xref: /freebsd/sys/kern/kern_sig.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/signalvar.h>
47 #include <sys/vnode.h>
48 #include <sys/acct.h>
49 #include <sys/condvar.h>
50 #include <sys/event.h>
51 #include <sys/fcntl.h>
52 #include <sys/kernel.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/posix4.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sdt.h>
64 #include <sys/sbuf.h>
65 #include <sys/sleepqueue.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/sx.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/syslog.h>
73 #include <sys/sysproto.h>
74 #include <sys/timers.h>
75 #include <sys/unistd.h>
76 #include <sys/wait.h>
77 #include <vm/vm.h>
78 #include <vm/vm_extern.h>
79 #include <vm/uma.h>
80 
81 #include <machine/cpu.h>
82 
83 #include <security/audit/audit.h>
84 
85 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
86 
87 SDT_PROVIDER_DECLARE(proc);
88 SDT_PROBE_DEFINE(proc, kernel, , signal_send);
89 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
90 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
91 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
92 SDT_PROBE_DEFINE(proc, kernel, , signal_clear);
93 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
94 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
95 SDT_PROBE_DEFINE(proc, kernel, , signal_discard);
96 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
99 
100 static int	coredump(struct thread *);
101 static char	*expand_name(const char *, uid_t, pid_t);
102 static int	killpg1(struct thread *td, int sig, int pgid, int all);
103 static int	issignal(struct thread *td, int stop_allowed);
104 static int	sigprop(int sig);
105 static void	tdsigwakeup(struct thread *, int, sig_t, int);
106 static void	sig_suspend_threads(struct thread *, struct proc *, int);
107 static int	filt_sigattach(struct knote *kn);
108 static void	filt_sigdetach(struct knote *kn);
109 static int	filt_signal(struct knote *kn, long hint);
110 static struct thread *sigtd(struct proc *p, int sig, int prop);
111 static void	sigqueue_start(void);
112 
113 static uma_zone_t	ksiginfo_zone = NULL;
114 struct filterops sig_filtops =
115 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
116 
117 int	kern_logsigexit = 1;
118 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
119     &kern_logsigexit, 0,
120     "Log processes quitting on abnormal signals to syslog(3)");
121 
122 static int	kern_forcesigexit = 1;
123 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
124     &kern_forcesigexit, 0, "Force trap signal to be handled");
125 
126 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
127 
128 static int	max_pending_per_proc = 128;
129 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
130     &max_pending_per_proc, 0, "Max pending signals per proc");
131 
132 static int	preallocate_siginfo = 1024;
133 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
134 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
135     &preallocate_siginfo, 0, "Preallocated signal memory size");
136 
137 static int	signal_overflow = 0;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
139     &signal_overflow, 0, "Number of signals overflew");
140 
141 static int	signal_alloc_fail = 0;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
143     &signal_alloc_fail, 0, "signals failed to be allocated");
144 
145 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
146 
147 /*
148  * Policy -- Can ucred cr1 send SIGIO to process cr2?
149  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
150  * in the right situations.
151  */
152 #define CANSIGIO(cr1, cr2) \
153 	((cr1)->cr_uid == 0 || \
154 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
155 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
156 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
157 	    (cr1)->cr_uid == (cr2)->cr_uid)
158 
159 int sugid_coredump;
160 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
161     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
162 
163 static int	do_coredump = 1;
164 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
165 	&do_coredump, 0, "Enable/Disable coredumps");
166 
167 static int	set_core_nodump_flag = 0;
168 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
169 	0, "Enable setting the NODUMP flag on coredump files");
170 
171 /*
172  * Signal properties and actions.
173  * The array below categorizes the signals and their default actions
174  * according to the following properties:
175  */
176 #define	SA_KILL		0x01		/* terminates process by default */
177 #define	SA_CORE		0x02		/* ditto and coredumps */
178 #define	SA_STOP		0x04		/* suspend process */
179 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
180 #define	SA_IGNORE	0x10		/* ignore by default */
181 #define	SA_CONT		0x20		/* continue if suspended */
182 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
183 #define	SA_PROC		0x80		/* deliverable to any thread */
184 
185 static int sigproptbl[NSIG] = {
186         SA_KILL|SA_PROC,		/* SIGHUP */
187         SA_KILL|SA_PROC,		/* SIGINT */
188         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
189         SA_KILL|SA_CORE,		/* SIGILL */
190         SA_KILL|SA_CORE,		/* SIGTRAP */
191         SA_KILL|SA_CORE,		/* SIGABRT */
192         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
193         SA_KILL|SA_CORE,		/* SIGFPE */
194         SA_KILL|SA_PROC,		/* SIGKILL */
195         SA_KILL|SA_CORE,		/* SIGBUS */
196         SA_KILL|SA_CORE,		/* SIGSEGV */
197         SA_KILL|SA_CORE,		/* SIGSYS */
198         SA_KILL|SA_PROC,		/* SIGPIPE */
199         SA_KILL|SA_PROC,		/* SIGALRM */
200         SA_KILL|SA_PROC,		/* SIGTERM */
201         SA_IGNORE|SA_PROC,		/* SIGURG */
202         SA_STOP|SA_PROC,		/* SIGSTOP */
203         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
204         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
205         SA_IGNORE|SA_PROC,		/* SIGCHLD */
206         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
207         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
208         SA_IGNORE|SA_PROC,		/* SIGIO */
209         SA_KILL,			/* SIGXCPU */
210         SA_KILL,			/* SIGXFSZ */
211         SA_KILL|SA_PROC,		/* SIGVTALRM */
212         SA_KILL|SA_PROC,		/* SIGPROF */
213         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
214         SA_IGNORE|SA_PROC,		/* SIGINFO */
215         SA_KILL|SA_PROC,		/* SIGUSR1 */
216         SA_KILL|SA_PROC,		/* SIGUSR2 */
217 };
218 
219 static void
220 sigqueue_start(void)
221 {
222 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
223 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
224 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
225 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
226 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
227 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
228 }
229 
230 ksiginfo_t *
231 ksiginfo_alloc(int wait)
232 {
233 	int flags;
234 
235 	flags = M_ZERO;
236 	if (! wait)
237 		flags |= M_NOWAIT;
238 	if (ksiginfo_zone != NULL)
239 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
240 	return (NULL);
241 }
242 
243 void
244 ksiginfo_free(ksiginfo_t *ksi)
245 {
246 	uma_zfree(ksiginfo_zone, ksi);
247 }
248 
249 static __inline int
250 ksiginfo_tryfree(ksiginfo_t *ksi)
251 {
252 	if (!(ksi->ksi_flags & KSI_EXT)) {
253 		uma_zfree(ksiginfo_zone, ksi);
254 		return (1);
255 	}
256 	return (0);
257 }
258 
259 void
260 sigqueue_init(sigqueue_t *list, struct proc *p)
261 {
262 	SIGEMPTYSET(list->sq_signals);
263 	SIGEMPTYSET(list->sq_kill);
264 	TAILQ_INIT(&list->sq_list);
265 	list->sq_proc = p;
266 	list->sq_flags = SQ_INIT;
267 }
268 
269 /*
270  * Get a signal's ksiginfo.
271  * Return:
272  * 	0	-	signal not found
273  *	others	-	signal number
274  */
275 int
276 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
277 {
278 	struct proc *p = sq->sq_proc;
279 	struct ksiginfo *ksi, *next;
280 	int count = 0;
281 
282 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
283 
284 	if (!SIGISMEMBER(sq->sq_signals, signo))
285 		return (0);
286 
287 	if (SIGISMEMBER(sq->sq_kill, signo)) {
288 		count++;
289 		SIGDELSET(sq->sq_kill, signo);
290 	}
291 
292 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
293 		if (ksi->ksi_signo == signo) {
294 			if (count == 0) {
295 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
296 				ksi->ksi_sigq = NULL;
297 				ksiginfo_copy(ksi, si);
298 				if (ksiginfo_tryfree(ksi) && p != NULL)
299 					p->p_pendingcnt--;
300 			}
301 			if (++count > 1)
302 				break;
303 		}
304 	}
305 
306 	if (count <= 1)
307 		SIGDELSET(sq->sq_signals, signo);
308 	si->ksi_signo = signo;
309 	return (signo);
310 }
311 
312 void
313 sigqueue_take(ksiginfo_t *ksi)
314 {
315 	struct ksiginfo *kp;
316 	struct proc	*p;
317 	sigqueue_t	*sq;
318 
319 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
320 		return;
321 
322 	p = sq->sq_proc;
323 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
324 	ksi->ksi_sigq = NULL;
325 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
326 		p->p_pendingcnt--;
327 
328 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
329 	     kp = TAILQ_NEXT(kp, ksi_link)) {
330 		if (kp->ksi_signo == ksi->ksi_signo)
331 			break;
332 	}
333 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
334 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
335 }
336 
337 int
338 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
339 {
340 	struct proc *p = sq->sq_proc;
341 	struct ksiginfo *ksi;
342 	int ret = 0;
343 
344 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
345 
346 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
347 		SIGADDSET(sq->sq_kill, signo);
348 		goto out_set_bit;
349 	}
350 
351 	/* directly insert the ksi, don't copy it */
352 	if (si->ksi_flags & KSI_INS) {
353 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
354 		si->ksi_sigq = sq;
355 		goto out_set_bit;
356 	}
357 
358 	if (__predict_false(ksiginfo_zone == NULL)) {
359 		SIGADDSET(sq->sq_kill, signo);
360 		goto out_set_bit;
361 	}
362 
363 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
364 		signal_overflow++;
365 		ret = EAGAIN;
366 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
367 		signal_alloc_fail++;
368 		ret = EAGAIN;
369 	} else {
370 		if (p != NULL)
371 			p->p_pendingcnt++;
372 		ksiginfo_copy(si, ksi);
373 		ksi->ksi_signo = signo;
374 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
375 		ksi->ksi_sigq = sq;
376 	}
377 
378 	if ((si->ksi_flags & KSI_TRAP) != 0) {
379 		if (ret != 0)
380 			SIGADDSET(sq->sq_kill, signo);
381 		ret = 0;
382 		goto out_set_bit;
383 	}
384 
385 	if (ret != 0)
386 		return (ret);
387 
388 out_set_bit:
389 	SIGADDSET(sq->sq_signals, signo);
390 	return (ret);
391 }
392 
393 void
394 sigqueue_flush(sigqueue_t *sq)
395 {
396 	struct proc *p = sq->sq_proc;
397 	ksiginfo_t *ksi;
398 
399 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
400 
401 	if (p != NULL)
402 		PROC_LOCK_ASSERT(p, MA_OWNED);
403 
404 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
405 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
406 		ksi->ksi_sigq = NULL;
407 		if (ksiginfo_tryfree(ksi) && p != NULL)
408 			p->p_pendingcnt--;
409 	}
410 
411 	SIGEMPTYSET(sq->sq_signals);
412 	SIGEMPTYSET(sq->sq_kill);
413 }
414 
415 void
416 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
417 {
418 	ksiginfo_t *ksi;
419 
420 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
421 
422 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
423 		SIGADDSET(*set, ksi->ksi_signo);
424 	SIGSETOR(*set, sq->sq_kill);
425 }
426 
427 void
428 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
429 {
430 	sigset_t tmp, set;
431 	struct proc *p1, *p2;
432 	ksiginfo_t *ksi, *next;
433 
434 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
435 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
436 	/*
437 	 * make a copy, this allows setp to point to src or dst
438 	 * sq_signals without trouble.
439 	 */
440 	set = *setp;
441 	p1 = src->sq_proc;
442 	p2 = dst->sq_proc;
443 	/* Move siginfo to target list */
444 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
445 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
446 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
447 			if (p1 != NULL)
448 				p1->p_pendingcnt--;
449 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
450 			ksi->ksi_sigq = dst;
451 			if (p2 != NULL)
452 				p2->p_pendingcnt++;
453 		}
454 	}
455 
456 	/* Move pending bits to target list */
457 	tmp = src->sq_kill;
458 	SIGSETAND(tmp, set);
459 	SIGSETOR(dst->sq_kill, tmp);
460 	SIGSETNAND(src->sq_kill, tmp);
461 
462 	tmp = src->sq_signals;
463 	SIGSETAND(tmp, set);
464 	SIGSETOR(dst->sq_signals, tmp);
465 	SIGSETNAND(src->sq_signals, tmp);
466 
467 	/* Finally, rescan src queue and set pending bits for it */
468 	sigqueue_collect_set(src, &src->sq_signals);
469 }
470 
471 void
472 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
473 {
474 	sigset_t set;
475 
476 	SIGEMPTYSET(set);
477 	SIGADDSET(set, signo);
478 	sigqueue_move_set(src, dst, &set);
479 }
480 
481 void
482 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
483 {
484 	struct proc *p = sq->sq_proc;
485 	ksiginfo_t *ksi, *next;
486 
487 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
488 
489 	/* Remove siginfo queue */
490 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
491 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
492 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = NULL;
494 			if (ksiginfo_tryfree(ksi) && p != NULL)
495 				p->p_pendingcnt--;
496 		}
497 	}
498 	SIGSETNAND(sq->sq_kill, *set);
499 	SIGSETNAND(sq->sq_signals, *set);
500 	/* Finally, rescan queue and set pending bits for it */
501 	sigqueue_collect_set(sq, &sq->sq_signals);
502 }
503 
504 void
505 sigqueue_delete(sigqueue_t *sq, int signo)
506 {
507 	sigset_t set;
508 
509 	SIGEMPTYSET(set);
510 	SIGADDSET(set, signo);
511 	sigqueue_delete_set(sq, &set);
512 }
513 
514 /* Remove a set of signals for a process */
515 void
516 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
517 {
518 	sigqueue_t worklist;
519 	struct thread *td0;
520 
521 	PROC_LOCK_ASSERT(p, MA_OWNED);
522 
523 	sigqueue_init(&worklist, NULL);
524 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
525 
526 	FOREACH_THREAD_IN_PROC(p, td0)
527 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
528 
529 	sigqueue_flush(&worklist);
530 }
531 
532 void
533 sigqueue_delete_proc(struct proc *p, int signo)
534 {
535 	sigset_t set;
536 
537 	SIGEMPTYSET(set);
538 	SIGADDSET(set, signo);
539 	sigqueue_delete_set_proc(p, &set);
540 }
541 
542 void
543 sigqueue_delete_stopmask_proc(struct proc *p)
544 {
545 	sigset_t set;
546 
547 	SIGEMPTYSET(set);
548 	SIGADDSET(set, SIGSTOP);
549 	SIGADDSET(set, SIGTSTP);
550 	SIGADDSET(set, SIGTTIN);
551 	SIGADDSET(set, SIGTTOU);
552 	sigqueue_delete_set_proc(p, &set);
553 }
554 
555 /*
556  * Determine signal that should be delivered to process p, the current
557  * process, 0 if none.  If there is a pending stop signal with default
558  * action, the process stops in issignal().
559  */
560 int
561 cursig(struct thread *td, int stop_allowed)
562 {
563 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
564 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
565 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
566 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
567 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
568 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
569 }
570 
571 /*
572  * Arrange for ast() to handle unmasked pending signals on return to user
573  * mode.  This must be called whenever a signal is added to td_sigqueue or
574  * unmasked in td_sigmask.
575  */
576 void
577 signotify(struct thread *td)
578 {
579 	struct proc *p;
580 	sigset_t set;
581 
582 	p = td->td_proc;
583 
584 	PROC_LOCK_ASSERT(p, MA_OWNED);
585 
586 	/*
587 	 * If our mask changed we may have to move signal that were
588 	 * previously masked by all threads to our sigqueue.
589 	 */
590 	set = p->p_sigqueue.sq_signals;
591 	SIGSETNAND(set, td->td_sigmask);
592 	if (! SIGISEMPTY(set))
593 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
594 	if (SIGPENDING(td)) {
595 		thread_lock(td);
596 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
597 		thread_unlock(td);
598 	}
599 }
600 
601 int
602 sigonstack(size_t sp)
603 {
604 	struct thread *td = curthread;
605 
606 	return ((td->td_pflags & TDP_ALTSTACK) ?
607 #if defined(COMPAT_43)
608 	    ((td->td_sigstk.ss_size == 0) ?
609 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
610 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
611 #else
612 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
613 #endif
614 	    : 0);
615 }
616 
617 static __inline int
618 sigprop(int sig)
619 {
620 
621 	if (sig > 0 && sig < NSIG)
622 		return (sigproptbl[_SIG_IDX(sig)]);
623 	return (0);
624 }
625 
626 int
627 sig_ffs(sigset_t *set)
628 {
629 	int i;
630 
631 	for (i = 0; i < _SIG_WORDS; i++)
632 		if (set->__bits[i])
633 			return (ffs(set->__bits[i]) + (i * 32));
634 	return (0);
635 }
636 
637 /*
638  * kern_sigaction
639  * sigaction
640  * freebsd4_sigaction
641  * osigaction
642  */
643 int
644 kern_sigaction(td, sig, act, oact, flags)
645 	struct thread *td;
646 	register int sig;
647 	struct sigaction *act, *oact;
648 	int flags;
649 {
650 	struct sigacts *ps;
651 	struct proc *p = td->td_proc;
652 
653 	if (!_SIG_VALID(sig))
654 		return (EINVAL);
655 
656 	PROC_LOCK(p);
657 	ps = p->p_sigacts;
658 	mtx_lock(&ps->ps_mtx);
659 	if (oact) {
660 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
661 		oact->sa_flags = 0;
662 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
663 			oact->sa_flags |= SA_ONSTACK;
664 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
665 			oact->sa_flags |= SA_RESTART;
666 		if (SIGISMEMBER(ps->ps_sigreset, sig))
667 			oact->sa_flags |= SA_RESETHAND;
668 		if (SIGISMEMBER(ps->ps_signodefer, sig))
669 			oact->sa_flags |= SA_NODEFER;
670 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
671 			oact->sa_flags |= SA_SIGINFO;
672 			oact->sa_sigaction =
673 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
674 		} else
675 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
676 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
677 			oact->sa_flags |= SA_NOCLDSTOP;
678 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
679 			oact->sa_flags |= SA_NOCLDWAIT;
680 	}
681 	if (act) {
682 		if ((sig == SIGKILL || sig == SIGSTOP) &&
683 		    act->sa_handler != SIG_DFL) {
684 			mtx_unlock(&ps->ps_mtx);
685 			PROC_UNLOCK(p);
686 			return (EINVAL);
687 		}
688 
689 		/*
690 		 * Change setting atomically.
691 		 */
692 
693 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
694 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
695 		if (act->sa_flags & SA_SIGINFO) {
696 			ps->ps_sigact[_SIG_IDX(sig)] =
697 			    (__sighandler_t *)act->sa_sigaction;
698 			SIGADDSET(ps->ps_siginfo, sig);
699 		} else {
700 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
701 			SIGDELSET(ps->ps_siginfo, sig);
702 		}
703 		if (!(act->sa_flags & SA_RESTART))
704 			SIGADDSET(ps->ps_sigintr, sig);
705 		else
706 			SIGDELSET(ps->ps_sigintr, sig);
707 		if (act->sa_flags & SA_ONSTACK)
708 			SIGADDSET(ps->ps_sigonstack, sig);
709 		else
710 			SIGDELSET(ps->ps_sigonstack, sig);
711 		if (act->sa_flags & SA_RESETHAND)
712 			SIGADDSET(ps->ps_sigreset, sig);
713 		else
714 			SIGDELSET(ps->ps_sigreset, sig);
715 		if (act->sa_flags & SA_NODEFER)
716 			SIGADDSET(ps->ps_signodefer, sig);
717 		else
718 			SIGDELSET(ps->ps_signodefer, sig);
719 		if (sig == SIGCHLD) {
720 			if (act->sa_flags & SA_NOCLDSTOP)
721 				ps->ps_flag |= PS_NOCLDSTOP;
722 			else
723 				ps->ps_flag &= ~PS_NOCLDSTOP;
724 			if (act->sa_flags & SA_NOCLDWAIT) {
725 				/*
726 				 * Paranoia: since SA_NOCLDWAIT is implemented
727 				 * by reparenting the dying child to PID 1 (and
728 				 * trust it to reap the zombie), PID 1 itself
729 				 * is forbidden to set SA_NOCLDWAIT.
730 				 */
731 				if (p->p_pid == 1)
732 					ps->ps_flag &= ~PS_NOCLDWAIT;
733 				else
734 					ps->ps_flag |= PS_NOCLDWAIT;
735 			} else
736 				ps->ps_flag &= ~PS_NOCLDWAIT;
737 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
738 				ps->ps_flag |= PS_CLDSIGIGN;
739 			else
740 				ps->ps_flag &= ~PS_CLDSIGIGN;
741 		}
742 		/*
743 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
744 		 * and for signals set to SIG_DFL where the default is to
745 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
746 		 * have to restart the process.
747 		 */
748 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
749 		    (sigprop(sig) & SA_IGNORE &&
750 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
751 			/* never to be seen again */
752 			sigqueue_delete_proc(p, sig);
753 			if (sig != SIGCONT)
754 				/* easier in psignal */
755 				SIGADDSET(ps->ps_sigignore, sig);
756 			SIGDELSET(ps->ps_sigcatch, sig);
757 		} else {
758 			SIGDELSET(ps->ps_sigignore, sig);
759 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
760 				SIGDELSET(ps->ps_sigcatch, sig);
761 			else
762 				SIGADDSET(ps->ps_sigcatch, sig);
763 		}
764 #ifdef COMPAT_FREEBSD4
765 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
766 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
767 		    (flags & KSA_FREEBSD4) == 0)
768 			SIGDELSET(ps->ps_freebsd4, sig);
769 		else
770 			SIGADDSET(ps->ps_freebsd4, sig);
771 #endif
772 #ifdef COMPAT_43
773 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
774 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
775 		    (flags & KSA_OSIGSET) == 0)
776 			SIGDELSET(ps->ps_osigset, sig);
777 		else
778 			SIGADDSET(ps->ps_osigset, sig);
779 #endif
780 	}
781 	mtx_unlock(&ps->ps_mtx);
782 	PROC_UNLOCK(p);
783 	return (0);
784 }
785 
786 #ifndef _SYS_SYSPROTO_H_
787 struct sigaction_args {
788 	int	sig;
789 	struct	sigaction *act;
790 	struct	sigaction *oact;
791 };
792 #endif
793 int
794 sigaction(td, uap)
795 	struct thread *td;
796 	register struct sigaction_args *uap;
797 {
798 	struct sigaction act, oact;
799 	register struct sigaction *actp, *oactp;
800 	int error;
801 
802 	actp = (uap->act != NULL) ? &act : NULL;
803 	oactp = (uap->oact != NULL) ? &oact : NULL;
804 	if (actp) {
805 		error = copyin(uap->act, actp, sizeof(act));
806 		if (error)
807 			return (error);
808 	}
809 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
810 	if (oactp && !error)
811 		error = copyout(oactp, uap->oact, sizeof(oact));
812 	return (error);
813 }
814 
815 #ifdef COMPAT_FREEBSD4
816 #ifndef _SYS_SYSPROTO_H_
817 struct freebsd4_sigaction_args {
818 	int	sig;
819 	struct	sigaction *act;
820 	struct	sigaction *oact;
821 };
822 #endif
823 int
824 freebsd4_sigaction(td, uap)
825 	struct thread *td;
826 	register struct freebsd4_sigaction_args *uap;
827 {
828 	struct sigaction act, oact;
829 	register struct sigaction *actp, *oactp;
830 	int error;
831 
832 
833 	actp = (uap->act != NULL) ? &act : NULL;
834 	oactp = (uap->oact != NULL) ? &oact : NULL;
835 	if (actp) {
836 		error = copyin(uap->act, actp, sizeof(act));
837 		if (error)
838 			return (error);
839 	}
840 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
841 	if (oactp && !error)
842 		error = copyout(oactp, uap->oact, sizeof(oact));
843 	return (error);
844 }
845 #endif	/* COMAPT_FREEBSD4 */
846 
847 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
848 #ifndef _SYS_SYSPROTO_H_
849 struct osigaction_args {
850 	int	signum;
851 	struct	osigaction *nsa;
852 	struct	osigaction *osa;
853 };
854 #endif
855 int
856 osigaction(td, uap)
857 	struct thread *td;
858 	register struct osigaction_args *uap;
859 {
860 	struct osigaction sa;
861 	struct sigaction nsa, osa;
862 	register struct sigaction *nsap, *osap;
863 	int error;
864 
865 	if (uap->signum <= 0 || uap->signum >= ONSIG)
866 		return (EINVAL);
867 
868 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
869 	osap = (uap->osa != NULL) ? &osa : NULL;
870 
871 	if (nsap) {
872 		error = copyin(uap->nsa, &sa, sizeof(sa));
873 		if (error)
874 			return (error);
875 		nsap->sa_handler = sa.sa_handler;
876 		nsap->sa_flags = sa.sa_flags;
877 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
878 	}
879 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
880 	if (osap && !error) {
881 		sa.sa_handler = osap->sa_handler;
882 		sa.sa_flags = osap->sa_flags;
883 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
884 		error = copyout(&sa, uap->osa, sizeof(sa));
885 	}
886 	return (error);
887 }
888 
889 #if !defined(__i386__)
890 /* Avoid replicating the same stub everywhere */
891 int
892 osigreturn(td, uap)
893 	struct thread *td;
894 	struct osigreturn_args *uap;
895 {
896 
897 	return (nosys(td, (struct nosys_args *)uap));
898 }
899 #endif
900 #endif /* COMPAT_43 */
901 
902 /*
903  * Initialize signal state for process 0;
904  * set to ignore signals that are ignored by default.
905  */
906 void
907 siginit(p)
908 	struct proc *p;
909 {
910 	register int i;
911 	struct sigacts *ps;
912 
913 	PROC_LOCK(p);
914 	ps = p->p_sigacts;
915 	mtx_lock(&ps->ps_mtx);
916 	for (i = 1; i <= NSIG; i++)
917 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
918 			SIGADDSET(ps->ps_sigignore, i);
919 	mtx_unlock(&ps->ps_mtx);
920 	PROC_UNLOCK(p);
921 }
922 
923 /*
924  * Reset signals for an exec of the specified process.
925  */
926 void
927 execsigs(struct proc *p)
928 {
929 	struct sigacts *ps;
930 	int sig;
931 	struct thread *td;
932 
933 	/*
934 	 * Reset caught signals.  Held signals remain held
935 	 * through td_sigmask (unless they were caught,
936 	 * and are now ignored by default).
937 	 */
938 	PROC_LOCK_ASSERT(p, MA_OWNED);
939 	td = FIRST_THREAD_IN_PROC(p);
940 	ps = p->p_sigacts;
941 	mtx_lock(&ps->ps_mtx);
942 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
943 		sig = sig_ffs(&ps->ps_sigcatch);
944 		SIGDELSET(ps->ps_sigcatch, sig);
945 		if (sigprop(sig) & SA_IGNORE) {
946 			if (sig != SIGCONT)
947 				SIGADDSET(ps->ps_sigignore, sig);
948 			sigqueue_delete_proc(p, sig);
949 		}
950 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
951 	}
952 	/*
953 	 * Reset stack state to the user stack.
954 	 * Clear set of signals caught on the signal stack.
955 	 */
956 	td->td_sigstk.ss_flags = SS_DISABLE;
957 	td->td_sigstk.ss_size = 0;
958 	td->td_sigstk.ss_sp = 0;
959 	td->td_pflags &= ~TDP_ALTSTACK;
960 	/*
961 	 * Reset no zombies if child dies flag as Solaris does.
962 	 */
963 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
964 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
965 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
966 	mtx_unlock(&ps->ps_mtx);
967 }
968 
969 /*
970  * kern_sigprocmask()
971  *
972  *	Manipulate signal mask.
973  */
974 int
975 kern_sigprocmask(td, how, set, oset, old)
976 	struct thread *td;
977 	int how;
978 	sigset_t *set, *oset;
979 	int old;
980 {
981 	int error;
982 
983 	PROC_LOCK(td->td_proc);
984 	if (oset != NULL)
985 		*oset = td->td_sigmask;
986 
987 	error = 0;
988 	if (set != NULL) {
989 		switch (how) {
990 		case SIG_BLOCK:
991 			SIG_CANTMASK(*set);
992 			SIGSETOR(td->td_sigmask, *set);
993 			break;
994 		case SIG_UNBLOCK:
995 			SIGSETNAND(td->td_sigmask, *set);
996 			signotify(td);
997 			break;
998 		case SIG_SETMASK:
999 			SIG_CANTMASK(*set);
1000 			if (old)
1001 				SIGSETLO(td->td_sigmask, *set);
1002 			else
1003 				td->td_sigmask = *set;
1004 			signotify(td);
1005 			break;
1006 		default:
1007 			error = EINVAL;
1008 			break;
1009 		}
1010 	}
1011 	PROC_UNLOCK(td->td_proc);
1012 	return (error);
1013 }
1014 
1015 #ifndef _SYS_SYSPROTO_H_
1016 struct sigprocmask_args {
1017 	int	how;
1018 	const sigset_t *set;
1019 	sigset_t *oset;
1020 };
1021 #endif
1022 int
1023 sigprocmask(td, uap)
1024 	register struct thread *td;
1025 	struct sigprocmask_args *uap;
1026 {
1027 	sigset_t set, oset;
1028 	sigset_t *setp, *osetp;
1029 	int error;
1030 
1031 	setp = (uap->set != NULL) ? &set : NULL;
1032 	osetp = (uap->oset != NULL) ? &oset : NULL;
1033 	if (setp) {
1034 		error = copyin(uap->set, setp, sizeof(set));
1035 		if (error)
1036 			return (error);
1037 	}
1038 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1039 	if (osetp && !error) {
1040 		error = copyout(osetp, uap->oset, sizeof(oset));
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1046 #ifndef _SYS_SYSPROTO_H_
1047 struct osigprocmask_args {
1048 	int	how;
1049 	osigset_t mask;
1050 };
1051 #endif
1052 int
1053 osigprocmask(td, uap)
1054 	register struct thread *td;
1055 	struct osigprocmask_args *uap;
1056 {
1057 	sigset_t set, oset;
1058 	int error;
1059 
1060 	OSIG2SIG(uap->mask, set);
1061 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1062 	SIG2OSIG(oset, td->td_retval[0]);
1063 	return (error);
1064 }
1065 #endif /* COMPAT_43 */
1066 
1067 int
1068 sigwait(struct thread *td, struct sigwait_args *uap)
1069 {
1070 	ksiginfo_t ksi;
1071 	sigset_t set;
1072 	int error;
1073 
1074 	error = copyin(uap->set, &set, sizeof(set));
1075 	if (error) {
1076 		td->td_retval[0] = error;
1077 		return (0);
1078 	}
1079 
1080 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1081 	if (error) {
1082 		if (error == ERESTART)
1083 			return (error);
1084 		td->td_retval[0] = error;
1085 		return (0);
1086 	}
1087 
1088 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1089 	td->td_retval[0] = error;
1090 	return (0);
1091 }
1092 
1093 int
1094 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1095 {
1096 	struct timespec ts;
1097 	struct timespec *timeout;
1098 	sigset_t set;
1099 	ksiginfo_t ksi;
1100 	int error;
1101 
1102 	if (uap->timeout) {
1103 		error = copyin(uap->timeout, &ts, sizeof(ts));
1104 		if (error)
1105 			return (error);
1106 
1107 		timeout = &ts;
1108 	} else
1109 		timeout = NULL;
1110 
1111 	error = copyin(uap->set, &set, sizeof(set));
1112 	if (error)
1113 		return (error);
1114 
1115 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1116 	if (error)
1117 		return (error);
1118 
1119 	if (uap->info)
1120 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1121 
1122 	if (error == 0)
1123 		td->td_retval[0] = ksi.ksi_signo;
1124 	return (error);
1125 }
1126 
1127 int
1128 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1129 {
1130 	ksiginfo_t ksi;
1131 	sigset_t set;
1132 	int error;
1133 
1134 	error = copyin(uap->set, &set, sizeof(set));
1135 	if (error)
1136 		return (error);
1137 
1138 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1139 	if (error)
1140 		return (error);
1141 
1142 	if (uap->info)
1143 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1144 
1145 	if (error == 0)
1146 		td->td_retval[0] = ksi.ksi_signo;
1147 	return (error);
1148 }
1149 
1150 int
1151 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1152 	struct timespec *timeout)
1153 {
1154 	struct sigacts *ps;
1155 	sigset_t savedmask;
1156 	struct proc *p;
1157 	int error, sig, hz, i, timevalid = 0;
1158 	struct timespec rts, ets, ts;
1159 	struct timeval tv;
1160 
1161 	p = td->td_proc;
1162 	error = 0;
1163 	sig = 0;
1164 	ets.tv_sec = 0;
1165 	ets.tv_nsec = 0;
1166 	SIG_CANTMASK(waitset);
1167 
1168 	PROC_LOCK(p);
1169 	ps = p->p_sigacts;
1170 	savedmask = td->td_sigmask;
1171 	if (timeout) {
1172 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1173 			timevalid = 1;
1174 			getnanouptime(&rts);
1175 		 	ets = rts;
1176 			timespecadd(&ets, timeout);
1177 		}
1178 	}
1179 
1180 restart:
1181 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1182 		if (!SIGISMEMBER(waitset, i))
1183 			continue;
1184 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1185 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1186 				sigqueue_move(&p->p_sigqueue,
1187 					&td->td_sigqueue, i);
1188 			} else
1189 				continue;
1190 		}
1191 
1192 		SIGFILLSET(td->td_sigmask);
1193 		SIG_CANTMASK(td->td_sigmask);
1194 		SIGDELSET(td->td_sigmask, i);
1195 		mtx_lock(&ps->ps_mtx);
1196 		sig = cursig(td, SIG_STOP_ALLOWED);
1197 		mtx_unlock(&ps->ps_mtx);
1198 		if (sig)
1199 			goto out;
1200 		else {
1201 			/*
1202 			 * Because cursig() may have stopped current thread,
1203 			 * after it is resumed, things may have already been
1204 			 * changed, it should rescan any pending signals.
1205 			 */
1206 			goto restart;
1207 		}
1208 	}
1209 
1210 	if (error)
1211 		goto out;
1212 
1213 	/*
1214 	 * POSIX says this must be checked after looking for pending
1215 	 * signals.
1216 	 */
1217 	if (timeout) {
1218 		if (!timevalid) {
1219 			error = EINVAL;
1220 			goto out;
1221 		}
1222 		getnanouptime(&rts);
1223 		if (timespeccmp(&rts, &ets, >=)) {
1224 			error = EAGAIN;
1225 			goto out;
1226 		}
1227 		ts = ets;
1228 		timespecsub(&ts, &rts);
1229 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1230 		hz = tvtohz(&tv);
1231 	} else
1232 		hz = 0;
1233 
1234 	td->td_sigmask = savedmask;
1235 	SIGSETNAND(td->td_sigmask, waitset);
1236 	signotify(td);
1237 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1238 	if (timeout) {
1239 		if (error == ERESTART) {
1240 			/* timeout can not be restarted. */
1241 			error = EINTR;
1242 		} else if (error == EAGAIN) {
1243 			/* will calculate timeout by ourself. */
1244 			error = 0;
1245 		}
1246 	}
1247 	goto restart;
1248 
1249 out:
1250 	td->td_sigmask = savedmask;
1251 	signotify(td);
1252 	if (sig) {
1253 		ksiginfo_init(ksi);
1254 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1255 		ksi->ksi_signo = sig;
1256 
1257 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1258 
1259 		if (ksi->ksi_code == SI_TIMER)
1260 			itimer_accept(p, ksi->ksi_timerid, ksi);
1261 		error = 0;
1262 
1263 #ifdef KTRACE
1264 		if (KTRPOINT(td, KTR_PSIG)) {
1265 			sig_t action;
1266 
1267 			mtx_lock(&ps->ps_mtx);
1268 			action = ps->ps_sigact[_SIG_IDX(sig)];
1269 			mtx_unlock(&ps->ps_mtx);
1270 			ktrpsig(sig, action, &td->td_sigmask, 0);
1271 		}
1272 #endif
1273 		if (sig == SIGKILL)
1274 			sigexit(td, sig);
1275 	}
1276 	PROC_UNLOCK(p);
1277 	return (error);
1278 }
1279 
1280 #ifndef _SYS_SYSPROTO_H_
1281 struct sigpending_args {
1282 	sigset_t	*set;
1283 };
1284 #endif
1285 int
1286 sigpending(td, uap)
1287 	struct thread *td;
1288 	struct sigpending_args *uap;
1289 {
1290 	struct proc *p = td->td_proc;
1291 	sigset_t pending;
1292 
1293 	PROC_LOCK(p);
1294 	pending = p->p_sigqueue.sq_signals;
1295 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1296 	PROC_UNLOCK(p);
1297 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1298 }
1299 
1300 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1301 #ifndef _SYS_SYSPROTO_H_
1302 struct osigpending_args {
1303 	int	dummy;
1304 };
1305 #endif
1306 int
1307 osigpending(td, uap)
1308 	struct thread *td;
1309 	struct osigpending_args *uap;
1310 {
1311 	struct proc *p = td->td_proc;
1312 	sigset_t pending;
1313 
1314 	PROC_LOCK(p);
1315 	pending = p->p_sigqueue.sq_signals;
1316 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1317 	PROC_UNLOCK(p);
1318 	SIG2OSIG(pending, td->td_retval[0]);
1319 	return (0);
1320 }
1321 #endif /* COMPAT_43 */
1322 
1323 #if defined(COMPAT_43)
1324 /*
1325  * Generalized interface signal handler, 4.3-compatible.
1326  */
1327 #ifndef _SYS_SYSPROTO_H_
1328 struct osigvec_args {
1329 	int	signum;
1330 	struct	sigvec *nsv;
1331 	struct	sigvec *osv;
1332 };
1333 #endif
1334 /* ARGSUSED */
1335 int
1336 osigvec(td, uap)
1337 	struct thread *td;
1338 	register struct osigvec_args *uap;
1339 {
1340 	struct sigvec vec;
1341 	struct sigaction nsa, osa;
1342 	register struct sigaction *nsap, *osap;
1343 	int error;
1344 
1345 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1346 		return (EINVAL);
1347 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1348 	osap = (uap->osv != NULL) ? &osa : NULL;
1349 	if (nsap) {
1350 		error = copyin(uap->nsv, &vec, sizeof(vec));
1351 		if (error)
1352 			return (error);
1353 		nsap->sa_handler = vec.sv_handler;
1354 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1355 		nsap->sa_flags = vec.sv_flags;
1356 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1357 	}
1358 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1359 	if (osap && !error) {
1360 		vec.sv_handler = osap->sa_handler;
1361 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1362 		vec.sv_flags = osap->sa_flags;
1363 		vec.sv_flags &= ~SA_NOCLDWAIT;
1364 		vec.sv_flags ^= SA_RESTART;
1365 		error = copyout(&vec, uap->osv, sizeof(vec));
1366 	}
1367 	return (error);
1368 }
1369 
1370 #ifndef _SYS_SYSPROTO_H_
1371 struct osigblock_args {
1372 	int	mask;
1373 };
1374 #endif
1375 int
1376 osigblock(td, uap)
1377 	register struct thread *td;
1378 	struct osigblock_args *uap;
1379 {
1380 	struct proc *p = td->td_proc;
1381 	sigset_t set;
1382 
1383 	OSIG2SIG(uap->mask, set);
1384 	SIG_CANTMASK(set);
1385 	PROC_LOCK(p);
1386 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1387 	SIGSETOR(td->td_sigmask, set);
1388 	PROC_UNLOCK(p);
1389 	return (0);
1390 }
1391 
1392 #ifndef _SYS_SYSPROTO_H_
1393 struct osigsetmask_args {
1394 	int	mask;
1395 };
1396 #endif
1397 int
1398 osigsetmask(td, uap)
1399 	struct thread *td;
1400 	struct osigsetmask_args *uap;
1401 {
1402 	struct proc *p = td->td_proc;
1403 	sigset_t set;
1404 
1405 	OSIG2SIG(uap->mask, set);
1406 	SIG_CANTMASK(set);
1407 	PROC_LOCK(p);
1408 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1409 	SIGSETLO(td->td_sigmask, set);
1410 	signotify(td);
1411 	PROC_UNLOCK(p);
1412 	return (0);
1413 }
1414 #endif /* COMPAT_43 */
1415 
1416 /*
1417  * Suspend calling thread until signal, providing mask to be set in the
1418  * meantime.
1419  */
1420 #ifndef _SYS_SYSPROTO_H_
1421 struct sigsuspend_args {
1422 	const sigset_t *sigmask;
1423 };
1424 #endif
1425 /* ARGSUSED */
1426 int
1427 sigsuspend(td, uap)
1428 	struct thread *td;
1429 	struct sigsuspend_args *uap;
1430 {
1431 	sigset_t mask;
1432 	int error;
1433 
1434 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1435 	if (error)
1436 		return (error);
1437 	return (kern_sigsuspend(td, mask));
1438 }
1439 
1440 int
1441 kern_sigsuspend(struct thread *td, sigset_t mask)
1442 {
1443 	struct proc *p = td->td_proc;
1444 
1445 	/*
1446 	 * When returning from sigsuspend, we want
1447 	 * the old mask to be restored after the
1448 	 * signal handler has finished.  Thus, we
1449 	 * save it here and mark the sigacts structure
1450 	 * to indicate this.
1451 	 */
1452 	PROC_LOCK(p);
1453 	td->td_oldsigmask = td->td_sigmask;
1454 	td->td_pflags |= TDP_OLDMASK;
1455 	SIG_CANTMASK(mask);
1456 	td->td_sigmask = mask;
1457 	signotify(td);
1458 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1459 		/* void */;
1460 	PROC_UNLOCK(p);
1461 	/* always return EINTR rather than ERESTART... */
1462 	return (EINTR);
1463 }
1464 
1465 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1466 /*
1467  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1468  * convention: libc stub passes mask, not pointer, to save a copyin.
1469  */
1470 #ifndef _SYS_SYSPROTO_H_
1471 struct osigsuspend_args {
1472 	osigset_t mask;
1473 };
1474 #endif
1475 /* ARGSUSED */
1476 int
1477 osigsuspend(td, uap)
1478 	struct thread *td;
1479 	struct osigsuspend_args *uap;
1480 {
1481 	struct proc *p = td->td_proc;
1482 	sigset_t mask;
1483 
1484 	PROC_LOCK(p);
1485 	td->td_oldsigmask = td->td_sigmask;
1486 	td->td_pflags |= TDP_OLDMASK;
1487 	OSIG2SIG(uap->mask, mask);
1488 	SIG_CANTMASK(mask);
1489 	SIGSETLO(td->td_sigmask, mask);
1490 	signotify(td);
1491 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1492 		/* void */;
1493 	PROC_UNLOCK(p);
1494 	/* always return EINTR rather than ERESTART... */
1495 	return (EINTR);
1496 }
1497 #endif /* COMPAT_43 */
1498 
1499 #if defined(COMPAT_43)
1500 #ifndef _SYS_SYSPROTO_H_
1501 struct osigstack_args {
1502 	struct	sigstack *nss;
1503 	struct	sigstack *oss;
1504 };
1505 #endif
1506 /* ARGSUSED */
1507 int
1508 osigstack(td, uap)
1509 	struct thread *td;
1510 	register struct osigstack_args *uap;
1511 {
1512 	struct sigstack nss, oss;
1513 	int error = 0;
1514 
1515 	if (uap->nss != NULL) {
1516 		error = copyin(uap->nss, &nss, sizeof(nss));
1517 		if (error)
1518 			return (error);
1519 	}
1520 	oss.ss_sp = td->td_sigstk.ss_sp;
1521 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1522 	if (uap->nss != NULL) {
1523 		td->td_sigstk.ss_sp = nss.ss_sp;
1524 		td->td_sigstk.ss_size = 0;
1525 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1526 		td->td_pflags |= TDP_ALTSTACK;
1527 	}
1528 	if (uap->oss != NULL)
1529 		error = copyout(&oss, uap->oss, sizeof(oss));
1530 
1531 	return (error);
1532 }
1533 #endif /* COMPAT_43 */
1534 
1535 #ifndef _SYS_SYSPROTO_H_
1536 struct sigaltstack_args {
1537 	stack_t	*ss;
1538 	stack_t	*oss;
1539 };
1540 #endif
1541 /* ARGSUSED */
1542 int
1543 sigaltstack(td, uap)
1544 	struct thread *td;
1545 	register struct sigaltstack_args *uap;
1546 {
1547 	stack_t ss, oss;
1548 	int error;
1549 
1550 	if (uap->ss != NULL) {
1551 		error = copyin(uap->ss, &ss, sizeof(ss));
1552 		if (error)
1553 			return (error);
1554 	}
1555 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1556 	    (uap->oss != NULL) ? &oss : NULL);
1557 	if (error)
1558 		return (error);
1559 	if (uap->oss != NULL)
1560 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1561 	return (error);
1562 }
1563 
1564 int
1565 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1566 {
1567 	struct proc *p = td->td_proc;
1568 	int oonstack;
1569 
1570 	oonstack = sigonstack(cpu_getstack(td));
1571 
1572 	if (oss != NULL) {
1573 		*oss = td->td_sigstk;
1574 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1575 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1576 	}
1577 
1578 	if (ss != NULL) {
1579 		if (oonstack)
1580 			return (EPERM);
1581 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1582 			return (EINVAL);
1583 		if (!(ss->ss_flags & SS_DISABLE)) {
1584 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1585 				return (ENOMEM);
1586 
1587 			td->td_sigstk = *ss;
1588 			td->td_pflags |= TDP_ALTSTACK;
1589 		} else {
1590 			td->td_pflags &= ~TDP_ALTSTACK;
1591 		}
1592 	}
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Common code for kill process group/broadcast kill.
1598  * cp is calling process.
1599  */
1600 static int
1601 killpg1(td, sig, pgid, all)
1602 	register struct thread *td;
1603 	int sig, pgid, all;
1604 {
1605 	register struct proc *p;
1606 	struct pgrp *pgrp;
1607 	int nfound = 0;
1608 
1609 	if (all) {
1610 		/*
1611 		 * broadcast
1612 		 */
1613 		sx_slock(&allproc_lock);
1614 		FOREACH_PROC_IN_SYSTEM(p) {
1615 			PROC_LOCK(p);
1616 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1617 			    p == td->td_proc || p->p_state == PRS_NEW) {
1618 				PROC_UNLOCK(p);
1619 				continue;
1620 			}
1621 			if (p_cansignal(td, p, sig) == 0) {
1622 				nfound++;
1623 				if (sig)
1624 					psignal(p, sig);
1625 			}
1626 			PROC_UNLOCK(p);
1627 		}
1628 		sx_sunlock(&allproc_lock);
1629 	} else {
1630 		sx_slock(&proctree_lock);
1631 		if (pgid == 0) {
1632 			/*
1633 			 * zero pgid means send to my process group.
1634 			 */
1635 			pgrp = td->td_proc->p_pgrp;
1636 			PGRP_LOCK(pgrp);
1637 		} else {
1638 			pgrp = pgfind(pgid);
1639 			if (pgrp == NULL) {
1640 				sx_sunlock(&proctree_lock);
1641 				return (ESRCH);
1642 			}
1643 		}
1644 		sx_sunlock(&proctree_lock);
1645 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1646 			PROC_LOCK(p);
1647 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1648 				p->p_state == PRS_NEW ) {
1649 				PROC_UNLOCK(p);
1650 				continue;
1651 			}
1652 			if (p_cansignal(td, p, sig) == 0) {
1653 				nfound++;
1654 				if (sig)
1655 					psignal(p, sig);
1656 			}
1657 			PROC_UNLOCK(p);
1658 		}
1659 		PGRP_UNLOCK(pgrp);
1660 	}
1661 	return (nfound ? 0 : ESRCH);
1662 }
1663 
1664 #ifndef _SYS_SYSPROTO_H_
1665 struct kill_args {
1666 	int	pid;
1667 	int	signum;
1668 };
1669 #endif
1670 /* ARGSUSED */
1671 int
1672 kill(td, uap)
1673 	register struct thread *td;
1674 	register struct kill_args *uap;
1675 {
1676 	register struct proc *p;
1677 	int error;
1678 
1679 	AUDIT_ARG_SIGNUM(uap->signum);
1680 	AUDIT_ARG_PID(uap->pid);
1681 	if ((u_int)uap->signum > _SIG_MAXSIG)
1682 		return (EINVAL);
1683 
1684 	if (uap->pid > 0) {
1685 		/* kill single process */
1686 		if ((p = pfind(uap->pid)) == NULL) {
1687 			if ((p = zpfind(uap->pid)) == NULL)
1688 				return (ESRCH);
1689 		}
1690 		AUDIT_ARG_PROCESS(p);
1691 		error = p_cansignal(td, p, uap->signum);
1692 		if (error == 0 && uap->signum)
1693 			psignal(p, uap->signum);
1694 		PROC_UNLOCK(p);
1695 		return (error);
1696 	}
1697 	switch (uap->pid) {
1698 	case -1:		/* broadcast signal */
1699 		return (killpg1(td, uap->signum, 0, 1));
1700 	case 0:			/* signal own process group */
1701 		return (killpg1(td, uap->signum, 0, 0));
1702 	default:		/* negative explicit process group */
1703 		return (killpg1(td, uap->signum, -uap->pid, 0));
1704 	}
1705 	/* NOTREACHED */
1706 }
1707 
1708 #if defined(COMPAT_43)
1709 #ifndef _SYS_SYSPROTO_H_
1710 struct okillpg_args {
1711 	int	pgid;
1712 	int	signum;
1713 };
1714 #endif
1715 /* ARGSUSED */
1716 int
1717 okillpg(td, uap)
1718 	struct thread *td;
1719 	register struct okillpg_args *uap;
1720 {
1721 
1722 	AUDIT_ARG_SIGNUM(uap->signum);
1723 	AUDIT_ARG_PID(uap->pgid);
1724 	if ((u_int)uap->signum > _SIG_MAXSIG)
1725 		return (EINVAL);
1726 
1727 	return (killpg1(td, uap->signum, uap->pgid, 0));
1728 }
1729 #endif /* COMPAT_43 */
1730 
1731 #ifndef _SYS_SYSPROTO_H_
1732 struct sigqueue_args {
1733 	pid_t pid;
1734 	int signum;
1735 	/* union sigval */ void *value;
1736 };
1737 #endif
1738 int
1739 sigqueue(struct thread *td, struct sigqueue_args *uap)
1740 {
1741 	ksiginfo_t ksi;
1742 	struct proc *p;
1743 	int error;
1744 
1745 	if ((u_int)uap->signum > _SIG_MAXSIG)
1746 		return (EINVAL);
1747 
1748 	/*
1749 	 * Specification says sigqueue can only send signal to
1750 	 * single process.
1751 	 */
1752 	if (uap->pid <= 0)
1753 		return (EINVAL);
1754 
1755 	if ((p = pfind(uap->pid)) == NULL) {
1756 		if ((p = zpfind(uap->pid)) == NULL)
1757 			return (ESRCH);
1758 	}
1759 	error = p_cansignal(td, p, uap->signum);
1760 	if (error == 0 && uap->signum != 0) {
1761 		ksiginfo_init(&ksi);
1762 		ksi.ksi_signo = uap->signum;
1763 		ksi.ksi_code = SI_QUEUE;
1764 		ksi.ksi_pid = td->td_proc->p_pid;
1765 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1766 		ksi.ksi_value.sival_ptr = uap->value;
1767 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1768 	}
1769 	PROC_UNLOCK(p);
1770 	return (error);
1771 }
1772 
1773 /*
1774  * Send a signal to a process group.
1775  */
1776 void
1777 gsignal(pgid, sig)
1778 	int pgid, sig;
1779 {
1780 	struct pgrp *pgrp;
1781 
1782 	if (pgid != 0) {
1783 		sx_slock(&proctree_lock);
1784 		pgrp = pgfind(pgid);
1785 		sx_sunlock(&proctree_lock);
1786 		if (pgrp != NULL) {
1787 			pgsignal(pgrp, sig, 0);
1788 			PGRP_UNLOCK(pgrp);
1789 		}
1790 	}
1791 }
1792 
1793 /*
1794  * Send a signal to a process group.  If checktty is 1,
1795  * limit to members which have a controlling terminal.
1796  */
1797 void
1798 pgsignal(pgrp, sig, checkctty)
1799 	struct pgrp *pgrp;
1800 	int sig, checkctty;
1801 {
1802 	register struct proc *p;
1803 
1804 	if (pgrp) {
1805 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1806 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1807 			PROC_LOCK(p);
1808 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1809 				psignal(p, sig);
1810 			PROC_UNLOCK(p);
1811 		}
1812 	}
1813 }
1814 
1815 /*
1816  * Send a signal caused by a trap to the current thread.  If it will be
1817  * caught immediately, deliver it with correct code.  Otherwise, post it
1818  * normally.
1819  */
1820 void
1821 trapsignal(struct thread *td, ksiginfo_t *ksi)
1822 {
1823 	struct sigacts *ps;
1824 	struct proc *p;
1825 	int sig;
1826 	int code;
1827 
1828 	p = td->td_proc;
1829 	sig = ksi->ksi_signo;
1830 	code = ksi->ksi_code;
1831 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1832 
1833 	PROC_LOCK(p);
1834 	ps = p->p_sigacts;
1835 	mtx_lock(&ps->ps_mtx);
1836 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1837 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1838 		td->td_ru.ru_nsignals++;
1839 #ifdef KTRACE
1840 		if (KTRPOINT(curthread, KTR_PSIG))
1841 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1842 			    &td->td_sigmask, code);
1843 #endif
1844 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1845 				ksi, &td->td_sigmask);
1846 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1847 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1848 			SIGADDSET(td->td_sigmask, sig);
1849 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1850 			/*
1851 			 * See kern_sigaction() for origin of this code.
1852 			 */
1853 			SIGDELSET(ps->ps_sigcatch, sig);
1854 			if (sig != SIGCONT &&
1855 			    sigprop(sig) & SA_IGNORE)
1856 				SIGADDSET(ps->ps_sigignore, sig);
1857 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1858 		}
1859 		mtx_unlock(&ps->ps_mtx);
1860 	} else {
1861 		/*
1862 		 * Avoid a possible infinite loop if the thread
1863 		 * masking the signal or process is ignoring the
1864 		 * signal.
1865 		 */
1866 		if (kern_forcesigexit &&
1867 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1868 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1869 			SIGDELSET(td->td_sigmask, sig);
1870 			SIGDELSET(ps->ps_sigcatch, sig);
1871 			SIGDELSET(ps->ps_sigignore, sig);
1872 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1873 		}
1874 		mtx_unlock(&ps->ps_mtx);
1875 		p->p_code = code;	/* XXX for core dump/debugger */
1876 		p->p_sig = sig;		/* XXX to verify code */
1877 		tdsignal(p, td, sig, ksi);
1878 	}
1879 	PROC_UNLOCK(p);
1880 }
1881 
1882 static struct thread *
1883 sigtd(struct proc *p, int sig, int prop)
1884 {
1885 	struct thread *td, *signal_td;
1886 
1887 	PROC_LOCK_ASSERT(p, MA_OWNED);
1888 
1889 	/*
1890 	 * Check if current thread can handle the signal without
1891 	 * switching conetxt to another thread.
1892 	 */
1893 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1894 		return (curthread);
1895 	signal_td = NULL;
1896 	FOREACH_THREAD_IN_PROC(p, td) {
1897 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1898 			signal_td = td;
1899 			break;
1900 		}
1901 	}
1902 	if (signal_td == NULL)
1903 		signal_td = FIRST_THREAD_IN_PROC(p);
1904 	return (signal_td);
1905 }
1906 
1907 /*
1908  * Send the signal to the process.  If the signal has an action, the action
1909  * is usually performed by the target process rather than the caller; we add
1910  * the signal to the set of pending signals for the process.
1911  *
1912  * Exceptions:
1913  *   o When a stop signal is sent to a sleeping process that takes the
1914  *     default action, the process is stopped without awakening it.
1915  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1916  *     regardless of the signal action (eg, blocked or ignored).
1917  *
1918  * Other ignored signals are discarded immediately.
1919  *
1920  * NB: This function may be entered from the debugger via the "kill" DDB
1921  * command.  There is little that can be done to mitigate the possibly messy
1922  * side effects of this unwise possibility.
1923  */
1924 void
1925 psignal(struct proc *p, int sig)
1926 {
1927 	(void) tdsignal(p, NULL, sig, NULL);
1928 }
1929 
1930 int
1931 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
1932 {
1933 	struct thread *td = NULL;
1934 
1935 	PROC_LOCK_ASSERT(p, MA_OWNED);
1936 
1937 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
1938 
1939 	/*
1940 	 * ksi_code and other fields should be set before
1941 	 * calling this function.
1942 	 */
1943 	ksi->ksi_signo = sigev->sigev_signo;
1944 	ksi->ksi_value = sigev->sigev_value;
1945 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1946 		td = thread_find(p, sigev->sigev_notify_thread_id);
1947 		if (td == NULL)
1948 			return (ESRCH);
1949 	}
1950 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
1951 }
1952 
1953 int
1954 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
1955 {
1956 	sig_t action;
1957 	sigqueue_t *sigqueue;
1958 	int prop;
1959 	struct sigacts *ps;
1960 	int intrval;
1961 	int ret = 0;
1962 	int wakeup_swapper;
1963 
1964 	PROC_LOCK_ASSERT(p, MA_OWNED);
1965 
1966 	if (!_SIG_VALID(sig))
1967 		panic("tdsignal(): invalid signal %d", sig);
1968 
1969 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
1970 
1971 	/*
1972 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1973 	 */
1974 	if (p->p_state == PRS_ZOMBIE) {
1975 		if (ksi && (ksi->ksi_flags & KSI_INS))
1976 			ksiginfo_tryfree(ksi);
1977 		return (ret);
1978 	}
1979 
1980 	ps = p->p_sigacts;
1981 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
1982 	prop = sigprop(sig);
1983 
1984 	/*
1985 	 * If the signal is blocked and not destined for this thread, then
1986 	 * assign it to the process so that we can find it later in the first
1987 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1988 	 */
1989 	if (td == NULL) {
1990 		td = sigtd(p, sig, prop);
1991 		if (SIGISMEMBER(td->td_sigmask, sig))
1992 			sigqueue = &p->p_sigqueue;
1993 		else
1994 			sigqueue = &td->td_sigqueue;
1995 	} else {
1996 		KASSERT(td->td_proc == p, ("invalid thread"));
1997 		sigqueue = &td->td_sigqueue;
1998 	}
1999 
2000 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2001 
2002 	/*
2003 	 * If the signal is being ignored,
2004 	 * then we forget about it immediately.
2005 	 * (Note: we don't set SIGCONT in ps_sigignore,
2006 	 * and if it is set to SIG_IGN,
2007 	 * action will be SIG_DFL here.)
2008 	 */
2009 	mtx_lock(&ps->ps_mtx);
2010 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2011 		SDT_PROBE(proc, kernel, , signal_discard, ps, td, sig, 0, 0 );
2012 
2013 		mtx_unlock(&ps->ps_mtx);
2014 		if (ksi && (ksi->ksi_flags & KSI_INS))
2015 			ksiginfo_tryfree(ksi);
2016 		return (ret);
2017 	}
2018 	if (SIGISMEMBER(td->td_sigmask, sig))
2019 		action = SIG_HOLD;
2020 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2021 		action = SIG_CATCH;
2022 	else
2023 		action = SIG_DFL;
2024 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2025 		intrval = EINTR;
2026 	else
2027 		intrval = ERESTART;
2028 	mtx_unlock(&ps->ps_mtx);
2029 
2030 	if (prop & SA_CONT)
2031 		sigqueue_delete_stopmask_proc(p);
2032 	else if (prop & SA_STOP) {
2033 		/*
2034 		 * If sending a tty stop signal to a member of an orphaned
2035 		 * process group, discard the signal here if the action
2036 		 * is default; don't stop the process below if sleeping,
2037 		 * and don't clear any pending SIGCONT.
2038 		 */
2039 		if ((prop & SA_TTYSTOP) &&
2040 		    (p->p_pgrp->pg_jobc == 0) &&
2041 		    (action == SIG_DFL)) {
2042 			if (ksi && (ksi->ksi_flags & KSI_INS))
2043 				ksiginfo_tryfree(ksi);
2044 			return (ret);
2045 		}
2046 		sigqueue_delete_proc(p, SIGCONT);
2047 		if (p->p_flag & P_CONTINUED) {
2048 			p->p_flag &= ~P_CONTINUED;
2049 			PROC_LOCK(p->p_pptr);
2050 			sigqueue_take(p->p_ksi);
2051 			PROC_UNLOCK(p->p_pptr);
2052 		}
2053 	}
2054 
2055 	ret = sigqueue_add(sigqueue, sig, ksi);
2056 	if (ret != 0)
2057 		return (ret);
2058 	signotify(td);
2059 	/*
2060 	 * Defer further processing for signals which are held,
2061 	 * except that stopped processes must be continued by SIGCONT.
2062 	 */
2063 	if (action == SIG_HOLD &&
2064 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2065 		return (ret);
2066 	/*
2067 	 * SIGKILL: Remove procfs STOPEVENTs.
2068 	 */
2069 	if (sig == SIGKILL) {
2070 		/* from procfs_ioctl.c: PIOCBIC */
2071 		p->p_stops = 0;
2072 		/* from procfs_ioctl.c: PIOCCONT */
2073 		p->p_step = 0;
2074 		wakeup(&p->p_step);
2075 	}
2076 	/*
2077 	 * Some signals have a process-wide effect and a per-thread
2078 	 * component.  Most processing occurs when the process next
2079 	 * tries to cross the user boundary, however there are some
2080 	 * times when processing needs to be done immediatly, such as
2081 	 * waking up threads so that they can cross the user boundary.
2082 	 * We try do the per-process part here.
2083 	 */
2084 	if (P_SHOULDSTOP(p)) {
2085 		/*
2086 		 * The process is in stopped mode. All the threads should be
2087 		 * either winding down or already on the suspended queue.
2088 		 */
2089 		if (p->p_flag & P_TRACED) {
2090 			/*
2091 			 * The traced process is already stopped,
2092 			 * so no further action is necessary.
2093 			 * No signal can restart us.
2094 			 */
2095 			goto out;
2096 		}
2097 
2098 		if (sig == SIGKILL) {
2099 			/*
2100 			 * SIGKILL sets process running.
2101 			 * It will die elsewhere.
2102 			 * All threads must be restarted.
2103 			 */
2104 			p->p_flag &= ~P_STOPPED_SIG;
2105 			goto runfast;
2106 		}
2107 
2108 		if (prop & SA_CONT) {
2109 			/*
2110 			 * If SIGCONT is default (or ignored), we continue the
2111 			 * process but don't leave the signal in sigqueue as
2112 			 * it has no further action.  If SIGCONT is held, we
2113 			 * continue the process and leave the signal in
2114 			 * sigqueue.  If the process catches SIGCONT, let it
2115 			 * handle the signal itself.  If it isn't waiting on
2116 			 * an event, it goes back to run state.
2117 			 * Otherwise, process goes back to sleep state.
2118 			 */
2119 			p->p_flag &= ~P_STOPPED_SIG;
2120 			PROC_SLOCK(p);
2121 			if (p->p_numthreads == p->p_suspcount) {
2122 				PROC_SUNLOCK(p);
2123 				p->p_flag |= P_CONTINUED;
2124 				p->p_xstat = SIGCONT;
2125 				PROC_LOCK(p->p_pptr);
2126 				childproc_continued(p);
2127 				PROC_UNLOCK(p->p_pptr);
2128 				PROC_SLOCK(p);
2129 			}
2130 			if (action == SIG_DFL) {
2131 				thread_unsuspend(p);
2132 				PROC_SUNLOCK(p);
2133 				sigqueue_delete(sigqueue, sig);
2134 				goto out;
2135 			}
2136 			if (action == SIG_CATCH) {
2137 				/*
2138 				 * The process wants to catch it so it needs
2139 				 * to run at least one thread, but which one?
2140 				 */
2141 				PROC_SUNLOCK(p);
2142 				goto runfast;
2143 			}
2144 			/*
2145 			 * The signal is not ignored or caught.
2146 			 */
2147 			thread_unsuspend(p);
2148 			PROC_SUNLOCK(p);
2149 			goto out;
2150 		}
2151 
2152 		if (prop & SA_STOP) {
2153 			/*
2154 			 * Already stopped, don't need to stop again
2155 			 * (If we did the shell could get confused).
2156 			 * Just make sure the signal STOP bit set.
2157 			 */
2158 			p->p_flag |= P_STOPPED_SIG;
2159 			sigqueue_delete(sigqueue, sig);
2160 			goto out;
2161 		}
2162 
2163 		/*
2164 		 * All other kinds of signals:
2165 		 * If a thread is sleeping interruptibly, simulate a
2166 		 * wakeup so that when it is continued it will be made
2167 		 * runnable and can look at the signal.  However, don't make
2168 		 * the PROCESS runnable, leave it stopped.
2169 		 * It may run a bit until it hits a thread_suspend_check().
2170 		 */
2171 		wakeup_swapper = 0;
2172 		PROC_SLOCK(p);
2173 		thread_lock(td);
2174 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2175 			wakeup_swapper = sleepq_abort(td, intrval);
2176 		thread_unlock(td);
2177 		PROC_SUNLOCK(p);
2178 		if (wakeup_swapper)
2179 			kick_proc0();
2180 		goto out;
2181 		/*
2182 		 * Mutexes are short lived. Threads waiting on them will
2183 		 * hit thread_suspend_check() soon.
2184 		 */
2185 	} else if (p->p_state == PRS_NORMAL) {
2186 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2187 			tdsigwakeup(td, sig, action, intrval);
2188 			goto out;
2189 		}
2190 
2191 		MPASS(action == SIG_DFL);
2192 
2193 		if (prop & SA_STOP) {
2194 			if (p->p_flag & P_PPWAIT)
2195 				goto out;
2196 			p->p_flag |= P_STOPPED_SIG;
2197 			p->p_xstat = sig;
2198 			PROC_SLOCK(p);
2199 			sig_suspend_threads(td, p, 1);
2200 			if (p->p_numthreads == p->p_suspcount) {
2201 				/*
2202 				 * only thread sending signal to another
2203 				 * process can reach here, if thread is sending
2204 				 * signal to its process, because thread does
2205 				 * not suspend itself here, p_numthreads
2206 				 * should never be equal to p_suspcount.
2207 				 */
2208 				thread_stopped(p);
2209 				PROC_SUNLOCK(p);
2210 				sigqueue_delete_proc(p, p->p_xstat);
2211 			} else
2212 				PROC_SUNLOCK(p);
2213 			goto out;
2214 		}
2215 	} else {
2216 		/* Not in "NORMAL" state. discard the signal. */
2217 		sigqueue_delete(sigqueue, sig);
2218 		goto out;
2219 	}
2220 
2221 	/*
2222 	 * The process is not stopped so we need to apply the signal to all the
2223 	 * running threads.
2224 	 */
2225 runfast:
2226 	tdsigwakeup(td, sig, action, intrval);
2227 	PROC_SLOCK(p);
2228 	thread_unsuspend(p);
2229 	PROC_SUNLOCK(p);
2230 out:
2231 	/* If we jump here, proc slock should not be owned. */
2232 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2233 	return (ret);
2234 }
2235 
2236 /*
2237  * The force of a signal has been directed against a single
2238  * thread.  We need to see what we can do about knocking it
2239  * out of any sleep it may be in etc.
2240  */
2241 static void
2242 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2243 {
2244 	struct proc *p = td->td_proc;
2245 	register int prop;
2246 	int wakeup_swapper;
2247 
2248 	wakeup_swapper = 0;
2249 	PROC_LOCK_ASSERT(p, MA_OWNED);
2250 	prop = sigprop(sig);
2251 
2252 	PROC_SLOCK(p);
2253 	thread_lock(td);
2254 	/*
2255 	 * Bring the priority of a thread up if we want it to get
2256 	 * killed in this lifetime.
2257 	 */
2258 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2259 		sched_prio(td, PUSER);
2260 	if (TD_ON_SLEEPQ(td)) {
2261 		/*
2262 		 * If thread is sleeping uninterruptibly
2263 		 * we can't interrupt the sleep... the signal will
2264 		 * be noticed when the process returns through
2265 		 * trap() or syscall().
2266 		 */
2267 		if ((td->td_flags & TDF_SINTR) == 0)
2268 			goto out;
2269 		/*
2270 		 * If SIGCONT is default (or ignored) and process is
2271 		 * asleep, we are finished; the process should not
2272 		 * be awakened.
2273 		 */
2274 		if ((prop & SA_CONT) && action == SIG_DFL) {
2275 			thread_unlock(td);
2276 			PROC_SUNLOCK(p);
2277 			sigqueue_delete(&p->p_sigqueue, sig);
2278 			/*
2279 			 * It may be on either list in this state.
2280 			 * Remove from both for now.
2281 			 */
2282 			sigqueue_delete(&td->td_sigqueue, sig);
2283 			return;
2284 		}
2285 
2286 		/*
2287 		 * Give low priority threads a better chance to run.
2288 		 */
2289 		if (td->td_priority > PUSER)
2290 			sched_prio(td, PUSER);
2291 
2292 		wakeup_swapper = sleepq_abort(td, intrval);
2293 	} else {
2294 		/*
2295 		 * Other states do nothing with the signal immediately,
2296 		 * other than kicking ourselves if we are running.
2297 		 * It will either never be noticed, or noticed very soon.
2298 		 */
2299 #ifdef SMP
2300 		if (TD_IS_RUNNING(td) && td != curthread)
2301 			forward_signal(td);
2302 #endif
2303 	}
2304 out:
2305 	PROC_SUNLOCK(p);
2306 	thread_unlock(td);
2307 	if (wakeup_swapper)
2308 		kick_proc0();
2309 }
2310 
2311 static void
2312 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2313 {
2314 	struct thread *td2;
2315 	int wakeup_swapper;
2316 
2317 	PROC_LOCK_ASSERT(p, MA_OWNED);
2318 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2319 
2320 	wakeup_swapper = 0;
2321 	FOREACH_THREAD_IN_PROC(p, td2) {
2322 		thread_lock(td2);
2323 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2324 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2325 		    (td2->td_flags & TDF_SINTR)) {
2326 			if (td2->td_flags & TDF_SBDRY) {
2327 				if (TD_IS_SUSPENDED(td2))
2328 					wakeup_swapper |=
2329 					    thread_unsuspend_one(td2);
2330 				if (TD_ON_SLEEPQ(td2))
2331 					wakeup_swapper |=
2332 					    sleepq_abort(td2, ERESTART);
2333 			} else if (!TD_IS_SUSPENDED(td2)) {
2334 				thread_suspend_one(td2);
2335 			}
2336 		} else if (!TD_IS_SUSPENDED(td2)) {
2337 			if (sending || td != td2)
2338 				td2->td_flags |= TDF_ASTPENDING;
2339 #ifdef SMP
2340 			if (TD_IS_RUNNING(td2) && td2 != td)
2341 				forward_signal(td2);
2342 #endif
2343 		}
2344 		thread_unlock(td2);
2345 	}
2346 	if (wakeup_swapper)
2347 		kick_proc0();
2348 }
2349 
2350 int
2351 ptracestop(struct thread *td, int sig)
2352 {
2353 	struct proc *p = td->td_proc;
2354 
2355 	PROC_LOCK_ASSERT(p, MA_OWNED);
2356 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2357 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2358 
2359 	td->td_dbgflags |= TDB_XSIG;
2360 	td->td_xsig = sig;
2361 	PROC_SLOCK(p);
2362 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2363 		if (p->p_flag & P_SINGLE_EXIT) {
2364 			td->td_dbgflags &= ~TDB_XSIG;
2365 			PROC_SUNLOCK(p);
2366 			return (sig);
2367 		}
2368 		/*
2369 		 * Just make wait() to work, the last stopped thread
2370 		 * will win.
2371 		 */
2372 		p->p_xstat = sig;
2373 		p->p_xthread = td;
2374 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2375 		sig_suspend_threads(td, p, 0);
2376 stopme:
2377 		thread_suspend_switch(td);
2378 		if (!(p->p_flag & P_TRACED)) {
2379 			break;
2380 		}
2381 		if (td->td_dbgflags & TDB_SUSPEND) {
2382 			if (p->p_flag & P_SINGLE_EXIT)
2383 				break;
2384 			goto stopme;
2385 		}
2386 	}
2387 	PROC_SUNLOCK(p);
2388 	return (td->td_xsig);
2389 }
2390 
2391 /*
2392  * If the current process has received a signal (should be caught or cause
2393  * termination, should interrupt current syscall), return the signal number.
2394  * Stop signals with default action are processed immediately, then cleared;
2395  * they aren't returned.  This is checked after each entry to the system for
2396  * a syscall or trap (though this can usually be done without calling issignal
2397  * by checking the pending signal masks in cursig.) The normal call
2398  * sequence is
2399  *
2400  *	while (sig = cursig(curthread))
2401  *		postsig(sig);
2402  */
2403 static int
2404 issignal(struct thread *td, int stop_allowed)
2405 {
2406 	struct proc *p;
2407 	struct sigacts *ps;
2408 	sigset_t sigpending;
2409 	int sig, prop, newsig;
2410 
2411 	p = td->td_proc;
2412 	ps = p->p_sigacts;
2413 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2414 	PROC_LOCK_ASSERT(p, MA_OWNED);
2415 	for (;;) {
2416 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2417 
2418 		sigpending = td->td_sigqueue.sq_signals;
2419 		SIGSETNAND(sigpending, td->td_sigmask);
2420 
2421 		if (p->p_flag & P_PPWAIT)
2422 			SIG_STOPSIGMASK(sigpending);
2423 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2424 			return (0);
2425 		sig = sig_ffs(&sigpending);
2426 
2427 		if (p->p_stops & S_SIG) {
2428 			mtx_unlock(&ps->ps_mtx);
2429 			stopevent(p, S_SIG, sig);
2430 			mtx_lock(&ps->ps_mtx);
2431 		}
2432 
2433 		/*
2434 		 * We should see pending but ignored signals
2435 		 * only if P_TRACED was on when they were posted.
2436 		 */
2437 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2438 			sigqueue_delete(&td->td_sigqueue, sig);
2439 			continue;
2440 		}
2441 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2442 			/*
2443 			 * If traced, always stop.
2444 			 */
2445 			mtx_unlock(&ps->ps_mtx);
2446 			newsig = ptracestop(td, sig);
2447 			mtx_lock(&ps->ps_mtx);
2448 
2449 			if (sig != newsig) {
2450 				ksiginfo_t ksi;
2451 				/*
2452 				 * clear old signal.
2453 				 * XXX shrug off debugger, it causes siginfo to
2454 				 * be thrown away.
2455 				 */
2456 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2457 
2458 				/*
2459 				 * If parent wants us to take the signal,
2460 				 * then it will leave it in p->p_xstat;
2461 				 * otherwise we just look for signals again.
2462 			 	*/
2463 				if (newsig == 0)
2464 					continue;
2465 				sig = newsig;
2466 
2467 				/*
2468 				 * Put the new signal into td_sigqueue. If the
2469 				 * signal is being masked, look for other signals.
2470 				 */
2471 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2472 				if (SIGISMEMBER(td->td_sigmask, sig))
2473 					continue;
2474 				signotify(td);
2475 			}
2476 
2477 			/*
2478 			 * If the traced bit got turned off, go back up
2479 			 * to the top to rescan signals.  This ensures
2480 			 * that p_sig* and p_sigact are consistent.
2481 			 */
2482 			if ((p->p_flag & P_TRACED) == 0)
2483 				continue;
2484 		}
2485 
2486 		prop = sigprop(sig);
2487 
2488 		/*
2489 		 * Decide whether the signal should be returned.
2490 		 * Return the signal's number, or fall through
2491 		 * to clear it from the pending mask.
2492 		 */
2493 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2494 
2495 		case (intptr_t)SIG_DFL:
2496 			/*
2497 			 * Don't take default actions on system processes.
2498 			 */
2499 			if (p->p_pid <= 1) {
2500 #ifdef DIAGNOSTIC
2501 				/*
2502 				 * Are you sure you want to ignore SIGSEGV
2503 				 * in init? XXX
2504 				 */
2505 				printf("Process (pid %lu) got signal %d\n",
2506 					(u_long)p->p_pid, sig);
2507 #endif
2508 				break;		/* == ignore */
2509 			}
2510 			/*
2511 			 * If there is a pending stop signal to process
2512 			 * with default action, stop here,
2513 			 * then clear the signal.  However,
2514 			 * if process is member of an orphaned
2515 			 * process group, ignore tty stop signals.
2516 			 */
2517 			if (prop & SA_STOP) {
2518 				if (p->p_flag & P_TRACED ||
2519 		    		    (p->p_pgrp->pg_jobc == 0 &&
2520 				     prop & SA_TTYSTOP))
2521 					break;	/* == ignore */
2522 
2523 				/* Ignore, but do not drop the stop signal. */
2524 				if (stop_allowed != SIG_STOP_ALLOWED)
2525 					return (sig);
2526 				mtx_unlock(&ps->ps_mtx);
2527 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2528 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2529 				p->p_flag |= P_STOPPED_SIG;
2530 				p->p_xstat = sig;
2531 				PROC_SLOCK(p);
2532 				sig_suspend_threads(td, p, 0);
2533 				thread_suspend_switch(td);
2534 				PROC_SUNLOCK(p);
2535 				mtx_lock(&ps->ps_mtx);
2536 				break;
2537 			} else if (prop & SA_IGNORE) {
2538 				/*
2539 				 * Except for SIGCONT, shouldn't get here.
2540 				 * Default action is to ignore; drop it.
2541 				 */
2542 				break;		/* == ignore */
2543 			} else
2544 				return (sig);
2545 			/*NOTREACHED*/
2546 
2547 		case (intptr_t)SIG_IGN:
2548 			/*
2549 			 * Masking above should prevent us ever trying
2550 			 * to take action on an ignored signal other
2551 			 * than SIGCONT, unless process is traced.
2552 			 */
2553 			if ((prop & SA_CONT) == 0 &&
2554 			    (p->p_flag & P_TRACED) == 0)
2555 				printf("issignal\n");
2556 			break;		/* == ignore */
2557 
2558 		default:
2559 			/*
2560 			 * This signal has an action, let
2561 			 * postsig() process it.
2562 			 */
2563 			return (sig);
2564 		}
2565 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2566 	}
2567 	/* NOTREACHED */
2568 }
2569 
2570 void
2571 thread_stopped(struct proc *p)
2572 {
2573 	int n;
2574 
2575 	PROC_LOCK_ASSERT(p, MA_OWNED);
2576 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2577 	n = p->p_suspcount;
2578 	if (p == curproc)
2579 		n++;
2580 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2581 		PROC_SUNLOCK(p);
2582 		p->p_flag &= ~P_WAITED;
2583 		PROC_LOCK(p->p_pptr);
2584 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2585 			CLD_TRAPPED : CLD_STOPPED);
2586 		PROC_UNLOCK(p->p_pptr);
2587 		PROC_SLOCK(p);
2588 	}
2589 }
2590 
2591 /*
2592  * Take the action for the specified signal
2593  * from the current set of pending signals.
2594  */
2595 void
2596 postsig(sig)
2597 	register int sig;
2598 {
2599 	struct thread *td = curthread;
2600 	register struct proc *p = td->td_proc;
2601 	struct sigacts *ps;
2602 	sig_t action;
2603 	ksiginfo_t ksi;
2604 	sigset_t returnmask;
2605 
2606 	KASSERT(sig != 0, ("postsig"));
2607 
2608 	PROC_LOCK_ASSERT(p, MA_OWNED);
2609 	ps = p->p_sigacts;
2610 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2611 	ksiginfo_init(&ksi);
2612 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2613 	ksi.ksi_signo = sig;
2614 	if (ksi.ksi_code == SI_TIMER)
2615 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2616 	action = ps->ps_sigact[_SIG_IDX(sig)];
2617 #ifdef KTRACE
2618 	if (KTRPOINT(td, KTR_PSIG))
2619 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2620 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2621 #endif
2622 	if (p->p_stops & S_SIG) {
2623 		mtx_unlock(&ps->ps_mtx);
2624 		stopevent(p, S_SIG, sig);
2625 		mtx_lock(&ps->ps_mtx);
2626 	}
2627 
2628 	if (action == SIG_DFL) {
2629 		/*
2630 		 * Default action, where the default is to kill
2631 		 * the process.  (Other cases were ignored above.)
2632 		 */
2633 		mtx_unlock(&ps->ps_mtx);
2634 		sigexit(td, sig);
2635 		/* NOTREACHED */
2636 	} else {
2637 		/*
2638 		 * If we get here, the signal must be caught.
2639 		 */
2640 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2641 		    ("postsig action"));
2642 		/*
2643 		 * Set the new mask value and also defer further
2644 		 * occurrences of this signal.
2645 		 *
2646 		 * Special case: user has done a sigsuspend.  Here the
2647 		 * current mask is not of interest, but rather the
2648 		 * mask from before the sigsuspend is what we want
2649 		 * restored after the signal processing is completed.
2650 		 */
2651 		if (td->td_pflags & TDP_OLDMASK) {
2652 			returnmask = td->td_oldsigmask;
2653 			td->td_pflags &= ~TDP_OLDMASK;
2654 		} else
2655 			returnmask = td->td_sigmask;
2656 
2657 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2658 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2659 			SIGADDSET(td->td_sigmask, sig);
2660 
2661 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2662 			/*
2663 			 * See kern_sigaction() for origin of this code.
2664 			 */
2665 			SIGDELSET(ps->ps_sigcatch, sig);
2666 			if (sig != SIGCONT &&
2667 			    sigprop(sig) & SA_IGNORE)
2668 				SIGADDSET(ps->ps_sigignore, sig);
2669 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2670 		}
2671 		td->td_ru.ru_nsignals++;
2672 		if (p->p_sig == sig) {
2673 			p->p_code = 0;
2674 			p->p_sig = 0;
2675 		}
2676 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2677 	}
2678 }
2679 
2680 /*
2681  * Kill the current process for stated reason.
2682  */
2683 void
2684 killproc(p, why)
2685 	struct proc *p;
2686 	char *why;
2687 {
2688 
2689 	PROC_LOCK_ASSERT(p, MA_OWNED);
2690 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2691 		p, p->p_pid, p->p_comm);
2692 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2693 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2694 	psignal(p, SIGKILL);
2695 }
2696 
2697 /*
2698  * Force the current process to exit with the specified signal, dumping core
2699  * if appropriate.  We bypass the normal tests for masked and caught signals,
2700  * allowing unrecoverable failures to terminate the process without changing
2701  * signal state.  Mark the accounting record with the signal termination.
2702  * If dumping core, save the signal number for the debugger.  Calls exit and
2703  * does not return.
2704  */
2705 void
2706 sigexit(td, sig)
2707 	struct thread *td;
2708 	int sig;
2709 {
2710 	struct proc *p = td->td_proc;
2711 
2712 	PROC_LOCK_ASSERT(p, MA_OWNED);
2713 	p->p_acflag |= AXSIG;
2714 	/*
2715 	 * We must be single-threading to generate a core dump.  This
2716 	 * ensures that the registers in the core file are up-to-date.
2717 	 * Also, the ELF dump handler assumes that the thread list doesn't
2718 	 * change out from under it.
2719 	 *
2720 	 * XXX If another thread attempts to single-thread before us
2721 	 *     (e.g. via fork()), we won't get a dump at all.
2722 	 */
2723 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2724 		p->p_sig = sig;
2725 		/*
2726 		 * Log signals which would cause core dumps
2727 		 * (Log as LOG_INFO to appease those who don't want
2728 		 * these messages.)
2729 		 * XXX : Todo, as well as euid, write out ruid too
2730 		 * Note that coredump() drops proc lock.
2731 		 */
2732 		if (coredump(td) == 0)
2733 			sig |= WCOREFLAG;
2734 		if (kern_logsigexit)
2735 			log(LOG_INFO,
2736 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2737 			    p->p_pid, p->p_comm,
2738 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2739 			    sig &~ WCOREFLAG,
2740 			    sig & WCOREFLAG ? " (core dumped)" : "");
2741 	} else
2742 		PROC_UNLOCK(p);
2743 	exit1(td, W_EXITCODE(0, sig));
2744 	/* NOTREACHED */
2745 }
2746 
2747 /*
2748  * Send queued SIGCHLD to parent when child process's state
2749  * is changed.
2750  */
2751 static void
2752 sigparent(struct proc *p, int reason, int status)
2753 {
2754 	PROC_LOCK_ASSERT(p, MA_OWNED);
2755 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2756 
2757 	if (p->p_ksi != NULL) {
2758 		p->p_ksi->ksi_signo  = SIGCHLD;
2759 		p->p_ksi->ksi_code   = reason;
2760 		p->p_ksi->ksi_status = status;
2761 		p->p_ksi->ksi_pid    = p->p_pid;
2762 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2763 		if (KSI_ONQ(p->p_ksi))
2764 			return;
2765 	}
2766 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2767 }
2768 
2769 static void
2770 childproc_jobstate(struct proc *p, int reason, int status)
2771 {
2772 	struct sigacts *ps;
2773 
2774 	PROC_LOCK_ASSERT(p, MA_OWNED);
2775 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2776 
2777 	/*
2778 	 * Wake up parent sleeping in kern_wait(), also send
2779 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2780 	 * that parent will awake, because parent may masked
2781 	 * the signal.
2782 	 */
2783 	p->p_pptr->p_flag |= P_STATCHILD;
2784 	wakeup(p->p_pptr);
2785 
2786 	ps = p->p_pptr->p_sigacts;
2787 	mtx_lock(&ps->ps_mtx);
2788 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2789 		mtx_unlock(&ps->ps_mtx);
2790 		sigparent(p, reason, status);
2791 	} else
2792 		mtx_unlock(&ps->ps_mtx);
2793 }
2794 
2795 void
2796 childproc_stopped(struct proc *p, int reason)
2797 {
2798 	childproc_jobstate(p, reason, p->p_xstat);
2799 }
2800 
2801 void
2802 childproc_continued(struct proc *p)
2803 {
2804 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2805 }
2806 
2807 void
2808 childproc_exited(struct proc *p)
2809 {
2810 	int reason;
2811 	int status = p->p_xstat; /* convert to int */
2812 
2813 	reason = CLD_EXITED;
2814 	if (WCOREDUMP(status))
2815 		reason = CLD_DUMPED;
2816 	else if (WIFSIGNALED(status))
2817 		reason = CLD_KILLED;
2818 	/*
2819 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2820 	 * done in exit1().
2821 	 */
2822 	sigparent(p, reason, status);
2823 }
2824 
2825 static char corefilename[MAXPATHLEN] = {"%N.core"};
2826 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2827 	      sizeof(corefilename), "process corefile name format string");
2828 
2829 /*
2830  * expand_name(name, uid, pid)
2831  * Expand the name described in corefilename, using name, uid, and pid.
2832  * corefilename is a printf-like string, with three format specifiers:
2833  *	%N	name of process ("name")
2834  *	%P	process id (pid)
2835  *	%U	user id (uid)
2836  * For example, "%N.core" is the default; they can be disabled completely
2837  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2838  * This is controlled by the sysctl variable kern.corefile (see above).
2839  */
2840 static char *
2841 expand_name(name, uid, pid)
2842 	const char *name;
2843 	uid_t uid;
2844 	pid_t pid;
2845 {
2846 	struct sbuf sb;
2847 	const char *format;
2848 	char *temp;
2849 	size_t i;
2850 
2851 	format = corefilename;
2852 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2853 	if (temp == NULL)
2854 		return (NULL);
2855 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
2856 	for (i = 0; format[i]; i++) {
2857 		switch (format[i]) {
2858 		case '%':	/* Format character */
2859 			i++;
2860 			switch (format[i]) {
2861 			case '%':
2862 				sbuf_putc(&sb, '%');
2863 				break;
2864 			case 'N':	/* process name */
2865 				sbuf_printf(&sb, "%s", name);
2866 				break;
2867 			case 'P':	/* process id */
2868 				sbuf_printf(&sb, "%u", pid);
2869 				break;
2870 			case 'U':	/* user id */
2871 				sbuf_printf(&sb, "%u", uid);
2872 				break;
2873 			default:
2874 			  	log(LOG_ERR,
2875 				    "Unknown format character %c in "
2876 				    "corename `%s'\n", format[i], format);
2877 			}
2878 			break;
2879 		default:
2880 			sbuf_putc(&sb, format[i]);
2881 		}
2882 	}
2883 	if (sbuf_overflowed(&sb)) {
2884 		sbuf_delete(&sb);
2885 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
2886 		    "long\n", (long)pid, name, (u_long)uid);
2887 		free(temp, M_TEMP);
2888 		return (NULL);
2889 	}
2890 	sbuf_finish(&sb);
2891 	sbuf_delete(&sb);
2892 	return (temp);
2893 }
2894 
2895 /*
2896  * Dump a process' core.  The main routine does some
2897  * policy checking, and creates the name of the coredump;
2898  * then it passes on a vnode and a size limit to the process-specific
2899  * coredump routine if there is one; if there _is not_ one, it returns
2900  * ENOSYS; otherwise it returns the error from the process-specific routine.
2901  */
2902 
2903 static int
2904 coredump(struct thread *td)
2905 {
2906 	struct proc *p = td->td_proc;
2907 	register struct vnode *vp;
2908 	register struct ucred *cred = td->td_ucred;
2909 	struct flock lf;
2910 	struct nameidata nd;
2911 	struct vattr vattr;
2912 	int error, error1, flags, locked;
2913 	struct mount *mp;
2914 	char *name;			/* name of corefile */
2915 	off_t limit;
2916 	int vfslocked;
2917 
2918 	PROC_LOCK_ASSERT(p, MA_OWNED);
2919 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
2920 	_STOPEVENT(p, S_CORE, 0);
2921 
2922 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2923 	if (name == NULL) {
2924 		PROC_UNLOCK(p);
2925 #ifdef AUDIT
2926 		audit_proc_coredump(td, NULL, EINVAL);
2927 #endif
2928 		return (EINVAL);
2929 	}
2930 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2931 		PROC_UNLOCK(p);
2932 #ifdef AUDIT
2933 		audit_proc_coredump(td, name, EFAULT);
2934 #endif
2935 		free(name, M_TEMP);
2936 		return (EFAULT);
2937 	}
2938 
2939 	/*
2940 	 * Note that the bulk of limit checking is done after
2941 	 * the corefile is created.  The exception is if the limit
2942 	 * for corefiles is 0, in which case we don't bother
2943 	 * creating the corefile at all.  This layout means that
2944 	 * a corefile is truncated instead of not being created,
2945 	 * if it is larger than the limit.
2946 	 */
2947 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2948 	PROC_UNLOCK(p);
2949 	if (limit == 0) {
2950 #ifdef AUDIT
2951 		audit_proc_coredump(td, name, EFBIG);
2952 #endif
2953 		free(name, M_TEMP);
2954 		return (EFBIG);
2955 	}
2956 
2957 restart:
2958 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
2959 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2960 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
2961 	    cred, NULL);
2962 	if (error) {
2963 #ifdef AUDIT
2964 		audit_proc_coredump(td, name, error);
2965 #endif
2966 		free(name, M_TEMP);
2967 		return (error);
2968 	}
2969 	vfslocked = NDHASGIANT(&nd);
2970 	NDFREE(&nd, NDF_ONLY_PNBUF);
2971 	vp = nd.ni_vp;
2972 
2973 	/* Don't dump to non-regular files or files with links. */
2974 	if (vp->v_type != VREG ||
2975 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
2976 		VOP_UNLOCK(vp, 0);
2977 		error = EFAULT;
2978 		goto close;
2979 	}
2980 
2981 	VOP_UNLOCK(vp, 0);
2982 	lf.l_whence = SEEK_SET;
2983 	lf.l_start = 0;
2984 	lf.l_len = 0;
2985 	lf.l_type = F_WRLCK;
2986 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2987 
2988 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2989 		lf.l_type = F_UNLCK;
2990 		if (locked)
2991 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2992 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2993 			goto out;
2994 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2995 			goto out;
2996 		VFS_UNLOCK_GIANT(vfslocked);
2997 		goto restart;
2998 	}
2999 
3000 	VATTR_NULL(&vattr);
3001 	vattr.va_size = 0;
3002 	if (set_core_nodump_flag)
3003 		vattr.va_flags = UF_NODUMP;
3004 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3005 	VOP_SETATTR(vp, &vattr, cred);
3006 	VOP_UNLOCK(vp, 0);
3007 	vn_finished_write(mp);
3008 	PROC_LOCK(p);
3009 	p->p_acflag |= ACORE;
3010 	PROC_UNLOCK(p);
3011 
3012 	error = p->p_sysent->sv_coredump ?
3013 	  p->p_sysent->sv_coredump(td, vp, limit) :
3014 	  ENOSYS;
3015 
3016 	if (locked) {
3017 		lf.l_type = F_UNLCK;
3018 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3019 	}
3020 close:
3021 	error1 = vn_close(vp, FWRITE, cred, td);
3022 	if (error == 0)
3023 		error = error1;
3024 out:
3025 #ifdef AUDIT
3026 	audit_proc_coredump(td, name, error);
3027 #endif
3028 	free(name, M_TEMP);
3029 	VFS_UNLOCK_GIANT(vfslocked);
3030 	return (error);
3031 }
3032 
3033 /*
3034  * Nonexistent system call-- signal process (may want to handle it).  Flag
3035  * error in case process won't see signal immediately (blocked or ignored).
3036  */
3037 #ifndef _SYS_SYSPROTO_H_
3038 struct nosys_args {
3039 	int	dummy;
3040 };
3041 #endif
3042 /* ARGSUSED */
3043 int
3044 nosys(td, args)
3045 	struct thread *td;
3046 	struct nosys_args *args;
3047 {
3048 	struct proc *p = td->td_proc;
3049 
3050 	PROC_LOCK(p);
3051 	psignal(p, SIGSYS);
3052 	PROC_UNLOCK(p);
3053 	return (ENOSYS);
3054 }
3055 
3056 /*
3057  * Send a SIGIO or SIGURG signal to a process or process group using stored
3058  * credentials rather than those of the current process.
3059  */
3060 void
3061 pgsigio(sigiop, sig, checkctty)
3062 	struct sigio **sigiop;
3063 	int sig, checkctty;
3064 {
3065 	struct sigio *sigio;
3066 
3067 	SIGIO_LOCK();
3068 	sigio = *sigiop;
3069 	if (sigio == NULL) {
3070 		SIGIO_UNLOCK();
3071 		return;
3072 	}
3073 	if (sigio->sio_pgid > 0) {
3074 		PROC_LOCK(sigio->sio_proc);
3075 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3076 			psignal(sigio->sio_proc, sig);
3077 		PROC_UNLOCK(sigio->sio_proc);
3078 	} else if (sigio->sio_pgid < 0) {
3079 		struct proc *p;
3080 
3081 		PGRP_LOCK(sigio->sio_pgrp);
3082 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3083 			PROC_LOCK(p);
3084 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3085 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3086 				psignal(p, sig);
3087 			PROC_UNLOCK(p);
3088 		}
3089 		PGRP_UNLOCK(sigio->sio_pgrp);
3090 	}
3091 	SIGIO_UNLOCK();
3092 }
3093 
3094 static int
3095 filt_sigattach(struct knote *kn)
3096 {
3097 	struct proc *p = curproc;
3098 
3099 	kn->kn_ptr.p_proc = p;
3100 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3101 
3102 	knlist_add(&p->p_klist, kn, 0);
3103 
3104 	return (0);
3105 }
3106 
3107 static void
3108 filt_sigdetach(struct knote *kn)
3109 {
3110 	struct proc *p = kn->kn_ptr.p_proc;
3111 
3112 	knlist_remove(&p->p_klist, kn, 0);
3113 }
3114 
3115 /*
3116  * signal knotes are shared with proc knotes, so we apply a mask to
3117  * the hint in order to differentiate them from process hints.  This
3118  * could be avoided by using a signal-specific knote list, but probably
3119  * isn't worth the trouble.
3120  */
3121 static int
3122 filt_signal(struct knote *kn, long hint)
3123 {
3124 
3125 	if (hint & NOTE_SIGNAL) {
3126 		hint &= ~NOTE_SIGNAL;
3127 
3128 		if (kn->kn_id == hint)
3129 			kn->kn_data++;
3130 	}
3131 	return (kn->kn_data != 0);
3132 }
3133 
3134 struct sigacts *
3135 sigacts_alloc(void)
3136 {
3137 	struct sigacts *ps;
3138 
3139 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3140 	ps->ps_refcnt = 1;
3141 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3142 	return (ps);
3143 }
3144 
3145 void
3146 sigacts_free(struct sigacts *ps)
3147 {
3148 
3149 	mtx_lock(&ps->ps_mtx);
3150 	ps->ps_refcnt--;
3151 	if (ps->ps_refcnt == 0) {
3152 		mtx_destroy(&ps->ps_mtx);
3153 		free(ps, M_SUBPROC);
3154 	} else
3155 		mtx_unlock(&ps->ps_mtx);
3156 }
3157 
3158 struct sigacts *
3159 sigacts_hold(struct sigacts *ps)
3160 {
3161 	mtx_lock(&ps->ps_mtx);
3162 	ps->ps_refcnt++;
3163 	mtx_unlock(&ps->ps_mtx);
3164 	return (ps);
3165 }
3166 
3167 void
3168 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3169 {
3170 
3171 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3172 	mtx_lock(&src->ps_mtx);
3173 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3174 	mtx_unlock(&src->ps_mtx);
3175 }
3176 
3177 int
3178 sigacts_shared(struct sigacts *ps)
3179 {
3180 	int shared;
3181 
3182 	mtx_lock(&ps->ps_mtx);
3183 	shared = ps->ps_refcnt > 1;
3184 	mtx_unlock(&ps->ps_mtx);
3185 	return (shared);
3186 }
3187