xref: /freebsd/sys/kern/kern_sig.c (revision e4e9813eb92cd7c4d4b819a8fbed5cbd3d92f5d8)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <posix4/posix4.h>
80 #include <machine/cpu.h>
81 
82 #include <security/audit/audit.h>
83 
84 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
85 
86 static int	coredump(struct thread *);
87 static char	*expand_name(const char *, uid_t, pid_t);
88 static int	killpg1(struct thread *td, int sig, int pgid, int all);
89 static int	issignal(struct thread *p);
90 static int	sigprop(int sig);
91 static void	tdsigwakeup(struct thread *, int, sig_t, int);
92 static void	sig_suspend_threads(struct thread *, struct proc *, int);
93 static int	filt_sigattach(struct knote *kn);
94 static void	filt_sigdetach(struct knote *kn);
95 static int	filt_signal(struct knote *kn, long hint);
96 static struct thread *sigtd(struct proc *p, int sig, int prop);
97 static int	kern_sigtimedwait(struct thread *, sigset_t,
98 			ksiginfo_t *, struct timespec *);
99 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
100 static void	sigqueue_start(void);
101 
102 static uma_zone_t	ksiginfo_zone = NULL;
103 struct filterops sig_filtops =
104 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
105 
106 static int	kern_logsigexit = 1;
107 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
108     &kern_logsigexit, 0,
109     "Log processes quitting on abnormal signals to syslog(3)");
110 
111 static int	kern_forcesigexit = 1;
112 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
113     &kern_forcesigexit, 0, "Force trap signal to be handled");
114 
115 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
116 
117 static int	max_pending_per_proc = 128;
118 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
119     &max_pending_per_proc, 0, "Max pending signals per proc");
120 
121 static int	preallocate_siginfo = 1024;
122 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
123 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
124     &preallocate_siginfo, 0, "Preallocated signal memory size");
125 
126 static int	signal_overflow = 0;
127 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
128     &signal_overflow, 0, "Number of signals overflew");
129 
130 static int	signal_alloc_fail = 0;
131 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
132     &signal_alloc_fail, 0, "signals failed to be allocated");
133 
134 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
135 
136 /*
137  * Policy -- Can ucred cr1 send SIGIO to process cr2?
138  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
139  * in the right situations.
140  */
141 #define CANSIGIO(cr1, cr2) \
142 	((cr1)->cr_uid == 0 || \
143 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
144 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
145 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
146 	    (cr1)->cr_uid == (cr2)->cr_uid)
147 
148 int sugid_coredump;
149 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
150     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
151 
152 static int	do_coredump = 1;
153 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
154 	&do_coredump, 0, "Enable/Disable coredumps");
155 
156 static int	set_core_nodump_flag = 0;
157 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
158 	0, "Enable setting the NODUMP flag on coredump files");
159 
160 /*
161  * Signal properties and actions.
162  * The array below categorizes the signals and their default actions
163  * according to the following properties:
164  */
165 #define	SA_KILL		0x01		/* terminates process by default */
166 #define	SA_CORE		0x02		/* ditto and coredumps */
167 #define	SA_STOP		0x04		/* suspend process */
168 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
169 #define	SA_IGNORE	0x10		/* ignore by default */
170 #define	SA_CONT		0x20		/* continue if suspended */
171 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
172 #define	SA_PROC		0x80		/* deliverable to any thread */
173 
174 static int sigproptbl[NSIG] = {
175         SA_KILL|SA_PROC,		/* SIGHUP */
176         SA_KILL|SA_PROC,		/* SIGINT */
177         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
178         SA_KILL|SA_CORE,		/* SIGILL */
179         SA_KILL|SA_CORE,		/* SIGTRAP */
180         SA_KILL|SA_CORE,		/* SIGABRT */
181         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
182         SA_KILL|SA_CORE,		/* SIGFPE */
183         SA_KILL|SA_PROC,		/* SIGKILL */
184         SA_KILL|SA_CORE,		/* SIGBUS */
185         SA_KILL|SA_CORE,		/* SIGSEGV */
186         SA_KILL|SA_CORE,		/* SIGSYS */
187         SA_KILL|SA_PROC,		/* SIGPIPE */
188         SA_KILL|SA_PROC,		/* SIGALRM */
189         SA_KILL|SA_PROC,		/* SIGTERM */
190         SA_IGNORE|SA_PROC,		/* SIGURG */
191         SA_STOP|SA_PROC,		/* SIGSTOP */
192         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
193         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
194         SA_IGNORE|SA_PROC,		/* SIGCHLD */
195         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
196         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
197         SA_IGNORE|SA_PROC,		/* SIGIO */
198         SA_KILL,			/* SIGXCPU */
199         SA_KILL,			/* SIGXFSZ */
200         SA_KILL|SA_PROC,		/* SIGVTALRM */
201         SA_KILL|SA_PROC,		/* SIGPROF */
202         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
203         SA_IGNORE|SA_PROC,		/* SIGINFO */
204         SA_KILL|SA_PROC,		/* SIGUSR1 */
205         SA_KILL|SA_PROC,		/* SIGUSR2 */
206 };
207 
208 static void
209 sigqueue_start(void)
210 {
211 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
212 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
214 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
215 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
216 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
217 }
218 
219 ksiginfo_t *
220 ksiginfo_alloc(int wait)
221 {
222 	int flags;
223 
224 	flags = M_ZERO;
225 	if (! wait)
226 		flags |= M_NOWAIT;
227 	if (ksiginfo_zone != NULL)
228 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
229 	return (NULL);
230 }
231 
232 void
233 ksiginfo_free(ksiginfo_t *ksi)
234 {
235 	uma_zfree(ksiginfo_zone, ksi);
236 }
237 
238 static __inline int
239 ksiginfo_tryfree(ksiginfo_t *ksi)
240 {
241 	if (!(ksi->ksi_flags & KSI_EXT)) {
242 		uma_zfree(ksiginfo_zone, ksi);
243 		return (1);
244 	}
245 	return (0);
246 }
247 
248 void
249 sigqueue_init(sigqueue_t *list, struct proc *p)
250 {
251 	SIGEMPTYSET(list->sq_signals);
252 	SIGEMPTYSET(list->sq_kill);
253 	TAILQ_INIT(&list->sq_list);
254 	list->sq_proc = p;
255 	list->sq_flags = SQ_INIT;
256 }
257 
258 /*
259  * Get a signal's ksiginfo.
260  * Return:
261  * 	0	-	signal not found
262  *	others	-	signal number
263  */
264 int
265 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
266 {
267 	struct proc *p = sq->sq_proc;
268 	struct ksiginfo *ksi, *next;
269 	int count = 0;
270 
271 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
272 
273 	if (!SIGISMEMBER(sq->sq_signals, signo))
274 		return (0);
275 
276 	if (SIGISMEMBER(sq->sq_kill, signo)) {
277 		count++;
278 		SIGDELSET(sq->sq_kill, signo);
279 	}
280 
281 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
282 		next = TAILQ_NEXT(ksi, ksi_link);
283 		if (ksi->ksi_signo == signo) {
284 			if (count == 0) {
285 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
286 				ksi->ksi_sigq = NULL;
287 				ksiginfo_copy(ksi, si);
288 				if (ksiginfo_tryfree(ksi) && p != NULL)
289 					p->p_pendingcnt--;
290 			}
291 			count++;
292 		}
293 	}
294 
295 	if (count <= 1)
296 		SIGDELSET(sq->sq_signals, signo);
297 	si->ksi_signo = signo;
298 	return (signo);
299 }
300 
301 void
302 sigqueue_take(ksiginfo_t *ksi)
303 {
304 	struct ksiginfo *kp;
305 	struct proc	*p;
306 	sigqueue_t	*sq;
307 
308 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
309 		return;
310 
311 	p = sq->sq_proc;
312 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
313 	ksi->ksi_sigq = NULL;
314 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
315 		p->p_pendingcnt--;
316 
317 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
318 	     kp = TAILQ_NEXT(kp, ksi_link)) {
319 		if (kp->ksi_signo == ksi->ksi_signo)
320 			break;
321 	}
322 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
323 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
324 }
325 
326 int
327 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
328 {
329 	struct proc *p = sq->sq_proc;
330 	struct ksiginfo *ksi;
331 	int ret = 0;
332 
333 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
334 
335 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
336 		SIGADDSET(sq->sq_kill, signo);
337 		goto out_set_bit;
338 	}
339 
340 	/* directly insert the ksi, don't copy it */
341 	if (si->ksi_flags & KSI_INS) {
342 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
343 		si->ksi_sigq = sq;
344 		goto out_set_bit;
345 	}
346 
347 	if (__predict_false(ksiginfo_zone == NULL)) {
348 		SIGADDSET(sq->sq_kill, signo);
349 		goto out_set_bit;
350 	}
351 
352 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
353 		signal_overflow++;
354 		ret = EAGAIN;
355 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
356 		signal_alloc_fail++;
357 		ret = EAGAIN;
358 	} else {
359 		if (p != NULL)
360 			p->p_pendingcnt++;
361 		ksiginfo_copy(si, ksi);
362 		ksi->ksi_signo = signo;
363 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
364 		ksi->ksi_sigq = sq;
365 	}
366 
367 	if ((si->ksi_flags & KSI_TRAP) != 0) {
368 		if (ret != 0)
369 			SIGADDSET(sq->sq_kill, signo);
370 		ret = 0;
371 		goto out_set_bit;
372 	}
373 
374 	if (ret != 0)
375 		return (ret);
376 
377 out_set_bit:
378 	SIGADDSET(sq->sq_signals, signo);
379 	return (ret);
380 }
381 
382 void
383 sigqueue_flush(sigqueue_t *sq)
384 {
385 	struct proc *p = sq->sq_proc;
386 	ksiginfo_t *ksi;
387 
388 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
389 
390 	if (p != NULL)
391 		PROC_LOCK_ASSERT(p, MA_OWNED);
392 
393 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
394 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
395 		ksi->ksi_sigq = NULL;
396 		if (ksiginfo_tryfree(ksi) && p != NULL)
397 			p->p_pendingcnt--;
398 	}
399 
400 	SIGEMPTYSET(sq->sq_signals);
401 	SIGEMPTYSET(sq->sq_kill);
402 }
403 
404 void
405 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
406 {
407 	ksiginfo_t *ksi;
408 
409 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
410 
411 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
412 		SIGADDSET(*set, ksi->ksi_signo);
413 	SIGSETOR(*set, sq->sq_kill);
414 }
415 
416 void
417 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
418 {
419 	sigset_t tmp, set;
420 	struct proc *p1, *p2;
421 	ksiginfo_t *ksi, *next;
422 
423 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
424 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
425 	/*
426 	 * make a copy, this allows setp to point to src or dst
427 	 * sq_signals without trouble.
428 	 */
429 	set = *setp;
430 	p1 = src->sq_proc;
431 	p2 = dst->sq_proc;
432 	/* Move siginfo to target list */
433 	for (ksi = TAILQ_FIRST(&src->sq_list); ksi != NULL; ksi = next) {
434 		next = TAILQ_NEXT(ksi, ksi_link);
435 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
436 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
437 			if (p1 != NULL)
438 				p1->p_pendingcnt--;
439 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
440 			ksi->ksi_sigq = dst;
441 			if (p2 != NULL)
442 				p2->p_pendingcnt++;
443 		}
444 	}
445 
446 	/* Move pending bits to target list */
447 	tmp = src->sq_kill;
448 	SIGSETAND(tmp, set);
449 	SIGSETOR(dst->sq_kill, tmp);
450 	SIGSETNAND(src->sq_kill, tmp);
451 
452 	tmp = src->sq_signals;
453 	SIGSETAND(tmp, set);
454 	SIGSETOR(dst->sq_signals, tmp);
455 	SIGSETNAND(src->sq_signals, tmp);
456 
457 	/* Finally, rescan src queue and set pending bits for it */
458 	sigqueue_collect_set(src, &src->sq_signals);
459 }
460 
461 void
462 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
463 {
464 	sigset_t set;
465 
466 	SIGEMPTYSET(set);
467 	SIGADDSET(set, signo);
468 	sigqueue_move_set(src, dst, &set);
469 }
470 
471 void
472 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
473 {
474 	struct proc *p = sq->sq_proc;
475 	ksiginfo_t *ksi, *next;
476 
477 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
478 
479 	/* Remove siginfo queue */
480 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
481 		next = TAILQ_NEXT(ksi, ksi_link);
482 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
483 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
484 			ksi->ksi_sigq = NULL;
485 			if (ksiginfo_tryfree(ksi) && p != NULL)
486 				p->p_pendingcnt--;
487 		}
488 	}
489 	SIGSETNAND(sq->sq_kill, *set);
490 	SIGSETNAND(sq->sq_signals, *set);
491 	/* Finally, rescan queue and set pending bits for it */
492 	sigqueue_collect_set(sq, &sq->sq_signals);
493 }
494 
495 void
496 sigqueue_delete(sigqueue_t *sq, int signo)
497 {
498 	sigset_t set;
499 
500 	SIGEMPTYSET(set);
501 	SIGADDSET(set, signo);
502 	sigqueue_delete_set(sq, &set);
503 }
504 
505 /* Remove a set of signals for a process */
506 void
507 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
508 {
509 	sigqueue_t worklist;
510 	struct thread *td0;
511 
512 	PROC_LOCK_ASSERT(p, MA_OWNED);
513 
514 	sigqueue_init(&worklist, NULL);
515 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
516 
517 	mtx_lock_spin(&sched_lock);
518 	FOREACH_THREAD_IN_PROC(p, td0)
519 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
520 	mtx_unlock_spin(&sched_lock);
521 
522 	sigqueue_flush(&worklist);
523 }
524 
525 void
526 sigqueue_delete_proc(struct proc *p, int signo)
527 {
528 	sigset_t set;
529 
530 	SIGEMPTYSET(set);
531 	SIGADDSET(set, signo);
532 	sigqueue_delete_set_proc(p, &set);
533 }
534 
535 void
536 sigqueue_delete_stopmask_proc(struct proc *p)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, SIGSTOP);
542 	SIGADDSET(set, SIGTSTP);
543 	SIGADDSET(set, SIGTTIN);
544 	SIGADDSET(set, SIGTTOU);
545 	sigqueue_delete_set_proc(p, &set);
546 }
547 
548 /*
549  * Determine signal that should be delivered to process p, the current
550  * process, 0 if none.  If there is a pending stop signal with default
551  * action, the process stops in issignal().
552  *
553  * MP SAFE.
554  */
555 int
556 cursig(struct thread *td)
557 {
558 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
559 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
560 	mtx_assert(&sched_lock, MA_NOTOWNED);
561 	return (SIGPENDING(td) ? issignal(td) : 0);
562 }
563 
564 /*
565  * Arrange for ast() to handle unmasked pending signals on return to user
566  * mode.  This must be called whenever a signal is added to td_sigqueue or
567  * unmasked in td_sigmask.
568  */
569 void
570 signotify(struct thread *td)
571 {
572 	struct proc *p;
573 	sigset_t set, saved;
574 
575 	p = td->td_proc;
576 
577 	PROC_LOCK_ASSERT(p, MA_OWNED);
578 
579 	/*
580 	 * If our mask changed we may have to move signal that were
581 	 * previously masked by all threads to our sigqueue.
582 	 */
583 	set = p->p_sigqueue.sq_signals;
584 	if (p->p_flag & P_SA)
585 		saved = p->p_sigqueue.sq_signals;
586 	SIGSETNAND(set, td->td_sigmask);
587 	if (! SIGISEMPTY(set))
588 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
589 	if (SIGPENDING(td)) {
590 		mtx_lock_spin(&sched_lock);
591 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
592 		mtx_unlock_spin(&sched_lock);
593 	}
594 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
595 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
596 			/* pending set changed */
597 			p->p_flag |= P_SIGEVENT;
598 			wakeup(&p->p_siglist);
599 		}
600 	}
601 }
602 
603 int
604 sigonstack(size_t sp)
605 {
606 	struct thread *td = curthread;
607 
608 	return ((td->td_pflags & TDP_ALTSTACK) ?
609 #if defined(COMPAT_43)
610 	    ((td->td_sigstk.ss_size == 0) ?
611 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
612 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
613 #else
614 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
615 #endif
616 	    : 0);
617 }
618 
619 static __inline int
620 sigprop(int sig)
621 {
622 
623 	if (sig > 0 && sig < NSIG)
624 		return (sigproptbl[_SIG_IDX(sig)]);
625 	return (0);
626 }
627 
628 int
629 sig_ffs(sigset_t *set)
630 {
631 	int i;
632 
633 	for (i = 0; i < _SIG_WORDS; i++)
634 		if (set->__bits[i])
635 			return (ffs(set->__bits[i]) + (i * 32));
636 	return (0);
637 }
638 
639 /*
640  * kern_sigaction
641  * sigaction
642  * freebsd4_sigaction
643  * osigaction
644  *
645  * MPSAFE
646  */
647 int
648 kern_sigaction(td, sig, act, oact, flags)
649 	struct thread *td;
650 	register int sig;
651 	struct sigaction *act, *oact;
652 	int flags;
653 {
654 	struct sigacts *ps;
655 	struct proc *p = td->td_proc;
656 
657 	if (!_SIG_VALID(sig))
658 		return (EINVAL);
659 
660 	PROC_LOCK(p);
661 	ps = p->p_sigacts;
662 	mtx_lock(&ps->ps_mtx);
663 	if (oact) {
664 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
665 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
666 		oact->sa_flags = 0;
667 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
668 			oact->sa_flags |= SA_ONSTACK;
669 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
670 			oact->sa_flags |= SA_RESTART;
671 		if (SIGISMEMBER(ps->ps_sigreset, sig))
672 			oact->sa_flags |= SA_RESETHAND;
673 		if (SIGISMEMBER(ps->ps_signodefer, sig))
674 			oact->sa_flags |= SA_NODEFER;
675 		if (SIGISMEMBER(ps->ps_siginfo, sig))
676 			oact->sa_flags |= SA_SIGINFO;
677 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
678 			oact->sa_flags |= SA_NOCLDSTOP;
679 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
680 			oact->sa_flags |= SA_NOCLDWAIT;
681 	}
682 	if (act) {
683 		if ((sig == SIGKILL || sig == SIGSTOP) &&
684 		    act->sa_handler != SIG_DFL) {
685 			mtx_unlock(&ps->ps_mtx);
686 			PROC_UNLOCK(p);
687 			return (EINVAL);
688 		}
689 
690 		/*
691 		 * Change setting atomically.
692 		 */
693 
694 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
695 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
696 		if (act->sa_flags & SA_SIGINFO) {
697 			ps->ps_sigact[_SIG_IDX(sig)] =
698 			    (__sighandler_t *)act->sa_sigaction;
699 			SIGADDSET(ps->ps_siginfo, sig);
700 		} else {
701 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
702 			SIGDELSET(ps->ps_siginfo, sig);
703 		}
704 		if (!(act->sa_flags & SA_RESTART))
705 			SIGADDSET(ps->ps_sigintr, sig);
706 		else
707 			SIGDELSET(ps->ps_sigintr, sig);
708 		if (act->sa_flags & SA_ONSTACK)
709 			SIGADDSET(ps->ps_sigonstack, sig);
710 		else
711 			SIGDELSET(ps->ps_sigonstack, sig);
712 		if (act->sa_flags & SA_RESETHAND)
713 			SIGADDSET(ps->ps_sigreset, sig);
714 		else
715 			SIGDELSET(ps->ps_sigreset, sig);
716 		if (act->sa_flags & SA_NODEFER)
717 			SIGADDSET(ps->ps_signodefer, sig);
718 		else
719 			SIGDELSET(ps->ps_signodefer, sig);
720 		if (sig == SIGCHLD) {
721 			if (act->sa_flags & SA_NOCLDSTOP)
722 				ps->ps_flag |= PS_NOCLDSTOP;
723 			else
724 				ps->ps_flag &= ~PS_NOCLDSTOP;
725 			if (act->sa_flags & SA_NOCLDWAIT) {
726 				/*
727 				 * Paranoia: since SA_NOCLDWAIT is implemented
728 				 * by reparenting the dying child to PID 1 (and
729 				 * trust it to reap the zombie), PID 1 itself
730 				 * is forbidden to set SA_NOCLDWAIT.
731 				 */
732 				if (p->p_pid == 1)
733 					ps->ps_flag &= ~PS_NOCLDWAIT;
734 				else
735 					ps->ps_flag |= PS_NOCLDWAIT;
736 			} else
737 				ps->ps_flag &= ~PS_NOCLDWAIT;
738 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
739 				ps->ps_flag |= PS_CLDSIGIGN;
740 			else
741 				ps->ps_flag &= ~PS_CLDSIGIGN;
742 		}
743 		/*
744 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
745 		 * and for signals set to SIG_DFL where the default is to
746 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
747 		 * have to restart the process.
748 		 */
749 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
750 		    (sigprop(sig) & SA_IGNORE &&
751 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
752 			if ((p->p_flag & P_SA) &&
753 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
754 				p->p_flag |= P_SIGEVENT;
755 				wakeup(&p->p_siglist);
756 			}
757 			/* never to be seen again */
758 			sigqueue_delete_proc(p, sig);
759 			if (sig != SIGCONT)
760 				/* easier in psignal */
761 				SIGADDSET(ps->ps_sigignore, sig);
762 			SIGDELSET(ps->ps_sigcatch, sig);
763 		} else {
764 			SIGDELSET(ps->ps_sigignore, sig);
765 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
766 				SIGDELSET(ps->ps_sigcatch, sig);
767 			else
768 				SIGADDSET(ps->ps_sigcatch, sig);
769 		}
770 #ifdef COMPAT_FREEBSD4
771 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
772 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
773 		    (flags & KSA_FREEBSD4) == 0)
774 			SIGDELSET(ps->ps_freebsd4, sig);
775 		else
776 			SIGADDSET(ps->ps_freebsd4, sig);
777 #endif
778 #ifdef COMPAT_43
779 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
780 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
781 		    (flags & KSA_OSIGSET) == 0)
782 			SIGDELSET(ps->ps_osigset, sig);
783 		else
784 			SIGADDSET(ps->ps_osigset, sig);
785 #endif
786 	}
787 	mtx_unlock(&ps->ps_mtx);
788 	PROC_UNLOCK(p);
789 	return (0);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct sigaction_args {
794 	int	sig;
795 	struct	sigaction *act;
796 	struct	sigaction *oact;
797 };
798 #endif
799 /*
800  * MPSAFE
801  */
802 int
803 sigaction(td, uap)
804 	struct thread *td;
805 	register struct sigaction_args *uap;
806 {
807 	struct sigaction act, oact;
808 	register struct sigaction *actp, *oactp;
809 	int error;
810 
811 	actp = (uap->act != NULL) ? &act : NULL;
812 	oactp = (uap->oact != NULL) ? &oact : NULL;
813 	if (actp) {
814 		error = copyin(uap->act, actp, sizeof(act));
815 		if (error)
816 			return (error);
817 	}
818 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
819 	if (oactp && !error)
820 		error = copyout(oactp, uap->oact, sizeof(oact));
821 	return (error);
822 }
823 
824 #ifdef COMPAT_FREEBSD4
825 #ifndef _SYS_SYSPROTO_H_
826 struct freebsd4_sigaction_args {
827 	int	sig;
828 	struct	sigaction *act;
829 	struct	sigaction *oact;
830 };
831 #endif
832 /*
833  * MPSAFE
834  */
835 int
836 freebsd4_sigaction(td, uap)
837 	struct thread *td;
838 	register struct freebsd4_sigaction_args *uap;
839 {
840 	struct sigaction act, oact;
841 	register struct sigaction *actp, *oactp;
842 	int error;
843 
844 
845 	actp = (uap->act != NULL) ? &act : NULL;
846 	oactp = (uap->oact != NULL) ? &oact : NULL;
847 	if (actp) {
848 		error = copyin(uap->act, actp, sizeof(act));
849 		if (error)
850 			return (error);
851 	}
852 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
853 	if (oactp && !error)
854 		error = copyout(oactp, uap->oact, sizeof(oact));
855 	return (error);
856 }
857 #endif	/* COMAPT_FREEBSD4 */
858 
859 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
860 #ifndef _SYS_SYSPROTO_H_
861 struct osigaction_args {
862 	int	signum;
863 	struct	osigaction *nsa;
864 	struct	osigaction *osa;
865 };
866 #endif
867 /*
868  * MPSAFE
869  */
870 int
871 osigaction(td, uap)
872 	struct thread *td;
873 	register struct osigaction_args *uap;
874 {
875 	struct osigaction sa;
876 	struct sigaction nsa, osa;
877 	register struct sigaction *nsap, *osap;
878 	int error;
879 
880 	if (uap->signum <= 0 || uap->signum >= ONSIG)
881 		return (EINVAL);
882 
883 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
884 	osap = (uap->osa != NULL) ? &osa : NULL;
885 
886 	if (nsap) {
887 		error = copyin(uap->nsa, &sa, sizeof(sa));
888 		if (error)
889 			return (error);
890 		nsap->sa_handler = sa.sa_handler;
891 		nsap->sa_flags = sa.sa_flags;
892 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
893 	}
894 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
895 	if (osap && !error) {
896 		sa.sa_handler = osap->sa_handler;
897 		sa.sa_flags = osap->sa_flags;
898 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
899 		error = copyout(&sa, uap->osa, sizeof(sa));
900 	}
901 	return (error);
902 }
903 
904 #if !defined(__i386__)
905 /* Avoid replicating the same stub everywhere */
906 int
907 osigreturn(td, uap)
908 	struct thread *td;
909 	struct osigreturn_args *uap;
910 {
911 
912 	return (nosys(td, (struct nosys_args *)uap));
913 }
914 #endif
915 #endif /* COMPAT_43 */
916 
917 /*
918  * Initialize signal state for process 0;
919  * set to ignore signals that are ignored by default.
920  */
921 void
922 siginit(p)
923 	struct proc *p;
924 {
925 	register int i;
926 	struct sigacts *ps;
927 
928 	PROC_LOCK(p);
929 	ps = p->p_sigacts;
930 	mtx_lock(&ps->ps_mtx);
931 	for (i = 1; i <= NSIG; i++)
932 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
933 			SIGADDSET(ps->ps_sigignore, i);
934 	mtx_unlock(&ps->ps_mtx);
935 	PROC_UNLOCK(p);
936 }
937 
938 /*
939  * Reset signals for an exec of the specified process.
940  */
941 void
942 execsigs(struct proc *p)
943 {
944 	struct sigacts *ps;
945 	int sig;
946 	struct thread *td;
947 
948 	/*
949 	 * Reset caught signals.  Held signals remain held
950 	 * through td_sigmask (unless they were caught,
951 	 * and are now ignored by default).
952 	 */
953 	PROC_LOCK_ASSERT(p, MA_OWNED);
954 	td = FIRST_THREAD_IN_PROC(p);
955 	ps = p->p_sigacts;
956 	mtx_lock(&ps->ps_mtx);
957 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
958 		sig = sig_ffs(&ps->ps_sigcatch);
959 		SIGDELSET(ps->ps_sigcatch, sig);
960 		if (sigprop(sig) & SA_IGNORE) {
961 			if (sig != SIGCONT)
962 				SIGADDSET(ps->ps_sigignore, sig);
963 			sigqueue_delete_proc(p, sig);
964 		}
965 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
966 	}
967 	/*
968 	 * Reset stack state to the user stack.
969 	 * Clear set of signals caught on the signal stack.
970 	 */
971 	td->td_sigstk.ss_flags = SS_DISABLE;
972 	td->td_sigstk.ss_size = 0;
973 	td->td_sigstk.ss_sp = 0;
974 	td->td_pflags &= ~TDP_ALTSTACK;
975 	/*
976 	 * Reset no zombies if child dies flag as Solaris does.
977 	 */
978 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
979 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
980 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
981 	mtx_unlock(&ps->ps_mtx);
982 }
983 
984 /*
985  * kern_sigprocmask()
986  *
987  *	Manipulate signal mask.
988  */
989 int
990 kern_sigprocmask(td, how, set, oset, old)
991 	struct thread *td;
992 	int how;
993 	sigset_t *set, *oset;
994 	int old;
995 {
996 	int error;
997 
998 	PROC_LOCK(td->td_proc);
999 	if (oset != NULL)
1000 		*oset = td->td_sigmask;
1001 
1002 	error = 0;
1003 	if (set != NULL) {
1004 		switch (how) {
1005 		case SIG_BLOCK:
1006 			SIG_CANTMASK(*set);
1007 			SIGSETOR(td->td_sigmask, *set);
1008 			break;
1009 		case SIG_UNBLOCK:
1010 			SIGSETNAND(td->td_sigmask, *set);
1011 			signotify(td);
1012 			break;
1013 		case SIG_SETMASK:
1014 			SIG_CANTMASK(*set);
1015 			if (old)
1016 				SIGSETLO(td->td_sigmask, *set);
1017 			else
1018 				td->td_sigmask = *set;
1019 			signotify(td);
1020 			break;
1021 		default:
1022 			error = EINVAL;
1023 			break;
1024 		}
1025 	}
1026 	PROC_UNLOCK(td->td_proc);
1027 	return (error);
1028 }
1029 
1030 /*
1031  * sigprocmask() - MP SAFE
1032  */
1033 
1034 #ifndef _SYS_SYSPROTO_H_
1035 struct sigprocmask_args {
1036 	int	how;
1037 	const sigset_t *set;
1038 	sigset_t *oset;
1039 };
1040 #endif
1041 int
1042 sigprocmask(td, uap)
1043 	register struct thread *td;
1044 	struct sigprocmask_args *uap;
1045 {
1046 	sigset_t set, oset;
1047 	sigset_t *setp, *osetp;
1048 	int error;
1049 
1050 	setp = (uap->set != NULL) ? &set : NULL;
1051 	osetp = (uap->oset != NULL) ? &oset : NULL;
1052 	if (setp) {
1053 		error = copyin(uap->set, setp, sizeof(set));
1054 		if (error)
1055 			return (error);
1056 	}
1057 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1058 	if (osetp && !error) {
1059 		error = copyout(osetp, uap->oset, sizeof(oset));
1060 	}
1061 	return (error);
1062 }
1063 
1064 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1065 /*
1066  * osigprocmask() - MP SAFE
1067  */
1068 #ifndef _SYS_SYSPROTO_H_
1069 struct osigprocmask_args {
1070 	int	how;
1071 	osigset_t mask;
1072 };
1073 #endif
1074 int
1075 osigprocmask(td, uap)
1076 	register struct thread *td;
1077 	struct osigprocmask_args *uap;
1078 {
1079 	sigset_t set, oset;
1080 	int error;
1081 
1082 	OSIG2SIG(uap->mask, set);
1083 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1084 	SIG2OSIG(oset, td->td_retval[0]);
1085 	return (error);
1086 }
1087 #endif /* COMPAT_43 */
1088 
1089 /*
1090  * MPSAFE
1091  */
1092 int
1093 sigwait(struct thread *td, struct sigwait_args *uap)
1094 {
1095 	ksiginfo_t ksi;
1096 	sigset_t set;
1097 	int error;
1098 
1099 	error = copyin(uap->set, &set, sizeof(set));
1100 	if (error) {
1101 		td->td_retval[0] = error;
1102 		return (0);
1103 	}
1104 
1105 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1106 	if (error) {
1107 		if (error == ERESTART)
1108 			return (error);
1109 		td->td_retval[0] = error;
1110 		return (0);
1111 	}
1112 
1113 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1114 	td->td_retval[0] = error;
1115 	return (0);
1116 }
1117 /*
1118  * MPSAFE
1119  */
1120 int
1121 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1122 {
1123 	struct timespec ts;
1124 	struct timespec *timeout;
1125 	sigset_t set;
1126 	ksiginfo_t ksi;
1127 	int error;
1128 
1129 	if (uap->timeout) {
1130 		error = copyin(uap->timeout, &ts, sizeof(ts));
1131 		if (error)
1132 			return (error);
1133 
1134 		timeout = &ts;
1135 	} else
1136 		timeout = NULL;
1137 
1138 	error = copyin(uap->set, &set, sizeof(set));
1139 	if (error)
1140 		return (error);
1141 
1142 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1143 	if (error)
1144 		return (error);
1145 
1146 	if (uap->info)
1147 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1148 
1149 	if (error == 0)
1150 		td->td_retval[0] = ksi.ksi_signo;
1151 	return (error);
1152 }
1153 
1154 /*
1155  * MPSAFE
1156  */
1157 int
1158 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1159 {
1160 	ksiginfo_t ksi;
1161 	sigset_t set;
1162 	int error;
1163 
1164 	error = copyin(uap->set, &set, sizeof(set));
1165 	if (error)
1166 		return (error);
1167 
1168 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1169 	if (error)
1170 		return (error);
1171 
1172 	if (uap->info)
1173 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1174 
1175 	if (error == 0)
1176 		td->td_retval[0] = ksi.ksi_signo;
1177 	return (error);
1178 }
1179 
1180 static int
1181 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1182 	struct timespec *timeout)
1183 {
1184 	struct sigacts *ps;
1185 	sigset_t savedmask;
1186 	struct proc *p;
1187 	int error, sig, hz, i, timevalid = 0;
1188 	struct timespec rts, ets, ts;
1189 	struct timeval tv;
1190 
1191 	p = td->td_proc;
1192 	error = 0;
1193 	sig = 0;
1194 	SIG_CANTMASK(waitset);
1195 
1196 	PROC_LOCK(p);
1197 	ps = p->p_sigacts;
1198 	savedmask = td->td_sigmask;
1199 	if (timeout) {
1200 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1201 			timevalid = 1;
1202 			getnanouptime(&rts);
1203 		 	ets = rts;
1204 			timespecadd(&ets, timeout);
1205 		}
1206 	}
1207 
1208 restart:
1209 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1210 		if (!SIGISMEMBER(waitset, i))
1211 			continue;
1212 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1213 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1214 				if (p->p_flag & P_SA) {
1215 					p->p_flag |= P_SIGEVENT;
1216 					wakeup(&p->p_siglist);
1217 				}
1218 				sigqueue_move(&p->p_sigqueue,
1219 					&td->td_sigqueue, i);
1220 			} else
1221 				continue;
1222 		}
1223 
1224 		SIGFILLSET(td->td_sigmask);
1225 		SIG_CANTMASK(td->td_sigmask);
1226 		SIGDELSET(td->td_sigmask, i);
1227 		mtx_lock(&ps->ps_mtx);
1228 		sig = cursig(td);
1229 		mtx_unlock(&ps->ps_mtx);
1230 		if (sig)
1231 			goto out;
1232 		else {
1233 			/*
1234 			 * Because cursig() may have stopped current thread,
1235 			 * after it is resumed, things may have already been
1236 			 * changed, it should rescan any pending signals.
1237 			 */
1238 			goto restart;
1239 		}
1240 	}
1241 
1242 	if (error)
1243 		goto out;
1244 
1245 	/*
1246 	 * POSIX says this must be checked after looking for pending
1247 	 * signals.
1248 	 */
1249 	if (timeout) {
1250 		if (!timevalid) {
1251 			error = EINVAL;
1252 			goto out;
1253 		}
1254 		getnanouptime(&rts);
1255 		if (timespeccmp(&rts, &ets, >=)) {
1256 			error = EAGAIN;
1257 			goto out;
1258 		}
1259 		ts = ets;
1260 		timespecsub(&ts, &rts);
1261 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1262 		hz = tvtohz(&tv);
1263 	} else
1264 		hz = 0;
1265 
1266 	td->td_sigmask = savedmask;
1267 	SIGSETNAND(td->td_sigmask, waitset);
1268 	signotify(td);
1269 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1270 	if (timeout) {
1271 		if (error == ERESTART) {
1272 			/* timeout can not be restarted. */
1273 			error = EINTR;
1274 		} else if (error == EAGAIN) {
1275 			/* will calculate timeout by ourself. */
1276 			error = 0;
1277 		}
1278 	}
1279 	goto restart;
1280 
1281 out:
1282 	td->td_sigmask = savedmask;
1283 	signotify(td);
1284 	if (sig) {
1285 		ksiginfo_init(ksi);
1286 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1287 		ksi->ksi_signo = sig;
1288 		if (ksi->ksi_code == SI_TIMER)
1289 			itimer_accept(p, ksi->ksi_timerid, ksi);
1290 		error = 0;
1291 
1292 #ifdef KTRACE
1293 		if (KTRPOINT(td, KTR_PSIG)) {
1294 			sig_t action;
1295 
1296 			mtx_lock(&ps->ps_mtx);
1297 			action = ps->ps_sigact[_SIG_IDX(sig)];
1298 			mtx_unlock(&ps->ps_mtx);
1299 			ktrpsig(sig, action, &td->td_sigmask, 0);
1300 		}
1301 #endif
1302 		if (sig == SIGKILL)
1303 			sigexit(td, sig);
1304 	}
1305 	PROC_UNLOCK(p);
1306 	return (error);
1307 }
1308 
1309 #ifndef _SYS_SYSPROTO_H_
1310 struct sigpending_args {
1311 	sigset_t	*set;
1312 };
1313 #endif
1314 /*
1315  * MPSAFE
1316  */
1317 int
1318 sigpending(td, uap)
1319 	struct thread *td;
1320 	struct sigpending_args *uap;
1321 {
1322 	struct proc *p = td->td_proc;
1323 	sigset_t pending;
1324 
1325 	PROC_LOCK(p);
1326 	pending = p->p_sigqueue.sq_signals;
1327 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1328 	PROC_UNLOCK(p);
1329 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1330 }
1331 
1332 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1333 #ifndef _SYS_SYSPROTO_H_
1334 struct osigpending_args {
1335 	int	dummy;
1336 };
1337 #endif
1338 /*
1339  * MPSAFE
1340  */
1341 int
1342 osigpending(td, uap)
1343 	struct thread *td;
1344 	struct osigpending_args *uap;
1345 {
1346 	struct proc *p = td->td_proc;
1347 	sigset_t pending;
1348 
1349 	PROC_LOCK(p);
1350 	pending = p->p_sigqueue.sq_signals;
1351 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1352 	PROC_UNLOCK(p);
1353 	SIG2OSIG(pending, td->td_retval[0]);
1354 	return (0);
1355 }
1356 #endif /* COMPAT_43 */
1357 
1358 #if defined(COMPAT_43)
1359 /*
1360  * Generalized interface signal handler, 4.3-compatible.
1361  */
1362 #ifndef _SYS_SYSPROTO_H_
1363 struct osigvec_args {
1364 	int	signum;
1365 	struct	sigvec *nsv;
1366 	struct	sigvec *osv;
1367 };
1368 #endif
1369 /*
1370  * MPSAFE
1371  */
1372 /* ARGSUSED */
1373 int
1374 osigvec(td, uap)
1375 	struct thread *td;
1376 	register struct osigvec_args *uap;
1377 {
1378 	struct sigvec vec;
1379 	struct sigaction nsa, osa;
1380 	register struct sigaction *nsap, *osap;
1381 	int error;
1382 
1383 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1384 		return (EINVAL);
1385 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1386 	osap = (uap->osv != NULL) ? &osa : NULL;
1387 	if (nsap) {
1388 		error = copyin(uap->nsv, &vec, sizeof(vec));
1389 		if (error)
1390 			return (error);
1391 		nsap->sa_handler = vec.sv_handler;
1392 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1393 		nsap->sa_flags = vec.sv_flags;
1394 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1395 	}
1396 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1397 	if (osap && !error) {
1398 		vec.sv_handler = osap->sa_handler;
1399 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1400 		vec.sv_flags = osap->sa_flags;
1401 		vec.sv_flags &= ~SA_NOCLDWAIT;
1402 		vec.sv_flags ^= SA_RESTART;
1403 		error = copyout(&vec, uap->osv, sizeof(vec));
1404 	}
1405 	return (error);
1406 }
1407 
1408 #ifndef _SYS_SYSPROTO_H_
1409 struct osigblock_args {
1410 	int	mask;
1411 };
1412 #endif
1413 /*
1414  * MPSAFE
1415  */
1416 int
1417 osigblock(td, uap)
1418 	register struct thread *td;
1419 	struct osigblock_args *uap;
1420 {
1421 	struct proc *p = td->td_proc;
1422 	sigset_t set;
1423 
1424 	OSIG2SIG(uap->mask, set);
1425 	SIG_CANTMASK(set);
1426 	PROC_LOCK(p);
1427 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1428 	SIGSETOR(td->td_sigmask, set);
1429 	PROC_UNLOCK(p);
1430 	return (0);
1431 }
1432 
1433 #ifndef _SYS_SYSPROTO_H_
1434 struct osigsetmask_args {
1435 	int	mask;
1436 };
1437 #endif
1438 /*
1439  * MPSAFE
1440  */
1441 int
1442 osigsetmask(td, uap)
1443 	struct thread *td;
1444 	struct osigsetmask_args *uap;
1445 {
1446 	struct proc *p = td->td_proc;
1447 	sigset_t set;
1448 
1449 	OSIG2SIG(uap->mask, set);
1450 	SIG_CANTMASK(set);
1451 	PROC_LOCK(p);
1452 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1453 	SIGSETLO(td->td_sigmask, set);
1454 	signotify(td);
1455 	PROC_UNLOCK(p);
1456 	return (0);
1457 }
1458 #endif /* COMPAT_43 */
1459 
1460 /*
1461  * Suspend calling thread until signal, providing mask to be set
1462  * in the meantime.
1463  */
1464 #ifndef _SYS_SYSPROTO_H_
1465 struct sigsuspend_args {
1466 	const sigset_t *sigmask;
1467 };
1468 #endif
1469 /*
1470  * MPSAFE
1471  */
1472 /* ARGSUSED */
1473 int
1474 sigsuspend(td, uap)
1475 	struct thread *td;
1476 	struct sigsuspend_args *uap;
1477 {
1478 	sigset_t mask;
1479 	int error;
1480 
1481 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1482 	if (error)
1483 		return (error);
1484 	return (kern_sigsuspend(td, mask));
1485 }
1486 
1487 int
1488 kern_sigsuspend(struct thread *td, sigset_t mask)
1489 {
1490 	struct proc *p = td->td_proc;
1491 
1492 	/*
1493 	 * When returning from sigsuspend, we want
1494 	 * the old mask to be restored after the
1495 	 * signal handler has finished.  Thus, we
1496 	 * save it here and mark the sigacts structure
1497 	 * to indicate this.
1498 	 */
1499 	PROC_LOCK(p);
1500 	td->td_oldsigmask = td->td_sigmask;
1501 	td->td_pflags |= TDP_OLDMASK;
1502 	SIG_CANTMASK(mask);
1503 	td->td_sigmask = mask;
1504 	signotify(td);
1505 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1506 		/* void */;
1507 	PROC_UNLOCK(p);
1508 	/* always return EINTR rather than ERESTART... */
1509 	return (EINTR);
1510 }
1511 
1512 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1513 /*
1514  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1515  * convention: libc stub passes mask, not pointer, to save a copyin.
1516  */
1517 #ifndef _SYS_SYSPROTO_H_
1518 struct osigsuspend_args {
1519 	osigset_t mask;
1520 };
1521 #endif
1522 /*
1523  * MPSAFE
1524  */
1525 /* ARGSUSED */
1526 int
1527 osigsuspend(td, uap)
1528 	struct thread *td;
1529 	struct osigsuspend_args *uap;
1530 {
1531 	struct proc *p = td->td_proc;
1532 	sigset_t mask;
1533 
1534 	PROC_LOCK(p);
1535 	td->td_oldsigmask = td->td_sigmask;
1536 	td->td_pflags |= TDP_OLDMASK;
1537 	OSIG2SIG(uap->mask, mask);
1538 	SIG_CANTMASK(mask);
1539 	SIGSETLO(td->td_sigmask, mask);
1540 	signotify(td);
1541 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1542 		/* void */;
1543 	PROC_UNLOCK(p);
1544 	/* always return EINTR rather than ERESTART... */
1545 	return (EINTR);
1546 }
1547 #endif /* COMPAT_43 */
1548 
1549 #if defined(COMPAT_43)
1550 #ifndef _SYS_SYSPROTO_H_
1551 struct osigstack_args {
1552 	struct	sigstack *nss;
1553 	struct	sigstack *oss;
1554 };
1555 #endif
1556 /*
1557  * MPSAFE
1558  */
1559 /* ARGSUSED */
1560 int
1561 osigstack(td, uap)
1562 	struct thread *td;
1563 	register struct osigstack_args *uap;
1564 {
1565 	struct sigstack nss, oss;
1566 	int error = 0;
1567 
1568 	if (uap->nss != NULL) {
1569 		error = copyin(uap->nss, &nss, sizeof(nss));
1570 		if (error)
1571 			return (error);
1572 	}
1573 	oss.ss_sp = td->td_sigstk.ss_sp;
1574 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1575 	if (uap->nss != NULL) {
1576 		td->td_sigstk.ss_sp = nss.ss_sp;
1577 		td->td_sigstk.ss_size = 0;
1578 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1579 		td->td_pflags |= TDP_ALTSTACK;
1580 	}
1581 	if (uap->oss != NULL)
1582 		error = copyout(&oss, uap->oss, sizeof(oss));
1583 
1584 	return (error);
1585 }
1586 #endif /* COMPAT_43 */
1587 
1588 #ifndef _SYS_SYSPROTO_H_
1589 struct sigaltstack_args {
1590 	stack_t	*ss;
1591 	stack_t	*oss;
1592 };
1593 #endif
1594 /*
1595  * MPSAFE
1596  */
1597 /* ARGSUSED */
1598 int
1599 sigaltstack(td, uap)
1600 	struct thread *td;
1601 	register struct sigaltstack_args *uap;
1602 {
1603 	stack_t ss, oss;
1604 	int error;
1605 
1606 	if (uap->ss != NULL) {
1607 		error = copyin(uap->ss, &ss, sizeof(ss));
1608 		if (error)
1609 			return (error);
1610 	}
1611 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1612 	    (uap->oss != NULL) ? &oss : NULL);
1613 	if (error)
1614 		return (error);
1615 	if (uap->oss != NULL)
1616 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1617 	return (error);
1618 }
1619 
1620 int
1621 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1622 {
1623 	struct proc *p = td->td_proc;
1624 	int oonstack;
1625 
1626 	oonstack = sigonstack(cpu_getstack(td));
1627 
1628 	if (oss != NULL) {
1629 		*oss = td->td_sigstk;
1630 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1631 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1632 	}
1633 
1634 	if (ss != NULL) {
1635 		if (oonstack)
1636 			return (EPERM);
1637 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1638 			return (EINVAL);
1639 		if (!(ss->ss_flags & SS_DISABLE)) {
1640 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1641 				return (ENOMEM);
1642 
1643 			td->td_sigstk = *ss;
1644 			td->td_pflags |= TDP_ALTSTACK;
1645 		} else {
1646 			td->td_pflags &= ~TDP_ALTSTACK;
1647 		}
1648 	}
1649 	return (0);
1650 }
1651 
1652 /*
1653  * Common code for kill process group/broadcast kill.
1654  * cp is calling process.
1655  */
1656 static int
1657 killpg1(td, sig, pgid, all)
1658 	register struct thread *td;
1659 	int sig, pgid, all;
1660 {
1661 	register struct proc *p;
1662 	struct pgrp *pgrp;
1663 	int nfound = 0;
1664 
1665 	if (all) {
1666 		/*
1667 		 * broadcast
1668 		 */
1669 		sx_slock(&allproc_lock);
1670 		LIST_FOREACH(p, &allproc, p_list) {
1671 			PROC_LOCK(p);
1672 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1673 			    p == td->td_proc || p->p_state == PRS_NEW) {
1674 				PROC_UNLOCK(p);
1675 				continue;
1676 			}
1677 			if (p_cansignal(td, p, sig) == 0) {
1678 				nfound++;
1679 				if (sig)
1680 					psignal(p, sig);
1681 			}
1682 			PROC_UNLOCK(p);
1683 		}
1684 		sx_sunlock(&allproc_lock);
1685 	} else {
1686 		sx_slock(&proctree_lock);
1687 		if (pgid == 0) {
1688 			/*
1689 			 * zero pgid means send to my process group.
1690 			 */
1691 			pgrp = td->td_proc->p_pgrp;
1692 			PGRP_LOCK(pgrp);
1693 		} else {
1694 			pgrp = pgfind(pgid);
1695 			if (pgrp == NULL) {
1696 				sx_sunlock(&proctree_lock);
1697 				return (ESRCH);
1698 			}
1699 		}
1700 		sx_sunlock(&proctree_lock);
1701 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1702 			PROC_LOCK(p);
1703 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1704 				p->p_state == PRS_NEW ) {
1705 				PROC_UNLOCK(p);
1706 				continue;
1707 			}
1708 			if (p_cansignal(td, p, sig) == 0) {
1709 				nfound++;
1710 				if (sig)
1711 					psignal(p, sig);
1712 			}
1713 			PROC_UNLOCK(p);
1714 		}
1715 		PGRP_UNLOCK(pgrp);
1716 	}
1717 	return (nfound ? 0 : ESRCH);
1718 }
1719 
1720 #ifndef _SYS_SYSPROTO_H_
1721 struct kill_args {
1722 	int	pid;
1723 	int	signum;
1724 };
1725 #endif
1726 /*
1727  * MPSAFE
1728  */
1729 /* ARGSUSED */
1730 int
1731 kill(td, uap)
1732 	register struct thread *td;
1733 	register struct kill_args *uap;
1734 {
1735 	register struct proc *p;
1736 	int error;
1737 
1738 	AUDIT_ARG(signum, uap->signum);
1739 	if ((u_int)uap->signum > _SIG_MAXSIG)
1740 		return (EINVAL);
1741 
1742 	if (uap->pid > 0) {
1743 		/* kill single process */
1744 		if ((p = pfind(uap->pid)) == NULL) {
1745 			if ((p = zpfind(uap->pid)) == NULL)
1746 				return (ESRCH);
1747 		}
1748 		AUDIT_ARG(process, p);
1749 		error = p_cansignal(td, p, uap->signum);
1750 		if (error == 0 && uap->signum)
1751 			psignal(p, uap->signum);
1752 		PROC_UNLOCK(p);
1753 		return (error);
1754 	}
1755 	AUDIT_ARG(pid, uap->pid);
1756 	switch (uap->pid) {
1757 	case -1:		/* broadcast signal */
1758 		return (killpg1(td, uap->signum, 0, 1));
1759 	case 0:			/* signal own process group */
1760 		return (killpg1(td, uap->signum, 0, 0));
1761 	default:		/* negative explicit process group */
1762 		return (killpg1(td, uap->signum, -uap->pid, 0));
1763 	}
1764 	/* NOTREACHED */
1765 }
1766 
1767 #if defined(COMPAT_43)
1768 #ifndef _SYS_SYSPROTO_H_
1769 struct okillpg_args {
1770 	int	pgid;
1771 	int	signum;
1772 };
1773 #endif
1774 /*
1775  * MPSAFE
1776  */
1777 /* ARGSUSED */
1778 int
1779 okillpg(td, uap)
1780 	struct thread *td;
1781 	register struct okillpg_args *uap;
1782 {
1783 
1784 	AUDIT_ARG(signum, uap->signum);
1785 	AUDIT_ARG(pid, uap->pgid);
1786 	if ((u_int)uap->signum > _SIG_MAXSIG)
1787 		return (EINVAL);
1788 
1789 	return (killpg1(td, uap->signum, uap->pgid, 0));
1790 }
1791 #endif /* COMPAT_43 */
1792 
1793 #ifndef _SYS_SYSPROTO_H_
1794 struct sigqueue_args {
1795 	pid_t pid;
1796 	int signum;
1797 	/* union sigval */ void *value;
1798 };
1799 #endif
1800 
1801 int
1802 sigqueue(struct thread *td, struct sigqueue_args *uap)
1803 {
1804 	ksiginfo_t ksi;
1805 	struct proc *p;
1806 	int error;
1807 
1808 	if ((u_int)uap->signum > _SIG_MAXSIG)
1809 		return (EINVAL);
1810 
1811 	/*
1812 	 * Specification says sigqueue can only send signal to
1813 	 * single process.
1814 	 */
1815 	if (uap->pid <= 0)
1816 		return (EINVAL);
1817 
1818 	if ((p = pfind(uap->pid)) == NULL) {
1819 		if ((p = zpfind(uap->pid)) == NULL)
1820 			return (ESRCH);
1821 	}
1822 	error = p_cansignal(td, p, uap->signum);
1823 	if (error == 0 && uap->signum != 0) {
1824 		ksiginfo_init(&ksi);
1825 		ksi.ksi_signo = uap->signum;
1826 		ksi.ksi_code = SI_QUEUE;
1827 		ksi.ksi_pid = td->td_proc->p_pid;
1828 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1829 		ksi.ksi_value.sival_ptr = uap->value;
1830 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1831 	}
1832 	PROC_UNLOCK(p);
1833 	return (error);
1834 }
1835 
1836 /*
1837  * Send a signal to a process group.
1838  */
1839 void
1840 gsignal(pgid, sig)
1841 	int pgid, sig;
1842 {
1843 	struct pgrp *pgrp;
1844 
1845 	if (pgid != 0) {
1846 		sx_slock(&proctree_lock);
1847 		pgrp = pgfind(pgid);
1848 		sx_sunlock(&proctree_lock);
1849 		if (pgrp != NULL) {
1850 			pgsignal(pgrp, sig, 0);
1851 			PGRP_UNLOCK(pgrp);
1852 		}
1853 	}
1854 }
1855 
1856 /*
1857  * Send a signal to a process group.  If checktty is 1,
1858  * limit to members which have a controlling terminal.
1859  */
1860 void
1861 pgsignal(pgrp, sig, checkctty)
1862 	struct pgrp *pgrp;
1863 	int sig, checkctty;
1864 {
1865 	register struct proc *p;
1866 
1867 	if (pgrp) {
1868 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1869 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1870 			PROC_LOCK(p);
1871 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1872 				psignal(p, sig);
1873 			PROC_UNLOCK(p);
1874 		}
1875 	}
1876 }
1877 
1878 /*
1879  * Send a signal caused by a trap to the current thread.
1880  * If it will be caught immediately, deliver it with correct code.
1881  * Otherwise, post it normally.
1882  *
1883  * MPSAFE
1884  */
1885 void
1886 trapsignal(struct thread *td, ksiginfo_t *ksi)
1887 {
1888 	struct sigacts *ps;
1889 	struct proc *p;
1890 	int error;
1891 	int sig;
1892 	int code;
1893 
1894 	p = td->td_proc;
1895 	sig = ksi->ksi_signo;
1896 	code = ksi->ksi_code;
1897 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1898 
1899 	if (td->td_pflags & TDP_SA) {
1900 		if (td->td_mailbox == NULL)
1901 			thread_user_enter(td);
1902 		PROC_LOCK(p);
1903 		SIGDELSET(td->td_sigmask, sig);
1904 		mtx_lock_spin(&sched_lock);
1905 		/*
1906 		 * Force scheduling an upcall, so UTS has chance to
1907 		 * process the signal before thread runs again in
1908 		 * userland.
1909 		 */
1910 		if (td->td_upcall)
1911 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1912 		mtx_unlock_spin(&sched_lock);
1913 	} else {
1914 		PROC_LOCK(p);
1915 	}
1916 	ps = p->p_sigacts;
1917 	mtx_lock(&ps->ps_mtx);
1918 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1919 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1920 		p->p_stats->p_ru.ru_nsignals++;
1921 #ifdef KTRACE
1922 		if (KTRPOINT(curthread, KTR_PSIG))
1923 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1924 			    &td->td_sigmask, code);
1925 #endif
1926 		if (!(td->td_pflags & TDP_SA))
1927 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1928 				ksi, &td->td_sigmask);
1929 		else if (td->td_mailbox == NULL) {
1930 			mtx_unlock(&ps->ps_mtx);
1931 			/* UTS caused a sync signal */
1932 			p->p_code = code;	/* XXX for core dump/debugger */
1933 			p->p_sig = sig;		/* XXX to verify code */
1934 			sigexit(td, sig);
1935 		} else {
1936 			mtx_unlock(&ps->ps_mtx);
1937 			SIGADDSET(td->td_sigmask, sig);
1938 			PROC_UNLOCK(p);
1939 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1940 			    sizeof(siginfo_t));
1941 			PROC_LOCK(p);
1942 			/* UTS memory corrupted */
1943 			if (error)
1944 				sigexit(td, SIGSEGV);
1945 			mtx_lock(&ps->ps_mtx);
1946 		}
1947 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1948 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1949 			SIGADDSET(td->td_sigmask, sig);
1950 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1951 			/*
1952 			 * See kern_sigaction() for origin of this code.
1953 			 */
1954 			SIGDELSET(ps->ps_sigcatch, sig);
1955 			if (sig != SIGCONT &&
1956 			    sigprop(sig) & SA_IGNORE)
1957 				SIGADDSET(ps->ps_sigignore, sig);
1958 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1959 		}
1960 		mtx_unlock(&ps->ps_mtx);
1961 	} else {
1962 		/*
1963 		 * Avoid a possible infinite loop if the thread
1964 		 * masking the signal or process is ignoring the
1965 		 * signal.
1966 		 */
1967 		if (kern_forcesigexit &&
1968 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1969 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1970 			SIGDELSET(td->td_sigmask, sig);
1971 			SIGDELSET(ps->ps_sigcatch, sig);
1972 			SIGDELSET(ps->ps_sigignore, sig);
1973 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1974 		}
1975 		mtx_unlock(&ps->ps_mtx);
1976 		p->p_code = code;	/* XXX for core dump/debugger */
1977 		p->p_sig = sig;		/* XXX to verify code */
1978 		tdsignal(p, td, sig, ksi);
1979 	}
1980 	PROC_UNLOCK(p);
1981 }
1982 
1983 static struct thread *
1984 sigtd(struct proc *p, int sig, int prop)
1985 {
1986 	struct thread *td, *signal_td;
1987 
1988 	PROC_LOCK_ASSERT(p, MA_OWNED);
1989 
1990 	/*
1991 	 * Check if current thread can handle the signal without
1992 	 * switching conetxt to another thread.
1993 	 */
1994 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1995 		return (curthread);
1996 	signal_td = NULL;
1997 	mtx_lock_spin(&sched_lock);
1998 	FOREACH_THREAD_IN_PROC(p, td) {
1999 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2000 			signal_td = td;
2001 			break;
2002 		}
2003 	}
2004 	if (signal_td == NULL)
2005 		signal_td = FIRST_THREAD_IN_PROC(p);
2006 	mtx_unlock_spin(&sched_lock);
2007 	return (signal_td);
2008 }
2009 
2010 /*
2011  * Send the signal to the process.  If the signal has an action, the action
2012  * is usually performed by the target process rather than the caller; we add
2013  * the signal to the set of pending signals for the process.
2014  *
2015  * Exceptions:
2016  *   o When a stop signal is sent to a sleeping process that takes the
2017  *     default action, the process is stopped without awakening it.
2018  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2019  *     regardless of the signal action (eg, blocked or ignored).
2020  *
2021  * Other ignored signals are discarded immediately.
2022  *
2023  * MPSAFE
2024  */
2025 void
2026 psignal(struct proc *p, int sig)
2027 {
2028 	(void) tdsignal(p, NULL, sig, NULL);
2029 }
2030 
2031 int
2032 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2033 {
2034 	struct thread *td = NULL;
2035 
2036 	PROC_LOCK_ASSERT(p, MA_OWNED);
2037 
2038 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2039 
2040 	/*
2041 	 * ksi_code and other fields should be set before
2042 	 * calling this function.
2043 	 */
2044 	ksi->ksi_signo = sigev->sigev_signo;
2045 	ksi->ksi_value = sigev->sigev_value;
2046 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2047 		td = thread_find(p, sigev->sigev_notify_thread_id);
2048 		if (td == NULL)
2049 			return (ESRCH);
2050 	}
2051 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2052 }
2053 
2054 /*
2055  * MPSAFE
2056  */
2057 int
2058 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2059 {
2060 	sigset_t saved;
2061 	int ret;
2062 
2063 	if (p->p_flag & P_SA)
2064 		saved = p->p_sigqueue.sq_signals;
2065 	ret = do_tdsignal(p, td, sig, ksi);
2066 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2067 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2068 			/* pending set changed */
2069 			p->p_flag |= P_SIGEVENT;
2070 			wakeup(&p->p_siglist);
2071 		}
2072 	}
2073 	return (ret);
2074 }
2075 
2076 static int
2077 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2078 {
2079 	sig_t action;
2080 	sigqueue_t *sigqueue;
2081 	int prop;
2082 	struct sigacts *ps;
2083 	int intrval;
2084 	int ret = 0;
2085 
2086 	PROC_LOCK_ASSERT(p, MA_OWNED);
2087 
2088 	if (!_SIG_VALID(sig))
2089 		panic("do_tdsignal(): invalid signal");
2090 
2091 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2092 
2093 	/*
2094 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2095 	 */
2096 	if (p->p_state == PRS_ZOMBIE) {
2097 		if (ksi && (ksi->ksi_flags & KSI_INS))
2098 			ksiginfo_tryfree(ksi);
2099 		return (ret);
2100 	}
2101 
2102 	ps = p->p_sigacts;
2103 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2104 	prop = sigprop(sig);
2105 
2106 	/*
2107 	 * If the signal is blocked and not destined for this thread, then
2108 	 * assign it to the process so that we can find it later in the first
2109 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2110 	 */
2111 	if (td == NULL) {
2112 		td = sigtd(p, sig, prop);
2113 		if (SIGISMEMBER(td->td_sigmask, sig))
2114 			sigqueue = &p->p_sigqueue;
2115 		else
2116 			sigqueue = &td->td_sigqueue;
2117 	} else {
2118 		KASSERT(td->td_proc == p, ("invalid thread"));
2119 		sigqueue = &td->td_sigqueue;
2120 	}
2121 
2122 	/*
2123 	 * If the signal is being ignored,
2124 	 * or process is exiting or thread is exiting,
2125 	 * then we forget about it immediately.
2126 	 * (Note: we don't set SIGCONT in ps_sigignore,
2127 	 * and if it is set to SIG_IGN,
2128 	 * action will be SIG_DFL here.)
2129 	 */
2130 	mtx_lock(&ps->ps_mtx);
2131 	if (SIGISMEMBER(ps->ps_sigignore, sig) ||
2132 	    (p->p_flag & P_WEXIT)) {
2133 		mtx_unlock(&ps->ps_mtx);
2134 		if (ksi && (ksi->ksi_flags & KSI_INS))
2135 			ksiginfo_tryfree(ksi);
2136 		return (ret);
2137 	}
2138 	if (SIGISMEMBER(td->td_sigmask, sig))
2139 		action = SIG_HOLD;
2140 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2141 		action = SIG_CATCH;
2142 	else
2143 		action = SIG_DFL;
2144 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2145 		intrval = EINTR;
2146 	else
2147 		intrval = ERESTART;
2148 	mtx_unlock(&ps->ps_mtx);
2149 
2150 	if (prop & SA_CONT)
2151 		sigqueue_delete_stopmask_proc(p);
2152 	else if (prop & SA_STOP) {
2153 		/*
2154 		 * If sending a tty stop signal to a member of an orphaned
2155 		 * process group, discard the signal here if the action
2156 		 * is default; don't stop the process below if sleeping,
2157 		 * and don't clear any pending SIGCONT.
2158 		 */
2159 		if ((prop & SA_TTYSTOP) &&
2160 		    (p->p_pgrp->pg_jobc == 0) &&
2161 		    (action == SIG_DFL)) {
2162 			if (ksi && (ksi->ksi_flags & KSI_INS))
2163 				ksiginfo_tryfree(ksi);
2164 			return (ret);
2165 		}
2166 		sigqueue_delete_proc(p, SIGCONT);
2167 		if (p->p_flag & P_CONTINUED) {
2168 			p->p_flag &= ~P_CONTINUED;
2169 			PROC_LOCK(p->p_pptr);
2170 			sigqueue_take(p->p_ksi);
2171 			PROC_UNLOCK(p->p_pptr);
2172 		}
2173 	}
2174 
2175 	ret = sigqueue_add(sigqueue, sig, ksi);
2176 	if (ret != 0)
2177 		return (ret);
2178 	signotify(td);
2179 	/*
2180 	 * Defer further processing for signals which are held,
2181 	 * except that stopped processes must be continued by SIGCONT.
2182 	 */
2183 	if (action == SIG_HOLD &&
2184 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2185 		return (ret);
2186 	/*
2187 	 * SIGKILL: Remove procfs STOPEVENTs.
2188 	 */
2189 	if (sig == SIGKILL) {
2190 		/* from procfs_ioctl.c: PIOCBIC */
2191 		p->p_stops = 0;
2192 		/* from procfs_ioctl.c: PIOCCONT */
2193 		p->p_step = 0;
2194 		wakeup(&p->p_step);
2195 	}
2196 	/*
2197 	 * Some signals have a process-wide effect and a per-thread
2198 	 * component.  Most processing occurs when the process next
2199 	 * tries to cross the user boundary, however there are some
2200 	 * times when processing needs to be done immediatly, such as
2201 	 * waking up threads so that they can cross the user boundary.
2202 	 * We try do the per-process part here.
2203 	 */
2204 	if (P_SHOULDSTOP(p)) {
2205 		/*
2206 		 * The process is in stopped mode. All the threads should be
2207 		 * either winding down or already on the suspended queue.
2208 		 */
2209 		if (p->p_flag & P_TRACED) {
2210 			/*
2211 			 * The traced process is already stopped,
2212 			 * so no further action is necessary.
2213 			 * No signal can restart us.
2214 			 */
2215 			goto out;
2216 		}
2217 
2218 		if (sig == SIGKILL) {
2219 			/*
2220 			 * SIGKILL sets process running.
2221 			 * It will die elsewhere.
2222 			 * All threads must be restarted.
2223 			 */
2224 			p->p_flag &= ~P_STOPPED_SIG;
2225 			goto runfast;
2226 		}
2227 
2228 		if (prop & SA_CONT) {
2229 			/*
2230 			 * If SIGCONT is default (or ignored), we continue the
2231 			 * process but don't leave the signal in sigqueue as
2232 			 * it has no further action.  If SIGCONT is held, we
2233 			 * continue the process and leave the signal in
2234 			 * sigqueue.  If the process catches SIGCONT, let it
2235 			 * handle the signal itself.  If it isn't waiting on
2236 			 * an event, it goes back to run state.
2237 			 * Otherwise, process goes back to sleep state.
2238 			 */
2239 			p->p_flag &= ~P_STOPPED_SIG;
2240 			if (p->p_numthreads == p->p_suspcount) {
2241 				p->p_flag |= P_CONTINUED;
2242 				p->p_xstat = SIGCONT;
2243 				PROC_LOCK(p->p_pptr);
2244 				childproc_continued(p);
2245 				PROC_UNLOCK(p->p_pptr);
2246 			}
2247 			if (action == SIG_DFL) {
2248 				sigqueue_delete(sigqueue, sig);
2249 			} else if (action == SIG_CATCH) {
2250 				/*
2251 				 * The process wants to catch it so it needs
2252 				 * to run at least one thread, but which one?
2253 				 * It would seem that the answer would be to
2254 				 * run an upcall in the next KSE to run, and
2255 				 * deliver the signal that way. In a NON KSE
2256 				 * process, we need to make sure that the
2257 				 * single thread is runnable asap.
2258 				 * XXXKSE for now however, make them all run.
2259 				 */
2260 				goto runfast;
2261 			}
2262 			/*
2263 			 * The signal is not ignored or caught.
2264 			 */
2265 			mtx_lock_spin(&sched_lock);
2266 			thread_unsuspend(p);
2267 			mtx_unlock_spin(&sched_lock);
2268 			goto out;
2269 		}
2270 
2271 		if (prop & SA_STOP) {
2272 			/*
2273 			 * Already stopped, don't need to stop again
2274 			 * (If we did the shell could get confused).
2275 			 * Just make sure the signal STOP bit set.
2276 			 */
2277 			p->p_flag |= P_STOPPED_SIG;
2278 			sigqueue_delete(sigqueue, sig);
2279 			goto out;
2280 		}
2281 
2282 		/*
2283 		 * All other kinds of signals:
2284 		 * If a thread is sleeping interruptibly, simulate a
2285 		 * wakeup so that when it is continued it will be made
2286 		 * runnable and can look at the signal.  However, don't make
2287 		 * the PROCESS runnable, leave it stopped.
2288 		 * It may run a bit until it hits a thread_suspend_check().
2289 		 */
2290 		mtx_lock_spin(&sched_lock);
2291 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2292 			sleepq_abort(td, intrval);
2293 		mtx_unlock_spin(&sched_lock);
2294 		goto out;
2295 		/*
2296 		 * Mutexes are short lived. Threads waiting on them will
2297 		 * hit thread_suspend_check() soon.
2298 		 */
2299 	} else if (p->p_state == PRS_NORMAL) {
2300 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2301 			mtx_lock_spin(&sched_lock);
2302 			tdsigwakeup(td, sig, action, intrval);
2303 			mtx_unlock_spin(&sched_lock);
2304 			goto out;
2305 		}
2306 
2307 		MPASS(action == SIG_DFL);
2308 
2309 		if (prop & SA_STOP) {
2310 			if (p->p_flag & P_PPWAIT)
2311 				goto out;
2312 			p->p_flag |= P_STOPPED_SIG;
2313 			p->p_xstat = sig;
2314 			mtx_lock_spin(&sched_lock);
2315 			sig_suspend_threads(td, p, 1);
2316 			if (p->p_numthreads == p->p_suspcount) {
2317 				/*
2318 				 * only thread sending signal to another
2319 				 * process can reach here, if thread is sending
2320 				 * signal to its process, because thread does
2321 				 * not suspend itself here, p_numthreads
2322 				 * should never be equal to p_suspcount.
2323 				 */
2324 				thread_stopped(p);
2325 				mtx_unlock_spin(&sched_lock);
2326 				sigqueue_delete_proc(p, p->p_xstat);
2327 			} else
2328 				mtx_unlock_spin(&sched_lock);
2329 			goto out;
2330 		}
2331 		else
2332 			goto runfast;
2333 		/* NOTREACHED */
2334 	} else {
2335 		/* Not in "NORMAL" state. discard the signal. */
2336 		sigqueue_delete(sigqueue, sig);
2337 		goto out;
2338 	}
2339 
2340 	/*
2341 	 * The process is not stopped so we need to apply the signal to all the
2342 	 * running threads.
2343 	 */
2344 
2345 runfast:
2346 	mtx_lock_spin(&sched_lock);
2347 	tdsigwakeup(td, sig, action, intrval);
2348 	thread_unsuspend(p);
2349 	mtx_unlock_spin(&sched_lock);
2350 out:
2351 	/* If we jump here, sched_lock should not be owned. */
2352 	mtx_assert(&sched_lock, MA_NOTOWNED);
2353 	return (ret);
2354 }
2355 
2356 /*
2357  * The force of a signal has been directed against a single
2358  * thread.  We need to see what we can do about knocking it
2359  * out of any sleep it may be in etc.
2360  */
2361 static void
2362 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2363 {
2364 	struct proc *p = td->td_proc;
2365 	register int prop;
2366 
2367 	PROC_LOCK_ASSERT(p, MA_OWNED);
2368 	mtx_assert(&sched_lock, MA_OWNED);
2369 	prop = sigprop(sig);
2370 
2371 	/*
2372 	 * Bring the priority of a thread up if we want it to get
2373 	 * killed in this lifetime.
2374 	 */
2375 	if (action == SIG_DFL && (prop & SA_KILL)) {
2376 		if (p->p_nice > 0)
2377 			sched_nice(td->td_proc, 0);
2378 		if (td->td_priority > PUSER)
2379 			sched_prio(td, PUSER);
2380 	}
2381 
2382 	if (TD_ON_SLEEPQ(td)) {
2383 		/*
2384 		 * If thread is sleeping uninterruptibly
2385 		 * we can't interrupt the sleep... the signal will
2386 		 * be noticed when the process returns through
2387 		 * trap() or syscall().
2388 		 */
2389 		if ((td->td_flags & TDF_SINTR) == 0)
2390 			return;
2391 		/*
2392 		 * If SIGCONT is default (or ignored) and process is
2393 		 * asleep, we are finished; the process should not
2394 		 * be awakened.
2395 		 */
2396 		if ((prop & SA_CONT) && action == SIG_DFL) {
2397 			mtx_unlock_spin(&sched_lock);
2398 			sigqueue_delete(&p->p_sigqueue, sig);
2399 			/*
2400 			 * It may be on either list in this state.
2401 			 * Remove from both for now.
2402 			 */
2403 			sigqueue_delete(&td->td_sigqueue, sig);
2404 			mtx_lock_spin(&sched_lock);
2405 			return;
2406 		}
2407 
2408 		/*
2409 		 * Give low priority threads a better chance to run.
2410 		 */
2411 		if (td->td_priority > PUSER)
2412 			sched_prio(td, PUSER);
2413 
2414 		sleepq_abort(td, intrval);
2415 	} else {
2416 		/*
2417 		 * Other states do nothing with the signal immediately,
2418 		 * other than kicking ourselves if we are running.
2419 		 * It will either never be noticed, or noticed very soon.
2420 		 */
2421 #ifdef SMP
2422 		if (TD_IS_RUNNING(td) && td != curthread)
2423 			forward_signal(td);
2424 #endif
2425 	}
2426 }
2427 
2428 static void
2429 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2430 {
2431 	struct thread *td2;
2432 
2433 	PROC_LOCK_ASSERT(p, MA_OWNED);
2434 	mtx_assert(&sched_lock, MA_OWNED);
2435 
2436 	FOREACH_THREAD_IN_PROC(p, td2) {
2437 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2438 		    (td2->td_flags & TDF_SINTR) &&
2439 		    !TD_IS_SUSPENDED(td2)) {
2440 			thread_suspend_one(td2);
2441 		} else {
2442 			if (sending || td != td2)
2443 				td2->td_flags |= TDF_ASTPENDING;
2444 #ifdef SMP
2445 			if (TD_IS_RUNNING(td2) && td2 != td)
2446 				forward_signal(td2);
2447 #endif
2448 		}
2449 	}
2450 }
2451 
2452 int
2453 ptracestop(struct thread *td, int sig)
2454 {
2455 	struct proc *p = td->td_proc;
2456 
2457 	PROC_LOCK_ASSERT(p, MA_OWNED);
2458 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2459 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2460 
2461 	mtx_lock_spin(&sched_lock);
2462 	td->td_flags |= TDF_XSIG;
2463 	mtx_unlock_spin(&sched_lock);
2464 	td->td_xsig = sig;
2465 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2466 		if (p->p_flag & P_SINGLE_EXIT) {
2467 			mtx_lock_spin(&sched_lock);
2468 			td->td_flags &= ~TDF_XSIG;
2469 			mtx_unlock_spin(&sched_lock);
2470 			return (sig);
2471 		}
2472 		/*
2473 		 * Just make wait() to work, the last stopped thread
2474 		 * will win.
2475 		 */
2476 		p->p_xstat = sig;
2477 		p->p_xthread = td;
2478 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2479 		mtx_lock_spin(&sched_lock);
2480 		sig_suspend_threads(td, p, 0);
2481 stopme:
2482 		thread_stopped(p);
2483 		thread_suspend_one(td);
2484 		PROC_UNLOCK(p);
2485 		DROP_GIANT();
2486 		mi_switch(SW_VOL, NULL);
2487 		mtx_unlock_spin(&sched_lock);
2488 		PICKUP_GIANT();
2489 		PROC_LOCK(p);
2490 		if (!(p->p_flag & P_TRACED))
2491 			break;
2492 		if (td->td_flags & TDF_DBSUSPEND) {
2493 			if (p->p_flag & P_SINGLE_EXIT)
2494 				break;
2495 			mtx_lock_spin(&sched_lock);
2496 			goto stopme;
2497 		}
2498 	}
2499 	return (td->td_xsig);
2500 }
2501 
2502 /*
2503  * If the current process has received a signal (should be caught or cause
2504  * termination, should interrupt current syscall), return the signal number.
2505  * Stop signals with default action are processed immediately, then cleared;
2506  * they aren't returned.  This is checked after each entry to the system for
2507  * a syscall or trap (though this can usually be done without calling issignal
2508  * by checking the pending signal masks in cursig.) The normal call
2509  * sequence is
2510  *
2511  *	while (sig = cursig(curthread))
2512  *		postsig(sig);
2513  */
2514 static int
2515 issignal(td)
2516 	struct thread *td;
2517 {
2518 	struct proc *p;
2519 	struct sigacts *ps;
2520 	sigset_t sigpending;
2521 	int sig, prop, newsig;
2522 
2523 	p = td->td_proc;
2524 	ps = p->p_sigacts;
2525 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2526 	PROC_LOCK_ASSERT(p, MA_OWNED);
2527 	for (;;) {
2528 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2529 
2530 		sigpending = td->td_sigqueue.sq_signals;
2531 		SIGSETNAND(sigpending, td->td_sigmask);
2532 
2533 		if (p->p_flag & P_PPWAIT)
2534 			SIG_STOPSIGMASK(sigpending);
2535 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2536 			return (0);
2537 		sig = sig_ffs(&sigpending);
2538 
2539 		if (p->p_stops & S_SIG) {
2540 			mtx_unlock(&ps->ps_mtx);
2541 			stopevent(p, S_SIG, sig);
2542 			mtx_lock(&ps->ps_mtx);
2543 		}
2544 
2545 		/*
2546 		 * We should see pending but ignored signals
2547 		 * only if P_TRACED was on when they were posted.
2548 		 */
2549 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2550 			sigqueue_delete(&td->td_sigqueue, sig);
2551 			if (td->td_pflags & TDP_SA)
2552 				SIGADDSET(td->td_sigmask, sig);
2553 			continue;
2554 		}
2555 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2556 			/*
2557 			 * If traced, always stop.
2558 			 */
2559 			mtx_unlock(&ps->ps_mtx);
2560 			newsig = ptracestop(td, sig);
2561 			mtx_lock(&ps->ps_mtx);
2562 
2563 			if (td->td_pflags & TDP_SA)
2564 				SIGADDSET(td->td_sigmask, sig);
2565 
2566 			if (sig != newsig) {
2567 				ksiginfo_t ksi;
2568 				/*
2569 				 * clear old signal.
2570 				 * XXX shrug off debugger, it causes siginfo to
2571 				 * be thrown away.
2572 				 */
2573 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2574 
2575 				/*
2576 				 * If parent wants us to take the signal,
2577 				 * then it will leave it in p->p_xstat;
2578 				 * otherwise we just look for signals again.
2579 			 	*/
2580 				if (newsig == 0)
2581 					continue;
2582 				sig = newsig;
2583 
2584 				/*
2585 				 * Put the new signal into td_sigqueue. If the
2586 				 * signal is being masked, look for other signals.
2587 				 */
2588 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2589 				if (td->td_pflags & TDP_SA)
2590 					SIGDELSET(td->td_sigmask, sig);
2591 				if (SIGISMEMBER(td->td_sigmask, sig))
2592 					continue;
2593 				signotify(td);
2594 			}
2595 
2596 			/*
2597 			 * If the traced bit got turned off, go back up
2598 			 * to the top to rescan signals.  This ensures
2599 			 * that p_sig* and p_sigact are consistent.
2600 			 */
2601 			if ((p->p_flag & P_TRACED) == 0)
2602 				continue;
2603 		}
2604 
2605 		prop = sigprop(sig);
2606 
2607 		/*
2608 		 * Decide whether the signal should be returned.
2609 		 * Return the signal's number, or fall through
2610 		 * to clear it from the pending mask.
2611 		 */
2612 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2613 
2614 		case (intptr_t)SIG_DFL:
2615 			/*
2616 			 * Don't take default actions on system processes.
2617 			 */
2618 			if (p->p_pid <= 1) {
2619 #ifdef DIAGNOSTIC
2620 				/*
2621 				 * Are you sure you want to ignore SIGSEGV
2622 				 * in init? XXX
2623 				 */
2624 				printf("Process (pid %lu) got signal %d\n",
2625 					(u_long)p->p_pid, sig);
2626 #endif
2627 				break;		/* == ignore */
2628 			}
2629 			/*
2630 			 * If there is a pending stop signal to process
2631 			 * with default action, stop here,
2632 			 * then clear the signal.  However,
2633 			 * if process is member of an orphaned
2634 			 * process group, ignore tty stop signals.
2635 			 */
2636 			if (prop & SA_STOP) {
2637 				if (p->p_flag & P_TRACED ||
2638 		    		    (p->p_pgrp->pg_jobc == 0 &&
2639 				     prop & SA_TTYSTOP))
2640 					break;	/* == ignore */
2641 				mtx_unlock(&ps->ps_mtx);
2642 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2643 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2644 				p->p_flag |= P_STOPPED_SIG;
2645 				p->p_xstat = sig;
2646 				mtx_lock_spin(&sched_lock);
2647 				sig_suspend_threads(td, p, 0);
2648 				thread_stopped(p);
2649 				thread_suspend_one(td);
2650 				PROC_UNLOCK(p);
2651 				DROP_GIANT();
2652 				mi_switch(SW_INVOL, NULL);
2653 				mtx_unlock_spin(&sched_lock);
2654 				PICKUP_GIANT();
2655 				PROC_LOCK(p);
2656 				mtx_lock(&ps->ps_mtx);
2657 				break;
2658 			} else if (prop & SA_IGNORE) {
2659 				/*
2660 				 * Except for SIGCONT, shouldn't get here.
2661 				 * Default action is to ignore; drop it.
2662 				 */
2663 				break;		/* == ignore */
2664 			} else
2665 				return (sig);
2666 			/*NOTREACHED*/
2667 
2668 		case (intptr_t)SIG_IGN:
2669 			/*
2670 			 * Masking above should prevent us ever trying
2671 			 * to take action on an ignored signal other
2672 			 * than SIGCONT, unless process is traced.
2673 			 */
2674 			if ((prop & SA_CONT) == 0 &&
2675 			    (p->p_flag & P_TRACED) == 0)
2676 				printf("issignal\n");
2677 			break;		/* == ignore */
2678 
2679 		default:
2680 			/*
2681 			 * This signal has an action, let
2682 			 * postsig() process it.
2683 			 */
2684 			return (sig);
2685 		}
2686 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2687 	}
2688 	/* NOTREACHED */
2689 }
2690 
2691 /*
2692  * MPSAFE
2693  */
2694 void
2695 thread_stopped(struct proc *p)
2696 {
2697 	int n;
2698 
2699 	PROC_LOCK_ASSERT(p, MA_OWNED);
2700 	mtx_assert(&sched_lock, MA_OWNED);
2701 	n = p->p_suspcount;
2702 	if (p == curproc)
2703 		n++;
2704 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2705 		mtx_unlock_spin(&sched_lock);
2706 		p->p_flag &= ~P_WAITED;
2707 		PROC_LOCK(p->p_pptr);
2708 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2709 			CLD_TRAPPED : CLD_STOPPED);
2710 		PROC_UNLOCK(p->p_pptr);
2711 		mtx_lock_spin(&sched_lock);
2712 	}
2713 }
2714 
2715 /*
2716  * Take the action for the specified signal
2717  * from the current set of pending signals.
2718  */
2719 void
2720 postsig(sig)
2721 	register int sig;
2722 {
2723 	struct thread *td = curthread;
2724 	register struct proc *p = td->td_proc;
2725 	struct sigacts *ps;
2726 	sig_t action;
2727 	ksiginfo_t ksi;
2728 	sigset_t returnmask;
2729 	int code;
2730 
2731 	KASSERT(sig != 0, ("postsig"));
2732 
2733 	PROC_LOCK_ASSERT(p, MA_OWNED);
2734 	ps = p->p_sigacts;
2735 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2736 	ksiginfo_init(&ksi);
2737 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2738 	ksi.ksi_signo = sig;
2739 	if (ksi.ksi_code == SI_TIMER)
2740 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2741 	action = ps->ps_sigact[_SIG_IDX(sig)];
2742 #ifdef KTRACE
2743 	if (KTRPOINT(td, KTR_PSIG))
2744 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2745 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2746 #endif
2747 	if (p->p_stops & S_SIG) {
2748 		mtx_unlock(&ps->ps_mtx);
2749 		stopevent(p, S_SIG, sig);
2750 		mtx_lock(&ps->ps_mtx);
2751 	}
2752 
2753 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2754 		/*
2755 		 * Default action, where the default is to kill
2756 		 * the process.  (Other cases were ignored above.)
2757 		 */
2758 		mtx_unlock(&ps->ps_mtx);
2759 		sigexit(td, sig);
2760 		/* NOTREACHED */
2761 	} else {
2762 		if (td->td_pflags & TDP_SA) {
2763 			if (sig == SIGKILL) {
2764 				mtx_unlock(&ps->ps_mtx);
2765 				sigexit(td, sig);
2766 			}
2767 		}
2768 
2769 		/*
2770 		 * If we get here, the signal must be caught.
2771 		 */
2772 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2773 		    ("postsig action"));
2774 		/*
2775 		 * Set the new mask value and also defer further
2776 		 * occurrences of this signal.
2777 		 *
2778 		 * Special case: user has done a sigsuspend.  Here the
2779 		 * current mask is not of interest, but rather the
2780 		 * mask from before the sigsuspend is what we want
2781 		 * restored after the signal processing is completed.
2782 		 */
2783 		if (td->td_pflags & TDP_OLDMASK) {
2784 			returnmask = td->td_oldsigmask;
2785 			td->td_pflags &= ~TDP_OLDMASK;
2786 		} else
2787 			returnmask = td->td_sigmask;
2788 
2789 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2790 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2791 			SIGADDSET(td->td_sigmask, sig);
2792 
2793 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2794 			/*
2795 			 * See kern_sigaction() for origin of this code.
2796 			 */
2797 			SIGDELSET(ps->ps_sigcatch, sig);
2798 			if (sig != SIGCONT &&
2799 			    sigprop(sig) & SA_IGNORE)
2800 				SIGADDSET(ps->ps_sigignore, sig);
2801 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2802 		}
2803 		p->p_stats->p_ru.ru_nsignals++;
2804 		if (p->p_sig != sig) {
2805 			code = 0;
2806 		} else {
2807 			code = p->p_code;
2808 			p->p_code = 0;
2809 			p->p_sig = 0;
2810 		}
2811 		if (td->td_pflags & TDP_SA)
2812 			thread_signal_add(curthread, &ksi);
2813 		else
2814 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2815 	}
2816 }
2817 
2818 /*
2819  * Kill the current process for stated reason.
2820  */
2821 void
2822 killproc(p, why)
2823 	struct proc *p;
2824 	char *why;
2825 {
2826 
2827 	PROC_LOCK_ASSERT(p, MA_OWNED);
2828 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2829 		p, p->p_pid, p->p_comm);
2830 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2831 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2832 	psignal(p, SIGKILL);
2833 }
2834 
2835 /*
2836  * Force the current process to exit with the specified signal, dumping core
2837  * if appropriate.  We bypass the normal tests for masked and caught signals,
2838  * allowing unrecoverable failures to terminate the process without changing
2839  * signal state.  Mark the accounting record with the signal termination.
2840  * If dumping core, save the signal number for the debugger.  Calls exit and
2841  * does not return.
2842  *
2843  * MPSAFE
2844  */
2845 void
2846 sigexit(td, sig)
2847 	struct thread *td;
2848 	int sig;
2849 {
2850 	struct proc *p = td->td_proc;
2851 
2852 	PROC_LOCK_ASSERT(p, MA_OWNED);
2853 	p->p_acflag |= AXSIG;
2854 	/*
2855 	 * We must be single-threading to generate a core dump.  This
2856 	 * ensures that the registers in the core file are up-to-date.
2857 	 * Also, the ELF dump handler assumes that the thread list doesn't
2858 	 * change out from under it.
2859 	 *
2860 	 * XXX If another thread attempts to single-thread before us
2861 	 *     (e.g. via fork()), we won't get a dump at all.
2862 	 */
2863 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2864 		p->p_sig = sig;
2865 		/*
2866 		 * Log signals which would cause core dumps
2867 		 * (Log as LOG_INFO to appease those who don't want
2868 		 * these messages.)
2869 		 * XXX : Todo, as well as euid, write out ruid too
2870 		 * Note that coredump() drops proc lock.
2871 		 */
2872 		if (coredump(td) == 0)
2873 			sig |= WCOREFLAG;
2874 		if (kern_logsigexit)
2875 			log(LOG_INFO,
2876 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2877 			    p->p_pid, p->p_comm,
2878 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2879 			    sig &~ WCOREFLAG,
2880 			    sig & WCOREFLAG ? " (core dumped)" : "");
2881 	} else
2882 		PROC_UNLOCK(p);
2883 	exit1(td, W_EXITCODE(0, sig));
2884 	/* NOTREACHED */
2885 }
2886 
2887 /*
2888  * Send queued SIGCHLD to parent when child process's state
2889  * is changed.
2890  */
2891 static void
2892 sigparent(struct proc *p, int reason, int status)
2893 {
2894 	PROC_LOCK_ASSERT(p, MA_OWNED);
2895 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2896 
2897 	if (p->p_ksi != NULL) {
2898 		p->p_ksi->ksi_signo  = SIGCHLD;
2899 		p->p_ksi->ksi_code   = reason;
2900 		p->p_ksi->ksi_status = status;
2901 		p->p_ksi->ksi_pid    = p->p_pid;
2902 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2903 		if (KSI_ONQ(p->p_ksi))
2904 			return;
2905 	}
2906 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2907 }
2908 
2909 static void
2910 childproc_jobstate(struct proc *p, int reason, int status)
2911 {
2912 	struct sigacts *ps;
2913 
2914 	PROC_LOCK_ASSERT(p, MA_OWNED);
2915 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2916 
2917 	/*
2918 	 * Wake up parent sleeping in kern_wait(), also send
2919 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2920 	 * that parent will awake, because parent may masked
2921 	 * the signal.
2922 	 */
2923 	p->p_pptr->p_flag |= P_STATCHILD;
2924 	wakeup(p->p_pptr);
2925 
2926 	ps = p->p_pptr->p_sigacts;
2927 	mtx_lock(&ps->ps_mtx);
2928 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2929 		mtx_unlock(&ps->ps_mtx);
2930 		sigparent(p, reason, status);
2931 	} else
2932 		mtx_unlock(&ps->ps_mtx);
2933 }
2934 
2935 void
2936 childproc_stopped(struct proc *p, int reason)
2937 {
2938 	childproc_jobstate(p, reason, p->p_xstat);
2939 }
2940 
2941 void
2942 childproc_continued(struct proc *p)
2943 {
2944 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2945 }
2946 
2947 void
2948 childproc_exited(struct proc *p)
2949 {
2950 	int reason;
2951 	int status = p->p_xstat; /* convert to int */
2952 
2953 	reason = CLD_EXITED;
2954 	if (WCOREDUMP(status))
2955 		reason = CLD_DUMPED;
2956 	else if (WIFSIGNALED(status))
2957 		reason = CLD_KILLED;
2958 	/*
2959 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2960 	 * done in exit1().
2961 	 */
2962 	sigparent(p, reason, status);
2963 }
2964 
2965 static char corefilename[MAXPATHLEN] = {"%N.core"};
2966 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2967 	      sizeof(corefilename), "process corefile name format string");
2968 
2969 /*
2970  * expand_name(name, uid, pid)
2971  * Expand the name described in corefilename, using name, uid, and pid.
2972  * corefilename is a printf-like string, with three format specifiers:
2973  *	%N	name of process ("name")
2974  *	%P	process id (pid)
2975  *	%U	user id (uid)
2976  * For example, "%N.core" is the default; they can be disabled completely
2977  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2978  * This is controlled by the sysctl variable kern.corefile (see above).
2979  */
2980 
2981 static char *
2982 expand_name(name, uid, pid)
2983 	const char *name;
2984 	uid_t uid;
2985 	pid_t pid;
2986 {
2987 	const char *format, *appendstr;
2988 	char *temp;
2989 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2990 	size_t i, l, n;
2991 
2992 	format = corefilename;
2993 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2994 	if (temp == NULL)
2995 		return (NULL);
2996 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2997 		switch (format[i]) {
2998 		case '%':	/* Format character */
2999 			i++;
3000 			switch (format[i]) {
3001 			case '%':
3002 				appendstr = "%";
3003 				break;
3004 			case 'N':	/* process name */
3005 				appendstr = name;
3006 				break;
3007 			case 'P':	/* process id */
3008 				sprintf(buf, "%u", pid);
3009 				appendstr = buf;
3010 				break;
3011 			case 'U':	/* user id */
3012 				sprintf(buf, "%u", uid);
3013 				appendstr = buf;
3014 				break;
3015 			default:
3016 				appendstr = "";
3017 			  	log(LOG_ERR,
3018 				    "Unknown format character %c in `%s'\n",
3019 				    format[i], format);
3020 			}
3021 			l = strlen(appendstr);
3022 			if ((n + l) >= MAXPATHLEN)
3023 				goto toolong;
3024 			memcpy(temp + n, appendstr, l);
3025 			n += l;
3026 			break;
3027 		default:
3028 			temp[n++] = format[i];
3029 		}
3030 	}
3031 	if (format[i] != '\0')
3032 		goto toolong;
3033 	return (temp);
3034 toolong:
3035 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3036 	    (long)pid, name, (u_long)uid);
3037 	free(temp, M_TEMP);
3038 	return (NULL);
3039 }
3040 
3041 /*
3042  * Dump a process' core.  The main routine does some
3043  * policy checking, and creates the name of the coredump;
3044  * then it passes on a vnode and a size limit to the process-specific
3045  * coredump routine if there is one; if there _is not_ one, it returns
3046  * ENOSYS; otherwise it returns the error from the process-specific routine.
3047  */
3048 
3049 static int
3050 coredump(struct thread *td)
3051 {
3052 	struct proc *p = td->td_proc;
3053 	register struct vnode *vp;
3054 	register struct ucred *cred = td->td_ucred;
3055 	struct flock lf;
3056 	struct nameidata nd;
3057 	struct vattr vattr;
3058 	int error, error1, flags, locked;
3059 	struct mount *mp;
3060 	char *name;			/* name of corefile */
3061 	off_t limit;
3062 	int vfslocked;
3063 
3064 	PROC_LOCK_ASSERT(p, MA_OWNED);
3065 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3066 	_STOPEVENT(p, S_CORE, 0);
3067 
3068 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3069 		PROC_UNLOCK(p);
3070 		return (EFAULT);
3071 	}
3072 
3073 	/*
3074 	 * Note that the bulk of limit checking is done after
3075 	 * the corefile is created.  The exception is if the limit
3076 	 * for corefiles is 0, in which case we don't bother
3077 	 * creating the corefile at all.  This layout means that
3078 	 * a corefile is truncated instead of not being created,
3079 	 * if it is larger than the limit.
3080 	 */
3081 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3082 	PROC_UNLOCK(p);
3083 	if (limit == 0)
3084 		return (EFBIG);
3085 
3086 restart:
3087 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3088 	if (name == NULL)
3089 		return (EINVAL);
3090 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3091 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3092 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3093 	free(name, M_TEMP);
3094 	if (error)
3095 		return (error);
3096 	vfslocked = NDHASGIANT(&nd);
3097 	NDFREE(&nd, NDF_ONLY_PNBUF);
3098 	vp = nd.ni_vp;
3099 
3100 	/* Don't dump to non-regular files or files with links. */
3101 	if (vp->v_type != VREG ||
3102 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3103 		VOP_UNLOCK(vp, 0, td);
3104 		error = EFAULT;
3105 		goto close;
3106 	}
3107 
3108 	VOP_UNLOCK(vp, 0, td);
3109 	lf.l_whence = SEEK_SET;
3110 	lf.l_start = 0;
3111 	lf.l_len = 0;
3112 	lf.l_type = F_WRLCK;
3113 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3114 
3115 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3116 		lf.l_type = F_UNLCK;
3117 		if (locked)
3118 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3119 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3120 			goto out;
3121 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3122 			goto out;
3123 		VFS_UNLOCK_GIANT(vfslocked);
3124 		goto restart;
3125 	}
3126 
3127 	VATTR_NULL(&vattr);
3128 	vattr.va_size = 0;
3129 	if (set_core_nodump_flag)
3130 		vattr.va_flags = UF_NODUMP;
3131 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3132 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3133 	VOP_SETATTR(vp, &vattr, cred, td);
3134 	VOP_UNLOCK(vp, 0, td);
3135 	vn_finished_write(mp);
3136 	PROC_LOCK(p);
3137 	p->p_acflag |= ACORE;
3138 	PROC_UNLOCK(p);
3139 
3140 	error = p->p_sysent->sv_coredump ?
3141 	  p->p_sysent->sv_coredump(td, vp, limit) :
3142 	  ENOSYS;
3143 
3144 	if (locked) {
3145 		lf.l_type = F_UNLCK;
3146 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3147 	}
3148 close:
3149 	error1 = vn_close(vp, FWRITE, cred, td);
3150 	if (error == 0)
3151 		error = error1;
3152 out:
3153 	VFS_UNLOCK_GIANT(vfslocked);
3154 	return (error);
3155 }
3156 
3157 /*
3158  * Nonexistent system call-- signal process (may want to handle it).
3159  * Flag error in case process won't see signal immediately (blocked or ignored).
3160  */
3161 #ifndef _SYS_SYSPROTO_H_
3162 struct nosys_args {
3163 	int	dummy;
3164 };
3165 #endif
3166 /*
3167  * MPSAFE
3168  */
3169 /* ARGSUSED */
3170 int
3171 nosys(td, args)
3172 	struct thread *td;
3173 	struct nosys_args *args;
3174 {
3175 	struct proc *p = td->td_proc;
3176 
3177 	PROC_LOCK(p);
3178 	psignal(p, SIGSYS);
3179 	PROC_UNLOCK(p);
3180 	return (ENOSYS);
3181 }
3182 
3183 /*
3184  * Send a SIGIO or SIGURG signal to a process or process group using
3185  * stored credentials rather than those of the current process.
3186  */
3187 void
3188 pgsigio(sigiop, sig, checkctty)
3189 	struct sigio **sigiop;
3190 	int sig, checkctty;
3191 {
3192 	struct sigio *sigio;
3193 
3194 	SIGIO_LOCK();
3195 	sigio = *sigiop;
3196 	if (sigio == NULL) {
3197 		SIGIO_UNLOCK();
3198 		return;
3199 	}
3200 	if (sigio->sio_pgid > 0) {
3201 		PROC_LOCK(sigio->sio_proc);
3202 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3203 			psignal(sigio->sio_proc, sig);
3204 		PROC_UNLOCK(sigio->sio_proc);
3205 	} else if (sigio->sio_pgid < 0) {
3206 		struct proc *p;
3207 
3208 		PGRP_LOCK(sigio->sio_pgrp);
3209 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3210 			PROC_LOCK(p);
3211 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3212 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3213 				psignal(p, sig);
3214 			PROC_UNLOCK(p);
3215 		}
3216 		PGRP_UNLOCK(sigio->sio_pgrp);
3217 	}
3218 	SIGIO_UNLOCK();
3219 }
3220 
3221 static int
3222 filt_sigattach(struct knote *kn)
3223 {
3224 	struct proc *p = curproc;
3225 
3226 	kn->kn_ptr.p_proc = p;
3227 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3228 
3229 	knlist_add(&p->p_klist, kn, 0);
3230 
3231 	return (0);
3232 }
3233 
3234 static void
3235 filt_sigdetach(struct knote *kn)
3236 {
3237 	struct proc *p = kn->kn_ptr.p_proc;
3238 
3239 	knlist_remove(&p->p_klist, kn, 0);
3240 }
3241 
3242 /*
3243  * signal knotes are shared with proc knotes, so we apply a mask to
3244  * the hint in order to differentiate them from process hints.  This
3245  * could be avoided by using a signal-specific knote list, but probably
3246  * isn't worth the trouble.
3247  */
3248 static int
3249 filt_signal(struct knote *kn, long hint)
3250 {
3251 
3252 	if (hint & NOTE_SIGNAL) {
3253 		hint &= ~NOTE_SIGNAL;
3254 
3255 		if (kn->kn_id == hint)
3256 			kn->kn_data++;
3257 	}
3258 	return (kn->kn_data != 0);
3259 }
3260 
3261 struct sigacts *
3262 sigacts_alloc(void)
3263 {
3264 	struct sigacts *ps;
3265 
3266 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3267 	ps->ps_refcnt = 1;
3268 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3269 	return (ps);
3270 }
3271 
3272 void
3273 sigacts_free(struct sigacts *ps)
3274 {
3275 
3276 	mtx_lock(&ps->ps_mtx);
3277 	ps->ps_refcnt--;
3278 	if (ps->ps_refcnt == 0) {
3279 		mtx_destroy(&ps->ps_mtx);
3280 		free(ps, M_SUBPROC);
3281 	} else
3282 		mtx_unlock(&ps->ps_mtx);
3283 }
3284 
3285 struct sigacts *
3286 sigacts_hold(struct sigacts *ps)
3287 {
3288 	mtx_lock(&ps->ps_mtx);
3289 	ps->ps_refcnt++;
3290 	mtx_unlock(&ps->ps_mtx);
3291 	return (ps);
3292 }
3293 
3294 void
3295 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3296 {
3297 
3298 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3299 	mtx_lock(&src->ps_mtx);
3300 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3301 	mtx_unlock(&src->ps_mtx);
3302 }
3303 
3304 int
3305 sigacts_shared(struct sigacts *ps)
3306 {
3307 	int shared;
3308 
3309 	mtx_lock(&ps->ps_mtx);
3310 	shared = ps->ps_refcnt > 1;
3311 	mtx_unlock(&ps->ps_mtx);
3312 	return (shared);
3313 }
3314