xref: /freebsd/sys/kern/kern_sig.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/posix4.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 
81 #include <security/audit/audit.h>
82 
83 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
84 
85 static int	coredump(struct thread *);
86 static char	*expand_name(const char *, uid_t, pid_t);
87 static int	killpg1(struct thread *td, int sig, int pgid, int all);
88 static int	issignal(struct thread *p);
89 static int	sigprop(int sig);
90 static void	tdsigwakeup(struct thread *, int, sig_t, int);
91 static void	sig_suspend_threads(struct thread *, struct proc *, int);
92 static int	filt_sigattach(struct knote *kn);
93 static void	filt_sigdetach(struct knote *kn);
94 static int	filt_signal(struct knote *kn, long hint);
95 static struct thread *sigtd(struct proc *p, int sig, int prop);
96 #ifdef KSE
97 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
98 #endif
99 static void	sigqueue_start(void);
100 
101 static uma_zone_t	ksiginfo_zone = NULL;
102 struct filterops sig_filtops =
103 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
104 
105 static int	kern_logsigexit = 1;
106 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
107     &kern_logsigexit, 0,
108     "Log processes quitting on abnormal signals to syslog(3)");
109 
110 static int	kern_forcesigexit = 1;
111 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
112     &kern_forcesigexit, 0, "Force trap signal to be handled");
113 
114 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
115 
116 static int	max_pending_per_proc = 128;
117 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
118     &max_pending_per_proc, 0, "Max pending signals per proc");
119 
120 static int	preallocate_siginfo = 1024;
121 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
122 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
123     &preallocate_siginfo, 0, "Preallocated signal memory size");
124 
125 static int	signal_overflow = 0;
126 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
127     &signal_overflow, 0, "Number of signals overflew");
128 
129 static int	signal_alloc_fail = 0;
130 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
131     &signal_alloc_fail, 0, "signals failed to be allocated");
132 
133 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
134 
135 /*
136  * Policy -- Can ucred cr1 send SIGIO to process cr2?
137  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
138  * in the right situations.
139  */
140 #define CANSIGIO(cr1, cr2) \
141 	((cr1)->cr_uid == 0 || \
142 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
143 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
144 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
145 	    (cr1)->cr_uid == (cr2)->cr_uid)
146 
147 int sugid_coredump;
148 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
149     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
150 
151 static int	do_coredump = 1;
152 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
153 	&do_coredump, 0, "Enable/Disable coredumps");
154 
155 static int	set_core_nodump_flag = 0;
156 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
157 	0, "Enable setting the NODUMP flag on coredump files");
158 
159 /*
160  * Signal properties and actions.
161  * The array below categorizes the signals and their default actions
162  * according to the following properties:
163  */
164 #define	SA_KILL		0x01		/* terminates process by default */
165 #define	SA_CORE		0x02		/* ditto and coredumps */
166 #define	SA_STOP		0x04		/* suspend process */
167 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
168 #define	SA_IGNORE	0x10		/* ignore by default */
169 #define	SA_CONT		0x20		/* continue if suspended */
170 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
171 #define	SA_PROC		0x80		/* deliverable to any thread */
172 
173 static int sigproptbl[NSIG] = {
174         SA_KILL|SA_PROC,		/* SIGHUP */
175         SA_KILL|SA_PROC,		/* SIGINT */
176         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
177         SA_KILL|SA_CORE,		/* SIGILL */
178         SA_KILL|SA_CORE,		/* SIGTRAP */
179         SA_KILL|SA_CORE,		/* SIGABRT */
180         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
181         SA_KILL|SA_CORE,		/* SIGFPE */
182         SA_KILL|SA_PROC,		/* SIGKILL */
183         SA_KILL|SA_CORE,		/* SIGBUS */
184         SA_KILL|SA_CORE,		/* SIGSEGV */
185         SA_KILL|SA_CORE,		/* SIGSYS */
186         SA_KILL|SA_PROC,		/* SIGPIPE */
187         SA_KILL|SA_PROC,		/* SIGALRM */
188         SA_KILL|SA_PROC,		/* SIGTERM */
189         SA_IGNORE|SA_PROC,		/* SIGURG */
190         SA_STOP|SA_PROC,		/* SIGSTOP */
191         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
192         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
193         SA_IGNORE|SA_PROC,		/* SIGCHLD */
194         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
195         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
196         SA_IGNORE|SA_PROC,		/* SIGIO */
197         SA_KILL,			/* SIGXCPU */
198         SA_KILL,			/* SIGXFSZ */
199         SA_KILL|SA_PROC,		/* SIGVTALRM */
200         SA_KILL|SA_PROC,		/* SIGPROF */
201         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
202         SA_IGNORE|SA_PROC,		/* SIGINFO */
203         SA_KILL|SA_PROC,		/* SIGUSR1 */
204         SA_KILL|SA_PROC,		/* SIGUSR2 */
205 };
206 
207 static void
208 sigqueue_start(void)
209 {
210 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
211 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
213 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
214 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
215 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
216 }
217 
218 ksiginfo_t *
219 ksiginfo_alloc(int wait)
220 {
221 	int flags;
222 
223 	flags = M_ZERO;
224 	if (! wait)
225 		flags |= M_NOWAIT;
226 	if (ksiginfo_zone != NULL)
227 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
228 	return (NULL);
229 }
230 
231 void
232 ksiginfo_free(ksiginfo_t *ksi)
233 {
234 	uma_zfree(ksiginfo_zone, ksi);
235 }
236 
237 static __inline int
238 ksiginfo_tryfree(ksiginfo_t *ksi)
239 {
240 	if (!(ksi->ksi_flags & KSI_EXT)) {
241 		uma_zfree(ksiginfo_zone, ksi);
242 		return (1);
243 	}
244 	return (0);
245 }
246 
247 void
248 sigqueue_init(sigqueue_t *list, struct proc *p)
249 {
250 	SIGEMPTYSET(list->sq_signals);
251 	SIGEMPTYSET(list->sq_kill);
252 	TAILQ_INIT(&list->sq_list);
253 	list->sq_proc = p;
254 	list->sq_flags = SQ_INIT;
255 }
256 
257 /*
258  * Get a signal's ksiginfo.
259  * Return:
260  * 	0	-	signal not found
261  *	others	-	signal number
262  */
263 int
264 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
265 {
266 	struct proc *p = sq->sq_proc;
267 	struct ksiginfo *ksi, *next;
268 	int count = 0;
269 
270 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
271 
272 	if (!SIGISMEMBER(sq->sq_signals, signo))
273 		return (0);
274 
275 	if (SIGISMEMBER(sq->sq_kill, signo)) {
276 		count++;
277 		SIGDELSET(sq->sq_kill, signo);
278 	}
279 
280 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
281 		if (ksi->ksi_signo == signo) {
282 			if (count == 0) {
283 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
284 				ksi->ksi_sigq = NULL;
285 				ksiginfo_copy(ksi, si);
286 				if (ksiginfo_tryfree(ksi) && p != NULL)
287 					p->p_pendingcnt--;
288 			}
289 			if (++count > 1)
290 				break;
291 		}
292 	}
293 
294 	if (count <= 1)
295 		SIGDELSET(sq->sq_signals, signo);
296 	si->ksi_signo = signo;
297 	return (signo);
298 }
299 
300 void
301 sigqueue_take(ksiginfo_t *ksi)
302 {
303 	struct ksiginfo *kp;
304 	struct proc	*p;
305 	sigqueue_t	*sq;
306 
307 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
308 		return;
309 
310 	p = sq->sq_proc;
311 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
312 	ksi->ksi_sigq = NULL;
313 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
314 		p->p_pendingcnt--;
315 
316 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
317 	     kp = TAILQ_NEXT(kp, ksi_link)) {
318 		if (kp->ksi_signo == ksi->ksi_signo)
319 			break;
320 	}
321 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
322 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
323 }
324 
325 int
326 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
327 {
328 	struct proc *p = sq->sq_proc;
329 	struct ksiginfo *ksi;
330 	int ret = 0;
331 
332 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
333 
334 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
335 		SIGADDSET(sq->sq_kill, signo);
336 		goto out_set_bit;
337 	}
338 
339 	/* directly insert the ksi, don't copy it */
340 	if (si->ksi_flags & KSI_INS) {
341 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
342 		si->ksi_sigq = sq;
343 		goto out_set_bit;
344 	}
345 
346 	if (__predict_false(ksiginfo_zone == NULL)) {
347 		SIGADDSET(sq->sq_kill, signo);
348 		goto out_set_bit;
349 	}
350 
351 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
352 		signal_overflow++;
353 		ret = EAGAIN;
354 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
355 		signal_alloc_fail++;
356 		ret = EAGAIN;
357 	} else {
358 		if (p != NULL)
359 			p->p_pendingcnt++;
360 		ksiginfo_copy(si, ksi);
361 		ksi->ksi_signo = signo;
362 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
363 		ksi->ksi_sigq = sq;
364 	}
365 
366 	if ((si->ksi_flags & KSI_TRAP) != 0) {
367 		if (ret != 0)
368 			SIGADDSET(sq->sq_kill, signo);
369 		ret = 0;
370 		goto out_set_bit;
371 	}
372 
373 	if (ret != 0)
374 		return (ret);
375 
376 out_set_bit:
377 	SIGADDSET(sq->sq_signals, signo);
378 	return (ret);
379 }
380 
381 void
382 sigqueue_flush(sigqueue_t *sq)
383 {
384 	struct proc *p = sq->sq_proc;
385 	ksiginfo_t *ksi;
386 
387 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
388 
389 	if (p != NULL)
390 		PROC_LOCK_ASSERT(p, MA_OWNED);
391 
392 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
393 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
394 		ksi->ksi_sigq = NULL;
395 		if (ksiginfo_tryfree(ksi) && p != NULL)
396 			p->p_pendingcnt--;
397 	}
398 
399 	SIGEMPTYSET(sq->sq_signals);
400 	SIGEMPTYSET(sq->sq_kill);
401 }
402 
403 void
404 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
405 {
406 	ksiginfo_t *ksi;
407 
408 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
409 
410 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
411 		SIGADDSET(*set, ksi->ksi_signo);
412 	SIGSETOR(*set, sq->sq_kill);
413 }
414 
415 void
416 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
417 {
418 	sigset_t tmp, set;
419 	struct proc *p1, *p2;
420 	ksiginfo_t *ksi, *next;
421 
422 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
423 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
424 	/*
425 	 * make a copy, this allows setp to point to src or dst
426 	 * sq_signals without trouble.
427 	 */
428 	set = *setp;
429 	p1 = src->sq_proc;
430 	p2 = dst->sq_proc;
431 	/* Move siginfo to target list */
432 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
433 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
434 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
435 			if (p1 != NULL)
436 				p1->p_pendingcnt--;
437 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
438 			ksi->ksi_sigq = dst;
439 			if (p2 != NULL)
440 				p2->p_pendingcnt++;
441 		}
442 	}
443 
444 	/* Move pending bits to target list */
445 	tmp = src->sq_kill;
446 	SIGSETAND(tmp, set);
447 	SIGSETOR(dst->sq_kill, tmp);
448 	SIGSETNAND(src->sq_kill, tmp);
449 
450 	tmp = src->sq_signals;
451 	SIGSETAND(tmp, set);
452 	SIGSETOR(dst->sq_signals, tmp);
453 	SIGSETNAND(src->sq_signals, tmp);
454 
455 	/* Finally, rescan src queue and set pending bits for it */
456 	sigqueue_collect_set(src, &src->sq_signals);
457 }
458 
459 void
460 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
461 {
462 	sigset_t set;
463 
464 	SIGEMPTYSET(set);
465 	SIGADDSET(set, signo);
466 	sigqueue_move_set(src, dst, &set);
467 }
468 
469 void
470 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
471 {
472 	struct proc *p = sq->sq_proc;
473 	ksiginfo_t *ksi, *next;
474 
475 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
476 
477 	/* Remove siginfo queue */
478 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
479 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
480 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
481 			ksi->ksi_sigq = NULL;
482 			if (ksiginfo_tryfree(ksi) && p != NULL)
483 				p->p_pendingcnt--;
484 		}
485 	}
486 	SIGSETNAND(sq->sq_kill, *set);
487 	SIGSETNAND(sq->sq_signals, *set);
488 	/* Finally, rescan queue and set pending bits for it */
489 	sigqueue_collect_set(sq, &sq->sq_signals);
490 }
491 
492 void
493 sigqueue_delete(sigqueue_t *sq, int signo)
494 {
495 	sigset_t set;
496 
497 	SIGEMPTYSET(set);
498 	SIGADDSET(set, signo);
499 	sigqueue_delete_set(sq, &set);
500 }
501 
502 /* Remove a set of signals for a process */
503 void
504 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
505 {
506 	sigqueue_t worklist;
507 	struct thread *td0;
508 
509 	PROC_LOCK_ASSERT(p, MA_OWNED);
510 
511 	sigqueue_init(&worklist, NULL);
512 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
513 
514 	mtx_lock_spin(&sched_lock);
515 	FOREACH_THREAD_IN_PROC(p, td0)
516 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
517 	mtx_unlock_spin(&sched_lock);
518 
519 	sigqueue_flush(&worklist);
520 }
521 
522 void
523 sigqueue_delete_proc(struct proc *p, int signo)
524 {
525 	sigset_t set;
526 
527 	SIGEMPTYSET(set);
528 	SIGADDSET(set, signo);
529 	sigqueue_delete_set_proc(p, &set);
530 }
531 
532 void
533 sigqueue_delete_stopmask_proc(struct proc *p)
534 {
535 	sigset_t set;
536 
537 	SIGEMPTYSET(set);
538 	SIGADDSET(set, SIGSTOP);
539 	SIGADDSET(set, SIGTSTP);
540 	SIGADDSET(set, SIGTTIN);
541 	SIGADDSET(set, SIGTTOU);
542 	sigqueue_delete_set_proc(p, &set);
543 }
544 
545 /*
546  * Determine signal that should be delivered to process p, the current
547  * process, 0 if none.  If there is a pending stop signal with default
548  * action, the process stops in issignal().
549  *
550  * MP SAFE.
551  */
552 int
553 cursig(struct thread *td)
554 {
555 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
556 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
557 	mtx_assert(&sched_lock, MA_NOTOWNED);
558 	return (SIGPENDING(td) ? issignal(td) : 0);
559 }
560 
561 /*
562  * Arrange for ast() to handle unmasked pending signals on return to user
563  * mode.  This must be called whenever a signal is added to td_sigqueue or
564  * unmasked in td_sigmask.
565  */
566 void
567 signotify(struct thread *td)
568 {
569 	struct proc *p;
570 #ifdef KSE
571 	sigset_t set, saved;
572 #else
573 	sigset_t set;
574 #endif
575 
576 	p = td->td_proc;
577 
578 	PROC_LOCK_ASSERT(p, MA_OWNED);
579 
580 	/*
581 	 * If our mask changed we may have to move signal that were
582 	 * previously masked by all threads to our sigqueue.
583 	 */
584 	set = p->p_sigqueue.sq_signals;
585 #ifdef KSE
586 	if (p->p_flag & P_SA)
587 		saved = p->p_sigqueue.sq_signals;
588 #endif
589 	SIGSETNAND(set, td->td_sigmask);
590 	if (! SIGISEMPTY(set))
591 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
592 	if (SIGPENDING(td)) {
593 		mtx_lock_spin(&sched_lock);
594 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
595 		mtx_unlock_spin(&sched_lock);
596 	}
597 #ifdef KSE
598 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
599 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
600 			/* pending set changed */
601 			p->p_flag |= P_SIGEVENT;
602 			wakeup(&p->p_siglist);
603 		}
604 	}
605 #endif
606 }
607 
608 int
609 sigonstack(size_t sp)
610 {
611 	struct thread *td = curthread;
612 
613 	return ((td->td_pflags & TDP_ALTSTACK) ?
614 #if defined(COMPAT_43)
615 	    ((td->td_sigstk.ss_size == 0) ?
616 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
617 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
618 #else
619 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
620 #endif
621 	    : 0);
622 }
623 
624 static __inline int
625 sigprop(int sig)
626 {
627 
628 	if (sig > 0 && sig < NSIG)
629 		return (sigproptbl[_SIG_IDX(sig)]);
630 	return (0);
631 }
632 
633 int
634 sig_ffs(sigset_t *set)
635 {
636 	int i;
637 
638 	for (i = 0; i < _SIG_WORDS; i++)
639 		if (set->__bits[i])
640 			return (ffs(set->__bits[i]) + (i * 32));
641 	return (0);
642 }
643 
644 /*
645  * kern_sigaction
646  * sigaction
647  * freebsd4_sigaction
648  * osigaction
649  *
650  * MPSAFE
651  */
652 int
653 kern_sigaction(td, sig, act, oact, flags)
654 	struct thread *td;
655 	register int sig;
656 	struct sigaction *act, *oact;
657 	int flags;
658 {
659 	struct sigacts *ps;
660 	struct proc *p = td->td_proc;
661 
662 	if (!_SIG_VALID(sig))
663 		return (EINVAL);
664 
665 	PROC_LOCK(p);
666 	ps = p->p_sigacts;
667 	mtx_lock(&ps->ps_mtx);
668 	if (oact) {
669 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
670 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
671 		oact->sa_flags = 0;
672 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
673 			oact->sa_flags |= SA_ONSTACK;
674 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
675 			oact->sa_flags |= SA_RESTART;
676 		if (SIGISMEMBER(ps->ps_sigreset, sig))
677 			oact->sa_flags |= SA_RESETHAND;
678 		if (SIGISMEMBER(ps->ps_signodefer, sig))
679 			oact->sa_flags |= SA_NODEFER;
680 		if (SIGISMEMBER(ps->ps_siginfo, sig))
681 			oact->sa_flags |= SA_SIGINFO;
682 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
683 			oact->sa_flags |= SA_NOCLDSTOP;
684 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
685 			oact->sa_flags |= SA_NOCLDWAIT;
686 	}
687 	if (act) {
688 		if ((sig == SIGKILL || sig == SIGSTOP) &&
689 		    act->sa_handler != SIG_DFL) {
690 			mtx_unlock(&ps->ps_mtx);
691 			PROC_UNLOCK(p);
692 			return (EINVAL);
693 		}
694 
695 		/*
696 		 * Change setting atomically.
697 		 */
698 
699 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
700 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
701 		if (act->sa_flags & SA_SIGINFO) {
702 			ps->ps_sigact[_SIG_IDX(sig)] =
703 			    (__sighandler_t *)act->sa_sigaction;
704 			SIGADDSET(ps->ps_siginfo, sig);
705 		} else {
706 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
707 			SIGDELSET(ps->ps_siginfo, sig);
708 		}
709 		if (!(act->sa_flags & SA_RESTART))
710 			SIGADDSET(ps->ps_sigintr, sig);
711 		else
712 			SIGDELSET(ps->ps_sigintr, sig);
713 		if (act->sa_flags & SA_ONSTACK)
714 			SIGADDSET(ps->ps_sigonstack, sig);
715 		else
716 			SIGDELSET(ps->ps_sigonstack, sig);
717 		if (act->sa_flags & SA_RESETHAND)
718 			SIGADDSET(ps->ps_sigreset, sig);
719 		else
720 			SIGDELSET(ps->ps_sigreset, sig);
721 		if (act->sa_flags & SA_NODEFER)
722 			SIGADDSET(ps->ps_signodefer, sig);
723 		else
724 			SIGDELSET(ps->ps_signodefer, sig);
725 		if (sig == SIGCHLD) {
726 			if (act->sa_flags & SA_NOCLDSTOP)
727 				ps->ps_flag |= PS_NOCLDSTOP;
728 			else
729 				ps->ps_flag &= ~PS_NOCLDSTOP;
730 			if (act->sa_flags & SA_NOCLDWAIT) {
731 				/*
732 				 * Paranoia: since SA_NOCLDWAIT is implemented
733 				 * by reparenting the dying child to PID 1 (and
734 				 * trust it to reap the zombie), PID 1 itself
735 				 * is forbidden to set SA_NOCLDWAIT.
736 				 */
737 				if (p->p_pid == 1)
738 					ps->ps_flag &= ~PS_NOCLDWAIT;
739 				else
740 					ps->ps_flag |= PS_NOCLDWAIT;
741 			} else
742 				ps->ps_flag &= ~PS_NOCLDWAIT;
743 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
744 				ps->ps_flag |= PS_CLDSIGIGN;
745 			else
746 				ps->ps_flag &= ~PS_CLDSIGIGN;
747 		}
748 		/*
749 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
750 		 * and for signals set to SIG_DFL where the default is to
751 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
752 		 * have to restart the process.
753 		 */
754 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
755 		    (sigprop(sig) & SA_IGNORE &&
756 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
757 #ifdef KSE
758 			if ((p->p_flag & P_SA) &&
759 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
760 				p->p_flag |= P_SIGEVENT;
761 				wakeup(&p->p_siglist);
762 			}
763 #endif
764 			/* never to be seen again */
765 			sigqueue_delete_proc(p, sig);
766 			if (sig != SIGCONT)
767 				/* easier in psignal */
768 				SIGADDSET(ps->ps_sigignore, sig);
769 			SIGDELSET(ps->ps_sigcatch, sig);
770 		} else {
771 			SIGDELSET(ps->ps_sigignore, sig);
772 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
773 				SIGDELSET(ps->ps_sigcatch, sig);
774 			else
775 				SIGADDSET(ps->ps_sigcatch, sig);
776 		}
777 #ifdef COMPAT_FREEBSD4
778 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
779 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
780 		    (flags & KSA_FREEBSD4) == 0)
781 			SIGDELSET(ps->ps_freebsd4, sig);
782 		else
783 			SIGADDSET(ps->ps_freebsd4, sig);
784 #endif
785 #ifdef COMPAT_43
786 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
787 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
788 		    (flags & KSA_OSIGSET) == 0)
789 			SIGDELSET(ps->ps_osigset, sig);
790 		else
791 			SIGADDSET(ps->ps_osigset, sig);
792 #endif
793 	}
794 	mtx_unlock(&ps->ps_mtx);
795 	PROC_UNLOCK(p);
796 	return (0);
797 }
798 
799 #ifndef _SYS_SYSPROTO_H_
800 struct sigaction_args {
801 	int	sig;
802 	struct	sigaction *act;
803 	struct	sigaction *oact;
804 };
805 #endif
806 /*
807  * MPSAFE
808  */
809 int
810 sigaction(td, uap)
811 	struct thread *td;
812 	register struct sigaction_args *uap;
813 {
814 	struct sigaction act, oact;
815 	register struct sigaction *actp, *oactp;
816 	int error;
817 
818 	actp = (uap->act != NULL) ? &act : NULL;
819 	oactp = (uap->oact != NULL) ? &oact : NULL;
820 	if (actp) {
821 		error = copyin(uap->act, actp, sizeof(act));
822 		if (error)
823 			return (error);
824 	}
825 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
826 	if (oactp && !error)
827 		error = copyout(oactp, uap->oact, sizeof(oact));
828 	return (error);
829 }
830 
831 #ifdef COMPAT_FREEBSD4
832 #ifndef _SYS_SYSPROTO_H_
833 struct freebsd4_sigaction_args {
834 	int	sig;
835 	struct	sigaction *act;
836 	struct	sigaction *oact;
837 };
838 #endif
839 /*
840  * MPSAFE
841  */
842 int
843 freebsd4_sigaction(td, uap)
844 	struct thread *td;
845 	register struct freebsd4_sigaction_args *uap;
846 {
847 	struct sigaction act, oact;
848 	register struct sigaction *actp, *oactp;
849 	int error;
850 
851 
852 	actp = (uap->act != NULL) ? &act : NULL;
853 	oactp = (uap->oact != NULL) ? &oact : NULL;
854 	if (actp) {
855 		error = copyin(uap->act, actp, sizeof(act));
856 		if (error)
857 			return (error);
858 	}
859 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
860 	if (oactp && !error)
861 		error = copyout(oactp, uap->oact, sizeof(oact));
862 	return (error);
863 }
864 #endif	/* COMAPT_FREEBSD4 */
865 
866 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
867 #ifndef _SYS_SYSPROTO_H_
868 struct osigaction_args {
869 	int	signum;
870 	struct	osigaction *nsa;
871 	struct	osigaction *osa;
872 };
873 #endif
874 /*
875  * MPSAFE
876  */
877 int
878 osigaction(td, uap)
879 	struct thread *td;
880 	register struct osigaction_args *uap;
881 {
882 	struct osigaction sa;
883 	struct sigaction nsa, osa;
884 	register struct sigaction *nsap, *osap;
885 	int error;
886 
887 	if (uap->signum <= 0 || uap->signum >= ONSIG)
888 		return (EINVAL);
889 
890 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
891 	osap = (uap->osa != NULL) ? &osa : NULL;
892 
893 	if (nsap) {
894 		error = copyin(uap->nsa, &sa, sizeof(sa));
895 		if (error)
896 			return (error);
897 		nsap->sa_handler = sa.sa_handler;
898 		nsap->sa_flags = sa.sa_flags;
899 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
900 	}
901 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
902 	if (osap && !error) {
903 		sa.sa_handler = osap->sa_handler;
904 		sa.sa_flags = osap->sa_flags;
905 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
906 		error = copyout(&sa, uap->osa, sizeof(sa));
907 	}
908 	return (error);
909 }
910 
911 #if !defined(__i386__)
912 /* Avoid replicating the same stub everywhere */
913 int
914 osigreturn(td, uap)
915 	struct thread *td;
916 	struct osigreturn_args *uap;
917 {
918 
919 	return (nosys(td, (struct nosys_args *)uap));
920 }
921 #endif
922 #endif /* COMPAT_43 */
923 
924 /*
925  * Initialize signal state for process 0;
926  * set to ignore signals that are ignored by default.
927  */
928 void
929 siginit(p)
930 	struct proc *p;
931 {
932 	register int i;
933 	struct sigacts *ps;
934 
935 	PROC_LOCK(p);
936 	ps = p->p_sigacts;
937 	mtx_lock(&ps->ps_mtx);
938 	for (i = 1; i <= NSIG; i++)
939 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
940 			SIGADDSET(ps->ps_sigignore, i);
941 	mtx_unlock(&ps->ps_mtx);
942 	PROC_UNLOCK(p);
943 }
944 
945 /*
946  * Reset signals for an exec of the specified process.
947  */
948 void
949 execsigs(struct proc *p)
950 {
951 	struct sigacts *ps;
952 	int sig;
953 	struct thread *td;
954 
955 	/*
956 	 * Reset caught signals.  Held signals remain held
957 	 * through td_sigmask (unless they were caught,
958 	 * and are now ignored by default).
959 	 */
960 	PROC_LOCK_ASSERT(p, MA_OWNED);
961 	td = FIRST_THREAD_IN_PROC(p);
962 	ps = p->p_sigacts;
963 	mtx_lock(&ps->ps_mtx);
964 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
965 		sig = sig_ffs(&ps->ps_sigcatch);
966 		SIGDELSET(ps->ps_sigcatch, sig);
967 		if (sigprop(sig) & SA_IGNORE) {
968 			if (sig != SIGCONT)
969 				SIGADDSET(ps->ps_sigignore, sig);
970 			sigqueue_delete_proc(p, sig);
971 		}
972 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
973 	}
974 	/*
975 	 * Reset stack state to the user stack.
976 	 * Clear set of signals caught on the signal stack.
977 	 */
978 	td->td_sigstk.ss_flags = SS_DISABLE;
979 	td->td_sigstk.ss_size = 0;
980 	td->td_sigstk.ss_sp = 0;
981 	td->td_pflags &= ~TDP_ALTSTACK;
982 	/*
983 	 * Reset no zombies if child dies flag as Solaris does.
984 	 */
985 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
986 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
987 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
988 	mtx_unlock(&ps->ps_mtx);
989 }
990 
991 /*
992  * kern_sigprocmask()
993  *
994  *	Manipulate signal mask.
995  */
996 int
997 kern_sigprocmask(td, how, set, oset, old)
998 	struct thread *td;
999 	int how;
1000 	sigset_t *set, *oset;
1001 	int old;
1002 {
1003 	int error;
1004 
1005 	PROC_LOCK(td->td_proc);
1006 	if (oset != NULL)
1007 		*oset = td->td_sigmask;
1008 
1009 	error = 0;
1010 	if (set != NULL) {
1011 		switch (how) {
1012 		case SIG_BLOCK:
1013 			SIG_CANTMASK(*set);
1014 			SIGSETOR(td->td_sigmask, *set);
1015 			break;
1016 		case SIG_UNBLOCK:
1017 			SIGSETNAND(td->td_sigmask, *set);
1018 			signotify(td);
1019 			break;
1020 		case SIG_SETMASK:
1021 			SIG_CANTMASK(*set);
1022 			if (old)
1023 				SIGSETLO(td->td_sigmask, *set);
1024 			else
1025 				td->td_sigmask = *set;
1026 			signotify(td);
1027 			break;
1028 		default:
1029 			error = EINVAL;
1030 			break;
1031 		}
1032 	}
1033 	PROC_UNLOCK(td->td_proc);
1034 	return (error);
1035 }
1036 
1037 /*
1038  * sigprocmask() - MP SAFE
1039  */
1040 
1041 #ifndef _SYS_SYSPROTO_H_
1042 struct sigprocmask_args {
1043 	int	how;
1044 	const sigset_t *set;
1045 	sigset_t *oset;
1046 };
1047 #endif
1048 int
1049 sigprocmask(td, uap)
1050 	register struct thread *td;
1051 	struct sigprocmask_args *uap;
1052 {
1053 	sigset_t set, oset;
1054 	sigset_t *setp, *osetp;
1055 	int error;
1056 
1057 	setp = (uap->set != NULL) ? &set : NULL;
1058 	osetp = (uap->oset != NULL) ? &oset : NULL;
1059 	if (setp) {
1060 		error = copyin(uap->set, setp, sizeof(set));
1061 		if (error)
1062 			return (error);
1063 	}
1064 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1065 	if (osetp && !error) {
1066 		error = copyout(osetp, uap->oset, sizeof(oset));
1067 	}
1068 	return (error);
1069 }
1070 
1071 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1072 /*
1073  * osigprocmask() - MP SAFE
1074  */
1075 #ifndef _SYS_SYSPROTO_H_
1076 struct osigprocmask_args {
1077 	int	how;
1078 	osigset_t mask;
1079 };
1080 #endif
1081 int
1082 osigprocmask(td, uap)
1083 	register struct thread *td;
1084 	struct osigprocmask_args *uap;
1085 {
1086 	sigset_t set, oset;
1087 	int error;
1088 
1089 	OSIG2SIG(uap->mask, set);
1090 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1091 	SIG2OSIG(oset, td->td_retval[0]);
1092 	return (error);
1093 }
1094 #endif /* COMPAT_43 */
1095 
1096 /*
1097  * MPSAFE
1098  */
1099 int
1100 sigwait(struct thread *td, struct sigwait_args *uap)
1101 {
1102 	ksiginfo_t ksi;
1103 	sigset_t set;
1104 	int error;
1105 
1106 	error = copyin(uap->set, &set, sizeof(set));
1107 	if (error) {
1108 		td->td_retval[0] = error;
1109 		return (0);
1110 	}
1111 
1112 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1113 	if (error) {
1114 		if (error == ERESTART)
1115 			return (error);
1116 		td->td_retval[0] = error;
1117 		return (0);
1118 	}
1119 
1120 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1121 	td->td_retval[0] = error;
1122 	return (0);
1123 }
1124 /*
1125  * MPSAFE
1126  */
1127 int
1128 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1129 {
1130 	struct timespec ts;
1131 	struct timespec *timeout;
1132 	sigset_t set;
1133 	ksiginfo_t ksi;
1134 	int error;
1135 
1136 	if (uap->timeout) {
1137 		error = copyin(uap->timeout, &ts, sizeof(ts));
1138 		if (error)
1139 			return (error);
1140 
1141 		timeout = &ts;
1142 	} else
1143 		timeout = NULL;
1144 
1145 	error = copyin(uap->set, &set, sizeof(set));
1146 	if (error)
1147 		return (error);
1148 
1149 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1150 	if (error)
1151 		return (error);
1152 
1153 	if (uap->info)
1154 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1155 
1156 	if (error == 0)
1157 		td->td_retval[0] = ksi.ksi_signo;
1158 	return (error);
1159 }
1160 
1161 /*
1162  * MPSAFE
1163  */
1164 int
1165 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1166 {
1167 	ksiginfo_t ksi;
1168 	sigset_t set;
1169 	int error;
1170 
1171 	error = copyin(uap->set, &set, sizeof(set));
1172 	if (error)
1173 		return (error);
1174 
1175 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1176 	if (error)
1177 		return (error);
1178 
1179 	if (uap->info)
1180 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1181 
1182 	if (error == 0)
1183 		td->td_retval[0] = ksi.ksi_signo;
1184 	return (error);
1185 }
1186 
1187 int
1188 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1189 	struct timespec *timeout)
1190 {
1191 	struct sigacts *ps;
1192 	sigset_t savedmask;
1193 	struct proc *p;
1194 	int error, sig, hz, i, timevalid = 0;
1195 	struct timespec rts, ets, ts;
1196 	struct timeval tv;
1197 
1198 	p = td->td_proc;
1199 	error = 0;
1200 	sig = 0;
1201 	SIG_CANTMASK(waitset);
1202 
1203 	PROC_LOCK(p);
1204 	ps = p->p_sigacts;
1205 	savedmask = td->td_sigmask;
1206 	if (timeout) {
1207 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1208 			timevalid = 1;
1209 			getnanouptime(&rts);
1210 		 	ets = rts;
1211 			timespecadd(&ets, timeout);
1212 		}
1213 	}
1214 
1215 restart:
1216 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1217 		if (!SIGISMEMBER(waitset, i))
1218 			continue;
1219 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1220 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1221 #ifdef KSE
1222 				if (p->p_flag & P_SA) {
1223 					p->p_flag |= P_SIGEVENT;
1224 					wakeup(&p->p_siglist);
1225 				}
1226 #endif
1227 				sigqueue_move(&p->p_sigqueue,
1228 					&td->td_sigqueue, i);
1229 			} else
1230 				continue;
1231 		}
1232 
1233 		SIGFILLSET(td->td_sigmask);
1234 		SIG_CANTMASK(td->td_sigmask);
1235 		SIGDELSET(td->td_sigmask, i);
1236 		mtx_lock(&ps->ps_mtx);
1237 		sig = cursig(td);
1238 		mtx_unlock(&ps->ps_mtx);
1239 		if (sig)
1240 			goto out;
1241 		else {
1242 			/*
1243 			 * Because cursig() may have stopped current thread,
1244 			 * after it is resumed, things may have already been
1245 			 * changed, it should rescan any pending signals.
1246 			 */
1247 			goto restart;
1248 		}
1249 	}
1250 
1251 	if (error)
1252 		goto out;
1253 
1254 	/*
1255 	 * POSIX says this must be checked after looking for pending
1256 	 * signals.
1257 	 */
1258 	if (timeout) {
1259 		if (!timevalid) {
1260 			error = EINVAL;
1261 			goto out;
1262 		}
1263 		getnanouptime(&rts);
1264 		if (timespeccmp(&rts, &ets, >=)) {
1265 			error = EAGAIN;
1266 			goto out;
1267 		}
1268 		ts = ets;
1269 		timespecsub(&ts, &rts);
1270 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1271 		hz = tvtohz(&tv);
1272 	} else
1273 		hz = 0;
1274 
1275 	td->td_sigmask = savedmask;
1276 	SIGSETNAND(td->td_sigmask, waitset);
1277 	signotify(td);
1278 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1279 	if (timeout) {
1280 		if (error == ERESTART) {
1281 			/* timeout can not be restarted. */
1282 			error = EINTR;
1283 		} else if (error == EAGAIN) {
1284 			/* will calculate timeout by ourself. */
1285 			error = 0;
1286 		}
1287 	}
1288 	goto restart;
1289 
1290 out:
1291 	td->td_sigmask = savedmask;
1292 	signotify(td);
1293 	if (sig) {
1294 		ksiginfo_init(ksi);
1295 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1296 		ksi->ksi_signo = sig;
1297 		if (ksi->ksi_code == SI_TIMER)
1298 			itimer_accept(p, ksi->ksi_timerid, ksi);
1299 		error = 0;
1300 
1301 #ifdef KTRACE
1302 		if (KTRPOINT(td, KTR_PSIG)) {
1303 			sig_t action;
1304 
1305 			mtx_lock(&ps->ps_mtx);
1306 			action = ps->ps_sigact[_SIG_IDX(sig)];
1307 			mtx_unlock(&ps->ps_mtx);
1308 			ktrpsig(sig, action, &td->td_sigmask, 0);
1309 		}
1310 #endif
1311 		if (sig == SIGKILL)
1312 			sigexit(td, sig);
1313 	}
1314 	PROC_UNLOCK(p);
1315 	return (error);
1316 }
1317 
1318 #ifndef _SYS_SYSPROTO_H_
1319 struct sigpending_args {
1320 	sigset_t	*set;
1321 };
1322 #endif
1323 /*
1324  * MPSAFE
1325  */
1326 int
1327 sigpending(td, uap)
1328 	struct thread *td;
1329 	struct sigpending_args *uap;
1330 {
1331 	struct proc *p = td->td_proc;
1332 	sigset_t pending;
1333 
1334 	PROC_LOCK(p);
1335 	pending = p->p_sigqueue.sq_signals;
1336 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1337 	PROC_UNLOCK(p);
1338 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1339 }
1340 
1341 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1342 #ifndef _SYS_SYSPROTO_H_
1343 struct osigpending_args {
1344 	int	dummy;
1345 };
1346 #endif
1347 /*
1348  * MPSAFE
1349  */
1350 int
1351 osigpending(td, uap)
1352 	struct thread *td;
1353 	struct osigpending_args *uap;
1354 {
1355 	struct proc *p = td->td_proc;
1356 	sigset_t pending;
1357 
1358 	PROC_LOCK(p);
1359 	pending = p->p_sigqueue.sq_signals;
1360 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1361 	PROC_UNLOCK(p);
1362 	SIG2OSIG(pending, td->td_retval[0]);
1363 	return (0);
1364 }
1365 #endif /* COMPAT_43 */
1366 
1367 #if defined(COMPAT_43)
1368 /*
1369  * Generalized interface signal handler, 4.3-compatible.
1370  */
1371 #ifndef _SYS_SYSPROTO_H_
1372 struct osigvec_args {
1373 	int	signum;
1374 	struct	sigvec *nsv;
1375 	struct	sigvec *osv;
1376 };
1377 #endif
1378 /*
1379  * MPSAFE
1380  */
1381 /* ARGSUSED */
1382 int
1383 osigvec(td, uap)
1384 	struct thread *td;
1385 	register struct osigvec_args *uap;
1386 {
1387 	struct sigvec vec;
1388 	struct sigaction nsa, osa;
1389 	register struct sigaction *nsap, *osap;
1390 	int error;
1391 
1392 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1393 		return (EINVAL);
1394 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1395 	osap = (uap->osv != NULL) ? &osa : NULL;
1396 	if (nsap) {
1397 		error = copyin(uap->nsv, &vec, sizeof(vec));
1398 		if (error)
1399 			return (error);
1400 		nsap->sa_handler = vec.sv_handler;
1401 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1402 		nsap->sa_flags = vec.sv_flags;
1403 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1404 	}
1405 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1406 	if (osap && !error) {
1407 		vec.sv_handler = osap->sa_handler;
1408 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1409 		vec.sv_flags = osap->sa_flags;
1410 		vec.sv_flags &= ~SA_NOCLDWAIT;
1411 		vec.sv_flags ^= SA_RESTART;
1412 		error = copyout(&vec, uap->osv, sizeof(vec));
1413 	}
1414 	return (error);
1415 }
1416 
1417 #ifndef _SYS_SYSPROTO_H_
1418 struct osigblock_args {
1419 	int	mask;
1420 };
1421 #endif
1422 /*
1423  * MPSAFE
1424  */
1425 int
1426 osigblock(td, uap)
1427 	register struct thread *td;
1428 	struct osigblock_args *uap;
1429 {
1430 	struct proc *p = td->td_proc;
1431 	sigset_t set;
1432 
1433 	OSIG2SIG(uap->mask, set);
1434 	SIG_CANTMASK(set);
1435 	PROC_LOCK(p);
1436 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1437 	SIGSETOR(td->td_sigmask, set);
1438 	PROC_UNLOCK(p);
1439 	return (0);
1440 }
1441 
1442 #ifndef _SYS_SYSPROTO_H_
1443 struct osigsetmask_args {
1444 	int	mask;
1445 };
1446 #endif
1447 /*
1448  * MPSAFE
1449  */
1450 int
1451 osigsetmask(td, uap)
1452 	struct thread *td;
1453 	struct osigsetmask_args *uap;
1454 {
1455 	struct proc *p = td->td_proc;
1456 	sigset_t set;
1457 
1458 	OSIG2SIG(uap->mask, set);
1459 	SIG_CANTMASK(set);
1460 	PROC_LOCK(p);
1461 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1462 	SIGSETLO(td->td_sigmask, set);
1463 	signotify(td);
1464 	PROC_UNLOCK(p);
1465 	return (0);
1466 }
1467 #endif /* COMPAT_43 */
1468 
1469 /*
1470  * Suspend calling thread until signal, providing mask to be set
1471  * in the meantime.
1472  */
1473 #ifndef _SYS_SYSPROTO_H_
1474 struct sigsuspend_args {
1475 	const sigset_t *sigmask;
1476 };
1477 #endif
1478 /*
1479  * MPSAFE
1480  */
1481 /* ARGSUSED */
1482 int
1483 sigsuspend(td, uap)
1484 	struct thread *td;
1485 	struct sigsuspend_args *uap;
1486 {
1487 	sigset_t mask;
1488 	int error;
1489 
1490 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1491 	if (error)
1492 		return (error);
1493 	return (kern_sigsuspend(td, mask));
1494 }
1495 
1496 int
1497 kern_sigsuspend(struct thread *td, sigset_t mask)
1498 {
1499 	struct proc *p = td->td_proc;
1500 
1501 	/*
1502 	 * When returning from sigsuspend, we want
1503 	 * the old mask to be restored after the
1504 	 * signal handler has finished.  Thus, we
1505 	 * save it here and mark the sigacts structure
1506 	 * to indicate this.
1507 	 */
1508 	PROC_LOCK(p);
1509 	td->td_oldsigmask = td->td_sigmask;
1510 	td->td_pflags |= TDP_OLDMASK;
1511 	SIG_CANTMASK(mask);
1512 	td->td_sigmask = mask;
1513 	signotify(td);
1514 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1515 		/* void */;
1516 	PROC_UNLOCK(p);
1517 	/* always return EINTR rather than ERESTART... */
1518 	return (EINTR);
1519 }
1520 
1521 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1522 /*
1523  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1524  * convention: libc stub passes mask, not pointer, to save a copyin.
1525  */
1526 #ifndef _SYS_SYSPROTO_H_
1527 struct osigsuspend_args {
1528 	osigset_t mask;
1529 };
1530 #endif
1531 /*
1532  * MPSAFE
1533  */
1534 /* ARGSUSED */
1535 int
1536 osigsuspend(td, uap)
1537 	struct thread *td;
1538 	struct osigsuspend_args *uap;
1539 {
1540 	struct proc *p = td->td_proc;
1541 	sigset_t mask;
1542 
1543 	PROC_LOCK(p);
1544 	td->td_oldsigmask = td->td_sigmask;
1545 	td->td_pflags |= TDP_OLDMASK;
1546 	OSIG2SIG(uap->mask, mask);
1547 	SIG_CANTMASK(mask);
1548 	SIGSETLO(td->td_sigmask, mask);
1549 	signotify(td);
1550 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1551 		/* void */;
1552 	PROC_UNLOCK(p);
1553 	/* always return EINTR rather than ERESTART... */
1554 	return (EINTR);
1555 }
1556 #endif /* COMPAT_43 */
1557 
1558 #if defined(COMPAT_43)
1559 #ifndef _SYS_SYSPROTO_H_
1560 struct osigstack_args {
1561 	struct	sigstack *nss;
1562 	struct	sigstack *oss;
1563 };
1564 #endif
1565 /*
1566  * MPSAFE
1567  */
1568 /* ARGSUSED */
1569 int
1570 osigstack(td, uap)
1571 	struct thread *td;
1572 	register struct osigstack_args *uap;
1573 {
1574 	struct sigstack nss, oss;
1575 	int error = 0;
1576 
1577 	if (uap->nss != NULL) {
1578 		error = copyin(uap->nss, &nss, sizeof(nss));
1579 		if (error)
1580 			return (error);
1581 	}
1582 	oss.ss_sp = td->td_sigstk.ss_sp;
1583 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1584 	if (uap->nss != NULL) {
1585 		td->td_sigstk.ss_sp = nss.ss_sp;
1586 		td->td_sigstk.ss_size = 0;
1587 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1588 		td->td_pflags |= TDP_ALTSTACK;
1589 	}
1590 	if (uap->oss != NULL)
1591 		error = copyout(&oss, uap->oss, sizeof(oss));
1592 
1593 	return (error);
1594 }
1595 #endif /* COMPAT_43 */
1596 
1597 #ifndef _SYS_SYSPROTO_H_
1598 struct sigaltstack_args {
1599 	stack_t	*ss;
1600 	stack_t	*oss;
1601 };
1602 #endif
1603 /*
1604  * MPSAFE
1605  */
1606 /* ARGSUSED */
1607 int
1608 sigaltstack(td, uap)
1609 	struct thread *td;
1610 	register struct sigaltstack_args *uap;
1611 {
1612 	stack_t ss, oss;
1613 	int error;
1614 
1615 	if (uap->ss != NULL) {
1616 		error = copyin(uap->ss, &ss, sizeof(ss));
1617 		if (error)
1618 			return (error);
1619 	}
1620 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1621 	    (uap->oss != NULL) ? &oss : NULL);
1622 	if (error)
1623 		return (error);
1624 	if (uap->oss != NULL)
1625 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1626 	return (error);
1627 }
1628 
1629 int
1630 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1631 {
1632 	struct proc *p = td->td_proc;
1633 	int oonstack;
1634 
1635 	oonstack = sigonstack(cpu_getstack(td));
1636 
1637 	if (oss != NULL) {
1638 		*oss = td->td_sigstk;
1639 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1640 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1641 	}
1642 
1643 	if (ss != NULL) {
1644 		if (oonstack)
1645 			return (EPERM);
1646 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1647 			return (EINVAL);
1648 		if (!(ss->ss_flags & SS_DISABLE)) {
1649 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1650 				return (ENOMEM);
1651 
1652 			td->td_sigstk = *ss;
1653 			td->td_pflags |= TDP_ALTSTACK;
1654 		} else {
1655 			td->td_pflags &= ~TDP_ALTSTACK;
1656 		}
1657 	}
1658 	return (0);
1659 }
1660 
1661 /*
1662  * Common code for kill process group/broadcast kill.
1663  * cp is calling process.
1664  */
1665 static int
1666 killpg1(td, sig, pgid, all)
1667 	register struct thread *td;
1668 	int sig, pgid, all;
1669 {
1670 	register struct proc *p;
1671 	struct pgrp *pgrp;
1672 	int nfound = 0;
1673 
1674 	if (all) {
1675 		/*
1676 		 * broadcast
1677 		 */
1678 		sx_slock(&allproc_lock);
1679 		LIST_FOREACH(p, &allproc, p_list) {
1680 			PROC_LOCK(p);
1681 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1682 			    p == td->td_proc || p->p_state == PRS_NEW) {
1683 				PROC_UNLOCK(p);
1684 				continue;
1685 			}
1686 			if (p_cansignal(td, p, sig) == 0) {
1687 				nfound++;
1688 				if (sig)
1689 					psignal(p, sig);
1690 			}
1691 			PROC_UNLOCK(p);
1692 		}
1693 		sx_sunlock(&allproc_lock);
1694 	} else {
1695 		sx_slock(&proctree_lock);
1696 		if (pgid == 0) {
1697 			/*
1698 			 * zero pgid means send to my process group.
1699 			 */
1700 			pgrp = td->td_proc->p_pgrp;
1701 			PGRP_LOCK(pgrp);
1702 		} else {
1703 			pgrp = pgfind(pgid);
1704 			if (pgrp == NULL) {
1705 				sx_sunlock(&proctree_lock);
1706 				return (ESRCH);
1707 			}
1708 		}
1709 		sx_sunlock(&proctree_lock);
1710 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1711 			PROC_LOCK(p);
1712 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1713 				p->p_state == PRS_NEW ) {
1714 				PROC_UNLOCK(p);
1715 				continue;
1716 			}
1717 			if (p_cansignal(td, p, sig) == 0) {
1718 				nfound++;
1719 				if (sig)
1720 					psignal(p, sig);
1721 			}
1722 			PROC_UNLOCK(p);
1723 		}
1724 		PGRP_UNLOCK(pgrp);
1725 	}
1726 	return (nfound ? 0 : ESRCH);
1727 }
1728 
1729 #ifndef _SYS_SYSPROTO_H_
1730 struct kill_args {
1731 	int	pid;
1732 	int	signum;
1733 };
1734 #endif
1735 /*
1736  * MPSAFE
1737  */
1738 /* ARGSUSED */
1739 int
1740 kill(td, uap)
1741 	register struct thread *td;
1742 	register struct kill_args *uap;
1743 {
1744 	register struct proc *p;
1745 	int error;
1746 
1747 	AUDIT_ARG(signum, uap->signum);
1748 	if ((u_int)uap->signum > _SIG_MAXSIG)
1749 		return (EINVAL);
1750 
1751 	if (uap->pid > 0) {
1752 		/* kill single process */
1753 		if ((p = pfind(uap->pid)) == NULL) {
1754 			if ((p = zpfind(uap->pid)) == NULL)
1755 				return (ESRCH);
1756 		}
1757 		AUDIT_ARG(process, p);
1758 		error = p_cansignal(td, p, uap->signum);
1759 		if (error == 0 && uap->signum)
1760 			psignal(p, uap->signum);
1761 		PROC_UNLOCK(p);
1762 		return (error);
1763 	}
1764 	AUDIT_ARG(pid, uap->pid);
1765 	switch (uap->pid) {
1766 	case -1:		/* broadcast signal */
1767 		return (killpg1(td, uap->signum, 0, 1));
1768 	case 0:			/* signal own process group */
1769 		return (killpg1(td, uap->signum, 0, 0));
1770 	default:		/* negative explicit process group */
1771 		return (killpg1(td, uap->signum, -uap->pid, 0));
1772 	}
1773 	/* NOTREACHED */
1774 }
1775 
1776 #if defined(COMPAT_43)
1777 #ifndef _SYS_SYSPROTO_H_
1778 struct okillpg_args {
1779 	int	pgid;
1780 	int	signum;
1781 };
1782 #endif
1783 /*
1784  * MPSAFE
1785  */
1786 /* ARGSUSED */
1787 int
1788 okillpg(td, uap)
1789 	struct thread *td;
1790 	register struct okillpg_args *uap;
1791 {
1792 
1793 	AUDIT_ARG(signum, uap->signum);
1794 	AUDIT_ARG(pid, uap->pgid);
1795 	if ((u_int)uap->signum > _SIG_MAXSIG)
1796 		return (EINVAL);
1797 
1798 	return (killpg1(td, uap->signum, uap->pgid, 0));
1799 }
1800 #endif /* COMPAT_43 */
1801 
1802 #ifndef _SYS_SYSPROTO_H_
1803 struct sigqueue_args {
1804 	pid_t pid;
1805 	int signum;
1806 	/* union sigval */ void *value;
1807 };
1808 #endif
1809 
1810 int
1811 sigqueue(struct thread *td, struct sigqueue_args *uap)
1812 {
1813 	ksiginfo_t ksi;
1814 	struct proc *p;
1815 	int error;
1816 
1817 	if ((u_int)uap->signum > _SIG_MAXSIG)
1818 		return (EINVAL);
1819 
1820 	/*
1821 	 * Specification says sigqueue can only send signal to
1822 	 * single process.
1823 	 */
1824 	if (uap->pid <= 0)
1825 		return (EINVAL);
1826 
1827 	if ((p = pfind(uap->pid)) == NULL) {
1828 		if ((p = zpfind(uap->pid)) == NULL)
1829 			return (ESRCH);
1830 	}
1831 	error = p_cansignal(td, p, uap->signum);
1832 	if (error == 0 && uap->signum != 0) {
1833 		ksiginfo_init(&ksi);
1834 		ksi.ksi_signo = uap->signum;
1835 		ksi.ksi_code = SI_QUEUE;
1836 		ksi.ksi_pid = td->td_proc->p_pid;
1837 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1838 		ksi.ksi_value.sival_ptr = uap->value;
1839 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1840 	}
1841 	PROC_UNLOCK(p);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Send a signal to a process group.
1847  */
1848 void
1849 gsignal(pgid, sig)
1850 	int pgid, sig;
1851 {
1852 	struct pgrp *pgrp;
1853 
1854 	if (pgid != 0) {
1855 		sx_slock(&proctree_lock);
1856 		pgrp = pgfind(pgid);
1857 		sx_sunlock(&proctree_lock);
1858 		if (pgrp != NULL) {
1859 			pgsignal(pgrp, sig, 0);
1860 			PGRP_UNLOCK(pgrp);
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * Send a signal to a process group.  If checktty is 1,
1867  * limit to members which have a controlling terminal.
1868  */
1869 void
1870 pgsignal(pgrp, sig, checkctty)
1871 	struct pgrp *pgrp;
1872 	int sig, checkctty;
1873 {
1874 	register struct proc *p;
1875 
1876 	if (pgrp) {
1877 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1878 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1879 			PROC_LOCK(p);
1880 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1881 				psignal(p, sig);
1882 			PROC_UNLOCK(p);
1883 		}
1884 	}
1885 }
1886 
1887 /*
1888  * Send a signal caused by a trap to the current thread.
1889  * If it will be caught immediately, deliver it with correct code.
1890  * Otherwise, post it normally.
1891  *
1892  * MPSAFE
1893  */
1894 void
1895 trapsignal(struct thread *td, ksiginfo_t *ksi)
1896 {
1897 	struct sigacts *ps;
1898 	struct proc *p;
1899 #ifdef KSE
1900 	int error;
1901 #endif
1902 	int sig;
1903 	int code;
1904 
1905 	p = td->td_proc;
1906 	sig = ksi->ksi_signo;
1907 	code = ksi->ksi_code;
1908 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1909 
1910 #ifdef KSE
1911 	if (td->td_pflags & TDP_SA) {
1912 		if (td->td_mailbox == NULL)
1913 			thread_user_enter(td);
1914 		PROC_LOCK(p);
1915 		SIGDELSET(td->td_sigmask, sig);
1916 		mtx_lock_spin(&sched_lock);
1917 		/*
1918 		 * Force scheduling an upcall, so UTS has chance to
1919 		 * process the signal before thread runs again in
1920 		 * userland.
1921 		 */
1922 		if (td->td_upcall)
1923 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1924 		mtx_unlock_spin(&sched_lock);
1925 	} else {
1926 		PROC_LOCK(p);
1927 	}
1928 #else
1929 	PROC_LOCK(p);
1930 #endif
1931 	ps = p->p_sigacts;
1932 	mtx_lock(&ps->ps_mtx);
1933 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1934 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1935 		p->p_stats->p_ru.ru_nsignals++;
1936 #ifdef KTRACE
1937 		if (KTRPOINT(curthread, KTR_PSIG))
1938 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1939 			    &td->td_sigmask, code);
1940 #endif
1941 #ifdef KSE
1942 		if (!(td->td_pflags & TDP_SA))
1943 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1944 				ksi, &td->td_sigmask);
1945 #else
1946 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1947 				ksi, &td->td_sigmask);
1948 #endif
1949 #ifdef KSE
1950 		else if (td->td_mailbox == NULL) {
1951 			mtx_unlock(&ps->ps_mtx);
1952 			/* UTS caused a sync signal */
1953 			p->p_code = code;	/* XXX for core dump/debugger */
1954 			p->p_sig = sig;		/* XXX to verify code */
1955 			sigexit(td, sig);
1956 		} else {
1957 			mtx_unlock(&ps->ps_mtx);
1958 			SIGADDSET(td->td_sigmask, sig);
1959 			PROC_UNLOCK(p);
1960 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1961 			    sizeof(siginfo_t));
1962 			PROC_LOCK(p);
1963 			/* UTS memory corrupted */
1964 			if (error)
1965 				sigexit(td, SIGSEGV);
1966 			mtx_lock(&ps->ps_mtx);
1967 		}
1968 #endif
1969 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1970 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1971 			SIGADDSET(td->td_sigmask, sig);
1972 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1973 			/*
1974 			 * See kern_sigaction() for origin of this code.
1975 			 */
1976 			SIGDELSET(ps->ps_sigcatch, sig);
1977 			if (sig != SIGCONT &&
1978 			    sigprop(sig) & SA_IGNORE)
1979 				SIGADDSET(ps->ps_sigignore, sig);
1980 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1981 		}
1982 		mtx_unlock(&ps->ps_mtx);
1983 	} else {
1984 		/*
1985 		 * Avoid a possible infinite loop if the thread
1986 		 * masking the signal or process is ignoring the
1987 		 * signal.
1988 		 */
1989 		if (kern_forcesigexit &&
1990 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1991 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1992 			SIGDELSET(td->td_sigmask, sig);
1993 			SIGDELSET(ps->ps_sigcatch, sig);
1994 			SIGDELSET(ps->ps_sigignore, sig);
1995 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1996 		}
1997 		mtx_unlock(&ps->ps_mtx);
1998 		p->p_code = code;	/* XXX for core dump/debugger */
1999 		p->p_sig = sig;		/* XXX to verify code */
2000 		tdsignal(p, td, sig, ksi);
2001 	}
2002 	PROC_UNLOCK(p);
2003 }
2004 
2005 static struct thread *
2006 sigtd(struct proc *p, int sig, int prop)
2007 {
2008 	struct thread *td, *signal_td;
2009 
2010 	PROC_LOCK_ASSERT(p, MA_OWNED);
2011 
2012 	/*
2013 	 * Check if current thread can handle the signal without
2014 	 * switching conetxt to another thread.
2015 	 */
2016 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2017 		return (curthread);
2018 	signal_td = NULL;
2019 	mtx_lock_spin(&sched_lock);
2020 	FOREACH_THREAD_IN_PROC(p, td) {
2021 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2022 			signal_td = td;
2023 			break;
2024 		}
2025 	}
2026 	if (signal_td == NULL)
2027 		signal_td = FIRST_THREAD_IN_PROC(p);
2028 	mtx_unlock_spin(&sched_lock);
2029 	return (signal_td);
2030 }
2031 
2032 /*
2033  * Send the signal to the process.  If the signal has an action, the action
2034  * is usually performed by the target process rather than the caller; we add
2035  * the signal to the set of pending signals for the process.
2036  *
2037  * Exceptions:
2038  *   o When a stop signal is sent to a sleeping process that takes the
2039  *     default action, the process is stopped without awakening it.
2040  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2041  *     regardless of the signal action (eg, blocked or ignored).
2042  *
2043  * Other ignored signals are discarded immediately.
2044  *
2045  * MPSAFE
2046  */
2047 void
2048 psignal(struct proc *p, int sig)
2049 {
2050 	(void) tdsignal(p, NULL, sig, NULL);
2051 }
2052 
2053 int
2054 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2055 {
2056 	struct thread *td = NULL;
2057 
2058 	PROC_LOCK_ASSERT(p, MA_OWNED);
2059 
2060 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2061 
2062 	/*
2063 	 * ksi_code and other fields should be set before
2064 	 * calling this function.
2065 	 */
2066 	ksi->ksi_signo = sigev->sigev_signo;
2067 	ksi->ksi_value = sigev->sigev_value;
2068 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2069 		td = thread_find(p, sigev->sigev_notify_thread_id);
2070 		if (td == NULL)
2071 			return (ESRCH);
2072 	}
2073 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2074 }
2075 
2076 /*
2077  * MPSAFE
2078  */
2079 int
2080 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2081 {
2082 #ifdef KSE
2083 	sigset_t saved;
2084 	int ret;
2085 
2086 	if (p->p_flag & P_SA)
2087 		saved = p->p_sigqueue.sq_signals;
2088 	ret = do_tdsignal(p, td, sig, ksi);
2089 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2090 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2091 			/* pending set changed */
2092 			p->p_flag |= P_SIGEVENT;
2093 			wakeup(&p->p_siglist);
2094 		}
2095 	}
2096 	return (ret);
2097 }
2098 
2099 static int
2100 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2101 {
2102 #endif
2103 	sig_t action;
2104 	sigqueue_t *sigqueue;
2105 	int prop;
2106 	struct sigacts *ps;
2107 	int intrval;
2108 	int ret = 0;
2109 
2110 	PROC_LOCK_ASSERT(p, MA_OWNED);
2111 
2112 	if (!_SIG_VALID(sig))
2113 #ifdef KSE
2114 		panic("do_tdsignal(): invalid signal");
2115 #else
2116 		panic("tdsignal(): invalid signal");
2117 #endif
2118 
2119 #ifdef KSE
2120 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2121 #else
2122 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
2123 #endif
2124 
2125 	/*
2126 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2127 	 */
2128 	if (p->p_state == PRS_ZOMBIE) {
2129 		if (ksi && (ksi->ksi_flags & KSI_INS))
2130 			ksiginfo_tryfree(ksi);
2131 		return (ret);
2132 	}
2133 
2134 	ps = p->p_sigacts;
2135 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2136 	prop = sigprop(sig);
2137 
2138 	/*
2139 	 * If the signal is blocked and not destined for this thread, then
2140 	 * assign it to the process so that we can find it later in the first
2141 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2142 	 */
2143 	if (td == NULL) {
2144 		td = sigtd(p, sig, prop);
2145 		if (SIGISMEMBER(td->td_sigmask, sig))
2146 			sigqueue = &p->p_sigqueue;
2147 		else
2148 			sigqueue = &td->td_sigqueue;
2149 	} else {
2150 		KASSERT(td->td_proc == p, ("invalid thread"));
2151 		sigqueue = &td->td_sigqueue;
2152 	}
2153 
2154 	/*
2155 	 * If the signal is being ignored,
2156 	 * then we forget about it immediately.
2157 	 * (Note: we don't set SIGCONT in ps_sigignore,
2158 	 * and if it is set to SIG_IGN,
2159 	 * action will be SIG_DFL here.)
2160 	 */
2161 	mtx_lock(&ps->ps_mtx);
2162 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2163 		mtx_unlock(&ps->ps_mtx);
2164 		if (ksi && (ksi->ksi_flags & KSI_INS))
2165 			ksiginfo_tryfree(ksi);
2166 		return (ret);
2167 	}
2168 	if (SIGISMEMBER(td->td_sigmask, sig))
2169 		action = SIG_HOLD;
2170 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2171 		action = SIG_CATCH;
2172 	else
2173 		action = SIG_DFL;
2174 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2175 		intrval = EINTR;
2176 	else
2177 		intrval = ERESTART;
2178 	mtx_unlock(&ps->ps_mtx);
2179 
2180 	if (prop & SA_CONT)
2181 		sigqueue_delete_stopmask_proc(p);
2182 	else if (prop & SA_STOP) {
2183 		/*
2184 		 * If sending a tty stop signal to a member of an orphaned
2185 		 * process group, discard the signal here if the action
2186 		 * is default; don't stop the process below if sleeping,
2187 		 * and don't clear any pending SIGCONT.
2188 		 */
2189 		if ((prop & SA_TTYSTOP) &&
2190 		    (p->p_pgrp->pg_jobc == 0) &&
2191 		    (action == SIG_DFL)) {
2192 			if (ksi && (ksi->ksi_flags & KSI_INS))
2193 				ksiginfo_tryfree(ksi);
2194 			return (ret);
2195 		}
2196 		sigqueue_delete_proc(p, SIGCONT);
2197 		if (p->p_flag & P_CONTINUED) {
2198 			p->p_flag &= ~P_CONTINUED;
2199 			PROC_LOCK(p->p_pptr);
2200 			sigqueue_take(p->p_ksi);
2201 			PROC_UNLOCK(p->p_pptr);
2202 		}
2203 	}
2204 
2205 	ret = sigqueue_add(sigqueue, sig, ksi);
2206 	if (ret != 0)
2207 		return (ret);
2208 	signotify(td);
2209 	/*
2210 	 * Defer further processing for signals which are held,
2211 	 * except that stopped processes must be continued by SIGCONT.
2212 	 */
2213 	if (action == SIG_HOLD &&
2214 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2215 		return (ret);
2216 	/*
2217 	 * SIGKILL: Remove procfs STOPEVENTs.
2218 	 */
2219 	if (sig == SIGKILL) {
2220 		/* from procfs_ioctl.c: PIOCBIC */
2221 		p->p_stops = 0;
2222 		/* from procfs_ioctl.c: PIOCCONT */
2223 		p->p_step = 0;
2224 		wakeup(&p->p_step);
2225 	}
2226 	/*
2227 	 * Some signals have a process-wide effect and a per-thread
2228 	 * component.  Most processing occurs when the process next
2229 	 * tries to cross the user boundary, however there are some
2230 	 * times when processing needs to be done immediatly, such as
2231 	 * waking up threads so that they can cross the user boundary.
2232 	 * We try do the per-process part here.
2233 	 */
2234 	if (P_SHOULDSTOP(p)) {
2235 		/*
2236 		 * The process is in stopped mode. All the threads should be
2237 		 * either winding down or already on the suspended queue.
2238 		 */
2239 		if (p->p_flag & P_TRACED) {
2240 			/*
2241 			 * The traced process is already stopped,
2242 			 * so no further action is necessary.
2243 			 * No signal can restart us.
2244 			 */
2245 			goto out;
2246 		}
2247 
2248 		if (sig == SIGKILL) {
2249 			/*
2250 			 * SIGKILL sets process running.
2251 			 * It will die elsewhere.
2252 			 * All threads must be restarted.
2253 			 */
2254 			p->p_flag &= ~P_STOPPED_SIG;
2255 			goto runfast;
2256 		}
2257 
2258 		if (prop & SA_CONT) {
2259 			/*
2260 			 * If SIGCONT is default (or ignored), we continue the
2261 			 * process but don't leave the signal in sigqueue as
2262 			 * it has no further action.  If SIGCONT is held, we
2263 			 * continue the process and leave the signal in
2264 			 * sigqueue.  If the process catches SIGCONT, let it
2265 			 * handle the signal itself.  If it isn't waiting on
2266 			 * an event, it goes back to run state.
2267 			 * Otherwise, process goes back to sleep state.
2268 			 */
2269 			p->p_flag &= ~P_STOPPED_SIG;
2270 			if (p->p_numthreads == p->p_suspcount) {
2271 				p->p_flag |= P_CONTINUED;
2272 				p->p_xstat = SIGCONT;
2273 				PROC_LOCK(p->p_pptr);
2274 				childproc_continued(p);
2275 				PROC_UNLOCK(p->p_pptr);
2276 			}
2277 			if (action == SIG_DFL) {
2278 				sigqueue_delete(sigqueue, sig);
2279 			} else if (action == SIG_CATCH) {
2280 #ifdef KSE
2281 				/*
2282 				 * The process wants to catch it so it needs
2283 				 * to run at least one thread, but which one?
2284 				 * It would seem that the answer would be to
2285 				 * run an upcall in the next KSE to run, and
2286 				 * deliver the signal that way. In a NON KSE
2287 				 * process, we need to make sure that the
2288 				 * single thread is runnable asap.
2289 				 * XXXKSE for now however, make them all run.
2290 				 */
2291 #else
2292 				/*
2293 				 * The process wants to catch it so it needs
2294 				 * to run at least one thread, but which one?
2295 				 */
2296 #endif
2297 				goto runfast;
2298 			}
2299 			/*
2300 			 * The signal is not ignored or caught.
2301 			 */
2302 			mtx_lock_spin(&sched_lock);
2303 			thread_unsuspend(p);
2304 			mtx_unlock_spin(&sched_lock);
2305 			goto out;
2306 		}
2307 
2308 		if (prop & SA_STOP) {
2309 			/*
2310 			 * Already stopped, don't need to stop again
2311 			 * (If we did the shell could get confused).
2312 			 * Just make sure the signal STOP bit set.
2313 			 */
2314 			p->p_flag |= P_STOPPED_SIG;
2315 			sigqueue_delete(sigqueue, sig);
2316 			goto out;
2317 		}
2318 
2319 		/*
2320 		 * All other kinds of signals:
2321 		 * If a thread is sleeping interruptibly, simulate a
2322 		 * wakeup so that when it is continued it will be made
2323 		 * runnable and can look at the signal.  However, don't make
2324 		 * the PROCESS runnable, leave it stopped.
2325 		 * It may run a bit until it hits a thread_suspend_check().
2326 		 */
2327 		mtx_lock_spin(&sched_lock);
2328 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2329 			sleepq_abort(td, intrval);
2330 		mtx_unlock_spin(&sched_lock);
2331 		goto out;
2332 		/*
2333 		 * Mutexes are short lived. Threads waiting on them will
2334 		 * hit thread_suspend_check() soon.
2335 		 */
2336 	} else if (p->p_state == PRS_NORMAL) {
2337 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2338 			mtx_lock_spin(&sched_lock);
2339 			tdsigwakeup(td, sig, action, intrval);
2340 			mtx_unlock_spin(&sched_lock);
2341 			goto out;
2342 		}
2343 
2344 		MPASS(action == SIG_DFL);
2345 
2346 		if (prop & SA_STOP) {
2347 			if (p->p_flag & P_PPWAIT)
2348 				goto out;
2349 			p->p_flag |= P_STOPPED_SIG;
2350 			p->p_xstat = sig;
2351 			mtx_lock_spin(&sched_lock);
2352 			sig_suspend_threads(td, p, 1);
2353 			if (p->p_numthreads == p->p_suspcount) {
2354 				/*
2355 				 * only thread sending signal to another
2356 				 * process can reach here, if thread is sending
2357 				 * signal to its process, because thread does
2358 				 * not suspend itself here, p_numthreads
2359 				 * should never be equal to p_suspcount.
2360 				 */
2361 				thread_stopped(p);
2362 				mtx_unlock_spin(&sched_lock);
2363 				sigqueue_delete_proc(p, p->p_xstat);
2364 			} else
2365 				mtx_unlock_spin(&sched_lock);
2366 			goto out;
2367 		}
2368 		else
2369 			goto runfast;
2370 		/* NOTREACHED */
2371 	} else {
2372 		/* Not in "NORMAL" state. discard the signal. */
2373 		sigqueue_delete(sigqueue, sig);
2374 		goto out;
2375 	}
2376 
2377 	/*
2378 	 * The process is not stopped so we need to apply the signal to all the
2379 	 * running threads.
2380 	 */
2381 
2382 runfast:
2383 	mtx_lock_spin(&sched_lock);
2384 	tdsigwakeup(td, sig, action, intrval);
2385 	thread_unsuspend(p);
2386 	mtx_unlock_spin(&sched_lock);
2387 out:
2388 	/* If we jump here, sched_lock should not be owned. */
2389 	mtx_assert(&sched_lock, MA_NOTOWNED);
2390 	return (ret);
2391 }
2392 
2393 /*
2394  * The force of a signal has been directed against a single
2395  * thread.  We need to see what we can do about knocking it
2396  * out of any sleep it may be in etc.
2397  */
2398 static void
2399 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2400 {
2401 	struct proc *p = td->td_proc;
2402 	register int prop;
2403 
2404 	PROC_LOCK_ASSERT(p, MA_OWNED);
2405 	mtx_assert(&sched_lock, MA_OWNED);
2406 	prop = sigprop(sig);
2407 
2408 	/*
2409 	 * Bring the priority of a thread up if we want it to get
2410 	 * killed in this lifetime.
2411 	 */
2412 	if (action == SIG_DFL && (prop & SA_KILL)) {
2413 		if (p->p_nice > 0)
2414 			sched_nice(td->td_proc, 0);
2415 		if (td->td_priority > PUSER)
2416 			sched_prio(td, PUSER);
2417 	}
2418 
2419 	if (TD_ON_SLEEPQ(td)) {
2420 		/*
2421 		 * If thread is sleeping uninterruptibly
2422 		 * we can't interrupt the sleep... the signal will
2423 		 * be noticed when the process returns through
2424 		 * trap() or syscall().
2425 		 */
2426 		if ((td->td_flags & TDF_SINTR) == 0)
2427 			return;
2428 		/*
2429 		 * If SIGCONT is default (or ignored) and process is
2430 		 * asleep, we are finished; the process should not
2431 		 * be awakened.
2432 		 */
2433 		if ((prop & SA_CONT) && action == SIG_DFL) {
2434 			mtx_unlock_spin(&sched_lock);
2435 			sigqueue_delete(&p->p_sigqueue, sig);
2436 			/*
2437 			 * It may be on either list in this state.
2438 			 * Remove from both for now.
2439 			 */
2440 			sigqueue_delete(&td->td_sigqueue, sig);
2441 			mtx_lock_spin(&sched_lock);
2442 			return;
2443 		}
2444 
2445 		/*
2446 		 * Give low priority threads a better chance to run.
2447 		 */
2448 		if (td->td_priority > PUSER)
2449 			sched_prio(td, PUSER);
2450 
2451 		sleepq_abort(td, intrval);
2452 	} else {
2453 		/*
2454 		 * Other states do nothing with the signal immediately,
2455 		 * other than kicking ourselves if we are running.
2456 		 * It will either never be noticed, or noticed very soon.
2457 		 */
2458 #ifdef SMP
2459 		if (TD_IS_RUNNING(td) && td != curthread)
2460 			forward_signal(td);
2461 #endif
2462 	}
2463 }
2464 
2465 static void
2466 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2467 {
2468 	struct thread *td2;
2469 
2470 	PROC_LOCK_ASSERT(p, MA_OWNED);
2471 	mtx_assert(&sched_lock, MA_OWNED);
2472 
2473 	FOREACH_THREAD_IN_PROC(p, td2) {
2474 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2475 		    (td2->td_flags & TDF_SINTR) &&
2476 		    !TD_IS_SUSPENDED(td2)) {
2477 			thread_suspend_one(td2);
2478 		} else {
2479 			if (sending || td != td2)
2480 				td2->td_flags |= TDF_ASTPENDING;
2481 #ifdef SMP
2482 			if (TD_IS_RUNNING(td2) && td2 != td)
2483 				forward_signal(td2);
2484 #endif
2485 		}
2486 	}
2487 }
2488 
2489 int
2490 ptracestop(struct thread *td, int sig)
2491 {
2492 	struct proc *p = td->td_proc;
2493 
2494 	PROC_LOCK_ASSERT(p, MA_OWNED);
2495 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2496 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2497 
2498 	mtx_lock_spin(&sched_lock);
2499 	td->td_flags |= TDF_XSIG;
2500 	mtx_unlock_spin(&sched_lock);
2501 	td->td_xsig = sig;
2502 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2503 		if (p->p_flag & P_SINGLE_EXIT) {
2504 			mtx_lock_spin(&sched_lock);
2505 			td->td_flags &= ~TDF_XSIG;
2506 			mtx_unlock_spin(&sched_lock);
2507 			return (sig);
2508 		}
2509 		/*
2510 		 * Just make wait() to work, the last stopped thread
2511 		 * will win.
2512 		 */
2513 		p->p_xstat = sig;
2514 		p->p_xthread = td;
2515 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2516 		mtx_lock_spin(&sched_lock);
2517 		sig_suspend_threads(td, p, 0);
2518 stopme:
2519 		thread_stopped(p);
2520 		thread_suspend_one(td);
2521 		PROC_UNLOCK(p);
2522 		DROP_GIANT();
2523 		mi_switch(SW_VOL, NULL);
2524 		mtx_unlock_spin(&sched_lock);
2525 		PICKUP_GIANT();
2526 		PROC_LOCK(p);
2527 		if (!(p->p_flag & P_TRACED))
2528 			break;
2529 		if (td->td_flags & TDF_DBSUSPEND) {
2530 			if (p->p_flag & P_SINGLE_EXIT)
2531 				break;
2532 			mtx_lock_spin(&sched_lock);
2533 			goto stopme;
2534 		}
2535 	}
2536 	return (td->td_xsig);
2537 }
2538 
2539 /*
2540  * If the current process has received a signal (should be caught or cause
2541  * termination, should interrupt current syscall), return the signal number.
2542  * Stop signals with default action are processed immediately, then cleared;
2543  * they aren't returned.  This is checked after each entry to the system for
2544  * a syscall or trap (though this can usually be done without calling issignal
2545  * by checking the pending signal masks in cursig.) The normal call
2546  * sequence is
2547  *
2548  *	while (sig = cursig(curthread))
2549  *		postsig(sig);
2550  */
2551 static int
2552 issignal(td)
2553 	struct thread *td;
2554 {
2555 	struct proc *p;
2556 	struct sigacts *ps;
2557 	sigset_t sigpending;
2558 	int sig, prop, newsig;
2559 
2560 	p = td->td_proc;
2561 	ps = p->p_sigacts;
2562 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2563 	PROC_LOCK_ASSERT(p, MA_OWNED);
2564 	for (;;) {
2565 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2566 
2567 		sigpending = td->td_sigqueue.sq_signals;
2568 		SIGSETNAND(sigpending, td->td_sigmask);
2569 
2570 		if (p->p_flag & P_PPWAIT)
2571 			SIG_STOPSIGMASK(sigpending);
2572 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2573 			return (0);
2574 		sig = sig_ffs(&sigpending);
2575 
2576 		if (p->p_stops & S_SIG) {
2577 			mtx_unlock(&ps->ps_mtx);
2578 			stopevent(p, S_SIG, sig);
2579 			mtx_lock(&ps->ps_mtx);
2580 		}
2581 
2582 		/*
2583 		 * We should see pending but ignored signals
2584 		 * only if P_TRACED was on when they were posted.
2585 		 */
2586 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2587 			sigqueue_delete(&td->td_sigqueue, sig);
2588 #ifdef KSE
2589 			if (td->td_pflags & TDP_SA)
2590 				SIGADDSET(td->td_sigmask, sig);
2591 #endif
2592 			continue;
2593 		}
2594 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2595 			/*
2596 			 * If traced, always stop.
2597 			 */
2598 			mtx_unlock(&ps->ps_mtx);
2599 			newsig = ptracestop(td, sig);
2600 			mtx_lock(&ps->ps_mtx);
2601 
2602 #ifdef KSE
2603 			if (td->td_pflags & TDP_SA)
2604 				SIGADDSET(td->td_sigmask, sig);
2605 
2606 #endif
2607 			if (sig != newsig) {
2608 				ksiginfo_t ksi;
2609 				/*
2610 				 * clear old signal.
2611 				 * XXX shrug off debugger, it causes siginfo to
2612 				 * be thrown away.
2613 				 */
2614 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2615 
2616 				/*
2617 				 * If parent wants us to take the signal,
2618 				 * then it will leave it in p->p_xstat;
2619 				 * otherwise we just look for signals again.
2620 			 	*/
2621 				if (newsig == 0)
2622 					continue;
2623 				sig = newsig;
2624 
2625 				/*
2626 				 * Put the new signal into td_sigqueue. If the
2627 				 * signal is being masked, look for other signals.
2628 				 */
2629 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2630 #ifdef KSE
2631 				if (td->td_pflags & TDP_SA)
2632 					SIGDELSET(td->td_sigmask, sig);
2633 #endif
2634 				if (SIGISMEMBER(td->td_sigmask, sig))
2635 					continue;
2636 				signotify(td);
2637 			}
2638 
2639 			/*
2640 			 * If the traced bit got turned off, go back up
2641 			 * to the top to rescan signals.  This ensures
2642 			 * that p_sig* and p_sigact are consistent.
2643 			 */
2644 			if ((p->p_flag & P_TRACED) == 0)
2645 				continue;
2646 		}
2647 
2648 		prop = sigprop(sig);
2649 
2650 		/*
2651 		 * Decide whether the signal should be returned.
2652 		 * Return the signal's number, or fall through
2653 		 * to clear it from the pending mask.
2654 		 */
2655 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2656 
2657 		case (intptr_t)SIG_DFL:
2658 			/*
2659 			 * Don't take default actions on system processes.
2660 			 */
2661 			if (p->p_pid <= 1) {
2662 #ifdef DIAGNOSTIC
2663 				/*
2664 				 * Are you sure you want to ignore SIGSEGV
2665 				 * in init? XXX
2666 				 */
2667 				printf("Process (pid %lu) got signal %d\n",
2668 					(u_long)p->p_pid, sig);
2669 #endif
2670 				break;		/* == ignore */
2671 			}
2672 			/*
2673 			 * If there is a pending stop signal to process
2674 			 * with default action, stop here,
2675 			 * then clear the signal.  However,
2676 			 * if process is member of an orphaned
2677 			 * process group, ignore tty stop signals.
2678 			 */
2679 			if (prop & SA_STOP) {
2680 				if (p->p_flag & P_TRACED ||
2681 		    		    (p->p_pgrp->pg_jobc == 0 &&
2682 				     prop & SA_TTYSTOP))
2683 					break;	/* == ignore */
2684 				mtx_unlock(&ps->ps_mtx);
2685 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2686 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2687 				p->p_flag |= P_STOPPED_SIG;
2688 				p->p_xstat = sig;
2689 				mtx_lock_spin(&sched_lock);
2690 				sig_suspend_threads(td, p, 0);
2691 				thread_stopped(p);
2692 				thread_suspend_one(td);
2693 				PROC_UNLOCK(p);
2694 				DROP_GIANT();
2695 				mi_switch(SW_INVOL, NULL);
2696 				mtx_unlock_spin(&sched_lock);
2697 				PICKUP_GIANT();
2698 				PROC_LOCK(p);
2699 				mtx_lock(&ps->ps_mtx);
2700 				break;
2701 			} else if (prop & SA_IGNORE) {
2702 				/*
2703 				 * Except for SIGCONT, shouldn't get here.
2704 				 * Default action is to ignore; drop it.
2705 				 */
2706 				break;		/* == ignore */
2707 			} else
2708 				return (sig);
2709 			/*NOTREACHED*/
2710 
2711 		case (intptr_t)SIG_IGN:
2712 			/*
2713 			 * Masking above should prevent us ever trying
2714 			 * to take action on an ignored signal other
2715 			 * than SIGCONT, unless process is traced.
2716 			 */
2717 			if ((prop & SA_CONT) == 0 &&
2718 			    (p->p_flag & P_TRACED) == 0)
2719 				printf("issignal\n");
2720 			break;		/* == ignore */
2721 
2722 		default:
2723 			/*
2724 			 * This signal has an action, let
2725 			 * postsig() process it.
2726 			 */
2727 			return (sig);
2728 		}
2729 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2730 	}
2731 	/* NOTREACHED */
2732 }
2733 
2734 /*
2735  * MPSAFE
2736  */
2737 void
2738 thread_stopped(struct proc *p)
2739 {
2740 	int n;
2741 
2742 	PROC_LOCK_ASSERT(p, MA_OWNED);
2743 	mtx_assert(&sched_lock, MA_OWNED);
2744 	n = p->p_suspcount;
2745 	if (p == curproc)
2746 		n++;
2747 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2748 		mtx_unlock_spin(&sched_lock);
2749 		p->p_flag &= ~P_WAITED;
2750 		PROC_LOCK(p->p_pptr);
2751 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2752 			CLD_TRAPPED : CLD_STOPPED);
2753 		PROC_UNLOCK(p->p_pptr);
2754 		mtx_lock_spin(&sched_lock);
2755 	}
2756 }
2757 
2758 /*
2759  * Take the action for the specified signal
2760  * from the current set of pending signals.
2761  */
2762 void
2763 postsig(sig)
2764 	register int sig;
2765 {
2766 	struct thread *td = curthread;
2767 	register struct proc *p = td->td_proc;
2768 	struct sigacts *ps;
2769 	sig_t action;
2770 	ksiginfo_t ksi;
2771 	sigset_t returnmask;
2772 	int code;
2773 
2774 	KASSERT(sig != 0, ("postsig"));
2775 
2776 	PROC_LOCK_ASSERT(p, MA_OWNED);
2777 	ps = p->p_sigacts;
2778 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2779 	ksiginfo_init(&ksi);
2780 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2781 	ksi.ksi_signo = sig;
2782 	if (ksi.ksi_code == SI_TIMER)
2783 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2784 	action = ps->ps_sigact[_SIG_IDX(sig)];
2785 #ifdef KTRACE
2786 	if (KTRPOINT(td, KTR_PSIG))
2787 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2788 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2789 #endif
2790 	if (p->p_stops & S_SIG) {
2791 		mtx_unlock(&ps->ps_mtx);
2792 		stopevent(p, S_SIG, sig);
2793 		mtx_lock(&ps->ps_mtx);
2794 	}
2795 
2796 #ifdef KSE
2797 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2798 #else
2799 	if (action == SIG_DFL) {
2800 #endif
2801 		/*
2802 		 * Default action, where the default is to kill
2803 		 * the process.  (Other cases were ignored above.)
2804 		 */
2805 		mtx_unlock(&ps->ps_mtx);
2806 		sigexit(td, sig);
2807 		/* NOTREACHED */
2808 	} else {
2809 #ifdef KSE
2810 		if (td->td_pflags & TDP_SA) {
2811 			if (sig == SIGKILL) {
2812 				mtx_unlock(&ps->ps_mtx);
2813 				sigexit(td, sig);
2814 			}
2815 		}
2816 
2817 #endif
2818 		/*
2819 		 * If we get here, the signal must be caught.
2820 		 */
2821 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2822 		    ("postsig action"));
2823 		/*
2824 		 * Set the new mask value and also defer further
2825 		 * occurrences of this signal.
2826 		 *
2827 		 * Special case: user has done a sigsuspend.  Here the
2828 		 * current mask is not of interest, but rather the
2829 		 * mask from before the sigsuspend is what we want
2830 		 * restored after the signal processing is completed.
2831 		 */
2832 		if (td->td_pflags & TDP_OLDMASK) {
2833 			returnmask = td->td_oldsigmask;
2834 			td->td_pflags &= ~TDP_OLDMASK;
2835 		} else
2836 			returnmask = td->td_sigmask;
2837 
2838 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2839 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2840 			SIGADDSET(td->td_sigmask, sig);
2841 
2842 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2843 			/*
2844 			 * See kern_sigaction() for origin of this code.
2845 			 */
2846 			SIGDELSET(ps->ps_sigcatch, sig);
2847 			if (sig != SIGCONT &&
2848 			    sigprop(sig) & SA_IGNORE)
2849 				SIGADDSET(ps->ps_sigignore, sig);
2850 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2851 		}
2852 		p->p_stats->p_ru.ru_nsignals++;
2853 		if (p->p_sig != sig) {
2854 			code = 0;
2855 		} else {
2856 			code = p->p_code;
2857 			p->p_code = 0;
2858 			p->p_sig = 0;
2859 		}
2860 #ifdef KSE
2861 		if (td->td_pflags & TDP_SA)
2862 			thread_signal_add(curthread, &ksi);
2863 		else
2864 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2865 #else
2866 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2867 #endif
2868 	}
2869 }
2870 
2871 /*
2872  * Kill the current process for stated reason.
2873  */
2874 void
2875 killproc(p, why)
2876 	struct proc *p;
2877 	char *why;
2878 {
2879 
2880 	PROC_LOCK_ASSERT(p, MA_OWNED);
2881 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2882 		p, p->p_pid, p->p_comm);
2883 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2884 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2885 	psignal(p, SIGKILL);
2886 }
2887 
2888 /*
2889  * Force the current process to exit with the specified signal, dumping core
2890  * if appropriate.  We bypass the normal tests for masked and caught signals,
2891  * allowing unrecoverable failures to terminate the process without changing
2892  * signal state.  Mark the accounting record with the signal termination.
2893  * If dumping core, save the signal number for the debugger.  Calls exit and
2894  * does not return.
2895  *
2896  * MPSAFE
2897  */
2898 void
2899 sigexit(td, sig)
2900 	struct thread *td;
2901 	int sig;
2902 {
2903 	struct proc *p = td->td_proc;
2904 
2905 	PROC_LOCK_ASSERT(p, MA_OWNED);
2906 	p->p_acflag |= AXSIG;
2907 	/*
2908 	 * We must be single-threading to generate a core dump.  This
2909 	 * ensures that the registers in the core file are up-to-date.
2910 	 * Also, the ELF dump handler assumes that the thread list doesn't
2911 	 * change out from under it.
2912 	 *
2913 	 * XXX If another thread attempts to single-thread before us
2914 	 *     (e.g. via fork()), we won't get a dump at all.
2915 	 */
2916 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2917 		p->p_sig = sig;
2918 		/*
2919 		 * Log signals which would cause core dumps
2920 		 * (Log as LOG_INFO to appease those who don't want
2921 		 * these messages.)
2922 		 * XXX : Todo, as well as euid, write out ruid too
2923 		 * Note that coredump() drops proc lock.
2924 		 */
2925 		if (coredump(td) == 0)
2926 			sig |= WCOREFLAG;
2927 		if (kern_logsigexit)
2928 			log(LOG_INFO,
2929 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2930 			    p->p_pid, p->p_comm,
2931 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2932 			    sig &~ WCOREFLAG,
2933 			    sig & WCOREFLAG ? " (core dumped)" : "");
2934 	} else
2935 		PROC_UNLOCK(p);
2936 	exit1(td, W_EXITCODE(0, sig));
2937 	/* NOTREACHED */
2938 }
2939 
2940 /*
2941  * Send queued SIGCHLD to parent when child process's state
2942  * is changed.
2943  */
2944 static void
2945 sigparent(struct proc *p, int reason, int status)
2946 {
2947 	PROC_LOCK_ASSERT(p, MA_OWNED);
2948 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2949 
2950 	if (p->p_ksi != NULL) {
2951 		p->p_ksi->ksi_signo  = SIGCHLD;
2952 		p->p_ksi->ksi_code   = reason;
2953 		p->p_ksi->ksi_status = status;
2954 		p->p_ksi->ksi_pid    = p->p_pid;
2955 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2956 		if (KSI_ONQ(p->p_ksi))
2957 			return;
2958 	}
2959 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2960 }
2961 
2962 static void
2963 childproc_jobstate(struct proc *p, int reason, int status)
2964 {
2965 	struct sigacts *ps;
2966 
2967 	PROC_LOCK_ASSERT(p, MA_OWNED);
2968 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2969 
2970 	/*
2971 	 * Wake up parent sleeping in kern_wait(), also send
2972 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2973 	 * that parent will awake, because parent may masked
2974 	 * the signal.
2975 	 */
2976 	p->p_pptr->p_flag |= P_STATCHILD;
2977 	wakeup(p->p_pptr);
2978 
2979 	ps = p->p_pptr->p_sigacts;
2980 	mtx_lock(&ps->ps_mtx);
2981 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2982 		mtx_unlock(&ps->ps_mtx);
2983 		sigparent(p, reason, status);
2984 	} else
2985 		mtx_unlock(&ps->ps_mtx);
2986 }
2987 
2988 void
2989 childproc_stopped(struct proc *p, int reason)
2990 {
2991 	childproc_jobstate(p, reason, p->p_xstat);
2992 }
2993 
2994 void
2995 childproc_continued(struct proc *p)
2996 {
2997 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2998 }
2999 
3000 void
3001 childproc_exited(struct proc *p)
3002 {
3003 	int reason;
3004 	int status = p->p_xstat; /* convert to int */
3005 
3006 	reason = CLD_EXITED;
3007 	if (WCOREDUMP(status))
3008 		reason = CLD_DUMPED;
3009 	else if (WIFSIGNALED(status))
3010 		reason = CLD_KILLED;
3011 	/*
3012 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3013 	 * done in exit1().
3014 	 */
3015 	sigparent(p, reason, status);
3016 }
3017 
3018 static char corefilename[MAXPATHLEN] = {"%N.core"};
3019 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3020 	      sizeof(corefilename), "process corefile name format string");
3021 
3022 /*
3023  * expand_name(name, uid, pid)
3024  * Expand the name described in corefilename, using name, uid, and pid.
3025  * corefilename is a printf-like string, with three format specifiers:
3026  *	%N	name of process ("name")
3027  *	%P	process id (pid)
3028  *	%U	user id (uid)
3029  * For example, "%N.core" is the default; they can be disabled completely
3030  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3031  * This is controlled by the sysctl variable kern.corefile (see above).
3032  */
3033 
3034 static char *
3035 expand_name(name, uid, pid)
3036 	const char *name;
3037 	uid_t uid;
3038 	pid_t pid;
3039 {
3040 	const char *format, *appendstr;
3041 	char *temp;
3042 	char buf[11];		/* Buffer for pid/uid -- max 4B */
3043 	size_t i, l, n;
3044 
3045 	format = corefilename;
3046 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
3047 	if (temp == NULL)
3048 		return (NULL);
3049 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
3050 		switch (format[i]) {
3051 		case '%':	/* Format character */
3052 			i++;
3053 			switch (format[i]) {
3054 			case '%':
3055 				appendstr = "%";
3056 				break;
3057 			case 'N':	/* process name */
3058 				appendstr = name;
3059 				break;
3060 			case 'P':	/* process id */
3061 				sprintf(buf, "%u", pid);
3062 				appendstr = buf;
3063 				break;
3064 			case 'U':	/* user id */
3065 				sprintf(buf, "%u", uid);
3066 				appendstr = buf;
3067 				break;
3068 			default:
3069 				appendstr = "";
3070 			  	log(LOG_ERR,
3071 				    "Unknown format character %c in `%s'\n",
3072 				    format[i], format);
3073 			}
3074 			l = strlen(appendstr);
3075 			if ((n + l) >= MAXPATHLEN)
3076 				goto toolong;
3077 			memcpy(temp + n, appendstr, l);
3078 			n += l;
3079 			break;
3080 		default:
3081 			temp[n++] = format[i];
3082 		}
3083 	}
3084 	if (format[i] != '\0')
3085 		goto toolong;
3086 	return (temp);
3087 toolong:
3088 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3089 	    (long)pid, name, (u_long)uid);
3090 	free(temp, M_TEMP);
3091 	return (NULL);
3092 }
3093 
3094 /*
3095  * Dump a process' core.  The main routine does some
3096  * policy checking, and creates the name of the coredump;
3097  * then it passes on a vnode and a size limit to the process-specific
3098  * coredump routine if there is one; if there _is not_ one, it returns
3099  * ENOSYS; otherwise it returns the error from the process-specific routine.
3100  */
3101 
3102 static int
3103 coredump(struct thread *td)
3104 {
3105 	struct proc *p = td->td_proc;
3106 	register struct vnode *vp;
3107 	register struct ucred *cred = td->td_ucred;
3108 	struct flock lf;
3109 	struct nameidata nd;
3110 	struct vattr vattr;
3111 	int error, error1, flags, locked;
3112 	struct mount *mp;
3113 	char *name;			/* name of corefile */
3114 	off_t limit;
3115 	int vfslocked;
3116 
3117 	PROC_LOCK_ASSERT(p, MA_OWNED);
3118 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3119 	_STOPEVENT(p, S_CORE, 0);
3120 
3121 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3122 		PROC_UNLOCK(p);
3123 		return (EFAULT);
3124 	}
3125 
3126 	/*
3127 	 * Note that the bulk of limit checking is done after
3128 	 * the corefile is created.  The exception is if the limit
3129 	 * for corefiles is 0, in which case we don't bother
3130 	 * creating the corefile at all.  This layout means that
3131 	 * a corefile is truncated instead of not being created,
3132 	 * if it is larger than the limit.
3133 	 */
3134 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3135 	PROC_UNLOCK(p);
3136 	if (limit == 0)
3137 		return (EFBIG);
3138 
3139 restart:
3140 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3141 	if (name == NULL)
3142 		return (EINVAL);
3143 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3144 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3145 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3146 	free(name, M_TEMP);
3147 	if (error)
3148 		return (error);
3149 	vfslocked = NDHASGIANT(&nd);
3150 	NDFREE(&nd, NDF_ONLY_PNBUF);
3151 	vp = nd.ni_vp;
3152 
3153 	/* Don't dump to non-regular files or files with links. */
3154 	if (vp->v_type != VREG ||
3155 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3156 		VOP_UNLOCK(vp, 0, td);
3157 		error = EFAULT;
3158 		goto close;
3159 	}
3160 
3161 	VOP_UNLOCK(vp, 0, td);
3162 	lf.l_whence = SEEK_SET;
3163 	lf.l_start = 0;
3164 	lf.l_len = 0;
3165 	lf.l_type = F_WRLCK;
3166 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3167 
3168 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3169 		lf.l_type = F_UNLCK;
3170 		if (locked)
3171 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3172 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3173 			goto out;
3174 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3175 			goto out;
3176 		VFS_UNLOCK_GIANT(vfslocked);
3177 		goto restart;
3178 	}
3179 
3180 	VATTR_NULL(&vattr);
3181 	vattr.va_size = 0;
3182 	if (set_core_nodump_flag)
3183 		vattr.va_flags = UF_NODUMP;
3184 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3185 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3186 	VOP_SETATTR(vp, &vattr, cred, td);
3187 	VOP_UNLOCK(vp, 0, td);
3188 	vn_finished_write(mp);
3189 	PROC_LOCK(p);
3190 	p->p_acflag |= ACORE;
3191 	PROC_UNLOCK(p);
3192 
3193 	error = p->p_sysent->sv_coredump ?
3194 	  p->p_sysent->sv_coredump(td, vp, limit) :
3195 	  ENOSYS;
3196 
3197 	if (locked) {
3198 		lf.l_type = F_UNLCK;
3199 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3200 	}
3201 close:
3202 	error1 = vn_close(vp, FWRITE, cred, td);
3203 	if (error == 0)
3204 		error = error1;
3205 out:
3206 	VFS_UNLOCK_GIANT(vfslocked);
3207 	return (error);
3208 }
3209 
3210 /*
3211  * Nonexistent system call-- signal process (may want to handle it).
3212  * Flag error in case process won't see signal immediately (blocked or ignored).
3213  */
3214 #ifndef _SYS_SYSPROTO_H_
3215 struct nosys_args {
3216 	int	dummy;
3217 };
3218 #endif
3219 /*
3220  * MPSAFE
3221  */
3222 /* ARGSUSED */
3223 int
3224 nosys(td, args)
3225 	struct thread *td;
3226 	struct nosys_args *args;
3227 {
3228 	struct proc *p = td->td_proc;
3229 
3230 	PROC_LOCK(p);
3231 	psignal(p, SIGSYS);
3232 	PROC_UNLOCK(p);
3233 	return (ENOSYS);
3234 }
3235 
3236 /*
3237  * Send a SIGIO or SIGURG signal to a process or process group using
3238  * stored credentials rather than those of the current process.
3239  */
3240 void
3241 pgsigio(sigiop, sig, checkctty)
3242 	struct sigio **sigiop;
3243 	int sig, checkctty;
3244 {
3245 	struct sigio *sigio;
3246 
3247 	SIGIO_LOCK();
3248 	sigio = *sigiop;
3249 	if (sigio == NULL) {
3250 		SIGIO_UNLOCK();
3251 		return;
3252 	}
3253 	if (sigio->sio_pgid > 0) {
3254 		PROC_LOCK(sigio->sio_proc);
3255 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3256 			psignal(sigio->sio_proc, sig);
3257 		PROC_UNLOCK(sigio->sio_proc);
3258 	} else if (sigio->sio_pgid < 0) {
3259 		struct proc *p;
3260 
3261 		PGRP_LOCK(sigio->sio_pgrp);
3262 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3263 			PROC_LOCK(p);
3264 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3265 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3266 				psignal(p, sig);
3267 			PROC_UNLOCK(p);
3268 		}
3269 		PGRP_UNLOCK(sigio->sio_pgrp);
3270 	}
3271 	SIGIO_UNLOCK();
3272 }
3273 
3274 static int
3275 filt_sigattach(struct knote *kn)
3276 {
3277 	struct proc *p = curproc;
3278 
3279 	kn->kn_ptr.p_proc = p;
3280 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3281 
3282 	knlist_add(&p->p_klist, kn, 0);
3283 
3284 	return (0);
3285 }
3286 
3287 static void
3288 filt_sigdetach(struct knote *kn)
3289 {
3290 	struct proc *p = kn->kn_ptr.p_proc;
3291 
3292 	knlist_remove(&p->p_klist, kn, 0);
3293 }
3294 
3295 /*
3296  * signal knotes are shared with proc knotes, so we apply a mask to
3297  * the hint in order to differentiate them from process hints.  This
3298  * could be avoided by using a signal-specific knote list, but probably
3299  * isn't worth the trouble.
3300  */
3301 static int
3302 filt_signal(struct knote *kn, long hint)
3303 {
3304 
3305 	if (hint & NOTE_SIGNAL) {
3306 		hint &= ~NOTE_SIGNAL;
3307 
3308 		if (kn->kn_id == hint)
3309 			kn->kn_data++;
3310 	}
3311 	return (kn->kn_data != 0);
3312 }
3313 
3314 struct sigacts *
3315 sigacts_alloc(void)
3316 {
3317 	struct sigacts *ps;
3318 
3319 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3320 	ps->ps_refcnt = 1;
3321 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3322 	return (ps);
3323 }
3324 
3325 void
3326 sigacts_free(struct sigacts *ps)
3327 {
3328 
3329 	mtx_lock(&ps->ps_mtx);
3330 	ps->ps_refcnt--;
3331 	if (ps->ps_refcnt == 0) {
3332 		mtx_destroy(&ps->ps_mtx);
3333 		free(ps, M_SUBPROC);
3334 	} else
3335 		mtx_unlock(&ps->ps_mtx);
3336 }
3337 
3338 struct sigacts *
3339 sigacts_hold(struct sigacts *ps)
3340 {
3341 	mtx_lock(&ps->ps_mtx);
3342 	ps->ps_refcnt++;
3343 	mtx_unlock(&ps->ps_mtx);
3344 	return (ps);
3345 }
3346 
3347 void
3348 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3349 {
3350 
3351 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3352 	mtx_lock(&src->ps_mtx);
3353 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3354 	mtx_unlock(&src->ps_mtx);
3355 }
3356 
3357 int
3358 sigacts_shared(struct sigacts *ps)
3359 {
3360 	int shared;
3361 
3362 	mtx_lock(&ps->ps_mtx);
3363 	shared = ps->ps_refcnt > 1;
3364 	mtx_unlock(&ps->ps_mtx);
3365 	return (shared);
3366 }
3367