 	if (error)
1201 		return (error);
1202 
1203 	if (uap->info)
1204 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1205 
1206 	if (error == 0)
1207 		td->td_retval[0] = ksi.ksi_signo;
1208 	return (error);
1209 }
1210 
1211 int
1212 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1213 {
1214 	ksiginfo_t ksi;
1215 	sigset_t set;
1216 	int error;
1217 
1218 	error = copyin(uap->set, &set, sizeof(set));
1219 	if (error)
1220 		return (error);
1221 
1222 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1223 	if (error)
1224 		return (error);
1225 
1226 	if (uap->info)
1227 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1228 
1229 	if (error == 0)
1230 		td->td_retval[0] = ksi.ksi_signo;
1231 	return (error);
1232 }
1233 
1234 static void
1235 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1236 {
1237 	struct thread *thr;
1238 
1239 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1240 		if (thr == td)
1241 			thr->td_si = *si;
1242 		else
1243 			thr->td_si.si_signo = 0;
1244 	}
1245 }
1246 
1247 int
1248 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1249 	struct timespec *timeout)
1250 {
1251 	struct sigacts *ps;
1252 	sigset_t saved_mask, new_block;
1253 	struct proc *p;
1254 	int error, sig, timo, timevalid = 0;
1255 	struct timespec rts, ets, ts;
1256 	struct timeval tv;
1257 
1258 	p = td->td_proc;
1259 	error = 0;
1260 	ets.tv_sec = 0;
1261 	ets.tv_nsec = 0;
1262 
1263 	if (timeout != NULL) {
1264 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1265 			timevalid = 1;
1266 			getnanouptime(&rts);
1267 			ets = rts;
1268 			timespecadd(&ets, timeout);
1269 		}
1270 	}
1271 	ksiginfo_init(ksi);
1272 	/* Some signals can not be waited for. */
1273 	SIG_CANTMASK(waitset);
1274 	ps = p->p_sigacts;
1275 	PROC_LOCK(p);
1276 	saved_mask = td->td_sigmask;
1277 	SIGSETNAND(td->td_sigmask, waitset);
1278 	for (;;) {
1279 		mtx_lock(&ps->ps_mtx);
1280 		sig = cursig(td);
1281 		mtx_unlock(&ps->ps_mtx);
1282 		KASSERT(sig >= 0, ("sig %d", sig));
1283 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1284 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1285 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1286 				error = 0;
1287 				break;
1288 			}
1289 		}
1290 
1291 		if (error != 0)
1292 			break;
1293 
1294 		/*
1295 		 * POSIX says this must be checked after looking for pending
1296 		 * signals.
1297 		 */
1298 		if (timeout != NULL) {
1299 			if (!timevalid) {
1300 				error = EINVAL;
1301 				break;
1302 			}
1303 			getnanouptime(&rts);
1304 			if (timespeccmp(&rts, &ets, >=)) {
1305 				error = EAGAIN;
1306 				break;
1307 			}
1308 			ts = ets;
1309 			timespecsub(&ts, &rts);
1310 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1311 			timo = tvtohz(&tv);
1312 		} else {
1313 			timo = 0;
1314 		}
1315 
1316 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1317 
1318 		if (timeout != NULL) {
1319 			if (error == ERESTART) {
1320 				/* Timeout can not be restarted. */
1321 				error = EINTR;
1322 			} else if (error == EAGAIN) {
1323 				/* We will calculate timeout by ourself. */
1324 				error = 0;
1325 			}
1326 		}
1327 	}
1328 
1329 	new_block = saved_mask;
1330 	SIGSETNAND(new_block, td->td_sigmask);
1331 	td->td_sigmask = saved_mask;
1332 	/*
1333 	 * Fewer signals can be delivered to us, reschedule signal
1334 	 * notification.
1335 	 */
1336 	if (p->p_numthreads != 1)
1337 		reschedule_signals(p, new_block, 0);
1338 
1339 	if (error == 0) {
1340 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1341 
1342 		if (ksi->ksi_code == SI_TIMER)
1343 			itimer_accept(p, ksi->ksi_timerid, ksi);
1344 
1345 #ifdef KTRACE
1346 		if (KTRPOINT(td, KTR_PSIG)) {
1347 			sig_t action;
1348 
1349 			mtx_lock(&ps->ps_mtx);
1350 			action = ps->ps_sigact[_SIG_IDX(sig)];
1351 			mtx_unlock(&ps->ps_mtx);
1352 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1353 		}
1354 #endif
1355 		if (sig == SIGKILL) {
1356 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1357 			sigexit(td, sig);
1358 		}
1359 	}
1360 	PROC_UNLOCK(p);
1361 	return (error);
1362 }
1363 
1364 #ifndef _SYS_SYSPROTO_H_
1365 struct sigpending_args {
1366 	sigset_t	*set;
1367 };
1368 #endif
1369 int
1370 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1371 {
1372 	struct proc *p = td->td_proc;
1373 	sigset_t pending;
1374 
1375 	PROC_LOCK(p);
1376 	pending = p->p_sigqueue.sq_signals;
1377 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1378 	PROC_UNLOCK(p);
1379 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1380 }
1381 
1382 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct osigpending_args {
1385 	int	dummy;
1386 };
1387 #endif
1388 int
1389 osigpending(struct thread *td, struct osigpending_args *uap)
1390 {
1391 	struct proc *p = td->td_proc;
1392 	sigset_t pending;
1393 
1394 	PROC_LOCK(p);
1395 	pending = p->p_sigqueue.sq_signals;
1396 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1397 	PROC_UNLOCK(p);
1398 	SIG2OSIG(pending, td->td_retval[0]);
1399 	return (0);
1400 }
1401 #endif /* COMPAT_43 */
1402 
1403 #if defined(COMPAT_43)
1404 /*
1405  * Generalized interface signal handler, 4.3-compatible.
1406  */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigvec_args {
1409 	int	signum;
1410 	struct	sigvec *nsv;
1411 	struct	sigvec *osv;
1412 };
1413 #endif
1414 /* ARGSUSED */
1415 int
1416 osigvec(struct thread *td, struct osigvec_args *uap)
1417 {
1418 	struct sigvec vec;
1419 	struct sigaction nsa, osa;
1420 	struct sigaction *nsap, *osap;
1421 	int error;
1422 
1423 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1424 		return (EINVAL);
1425 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1426 	osap = (uap->osv != NULL) ? &osa : NULL;
1427 	if (nsap) {
1428 		error = copyin(uap->nsv, &vec, sizeof(vec));
1429 		if (error)
1430 			return (error);
1431 		nsap->sa_handler = vec.sv_handler;
1432 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1433 		nsap->sa_flags = vec.sv_flags;
1434 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1435 	}
1436 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1437 	if (osap && !error) {
1438 		vec.sv_handler = osap->sa_handler;
1439 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1440 		vec.sv_flags = osap->sa_flags;
1441 		vec.sv_flags &= ~SA_NOCLDWAIT;
1442 		vec.sv_flags ^= SA_RESTART;
1443 		error = copyout(&vec, uap->osv, sizeof(vec));
1444 	}
1445 	return (error);
1446 }
1447 
1448 #ifndef _SYS_SYSPROTO_H_
1449 struct osigblock_args {
1450 	int	mask;
1451 };
1452 #endif
1453 int
1454 osigblock(struct thread *td, struct osigblock_args *uap)
1455 {
1456 	sigset_t set, oset;
1457 
1458 	OSIG2SIG(uap->mask, set);
1459 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1460 	SIG2OSIG(oset, td->td_retval[0]);
1461 	return (0);
1462 }
1463 
1464 #ifndef _SYS_SYSPROTO_H_
1465 struct osigsetmask_args {
1466 	int	mask;
1467 };
1468 #endif
1469 int
1470 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1471 {
1472 	sigset_t set, oset;
1473 
1474 	OSIG2SIG(uap->mask, set);
1475 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1476 	SIG2OSIG(oset, td->td_retval[0]);
1477 	return (0);
1478 }
1479 #endif /* COMPAT_43 */
1480 
1481 /*
1482  * Suspend calling thread until signal, providing mask to be set in the
1483  * meantime.
1484  */
1485 #ifndef _SYS_SYSPROTO_H_
1486 struct sigsuspend_args {
1487 	const sigset_t *sigmask;
1488 };
1489 #endif
1490 /* ARGSUSED */
1491 int
1492 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1493 {
1494 	sigset_t mask;
1495 	int error;
1496 
1497 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1498 	if (error)
1499 		return (error);
1500 	return (kern_sigsuspend(td, mask));
1501 }
1502 
1503 int
1504 kern_sigsuspend(struct thread *td, sigset_t mask)
1505 {
1506 	struct proc *p = td->td_proc;
1507 	int has_sig, sig;
1508 
1509 	/*
1510 	 * When returning from sigsuspend, we want
1511 	 * the old mask to be restored after the
1512 	 * signal handler has finished.  Thus, we
1513 	 * save it here and mark the sigacts structure
1514 	 * to indicate this.
1515 	 */
1516 	PROC_LOCK(p);
1517 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1518 	    SIGPROCMASK_PROC_LOCKED);
1519 	td->td_pflags |= TDP_OLDMASK;
1520 
1521 	/*
1522 	 * Process signals now. Otherwise, we can get spurious wakeup
1523 	 * due to signal entered process queue, but delivered to other
1524 	 * thread. But sigsuspend should return only on signal
1525 	 * delivery.
1526 	 */
1527 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1528 	for (has_sig = 0; !has_sig;) {
1529 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1530 			0) == 0)
1531 			/* void */;
1532 		thread_suspend_check(0);
1533 		mtx_lock(&p->p_sigacts->ps_mtx);
1534 		while ((sig = cursig(td)) != 0) {
1535 			KASSERT(sig >= 0, ("sig %d", sig));
1536 			has_sig += postsig(sig);
1537 		}
1538 		mtx_unlock(&p->p_sigacts->ps_mtx);
1539 	}
1540 	PROC_UNLOCK(p);
1541 	td->td_errno = EINTR;
1542 	td->td_pflags |= TDP_NERRNO;
1543 	return (EJUSTRETURN);
1544 }
1545 
1546 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1547 /*
1548  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1549  * convention: libc stub passes mask, not pointer, to save a copyin.
1550  */
1551 #ifndef _SYS_SYSPROTO_H_
1552 struct osigsuspend_args {
1553 	osigset_t mask;
1554 };
1555 #endif
1556 /* ARGSUSED */
1557 int
1558 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1559 {
1560 	sigset_t mask;
1561 
1562 	OSIG2SIG(uap->mask, mask);
1563 	return (kern_sigsuspend(td, mask));
1564 }
1565 #endif /* COMPAT_43 */
1566 
1567 #if defined(COMPAT_43)
1568 #ifndef _SYS_SYSPROTO_H_
1569 struct osigstack_args {
1570 	struct	sigstack *nss;
1571 	struct	sigstack *oss;
1572 };
1573 #endif
1574 /* ARGSUSED */
1575 int
1576 osigstack(struct thread *td, struct osigstack_args *uap)
1577 {
1578 	struct sigstack nss, oss;
1579 	int error = 0;
1580 
1581 	if (uap->nss != NULL) {
1582 		error = copyin(uap->nss, &nss, sizeof(nss));
1583 		if (error)
1584 			return (error);
1585 	}
1586 	oss.ss_sp = td->td_sigstk.ss_sp;
1587 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1588 	if (uap->nss != NULL) {
1589 		td->td_sigstk.ss_sp = nss.ss_sp;
1590 		td->td_sigstk.ss_size = 0;
1591 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1592 		td->td_pflags |= TDP_ALTSTACK;
1593 	}
1594 	if (uap->oss != NULL)
1595 		error = copyout(&oss, uap->oss, sizeof(oss));
1596 
1597 	return (error);
1598 }
1599 #endif /* COMPAT_43 */
1600 
1601 #ifndef _SYS_SYSPROTO_H_
1602 struct sigaltstack_args {
1603 	stack_t	*ss;
1604 	stack_t	*oss;
1605 };
1606 #endif
1607 /* ARGSUSED */
1608 int
1609 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1610 {
1611 	stack_t ss, oss;
1612 	int error;
1613 
1614 	if (uap->ss != NULL) {
1615 		error = copyin(uap->ss, &ss, sizeof(ss));
1616 		if (error)
1617 			return (error);
1618 	}
1619 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1620 	    (uap->oss != NULL) ? &oss : NULL);
1621 	if (error)
1622 		return (error);
1623 	if (uap->oss != NULL)
1624 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1625 	return (error);
1626 }
1627 
1628 int
1629 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1630 {
1631 	struct proc *p = td->td_proc;
1632 	int oonstack;
1633 
1634 	oonstack = sigonstack(cpu_getstack(td));
1635 
1636 	if (oss != NULL) {
1637 		*oss = td->td_sigstk;
1638 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1639 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1640 	}
1641 
1642 	if (ss != NULL) {
1643 		if (oonstack)
1644 			return (EPERM);
1645 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1646 			return (EINVAL);
1647 		if (!(ss->ss_flags & SS_DISABLE)) {
1648 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1649 				return (ENOMEM);
1650 
1651 			td->td_sigstk = *ss;
1652 			td->td_pflags |= TDP_ALTSTACK;
1653 		} else {
1654 			td->td_pflags &= ~TDP_ALTSTACK;
1655 		}
1656 	}
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Common code for kill process group/broadcast kill.
1662  * cp is calling process.
1663  */
1664 static int
1665 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1666 {
1667 	struct proc *p;
1668 	struct pgrp *pgrp;
1669 	int err;
1670 	int ret;
1671 
1672 	ret = ESRCH;
1673 	if (all) {
1674 		/*
1675 		 * broadcast
1676 		 */
1677 		sx_slock(&allproc_lock);
1678 		FOREACH_PROC_IN_SYSTEM(p) {
1679 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1680 			    p == td->td_proc || p->p_state == PRS_NEW) {
1681 				continue;
1682 			}
1683 			PROC_LOCK(p);
1684 			err = p_cansignal(td, p, sig);
1685 			if (err == 0) {
1686 				if (sig)
1687 					pksignal(p, sig, ksi);
1688 				ret = err;
1689 			}
1690 			else if (ret == ESRCH)
1691 				ret = err;
1692 			PROC_UNLOCK(p);
1693 		}
1694 		sx_sunlock(&allproc_lock);
1695 	} else {
1696 		sx_slock(&proctree_lock);
1697 		if (pgid == 0) {
1698 			/*
1699 			 * zero pgid means send to my process group.
1700 			 */
1701 			pgrp = td->td_proc->p_pgrp;
1702 			PGRP_LOCK(pgrp);
1703 		} else {
1704 			pgrp = pgfind(pgid);
1705 			if (pgrp == NULL) {
1706 				sx_sunlock(&proctree_lock);
1707 				return (ESRCH);
1708 			}
1709 		}
1710 		sx_sunlock(&proctree_lock);
1711 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1712 			PROC_LOCK(p);
1713 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1714 			    p->p_state == PRS_NEW) {
1715 				PROC_UNLOCK(p);
1716 				continue;
1717 			}
1718 			err = p_cansignal(td, p, sig);
1719 			if (err == 0) {
1720 				if (sig)
1721 					pksignal(p, sig, ksi);
1722 				ret = err;
1723 			}
1724 			else if (ret == ESRCH)
1725 				ret = err;
1726 			PROC_UNLOCK(p);
1727 		}
1728 		PGRP_UNLOCK(pgrp);
1729 	}
1730 	return (ret);
1731 }
1732 
1733 #ifndef _SYS_SYSPROTO_H_
1734 struct kill_args {
1735 	int	pid;
1736 	int	signum;
1737 };
1738 #endif
1739 /* ARGSUSED */
1740 int
1741 sys_kill(struct thread *td, struct kill_args *uap)
1742 {
1743 	ksiginfo_t ksi;
1744 	struct proc *p;
1745 	int error;
1746 
1747 	/*
1748 	 * A process in capability mode can send signals only to himself.
1749 	 * The main rationale behind this is that abort(3) is implemented as
1750 	 * kill(getpid(), SIGABRT).
1751 	 */
1752 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1753 		return (ECAPMODE);
1754 
1755 	AUDIT_ARG_SIGNUM(uap->signum);
1756 	AUDIT_ARG_PID(uap->pid);
1757 	if ((u_int)uap->signum > _SIG_MAXSIG)
1758 		return (EINVAL);
1759 
1760 	ksiginfo_init(&ksi);
1761 	ksi.ksi_signo = uap->signum;
1762 	ksi.ksi_code = SI_USER;
1763 	ksi.ksi_pid = td->td_proc->p_pid;
1764 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1765 
1766 	if (uap->pid > 0) {
1767 		/* kill single process */
1768 		if ((p = pfind_any(uap->pid)) == NULL)
1769 			return (ESRCH);
1770 		AUDIT_ARG_PROCESS(p);
1771 		error = p_cansignal(td, p, uap->signum);
1772 		if (error == 0 && uap->signum)
1773 			pksignal(p, uap->signum, &ksi);
1774 		PROC_UNLOCK(p);
1775 		return (error);
1776 	}
1777 	switch (uap->pid) {
1778 	case -1:		/* broadcast signal */
1779 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1780 	case 0:			/* signal own process group */
1781 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1782 	default:		/* negative explicit process group */
1783 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1784 	}
1785 	/* NOTREACHED */
1786 }
1787 
1788 int
1789 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1790 {
1791 	struct proc *p;
1792 	cap_rights_t rights;
1793 	int error;
1794 
1795 	AUDIT_ARG_SIGNUM(uap->signum);
1796 	AUDIT_ARG_FD(uap->fd);
1797 	if ((u_int)uap->signum > _SIG_MAXSIG)
1798 		return (EINVAL);
1799 
1800 	error = procdesc_find(td, uap->fd,
1801 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1802 	if (error)
1803 		return (error);
1804 	AUDIT_ARG_PROCESS(p);
1805 	error = p_cansignal(td, p, uap->signum);
1806 	if (error == 0 && uap->signum)
1807 		kern_psignal(p, uap->signum);
1808 	PROC_UNLOCK(p);
1809 	return (error);
1810 }
1811 
1812 #if defined(COMPAT_43)
1813 #ifndef _SYS_SYSPROTO_H_
1814 struct okillpg_args {
1815 	int	pgid;
1816 	int	signum;
1817 };
1818 #endif
1819 /* ARGSUSED */
1820 int
1821 okillpg(struct thread *td, struct okillpg_args *uap)
1822 {
1823 	ksiginfo_t ksi;
1824 
1825 	AUDIT_ARG_SIGNUM(uap->signum);
1826 	AUDIT_ARG_PID(uap->pgid);
1827 	if ((u_int)uap->signum > _SIG_MAXSIG)
1828 		return (EINVAL);
1829 
1830 	ksiginfo_init(&ksi);
1831 	ksi.ksi_signo = uap->signum;
1832 	ksi.ksi_code = SI_USER;
1833 	ksi.ksi_pid = td->td_proc->p_pid;
1834 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1835 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1836 }
1837 #endif /* COMPAT_43 */
1838 
1839 #ifndef _SYS_SYSPROTO_H_
1840 struct sigqueue_args {
1841 	pid_t pid;
1842 	int signum;
1843 	/* union sigval */ void *value;
1844 };
1845 #endif
1846 int
1847 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1848 {
1849 	union sigval sv;
1850 
1851 	sv.sival_ptr = uap->value;
1852 
1853 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1854 }
1855 
1856 int
1857 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1858 {
1859 	ksiginfo_t ksi;
1860 	struct proc *p;
1861 	int error;
1862 
1863 	if ((u_int)signum > _SIG_MAXSIG)
1864 		return (EINVAL);
1865 
1866 	/*
1867 	 * Specification says sigqueue can only send signal to
1868 	 * single process.
1869 	 */
1870 	if (pid <= 0)
1871 		return (EINVAL);
1872 
1873 	if ((p = pfind_any(pid)) == NULL)
1874 		return (ESRCH);
1875 	error = p_cansignal(td, p, signum);
1876 	if (error == 0 && signum != 0) {
1877 		ksiginfo_init(&ksi);
1878 		ksi.ksi_flags = KSI_SIGQ;
1879 		ksi.ksi_signo = signum;
1880 		ksi.ksi_code = SI_QUEUE;
1881 		ksi.ksi_pid = td->td_proc->p_pid;
1882 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1883 		ksi.ksi_value = *value;
1884 		error = pksignal(p, ksi.ksi_signo, &ksi);
1885 	}
1886 	PROC_UNLOCK(p);
1887 	return (error);
1888 }
1889 
1890 /*
1891  * Send a signal to a process group.
1892  */
1893 void
1894 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1895 {
1896 	struct pgrp *pgrp;
1897 
1898 	if (pgid != 0) {
1899 		sx_slock(&proctree_lock);
1900 		pgrp = pgfind(pgid);
1901 		sx_sunlock(&proctree_lock);
1902 		if (pgrp != NULL) {
1903 			pgsignal(pgrp, sig, 0, ksi);
1904 			PGRP_UNLOCK(pgrp);
1905 		}
1906 	}
1907 }
1908 
1909 /*
1910  * Send a signal to a process group.  If checktty is 1,
1911  * limit to members which have a controlling terminal.
1912  */
1913 void
1914 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1915 {
1916 	struct proc *p;
1917 
1918 	if (pgrp) {
1919 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1920 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1921 			PROC_LOCK(p);
1922 			if (p->p_state == PRS_NORMAL &&
1923 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1924 				pksignal(p, sig, ksi);
1925 			PROC_UNLOCK(p);
1926 		}
1927 	}
1928 }
1929 
1930 
1931 /*
1932  * Recalculate the signal mask and reset the signal disposition after
1933  * usermode frame for delivery is formed.  Should be called after
1934  * mach-specific routine, because sysent->sv_sendsig() needs correct
1935  * ps_siginfo and signal mask.
1936  */
1937 static void
1938 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1939 {
1940 	sigset_t mask;
1941 
1942 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1943 	td->td_ru.ru_nsignals++;
1944 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1945 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1946 		SIGADDSET(mask, sig);
1947 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1948 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1949 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1950 		sigdflt(ps, sig);
1951 }
1952 
1953 
1954 /*
1955  * Send a signal caused by a trap to the current thread.  If it will be
1956  * caught immediately, deliver it with correct code.  Otherwise, post it
1957  * normally.
1958  */
1959 void
1960 trapsignal(struct thread *td, ksiginfo_t *ksi)
1961 {
1962 	struct sigacts *ps;
1963 	struct proc *p;
1964 	int sig;
1965 	int code;
1966 
1967 	p = td->td_proc;
1968 	sig = ksi->ksi_signo;
1969 	code = ksi->ksi_code;
1970 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1971 
1972 	PROC_LOCK(p);
1973 	ps = p->p_sigacts;
1974 	mtx_lock(&ps->ps_mtx);
1975 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1976 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1977 #ifdef KTRACE
1978 		if (KTRPOINT(curthread, KTR_PSIG))
1979 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1980 			    &td->td_sigmask, code);
1981 #endif
1982 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1983 				ksi, &td->td_sigmask);
1984 		postsig_done(sig, td, ps);
1985 		mtx_unlock(&ps->ps_mtx);
1986 	} else {
1987 		/*
1988 		 * Avoid a possible infinite loop if the thread
1989 		 * masking the signal or process is ignoring the
1990 		 * signal.
1991 		 */
1992 		if (kern_forcesigexit &&
1993 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1994 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1995 			SIGDELSET(td->td_sigmask, sig);
1996 			SIGDELSET(ps->ps_sigcatch, sig);
1997 			SIGDELSET(ps->ps_sigignore, sig);
1998 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1999 		}
2000 		mtx_unlock(&ps->ps_mtx);
2001 		p->p_code = code;	/* XXX for core dump/debugger */
2002 		p->p_sig = sig;		/* XXX to verify code */
2003 		tdsendsignal(p, td, sig, ksi);
2004 	}
2005 	PROC_UNLOCK(p);
2006 }
2007 
2008 static struct thread *
2009 sigtd(struct proc *p, int sig, int prop)
2010 {
2011 	struct thread *td, *signal_td;
2012 
2013 	PROC_LOCK_ASSERT(p, MA_OWNED);
2014 
2015 	/*
2016 	 * Check if current thread can handle the signal without
2017 	 * switching context to another thread.
2018 	 */
2019 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2020 		return (curthread);
2021 	signal_td = NULL;
2022 	FOREACH_THREAD_IN_PROC(p, td) {
2023 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2024 			signal_td = td;
2025 			break;
2026 		}
2027 	}
2028 	if (signal_td == NULL)
2029 		signal_td = FIRST_THREAD_IN_PROC(p);
2030 	return (signal_td);
2031 }
2032 
2033 /*
2034  * Send the signal to the process.  If the signal has an action, the action
2035  * is usually performed by the target process rather than the caller; we add
2036  * the signal to the set of pending signals for the process.
2037  *
2038  * Exceptions:
2039  *   o When a stop signal is sent to a sleeping process that takes the
2040  *     default action, the process is stopped without awakening it.
2041  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2042  *     regardless of the signal action (eg, blocked or ignored).
2043  *
2044  * Other ignored signals are discarded immediately.
2045  *
2046  * NB: This function may be entered from the debugger via the "kill" DDB
2047  * command.  There is little that can be done to mitigate the possibly messy
2048  * side effects of this unwise possibility.
2049  */
2050 void
2051 kern_psignal(struct proc *p, int sig)
2052 {
2053 	ksiginfo_t ksi;
2054 
2055 	ksiginfo_init(&ksi);
2056 	ksi.ksi_signo = sig;
2057 	ksi.ksi_code = SI_KERNEL;
2058 	(void) tdsendsignal(p, NULL, sig, &ksi);
2059 }
2060 
2061 int
2062 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2063 {
2064 
2065 	return (tdsendsignal(p, NULL, sig, ksi));
2066 }
2067 
2068 /* Utility function for finding a thread to send signal event to. */
2069 int
2070 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2071 {
2072 	struct thread *td;
2073 
2074 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2075 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2076 		if (td == NULL)
2077 			return (ESRCH);
2078 		*ttd = td;
2079 	} else {
2080 		*ttd = NULL;
2081 		PROC_LOCK(p);
2082 	}
2083 	return (0);
2084 }
2085 
2086 void
2087 tdsignal(struct thread *td, int sig)
2088 {
2089 	ksiginfo_t ksi;
2090 
2091 	ksiginfo_init(&ksi);
2092 	ksi.ksi_signo = sig;
2093 	ksi.ksi_code = SI_KERNEL;
2094 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2095 }
2096 
2097 void
2098 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2099 {
2100 
2101 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2102 }
2103 
2104 int
2105 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2106 {
2107 	sig_t action;
2108 	sigqueue_t *sigqueue;
2109 	int prop;
2110 	struct sigacts *ps;
2111 	int intrval;
2112 	int ret = 0;
2113 	int wakeup_swapper;
2114 
2115 	MPASS(td == NULL || p == td->td_proc);
2116 	PROC_LOCK_ASSERT(p, MA_OWNED);
2117 
2118 	if (!_SIG_VALID(sig))
2119 		panic("%s(): invalid signal %d", __func__, sig);
2120 
2121 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2122 
2123 	/*
2124 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2125 	 */
2126 	if (p->p_state == PRS_ZOMBIE) {
2127 		if (ksi && (ksi->ksi_flags & KSI_INS))
2128 			ksiginfo_tryfree(ksi);
2129 		return (ret);
2130 	}
2131 
2132 	ps = p->p_sigacts;
2133 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2134 	prop = sigprop(sig);
2135 
2136 	if (td == NULL) {
2137 		td = sigtd(p, sig, prop);
2138 		sigqueue = &p->p_sigqueue;
2139 	} else
2140 		sigqueue = &td->td_sigqueue;
2141 
2142 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2143 
2144 	/*
2145 	 * If the signal is being ignored,
2146 	 * then we forget about it immediately.
2147 	 * (Note: we don't set SIGCONT in ps_sigignore,
2148 	 * and if it is set to SIG_IGN,
2149 	 * action will be SIG_DFL here.)
2150 	 */
2151 	mtx_lock(&ps->ps_mtx);
2152 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2153 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2154 
2155 		mtx_unlock(&ps->ps_mtx);
2156 		if (ksi && (ksi->ksi_flags & KSI_INS))
2157 			ksiginfo_tryfree(ksi);
2158 		return (ret);
2159 	}
2160 	if (SIGISMEMBER(td->td_sigmask, sig))
2161 		action = SIG_HOLD;
2162 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2163 		action = SIG_CATCH;
2164 	else
2165 		action = SIG_DFL;
2166 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2167 		intrval = EINTR;
2168 	else
2169 		intrval = ERESTART;
2170 	mtx_unlock(&ps->ps_mtx);
2171 
2172 	if (prop & SIGPROP_CONT)
2173 		sigqueue_delete_stopmask_proc(p);
2174 	else if (prop & SIGPROP_STOP) {
2175 		/*
2176 		 * If sending a tty stop signal to a member of an orphaned
2177 		 * process group, discard the signal here if the action
2178 		 * is default; don't stop the process below if sleeping,
2179 		 * and don't clear any pending SIGCONT.
2180 		 */
2181 		if ((prop & SIGPROP_TTYSTOP) &&
2182 		    (p->p_pgrp->pg_jobc == 0) &&
2183 		    (action == SIG_DFL)) {
2184 			if (ksi && (ksi->ksi_flags & KSI_INS))
2185 				ksiginfo_tryfree(ksi);
2186 			return (ret);
2187 		}
2188 		sigqueue_delete_proc(p, SIGCONT);
2189 		if (p->p_flag & P_CONTINUED) {
2190 			p->p_flag &= ~P_CONTINUED;
2191 			PROC_LOCK(p->p_pptr);
2192 			sigqueue_take(p->p_ksi);
2193 			PROC_UNLOCK(p->p_pptr);
2194 		}
2195 	}
2196 
2197 	ret = sigqueue_add(sigqueue, sig, ksi);
2198 	if (ret != 0)
2199 		return (ret);
2200 	signotify(td);
2201 	/*
2202 	 * Defer further processing for signals which are held,
2203 	 * except that stopped processes must be continued by SIGCONT.
2204 	 */
2205 	if (action == SIG_HOLD &&
2206 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2207 		return (ret);
2208 
2209 	/* SIGKILL: Remove procfs STOPEVENTs. */
2210 	if (sig == SIGKILL) {
2211 		/* from procfs_ioctl.c: PIOCBIC */
2212 		p->p_stops = 0;
2213 		/* from procfs_ioctl.c: PIOCCONT */
2214 		p->p_step = 0;
2215 		wakeup(&p->p_step);
2216 	}
2217 	/*
2218 	 * Some signals have a process-wide effect and a per-thread
2219 	 * component.  Most processing occurs when the process next
2220 	 * tries to cross the user boundary, however there are some
2221 	 * times when processing needs to be done immediately, such as
2222 	 * waking up threads so that they can cross the user boundary.
2223 	 * We try to do the per-process part here.
2224 	 */
2225 	if (P_SHOULDSTOP(p)) {
2226 		KASSERT(!(p->p_flag & P_WEXIT),
2227 		    ("signal to stopped but exiting process"));
2228 		if (sig == SIGKILL) {
2229 			/*
2230 			 * If traced process is already stopped,
2231 			 * then no further action is necessary.
2232 			 */
2233 			if (p->p_flag & P_TRACED)
2234 				goto out;
2235 			/*
2236 			 * SIGKILL sets process running.
2237 			 * It will die elsewhere.
2238 			 * All threads must be restarted.
2239 			 */
2240 			p->p_flag &= ~P_STOPPED_SIG;
2241 			goto runfast;
2242 		}
2243 
2244 		if (prop & SIGPROP_CONT) {
2245 			/*
2246 			 * If traced process is already stopped,
2247 			 * then no further action is necessary.
2248 			 */
2249 			if (p->p_flag & P_TRACED)
2250 				goto out;
2251 			/*
2252 			 * If SIGCONT is default (or ignored), we continue the
2253 			 * process but don't leave the signal in sigqueue as
2254 			 * it has no further action.  If SIGCONT is held, we
2255 			 * continue the process and leave the signal in
2256 			 * sigqueue.  If the process catches SIGCONT, let it
2257 			 * handle the signal itself.  If it isn't waiting on
2258 			 * an event, it goes back to run state.
2259 			 * Otherwise, process goes back to sleep state.
2260 			 */
2261 			p->p_flag &= ~P_STOPPED_SIG;
2262 			PROC_SLOCK(p);
2263 			if (p->p_numthreads == p->p_suspcount) {
2264 				PROC_SUNLOCK(p);
2265 				p->p_flag |= P_CONTINUED;
2266 				p->p_xsig = SIGCONT;
2267 				PROC_LOCK(p->p_pptr);
2268 				childproc_continued(p);
2269 				PROC_UNLOCK(p->p_pptr);
2270 				PROC_SLOCK(p);
2271 			}
2272 			if (action == SIG_DFL) {
2273 				thread_unsuspend(p);
2274 				PROC_SUNLOCK(p);
2275 				sigqueue_delete(sigqueue, sig);
2276 				goto out;
2277 			}
2278 			if (action == SIG_CATCH) {
2279 				/*
2280 				 * The process wants to catch it so it needs
2281 				 * to run at least one thread, but which one?
2282 				 */
2283 				PROC_SUNLOCK(p);
2284 				goto runfast;
2285 			}
2286 			/*
2287 			 * The signal is not ignored or caught.
2288 			 */
2289 			thread_unsuspend(p);
2290 			PROC_SUNLOCK(p);
2291 			goto out;
2292 		}
2293 
2294 		if (prop & SIGPROP_STOP) {
2295 			/*
2296 			 * If traced process is already stopped,
2297 			 * then no further action is necessary.
2298 			 */
2299 			if (p->p_flag & P_TRACED)
2300 				goto out;
2301 			/*
2302 			 * Already stopped, don't need to stop again
2303 			 * (If we did the shell could get confused).
2304 			 * Just make sure the signal STOP bit set.
2305 			 */
2306 			p->p_flag |= P_STOPPED_SIG;
2307 			sigqueue_delete(sigqueue, sig);
2308 			goto out;
2309 		}
2310 
2311 		/*
2312 		 * All other kinds of signals:
2313 		 * If a thread is sleeping interruptibly, simulate a
2314 		 * wakeup so that when it is continued it will be made
2315 		 * runnable and can look at the signal.  However, don't make
2316 		 * the PROCESS runnable, leave it stopped.
2317 		 * It may run a bit until it hits a thread_suspend_check().
2318 		 */
2319 		wakeup_swapper = 0;
2320 		PROC_SLOCK(p);
2321 		thread_lock(td);
2322 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2323 			wakeup_swapper = sleepq_abort(td, intrval);
2324 		thread_unlock(td);
2325 		PROC_SUNLOCK(p);
2326 		if (wakeup_swapper)
2327 			kick_proc0();
2328 		goto out;
2329 		/*
2330 		 * Mutexes are short lived. Threads waiting on them will
2331 		 * hit thread_suspend_check() soon.
2332 		 */
2333 	} else if (p->p_state == PRS_NORMAL) {
2334 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2335 			tdsigwakeup(td, sig, action, intrval);
2336 			goto out;
2337 		}
2338 
2339 		MPASS(action == SIG_DFL);
2340 
2341 		if (prop & SIGPROP_STOP) {
2342 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2343 				goto out;
2344 			p->p_flag |= P_STOPPED_SIG;
2345 			p->p_xsig = sig;
2346 			PROC_SLOCK(p);
2347 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2348 			if (p->p_numthreads == p->p_suspcount) {
2349 				/*
2350 				 * only thread sending signal to another
2351 				 * process can reach here, if thread is sending
2352 				 * signal to its process, because thread does
2353 				 * not suspend itself here, p_numthreads
2354 				 * should never be equal to p_suspcount.
2355 				 */
2356 				thread_stopped(p);
2357 				PROC_SUNLOCK(p);
2358 				sigqueue_delete_proc(p, p->p_xsig);
2359 			} else
2360 				PROC_SUNLOCK(p);
2361 			if (wakeup_swapper)
2362 				kick_proc0();
2363 			goto out;
2364 		}
2365 	} else {
2366 		/* Not in "NORMAL" state. discard the signal. */
2367 		sigqueue_delete(sigqueue, sig);
2368 		goto out;
2369 	}
2370 
2371 	/*
2372 	 * The process is not stopped so we need to apply the signal to all the
2373 	 * running threads.
2374 	 */
2375 runfast:
2376 	tdsigwakeup(td, sig, action, intrval);
2377 	PROC_SLOCK(p);
2378 	thread_unsuspend(p);
2379 	PROC_SUNLOCK(p);
2380 out:
2381 	/* If we jump here, proc slock should not be owned. */
2382 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2383 	return (ret);
2384 }
2385 
2386 /*
2387  * The force of a signal has been directed against a single
2388  * thread.  We need to see what we can do about knocking it
2389  * out of any sleep it may be in etc.
2390  */
2391 static void
2392 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2393 {
2394 	struct proc *p = td->td_proc;
2395 	int prop;
2396 	int wakeup_swapper;
2397 
2398 	wakeup_swapper = 0;
2399 	PROC_LOCK_ASSERT(p, MA_OWNED);
2400 	prop = sigprop(sig);
2401 
2402 	PROC_SLOCK(p);
2403 	thread_lock(td);
2404 	/*
2405 	 * Bring the priority of a thread up if we want it to get
2406 	 * killed in this lifetime.  Be careful to avoid bumping the
2407 	 * priority of the idle thread, since we still allow to signal
2408 	 * kernel processes.
2409 	 */
2410 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2411 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2412 		sched_prio(td, PUSER);
2413 	if (TD_ON_SLEEPQ(td)) {
2414 		/*
2415 		 * If thread is sleeping uninterruptibly
2416 		 * we can't interrupt the sleep... the signal will
2417 		 * be noticed when the process returns through
2418 		 * trap() or syscall().
2419 		 */
2420 		if ((td->td_flags & TDF_SINTR) == 0)
2421 			goto out;
2422 		/*
2423 		 * If SIGCONT is default (or ignored) and process is
2424 		 * asleep, we are finished; the process should not
2425 		 * be awakened.
2426 		 */
2427 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2428 			thread_unlock(td);
2429 			PROC_SUNLOCK(p);
2430 			sigqueue_delete(&p->p_sigqueue, sig);
2431 			/*
2432 			 * It may be on either list in this state.
2433 			 * Remove from both for now.
2434 			 */
2435 			sigqueue_delete(&td->td_sigqueue, sig);
2436 			return;
2437 		}
2438 
2439 		/*
2440 		 * Don't awaken a sleeping thread for SIGSTOP if the
2441 		 * STOP signal is deferred.
2442 		 */
2443 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2444 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2445 			goto out;
2446 
2447 		/*
2448 		 * Give low priority threads a better chance to run.
2449 		 */
2450 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2451 			sched_prio(td, PUSER);
2452 
2453 		wakeup_swapper = sleepq_abort(td, intrval);
2454 	} else {
2455 		/*
2456 		 * Other states do nothing with the signal immediately,
2457 		 * other than kicking ourselves if we are running.
2458 		 * It will either never be noticed, or noticed very soon.
2459 		 */
2460 #ifdef SMP
2461 		if (TD_IS_RUNNING(td) && td != curthread)
2462 			forward_signal(td);
2463 #endif
2464 	}
2465 out:
2466 	PROC_SUNLOCK(p);
2467 	thread_unlock(td);
2468 	if (wakeup_swapper)
2469 		kick_proc0();
2470 }
2471 
2472 static int
2473 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2474 {
2475 	struct thread *td2;
2476 	int wakeup_swapper;
2477 
2478 	PROC_LOCK_ASSERT(p, MA_OWNED);
2479 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2480 	MPASS(sending || td == curthread);
2481 
2482 	wakeup_swapper = 0;
2483 	FOREACH_THREAD_IN_PROC(p, td2) {
2484 		thread_lock(td2);
2485 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2486 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2487 		    (td2->td_flags & TDF_SINTR)) {
2488 			if (td2->td_flags & TDF_SBDRY) {
2489 				/*
2490 				 * Once a thread is asleep with
2491 				 * TDF_SBDRY and without TDF_SERESTART
2492 				 * or TDF_SEINTR set, it should never
2493 				 * become suspended due to this check.
2494 				 */
2495 				KASSERT(!TD_IS_SUSPENDED(td2),
2496 				    ("thread with deferred stops suspended"));
2497 				if (TD_SBDRY_INTR(td2))
2498 					wakeup_swapper |= sleepq_abort(td2,
2499 					    TD_SBDRY_ERRNO(td2));
2500 			} else if (!TD_IS_SUSPENDED(td2)) {
2501 				thread_suspend_one(td2);
2502 			}
2503 		} else if (!TD_IS_SUSPENDED(td2)) {
2504 			if (sending || td != td2)
2505 				td2->td_flags |= TDF_ASTPENDING;
2506 #ifdef SMP
2507 			if (TD_IS_RUNNING(td2) && td2 != td)
2508 				forward_signal(td2);
2509 #endif
2510 		}
2511 		thread_unlock(td2);
2512 	}
2513 	return (wakeup_swapper);
2514 }
2515 
2516 /*
2517  * Stop the process for an event deemed interesting to the debugger. If si is
2518  * non-NULL, this is a signal exchange; the new signal requested by the
2519  * debugger will be returned for handling. If si is NULL, this is some other
2520  * type of interesting event. The debugger may request a signal be delivered in
2521  * that case as well, however it will be deferred until it can be handled.
2522  */
2523 int
2524 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2525 {
2526 	struct proc *p = td->td_proc;
2527 	struct thread *td2;
2528 	ksiginfo_t ksi;
2529 	int prop;
2530 
2531 	PROC_LOCK_ASSERT(p, MA_OWNED);
2532 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2533 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2534 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2535 
2536 	td->td_xsig = sig;
2537 
2538 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2539 		td->td_dbgflags |= TDB_XSIG;
2540 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2541 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2542 		PROC_SLOCK(p);
2543 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2544 			if (P_KILLED(p)) {
2545 				/*
2546 				 * Ensure that, if we've been PT_KILLed, the
2547 				 * exit status reflects that. Another thread
2548 				 * may also be in ptracestop(), having just
2549 				 * received the SIGKILL, but this thread was
2550 				 * unsuspended first.
2551 				 */
2552 				td->td_dbgflags &= ~TDB_XSIG;
2553 				td->td_xsig = SIGKILL;
2554 				p->p_ptevents = 0;
2555 				break;
2556 			}
2557 			if (p->p_flag & P_SINGLE_EXIT &&
2558 			    !(td->td_dbgflags & TDB_EXIT)) {
2559 				/*
2560 				 * Ignore ptrace stops except for thread exit
2561 				 * events when the process exits.
2562 				 */
2563 				td->td_dbgflags &= ~TDB_XSIG;
2564 				PROC_SUNLOCK(p);
2565 				return (0);
2566 			}
2567 
2568 			/*
2569 			 * Make wait(2) work.  Ensure that right after the
2570 			 * attach, the thread which was decided to become the
2571 			 * leader of attach gets reported to the waiter.
2572 			 * Otherwise, just avoid overwriting another thread's
2573 			 * assignment to p_xthread.  If another thread has
2574 			 * already set p_xthread, the current thread will get
2575 			 * a chance to report itself upon the next iteration.
2576 			 */
2577 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2578 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2579 			    p->p_xthread == NULL)) {
2580 				p->p_xsig = sig;
2581 				p->p_xthread = td;
2582 				td->td_dbgflags &= ~TDB_FSTP;
2583 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2584 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2585 				sig_suspend_threads(td, p, 0);
2586 			}
2587 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2588 				td->td_dbgflags &= ~TDB_STOPATFORK;
2589 				cv_broadcast(&p->p_dbgwait);
2590 			}
2591 stopme:
2592 			thread_suspend_switch(td, p);
2593 			if (p->p_xthread == td)
2594 				p->p_xthread = NULL;
2595 			if (!(p->p_flag & P_TRACED))
2596 				break;
2597 			if (td->td_dbgflags & TDB_SUSPEND) {
2598 				if (p->p_flag & P_SINGLE_EXIT)
2599 					break;
2600 				goto stopme;
2601 			}
2602 		}
2603 		PROC_SUNLOCK(p);
2604 	}
2605 
2606 	if (si != NULL && sig == td->td_xsig) {
2607 		/* Parent wants us to take the original signal unchanged. */
2608 		si->ksi_flags |= KSI_HEAD;
2609 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2610 			si->ksi_signo = 0;
2611 	} else if (td->td_xsig != 0) {
2612 		/*
2613 		 * If parent wants us to take a new signal, then it will leave
2614 		 * it in td->td_xsig; otherwise we just look for signals again.
2615 		 */
2616 		ksiginfo_init(&ksi);
2617 		ksi.ksi_signo = td->td_xsig;
2618 		ksi.ksi_flags |= KSI_PTRACE;
2619 		prop = sigprop(td->td_xsig);
2620 		td2 = sigtd(p, td->td_xsig, prop);
2621 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2622 		if (td != td2)
2623 			return (0);
2624 	}
2625 
2626 	return (td->td_xsig);
2627 }
2628 
2629 static void
2630 reschedule_signals(struct proc *p, sigset_t block, int flags)
2631 {
2632 	struct sigacts *ps;
2633 	struct thread *td;
2634 	int sig;
2635 
2636 	PROC_LOCK_ASSERT(p, MA_OWNED);
2637 	ps = p->p_sigacts;
2638 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2639 	    MA_OWNED : MA_NOTOWNED);
2640 	if (SIGISEMPTY(p->p_siglist))
2641 		return;
2642 	SIGSETAND(block, p->p_siglist);
2643 	while ((sig = sig_ffs(&block)) != 0) {
2644 		SIGDELSET(block, sig);
2645 		td = sigtd(p, sig, 0);
2646 		signotify(td);
2647 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2648 			mtx_lock(&ps->ps_mtx);
2649 		if (p->p_flag & P_TRACED ||
2650 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2651 		    !SIGISMEMBER(td->td_sigmask, sig)))
2652 			tdsigwakeup(td, sig, SIG_CATCH,
2653 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2654 			     ERESTART));
2655 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2656 			mtx_unlock(&ps->ps_mtx);
2657 	}
2658 }
2659 
2660 void
2661 tdsigcleanup(struct thread *td)
2662 {
2663 	struct proc *p;
2664 	sigset_t unblocked;
2665 
2666 	p = td->td_proc;
2667 	PROC_LOCK_ASSERT(p, MA_OWNED);
2668 
2669 	sigqueue_flush(&td->td_sigqueue);
2670 	if (p->p_numthreads == 1)
2671 		return;
2672 
2673 	/*
2674 	 * Since we cannot handle signals, notify signal post code
2675 	 * about this by filling the sigmask.
2676 	 *
2677 	 * Also, if needed, wake up thread(s) that do not block the
2678 	 * same signals as the exiting thread, since the thread might
2679 	 * have been selected for delivery and woken up.
2680 	 */
2681 	SIGFILLSET(unblocked);
2682 	SIGSETNAND(unblocked, td->td_sigmask);
2683 	SIGFILLSET(td->td_sigmask);
2684 	reschedule_signals(p, unblocked, 0);
2685 
2686 }
2687 
2688 static int
2689 sigdeferstop_curr_flags(int cflags)
2690 {
2691 
2692 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2693 	    (cflags & TDF_SBDRY) != 0);
2694 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2695 }
2696 
2697 /*
2698  * Defer the delivery of SIGSTOP for the current thread, according to
2699  * the requested mode.  Returns previous flags, which must be restored
2700  * by sigallowstop().
2701  *
2702  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2703  * cleared by the current thread, which allow the lock-less read-only
2704  * accesses below.
2705  */
2706 int
2707 sigdeferstop_impl(int mode)
2708 {
2709 	struct thread *td;
2710 	int cflags, nflags;
2711 
2712 	td = curthread;
2713 	cflags = sigdeferstop_curr_flags(td->td_flags);
2714 	switch (mode) {
2715 	case SIGDEFERSTOP_NOP:
2716 		nflags = cflags;
2717 		break;
2718 	case SIGDEFERSTOP_OFF:
2719 		nflags = 0;
2720 		break;
2721 	case SIGDEFERSTOP_SILENT:
2722 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2723 		break;
2724 	case SIGDEFERSTOP_EINTR:
2725 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2726 		break;
2727 	case SIGDEFERSTOP_ERESTART:
2728 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2729 		break;
2730 	default:
2731 		panic("sigdeferstop: invalid mode %x", mode);
2732 		break;
2733 	}
2734 	if (cflags == nflags)
2735 		return (SIGDEFERSTOP_VAL_NCHG);
2736 	thread_lock(td);
2737 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2738 	thread_unlock(td);
2739 	return (cflags);
2740 }
2741 
2742 /*
2743  * Restores the STOP handling mode, typically permitting the delivery
2744  * of SIGSTOP for the current thread.  This does not immediately
2745  * suspend if a stop was posted.  Instead, the thread will suspend
2746  * either via ast() or a subsequent interruptible sleep.
2747  */
2748 void
2749 sigallowstop_impl(int prev)
2750 {
2751 	struct thread *td;
2752 	int cflags;
2753 
2754 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2755 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2756 	    ("sigallowstop: incorrect previous mode %x", prev));
2757 	td = curthread;
2758 	cflags = sigdeferstop_curr_flags(td->td_flags);
2759 	if (cflags != prev) {
2760 		thread_lock(td);
2761 		td->td_flags = (td->td_flags & ~cflags) | prev;
2762 		thread_unlock(td);
2763 	}
2764 }
2765 
2766 /*
2767  * If the current process has received a signal (should be caught or cause
2768  * termination, should interrupt current syscall), return the signal number.
2769  * Stop signals with default action are processed immediately, then cleared;
2770  * they aren't returned.  This is checked after each entry to the system for
2771  * a syscall or trap (though this can usually be done without calling issignal
2772  * by checking the pending signal masks in cursig.) The normal call
2773  * sequence is
2774  *
2775  *	while (sig = cursig(curthread))
2776  *		postsig(sig);
2777  */
2778 static int
2779 issignal(struct thread *td)
2780 {
2781 	struct proc *p;
2782 	struct sigacts *ps;
2783 	struct sigqueue *queue;
2784 	sigset_t sigpending;
2785 	ksiginfo_t ksi;
2786 	int prop, sig, traced;
2787 
2788 	p = td->td_proc;
2789 	ps = p->p_sigacts;
2790 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2791 	PROC_LOCK_ASSERT(p, MA_OWNED);
2792 	for (;;) {
2793 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2794 
2795 		sigpending = td->td_sigqueue.sq_signals;
2796 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2797 		SIGSETNAND(sigpending, td->td_sigmask);
2798 
2799 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2800 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2801 			SIG_STOPSIGMASK(sigpending);
2802 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2803 			return (0);
2804 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2805 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2806 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2807 			/*
2808 			 * If debugger just attached, always consume
2809 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2810 			 * execute the debugger attach ritual in
2811 			 * order.
2812 			 */
2813 			sig = SIGSTOP;
2814 			td->td_dbgflags |= TDB_FSTP;
2815 		} else {
2816 			sig = sig_ffs(&sigpending);
2817 		}
2818 
2819 		if (p->p_stops & S_SIG) {
2820 			mtx_unlock(&ps->ps_mtx);
2821 			stopevent(p, S_SIG, sig);
2822 			mtx_lock(&ps->ps_mtx);
2823 		}
2824 
2825 		/*
2826 		 * We should see pending but ignored signals
2827 		 * only if P_TRACED was on when they were posted.
2828 		 */
2829 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2830 			sigqueue_delete(&td->td_sigqueue, sig);
2831 			sigqueue_delete(&p->p_sigqueue, sig);
2832 			continue;
2833 		}
2834 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2835 			/*
2836 			 * If traced, always stop.
2837 			 * Remove old signal from queue before the stop.
2838 			 * XXX shrug off debugger, it causes siginfo to
2839 			 * be thrown away.
2840 			 */
2841 			queue = &td->td_sigqueue;
2842 			ksiginfo_init(&ksi);
2843 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2844 				queue = &p->p_sigqueue;
2845 				sigqueue_get(queue, sig, &ksi);
2846 			}
2847 			td->td_si = ksi.ksi_info;
2848 
2849 			mtx_unlock(&ps->ps_mtx);
2850 			sig = ptracestop(td, sig, &ksi);
2851 			mtx_lock(&ps->ps_mtx);
2852 
2853 			/*
2854 			 * Keep looking if the debugger discarded or
2855 			 * replaced the signal.
2856 			 */
2857 			if (sig == 0)
2858 				continue;
2859 
2860 			/*
2861 			 * If the signal became masked, re-queue it.
2862 			 */
2863 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2864 				ksi.ksi_flags |= KSI_HEAD;
2865 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2866 				continue;
2867 			}
2868 
2869 			/*
2870 			 * If the traced bit got turned off, requeue
2871 			 * the signal and go back up to the top to
2872 			 * rescan signals.  This ensures that p_sig*
2873 			 * and p_sigact are consistent.
2874 			 */
2875 			if ((p->p_flag & P_TRACED) == 0) {
2876 				ksi.ksi_flags |= KSI_HEAD;
2877 				sigqueue_add(queue, sig, &ksi);
2878 				continue;
2879 			}
2880 		}
2881 
2882 		prop = sigprop(sig);
2883 
2884 		/*
2885 		 * Decide whether the signal should be returned.
2886 		 * Return the signal's number, or fall through
2887 		 * to clear it from the pending mask.
2888 		 */
2889 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2890 
2891 		case (intptr_t)SIG_DFL:
2892 			/*
2893 			 * Don't take default actions on system processes.
2894 			 */
2895 			if (p->p_pid <= 1) {
2896 #ifdef DIAGNOSTIC
2897 				/*
2898 				 * Are you sure you want to ignore SIGSEGV
2899 				 * in init? XXX
2900 				 */
2901 				printf("Process (pid %lu) got signal %d\n",
2902 					(u_long)p->p_pid, sig);
2903 #endif
2904 				break;		/* == ignore */
2905 			}
2906 			/*
2907 			 * If there is a pending stop signal to process with
2908 			 * default action, stop here, then clear the signal.
2909 			 * Traced or exiting processes should ignore stops.
2910 			 * Additionally, a member of an orphaned process group
2911 			 * should ignore tty stops.
2912 			 */
2913 			if (prop & SIGPROP_STOP) {
2914 				if (p->p_flag &
2915 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2916 				    (p->p_pgrp->pg_jobc == 0 &&
2917 				     prop & SIGPROP_TTYSTOP))
2918 					break;	/* == ignore */
2919 				if (TD_SBDRY_INTR(td)) {
2920 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2921 					    ("lost TDF_SBDRY"));
2922 					return (-1);
2923 				}
2924 				mtx_unlock(&ps->ps_mtx);
2925 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2926 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2927 				sigqueue_delete(&td->td_sigqueue, sig);
2928 				sigqueue_delete(&p->p_sigqueue, sig);
2929 				p->p_flag |= P_STOPPED_SIG;
2930 				p->p_xsig = sig;
2931 				PROC_SLOCK(p);
2932 				sig_suspend_threads(td, p, 0);
2933 				thread_suspend_switch(td, p);
2934 				PROC_SUNLOCK(p);
2935 				mtx_lock(&ps->ps_mtx);
2936 				goto next;
2937 			} else if (prop & SIGPROP_IGNORE) {
2938 				/*
2939 				 * Except for SIGCONT, shouldn't get here.
2940 				 * Default action is to ignore; drop it.
2941 				 */
2942 				break;		/* == ignore */
2943 			} else
2944 				return (sig);
2945 			/*NOTREACHED*/
2946 
2947 		case (intptr_t)SIG_IGN:
2948 			/*
2949 			 * Masking above should prevent us ever trying
2950 			 * to take action on an ignored signal other
2951 			 * than SIGCONT, unless process is traced.
2952 			 */
2953 			if ((prop & SIGPROP_CONT) == 0 &&
2954 			    (p->p_flag & P_TRACED) == 0)
2955 				printf("issignal\n");
2956 			break;		/* == ignore */
2957 
2958 		default:
2959 			/*
2960 			 * This signal has an action, let
2961 			 * postsig() process it.
2962 			 */
2963 			return (sig);
2964 		}
2965 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2966 		sigqueue_delete(&p->p_sigqueue, sig);
2967 next:;
2968 	}
2969 	/* NOTREACHED */
2970 }
2971 
2972 void
2973 thread_stopped(struct proc *p)
2974 {
2975 	int n;
2976 
2977 	PROC_LOCK_ASSERT(p, MA_OWNED);
2978 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2979 	n = p->p_suspcount;
2980 	if (p == curproc)
2981 		n++;
2982 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2983 		PROC_SUNLOCK(p);
2984 		p->p_flag &= ~P_WAITED;
2985 		PROC_LOCK(p->p_pptr);
2986 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2987 			CLD_TRAPPED : CLD_STOPPED);
2988 		PROC_UNLOCK(p->p_pptr);
2989 		PROC_SLOCK(p);
2990 	}
2991 }
2992 
2993 /*
2994  * Take the action for the specified signal
2995  * from the current set of pending signals.
2996  */
2997 int
2998 postsig(int sig)
2999 {
3000 	struct thread *td;
3001 	struct proc *p;
3002 	struct sigacts *ps;
3003 	sig_t action;
3004 	ksiginfo_t ksi;
3005 	sigset_t returnmask;
3006 
3007 	KASSERT(sig != 0, ("postsig"));
3008 
3009 	td = curthread;
3010 	p = td->td_proc;
3011 	PROC_LOCK_ASSERT(p, MA_OWNED);
3012 	ps = p->p_sigacts;
3013 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3014 	ksiginfo_init(&ksi);
3015 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3016 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3017 		return (0);
3018 	ksi.ksi_signo = sig;
3019 	if (ksi.ksi_code == SI_TIMER)
3020 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3021 	action = ps->ps_sigact[_SIG_IDX(sig)];
3022 #ifdef KTRACE
3023 	if (KTRPOINT(td, KTR_PSIG))
3024 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3025 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3026 #endif
3027 	if ((p->p_stops & S_SIG) != 0) {
3028 		mtx_unlock(&ps->ps_mtx);
3029 		stopevent(p, S_SIG, sig);
3030 		mtx_lock(&ps->ps_mtx);
3031 	}
3032 
3033 	if (action == SIG_DFL) {
3034 		/*
3035 		 * Default action, where the default is to kill
3036 		 * the process.  (Other cases were ignored above.)
3037 		 */
3038 		mtx_unlock(&ps->ps_mtx);
3039 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3040 		sigexit(td, sig);
3041 		/* NOTREACHED */
3042 	} else {
3043 		/*
3044 		 * If we get here, the signal must be caught.
3045 		 */
3046 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3047 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3048 		    ("postsig action: blocked sig %d", sig));
3049 
3050 		/*
3051 		 * Set the new mask value and also defer further
3052 		 * occurrences of this signal.
3053 		 *
3054 		 * Special case: user has done a sigsuspend.  Here the
3055 		 * current mask is not of interest, but rather the
3056 		 * mask from before the sigsuspend is what we want
3057 		 * restored after the signal processing is completed.
3058 		 */
3059 		if (td->td_pflags & TDP_OLDMASK) {
3060 			returnmask = td->td_oldsigmask;
3061 			td->td_pflags &= ~TDP_OLDMASK;
3062 		} else
3063 			returnmask = td->td_sigmask;
3064 
3065 		if (p->p_sig == sig) {
3066 			p->p_code = 0;
3067 			p->p_sig = 0;
3068 		}
3069 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3070 		postsig_done(sig, td, ps);
3071 	}
3072 	return (1);
3073 }
3074 
3075 /*
3076  * Kill the current process for stated reason.
3077  */
3078 void
3079 killproc(struct proc *p, char *why)
3080 {
3081 
3082 	PROC_LOCK_ASSERT(p, MA_OWNED);
3083 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3084 	    p->p_comm);
3085 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3086 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3087 	p->p_flag |= P_WKILLED;
3088 	kern_psignal(p, SIGKILL);
3089 }
3090 
3091 /*
3092  * Force the current process to exit with the specified signal, dumping core
3093  * if appropriate.  We bypass the normal tests for masked and caught signals,
3094  * allowing unrecoverable failures to terminate the process without changing
3095  * signal state.  Mark the accounting record with the signal termination.
3096  * If dumping core, save the signal number for the debugger.  Calls exit and
3097  * does not return.
3098  */
3099 void
3100 sigexit(struct thread *td, int sig)
3101 {
3102 	struct proc *p = td->td_proc;
3103 
3104 	PROC_LOCK_ASSERT(p, MA_OWNED);
3105 	p->p_acflag |= AXSIG;
3106 	/*
3107 	 * We must be single-threading to generate a core dump.  This
3108 	 * ensures that the registers in the core file are up-to-date.
3109 	 * Also, the ELF dump handler assumes that the thread list doesn't
3110 	 * change out from under it.
3111 	 *
3112 	 * XXX If another thread attempts to single-thread before us
3113 	 *     (e.g. via fork()), we won't get a dump at all.
3114 	 */
3115 	if ((sigprop(sig) & SIGPROP_CORE) &&
3116 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3117 		p->p_sig = sig;
3118 		/*
3119 		 * Log signals which would cause core dumps
3120 		 * (Log as LOG_INFO to appease those who don't want
3121 		 * these messages.)
3122 		 * XXX : Todo, as well as euid, write out ruid too
3123 		 * Note that coredump() drops proc lock.
3124 		 */
3125 		if (coredump(td) == 0)
3126 			sig |= WCOREFLAG;
3127 		if (kern_logsigexit)
3128 			log(LOG_INFO,
3129 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3130 			    p->p_pid, p->p_comm,
3131 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3132 			    sig &~ WCOREFLAG,
3133 			    sig & WCOREFLAG ? " (core dumped)" : "");
3134 	} else
3135 		PROC_UNLOCK(p);
3136 	exit1(td, 0, sig);
3137 	/* NOTREACHED */
3138 }
3139 
3140 /*
3141  * Send queued SIGCHLD to parent when child process's state
3142  * is changed.
3143  */
3144 static void
3145 sigparent(struct proc *p, int reason, int status)
3146 {
3147 	PROC_LOCK_ASSERT(p, MA_OWNED);
3148 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3149 
3150 	if (p->p_ksi != NULL) {
3151 		p->p_ksi->ksi_signo  = SIGCHLD;
3152 		p->p_ksi->ksi_code   = reason;
3153 		p->p_ksi->ksi_status = status;
3154 		p->p_ksi->ksi_pid    = p->p_pid;
3155 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3156 		if (KSI_ONQ(p->p_ksi))
3157 			return;
3158 	}
3159 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3160 }
3161 
3162 static void
3163 childproc_jobstate(struct proc *p, int reason, int sig)
3164 {
3165 	struct sigacts *ps;
3166 
3167 	PROC_LOCK_ASSERT(p, MA_OWNED);
3168 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3169 
3170 	/*
3171 	 * Wake up parent sleeping in kern_wait(), also send
3172 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3173 	 * that parent will awake, because parent may masked
3174 	 * the signal.
3175 	 */
3176 	p->p_pptr->p_flag |= P_STATCHILD;
3177 	wakeup(p->p_pptr);
3178 
3179 	ps = p->p_pptr->p_sigacts;
3180 	mtx_lock(&ps->ps_mtx);
3181 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3182 		mtx_unlock(&ps->ps_mtx);
3183 		sigparent(p, reason, sig);
3184 	} else
3185 		mtx_unlock(&ps->ps_mtx);
3186 }
3187 
3188 void
3189 childproc_stopped(struct proc *p, int reason)
3190 {
3191 
3192 	childproc_jobstate(p, reason, p->p_xsig);
3193 }
3194 
3195 void
3196 childproc_continued(struct proc *p)
3197 {
3198 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3199 }
3200 
3201 void
3202 childproc_exited(struct proc *p)
3203 {
3204 	int reason, status;
3205 
3206 	if (WCOREDUMP(p->p_xsig)) {
3207 		reason = CLD_DUMPED;
3208 		status = WTERMSIG(p->p_xsig);
3209 	} else if (WIFSIGNALED(p->p_xsig)) {
3210 		reason = CLD_KILLED;
3211 		status = WTERMSIG(p->p_xsig);
3212 	} else {
3213 		reason = CLD_EXITED;
3214 		status = p->p_xexit;
3215 	}
3216 	/*
3217 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3218 	 * done in exit1().
3219 	 */
3220 	sigparent(p, reason, status);
3221 }
3222 
3223 /*
3224  * We only have 1 character for the core count in the format
3225  * string, so the range will be 0-9
3226  */
3227 #define	MAX_NUM_CORE_FILES 10
3228 #ifndef NUM_CORE_FILES
3229 #define	NUM_CORE_FILES 5
3230 #endif
3231 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3232 static int num_cores = NUM_CORE_FILES;
3233 
3234 static int
3235 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3236 {
3237 	int error;
3238 	int new_val;
3239 
3240 	new_val = num_cores;
3241 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3242 	if (error != 0 || req->newptr == NULL)
3243 		return (error);
3244 	if (new_val > MAX_NUM_CORE_FILES)
3245 		new_val = MAX_NUM_CORE_FILES;
3246 	if (new_val < 0)
3247 		new_val = 0;
3248 	num_cores = new_val;
3249 	return (0);
3250 }
3251 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3252 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3253 
3254 #define	GZIP_SUFFIX	".gz"
3255 #define	ZSTD_SUFFIX	".zst"
3256 
3257 int compress_user_cores = 0;
3258 
3259 static int
3260 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3261 {
3262 	int error, val;
3263 
3264 	val = compress_user_cores;
3265 	error = sysctl_handle_int(oidp, &val, 0, req);
3266 	if (error != 0 || req->newptr == NULL)
3267 		return (error);
3268 	if (val != 0 && !compressor_avail(val))
3269 		return (EINVAL);
3270 	compress_user_cores = val;
3271 	return (error);
3272 }
3273 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3274     0, sizeof(int), sysctl_compress_user_cores, "I",
3275     "Enable compression of user corefiles ("
3276     __XSTRING(COMPRESS_GZIP) " = gzip, "
3277     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3278 
3279 int compress_user_cores_level = 6;
3280 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3281     &compress_user_cores_level, 0,
3282     "Corefile compression level");
3283 
3284 /*
3285  * Protect the access to corefilename[] by allproc_lock.
3286  */
3287 #define	corefilename_lock	allproc_lock
3288 
3289 static char corefilename[MAXPATHLEN] = {"%N.core"};
3290 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3291 
3292 static int
3293 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3294 {
3295 	int error;
3296 
3297 	sx_xlock(&corefilename_lock);
3298 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3299 	    req);
3300 	sx_xunlock(&corefilename_lock);
3301 
3302 	return (error);
3303 }
3304 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3305     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3306     "Process corefile name format string");
3307 
3308 /*
3309  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3310  * Expand the name described in corefilename, using name, uid, and pid
3311  * and open/create core file.
3312  * corefilename is a printf-like string, with three format specifiers:
3313  *	%N	name of process ("name")
3314  *	%P	process id (pid)
3315  *	%U	user id (uid)
3316  * For example, "%N.core" is the default; they can be disabled completely
3317  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3318  * This is controlled by the sysctl variable kern.corefile (see above).
3319  */
3320 static int
3321 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3322     int compress, struct vnode **vpp, char **namep)
3323 {
3324 	struct nameidata nd;
3325 	struct sbuf sb;
3326 	const char *format;
3327 	char *hostname, *name;
3328 	int indexpos, i, error, cmode, flags, oflags;
3329 
3330 	hostname = NULL;
3331 	format = corefilename;
3332 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3333 	indexpos = -1;
3334 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3335 	sx_slock(&corefilename_lock);
3336 	for (i = 0; format[i] != '\0'; i++) {
3337 		switch (format[i]) {
3338 		case '%':	/* Format character */
3339 			i++;
3340 			switch (format[i]) {
3341 			case '%':
3342 				sbuf_putc(&sb, '%');
3343 				break;
3344 			case 'H':	/* hostname */
3345 				if (hostname == NULL) {
3346 					hostname = malloc(MAXHOSTNAMELEN,
3347 					    M_TEMP, M_WAITOK);
3348 				}
3349 				getcredhostname(td->td_ucred, hostname,
3350 				    MAXHOSTNAMELEN);
3351 				sbuf_printf(&sb, "%s", hostname);
3352 				break;
3353 			case 'I':	/* autoincrementing index */
3354 				sbuf_printf(&sb, "0");
3355 				indexpos = sbuf_len(&sb) - 1;
3356 				break;
3357 			case 'N':	/* process name */
3358 				sbuf_printf(&sb, "%s", comm);
3359 				break;
3360 			case 'P':	/* process id */
3361 				sbuf_printf(&sb, "%u", pid);
3362 				break;
3363 			case 'U':	/* user id */
3364 				sbuf_printf(&sb, "%u", uid);
3365 				break;
3366 			default:
3367 				log(LOG_ERR,
3368 				    "Unknown format character %c in "
3369 				    "corename `%s'\n", format[i], format);
3370 				break;
3371 			}
3372 			break;
3373 		default:
3374 			sbuf_putc(&sb, format[i]);
3375 			break;
3376 		}
3377 	}
3378 	sx_sunlock(&corefilename_lock);
3379 	free(hostname, M_TEMP);
3380 	if (compress == COMPRESS_GZIP)
3381 		sbuf_printf(&sb, GZIP_SUFFIX);
3382 	else if (compress == COMPRESS_ZSTD)
3383 		sbuf_printf(&sb, ZSTD_SUFFIX);
3384 	if (sbuf_error(&sb) != 0) {
3385 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3386 		    "long\n", (long)pid, comm, (u_long)uid);
3387 		sbuf_delete(&sb);
3388 		free(name, M_TEMP);
3389 		return (ENOMEM);
3390 	}
3391 	sbuf_finish(&sb);
3392 	sbuf_delete(&sb);
3393 
3394 	cmode = S_IRUSR | S_IWUSR;
3395 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3396 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3397 
3398 	/*
3399 	 * If the core format has a %I in it, then we need to check
3400 	 * for existing corefiles before returning a name.
3401 	 * To do this we iterate over 0..num_cores to find a
3402 	 * non-existing core file name to use.
3403 	 */
3404 	if (indexpos != -1) {
3405 		for (i = 0; i < num_cores; i++) {
3406 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3407 			name[indexpos] = '0' + i;
3408 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3409 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3410 			    td->td_ucred, NULL);
3411 			if (error) {
3412 				if (error == EEXIST)
3413 					continue;
3414 				log(LOG_ERR,
3415 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3416 				    "on initial open test, error = %d\n",
3417 				    pid, comm, uid, name, error);
3418 			}
3419 			goto out;
3420 		}
3421 	}
3422 
3423 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3424 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3425 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3426 out:
3427 	if (error) {
3428 #ifdef AUDIT
3429 		audit_proc_coredump(td, name, error);
3430 #endif
3431 		free(name, M_TEMP);
3432 		return (error);
3433 	}
3434 	NDFREE(&nd, NDF_ONLY_PNBUF);
3435 	*vpp = nd.ni_vp;
3436 	*namep = name;
3437 	return (0);
3438 }
3439 
3440 static int
3441 coredump_sanitise_path(const char *path)
3442 {
3443 	size_t i;
3444 
3445 	/*
3446 	 * Only send a subset of ASCII to devd(8) because it
3447 	 * might pass these strings to sh -c.
3448 	 */
3449 	for (i = 0; path[i]; i++)
3450 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3451 		    path[i] != '/' && path[i] != '.' &&
3452 		    path[i] != '-')
3453 			return (0);
3454 
3455 	return (1);
3456 }
3457 
3458 /*
3459  * Dump a process' core.  The main routine does some
3460  * policy checking, and creates the name of the coredump;
3461  * then it passes on a vnode and a size limit to the process-specific
3462  * coredump routine if there is one; if there _is not_ one, it returns
3463  * ENOSYS; otherwise it returns the error from the process-specific routine.
3464  */
3465 
3466 static int
3467 coredump(struct thread *td)
3468 {
3469 	struct proc *p = td->td_proc;
3470 	struct ucred *cred = td->td_ucred;
3471 	struct vnode *vp;
3472 	struct flock lf;
3473 	struct vattr vattr;
3474 	int error, error1, locked;
3475 	char *name;			/* name of corefile */
3476 	void *rl_cookie;
3477 	off_t limit;
3478 	char *data = NULL;
3479 	char *fullpath, *freepath = NULL;
3480 	size_t len;
3481 	static const char comm_name[] = "comm=";
3482 	static const char core_name[] = "core=";
3483 
3484 	PROC_LOCK_ASSERT(p, MA_OWNED);
3485 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3486 	_STOPEVENT(p, S_CORE, 0);
3487 
3488 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3489 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3490 		PROC_UNLOCK(p);
3491 		return (EFAULT);
3492 	}
3493 
3494 	/*
3495 	 * Note that the bulk of limit checking is done after
3496 	 * the corefile is created.  The exception is if the limit
3497 	 * for corefiles is 0, in which case we don't bother
3498 	 * creating the corefile at all.  This layout means that
3499 	 * a corefile is truncated instead of not being created,
3500 	 * if it is larger than the limit.
3501 	 */
3502 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3503 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3504 		PROC_UNLOCK(p);
3505 		return (EFBIG);
3506 	}
3507 	PROC_UNLOCK(p);
3508 
3509 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3510 	    compress_user_cores, &vp, &name);
3511 	if (error != 0)
3512 		return (error);
3513 
3514 	/*
3515 	 * Don't dump to non-regular files or files with links.
3516 	 * Do not dump into system files.
3517 	 */
3518 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3519 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3520 		VOP_UNLOCK(vp, 0);
3521 		error = EFAULT;
3522 		goto out;
3523 	}
3524 
3525 	VOP_UNLOCK(vp, 0);
3526 
3527 	/* Postpone other writers, including core dumps of other processes. */
3528 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3529 
3530 	lf.l_whence = SEEK_SET;
3531 	lf.l_start = 0;
3532 	lf.l_len = 0;
3533 	lf.l_type = F_WRLCK;
3534 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3535 
3536 	VATTR_NULL(&vattr);
3537 	vattr.va_size = 0;
3538 	if (set_core_nodump_flag)
3539 		vattr.va_flags = UF_NODUMP;
3540 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3541 	VOP_SETATTR(vp, &vattr, cred);
3542 	VOP_UNLOCK(vp, 0);
3543 	PROC_LOCK(p);
3544 	p->p_acflag |= ACORE;
3545 	PROC_UNLOCK(p);
3546 
3547 	if (p->p_sysent->sv_coredump != NULL) {
3548 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3549 	} else {
3550 		error = ENOSYS;
3551 	}
3552 
3553 	if (locked) {
3554 		lf.l_type = F_UNLCK;
3555 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3556 	}
3557 	vn_rangelock_unlock(vp, rl_cookie);
3558 
3559 	/*
3560 	 * Notify the userland helper that a process triggered a core dump.
3561 	 * This allows the helper to run an automated debugging session.
3562 	 */
3563 	if (error != 0 || coredump_devctl == 0)
3564 		goto out;
3565 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3566 	    sizeof(' ') + sizeof(core_name) - 1;
3567 	data = malloc(len, M_TEMP, M_WAITOK);
3568 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3569 		goto out;
3570 	if (!coredump_sanitise_path(fullpath))
3571 		goto out;
3572 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3573 	free(freepath, M_TEMP);
3574 	freepath = NULL;
3575 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3576 		goto out;
3577 	if (!coredump_sanitise_path(fullpath))
3578 		goto out;
3579 	strlcat(data, core_name, len);
3580 	strlcat(data, fullpath, len);
3581 	devctl_notify("kernel", "signal", "coredump", data);
3582 out:
3583 	error1 = vn_close(vp, FWRITE, cred, td);
3584 	if (error == 0)
3585 		error = error1;
3586 #ifdef AUDIT
3587 	audit_proc_coredump(td, name, error);
3588 #endif
3589 	free(freepath, M_TEMP);
3590 	free(data, M_TEMP);
3591 	free(name, M_TEMP);
3592 	return (error);
3593 }
3594 
3595 /*
3596  * Nonexistent system call-- signal process (may want to handle it).  Flag
3597  * error in case process won't see signal immediately (blocked or ignored).
3598  */
3599 #ifndef _SYS_SYSPROTO_H_
3600 struct nosys_args {
3601 	int	dummy;
3602 };
3603 #endif
3604 /* ARGSUSED */
3605 int
3606 nosys(struct thread *td, struct nosys_args *args)
3607 {
3608 	struct proc *p;
3609 
3610 	p = td->td_proc;
3611 
3612 	PROC_LOCK(p);
3613 	tdsignal(td, SIGSYS);
3614 	PROC_UNLOCK(p);
3615 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3616 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3617 		    td->td_sa.code);
3618 	}
3619 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3620 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3621 		    td->td_sa.code);
3622 	}
3623 	return (ENOSYS);
3624 }
3625 
3626 /*
3627  * Send a SIGIO or SIGURG signal to a process or process group using stored
3628  * credentials rather than those of the current process.
3629  */
3630 void
3631 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3632 {
3633 	ksiginfo_t ksi;
3634 	struct sigio *sigio;
3635 
3636 	ksiginfo_init(&ksi);
3637 	ksi.ksi_signo = sig;
3638 	ksi.ksi_code = SI_KERNEL;
3639 
3640 	SIGIO_LOCK();
3641 	sigio = *sigiop;
3642 	if (sigio == NULL) {
3643 		SIGIO_UNLOCK();
3644 		return;
3645 	}
3646 	if (sigio->sio_pgid > 0) {
3647 		PROC_LOCK(sigio->sio_proc);
3648 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3649 			kern_psignal(sigio->sio_proc, sig);
3650 		PROC_UNLOCK(sigio->sio_proc);
3651 	} else if (sigio->sio_pgid < 0) {
3652 		struct proc *p;
3653 
3654 		PGRP_LOCK(sigio->sio_pgrp);
3655 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3656 			PROC_LOCK(p);
3657 			if (p->p_state == PRS_NORMAL &&
3658 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3659 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3660 				kern_psignal(p, sig);
3661 			PROC_UNLOCK(p);
3662 		}
3663 		PGRP_UNLOCK(sigio->sio_pgrp);
3664 	}
3665 	SIGIO_UNLOCK();
3666 }
3667 
3668 static int
3669 filt_sigattach(struct knote *kn)
3670 {
3671 	struct proc *p = curproc;
3672 
3673 	kn->kn_ptr.p_proc = p;
3674 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3675 
3676 	knlist_add(p->p_klist, kn, 0);
3677 
3678 	return (0);
3679 }
3680 
3681 static void
3682 filt_sigdetach(struct knote *kn)
3683 {
3684 	struct proc *p = kn->kn_ptr.p_proc;
3685 
3686 	knlist_remove(p->p_klist, kn, 0);
3687 }
3688 
3689 /*
3690  * signal knotes are shared with proc knotes, so we apply a mask to
3691  * the hint in order to differentiate them from process hints.  This
3692  * could be avoided by using a signal-specific knote list, but probably
3693  * isn't worth the trouble.
3694  */
3695 static int
3696 filt_signal(struct knote *kn, long hint)
3697 {
3698 
3699 	if (hint & NOTE_SIGNAL) {
3700 		hint &= ~NOTE_SIGNAL;
3701 
3702 		if (kn->kn_id == hint)
3703 			kn->kn_data++;
3704 	}
3705 	return (kn->kn_data != 0);
3706 }
3707 
3708 struct sigacts *
3709 sigacts_alloc(void)
3710 {
3711 	struct sigacts *ps;
3712 
3713 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3714 	refcount_init(&ps->ps_refcnt, 1);
3715 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3716 	return (ps);
3717 }
3718 
3719 void
3720 sigacts_free(struct sigacts *ps)
3721 {
3722 
3723 	if (refcount_release(&ps->ps_refcnt) == 0)
3724 		return;
3725 	mtx_destroy(&ps->ps_mtx);
3726 	free(ps, M_SUBPROC);
3727 }
3728 
3729 struct sigacts *
3730 sigacts_hold(struct sigacts *ps)
3731 {
3732 
3733 	refcount_acquire(&ps->ps_refcnt);
3734 	return (ps);
3735 }
3736 
3737 void
3738 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3739 {
3740 
3741 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3742 	mtx_lock(&src->ps_mtx);
3743 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3744 	mtx_unlock(&src->ps_mtx);
3745 }
3746 
3747 int
3748 sigacts_shared(struct sigacts *ps)
3749 {
3750 
3751 	return (ps->ps_refcnt > 1);
3752 }
3753