xref: /freebsd/sys/kern/kern_sig.c (revision eb24e1491f9900e922c78e53af588f22a3e9535f)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/pioctl.h>
71 #include <sys/racct.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sdt.h>
74 #include <sys/sbuf.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/smp.h>
77 #include <sys/stat.h>
78 #include <sys/sx.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/syslog.h>
83 #include <sys/sysproto.h>
84 #include <sys/timers.h>
85 #include <sys/unistd.h>
86 #include <sys/wait.h>
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/uma.h>
90 
91 #include <sys/jail.h>
92 
93 #include <machine/cpu.h>
94 
95 #include <security/audit/audit.h>
96 
97 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
98 
99 SDT_PROVIDER_DECLARE(proc);
100 SDT_PROBE_DEFINE3(proc, , , signal__send,
101     "struct thread *", "struct proc *", "int");
102 SDT_PROBE_DEFINE2(proc, , , signal__clear,
103     "int", "ksiginfo_t *");
104 SDT_PROBE_DEFINE3(proc, , , signal__discard,
105     "struct thread *", "struct proc *", "int");
106 
107 static int	coredump(struct thread *);
108 static int	killpg1(struct thread *td, int sig, int pgid, int all,
109 		    ksiginfo_t *ksi);
110 static int	issignal(struct thread *td);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, int prop);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
161 
162 /*
163  * Policy -- Can ucred cr1 send SIGIO to process cr2?
164  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
165  * in the right situations.
166  */
167 #define CANSIGIO(cr1, cr2) \
168 	((cr1)->cr_uid == 0 || \
169 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
171 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
172 	    (cr1)->cr_uid == (cr2)->cr_uid)
173 
174 static int	sugid_coredump;
175 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
176     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
177 
178 static int	capmode_coredump;
179 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
180     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
181 
182 static int	do_coredump = 1;
183 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
184 	&do_coredump, 0, "Enable/Disable coredumps");
185 
186 static int	set_core_nodump_flag = 0;
187 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
188 	0, "Enable setting the NODUMP flag on coredump files");
189 
190 static int	coredump_devctl = 0;
191 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
192 	0, "Generate a devctl notification when processes coredump");
193 
194 /*
195  * Signal properties and actions.
196  * The array below categorizes the signals and their default actions
197  * according to the following properties:
198  */
199 #define	SIGPROP_KILL		0x01	/* terminates process by default */
200 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
201 #define	SIGPROP_STOP		0x04	/* suspend process */
202 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
203 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
204 #define	SIGPROP_CONT		0x20	/* continue if suspended */
205 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
206 
207 static int sigproptbl[NSIG] = {
208 	[SIGHUP] =	SIGPROP_KILL,
209 	[SIGINT] =	SIGPROP_KILL,
210 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGKILL] =	SIGPROP_KILL,
217 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
219 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
220 	[SIGPIPE] =	SIGPROP_KILL,
221 	[SIGALRM] =	SIGPROP_KILL,
222 	[SIGTERM] =	SIGPROP_KILL,
223 	[SIGURG] =	SIGPROP_IGNORE,
224 	[SIGSTOP] =	SIGPROP_STOP,
225 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
226 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
227 	[SIGCHLD] =	SIGPROP_IGNORE,
228 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
229 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
230 	[SIGIO] =	SIGPROP_IGNORE,
231 	[SIGXCPU] =	SIGPROP_KILL,
232 	[SIGXFSZ] =	SIGPROP_KILL,
233 	[SIGVTALRM] =	SIGPROP_KILL,
234 	[SIGPROF] =	SIGPROP_KILL,
235 	[SIGWINCH] =	SIGPROP_IGNORE,
236 	[SIGINFO] =	SIGPROP_IGNORE,
237 	[SIGUSR1] =	SIGPROP_KILL,
238 	[SIGUSR2] =	SIGPROP_KILL,
239 };
240 
241 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
242 
243 static void
244 sigqueue_start(void)
245 {
246 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
247 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
248 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
249 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
250 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
251 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
252 }
253 
254 ksiginfo_t *
255 ksiginfo_alloc(int wait)
256 {
257 	int flags;
258 
259 	flags = M_ZERO;
260 	if (! wait)
261 		flags |= M_NOWAIT;
262 	if (ksiginfo_zone != NULL)
263 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
264 	return (NULL);
265 }
266 
267 void
268 ksiginfo_free(ksiginfo_t *ksi)
269 {
270 	uma_zfree(ksiginfo_zone, ksi);
271 }
272 
273 static __inline int
274 ksiginfo_tryfree(ksiginfo_t *ksi)
275 {
276 	if (!(ksi->ksi_flags & KSI_EXT)) {
277 		uma_zfree(ksiginfo_zone, ksi);
278 		return (1);
279 	}
280 	return (0);
281 }
282 
283 void
284 sigqueue_init(sigqueue_t *list, struct proc *p)
285 {
286 	SIGEMPTYSET(list->sq_signals);
287 	SIGEMPTYSET(list->sq_kill);
288 	SIGEMPTYSET(list->sq_ptrace);
289 	TAILQ_INIT(&list->sq_list);
290 	list->sq_proc = p;
291 	list->sq_flags = SQ_INIT;
292 }
293 
294 /*
295  * Get a signal's ksiginfo.
296  * Return:
297  *	0	-	signal not found
298  *	others	-	signal number
299  */
300 static int
301 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
302 {
303 	struct proc *p = sq->sq_proc;
304 	struct ksiginfo *ksi, *next;
305 	int count = 0;
306 
307 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
308 
309 	if (!SIGISMEMBER(sq->sq_signals, signo))
310 		return (0);
311 
312 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
313 		count++;
314 		SIGDELSET(sq->sq_ptrace, signo);
315 		si->ksi_flags |= KSI_PTRACE;
316 	}
317 	if (SIGISMEMBER(sq->sq_kill, signo)) {
318 		count++;
319 		if (count == 1)
320 			SIGDELSET(sq->sq_kill, signo);
321 	}
322 
323 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
324 		if (ksi->ksi_signo == signo) {
325 			if (count == 0) {
326 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
327 				ksi->ksi_sigq = NULL;
328 				ksiginfo_copy(ksi, si);
329 				if (ksiginfo_tryfree(ksi) && p != NULL)
330 					p->p_pendingcnt--;
331 			}
332 			if (++count > 1)
333 				break;
334 		}
335 	}
336 
337 	if (count <= 1)
338 		SIGDELSET(sq->sq_signals, signo);
339 	si->ksi_signo = signo;
340 	return (signo);
341 }
342 
343 void
344 sigqueue_take(ksiginfo_t *ksi)
345 {
346 	struct ksiginfo *kp;
347 	struct proc	*p;
348 	sigqueue_t	*sq;
349 
350 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
351 		return;
352 
353 	p = sq->sq_proc;
354 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
355 	ksi->ksi_sigq = NULL;
356 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
357 		p->p_pendingcnt--;
358 
359 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
360 	     kp = TAILQ_NEXT(kp, ksi_link)) {
361 		if (kp->ksi_signo == ksi->ksi_signo)
362 			break;
363 	}
364 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
365 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
366 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
367 }
368 
369 static int
370 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
371 {
372 	struct proc *p = sq->sq_proc;
373 	struct ksiginfo *ksi;
374 	int ret = 0;
375 
376 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
377 
378 	/*
379 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
380 	 * for these signals.
381 	 */
382 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
383 		SIGADDSET(sq->sq_kill, signo);
384 		goto out_set_bit;
385 	}
386 
387 	/* directly insert the ksi, don't copy it */
388 	if (si->ksi_flags & KSI_INS) {
389 		if (si->ksi_flags & KSI_HEAD)
390 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
391 		else
392 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
393 		si->ksi_sigq = sq;
394 		goto out_set_bit;
395 	}
396 
397 	if (__predict_false(ksiginfo_zone == NULL)) {
398 		SIGADDSET(sq->sq_kill, signo);
399 		goto out_set_bit;
400 	}
401 
402 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
403 		signal_overflow++;
404 		ret = EAGAIN;
405 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
406 		signal_alloc_fail++;
407 		ret = EAGAIN;
408 	} else {
409 		if (p != NULL)
410 			p->p_pendingcnt++;
411 		ksiginfo_copy(si, ksi);
412 		ksi->ksi_signo = signo;
413 		if (si->ksi_flags & KSI_HEAD)
414 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
415 		else
416 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
417 		ksi->ksi_sigq = sq;
418 	}
419 
420 	if (ret != 0) {
421 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
422 			SIGADDSET(sq->sq_ptrace, signo);
423 			ret = 0;
424 			goto out_set_bit;
425 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
426 		    (si->ksi_flags & KSI_SIGQ) == 0) {
427 			SIGADDSET(sq->sq_kill, signo);
428 			ret = 0;
429 			goto out_set_bit;
430 		}
431 		return (ret);
432 	}
433 
434 out_set_bit:
435 	SIGADDSET(sq->sq_signals, signo);
436 	return (ret);
437 }
438 
439 void
440 sigqueue_flush(sigqueue_t *sq)
441 {
442 	struct proc *p = sq->sq_proc;
443 	ksiginfo_t *ksi;
444 
445 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
446 
447 	if (p != NULL)
448 		PROC_LOCK_ASSERT(p, MA_OWNED);
449 
450 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
451 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
452 		ksi->ksi_sigq = NULL;
453 		if (ksiginfo_tryfree(ksi) && p != NULL)
454 			p->p_pendingcnt--;
455 	}
456 
457 	SIGEMPTYSET(sq->sq_signals);
458 	SIGEMPTYSET(sq->sq_kill);
459 	SIGEMPTYSET(sq->sq_ptrace);
460 }
461 
462 static void
463 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
464 {
465 	sigset_t tmp;
466 	struct proc *p1, *p2;
467 	ksiginfo_t *ksi, *next;
468 
469 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
470 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
471 	p1 = src->sq_proc;
472 	p2 = dst->sq_proc;
473 	/* Move siginfo to target list */
474 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
475 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
476 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
477 			if (p1 != NULL)
478 				p1->p_pendingcnt--;
479 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
480 			ksi->ksi_sigq = dst;
481 			if (p2 != NULL)
482 				p2->p_pendingcnt++;
483 		}
484 	}
485 
486 	/* Move pending bits to target list */
487 	tmp = src->sq_kill;
488 	SIGSETAND(tmp, *set);
489 	SIGSETOR(dst->sq_kill, tmp);
490 	SIGSETNAND(src->sq_kill, tmp);
491 
492 	tmp = src->sq_ptrace;
493 	SIGSETAND(tmp, *set);
494 	SIGSETOR(dst->sq_ptrace, tmp);
495 	SIGSETNAND(src->sq_ptrace, tmp);
496 
497 	tmp = src->sq_signals;
498 	SIGSETAND(tmp, *set);
499 	SIGSETOR(dst->sq_signals, tmp);
500 	SIGSETNAND(src->sq_signals, tmp);
501 }
502 
503 #if 0
504 static void
505 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
506 {
507 	sigset_t set;
508 
509 	SIGEMPTYSET(set);
510 	SIGADDSET(set, signo);
511 	sigqueue_move_set(src, dst, &set);
512 }
513 #endif
514 
515 static void
516 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
517 {
518 	struct proc *p = sq->sq_proc;
519 	ksiginfo_t *ksi, *next;
520 
521 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
522 
523 	/* Remove siginfo queue */
524 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
525 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
526 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
527 			ksi->ksi_sigq = NULL;
528 			if (ksiginfo_tryfree(ksi) && p != NULL)
529 				p->p_pendingcnt--;
530 		}
531 	}
532 	SIGSETNAND(sq->sq_kill, *set);
533 	SIGSETNAND(sq->sq_ptrace, *set);
534 	SIGSETNAND(sq->sq_signals, *set);
535 }
536 
537 void
538 sigqueue_delete(sigqueue_t *sq, int signo)
539 {
540 	sigset_t set;
541 
542 	SIGEMPTYSET(set);
543 	SIGADDSET(set, signo);
544 	sigqueue_delete_set(sq, &set);
545 }
546 
547 /* Remove a set of signals for a process */
548 static void
549 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
550 {
551 	sigqueue_t worklist;
552 	struct thread *td0;
553 
554 	PROC_LOCK_ASSERT(p, MA_OWNED);
555 
556 	sigqueue_init(&worklist, NULL);
557 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
558 
559 	FOREACH_THREAD_IN_PROC(p, td0)
560 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
561 
562 	sigqueue_flush(&worklist);
563 }
564 
565 void
566 sigqueue_delete_proc(struct proc *p, int signo)
567 {
568 	sigset_t set;
569 
570 	SIGEMPTYSET(set);
571 	SIGADDSET(set, signo);
572 	sigqueue_delete_set_proc(p, &set);
573 }
574 
575 static void
576 sigqueue_delete_stopmask_proc(struct proc *p)
577 {
578 	sigset_t set;
579 
580 	SIGEMPTYSET(set);
581 	SIGADDSET(set, SIGSTOP);
582 	SIGADDSET(set, SIGTSTP);
583 	SIGADDSET(set, SIGTTIN);
584 	SIGADDSET(set, SIGTTOU);
585 	sigqueue_delete_set_proc(p, &set);
586 }
587 
588 /*
589  * Determine signal that should be delivered to thread td, the current
590  * thread, 0 if none.  If there is a pending stop signal with default
591  * action, the process stops in issignal().
592  */
593 int
594 cursig(struct thread *td)
595 {
596 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
597 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
598 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
599 	return (SIGPENDING(td) ? issignal(td) : 0);
600 }
601 
602 /*
603  * Arrange for ast() to handle unmasked pending signals on return to user
604  * mode.  This must be called whenever a signal is added to td_sigqueue or
605  * unmasked in td_sigmask.
606  */
607 void
608 signotify(struct thread *td)
609 {
610 
611 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
612 
613 	if (SIGPENDING(td)) {
614 		thread_lock(td);
615 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
616 		thread_unlock(td);
617 	}
618 }
619 
620 /*
621  * Returns 1 (true) if altstack is configured for the thread, and the
622  * passed stack bottom address falls into the altstack range.  Handles
623  * the 43 compat special case where the alt stack size is zero.
624  */
625 int
626 sigonstack(size_t sp)
627 {
628 	struct thread *td;
629 
630 	td = curthread;
631 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
632 		return (0);
633 #if defined(COMPAT_43)
634 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
635 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
636 #endif
637 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
638 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
639 }
640 
641 static __inline int
642 sigprop(int sig)
643 {
644 
645 	if (sig > 0 && sig < nitems(sigproptbl))
646 		return (sigproptbl[sig]);
647 	return (0);
648 }
649 
650 int
651 sig_ffs(sigset_t *set)
652 {
653 	int i;
654 
655 	for (i = 0; i < _SIG_WORDS; i++)
656 		if (set->__bits[i])
657 			return (ffs(set->__bits[i]) + (i * 32));
658 	return (0);
659 }
660 
661 static bool
662 sigact_flag_test(const struct sigaction *act, int flag)
663 {
664 
665 	/*
666 	 * SA_SIGINFO is reset when signal disposition is set to
667 	 * ignore or default.  Other flags are kept according to user
668 	 * settings.
669 	 */
670 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
671 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
672 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
673 }
674 
675 /*
676  * kern_sigaction
677  * sigaction
678  * freebsd4_sigaction
679  * osigaction
680  */
681 int
682 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
683     struct sigaction *oact, int flags)
684 {
685 	struct sigacts *ps;
686 	struct proc *p = td->td_proc;
687 
688 	if (!_SIG_VALID(sig))
689 		return (EINVAL);
690 	if (act != NULL && act->sa_handler != SIG_DFL &&
691 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
692 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
693 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
694 		return (EINVAL);
695 
696 	PROC_LOCK(p);
697 	ps = p->p_sigacts;
698 	mtx_lock(&ps->ps_mtx);
699 	if (oact) {
700 		memset(oact, 0, sizeof(*oact));
701 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
702 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
703 			oact->sa_flags |= SA_ONSTACK;
704 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
705 			oact->sa_flags |= SA_RESTART;
706 		if (SIGISMEMBER(ps->ps_sigreset, sig))
707 			oact->sa_flags |= SA_RESETHAND;
708 		if (SIGISMEMBER(ps->ps_signodefer, sig))
709 			oact->sa_flags |= SA_NODEFER;
710 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
711 			oact->sa_flags |= SA_SIGINFO;
712 			oact->sa_sigaction =
713 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
714 		} else
715 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
716 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
717 			oact->sa_flags |= SA_NOCLDSTOP;
718 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
719 			oact->sa_flags |= SA_NOCLDWAIT;
720 	}
721 	if (act) {
722 		if ((sig == SIGKILL || sig == SIGSTOP) &&
723 		    act->sa_handler != SIG_DFL) {
724 			mtx_unlock(&ps->ps_mtx);
725 			PROC_UNLOCK(p);
726 			return (EINVAL);
727 		}
728 
729 		/*
730 		 * Change setting atomically.
731 		 */
732 
733 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
734 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
735 		if (sigact_flag_test(act, SA_SIGINFO)) {
736 			ps->ps_sigact[_SIG_IDX(sig)] =
737 			    (__sighandler_t *)act->sa_sigaction;
738 			SIGADDSET(ps->ps_siginfo, sig);
739 		} else {
740 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
741 			SIGDELSET(ps->ps_siginfo, sig);
742 		}
743 		if (!sigact_flag_test(act, SA_RESTART))
744 			SIGADDSET(ps->ps_sigintr, sig);
745 		else
746 			SIGDELSET(ps->ps_sigintr, sig);
747 		if (sigact_flag_test(act, SA_ONSTACK))
748 			SIGADDSET(ps->ps_sigonstack, sig);
749 		else
750 			SIGDELSET(ps->ps_sigonstack, sig);
751 		if (sigact_flag_test(act, SA_RESETHAND))
752 			SIGADDSET(ps->ps_sigreset, sig);
753 		else
754 			SIGDELSET(ps->ps_sigreset, sig);
755 		if (sigact_flag_test(act, SA_NODEFER))
756 			SIGADDSET(ps->ps_signodefer, sig);
757 		else
758 			SIGDELSET(ps->ps_signodefer, sig);
759 		if (sig == SIGCHLD) {
760 			if (act->sa_flags & SA_NOCLDSTOP)
761 				ps->ps_flag |= PS_NOCLDSTOP;
762 			else
763 				ps->ps_flag &= ~PS_NOCLDSTOP;
764 			if (act->sa_flags & SA_NOCLDWAIT) {
765 				/*
766 				 * Paranoia: since SA_NOCLDWAIT is implemented
767 				 * by reparenting the dying child to PID 1 (and
768 				 * trust it to reap the zombie), PID 1 itself
769 				 * is forbidden to set SA_NOCLDWAIT.
770 				 */
771 				if (p->p_pid == 1)
772 					ps->ps_flag &= ~PS_NOCLDWAIT;
773 				else
774 					ps->ps_flag |= PS_NOCLDWAIT;
775 			} else
776 				ps->ps_flag &= ~PS_NOCLDWAIT;
777 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
778 				ps->ps_flag |= PS_CLDSIGIGN;
779 			else
780 				ps->ps_flag &= ~PS_CLDSIGIGN;
781 		}
782 		/*
783 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
784 		 * and for signals set to SIG_DFL where the default is to
785 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
786 		 * have to restart the process.
787 		 */
788 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
789 		    (sigprop(sig) & SIGPROP_IGNORE &&
790 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
791 			/* never to be seen again */
792 			sigqueue_delete_proc(p, sig);
793 			if (sig != SIGCONT)
794 				/* easier in psignal */
795 				SIGADDSET(ps->ps_sigignore, sig);
796 			SIGDELSET(ps->ps_sigcatch, sig);
797 		} else {
798 			SIGDELSET(ps->ps_sigignore, sig);
799 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
800 				SIGDELSET(ps->ps_sigcatch, sig);
801 			else
802 				SIGADDSET(ps->ps_sigcatch, sig);
803 		}
804 #ifdef COMPAT_FREEBSD4
805 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
806 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
807 		    (flags & KSA_FREEBSD4) == 0)
808 			SIGDELSET(ps->ps_freebsd4, sig);
809 		else
810 			SIGADDSET(ps->ps_freebsd4, sig);
811 #endif
812 #ifdef COMPAT_43
813 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
814 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
815 		    (flags & KSA_OSIGSET) == 0)
816 			SIGDELSET(ps->ps_osigset, sig);
817 		else
818 			SIGADDSET(ps->ps_osigset, sig);
819 #endif
820 	}
821 	mtx_unlock(&ps->ps_mtx);
822 	PROC_UNLOCK(p);
823 	return (0);
824 }
825 
826 #ifndef _SYS_SYSPROTO_H_
827 struct sigaction_args {
828 	int	sig;
829 	struct	sigaction *act;
830 	struct	sigaction *oact;
831 };
832 #endif
833 int
834 sys_sigaction(struct thread *td, struct sigaction_args *uap)
835 {
836 	struct sigaction act, oact;
837 	struct sigaction *actp, *oactp;
838 	int error;
839 
840 	actp = (uap->act != NULL) ? &act : NULL;
841 	oactp = (uap->oact != NULL) ? &oact : NULL;
842 	if (actp) {
843 		error = copyin(uap->act, actp, sizeof(act));
844 		if (error)
845 			return (error);
846 	}
847 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
848 	if (oactp && !error)
849 		error = copyout(oactp, uap->oact, sizeof(oact));
850 	return (error);
851 }
852 
853 #ifdef COMPAT_FREEBSD4
854 #ifndef _SYS_SYSPROTO_H_
855 struct freebsd4_sigaction_args {
856 	int	sig;
857 	struct	sigaction *act;
858 	struct	sigaction *oact;
859 };
860 #endif
861 int
862 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
863 {
864 	struct sigaction act, oact;
865 	struct sigaction *actp, *oactp;
866 	int error;
867 
868 	actp = (uap->act != NULL) ? &act : NULL;
869 	oactp = (uap->oact != NULL) ? &oact : NULL;
870 	if (actp) {
871 		error = copyin(uap->act, actp, sizeof(act));
872 		if (error)
873 			return (error);
874 	}
875 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
876 	if (oactp && !error)
877 		error = copyout(oactp, uap->oact, sizeof(oact));
878 	return (error);
879 }
880 #endif	/* COMAPT_FREEBSD4 */
881 
882 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
883 #ifndef _SYS_SYSPROTO_H_
884 struct osigaction_args {
885 	int	signum;
886 	struct	osigaction *nsa;
887 	struct	osigaction *osa;
888 };
889 #endif
890 int
891 osigaction(struct thread *td, struct osigaction_args *uap)
892 {
893 	struct osigaction sa;
894 	struct sigaction nsa, osa;
895 	struct sigaction *nsap, *osap;
896 	int error;
897 
898 	if (uap->signum <= 0 || uap->signum >= ONSIG)
899 		return (EINVAL);
900 
901 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
902 	osap = (uap->osa != NULL) ? &osa : NULL;
903 
904 	if (nsap) {
905 		error = copyin(uap->nsa, &sa, sizeof(sa));
906 		if (error)
907 			return (error);
908 		nsap->sa_handler = sa.sa_handler;
909 		nsap->sa_flags = sa.sa_flags;
910 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
911 	}
912 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
913 	if (osap && !error) {
914 		sa.sa_handler = osap->sa_handler;
915 		sa.sa_flags = osap->sa_flags;
916 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
917 		error = copyout(&sa, uap->osa, sizeof(sa));
918 	}
919 	return (error);
920 }
921 
922 #if !defined(__i386__)
923 /* Avoid replicating the same stub everywhere */
924 int
925 osigreturn(struct thread *td, struct osigreturn_args *uap)
926 {
927 
928 	return (nosys(td, (struct nosys_args *)uap));
929 }
930 #endif
931 #endif /* COMPAT_43 */
932 
933 /*
934  * Initialize signal state for process 0;
935  * set to ignore signals that are ignored by default.
936  */
937 void
938 siginit(struct proc *p)
939 {
940 	int i;
941 	struct sigacts *ps;
942 
943 	PROC_LOCK(p);
944 	ps = p->p_sigacts;
945 	mtx_lock(&ps->ps_mtx);
946 	for (i = 1; i <= NSIG; i++) {
947 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
948 			SIGADDSET(ps->ps_sigignore, i);
949 		}
950 	}
951 	mtx_unlock(&ps->ps_mtx);
952 	PROC_UNLOCK(p);
953 }
954 
955 /*
956  * Reset specified signal to the default disposition.
957  */
958 static void
959 sigdflt(struct sigacts *ps, int sig)
960 {
961 
962 	mtx_assert(&ps->ps_mtx, MA_OWNED);
963 	SIGDELSET(ps->ps_sigcatch, sig);
964 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
965 		SIGADDSET(ps->ps_sigignore, sig);
966 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
967 	SIGDELSET(ps->ps_siginfo, sig);
968 }
969 
970 /*
971  * Reset signals for an exec of the specified process.
972  */
973 void
974 execsigs(struct proc *p)
975 {
976 	sigset_t osigignore;
977 	struct sigacts *ps;
978 	int sig;
979 	struct thread *td;
980 
981 	/*
982 	 * Reset caught signals.  Held signals remain held
983 	 * through td_sigmask (unless they were caught,
984 	 * and are now ignored by default).
985 	 */
986 	PROC_LOCK_ASSERT(p, MA_OWNED);
987 	ps = p->p_sigacts;
988 	mtx_lock(&ps->ps_mtx);
989 	sig_drop_caught(p);
990 
991 	/*
992 	 * As CloudABI processes cannot modify signal handlers, fully
993 	 * reset all signals to their default behavior. Do ignore
994 	 * SIGPIPE, as it would otherwise be impossible to recover from
995 	 * writes to broken pipes and sockets.
996 	 */
997 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
998 		osigignore = ps->ps_sigignore;
999 		while (SIGNOTEMPTY(osigignore)) {
1000 			sig = sig_ffs(&osigignore);
1001 			SIGDELSET(osigignore, sig);
1002 			if (sig != SIGPIPE)
1003 				sigdflt(ps, sig);
1004 		}
1005 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1006 	}
1007 
1008 	/*
1009 	 * Reset stack state to the user stack.
1010 	 * Clear set of signals caught on the signal stack.
1011 	 */
1012 	td = curthread;
1013 	MPASS(td->td_proc == p);
1014 	td->td_sigstk.ss_flags = SS_DISABLE;
1015 	td->td_sigstk.ss_size = 0;
1016 	td->td_sigstk.ss_sp = 0;
1017 	td->td_pflags &= ~TDP_ALTSTACK;
1018 	/*
1019 	 * Reset no zombies if child dies flag as Solaris does.
1020 	 */
1021 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1022 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1023 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1024 	mtx_unlock(&ps->ps_mtx);
1025 }
1026 
1027 /*
1028  * kern_sigprocmask()
1029  *
1030  *	Manipulate signal mask.
1031  */
1032 int
1033 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1034     int flags)
1035 {
1036 	sigset_t new_block, oset1;
1037 	struct proc *p;
1038 	int error;
1039 
1040 	p = td->td_proc;
1041 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1042 		PROC_LOCK_ASSERT(p, MA_OWNED);
1043 	else
1044 		PROC_LOCK(p);
1045 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1046 	    ? MA_OWNED : MA_NOTOWNED);
1047 	if (oset != NULL)
1048 		*oset = td->td_sigmask;
1049 
1050 	error = 0;
1051 	if (set != NULL) {
1052 		switch (how) {
1053 		case SIG_BLOCK:
1054 			SIG_CANTMASK(*set);
1055 			oset1 = td->td_sigmask;
1056 			SIGSETOR(td->td_sigmask, *set);
1057 			new_block = td->td_sigmask;
1058 			SIGSETNAND(new_block, oset1);
1059 			break;
1060 		case SIG_UNBLOCK:
1061 			SIGSETNAND(td->td_sigmask, *set);
1062 			signotify(td);
1063 			goto out;
1064 		case SIG_SETMASK:
1065 			SIG_CANTMASK(*set);
1066 			oset1 = td->td_sigmask;
1067 			if (flags & SIGPROCMASK_OLD)
1068 				SIGSETLO(td->td_sigmask, *set);
1069 			else
1070 				td->td_sigmask = *set;
1071 			new_block = td->td_sigmask;
1072 			SIGSETNAND(new_block, oset1);
1073 			signotify(td);
1074 			break;
1075 		default:
1076 			error = EINVAL;
1077 			goto out;
1078 		}
1079 
1080 		/*
1081 		 * The new_block set contains signals that were not previously
1082 		 * blocked, but are blocked now.
1083 		 *
1084 		 * In case we block any signal that was not previously blocked
1085 		 * for td, and process has the signal pending, try to schedule
1086 		 * signal delivery to some thread that does not block the
1087 		 * signal, possibly waking it up.
1088 		 */
1089 		if (p->p_numthreads != 1)
1090 			reschedule_signals(p, new_block, flags);
1091 	}
1092 
1093 out:
1094 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1095 		PROC_UNLOCK(p);
1096 	return (error);
1097 }
1098 
1099 #ifndef _SYS_SYSPROTO_H_
1100 struct sigprocmask_args {
1101 	int	how;
1102 	const sigset_t *set;
1103 	sigset_t *oset;
1104 };
1105 #endif
1106 int
1107 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1108 {
1109 	sigset_t set, oset;
1110 	sigset_t *setp, *osetp;
1111 	int error;
1112 
1113 	setp = (uap->set != NULL) ? &set : NULL;
1114 	osetp = (uap->oset != NULL) ? &oset : NULL;
1115 	if (setp) {
1116 		error = copyin(uap->set, setp, sizeof(set));
1117 		if (error)
1118 			return (error);
1119 	}
1120 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1121 	if (osetp && !error) {
1122 		error = copyout(osetp, uap->oset, sizeof(oset));
1123 	}
1124 	return (error);
1125 }
1126 
1127 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1128 #ifndef _SYS_SYSPROTO_H_
1129 struct osigprocmask_args {
1130 	int	how;
1131 	osigset_t mask;
1132 };
1133 #endif
1134 int
1135 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1136 {
1137 	sigset_t set, oset;
1138 	int error;
1139 
1140 	OSIG2SIG(uap->mask, set);
1141 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1142 	SIG2OSIG(oset, td->td_retval[0]);
1143 	return (error);
1144 }
1145 #endif /* COMPAT_43 */
1146 
1147 int
1148 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1149 {
1150 	ksiginfo_t ksi;
1151 	sigset_t set;
1152 	int error;
1153 
1154 	error = copyin(uap->set, &set, sizeof(set));
1155 	if (error) {
1156 		td->td_retval[0] = error;
1157 		return (0);
1158 	}
1159 
1160 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1161 	if (error) {
1162 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1163 			error = ERESTART;
1164 		if (error == ERESTART)
1165 			return (error);
1166 		td->td_retval[0] = error;
1167 		return (0);
1168 	}
1169 
1170 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1171 	td->td_retval[0] = error;
1172 	return (0);
1173 }
1174 
1175 int
1176 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1177 {
1178 	struct timespec ts;
1179 	struct timespec *timeout;
1180 	sigset_t set;
1181 	ksiginfo_t ksi;
1182 	int error;
1183 
1184 	if (uap->timeout) {
1185 		error = copyin(uap->timeout, &ts, sizeof(ts));
1186 		if (error)
1187 			return (error);
1188 
1189 		timeout = &ts;
1190 	} else
1191 		timeout = NULL;
1192 
1193 	error = copyin(uap->set, &set, sizeof(set));
1194 	if (error)
1195 		return (error);
1196 
1197 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1198 	if (error)
1199 		return (error);
1200 
1201 	if (uap->info)
1202 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1203 
1204 	if (error == 0)
1205 		td->td_retval[0] = ksi.ksi_signo;
1206 	return (error);
1207 }
1208 
1209 int
1210 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1211 {
1212 	ksiginfo_t ksi;
1213 	sigset_t set;
1214 	int error;
1215 
1216 	error = copyin(uap->set, &set, sizeof(set));
1217 	if (error)
1218 		return (error);
1219 
1220 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1221 	if (error)
1222 		return (error);
1223 
1224 	if (uap->info)
1225 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1226 
1227 	if (error == 0)
1228 		td->td_retval[0] = ksi.ksi_signo;
1229 	return (error);
1230 }
1231 
1232 static void
1233 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1234 {
1235 	struct thread *thr;
1236 
1237 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1238 		if (thr == td)
1239 			thr->td_si = *si;
1240 		else
1241 			thr->td_si.si_signo = 0;
1242 	}
1243 }
1244 
1245 int
1246 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1247 	struct timespec *timeout)
1248 {
1249 	struct sigacts *ps;
1250 	sigset_t saved_mask, new_block;
1251 	struct proc *p;
1252 	int error, sig, timo, timevalid = 0;
1253 	struct timespec rts, ets, ts;
1254 	struct timeval tv;
1255 	bool traced;
1256 
1257 	p = td->td_proc;
1258 	error = 0;
1259 	ets.tv_sec = 0;
1260 	ets.tv_nsec = 0;
1261 	traced = false;
1262 
1263 	if (timeout != NULL) {
1264 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1265 			timevalid = 1;
1266 			getnanouptime(&rts);
1267 			timespecadd(&rts, timeout, &ets);
1268 		}
1269 	}
1270 	ksiginfo_init(ksi);
1271 	/* Some signals can not be waited for. */
1272 	SIG_CANTMASK(waitset);
1273 	ps = p->p_sigacts;
1274 	PROC_LOCK(p);
1275 	saved_mask = td->td_sigmask;
1276 	SIGSETNAND(td->td_sigmask, waitset);
1277 	for (;;) {
1278 		mtx_lock(&ps->ps_mtx);
1279 		sig = cursig(td);
1280 		mtx_unlock(&ps->ps_mtx);
1281 		KASSERT(sig >= 0, ("sig %d", sig));
1282 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1283 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1284 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1285 				error = 0;
1286 				break;
1287 			}
1288 		}
1289 
1290 		if (error != 0)
1291 			break;
1292 
1293 		/*
1294 		 * POSIX says this must be checked after looking for pending
1295 		 * signals.
1296 		 */
1297 		if (timeout != NULL) {
1298 			if (!timevalid) {
1299 				error = EINVAL;
1300 				break;
1301 			}
1302 			getnanouptime(&rts);
1303 			if (timespeccmp(&rts, &ets, >=)) {
1304 				error = EAGAIN;
1305 				break;
1306 			}
1307 			timespecsub(&ets, &rts, &ts);
1308 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1309 			timo = tvtohz(&tv);
1310 		} else {
1311 			timo = 0;
1312 		}
1313 
1314 		if (traced) {
1315 			error = EINTR;
1316 			break;
1317 		}
1318 
1319 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1320 
1321 		if (timeout != NULL) {
1322 			if (error == ERESTART) {
1323 				/* Timeout can not be restarted. */
1324 				error = EINTR;
1325 			} else if (error == EAGAIN) {
1326 				/* We will calculate timeout by ourself. */
1327 				error = 0;
1328 			}
1329 		}
1330 
1331 		/*
1332 		 * If PTRACE_SCE or PTRACE_SCX were set after
1333 		 * userspace entered the syscall, return spurious
1334 		 * EINTR after wait was done.  Only do this as last
1335 		 * resort after rechecking for possible queued signals
1336 		 * and expired timeouts.
1337 		 */
1338 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1339 			traced = true;
1340 	}
1341 
1342 	new_block = saved_mask;
1343 	SIGSETNAND(new_block, td->td_sigmask);
1344 	td->td_sigmask = saved_mask;
1345 	/*
1346 	 * Fewer signals can be delivered to us, reschedule signal
1347 	 * notification.
1348 	 */
1349 	if (p->p_numthreads != 1)
1350 		reschedule_signals(p, new_block, 0);
1351 
1352 	if (error == 0) {
1353 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1354 
1355 		if (ksi->ksi_code == SI_TIMER)
1356 			itimer_accept(p, ksi->ksi_timerid, ksi);
1357 
1358 #ifdef KTRACE
1359 		if (KTRPOINT(td, KTR_PSIG)) {
1360 			sig_t action;
1361 
1362 			mtx_lock(&ps->ps_mtx);
1363 			action = ps->ps_sigact[_SIG_IDX(sig)];
1364 			mtx_unlock(&ps->ps_mtx);
1365 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1366 		}
1367 #endif
1368 		if (sig == SIGKILL) {
1369 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1370 			sigexit(td, sig);
1371 		}
1372 	}
1373 	PROC_UNLOCK(p);
1374 	return (error);
1375 }
1376 
1377 #ifndef _SYS_SYSPROTO_H_
1378 struct sigpending_args {
1379 	sigset_t	*set;
1380 };
1381 #endif
1382 int
1383 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1384 {
1385 	struct proc *p = td->td_proc;
1386 	sigset_t pending;
1387 
1388 	PROC_LOCK(p);
1389 	pending = p->p_sigqueue.sq_signals;
1390 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1391 	PROC_UNLOCK(p);
1392 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1393 }
1394 
1395 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1396 #ifndef _SYS_SYSPROTO_H_
1397 struct osigpending_args {
1398 	int	dummy;
1399 };
1400 #endif
1401 int
1402 osigpending(struct thread *td, struct osigpending_args *uap)
1403 {
1404 	struct proc *p = td->td_proc;
1405 	sigset_t pending;
1406 
1407 	PROC_LOCK(p);
1408 	pending = p->p_sigqueue.sq_signals;
1409 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1410 	PROC_UNLOCK(p);
1411 	SIG2OSIG(pending, td->td_retval[0]);
1412 	return (0);
1413 }
1414 #endif /* COMPAT_43 */
1415 
1416 #if defined(COMPAT_43)
1417 /*
1418  * Generalized interface signal handler, 4.3-compatible.
1419  */
1420 #ifndef _SYS_SYSPROTO_H_
1421 struct osigvec_args {
1422 	int	signum;
1423 	struct	sigvec *nsv;
1424 	struct	sigvec *osv;
1425 };
1426 #endif
1427 /* ARGSUSED */
1428 int
1429 osigvec(struct thread *td, struct osigvec_args *uap)
1430 {
1431 	struct sigvec vec;
1432 	struct sigaction nsa, osa;
1433 	struct sigaction *nsap, *osap;
1434 	int error;
1435 
1436 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1437 		return (EINVAL);
1438 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1439 	osap = (uap->osv != NULL) ? &osa : NULL;
1440 	if (nsap) {
1441 		error = copyin(uap->nsv, &vec, sizeof(vec));
1442 		if (error)
1443 			return (error);
1444 		nsap->sa_handler = vec.sv_handler;
1445 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1446 		nsap->sa_flags = vec.sv_flags;
1447 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1448 	}
1449 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1450 	if (osap && !error) {
1451 		vec.sv_handler = osap->sa_handler;
1452 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1453 		vec.sv_flags = osap->sa_flags;
1454 		vec.sv_flags &= ~SA_NOCLDWAIT;
1455 		vec.sv_flags ^= SA_RESTART;
1456 		error = copyout(&vec, uap->osv, sizeof(vec));
1457 	}
1458 	return (error);
1459 }
1460 
1461 #ifndef _SYS_SYSPROTO_H_
1462 struct osigblock_args {
1463 	int	mask;
1464 };
1465 #endif
1466 int
1467 osigblock(struct thread *td, struct osigblock_args *uap)
1468 {
1469 	sigset_t set, oset;
1470 
1471 	OSIG2SIG(uap->mask, set);
1472 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1473 	SIG2OSIG(oset, td->td_retval[0]);
1474 	return (0);
1475 }
1476 
1477 #ifndef _SYS_SYSPROTO_H_
1478 struct osigsetmask_args {
1479 	int	mask;
1480 };
1481 #endif
1482 int
1483 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1484 {
1485 	sigset_t set, oset;
1486 
1487 	OSIG2SIG(uap->mask, set);
1488 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1489 	SIG2OSIG(oset, td->td_retval[0]);
1490 	return (0);
1491 }
1492 #endif /* COMPAT_43 */
1493 
1494 /*
1495  * Suspend calling thread until signal, providing mask to be set in the
1496  * meantime.
1497  */
1498 #ifndef _SYS_SYSPROTO_H_
1499 struct sigsuspend_args {
1500 	const sigset_t *sigmask;
1501 };
1502 #endif
1503 /* ARGSUSED */
1504 int
1505 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1506 {
1507 	sigset_t mask;
1508 	int error;
1509 
1510 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1511 	if (error)
1512 		return (error);
1513 	return (kern_sigsuspend(td, mask));
1514 }
1515 
1516 int
1517 kern_sigsuspend(struct thread *td, sigset_t mask)
1518 {
1519 	struct proc *p = td->td_proc;
1520 	int has_sig, sig;
1521 
1522 	/*
1523 	 * When returning from sigsuspend, we want
1524 	 * the old mask to be restored after the
1525 	 * signal handler has finished.  Thus, we
1526 	 * save it here and mark the sigacts structure
1527 	 * to indicate this.
1528 	 */
1529 	PROC_LOCK(p);
1530 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1531 	    SIGPROCMASK_PROC_LOCKED);
1532 	td->td_pflags |= TDP_OLDMASK;
1533 
1534 	/*
1535 	 * Process signals now. Otherwise, we can get spurious wakeup
1536 	 * due to signal entered process queue, but delivered to other
1537 	 * thread. But sigsuspend should return only on signal
1538 	 * delivery.
1539 	 */
1540 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1541 	for (has_sig = 0; !has_sig;) {
1542 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1543 			0) == 0)
1544 			/* void */;
1545 		thread_suspend_check(0);
1546 		mtx_lock(&p->p_sigacts->ps_mtx);
1547 		while ((sig = cursig(td)) != 0) {
1548 			KASSERT(sig >= 0, ("sig %d", sig));
1549 			has_sig += postsig(sig);
1550 		}
1551 		mtx_unlock(&p->p_sigacts->ps_mtx);
1552 
1553 		/*
1554 		 * If PTRACE_SCE or PTRACE_SCX were set after
1555 		 * userspace entered the syscall, return spurious
1556 		 * EINTR.
1557 		 */
1558 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1559 			has_sig += 1;
1560 	}
1561 	PROC_UNLOCK(p);
1562 	td->td_errno = EINTR;
1563 	td->td_pflags |= TDP_NERRNO;
1564 	return (EJUSTRETURN);
1565 }
1566 
1567 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1568 /*
1569  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1570  * convention: libc stub passes mask, not pointer, to save a copyin.
1571  */
1572 #ifndef _SYS_SYSPROTO_H_
1573 struct osigsuspend_args {
1574 	osigset_t mask;
1575 };
1576 #endif
1577 /* ARGSUSED */
1578 int
1579 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1580 {
1581 	sigset_t mask;
1582 
1583 	OSIG2SIG(uap->mask, mask);
1584 	return (kern_sigsuspend(td, mask));
1585 }
1586 #endif /* COMPAT_43 */
1587 
1588 #if defined(COMPAT_43)
1589 #ifndef _SYS_SYSPROTO_H_
1590 struct osigstack_args {
1591 	struct	sigstack *nss;
1592 	struct	sigstack *oss;
1593 };
1594 #endif
1595 /* ARGSUSED */
1596 int
1597 osigstack(struct thread *td, struct osigstack_args *uap)
1598 {
1599 	struct sigstack nss, oss;
1600 	int error = 0;
1601 
1602 	if (uap->nss != NULL) {
1603 		error = copyin(uap->nss, &nss, sizeof(nss));
1604 		if (error)
1605 			return (error);
1606 	}
1607 	oss.ss_sp = td->td_sigstk.ss_sp;
1608 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1609 	if (uap->nss != NULL) {
1610 		td->td_sigstk.ss_sp = nss.ss_sp;
1611 		td->td_sigstk.ss_size = 0;
1612 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1613 		td->td_pflags |= TDP_ALTSTACK;
1614 	}
1615 	if (uap->oss != NULL)
1616 		error = copyout(&oss, uap->oss, sizeof(oss));
1617 
1618 	return (error);
1619 }
1620 #endif /* COMPAT_43 */
1621 
1622 #ifndef _SYS_SYSPROTO_H_
1623 struct sigaltstack_args {
1624 	stack_t	*ss;
1625 	stack_t	*oss;
1626 };
1627 #endif
1628 /* ARGSUSED */
1629 int
1630 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1631 {
1632 	stack_t ss, oss;
1633 	int error;
1634 
1635 	if (uap->ss != NULL) {
1636 		error = copyin(uap->ss, &ss, sizeof(ss));
1637 		if (error)
1638 			return (error);
1639 	}
1640 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1641 	    (uap->oss != NULL) ? &oss : NULL);
1642 	if (error)
1643 		return (error);
1644 	if (uap->oss != NULL)
1645 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1646 	return (error);
1647 }
1648 
1649 int
1650 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1651 {
1652 	struct proc *p = td->td_proc;
1653 	int oonstack;
1654 
1655 	oonstack = sigonstack(cpu_getstack(td));
1656 
1657 	if (oss != NULL) {
1658 		*oss = td->td_sigstk;
1659 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1660 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1661 	}
1662 
1663 	if (ss != NULL) {
1664 		if (oonstack)
1665 			return (EPERM);
1666 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1667 			return (EINVAL);
1668 		if (!(ss->ss_flags & SS_DISABLE)) {
1669 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1670 				return (ENOMEM);
1671 
1672 			td->td_sigstk = *ss;
1673 			td->td_pflags |= TDP_ALTSTACK;
1674 		} else {
1675 			td->td_pflags &= ~TDP_ALTSTACK;
1676 		}
1677 	}
1678 	return (0);
1679 }
1680 
1681 struct killpg1_ctx {
1682 	struct thread *td;
1683 	ksiginfo_t *ksi;
1684 	int sig;
1685 	bool sent;
1686 	bool found;
1687 	int ret;
1688 };
1689 
1690 static void
1691 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1692 {
1693 	int err;
1694 
1695 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1696 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1697 		return;
1698 	PROC_LOCK(p);
1699 	err = p_cansignal(arg->td, p, arg->sig);
1700 	if (err == 0 && arg->sig != 0)
1701 		pksignal(p, arg->sig, arg->ksi);
1702 	PROC_UNLOCK(p);
1703 	if (err != ESRCH)
1704 		arg->found = true;
1705 	if (err == 0)
1706 		arg->sent = true;
1707 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1708 		arg->ret = err;
1709 }
1710 
1711 /*
1712  * Common code for kill process group/broadcast kill.
1713  * cp is calling process.
1714  */
1715 static int
1716 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1717 {
1718 	struct proc *p;
1719 	struct pgrp *pgrp;
1720 	struct killpg1_ctx arg;
1721 
1722 	arg.td = td;
1723 	arg.ksi = ksi;
1724 	arg.sig = sig;
1725 	arg.sent = false;
1726 	arg.found = false;
1727 	arg.ret = 0;
1728 	if (all) {
1729 		/*
1730 		 * broadcast
1731 		 */
1732 		sx_slock(&allproc_lock);
1733 		FOREACH_PROC_IN_SYSTEM(p) {
1734 			killpg1_sendsig(p, true, &arg);
1735 		}
1736 		sx_sunlock(&allproc_lock);
1737 	} else {
1738 		sx_slock(&proctree_lock);
1739 		if (pgid == 0) {
1740 			/*
1741 			 * zero pgid means send to my process group.
1742 			 */
1743 			pgrp = td->td_proc->p_pgrp;
1744 			PGRP_LOCK(pgrp);
1745 		} else {
1746 			pgrp = pgfind(pgid);
1747 			if (pgrp == NULL) {
1748 				sx_sunlock(&proctree_lock);
1749 				return (ESRCH);
1750 			}
1751 		}
1752 		sx_sunlock(&proctree_lock);
1753 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1754 			killpg1_sendsig(p, false, &arg);
1755 		}
1756 		PGRP_UNLOCK(pgrp);
1757 	}
1758 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1759 	if (arg.ret == 0 && !arg.sent)
1760 		arg.ret = arg.found ? EPERM : ESRCH;
1761 	return (arg.ret);
1762 }
1763 
1764 #ifndef _SYS_SYSPROTO_H_
1765 struct kill_args {
1766 	int	pid;
1767 	int	signum;
1768 };
1769 #endif
1770 /* ARGSUSED */
1771 int
1772 sys_kill(struct thread *td, struct kill_args *uap)
1773 {
1774 
1775 	return (kern_kill(td, uap->pid, uap->signum));
1776 }
1777 
1778 int
1779 kern_kill(struct thread *td, pid_t pid, int signum)
1780 {
1781 	ksiginfo_t ksi;
1782 	struct proc *p;
1783 	int error;
1784 
1785 	/*
1786 	 * A process in capability mode can send signals only to himself.
1787 	 * The main rationale behind this is that abort(3) is implemented as
1788 	 * kill(getpid(), SIGABRT).
1789 	 */
1790 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1791 		return (ECAPMODE);
1792 
1793 	AUDIT_ARG_SIGNUM(signum);
1794 	AUDIT_ARG_PID(pid);
1795 	if ((u_int)signum > _SIG_MAXSIG)
1796 		return (EINVAL);
1797 
1798 	ksiginfo_init(&ksi);
1799 	ksi.ksi_signo = signum;
1800 	ksi.ksi_code = SI_USER;
1801 	ksi.ksi_pid = td->td_proc->p_pid;
1802 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1803 
1804 	if (pid > 0) {
1805 		/* kill single process */
1806 		if ((p = pfind_any(pid)) == NULL)
1807 			return (ESRCH);
1808 		AUDIT_ARG_PROCESS(p);
1809 		error = p_cansignal(td, p, signum);
1810 		if (error == 0 && signum)
1811 			pksignal(p, signum, &ksi);
1812 		PROC_UNLOCK(p);
1813 		return (error);
1814 	}
1815 	switch (pid) {
1816 	case -1:		/* broadcast signal */
1817 		return (killpg1(td, signum, 0, 1, &ksi));
1818 	case 0:			/* signal own process group */
1819 		return (killpg1(td, signum, 0, 0, &ksi));
1820 	default:		/* negative explicit process group */
1821 		return (killpg1(td, signum, -pid, 0, &ksi));
1822 	}
1823 	/* NOTREACHED */
1824 }
1825 
1826 int
1827 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1828 {
1829 	struct proc *p;
1830 	int error;
1831 
1832 	AUDIT_ARG_SIGNUM(uap->signum);
1833 	AUDIT_ARG_FD(uap->fd);
1834 	if ((u_int)uap->signum > _SIG_MAXSIG)
1835 		return (EINVAL);
1836 
1837 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1838 	if (error)
1839 		return (error);
1840 	AUDIT_ARG_PROCESS(p);
1841 	error = p_cansignal(td, p, uap->signum);
1842 	if (error == 0 && uap->signum)
1843 		kern_psignal(p, uap->signum);
1844 	PROC_UNLOCK(p);
1845 	return (error);
1846 }
1847 
1848 #if defined(COMPAT_43)
1849 #ifndef _SYS_SYSPROTO_H_
1850 struct okillpg_args {
1851 	int	pgid;
1852 	int	signum;
1853 };
1854 #endif
1855 /* ARGSUSED */
1856 int
1857 okillpg(struct thread *td, struct okillpg_args *uap)
1858 {
1859 	ksiginfo_t ksi;
1860 
1861 	AUDIT_ARG_SIGNUM(uap->signum);
1862 	AUDIT_ARG_PID(uap->pgid);
1863 	if ((u_int)uap->signum > _SIG_MAXSIG)
1864 		return (EINVAL);
1865 
1866 	ksiginfo_init(&ksi);
1867 	ksi.ksi_signo = uap->signum;
1868 	ksi.ksi_code = SI_USER;
1869 	ksi.ksi_pid = td->td_proc->p_pid;
1870 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1871 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1872 }
1873 #endif /* COMPAT_43 */
1874 
1875 #ifndef _SYS_SYSPROTO_H_
1876 struct sigqueue_args {
1877 	pid_t pid;
1878 	int signum;
1879 	/* union sigval */ void *value;
1880 };
1881 #endif
1882 int
1883 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1884 {
1885 	union sigval sv;
1886 
1887 	sv.sival_ptr = uap->value;
1888 
1889 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1890 }
1891 
1892 int
1893 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1894 {
1895 	ksiginfo_t ksi;
1896 	struct proc *p;
1897 	int error;
1898 
1899 	if ((u_int)signum > _SIG_MAXSIG)
1900 		return (EINVAL);
1901 
1902 	/*
1903 	 * Specification says sigqueue can only send signal to
1904 	 * single process.
1905 	 */
1906 	if (pid <= 0)
1907 		return (EINVAL);
1908 
1909 	if ((p = pfind_any(pid)) == NULL)
1910 		return (ESRCH);
1911 	error = p_cansignal(td, p, signum);
1912 	if (error == 0 && signum != 0) {
1913 		ksiginfo_init(&ksi);
1914 		ksi.ksi_flags = KSI_SIGQ;
1915 		ksi.ksi_signo = signum;
1916 		ksi.ksi_code = SI_QUEUE;
1917 		ksi.ksi_pid = td->td_proc->p_pid;
1918 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1919 		ksi.ksi_value = *value;
1920 		error = pksignal(p, ksi.ksi_signo, &ksi);
1921 	}
1922 	PROC_UNLOCK(p);
1923 	return (error);
1924 }
1925 
1926 /*
1927  * Send a signal to a process group.
1928  */
1929 void
1930 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1931 {
1932 	struct pgrp *pgrp;
1933 
1934 	if (pgid != 0) {
1935 		sx_slock(&proctree_lock);
1936 		pgrp = pgfind(pgid);
1937 		sx_sunlock(&proctree_lock);
1938 		if (pgrp != NULL) {
1939 			pgsignal(pgrp, sig, 0, ksi);
1940 			PGRP_UNLOCK(pgrp);
1941 		}
1942 	}
1943 }
1944 
1945 /*
1946  * Send a signal to a process group.  If checktty is 1,
1947  * limit to members which have a controlling terminal.
1948  */
1949 void
1950 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1951 {
1952 	struct proc *p;
1953 
1954 	if (pgrp) {
1955 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1956 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1957 			PROC_LOCK(p);
1958 			if (p->p_state == PRS_NORMAL &&
1959 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1960 				pksignal(p, sig, ksi);
1961 			PROC_UNLOCK(p);
1962 		}
1963 	}
1964 }
1965 
1966 /*
1967  * Recalculate the signal mask and reset the signal disposition after
1968  * usermode frame for delivery is formed.  Should be called after
1969  * mach-specific routine, because sysent->sv_sendsig() needs correct
1970  * ps_siginfo and signal mask.
1971  */
1972 static void
1973 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1974 {
1975 	sigset_t mask;
1976 
1977 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1978 	td->td_ru.ru_nsignals++;
1979 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1980 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1981 		SIGADDSET(mask, sig);
1982 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1983 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1984 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1985 		sigdflt(ps, sig);
1986 }
1987 
1988 /*
1989  * Send a signal caused by a trap to the current thread.  If it will be
1990  * caught immediately, deliver it with correct code.  Otherwise, post it
1991  * normally.
1992  */
1993 void
1994 trapsignal(struct thread *td, ksiginfo_t *ksi)
1995 {
1996 	struct sigacts *ps;
1997 	struct proc *p;
1998 	int sig;
1999 	int code;
2000 
2001 	p = td->td_proc;
2002 	sig = ksi->ksi_signo;
2003 	code = ksi->ksi_code;
2004 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2005 
2006 	PROC_LOCK(p);
2007 	ps = p->p_sigacts;
2008 	mtx_lock(&ps->ps_mtx);
2009 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2010 	    !SIGISMEMBER(td->td_sigmask, sig)) {
2011 #ifdef KTRACE
2012 		if (KTRPOINT(curthread, KTR_PSIG))
2013 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2014 			    &td->td_sigmask, code);
2015 #endif
2016 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2017 				ksi, &td->td_sigmask);
2018 		postsig_done(sig, td, ps);
2019 		mtx_unlock(&ps->ps_mtx);
2020 	} else {
2021 		/*
2022 		 * Avoid a possible infinite loop if the thread
2023 		 * masking the signal or process is ignoring the
2024 		 * signal.
2025 		 */
2026 		if (kern_forcesigexit &&
2027 		    (SIGISMEMBER(td->td_sigmask, sig) ||
2028 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2029 			SIGDELSET(td->td_sigmask, sig);
2030 			SIGDELSET(ps->ps_sigcatch, sig);
2031 			SIGDELSET(ps->ps_sigignore, sig);
2032 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2033 		}
2034 		mtx_unlock(&ps->ps_mtx);
2035 		p->p_sig = sig;		/* XXX to verify code */
2036 		tdsendsignal(p, td, sig, ksi);
2037 	}
2038 	PROC_UNLOCK(p);
2039 }
2040 
2041 static struct thread *
2042 sigtd(struct proc *p, int sig, int prop)
2043 {
2044 	struct thread *td, *signal_td;
2045 
2046 	PROC_LOCK_ASSERT(p, MA_OWNED);
2047 
2048 	/*
2049 	 * Check if current thread can handle the signal without
2050 	 * switching context to another thread.
2051 	 */
2052 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2053 		return (curthread);
2054 	signal_td = NULL;
2055 	FOREACH_THREAD_IN_PROC(p, td) {
2056 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2057 			signal_td = td;
2058 			break;
2059 		}
2060 	}
2061 	if (signal_td == NULL)
2062 		signal_td = FIRST_THREAD_IN_PROC(p);
2063 	return (signal_td);
2064 }
2065 
2066 /*
2067  * Send the signal to the process.  If the signal has an action, the action
2068  * is usually performed by the target process rather than the caller; we add
2069  * the signal to the set of pending signals for the process.
2070  *
2071  * Exceptions:
2072  *   o When a stop signal is sent to a sleeping process that takes the
2073  *     default action, the process is stopped without awakening it.
2074  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2075  *     regardless of the signal action (eg, blocked or ignored).
2076  *
2077  * Other ignored signals are discarded immediately.
2078  *
2079  * NB: This function may be entered from the debugger via the "kill" DDB
2080  * command.  There is little that can be done to mitigate the possibly messy
2081  * side effects of this unwise possibility.
2082  */
2083 void
2084 kern_psignal(struct proc *p, int sig)
2085 {
2086 	ksiginfo_t ksi;
2087 
2088 	ksiginfo_init(&ksi);
2089 	ksi.ksi_signo = sig;
2090 	ksi.ksi_code = SI_KERNEL;
2091 	(void) tdsendsignal(p, NULL, sig, &ksi);
2092 }
2093 
2094 int
2095 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2096 {
2097 
2098 	return (tdsendsignal(p, NULL, sig, ksi));
2099 }
2100 
2101 /* Utility function for finding a thread to send signal event to. */
2102 int
2103 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2104 {
2105 	struct thread *td;
2106 
2107 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2108 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2109 		if (td == NULL)
2110 			return (ESRCH);
2111 		*ttd = td;
2112 	} else {
2113 		*ttd = NULL;
2114 		PROC_LOCK(p);
2115 	}
2116 	return (0);
2117 }
2118 
2119 void
2120 tdsignal(struct thread *td, int sig)
2121 {
2122 	ksiginfo_t ksi;
2123 
2124 	ksiginfo_init(&ksi);
2125 	ksi.ksi_signo = sig;
2126 	ksi.ksi_code = SI_KERNEL;
2127 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2128 }
2129 
2130 void
2131 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2132 {
2133 
2134 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2135 }
2136 
2137 int
2138 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2139 {
2140 	sig_t action;
2141 	sigqueue_t *sigqueue;
2142 	int prop;
2143 	struct sigacts *ps;
2144 	int intrval;
2145 	int ret = 0;
2146 	int wakeup_swapper;
2147 
2148 	MPASS(td == NULL || p == td->td_proc);
2149 	PROC_LOCK_ASSERT(p, MA_OWNED);
2150 
2151 	if (!_SIG_VALID(sig))
2152 		panic("%s(): invalid signal %d", __func__, sig);
2153 
2154 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2155 
2156 	/*
2157 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2158 	 */
2159 	if (p->p_state == PRS_ZOMBIE) {
2160 		if (ksi && (ksi->ksi_flags & KSI_INS))
2161 			ksiginfo_tryfree(ksi);
2162 		return (ret);
2163 	}
2164 
2165 	ps = p->p_sigacts;
2166 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2167 	prop = sigprop(sig);
2168 
2169 	if (td == NULL) {
2170 		td = sigtd(p, sig, prop);
2171 		sigqueue = &p->p_sigqueue;
2172 	} else
2173 		sigqueue = &td->td_sigqueue;
2174 
2175 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2176 
2177 	/*
2178 	 * If the signal is being ignored,
2179 	 * then we forget about it immediately.
2180 	 * (Note: we don't set SIGCONT in ps_sigignore,
2181 	 * and if it is set to SIG_IGN,
2182 	 * action will be SIG_DFL here.)
2183 	 */
2184 	mtx_lock(&ps->ps_mtx);
2185 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2186 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2187 
2188 		mtx_unlock(&ps->ps_mtx);
2189 		if (ksi && (ksi->ksi_flags & KSI_INS))
2190 			ksiginfo_tryfree(ksi);
2191 		return (ret);
2192 	}
2193 	if (SIGISMEMBER(td->td_sigmask, sig))
2194 		action = SIG_HOLD;
2195 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2196 		action = SIG_CATCH;
2197 	else
2198 		action = SIG_DFL;
2199 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2200 		intrval = EINTR;
2201 	else
2202 		intrval = ERESTART;
2203 	mtx_unlock(&ps->ps_mtx);
2204 
2205 	if (prop & SIGPROP_CONT)
2206 		sigqueue_delete_stopmask_proc(p);
2207 	else if (prop & SIGPROP_STOP) {
2208 		/*
2209 		 * If sending a tty stop signal to a member of an orphaned
2210 		 * process group, discard the signal here if the action
2211 		 * is default; don't stop the process below if sleeping,
2212 		 * and don't clear any pending SIGCONT.
2213 		 */
2214 		if ((prop & SIGPROP_TTYSTOP) &&
2215 		    (p->p_pgrp->pg_jobc == 0) &&
2216 		    (action == SIG_DFL)) {
2217 			if (ksi && (ksi->ksi_flags & KSI_INS))
2218 				ksiginfo_tryfree(ksi);
2219 			return (ret);
2220 		}
2221 		sigqueue_delete_proc(p, SIGCONT);
2222 		if (p->p_flag & P_CONTINUED) {
2223 			p->p_flag &= ~P_CONTINUED;
2224 			PROC_LOCK(p->p_pptr);
2225 			sigqueue_take(p->p_ksi);
2226 			PROC_UNLOCK(p->p_pptr);
2227 		}
2228 	}
2229 
2230 	ret = sigqueue_add(sigqueue, sig, ksi);
2231 	if (ret != 0)
2232 		return (ret);
2233 	signotify(td);
2234 	/*
2235 	 * Defer further processing for signals which are held,
2236 	 * except that stopped processes must be continued by SIGCONT.
2237 	 */
2238 	if (action == SIG_HOLD &&
2239 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2240 		return (ret);
2241 
2242 	/* SIGKILL: Remove procfs STOPEVENTs. */
2243 	if (sig == SIGKILL) {
2244 		/* from procfs_ioctl.c: PIOCBIC */
2245 		p->p_stops = 0;
2246 		/* from procfs_ioctl.c: PIOCCONT */
2247 		p->p_step = 0;
2248 		wakeup(&p->p_step);
2249 	}
2250 	wakeup_swapper = 0;
2251 
2252 	/*
2253 	 * Some signals have a process-wide effect and a per-thread
2254 	 * component.  Most processing occurs when the process next
2255 	 * tries to cross the user boundary, however there are some
2256 	 * times when processing needs to be done immediately, such as
2257 	 * waking up threads so that they can cross the user boundary.
2258 	 * We try to do the per-process part here.
2259 	 */
2260 	if (P_SHOULDSTOP(p)) {
2261 		KASSERT(!(p->p_flag & P_WEXIT),
2262 		    ("signal to stopped but exiting process"));
2263 		if (sig == SIGKILL) {
2264 			/*
2265 			 * If traced process is already stopped,
2266 			 * then no further action is necessary.
2267 			 */
2268 			if (p->p_flag & P_TRACED)
2269 				goto out;
2270 			/*
2271 			 * SIGKILL sets process running.
2272 			 * It will die elsewhere.
2273 			 * All threads must be restarted.
2274 			 */
2275 			p->p_flag &= ~P_STOPPED_SIG;
2276 			goto runfast;
2277 		}
2278 
2279 		if (prop & SIGPROP_CONT) {
2280 			/*
2281 			 * If traced process is already stopped,
2282 			 * then no further action is necessary.
2283 			 */
2284 			if (p->p_flag & P_TRACED)
2285 				goto out;
2286 			/*
2287 			 * If SIGCONT is default (or ignored), we continue the
2288 			 * process but don't leave the signal in sigqueue as
2289 			 * it has no further action.  If SIGCONT is held, we
2290 			 * continue the process and leave the signal in
2291 			 * sigqueue.  If the process catches SIGCONT, let it
2292 			 * handle the signal itself.  If it isn't waiting on
2293 			 * an event, it goes back to run state.
2294 			 * Otherwise, process goes back to sleep state.
2295 			 */
2296 			p->p_flag &= ~P_STOPPED_SIG;
2297 			PROC_SLOCK(p);
2298 			if (p->p_numthreads == p->p_suspcount) {
2299 				PROC_SUNLOCK(p);
2300 				p->p_flag |= P_CONTINUED;
2301 				p->p_xsig = SIGCONT;
2302 				PROC_LOCK(p->p_pptr);
2303 				childproc_continued(p);
2304 				PROC_UNLOCK(p->p_pptr);
2305 				PROC_SLOCK(p);
2306 			}
2307 			if (action == SIG_DFL) {
2308 				thread_unsuspend(p);
2309 				PROC_SUNLOCK(p);
2310 				sigqueue_delete(sigqueue, sig);
2311 				goto out;
2312 			}
2313 			if (action == SIG_CATCH) {
2314 				/*
2315 				 * The process wants to catch it so it needs
2316 				 * to run at least one thread, but which one?
2317 				 */
2318 				PROC_SUNLOCK(p);
2319 				goto runfast;
2320 			}
2321 			/*
2322 			 * The signal is not ignored or caught.
2323 			 */
2324 			thread_unsuspend(p);
2325 			PROC_SUNLOCK(p);
2326 			goto out;
2327 		}
2328 
2329 		if (prop & SIGPROP_STOP) {
2330 			/*
2331 			 * If traced process is already stopped,
2332 			 * then no further action is necessary.
2333 			 */
2334 			if (p->p_flag & P_TRACED)
2335 				goto out;
2336 			/*
2337 			 * Already stopped, don't need to stop again
2338 			 * (If we did the shell could get confused).
2339 			 * Just make sure the signal STOP bit set.
2340 			 */
2341 			p->p_flag |= P_STOPPED_SIG;
2342 			sigqueue_delete(sigqueue, sig);
2343 			goto out;
2344 		}
2345 
2346 		/*
2347 		 * All other kinds of signals:
2348 		 * If a thread is sleeping interruptibly, simulate a
2349 		 * wakeup so that when it is continued it will be made
2350 		 * runnable and can look at the signal.  However, don't make
2351 		 * the PROCESS runnable, leave it stopped.
2352 		 * It may run a bit until it hits a thread_suspend_check().
2353 		 */
2354 		PROC_SLOCK(p);
2355 		thread_lock(td);
2356 		if (TD_CAN_ABORT(td))
2357 			wakeup_swapper = sleepq_abort(td, intrval);
2358 		else
2359 			thread_unlock(td);
2360 		PROC_SUNLOCK(p);
2361 		goto out;
2362 		/*
2363 		 * Mutexes are short lived. Threads waiting on them will
2364 		 * hit thread_suspend_check() soon.
2365 		 */
2366 	} else if (p->p_state == PRS_NORMAL) {
2367 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2368 			tdsigwakeup(td, sig, action, intrval);
2369 			goto out;
2370 		}
2371 
2372 		MPASS(action == SIG_DFL);
2373 
2374 		if (prop & SIGPROP_STOP) {
2375 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2376 				goto out;
2377 			p->p_flag |= P_STOPPED_SIG;
2378 			p->p_xsig = sig;
2379 			PROC_SLOCK(p);
2380 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2381 			if (p->p_numthreads == p->p_suspcount) {
2382 				/*
2383 				 * only thread sending signal to another
2384 				 * process can reach here, if thread is sending
2385 				 * signal to its process, because thread does
2386 				 * not suspend itself here, p_numthreads
2387 				 * should never be equal to p_suspcount.
2388 				 */
2389 				thread_stopped(p);
2390 				PROC_SUNLOCK(p);
2391 				sigqueue_delete_proc(p, p->p_xsig);
2392 			} else
2393 				PROC_SUNLOCK(p);
2394 			goto out;
2395 		}
2396 	} else {
2397 		/* Not in "NORMAL" state. discard the signal. */
2398 		sigqueue_delete(sigqueue, sig);
2399 		goto out;
2400 	}
2401 
2402 	/*
2403 	 * The process is not stopped so we need to apply the signal to all the
2404 	 * running threads.
2405 	 */
2406 runfast:
2407 	tdsigwakeup(td, sig, action, intrval);
2408 	PROC_SLOCK(p);
2409 	thread_unsuspend(p);
2410 	PROC_SUNLOCK(p);
2411 out:
2412 	/* If we jump here, proc slock should not be owned. */
2413 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2414 	if (wakeup_swapper)
2415 		kick_proc0();
2416 
2417 	return (ret);
2418 }
2419 
2420 /*
2421  * The force of a signal has been directed against a single
2422  * thread.  We need to see what we can do about knocking it
2423  * out of any sleep it may be in etc.
2424  */
2425 static void
2426 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2427 {
2428 	struct proc *p = td->td_proc;
2429 	int prop, wakeup_swapper;
2430 
2431 	PROC_LOCK_ASSERT(p, MA_OWNED);
2432 	prop = sigprop(sig);
2433 
2434 	PROC_SLOCK(p);
2435 	thread_lock(td);
2436 	/*
2437 	 * Bring the priority of a thread up if we want it to get
2438 	 * killed in this lifetime.  Be careful to avoid bumping the
2439 	 * priority of the idle thread, since we still allow to signal
2440 	 * kernel processes.
2441 	 */
2442 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2443 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2444 		sched_prio(td, PUSER);
2445 	if (TD_ON_SLEEPQ(td)) {
2446 		/*
2447 		 * If thread is sleeping uninterruptibly
2448 		 * we can't interrupt the sleep... the signal will
2449 		 * be noticed when the process returns through
2450 		 * trap() or syscall().
2451 		 */
2452 		if ((td->td_flags & TDF_SINTR) == 0)
2453 			goto out;
2454 		/*
2455 		 * If SIGCONT is default (or ignored) and process is
2456 		 * asleep, we are finished; the process should not
2457 		 * be awakened.
2458 		 */
2459 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2460 			thread_unlock(td);
2461 			PROC_SUNLOCK(p);
2462 			sigqueue_delete(&p->p_sigqueue, sig);
2463 			/*
2464 			 * It may be on either list in this state.
2465 			 * Remove from both for now.
2466 			 */
2467 			sigqueue_delete(&td->td_sigqueue, sig);
2468 			return;
2469 		}
2470 
2471 		/*
2472 		 * Don't awaken a sleeping thread for SIGSTOP if the
2473 		 * STOP signal is deferred.
2474 		 */
2475 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2476 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2477 			goto out;
2478 
2479 		/*
2480 		 * Give low priority threads a better chance to run.
2481 		 */
2482 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2483 			sched_prio(td, PUSER);
2484 
2485 		wakeup_swapper = sleepq_abort(td, intrval);
2486 		PROC_SUNLOCK(p);
2487 		if (wakeup_swapper)
2488 			kick_proc0();
2489 		return;
2490 	}
2491 
2492 	/*
2493 	 * Other states do nothing with the signal immediately,
2494 	 * other than kicking ourselves if we are running.
2495 	 * It will either never be noticed, or noticed very soon.
2496 	 */
2497 #ifdef SMP
2498 	if (TD_IS_RUNNING(td) && td != curthread)
2499 		forward_signal(td);
2500 #endif
2501 
2502 out:
2503 	PROC_SUNLOCK(p);
2504 	thread_unlock(td);
2505 }
2506 
2507 static int
2508 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2509 {
2510 	struct thread *td2;
2511 	int wakeup_swapper;
2512 
2513 	PROC_LOCK_ASSERT(p, MA_OWNED);
2514 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2515 	MPASS(sending || td == curthread);
2516 
2517 	wakeup_swapper = 0;
2518 	FOREACH_THREAD_IN_PROC(p, td2) {
2519 		thread_lock(td2);
2520 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2521 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2522 		    (td2->td_flags & TDF_SINTR)) {
2523 			if (td2->td_flags & TDF_SBDRY) {
2524 				/*
2525 				 * Once a thread is asleep with
2526 				 * TDF_SBDRY and without TDF_SERESTART
2527 				 * or TDF_SEINTR set, it should never
2528 				 * become suspended due to this check.
2529 				 */
2530 				KASSERT(!TD_IS_SUSPENDED(td2),
2531 				    ("thread with deferred stops suspended"));
2532 				if (TD_SBDRY_INTR(td2)) {
2533 					wakeup_swapper |= sleepq_abort(td2,
2534 					    TD_SBDRY_ERRNO(td2));
2535 					continue;
2536 				}
2537 			} else if (!TD_IS_SUSPENDED(td2))
2538 				thread_suspend_one(td2);
2539 		} else if (!TD_IS_SUSPENDED(td2)) {
2540 			if (sending || td != td2)
2541 				td2->td_flags |= TDF_ASTPENDING;
2542 #ifdef SMP
2543 			if (TD_IS_RUNNING(td2) && td2 != td)
2544 				forward_signal(td2);
2545 #endif
2546 		}
2547 		thread_unlock(td2);
2548 	}
2549 	return (wakeup_swapper);
2550 }
2551 
2552 /*
2553  * Stop the process for an event deemed interesting to the debugger. If si is
2554  * non-NULL, this is a signal exchange; the new signal requested by the
2555  * debugger will be returned for handling. If si is NULL, this is some other
2556  * type of interesting event. The debugger may request a signal be delivered in
2557  * that case as well, however it will be deferred until it can be handled.
2558  */
2559 int
2560 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2561 {
2562 	struct proc *p = td->td_proc;
2563 	struct thread *td2;
2564 	ksiginfo_t ksi;
2565 	int prop;
2566 
2567 	PROC_LOCK_ASSERT(p, MA_OWNED);
2568 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2569 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2570 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2571 
2572 	td->td_xsig = sig;
2573 
2574 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2575 		td->td_dbgflags |= TDB_XSIG;
2576 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2577 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2578 		PROC_SLOCK(p);
2579 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2580 			if (P_KILLED(p)) {
2581 				/*
2582 				 * Ensure that, if we've been PT_KILLed, the
2583 				 * exit status reflects that. Another thread
2584 				 * may also be in ptracestop(), having just
2585 				 * received the SIGKILL, but this thread was
2586 				 * unsuspended first.
2587 				 */
2588 				td->td_dbgflags &= ~TDB_XSIG;
2589 				td->td_xsig = SIGKILL;
2590 				p->p_ptevents = 0;
2591 				break;
2592 			}
2593 			if (p->p_flag & P_SINGLE_EXIT &&
2594 			    !(td->td_dbgflags & TDB_EXIT)) {
2595 				/*
2596 				 * Ignore ptrace stops except for thread exit
2597 				 * events when the process exits.
2598 				 */
2599 				td->td_dbgflags &= ~TDB_XSIG;
2600 				PROC_SUNLOCK(p);
2601 				return (0);
2602 			}
2603 
2604 			/*
2605 			 * Make wait(2) work.  Ensure that right after the
2606 			 * attach, the thread which was decided to become the
2607 			 * leader of attach gets reported to the waiter.
2608 			 * Otherwise, just avoid overwriting another thread's
2609 			 * assignment to p_xthread.  If another thread has
2610 			 * already set p_xthread, the current thread will get
2611 			 * a chance to report itself upon the next iteration.
2612 			 */
2613 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2614 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2615 			    p->p_xthread == NULL)) {
2616 				p->p_xsig = sig;
2617 				p->p_xthread = td;
2618 
2619 				/*
2620 				 * If we are on sleepqueue already,
2621 				 * let sleepqueue code decide if it
2622 				 * needs to go sleep after attach.
2623 				 */
2624 				if (td->td_wchan == NULL)
2625 					td->td_dbgflags &= ~TDB_FSTP;
2626 
2627 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2628 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2629 				sig_suspend_threads(td, p, 0);
2630 			}
2631 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2632 				td->td_dbgflags &= ~TDB_STOPATFORK;
2633 			}
2634 stopme:
2635 			thread_suspend_switch(td, p);
2636 			if (p->p_xthread == td)
2637 				p->p_xthread = NULL;
2638 			if (!(p->p_flag & P_TRACED))
2639 				break;
2640 			if (td->td_dbgflags & TDB_SUSPEND) {
2641 				if (p->p_flag & P_SINGLE_EXIT)
2642 					break;
2643 				goto stopme;
2644 			}
2645 		}
2646 		PROC_SUNLOCK(p);
2647 	}
2648 
2649 	if (si != NULL && sig == td->td_xsig) {
2650 		/* Parent wants us to take the original signal unchanged. */
2651 		si->ksi_flags |= KSI_HEAD;
2652 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2653 			si->ksi_signo = 0;
2654 	} else if (td->td_xsig != 0) {
2655 		/*
2656 		 * If parent wants us to take a new signal, then it will leave
2657 		 * it in td->td_xsig; otherwise we just look for signals again.
2658 		 */
2659 		ksiginfo_init(&ksi);
2660 		ksi.ksi_signo = td->td_xsig;
2661 		ksi.ksi_flags |= KSI_PTRACE;
2662 		prop = sigprop(td->td_xsig);
2663 		td2 = sigtd(p, td->td_xsig, prop);
2664 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2665 		if (td != td2)
2666 			return (0);
2667 	}
2668 
2669 	return (td->td_xsig);
2670 }
2671 
2672 static void
2673 reschedule_signals(struct proc *p, sigset_t block, int flags)
2674 {
2675 	struct sigacts *ps;
2676 	struct thread *td;
2677 	int sig;
2678 
2679 	PROC_LOCK_ASSERT(p, MA_OWNED);
2680 	ps = p->p_sigacts;
2681 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2682 	    MA_OWNED : MA_NOTOWNED);
2683 	if (SIGISEMPTY(p->p_siglist))
2684 		return;
2685 	SIGSETAND(block, p->p_siglist);
2686 	while ((sig = sig_ffs(&block)) != 0) {
2687 		SIGDELSET(block, sig);
2688 		td = sigtd(p, sig, 0);
2689 		signotify(td);
2690 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2691 			mtx_lock(&ps->ps_mtx);
2692 		if (p->p_flag & P_TRACED ||
2693 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2694 		    !SIGISMEMBER(td->td_sigmask, sig)))
2695 			tdsigwakeup(td, sig, SIG_CATCH,
2696 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2697 			     ERESTART));
2698 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2699 			mtx_unlock(&ps->ps_mtx);
2700 	}
2701 }
2702 
2703 void
2704 tdsigcleanup(struct thread *td)
2705 {
2706 	struct proc *p;
2707 	sigset_t unblocked;
2708 
2709 	p = td->td_proc;
2710 	PROC_LOCK_ASSERT(p, MA_OWNED);
2711 
2712 	sigqueue_flush(&td->td_sigqueue);
2713 	if (p->p_numthreads == 1)
2714 		return;
2715 
2716 	/*
2717 	 * Since we cannot handle signals, notify signal post code
2718 	 * about this by filling the sigmask.
2719 	 *
2720 	 * Also, if needed, wake up thread(s) that do not block the
2721 	 * same signals as the exiting thread, since the thread might
2722 	 * have been selected for delivery and woken up.
2723 	 */
2724 	SIGFILLSET(unblocked);
2725 	SIGSETNAND(unblocked, td->td_sigmask);
2726 	SIGFILLSET(td->td_sigmask);
2727 	reschedule_signals(p, unblocked, 0);
2728 
2729 }
2730 
2731 static int
2732 sigdeferstop_curr_flags(int cflags)
2733 {
2734 
2735 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2736 	    (cflags & TDF_SBDRY) != 0);
2737 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2738 }
2739 
2740 /*
2741  * Defer the delivery of SIGSTOP for the current thread, according to
2742  * the requested mode.  Returns previous flags, which must be restored
2743  * by sigallowstop().
2744  *
2745  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2746  * cleared by the current thread, which allow the lock-less read-only
2747  * accesses below.
2748  */
2749 int
2750 sigdeferstop_impl(int mode)
2751 {
2752 	struct thread *td;
2753 	int cflags, nflags;
2754 
2755 	td = curthread;
2756 	cflags = sigdeferstop_curr_flags(td->td_flags);
2757 	switch (mode) {
2758 	case SIGDEFERSTOP_NOP:
2759 		nflags = cflags;
2760 		break;
2761 	case SIGDEFERSTOP_OFF:
2762 		nflags = 0;
2763 		break;
2764 	case SIGDEFERSTOP_SILENT:
2765 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2766 		break;
2767 	case SIGDEFERSTOP_EINTR:
2768 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2769 		break;
2770 	case SIGDEFERSTOP_ERESTART:
2771 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2772 		break;
2773 	default:
2774 		panic("sigdeferstop: invalid mode %x", mode);
2775 		break;
2776 	}
2777 	if (cflags == nflags)
2778 		return (SIGDEFERSTOP_VAL_NCHG);
2779 	thread_lock(td);
2780 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2781 	thread_unlock(td);
2782 	return (cflags);
2783 }
2784 
2785 /*
2786  * Restores the STOP handling mode, typically permitting the delivery
2787  * of SIGSTOP for the current thread.  This does not immediately
2788  * suspend if a stop was posted.  Instead, the thread will suspend
2789  * either via ast() or a subsequent interruptible sleep.
2790  */
2791 void
2792 sigallowstop_impl(int prev)
2793 {
2794 	struct thread *td;
2795 	int cflags;
2796 
2797 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2798 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2799 	    ("sigallowstop: incorrect previous mode %x", prev));
2800 	td = curthread;
2801 	cflags = sigdeferstop_curr_flags(td->td_flags);
2802 	if (cflags != prev) {
2803 		thread_lock(td);
2804 		td->td_flags = (td->td_flags & ~cflags) | prev;
2805 		thread_unlock(td);
2806 	}
2807 }
2808 
2809 /*
2810  * If the current process has received a signal (should be caught or cause
2811  * termination, should interrupt current syscall), return the signal number.
2812  * Stop signals with default action are processed immediately, then cleared;
2813  * they aren't returned.  This is checked after each entry to the system for
2814  * a syscall or trap (though this can usually be done without calling issignal
2815  * by checking the pending signal masks in cursig.) The normal call
2816  * sequence is
2817  *
2818  *	while (sig = cursig(curthread))
2819  *		postsig(sig);
2820  */
2821 static int
2822 issignal(struct thread *td)
2823 {
2824 	struct proc *p;
2825 	struct sigacts *ps;
2826 	struct sigqueue *queue;
2827 	sigset_t sigpending;
2828 	ksiginfo_t ksi;
2829 	int prop, sig, traced;
2830 
2831 	p = td->td_proc;
2832 	ps = p->p_sigacts;
2833 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2834 	PROC_LOCK_ASSERT(p, MA_OWNED);
2835 	for (;;) {
2836 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2837 
2838 		sigpending = td->td_sigqueue.sq_signals;
2839 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2840 		SIGSETNAND(sigpending, td->td_sigmask);
2841 
2842 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2843 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2844 			SIG_STOPSIGMASK(sigpending);
2845 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2846 			return (0);
2847 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2848 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2849 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2850 			/*
2851 			 * If debugger just attached, always consume
2852 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2853 			 * execute the debugger attach ritual in
2854 			 * order.
2855 			 */
2856 			sig = SIGSTOP;
2857 			td->td_dbgflags |= TDB_FSTP;
2858 		} else {
2859 			sig = sig_ffs(&sigpending);
2860 		}
2861 
2862 		if (p->p_stops & S_SIG) {
2863 			mtx_unlock(&ps->ps_mtx);
2864 			stopevent(p, S_SIG, sig);
2865 			mtx_lock(&ps->ps_mtx);
2866 		}
2867 
2868 		/*
2869 		 * We should see pending but ignored signals
2870 		 * only if P_TRACED was on when they were posted.
2871 		 */
2872 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2873 			sigqueue_delete(&td->td_sigqueue, sig);
2874 			sigqueue_delete(&p->p_sigqueue, sig);
2875 			continue;
2876 		}
2877 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2878 			/*
2879 			 * If traced, always stop.
2880 			 * Remove old signal from queue before the stop.
2881 			 * XXX shrug off debugger, it causes siginfo to
2882 			 * be thrown away.
2883 			 */
2884 			queue = &td->td_sigqueue;
2885 			ksiginfo_init(&ksi);
2886 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2887 				queue = &p->p_sigqueue;
2888 				sigqueue_get(queue, sig, &ksi);
2889 			}
2890 			td->td_si = ksi.ksi_info;
2891 
2892 			mtx_unlock(&ps->ps_mtx);
2893 			sig = ptracestop(td, sig, &ksi);
2894 			mtx_lock(&ps->ps_mtx);
2895 
2896 			td->td_si.si_signo = 0;
2897 
2898 			/*
2899 			 * Keep looking if the debugger discarded or
2900 			 * replaced the signal.
2901 			 */
2902 			if (sig == 0)
2903 				continue;
2904 
2905 			/*
2906 			 * If the signal became masked, re-queue it.
2907 			 */
2908 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2909 				ksi.ksi_flags |= KSI_HEAD;
2910 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2911 				continue;
2912 			}
2913 
2914 			/*
2915 			 * If the traced bit got turned off, requeue
2916 			 * the signal and go back up to the top to
2917 			 * rescan signals.  This ensures that p_sig*
2918 			 * and p_sigact are consistent.
2919 			 */
2920 			if ((p->p_flag & P_TRACED) == 0) {
2921 				ksi.ksi_flags |= KSI_HEAD;
2922 				sigqueue_add(queue, sig, &ksi);
2923 				continue;
2924 			}
2925 		}
2926 
2927 		prop = sigprop(sig);
2928 
2929 		/*
2930 		 * Decide whether the signal should be returned.
2931 		 * Return the signal's number, or fall through
2932 		 * to clear it from the pending mask.
2933 		 */
2934 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2935 
2936 		case (intptr_t)SIG_DFL:
2937 			/*
2938 			 * Don't take default actions on system processes.
2939 			 */
2940 			if (p->p_pid <= 1) {
2941 #ifdef DIAGNOSTIC
2942 				/*
2943 				 * Are you sure you want to ignore SIGSEGV
2944 				 * in init? XXX
2945 				 */
2946 				printf("Process (pid %lu) got signal %d\n",
2947 					(u_long)p->p_pid, sig);
2948 #endif
2949 				break;		/* == ignore */
2950 			}
2951 			/*
2952 			 * If there is a pending stop signal to process with
2953 			 * default action, stop here, then clear the signal.
2954 			 * Traced or exiting processes should ignore stops.
2955 			 * Additionally, a member of an orphaned process group
2956 			 * should ignore tty stops.
2957 			 */
2958 			if (prop & SIGPROP_STOP) {
2959 				if (p->p_flag &
2960 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2961 				    (p->p_pgrp->pg_jobc == 0 &&
2962 				     prop & SIGPROP_TTYSTOP))
2963 					break;	/* == ignore */
2964 				if (TD_SBDRY_INTR(td)) {
2965 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2966 					    ("lost TDF_SBDRY"));
2967 					return (-1);
2968 				}
2969 				mtx_unlock(&ps->ps_mtx);
2970 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2971 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2972 				sigqueue_delete(&td->td_sigqueue, sig);
2973 				sigqueue_delete(&p->p_sigqueue, sig);
2974 				p->p_flag |= P_STOPPED_SIG;
2975 				p->p_xsig = sig;
2976 				PROC_SLOCK(p);
2977 				sig_suspend_threads(td, p, 0);
2978 				thread_suspend_switch(td, p);
2979 				PROC_SUNLOCK(p);
2980 				mtx_lock(&ps->ps_mtx);
2981 				goto next;
2982 			} else if (prop & SIGPROP_IGNORE) {
2983 				/*
2984 				 * Except for SIGCONT, shouldn't get here.
2985 				 * Default action is to ignore; drop it.
2986 				 */
2987 				break;		/* == ignore */
2988 			} else
2989 				return (sig);
2990 			/*NOTREACHED*/
2991 
2992 		case (intptr_t)SIG_IGN:
2993 			/*
2994 			 * Masking above should prevent us ever trying
2995 			 * to take action on an ignored signal other
2996 			 * than SIGCONT, unless process is traced.
2997 			 */
2998 			if ((prop & SIGPROP_CONT) == 0 &&
2999 			    (p->p_flag & P_TRACED) == 0)
3000 				printf("issignal\n");
3001 			break;		/* == ignore */
3002 
3003 		default:
3004 			/*
3005 			 * This signal has an action, let
3006 			 * postsig() process it.
3007 			 */
3008 			return (sig);
3009 		}
3010 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3011 		sigqueue_delete(&p->p_sigqueue, sig);
3012 next:;
3013 	}
3014 	/* NOTREACHED */
3015 }
3016 
3017 void
3018 thread_stopped(struct proc *p)
3019 {
3020 	int n;
3021 
3022 	PROC_LOCK_ASSERT(p, MA_OWNED);
3023 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3024 	n = p->p_suspcount;
3025 	if (p == curproc)
3026 		n++;
3027 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3028 		PROC_SUNLOCK(p);
3029 		p->p_flag &= ~P_WAITED;
3030 		PROC_LOCK(p->p_pptr);
3031 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3032 			CLD_TRAPPED : CLD_STOPPED);
3033 		PROC_UNLOCK(p->p_pptr);
3034 		PROC_SLOCK(p);
3035 	}
3036 }
3037 
3038 /*
3039  * Take the action for the specified signal
3040  * from the current set of pending signals.
3041  */
3042 int
3043 postsig(int sig)
3044 {
3045 	struct thread *td;
3046 	struct proc *p;
3047 	struct sigacts *ps;
3048 	sig_t action;
3049 	ksiginfo_t ksi;
3050 	sigset_t returnmask;
3051 
3052 	KASSERT(sig != 0, ("postsig"));
3053 
3054 	td = curthread;
3055 	p = td->td_proc;
3056 	PROC_LOCK_ASSERT(p, MA_OWNED);
3057 	ps = p->p_sigacts;
3058 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3059 	ksiginfo_init(&ksi);
3060 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3061 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3062 		return (0);
3063 	ksi.ksi_signo = sig;
3064 	if (ksi.ksi_code == SI_TIMER)
3065 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3066 	action = ps->ps_sigact[_SIG_IDX(sig)];
3067 #ifdef KTRACE
3068 	if (KTRPOINT(td, KTR_PSIG))
3069 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3070 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3071 #endif
3072 	if ((p->p_stops & S_SIG) != 0) {
3073 		mtx_unlock(&ps->ps_mtx);
3074 		stopevent(p, S_SIG, sig);
3075 		mtx_lock(&ps->ps_mtx);
3076 	}
3077 
3078 	if (action == SIG_DFL) {
3079 		/*
3080 		 * Default action, where the default is to kill
3081 		 * the process.  (Other cases were ignored above.)
3082 		 */
3083 		mtx_unlock(&ps->ps_mtx);
3084 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3085 		sigexit(td, sig);
3086 		/* NOTREACHED */
3087 	} else {
3088 		/*
3089 		 * If we get here, the signal must be caught.
3090 		 */
3091 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3092 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3093 		    ("postsig action: blocked sig %d", sig));
3094 
3095 		/*
3096 		 * Set the new mask value and also defer further
3097 		 * occurrences of this signal.
3098 		 *
3099 		 * Special case: user has done a sigsuspend.  Here the
3100 		 * current mask is not of interest, but rather the
3101 		 * mask from before the sigsuspend is what we want
3102 		 * restored after the signal processing is completed.
3103 		 */
3104 		if (td->td_pflags & TDP_OLDMASK) {
3105 			returnmask = td->td_oldsigmask;
3106 			td->td_pflags &= ~TDP_OLDMASK;
3107 		} else
3108 			returnmask = td->td_sigmask;
3109 
3110 		if (p->p_sig == sig) {
3111 			p->p_sig = 0;
3112 		}
3113 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3114 		postsig_done(sig, td, ps);
3115 	}
3116 	return (1);
3117 }
3118 
3119 void
3120 proc_wkilled(struct proc *p)
3121 {
3122 
3123 	PROC_LOCK_ASSERT(p, MA_OWNED);
3124 	if ((p->p_flag & P_WKILLED) == 0) {
3125 		p->p_flag |= P_WKILLED;
3126 		/*
3127 		 * Notify swapper that there is a process to swap in.
3128 		 * The notification is racy, at worst it would take 10
3129 		 * seconds for the swapper process to notice.
3130 		 */
3131 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3132 			wakeup(&proc0);
3133 	}
3134 }
3135 
3136 /*
3137  * Kill the current process for stated reason.
3138  */
3139 void
3140 killproc(struct proc *p, char *why)
3141 {
3142 
3143 	PROC_LOCK_ASSERT(p, MA_OWNED);
3144 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3145 	    p->p_comm);
3146 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3147 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3148 	    p->p_ucred->cr_uid, why);
3149 	proc_wkilled(p);
3150 	kern_psignal(p, SIGKILL);
3151 }
3152 
3153 /*
3154  * Force the current process to exit with the specified signal, dumping core
3155  * if appropriate.  We bypass the normal tests for masked and caught signals,
3156  * allowing unrecoverable failures to terminate the process without changing
3157  * signal state.  Mark the accounting record with the signal termination.
3158  * If dumping core, save the signal number for the debugger.  Calls exit and
3159  * does not return.
3160  */
3161 void
3162 sigexit(struct thread *td, int sig)
3163 {
3164 	struct proc *p = td->td_proc;
3165 
3166 	PROC_LOCK_ASSERT(p, MA_OWNED);
3167 	p->p_acflag |= AXSIG;
3168 	/*
3169 	 * We must be single-threading to generate a core dump.  This
3170 	 * ensures that the registers in the core file are up-to-date.
3171 	 * Also, the ELF dump handler assumes that the thread list doesn't
3172 	 * change out from under it.
3173 	 *
3174 	 * XXX If another thread attempts to single-thread before us
3175 	 *     (e.g. via fork()), we won't get a dump at all.
3176 	 */
3177 	if ((sigprop(sig) & SIGPROP_CORE) &&
3178 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3179 		p->p_sig = sig;
3180 		/*
3181 		 * Log signals which would cause core dumps
3182 		 * (Log as LOG_INFO to appease those who don't want
3183 		 * these messages.)
3184 		 * XXX : Todo, as well as euid, write out ruid too
3185 		 * Note that coredump() drops proc lock.
3186 		 */
3187 		if (coredump(td) == 0)
3188 			sig |= WCOREFLAG;
3189 		if (kern_logsigexit)
3190 			log(LOG_INFO,
3191 			    "pid %d (%s), jid %d, uid %d: exited on "
3192 			    "signal %d%s\n", p->p_pid, p->p_comm,
3193 			    p->p_ucred->cr_prison->pr_id,
3194 			    td->td_ucred->cr_uid,
3195 			    sig &~ WCOREFLAG,
3196 			    sig & WCOREFLAG ? " (core dumped)" : "");
3197 	} else
3198 		PROC_UNLOCK(p);
3199 	exit1(td, 0, sig);
3200 	/* NOTREACHED */
3201 }
3202 
3203 /*
3204  * Send queued SIGCHLD to parent when child process's state
3205  * is changed.
3206  */
3207 static void
3208 sigparent(struct proc *p, int reason, int status)
3209 {
3210 	PROC_LOCK_ASSERT(p, MA_OWNED);
3211 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3212 
3213 	if (p->p_ksi != NULL) {
3214 		p->p_ksi->ksi_signo  = SIGCHLD;
3215 		p->p_ksi->ksi_code   = reason;
3216 		p->p_ksi->ksi_status = status;
3217 		p->p_ksi->ksi_pid    = p->p_pid;
3218 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3219 		if (KSI_ONQ(p->p_ksi))
3220 			return;
3221 	}
3222 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3223 }
3224 
3225 static void
3226 childproc_jobstate(struct proc *p, int reason, int sig)
3227 {
3228 	struct sigacts *ps;
3229 
3230 	PROC_LOCK_ASSERT(p, MA_OWNED);
3231 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3232 
3233 	/*
3234 	 * Wake up parent sleeping in kern_wait(), also send
3235 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3236 	 * that parent will awake, because parent may masked
3237 	 * the signal.
3238 	 */
3239 	p->p_pptr->p_flag |= P_STATCHILD;
3240 	wakeup(p->p_pptr);
3241 
3242 	ps = p->p_pptr->p_sigacts;
3243 	mtx_lock(&ps->ps_mtx);
3244 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3245 		mtx_unlock(&ps->ps_mtx);
3246 		sigparent(p, reason, sig);
3247 	} else
3248 		mtx_unlock(&ps->ps_mtx);
3249 }
3250 
3251 void
3252 childproc_stopped(struct proc *p, int reason)
3253 {
3254 
3255 	childproc_jobstate(p, reason, p->p_xsig);
3256 }
3257 
3258 void
3259 childproc_continued(struct proc *p)
3260 {
3261 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3262 }
3263 
3264 void
3265 childproc_exited(struct proc *p)
3266 {
3267 	int reason, status;
3268 
3269 	if (WCOREDUMP(p->p_xsig)) {
3270 		reason = CLD_DUMPED;
3271 		status = WTERMSIG(p->p_xsig);
3272 	} else if (WIFSIGNALED(p->p_xsig)) {
3273 		reason = CLD_KILLED;
3274 		status = WTERMSIG(p->p_xsig);
3275 	} else {
3276 		reason = CLD_EXITED;
3277 		status = p->p_xexit;
3278 	}
3279 	/*
3280 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3281 	 * done in exit1().
3282 	 */
3283 	sigparent(p, reason, status);
3284 }
3285 
3286 #define	MAX_NUM_CORE_FILES 100000
3287 #ifndef NUM_CORE_FILES
3288 #define	NUM_CORE_FILES 5
3289 #endif
3290 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3291 static int num_cores = NUM_CORE_FILES;
3292 
3293 static int
3294 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3295 {
3296 	int error;
3297 	int new_val;
3298 
3299 	new_val = num_cores;
3300 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3301 	if (error != 0 || req->newptr == NULL)
3302 		return (error);
3303 	if (new_val > MAX_NUM_CORE_FILES)
3304 		new_val = MAX_NUM_CORE_FILES;
3305 	if (new_val < 0)
3306 		new_val = 0;
3307 	num_cores = new_val;
3308 	return (0);
3309 }
3310 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3311 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3312 	    "Maximum number of generated process corefiles while using index format");
3313 
3314 #define	GZIP_SUFFIX	".gz"
3315 #define	ZSTD_SUFFIX	".zst"
3316 
3317 int compress_user_cores = 0;
3318 
3319 static int
3320 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3321 {
3322 	int error, val;
3323 
3324 	val = compress_user_cores;
3325 	error = sysctl_handle_int(oidp, &val, 0, req);
3326 	if (error != 0 || req->newptr == NULL)
3327 		return (error);
3328 	if (val != 0 && !compressor_avail(val))
3329 		return (EINVAL);
3330 	compress_user_cores = val;
3331 	return (error);
3332 }
3333 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3334     0, sizeof(int), sysctl_compress_user_cores, "I",
3335     "Enable compression of user corefiles ("
3336     __XSTRING(COMPRESS_GZIP) " = gzip, "
3337     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3338 
3339 int compress_user_cores_level = 6;
3340 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3341     &compress_user_cores_level, 0,
3342     "Corefile compression level");
3343 
3344 /*
3345  * Protect the access to corefilename[] by allproc_lock.
3346  */
3347 #define	corefilename_lock	allproc_lock
3348 
3349 static char corefilename[MAXPATHLEN] = {"%N.core"};
3350 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3351 
3352 static int
3353 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3354 {
3355 	int error;
3356 
3357 	sx_xlock(&corefilename_lock);
3358 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3359 	    req);
3360 	sx_xunlock(&corefilename_lock);
3361 
3362 	return (error);
3363 }
3364 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3365     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3366     "Process corefile name format string");
3367 
3368 static void
3369 vnode_close_locked(struct thread *td, struct vnode *vp)
3370 {
3371 
3372 	VOP_UNLOCK(vp);
3373 	vn_close(vp, FWRITE, td->td_ucred, td);
3374 }
3375 
3376 /*
3377  * If the core format has a %I in it, then we need to check
3378  * for existing corefiles before defining a name.
3379  * To do this we iterate over 0..ncores to find a
3380  * non-existing core file name to use. If all core files are
3381  * already used we choose the oldest one.
3382  */
3383 static int
3384 corefile_open_last(struct thread *td, char *name, int indexpos,
3385     int indexlen, int ncores, struct vnode **vpp)
3386 {
3387 	struct vnode *oldvp, *nextvp, *vp;
3388 	struct vattr vattr;
3389 	struct nameidata nd;
3390 	int error, i, flags, oflags, cmode;
3391 	char ch;
3392 	struct timespec lasttime;
3393 
3394 	nextvp = oldvp = NULL;
3395 	cmode = S_IRUSR | S_IWUSR;
3396 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3397 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3398 
3399 	for (i = 0; i < ncores; i++) {
3400 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3401 
3402 		ch = name[indexpos + indexlen];
3403 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3404 		    i);
3405 		name[indexpos + indexlen] = ch;
3406 
3407 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3408 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3409 		    NULL);
3410 		if (error != 0)
3411 			break;
3412 
3413 		vp = nd.ni_vp;
3414 		NDFREE(&nd, NDF_ONLY_PNBUF);
3415 		if ((flags & O_CREAT) == O_CREAT) {
3416 			nextvp = vp;
3417 			break;
3418 		}
3419 
3420 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3421 		if (error != 0) {
3422 			vnode_close_locked(td, vp);
3423 			break;
3424 		}
3425 
3426 		if (oldvp == NULL ||
3427 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3428 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3429 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3430 			if (oldvp != NULL)
3431 				vnode_close_locked(td, oldvp);
3432 			oldvp = vp;
3433 			lasttime = vattr.va_mtime;
3434 		} else {
3435 			vnode_close_locked(td, vp);
3436 		}
3437 	}
3438 
3439 	if (oldvp != NULL) {
3440 		if (nextvp == NULL) {
3441 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3442 				error = EFAULT;
3443 				vnode_close_locked(td, oldvp);
3444 			} else {
3445 				nextvp = oldvp;
3446 			}
3447 		} else {
3448 			vnode_close_locked(td, oldvp);
3449 		}
3450 	}
3451 	if (error != 0) {
3452 		if (nextvp != NULL)
3453 			vnode_close_locked(td, oldvp);
3454 	} else {
3455 		*vpp = nextvp;
3456 	}
3457 
3458 	return (error);
3459 }
3460 
3461 /*
3462  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3463  * Expand the name described in corefilename, using name, uid, and pid
3464  * and open/create core file.
3465  * corefilename is a printf-like string, with three format specifiers:
3466  *	%N	name of process ("name")
3467  *	%P	process id (pid)
3468  *	%U	user id (uid)
3469  * For example, "%N.core" is the default; they can be disabled completely
3470  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3471  * This is controlled by the sysctl variable kern.corefile (see above).
3472  */
3473 static int
3474 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3475     int compress, int signum, struct vnode **vpp, char **namep)
3476 {
3477 	struct sbuf sb;
3478 	struct nameidata nd;
3479 	const char *format;
3480 	char *hostname, *name;
3481 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3482 
3483 	hostname = NULL;
3484 	format = corefilename;
3485 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3486 	indexlen = 0;
3487 	indexpos = -1;
3488 	ncores = num_cores;
3489 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3490 	sx_slock(&corefilename_lock);
3491 	for (i = 0; format[i] != '\0'; i++) {
3492 		switch (format[i]) {
3493 		case '%':	/* Format character */
3494 			i++;
3495 			switch (format[i]) {
3496 			case '%':
3497 				sbuf_putc(&sb, '%');
3498 				break;
3499 			case 'H':	/* hostname */
3500 				if (hostname == NULL) {
3501 					hostname = malloc(MAXHOSTNAMELEN,
3502 					    M_TEMP, M_WAITOK);
3503 				}
3504 				getcredhostname(td->td_ucred, hostname,
3505 				    MAXHOSTNAMELEN);
3506 				sbuf_printf(&sb, "%s", hostname);
3507 				break;
3508 			case 'I':	/* autoincrementing index */
3509 				if (indexpos != -1) {
3510 					sbuf_printf(&sb, "%%I");
3511 					break;
3512 				}
3513 
3514 				indexpos = sbuf_len(&sb);
3515 				sbuf_printf(&sb, "%u", ncores - 1);
3516 				indexlen = sbuf_len(&sb) - indexpos;
3517 				break;
3518 			case 'N':	/* process name */
3519 				sbuf_printf(&sb, "%s", comm);
3520 				break;
3521 			case 'P':	/* process id */
3522 				sbuf_printf(&sb, "%u", pid);
3523 				break;
3524 			case 'S':	/* signal number */
3525 				sbuf_printf(&sb, "%i", signum);
3526 				break;
3527 			case 'U':	/* user id */
3528 				sbuf_printf(&sb, "%u", uid);
3529 				break;
3530 			default:
3531 				log(LOG_ERR,
3532 				    "Unknown format character %c in "
3533 				    "corename `%s'\n", format[i], format);
3534 				break;
3535 			}
3536 			break;
3537 		default:
3538 			sbuf_putc(&sb, format[i]);
3539 			break;
3540 		}
3541 	}
3542 	sx_sunlock(&corefilename_lock);
3543 	free(hostname, M_TEMP);
3544 	if (compress == COMPRESS_GZIP)
3545 		sbuf_printf(&sb, GZIP_SUFFIX);
3546 	else if (compress == COMPRESS_ZSTD)
3547 		sbuf_printf(&sb, ZSTD_SUFFIX);
3548 	if (sbuf_error(&sb) != 0) {
3549 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3550 		    "long\n", (long)pid, comm, (u_long)uid);
3551 		sbuf_delete(&sb);
3552 		free(name, M_TEMP);
3553 		return (ENOMEM);
3554 	}
3555 	sbuf_finish(&sb);
3556 	sbuf_delete(&sb);
3557 
3558 	if (indexpos != -1) {
3559 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3560 		    vpp);
3561 		if (error != 0) {
3562 			log(LOG_ERR,
3563 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3564 			    "on initial open test, error = %d\n",
3565 			    pid, comm, uid, name, error);
3566 		}
3567 	} else {
3568 		cmode = S_IRUSR | S_IWUSR;
3569 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3570 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3571 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3572 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3573 			flags |= O_EXCL;
3574 
3575 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3576 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3577 		    NULL);
3578 		if (error == 0) {
3579 			*vpp = nd.ni_vp;
3580 			NDFREE(&nd, NDF_ONLY_PNBUF);
3581 		}
3582 	}
3583 
3584 	if (error != 0) {
3585 #ifdef AUDIT
3586 		audit_proc_coredump(td, name, error);
3587 #endif
3588 		free(name, M_TEMP);
3589 		return (error);
3590 	}
3591 	*namep = name;
3592 	return (0);
3593 }
3594 
3595 /*
3596  * Dump a process' core.  The main routine does some
3597  * policy checking, and creates the name of the coredump;
3598  * then it passes on a vnode and a size limit to the process-specific
3599  * coredump routine if there is one; if there _is not_ one, it returns
3600  * ENOSYS; otherwise it returns the error from the process-specific routine.
3601  */
3602 
3603 static int
3604 coredump(struct thread *td)
3605 {
3606 	struct proc *p = td->td_proc;
3607 	struct ucred *cred = td->td_ucred;
3608 	struct vnode *vp;
3609 	struct flock lf;
3610 	struct vattr vattr;
3611 	size_t fullpathsize;
3612 	int error, error1, locked;
3613 	char *name;			/* name of corefile */
3614 	void *rl_cookie;
3615 	off_t limit;
3616 	char *fullpath, *freepath = NULL;
3617 	struct sbuf *sb;
3618 
3619 	PROC_LOCK_ASSERT(p, MA_OWNED);
3620 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3621 	_STOPEVENT(p, S_CORE, 0);
3622 
3623 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3624 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3625 		PROC_UNLOCK(p);
3626 		return (EFAULT);
3627 	}
3628 
3629 	/*
3630 	 * Note that the bulk of limit checking is done after
3631 	 * the corefile is created.  The exception is if the limit
3632 	 * for corefiles is 0, in which case we don't bother
3633 	 * creating the corefile at all.  This layout means that
3634 	 * a corefile is truncated instead of not being created,
3635 	 * if it is larger than the limit.
3636 	 */
3637 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3638 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3639 		PROC_UNLOCK(p);
3640 		return (EFBIG);
3641 	}
3642 	PROC_UNLOCK(p);
3643 
3644 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3645 	    compress_user_cores, p->p_sig, &vp, &name);
3646 	if (error != 0)
3647 		return (error);
3648 
3649 	/*
3650 	 * Don't dump to non-regular files or files with links.
3651 	 * Do not dump into system files. Effective user must own the corefile.
3652 	 */
3653 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3654 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3655 	    vattr.va_uid != cred->cr_uid) {
3656 		VOP_UNLOCK(vp);
3657 		error = EFAULT;
3658 		goto out;
3659 	}
3660 
3661 	VOP_UNLOCK(vp);
3662 
3663 	/* Postpone other writers, including core dumps of other processes. */
3664 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3665 
3666 	lf.l_whence = SEEK_SET;
3667 	lf.l_start = 0;
3668 	lf.l_len = 0;
3669 	lf.l_type = F_WRLCK;
3670 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3671 
3672 	VATTR_NULL(&vattr);
3673 	vattr.va_size = 0;
3674 	if (set_core_nodump_flag)
3675 		vattr.va_flags = UF_NODUMP;
3676 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3677 	VOP_SETATTR(vp, &vattr, cred);
3678 	VOP_UNLOCK(vp);
3679 	PROC_LOCK(p);
3680 	p->p_acflag |= ACORE;
3681 	PROC_UNLOCK(p);
3682 
3683 	if (p->p_sysent->sv_coredump != NULL) {
3684 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3685 	} else {
3686 		error = ENOSYS;
3687 	}
3688 
3689 	if (locked) {
3690 		lf.l_type = F_UNLCK;
3691 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3692 	}
3693 	vn_rangelock_unlock(vp, rl_cookie);
3694 
3695 	/*
3696 	 * Notify the userland helper that a process triggered a core dump.
3697 	 * This allows the helper to run an automated debugging session.
3698 	 */
3699 	if (error != 0 || coredump_devctl == 0)
3700 		goto out;
3701 	sb = sbuf_new_auto();
3702 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3703 		goto out2;
3704 	sbuf_printf(sb, "comm=\"");
3705 	devctl_safe_quote_sb(sb, fullpath);
3706 	free(freepath, M_TEMP);
3707 	sbuf_printf(sb, "\" core=\"");
3708 
3709 	/*
3710 	 * We can't lookup core file vp directly. When we're replacing a core, and
3711 	 * other random times, we flush the name cache, so it will fail. Instead,
3712 	 * if the path of the core is relative, add the current dir in front if it.
3713 	 */
3714 	if (name[0] != '/') {
3715 		fullpathsize = MAXPATHLEN;
3716 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3717 		if (vn_getcwd(td, freepath, &fullpath, &fullpathsize) != 0) {
3718 			free(freepath, M_TEMP);
3719 			goto out2;
3720 		}
3721 		devctl_safe_quote_sb(sb, fullpath);
3722 		free(freepath, M_TEMP);
3723 		sbuf_putc(sb, '/');
3724 	}
3725 	devctl_safe_quote_sb(sb, name);
3726 	sbuf_printf(sb, "\"");
3727 	if (sbuf_finish(sb) == 0)
3728 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3729 out2:
3730 	sbuf_delete(sb);
3731 out:
3732 	error1 = vn_close(vp, FWRITE, cred, td);
3733 	if (error == 0)
3734 		error = error1;
3735 #ifdef AUDIT
3736 	audit_proc_coredump(td, name, error);
3737 #endif
3738 	free(name, M_TEMP);
3739 	return (error);
3740 }
3741 
3742 /*
3743  * Nonexistent system call-- signal process (may want to handle it).  Flag
3744  * error in case process won't see signal immediately (blocked or ignored).
3745  */
3746 #ifndef _SYS_SYSPROTO_H_
3747 struct nosys_args {
3748 	int	dummy;
3749 };
3750 #endif
3751 /* ARGSUSED */
3752 int
3753 nosys(struct thread *td, struct nosys_args *args)
3754 {
3755 	struct proc *p;
3756 
3757 	p = td->td_proc;
3758 
3759 	PROC_LOCK(p);
3760 	tdsignal(td, SIGSYS);
3761 	PROC_UNLOCK(p);
3762 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3763 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3764 		    td->td_sa.code);
3765 	}
3766 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3767 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3768 		    td->td_sa.code);
3769 	}
3770 	return (ENOSYS);
3771 }
3772 
3773 /*
3774  * Send a SIGIO or SIGURG signal to a process or process group using stored
3775  * credentials rather than those of the current process.
3776  */
3777 void
3778 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3779 {
3780 	ksiginfo_t ksi;
3781 	struct sigio *sigio;
3782 
3783 	ksiginfo_init(&ksi);
3784 	ksi.ksi_signo = sig;
3785 	ksi.ksi_code = SI_KERNEL;
3786 
3787 	SIGIO_LOCK();
3788 	sigio = *sigiop;
3789 	if (sigio == NULL) {
3790 		SIGIO_UNLOCK();
3791 		return;
3792 	}
3793 	if (sigio->sio_pgid > 0) {
3794 		PROC_LOCK(sigio->sio_proc);
3795 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3796 			kern_psignal(sigio->sio_proc, sig);
3797 		PROC_UNLOCK(sigio->sio_proc);
3798 	} else if (sigio->sio_pgid < 0) {
3799 		struct proc *p;
3800 
3801 		PGRP_LOCK(sigio->sio_pgrp);
3802 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3803 			PROC_LOCK(p);
3804 			if (p->p_state == PRS_NORMAL &&
3805 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3806 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3807 				kern_psignal(p, sig);
3808 			PROC_UNLOCK(p);
3809 		}
3810 		PGRP_UNLOCK(sigio->sio_pgrp);
3811 	}
3812 	SIGIO_UNLOCK();
3813 }
3814 
3815 static int
3816 filt_sigattach(struct knote *kn)
3817 {
3818 	struct proc *p = curproc;
3819 
3820 	kn->kn_ptr.p_proc = p;
3821 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3822 
3823 	knlist_add(p->p_klist, kn, 0);
3824 
3825 	return (0);
3826 }
3827 
3828 static void
3829 filt_sigdetach(struct knote *kn)
3830 {
3831 	struct proc *p = kn->kn_ptr.p_proc;
3832 
3833 	knlist_remove(p->p_klist, kn, 0);
3834 }
3835 
3836 /*
3837  * signal knotes are shared with proc knotes, so we apply a mask to
3838  * the hint in order to differentiate them from process hints.  This
3839  * could be avoided by using a signal-specific knote list, but probably
3840  * isn't worth the trouble.
3841  */
3842 static int
3843 filt_signal(struct knote *kn, long hint)
3844 {
3845 
3846 	if (hint & NOTE_SIGNAL) {
3847 		hint &= ~NOTE_SIGNAL;
3848 
3849 		if (kn->kn_id == hint)
3850 			kn->kn_data++;
3851 	}
3852 	return (kn->kn_data != 0);
3853 }
3854 
3855 struct sigacts *
3856 sigacts_alloc(void)
3857 {
3858 	struct sigacts *ps;
3859 
3860 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3861 	refcount_init(&ps->ps_refcnt, 1);
3862 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3863 	return (ps);
3864 }
3865 
3866 void
3867 sigacts_free(struct sigacts *ps)
3868 {
3869 
3870 	if (refcount_release(&ps->ps_refcnt) == 0)
3871 		return;
3872 	mtx_destroy(&ps->ps_mtx);
3873 	free(ps, M_SUBPROC);
3874 }
3875 
3876 struct sigacts *
3877 sigacts_hold(struct sigacts *ps)
3878 {
3879 
3880 	refcount_acquire(&ps->ps_refcnt);
3881 	return (ps);
3882 }
3883 
3884 void
3885 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3886 {
3887 
3888 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3889 	mtx_lock(&src->ps_mtx);
3890 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3891 	mtx_unlock(&src->ps_mtx);
3892 }
3893 
3894 int
3895 sigacts_shared(struct sigacts *ps)
3896 {
3897 
3898 	return (ps->ps_refcnt > 1);
3899 }
3900 
3901 void
3902 sig_drop_caught(struct proc *p)
3903 {
3904 	int sig;
3905 	struct sigacts *ps;
3906 
3907 	ps = p->p_sigacts;
3908 	PROC_LOCK_ASSERT(p, MA_OWNED);
3909 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3910 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
3911 		sig = sig_ffs(&ps->ps_sigcatch);
3912 		sigdflt(ps, sig);
3913 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
3914 			sigqueue_delete_proc(p, sig);
3915 	}
3916 }
3917