xref: /freebsd/sys/kern/kern_sig.c (revision d0ba1baed3f6e4936a0c1b89c25f6c59168ef6de)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 
609 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
610 
611 	if (SIGPENDING(td)) {
612 		thread_lock(td);
613 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
614 		thread_unlock(td);
615 	}
616 }
617 
618 int
619 sigonstack(size_t sp)
620 {
621 	struct thread *td = curthread;
622 
623 	return ((td->td_pflags & TDP_ALTSTACK) ?
624 #if defined(COMPAT_43)
625 	    ((td->td_sigstk.ss_size == 0) ?
626 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
627 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
628 #else
629 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
630 #endif
631 	    : 0);
632 }
633 
634 static __inline int
635 sigprop(int sig)
636 {
637 
638 	if (sig > 0 && sig < nitems(sigproptbl))
639 		return (sigproptbl[sig]);
640 	return (0);
641 }
642 
643 int
644 sig_ffs(sigset_t *set)
645 {
646 	int i;
647 
648 	for (i = 0; i < _SIG_WORDS; i++)
649 		if (set->__bits[i])
650 			return (ffs(set->__bits[i]) + (i * 32));
651 	return (0);
652 }
653 
654 static bool
655 sigact_flag_test(const struct sigaction *act, int flag)
656 {
657 
658 	/*
659 	 * SA_SIGINFO is reset when signal disposition is set to
660 	 * ignore or default.  Other flags are kept according to user
661 	 * settings.
662 	 */
663 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
664 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
665 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
666 }
667 
668 /*
669  * kern_sigaction
670  * sigaction
671  * freebsd4_sigaction
672  * osigaction
673  */
674 int
675 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
676     struct sigaction *oact, int flags)
677 {
678 	struct sigacts *ps;
679 	struct proc *p = td->td_proc;
680 
681 	if (!_SIG_VALID(sig))
682 		return (EINVAL);
683 	if (act != NULL && act->sa_handler != SIG_DFL &&
684 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
685 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
686 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
687 		return (EINVAL);
688 
689 	PROC_LOCK(p);
690 	ps = p->p_sigacts;
691 	mtx_lock(&ps->ps_mtx);
692 	if (oact) {
693 		memset(oact, 0, sizeof(*oact));
694 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
695 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
696 			oact->sa_flags |= SA_ONSTACK;
697 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
698 			oact->sa_flags |= SA_RESTART;
699 		if (SIGISMEMBER(ps->ps_sigreset, sig))
700 			oact->sa_flags |= SA_RESETHAND;
701 		if (SIGISMEMBER(ps->ps_signodefer, sig))
702 			oact->sa_flags |= SA_NODEFER;
703 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
704 			oact->sa_flags |= SA_SIGINFO;
705 			oact->sa_sigaction =
706 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
707 		} else
708 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
709 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
710 			oact->sa_flags |= SA_NOCLDSTOP;
711 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
712 			oact->sa_flags |= SA_NOCLDWAIT;
713 	}
714 	if (act) {
715 		if ((sig == SIGKILL || sig == SIGSTOP) &&
716 		    act->sa_handler != SIG_DFL) {
717 			mtx_unlock(&ps->ps_mtx);
718 			PROC_UNLOCK(p);
719 			return (EINVAL);
720 		}
721 
722 		/*
723 		 * Change setting atomically.
724 		 */
725 
726 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
727 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
728 		if (sigact_flag_test(act, SA_SIGINFO)) {
729 			ps->ps_sigact[_SIG_IDX(sig)] =
730 			    (__sighandler_t *)act->sa_sigaction;
731 			SIGADDSET(ps->ps_siginfo, sig);
732 		} else {
733 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
734 			SIGDELSET(ps->ps_siginfo, sig);
735 		}
736 		if (!sigact_flag_test(act, SA_RESTART))
737 			SIGADDSET(ps->ps_sigintr, sig);
738 		else
739 			SIGDELSET(ps->ps_sigintr, sig);
740 		if (sigact_flag_test(act, SA_ONSTACK))
741 			SIGADDSET(ps->ps_sigonstack, sig);
742 		else
743 			SIGDELSET(ps->ps_sigonstack, sig);
744 		if (sigact_flag_test(act, SA_RESETHAND))
745 			SIGADDSET(ps->ps_sigreset, sig);
746 		else
747 			SIGDELSET(ps->ps_sigreset, sig);
748 		if (sigact_flag_test(act, SA_NODEFER))
749 			SIGADDSET(ps->ps_signodefer, sig);
750 		else
751 			SIGDELSET(ps->ps_signodefer, sig);
752 		if (sig == SIGCHLD) {
753 			if (act->sa_flags & SA_NOCLDSTOP)
754 				ps->ps_flag |= PS_NOCLDSTOP;
755 			else
756 				ps->ps_flag &= ~PS_NOCLDSTOP;
757 			if (act->sa_flags & SA_NOCLDWAIT) {
758 				/*
759 				 * Paranoia: since SA_NOCLDWAIT is implemented
760 				 * by reparenting the dying child to PID 1 (and
761 				 * trust it to reap the zombie), PID 1 itself
762 				 * is forbidden to set SA_NOCLDWAIT.
763 				 */
764 				if (p->p_pid == 1)
765 					ps->ps_flag &= ~PS_NOCLDWAIT;
766 				else
767 					ps->ps_flag |= PS_NOCLDWAIT;
768 			} else
769 				ps->ps_flag &= ~PS_NOCLDWAIT;
770 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
771 				ps->ps_flag |= PS_CLDSIGIGN;
772 			else
773 				ps->ps_flag &= ~PS_CLDSIGIGN;
774 		}
775 		/*
776 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
777 		 * and for signals set to SIG_DFL where the default is to
778 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
779 		 * have to restart the process.
780 		 */
781 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
782 		    (sigprop(sig) & SIGPROP_IGNORE &&
783 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
784 			/* never to be seen again */
785 			sigqueue_delete_proc(p, sig);
786 			if (sig != SIGCONT)
787 				/* easier in psignal */
788 				SIGADDSET(ps->ps_sigignore, sig);
789 			SIGDELSET(ps->ps_sigcatch, sig);
790 		} else {
791 			SIGDELSET(ps->ps_sigignore, sig);
792 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
793 				SIGDELSET(ps->ps_sigcatch, sig);
794 			else
795 				SIGADDSET(ps->ps_sigcatch, sig);
796 		}
797 #ifdef COMPAT_FREEBSD4
798 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
799 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
800 		    (flags & KSA_FREEBSD4) == 0)
801 			SIGDELSET(ps->ps_freebsd4, sig);
802 		else
803 			SIGADDSET(ps->ps_freebsd4, sig);
804 #endif
805 #ifdef COMPAT_43
806 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
807 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
808 		    (flags & KSA_OSIGSET) == 0)
809 			SIGDELSET(ps->ps_osigset, sig);
810 		else
811 			SIGADDSET(ps->ps_osigset, sig);
812 #endif
813 	}
814 	mtx_unlock(&ps->ps_mtx);
815 	PROC_UNLOCK(p);
816 	return (0);
817 }
818 
819 #ifndef _SYS_SYSPROTO_H_
820 struct sigaction_args {
821 	int	sig;
822 	struct	sigaction *act;
823 	struct	sigaction *oact;
824 };
825 #endif
826 int
827 sys_sigaction(struct thread *td, struct sigaction_args *uap)
828 {
829 	struct sigaction act, oact;
830 	struct sigaction *actp, *oactp;
831 	int error;
832 
833 	actp = (uap->act != NULL) ? &act : NULL;
834 	oactp = (uap->oact != NULL) ? &oact : NULL;
835 	if (actp) {
836 		error = copyin(uap->act, actp, sizeof(act));
837 		if (error)
838 			return (error);
839 	}
840 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
841 	if (oactp && !error)
842 		error = copyout(oactp, uap->oact, sizeof(oact));
843 	return (error);
844 }
845 
846 #ifdef COMPAT_FREEBSD4
847 #ifndef _SYS_SYSPROTO_H_
848 struct freebsd4_sigaction_args {
849 	int	sig;
850 	struct	sigaction *act;
851 	struct	sigaction *oact;
852 };
853 #endif
854 int
855 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
856 {
857 	struct sigaction act, oact;
858 	struct sigaction *actp, *oactp;
859 	int error;
860 
861 
862 	actp = (uap->act != NULL) ? &act : NULL;
863 	oactp = (uap->oact != NULL) ? &oact : NULL;
864 	if (actp) {
865 		error = copyin(uap->act, actp, sizeof(act));
866 		if (error)
867 			return (error);
868 	}
869 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
870 	if (oactp && !error)
871 		error = copyout(oactp, uap->oact, sizeof(oact));
872 	return (error);
873 }
874 #endif	/* COMAPT_FREEBSD4 */
875 
876 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
877 #ifndef _SYS_SYSPROTO_H_
878 struct osigaction_args {
879 	int	signum;
880 	struct	osigaction *nsa;
881 	struct	osigaction *osa;
882 };
883 #endif
884 int
885 osigaction(struct thread *td, struct osigaction_args *uap)
886 {
887 	struct osigaction sa;
888 	struct sigaction nsa, osa;
889 	struct sigaction *nsap, *osap;
890 	int error;
891 
892 	if (uap->signum <= 0 || uap->signum >= ONSIG)
893 		return (EINVAL);
894 
895 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
896 	osap = (uap->osa != NULL) ? &osa : NULL;
897 
898 	if (nsap) {
899 		error = copyin(uap->nsa, &sa, sizeof(sa));
900 		if (error)
901 			return (error);
902 		nsap->sa_handler = sa.sa_handler;
903 		nsap->sa_flags = sa.sa_flags;
904 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
905 	}
906 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
907 	if (osap && !error) {
908 		sa.sa_handler = osap->sa_handler;
909 		sa.sa_flags = osap->sa_flags;
910 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
911 		error = copyout(&sa, uap->osa, sizeof(sa));
912 	}
913 	return (error);
914 }
915 
916 #if !defined(__i386__)
917 /* Avoid replicating the same stub everywhere */
918 int
919 osigreturn(struct thread *td, struct osigreturn_args *uap)
920 {
921 
922 	return (nosys(td, (struct nosys_args *)uap));
923 }
924 #endif
925 #endif /* COMPAT_43 */
926 
927 /*
928  * Initialize signal state for process 0;
929  * set to ignore signals that are ignored by default.
930  */
931 void
932 siginit(struct proc *p)
933 {
934 	int i;
935 	struct sigacts *ps;
936 
937 	PROC_LOCK(p);
938 	ps = p->p_sigacts;
939 	mtx_lock(&ps->ps_mtx);
940 	for (i = 1; i <= NSIG; i++) {
941 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
942 			SIGADDSET(ps->ps_sigignore, i);
943 		}
944 	}
945 	mtx_unlock(&ps->ps_mtx);
946 	PROC_UNLOCK(p);
947 }
948 
949 /*
950  * Reset specified signal to the default disposition.
951  */
952 static void
953 sigdflt(struct sigacts *ps, int sig)
954 {
955 
956 	mtx_assert(&ps->ps_mtx, MA_OWNED);
957 	SIGDELSET(ps->ps_sigcatch, sig);
958 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
959 		SIGADDSET(ps->ps_sigignore, sig);
960 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
961 	SIGDELSET(ps->ps_siginfo, sig);
962 }
963 
964 /*
965  * Reset signals for an exec of the specified process.
966  */
967 void
968 execsigs(struct proc *p)
969 {
970 	sigset_t osigignore;
971 	struct sigacts *ps;
972 	int sig;
973 	struct thread *td;
974 
975 	/*
976 	 * Reset caught signals.  Held signals remain held
977 	 * through td_sigmask (unless they were caught,
978 	 * and are now ignored by default).
979 	 */
980 	PROC_LOCK_ASSERT(p, MA_OWNED);
981 	ps = p->p_sigacts;
982 	mtx_lock(&ps->ps_mtx);
983 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
984 		sig = sig_ffs(&ps->ps_sigcatch);
985 		sigdflt(ps, sig);
986 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
987 			sigqueue_delete_proc(p, sig);
988 	}
989 
990 	/*
991 	 * As CloudABI processes cannot modify signal handlers, fully
992 	 * reset all signals to their default behavior. Do ignore
993 	 * SIGPIPE, as it would otherwise be impossible to recover from
994 	 * writes to broken pipes and sockets.
995 	 */
996 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
997 		osigignore = ps->ps_sigignore;
998 		while (SIGNOTEMPTY(osigignore)) {
999 			sig = sig_ffs(&osigignore);
1000 			SIGDELSET(osigignore, sig);
1001 			if (sig != SIGPIPE)
1002 				sigdflt(ps, sig);
1003 		}
1004 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1005 	}
1006 
1007 	/*
1008 	 * Reset stack state to the user stack.
1009 	 * Clear set of signals caught on the signal stack.
1010 	 */
1011 	td = curthread;
1012 	MPASS(td->td_proc == p);
1013 	td->td_sigstk.ss_flags = SS_DISABLE;
1014 	td->td_sigstk.ss_size = 0;
1015 	td->td_sigstk.ss_sp = 0;
1016 	td->td_pflags &= ~TDP_ALTSTACK;
1017 	/*
1018 	 * Reset no zombies if child dies flag as Solaris does.
1019 	 */
1020 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1021 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1022 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1023 	mtx_unlock(&ps->ps_mtx);
1024 }
1025 
1026 /*
1027  * kern_sigprocmask()
1028  *
1029  *	Manipulate signal mask.
1030  */
1031 int
1032 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1033     int flags)
1034 {
1035 	sigset_t new_block, oset1;
1036 	struct proc *p;
1037 	int error;
1038 
1039 	p = td->td_proc;
1040 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1041 		PROC_LOCK_ASSERT(p, MA_OWNED);
1042 	else
1043 		PROC_LOCK(p);
1044 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1045 	    ? MA_OWNED : MA_NOTOWNED);
1046 	if (oset != NULL)
1047 		*oset = td->td_sigmask;
1048 
1049 	error = 0;
1050 	if (set != NULL) {
1051 		switch (how) {
1052 		case SIG_BLOCK:
1053 			SIG_CANTMASK(*set);
1054 			oset1 = td->td_sigmask;
1055 			SIGSETOR(td->td_sigmask, *set);
1056 			new_block = td->td_sigmask;
1057 			SIGSETNAND(new_block, oset1);
1058 			break;
1059 		case SIG_UNBLOCK:
1060 			SIGSETNAND(td->td_sigmask, *set);
1061 			signotify(td);
1062 			goto out;
1063 		case SIG_SETMASK:
1064 			SIG_CANTMASK(*set);
1065 			oset1 = td->td_sigmask;
1066 			if (flags & SIGPROCMASK_OLD)
1067 				SIGSETLO(td->td_sigmask, *set);
1068 			else
1069 				td->td_sigmask = *set;
1070 			new_block = td->td_sigmask;
1071 			SIGSETNAND(new_block, oset1);
1072 			signotify(td);
1073 			break;
1074 		default:
1075 			error = EINVAL;
1076 			goto out;
1077 		}
1078 
1079 		/*
1080 		 * The new_block set contains signals that were not previously
1081 		 * blocked, but are blocked now.
1082 		 *
1083 		 * In case we block any signal that was not previously blocked
1084 		 * for td, and process has the signal pending, try to schedule
1085 		 * signal delivery to some thread that does not block the
1086 		 * signal, possibly waking it up.
1087 		 */
1088 		if (p->p_numthreads != 1)
1089 			reschedule_signals(p, new_block, flags);
1090 	}
1091 
1092 out:
1093 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1094 		PROC_UNLOCK(p);
1095 	return (error);
1096 }
1097 
1098 #ifndef _SYS_SYSPROTO_H_
1099 struct sigprocmask_args {
1100 	int	how;
1101 	const sigset_t *set;
1102 	sigset_t *oset;
1103 };
1104 #endif
1105 int
1106 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1107 {
1108 	sigset_t set, oset;
1109 	sigset_t *setp, *osetp;
1110 	int error;
1111 
1112 	setp = (uap->set != NULL) ? &set : NULL;
1113 	osetp = (uap->oset != NULL) ? &oset : NULL;
1114 	if (setp) {
1115 		error = copyin(uap->set, setp, sizeof(set));
1116 		if (error)
1117 			return (error);
1118 	}
1119 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1120 	if (osetp && !error) {
1121 		error = copyout(osetp, uap->oset, sizeof(oset));
1122 	}
1123 	return (error);
1124 }
1125 
1126 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1127 #ifndef _SYS_SYSPROTO_H_
1128 struct osigprocmask_args {
1129 	int	how;
1130 	osigset_t mask;
1131 };
1132 #endif
1133 int
1134 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1135 {
1136 	sigset_t set, oset;
1137 	int error;
1138 
1139 	OSIG2SIG(uap->mask, set);
1140 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1141 	SIG2OSIG(oset, td->td_retval[0]);
1142 	return (error);
1143 }
1144 #endif /* COMPAT_43 */
1145 
1146 int
1147 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1148 {
1149 	ksiginfo_t ksi;
1150 	sigset_t set;
1151 	int error;
1152 
1153 	error = copyin(uap->set, &set, sizeof(set));
1154 	if (error) {
1155 		td->td_retval[0] = error;
1156 		return (0);
1157 	}
1158 
1159 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1160 	if (error) {
1161 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1162 			error = ERESTART;
1163 		if (error == ERESTART)
1164 			return (error);
1165 		td->td_retval[0] = error;
1166 		return (0);
1167 	}
1168 
1169 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1170 	td->td_retval[0] = error;
1171 	return (0);
1172 }
1173 
1174 int
1175 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1176 {
1177 	struct timespec ts;
1178 	struct timespec *timeout;
1179 	sigset_t set;
1180 	ksiginfo_t ksi;
1181 	int error;
1182 
1183 	if (uap->timeout) {
1184 		error = copyin(uap->timeout, &ts, sizeof(ts));
1185 		if (error)
1186 			return (error);
1187 
1188 		timeout = &ts;
1189 	} else
1190 		timeout = NULL;
1191 
1192 	error = copyin(uap->set, &set, sizeof(set));
1193 	if (error)
1194 		return (error);
1195 
1196 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1197 	if (error)
1198 		return (error);
1199 
1200 	if (uap->info)
1201 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1202 
1203 	if (error == 0)
1204 		td->td_retval[0] = ksi.ksi_signo;
1205 	return (error);
1206 }
1207 
1208 int
1209 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1210 {
1211 	ksiginfo_t ksi;
1212 	sigset_t set;
1213 	int error;
1214 
1215 	error = copyin(uap->set, &set, sizeof(set));
1216 	if (error)
1217 		return (error);
1218 
1219 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1220 	if (error)
1221 		return (error);
1222 
1223 	if (uap->info)
1224 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1225 
1226 	if (error == 0)
1227 		td->td_retval[0] = ksi.ksi_signo;
1228 	return (error);
1229 }
1230 
1231 static void
1232 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1233 {
1234 	struct thread *thr;
1235 
1236 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1237 		if (thr == td)
1238 			thr->td_si = *si;
1239 		else
1240 			thr->td_si.si_signo = 0;
1241 	}
1242 }
1243 
1244 int
1245 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1246 	struct timespec *timeout)
1247 {
1248 	struct sigacts *ps;
1249 	sigset_t saved_mask, new_block;
1250 	struct proc *p;
1251 	int error, sig, timo, timevalid = 0;
1252 	struct timespec rts, ets, ts;
1253 	struct timeval tv;
1254 
1255 	p = td->td_proc;
1256 	error = 0;
1257 	ets.tv_sec = 0;
1258 	ets.tv_nsec = 0;
1259 
1260 	if (timeout != NULL) {
1261 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1262 			timevalid = 1;
1263 			getnanouptime(&rts);
1264 			ets = rts;
1265 			timespecadd(&ets, timeout);
1266 		}
1267 	}
1268 	ksiginfo_init(ksi);
1269 	/* Some signals can not be waited for. */
1270 	SIG_CANTMASK(waitset);
1271 	ps = p->p_sigacts;
1272 	PROC_LOCK(p);
1273 	saved_mask = td->td_sigmask;
1274 	SIGSETNAND(td->td_sigmask, waitset);
1275 	for (;;) {
1276 		mtx_lock(&ps->ps_mtx);
1277 		sig = cursig(td);
1278 		mtx_unlock(&ps->ps_mtx);
1279 		KASSERT(sig >= 0, ("sig %d", sig));
1280 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1281 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1282 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1283 				error = 0;
1284 				break;
1285 			}
1286 		}
1287 
1288 		if (error != 0)
1289 			break;
1290 
1291 		/*
1292 		 * POSIX says this must be checked after looking for pending
1293 		 * signals.
1294 		 */
1295 		if (timeout != NULL) {
1296 			if (!timevalid) {
1297 				error = EINVAL;
1298 				break;
1299 			}
1300 			getnanouptime(&rts);
1301 			if (timespeccmp(&rts, &ets, >=)) {
1302 				error = EAGAIN;
1303 				break;
1304 			}
1305 			ts = ets;
1306 			timespecsub(&ts, &rts);
1307 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1308 			timo = tvtohz(&tv);
1309 		} else {
1310 			timo = 0;
1311 		}
1312 
1313 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1314 
1315 		if (timeout != NULL) {
1316 			if (error == ERESTART) {
1317 				/* Timeout can not be restarted. */
1318 				error = EINTR;
1319 			} else if (error == EAGAIN) {
1320 				/* We will calculate timeout by ourself. */
1321 				error = 0;
1322 			}
1323 		}
1324 	}
1325 
1326 	new_block = saved_mask;
1327 	SIGSETNAND(new_block, td->td_sigmask);
1328 	td->td_sigmask = saved_mask;
1329 	/*
1330 	 * Fewer signals can be delivered to us, reschedule signal
1331 	 * notification.
1332 	 */
1333 	if (p->p_numthreads != 1)
1334 		reschedule_signals(p, new_block, 0);
1335 
1336 	if (error == 0) {
1337 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1338 
1339 		if (ksi->ksi_code == SI_TIMER)
1340 			itimer_accept(p, ksi->ksi_timerid, ksi);
1341 
1342 #ifdef KTRACE
1343 		if (KTRPOINT(td, KTR_PSIG)) {
1344 			sig_t action;
1345 
1346 			mtx_lock(&ps->ps_mtx);
1347 			action = ps->ps_sigact[_SIG_IDX(sig)];
1348 			mtx_unlock(&ps->ps_mtx);
1349 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1350 		}
1351 #endif
1352 		if (sig == SIGKILL) {
1353 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1354 			sigexit(td, sig);
1355 		}
1356 	}
1357 	PROC_UNLOCK(p);
1358 	return (error);
1359 }
1360 
1361 #ifndef _SYS_SYSPROTO_H_
1362 struct sigpending_args {
1363 	sigset_t	*set;
1364 };
1365 #endif
1366 int
1367 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1368 {
1369 	struct proc *p = td->td_proc;
1370 	sigset_t pending;
1371 
1372 	PROC_LOCK(p);
1373 	pending = p->p_sigqueue.sq_signals;
1374 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1375 	PROC_UNLOCK(p);
1376 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1377 }
1378 
1379 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1380 #ifndef _SYS_SYSPROTO_H_
1381 struct osigpending_args {
1382 	int	dummy;
1383 };
1384 #endif
1385 int
1386 osigpending(struct thread *td, struct osigpending_args *uap)
1387 {
1388 	struct proc *p = td->td_proc;
1389 	sigset_t pending;
1390 
1391 	PROC_LOCK(p);
1392 	pending = p->p_sigqueue.sq_signals;
1393 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1394 	PROC_UNLOCK(p);
1395 	SIG2OSIG(pending, td->td_retval[0]);
1396 	return (0);
1397 }
1398 #endif /* COMPAT_43 */
1399 
1400 #if defined(COMPAT_43)
1401 /*
1402  * Generalized interface signal handler, 4.3-compatible.
1403  */
1404 #ifndef _SYS_SYSPROTO_H_
1405 struct osigvec_args {
1406 	int	signum;
1407 	struct	sigvec *nsv;
1408 	struct	sigvec *osv;
1409 };
1410 #endif
1411 /* ARGSUSED */
1412 int
1413 osigvec(struct thread *td, struct osigvec_args *uap)
1414 {
1415 	struct sigvec vec;
1416 	struct sigaction nsa, osa;
1417 	struct sigaction *nsap, *osap;
1418 	int error;
1419 
1420 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1421 		return (EINVAL);
1422 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1423 	osap = (uap->osv != NULL) ? &osa : NULL;
1424 	if (nsap) {
1425 		error = copyin(uap->nsv, &vec, sizeof(vec));
1426 		if (error)
1427 			return (error);
1428 		nsap->sa_handler = vec.sv_handler;
1429 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1430 		nsap->sa_flags = vec.sv_flags;
1431 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1432 	}
1433 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1434 	if (osap && !error) {
1435 		vec.sv_handler = osap->sa_handler;
1436 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1437 		vec.sv_flags = osap->sa_flags;
1438 		vec.sv_flags &= ~SA_NOCLDWAIT;
1439 		vec.sv_flags ^= SA_RESTART;
1440 		error = copyout(&vec, uap->osv, sizeof(vec));
1441 	}
1442 	return (error);
1443 }
1444 
1445 #ifndef _SYS_SYSPROTO_H_
1446 struct osigblock_args {
1447 	int	mask;
1448 };
1449 #endif
1450 int
1451 osigblock(struct thread *td, struct osigblock_args *uap)
1452 {
1453 	sigset_t set, oset;
1454 
1455 	OSIG2SIG(uap->mask, set);
1456 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1457 	SIG2OSIG(oset, td->td_retval[0]);
1458 	return (0);
1459 }
1460 
1461 #ifndef _SYS_SYSPROTO_H_
1462 struct osigsetmask_args {
1463 	int	mask;
1464 };
1465 #endif
1466 int
1467 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1468 {
1469 	sigset_t set, oset;
1470 
1471 	OSIG2SIG(uap->mask, set);
1472 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1473 	SIG2OSIG(oset, td->td_retval[0]);
1474 	return (0);
1475 }
1476 #endif /* COMPAT_43 */
1477 
1478 /*
1479  * Suspend calling thread until signal, providing mask to be set in the
1480  * meantime.
1481  */
1482 #ifndef _SYS_SYSPROTO_H_
1483 struct sigsuspend_args {
1484 	const sigset_t *sigmask;
1485 };
1486 #endif
1487 /* ARGSUSED */
1488 int
1489 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1490 {
1491 	sigset_t mask;
1492 	int error;
1493 
1494 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1495 	if (error)
1496 		return (error);
1497 	return (kern_sigsuspend(td, mask));
1498 }
1499 
1500 int
1501 kern_sigsuspend(struct thread *td, sigset_t mask)
1502 {
1503 	struct proc *p = td->td_proc;
1504 	int has_sig, sig;
1505 
1506 	/*
1507 	 * When returning from sigsuspend, we want
1508 	 * the old mask to be restored after the
1509 	 * signal handler has finished.  Thus, we
1510 	 * save it here and mark the sigacts structure
1511 	 * to indicate this.
1512 	 */
1513 	PROC_LOCK(p);
1514 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1515 	    SIGPROCMASK_PROC_LOCKED);
1516 	td->td_pflags |= TDP_OLDMASK;
1517 
1518 	/*
1519 	 * Process signals now. Otherwise, we can get spurious wakeup
1520 	 * due to signal entered process queue, but delivered to other
1521 	 * thread. But sigsuspend should return only on signal
1522 	 * delivery.
1523 	 */
1524 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1525 	for (has_sig = 0; !has_sig;) {
1526 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1527 			0) == 0)
1528 			/* void */;
1529 		thread_suspend_check(0);
1530 		mtx_lock(&p->p_sigacts->ps_mtx);
1531 		while ((sig = cursig(td)) != 0) {
1532 			KASSERT(sig >= 0, ("sig %d", sig));
1533 			has_sig += postsig(sig);
1534 		}
1535 		mtx_unlock(&p->p_sigacts->ps_mtx);
1536 	}
1537 	PROC_UNLOCK(p);
1538 	td->td_errno = EINTR;
1539 	td->td_pflags |= TDP_NERRNO;
1540 	return (EJUSTRETURN);
1541 }
1542 
1543 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1544 /*
1545  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1546  * convention: libc stub passes mask, not pointer, to save a copyin.
1547  */
1548 #ifndef _SYS_SYSPROTO_H_
1549 struct osigsuspend_args {
1550 	osigset_t mask;
1551 };
1552 #endif
1553 /* ARGSUSED */
1554 int
1555 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1556 {
1557 	sigset_t mask;
1558 
1559 	OSIG2SIG(uap->mask, mask);
1560 	return (kern_sigsuspend(td, mask));
1561 }
1562 #endif /* COMPAT_43 */
1563 
1564 #if defined(COMPAT_43)
1565 #ifndef _SYS_SYSPROTO_H_
1566 struct osigstack_args {
1567 	struct	sigstack *nss;
1568 	struct	sigstack *oss;
1569 };
1570 #endif
1571 /* ARGSUSED */
1572 int
1573 osigstack(struct thread *td, struct osigstack_args *uap)
1574 {
1575 	struct sigstack nss, oss;
1576 	int error = 0;
1577 
1578 	if (uap->nss != NULL) {
1579 		error = copyin(uap->nss, &nss, sizeof(nss));
1580 		if (error)
1581 			return (error);
1582 	}
1583 	oss.ss_sp = td->td_sigstk.ss_sp;
1584 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1585 	if (uap->nss != NULL) {
1586 		td->td_sigstk.ss_sp = nss.ss_sp;
1587 		td->td_sigstk.ss_size = 0;
1588 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1589 		td->td_pflags |= TDP_ALTSTACK;
1590 	}
1591 	if (uap->oss != NULL)
1592 		error = copyout(&oss, uap->oss, sizeof(oss));
1593 
1594 	return (error);
1595 }
1596 #endif /* COMPAT_43 */
1597 
1598 #ifndef _SYS_SYSPROTO_H_
1599 struct sigaltstack_args {
1600 	stack_t	*ss;
1601 	stack_t	*oss;
1602 };
1603 #endif
1604 /* ARGSUSED */
1605 int
1606 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1607 {
1608 	stack_t ss, oss;
1609 	int error;
1610 
1611 	if (uap->ss != NULL) {
1612 		error = copyin(uap->ss, &ss, sizeof(ss));
1613 		if (error)
1614 			return (error);
1615 	}
1616 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1617 	    (uap->oss != NULL) ? &oss : NULL);
1618 	if (error)
1619 		return (error);
1620 	if (uap->oss != NULL)
1621 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1622 	return (error);
1623 }
1624 
1625 int
1626 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1627 {
1628 	struct proc *p = td->td_proc;
1629 	int oonstack;
1630 
1631 	oonstack = sigonstack(cpu_getstack(td));
1632 
1633 	if (oss != NULL) {
1634 		*oss = td->td_sigstk;
1635 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1636 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1637 	}
1638 
1639 	if (ss != NULL) {
1640 		if (oonstack)
1641 			return (EPERM);
1642 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1643 			return (EINVAL);
1644 		if (!(ss->ss_flags & SS_DISABLE)) {
1645 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1646 				return (ENOMEM);
1647 
1648 			td->td_sigstk = *ss;
1649 			td->td_pflags |= TDP_ALTSTACK;
1650 		} else {
1651 			td->td_pflags &= ~TDP_ALTSTACK;
1652 		}
1653 	}
1654 	return (0);
1655 }
1656 
1657 /*
1658  * Common code for kill process group/broadcast kill.
1659  * cp is calling process.
1660  */
1661 static int
1662 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1663 {
1664 	struct proc *p;
1665 	struct pgrp *pgrp;
1666 	int err;
1667 	int ret;
1668 
1669 	ret = ESRCH;
1670 	if (all) {
1671 		/*
1672 		 * broadcast
1673 		 */
1674 		sx_slock(&allproc_lock);
1675 		FOREACH_PROC_IN_SYSTEM(p) {
1676 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1677 			    p == td->td_proc || p->p_state == PRS_NEW) {
1678 				continue;
1679 			}
1680 			PROC_LOCK(p);
1681 			err = p_cansignal(td, p, sig);
1682 			if (err == 0) {
1683 				if (sig)
1684 					pksignal(p, sig, ksi);
1685 				ret = err;
1686 			}
1687 			else if (ret == ESRCH)
1688 				ret = err;
1689 			PROC_UNLOCK(p);
1690 		}
1691 		sx_sunlock(&allproc_lock);
1692 	} else {
1693 		sx_slock(&proctree_lock);
1694 		if (pgid == 0) {
1695 			/*
1696 			 * zero pgid means send to my process group.
1697 			 */
1698 			pgrp = td->td_proc->p_pgrp;
1699 			PGRP_LOCK(pgrp);
1700 		} else {
1701 			pgrp = pgfind(pgid);
1702 			if (pgrp == NULL) {
1703 				sx_sunlock(&proctree_lock);
1704 				return (ESRCH);
1705 			}
1706 		}
1707 		sx_sunlock(&proctree_lock);
1708 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1709 			PROC_LOCK(p);
1710 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1711 			    p->p_state == PRS_NEW) {
1712 				PROC_UNLOCK(p);
1713 				continue;
1714 			}
1715 			err = p_cansignal(td, p, sig);
1716 			if (err == 0) {
1717 				if (sig)
1718 					pksignal(p, sig, ksi);
1719 				ret = err;
1720 			}
1721 			else if (ret == ESRCH)
1722 				ret = err;
1723 			PROC_UNLOCK(p);
1724 		}
1725 		PGRP_UNLOCK(pgrp);
1726 	}
1727 	return (ret);
1728 }
1729 
1730 #ifndef _SYS_SYSPROTO_H_
1731 struct kill_args {
1732 	int	pid;
1733 	int	signum;
1734 };
1735 #endif
1736 /* ARGSUSED */
1737 int
1738 sys_kill(struct thread *td, struct kill_args *uap)
1739 {
1740 	ksiginfo_t ksi;
1741 	struct proc *p;
1742 	int error;
1743 
1744 	/*
1745 	 * A process in capability mode can send signals only to himself.
1746 	 * The main rationale behind this is that abort(3) is implemented as
1747 	 * kill(getpid(), SIGABRT).
1748 	 */
1749 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1750 		return (ECAPMODE);
1751 
1752 	AUDIT_ARG_SIGNUM(uap->signum);
1753 	AUDIT_ARG_PID(uap->pid);
1754 	if ((u_int)uap->signum > _SIG_MAXSIG)
1755 		return (EINVAL);
1756 
1757 	ksiginfo_init(&ksi);
1758 	ksi.ksi_signo = uap->signum;
1759 	ksi.ksi_code = SI_USER;
1760 	ksi.ksi_pid = td->td_proc->p_pid;
1761 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1762 
1763 	if (uap->pid > 0) {
1764 		/* kill single process */
1765 		if ((p = pfind_any(uap->pid)) == NULL)
1766 			return (ESRCH);
1767 		AUDIT_ARG_PROCESS(p);
1768 		error = p_cansignal(td, p, uap->signum);
1769 		if (error == 0 && uap->signum)
1770 			pksignal(p, uap->signum, &ksi);
1771 		PROC_UNLOCK(p);
1772 		return (error);
1773 	}
1774 	switch (uap->pid) {
1775 	case -1:		/* broadcast signal */
1776 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1777 	case 0:			/* signal own process group */
1778 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1779 	default:		/* negative explicit process group */
1780 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1781 	}
1782 	/* NOTREACHED */
1783 }
1784 
1785 int
1786 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1787 {
1788 	struct proc *p;
1789 	int error;
1790 
1791 	AUDIT_ARG_SIGNUM(uap->signum);
1792 	AUDIT_ARG_FD(uap->fd);
1793 	if ((u_int)uap->signum > _SIG_MAXSIG)
1794 		return (EINVAL);
1795 
1796 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1797 	if (error)
1798 		return (error);
1799 	AUDIT_ARG_PROCESS(p);
1800 	error = p_cansignal(td, p, uap->signum);
1801 	if (error == 0 && uap->signum)
1802 		kern_psignal(p, uap->signum);
1803 	PROC_UNLOCK(p);
1804 	return (error);
1805 }
1806 
1807 #if defined(COMPAT_43)
1808 #ifndef _SYS_SYSPROTO_H_
1809 struct okillpg_args {
1810 	int	pgid;
1811 	int	signum;
1812 };
1813 #endif
1814 /* ARGSUSED */
1815 int
1816 okillpg(struct thread *td, struct okillpg_args *uap)
1817 {
1818 	ksiginfo_t ksi;
1819 
1820 	AUDIT_ARG_SIGNUM(uap->signum);
1821 	AUDIT_ARG_PID(uap->pgid);
1822 	if ((u_int)uap->signum > _SIG_MAXSIG)
1823 		return (EINVAL);
1824 
1825 	ksiginfo_init(&ksi);
1826 	ksi.ksi_signo = uap->signum;
1827 	ksi.ksi_code = SI_USER;
1828 	ksi.ksi_pid = td->td_proc->p_pid;
1829 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1830 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1831 }
1832 #endif /* COMPAT_43 */
1833 
1834 #ifndef _SYS_SYSPROTO_H_
1835 struct sigqueue_args {
1836 	pid_t pid;
1837 	int signum;
1838 	/* union sigval */ void *value;
1839 };
1840 #endif
1841 int
1842 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1843 {
1844 	union sigval sv;
1845 
1846 	sv.sival_ptr = uap->value;
1847 
1848 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1849 }
1850 
1851 int
1852 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1853 {
1854 	ksiginfo_t ksi;
1855 	struct proc *p;
1856 	int error;
1857 
1858 	if ((u_int)signum > _SIG_MAXSIG)
1859 		return (EINVAL);
1860 
1861 	/*
1862 	 * Specification says sigqueue can only send signal to
1863 	 * single process.
1864 	 */
1865 	if (pid <= 0)
1866 		return (EINVAL);
1867 
1868 	if ((p = pfind_any(pid)) == NULL)
1869 		return (ESRCH);
1870 	error = p_cansignal(td, p, signum);
1871 	if (error == 0 && signum != 0) {
1872 		ksiginfo_init(&ksi);
1873 		ksi.ksi_flags = KSI_SIGQ;
1874 		ksi.ksi_signo = signum;
1875 		ksi.ksi_code = SI_QUEUE;
1876 		ksi.ksi_pid = td->td_proc->p_pid;
1877 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1878 		ksi.ksi_value = *value;
1879 		error = pksignal(p, ksi.ksi_signo, &ksi);
1880 	}
1881 	PROC_UNLOCK(p);
1882 	return (error);
1883 }
1884 
1885 /*
1886  * Send a signal to a process group.
1887  */
1888 void
1889 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1890 {
1891 	struct pgrp *pgrp;
1892 
1893 	if (pgid != 0) {
1894 		sx_slock(&proctree_lock);
1895 		pgrp = pgfind(pgid);
1896 		sx_sunlock(&proctree_lock);
1897 		if (pgrp != NULL) {
1898 			pgsignal(pgrp, sig, 0, ksi);
1899 			PGRP_UNLOCK(pgrp);
1900 		}
1901 	}
1902 }
1903 
1904 /*
1905  * Send a signal to a process group.  If checktty is 1,
1906  * limit to members which have a controlling terminal.
1907  */
1908 void
1909 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1910 {
1911 	struct proc *p;
1912 
1913 	if (pgrp) {
1914 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1915 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1916 			PROC_LOCK(p);
1917 			if (p->p_state == PRS_NORMAL &&
1918 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1919 				pksignal(p, sig, ksi);
1920 			PROC_UNLOCK(p);
1921 		}
1922 	}
1923 }
1924 
1925 
1926 /*
1927  * Recalculate the signal mask and reset the signal disposition after
1928  * usermode frame for delivery is formed.  Should be called after
1929  * mach-specific routine, because sysent->sv_sendsig() needs correct
1930  * ps_siginfo and signal mask.
1931  */
1932 static void
1933 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1934 {
1935 	sigset_t mask;
1936 
1937 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1938 	td->td_ru.ru_nsignals++;
1939 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1940 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1941 		SIGADDSET(mask, sig);
1942 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1943 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1944 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1945 		sigdflt(ps, sig);
1946 }
1947 
1948 
1949 /*
1950  * Send a signal caused by a trap to the current thread.  If it will be
1951  * caught immediately, deliver it with correct code.  Otherwise, post it
1952  * normally.
1953  */
1954 void
1955 trapsignal(struct thread *td, ksiginfo_t *ksi)
1956 {
1957 	struct sigacts *ps;
1958 	struct proc *p;
1959 	int sig;
1960 	int code;
1961 
1962 	p = td->td_proc;
1963 	sig = ksi->ksi_signo;
1964 	code = ksi->ksi_code;
1965 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1966 
1967 	PROC_LOCK(p);
1968 	ps = p->p_sigacts;
1969 	mtx_lock(&ps->ps_mtx);
1970 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1971 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1972 #ifdef KTRACE
1973 		if (KTRPOINT(curthread, KTR_PSIG))
1974 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1975 			    &td->td_sigmask, code);
1976 #endif
1977 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1978 				ksi, &td->td_sigmask);
1979 		postsig_done(sig, td, ps);
1980 		mtx_unlock(&ps->ps_mtx);
1981 	} else {
1982 		/*
1983 		 * Avoid a possible infinite loop if the thread
1984 		 * masking the signal or process is ignoring the
1985 		 * signal.
1986 		 */
1987 		if (kern_forcesigexit &&
1988 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1989 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1990 			SIGDELSET(td->td_sigmask, sig);
1991 			SIGDELSET(ps->ps_sigcatch, sig);
1992 			SIGDELSET(ps->ps_sigignore, sig);
1993 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1994 		}
1995 		mtx_unlock(&ps->ps_mtx);
1996 		p->p_code = code;	/* XXX for core dump/debugger */
1997 		p->p_sig = sig;		/* XXX to verify code */
1998 		tdsendsignal(p, td, sig, ksi);
1999 	}
2000 	PROC_UNLOCK(p);
2001 }
2002 
2003 static struct thread *
2004 sigtd(struct proc *p, int sig, int prop)
2005 {
2006 	struct thread *td, *signal_td;
2007 
2008 	PROC_LOCK_ASSERT(p, MA_OWNED);
2009 
2010 	/*
2011 	 * Check if current thread can handle the signal without
2012 	 * switching context to another thread.
2013 	 */
2014 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2015 		return (curthread);
2016 	signal_td = NULL;
2017 	FOREACH_THREAD_IN_PROC(p, td) {
2018 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2019 			signal_td = td;
2020 			break;
2021 		}
2022 	}
2023 	if (signal_td == NULL)
2024 		signal_td = FIRST_THREAD_IN_PROC(p);
2025 	return (signal_td);
2026 }
2027 
2028 /*
2029  * Send the signal to the process.  If the signal has an action, the action
2030  * is usually performed by the target process rather than the caller; we add
2031  * the signal to the set of pending signals for the process.
2032  *
2033  * Exceptions:
2034  *   o When a stop signal is sent to a sleeping process that takes the
2035  *     default action, the process is stopped without awakening it.
2036  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2037  *     regardless of the signal action (eg, blocked or ignored).
2038  *
2039  * Other ignored signals are discarded immediately.
2040  *
2041  * NB: This function may be entered from the debugger via the "kill" DDB
2042  * command.  There is little that can be done to mitigate the possibly messy
2043  * side effects of this unwise possibility.
2044  */
2045 void
2046 kern_psignal(struct proc *p, int sig)
2047 {
2048 	ksiginfo_t ksi;
2049 
2050 	ksiginfo_init(&ksi);
2051 	ksi.ksi_signo = sig;
2052 	ksi.ksi_code = SI_KERNEL;
2053 	(void) tdsendsignal(p, NULL, sig, &ksi);
2054 }
2055 
2056 int
2057 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2058 {
2059 
2060 	return (tdsendsignal(p, NULL, sig, ksi));
2061 }
2062 
2063 /* Utility function for finding a thread to send signal event to. */
2064 int
2065 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2066 {
2067 	struct thread *td;
2068 
2069 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2070 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2071 		if (td == NULL)
2072 			return (ESRCH);
2073 		*ttd = td;
2074 	} else {
2075 		*ttd = NULL;
2076 		PROC_LOCK(p);
2077 	}
2078 	return (0);
2079 }
2080 
2081 void
2082 tdsignal(struct thread *td, int sig)
2083 {
2084 	ksiginfo_t ksi;
2085 
2086 	ksiginfo_init(&ksi);
2087 	ksi.ksi_signo = sig;
2088 	ksi.ksi_code = SI_KERNEL;
2089 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2090 }
2091 
2092 void
2093 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2094 {
2095 
2096 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2097 }
2098 
2099 int
2100 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2101 {
2102 	sig_t action;
2103 	sigqueue_t *sigqueue;
2104 	int prop;
2105 	struct sigacts *ps;
2106 	int intrval;
2107 	int ret = 0;
2108 	int wakeup_swapper;
2109 
2110 	MPASS(td == NULL || p == td->td_proc);
2111 	PROC_LOCK_ASSERT(p, MA_OWNED);
2112 
2113 	if (!_SIG_VALID(sig))
2114 		panic("%s(): invalid signal %d", __func__, sig);
2115 
2116 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2117 
2118 	/*
2119 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2120 	 */
2121 	if (p->p_state == PRS_ZOMBIE) {
2122 		if (ksi && (ksi->ksi_flags & KSI_INS))
2123 			ksiginfo_tryfree(ksi);
2124 		return (ret);
2125 	}
2126 
2127 	ps = p->p_sigacts;
2128 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2129 	prop = sigprop(sig);
2130 
2131 	if (td == NULL) {
2132 		td = sigtd(p, sig, prop);
2133 		sigqueue = &p->p_sigqueue;
2134 	} else
2135 		sigqueue = &td->td_sigqueue;
2136 
2137 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2138 
2139 	/*
2140 	 * If the signal is being ignored,
2141 	 * then we forget about it immediately.
2142 	 * (Note: we don't set SIGCONT in ps_sigignore,
2143 	 * and if it is set to SIG_IGN,
2144 	 * action will be SIG_DFL here.)
2145 	 */
2146 	mtx_lock(&ps->ps_mtx);
2147 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2148 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2149 
2150 		mtx_unlock(&ps->ps_mtx);
2151 		if (ksi && (ksi->ksi_flags & KSI_INS))
2152 			ksiginfo_tryfree(ksi);
2153 		return (ret);
2154 	}
2155 	if (SIGISMEMBER(td->td_sigmask, sig))
2156 		action = SIG_HOLD;
2157 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2158 		action = SIG_CATCH;
2159 	else
2160 		action = SIG_DFL;
2161 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2162 		intrval = EINTR;
2163 	else
2164 		intrval = ERESTART;
2165 	mtx_unlock(&ps->ps_mtx);
2166 
2167 	if (prop & SIGPROP_CONT)
2168 		sigqueue_delete_stopmask_proc(p);
2169 	else if (prop & SIGPROP_STOP) {
2170 		/*
2171 		 * If sending a tty stop signal to a member of an orphaned
2172 		 * process group, discard the signal here if the action
2173 		 * is default; don't stop the process below if sleeping,
2174 		 * and don't clear any pending SIGCONT.
2175 		 */
2176 		if ((prop & SIGPROP_TTYSTOP) &&
2177 		    (p->p_pgrp->pg_jobc == 0) &&
2178 		    (action == SIG_DFL)) {
2179 			if (ksi && (ksi->ksi_flags & KSI_INS))
2180 				ksiginfo_tryfree(ksi);
2181 			return (ret);
2182 		}
2183 		sigqueue_delete_proc(p, SIGCONT);
2184 		if (p->p_flag & P_CONTINUED) {
2185 			p->p_flag &= ~P_CONTINUED;
2186 			PROC_LOCK(p->p_pptr);
2187 			sigqueue_take(p->p_ksi);
2188 			PROC_UNLOCK(p->p_pptr);
2189 		}
2190 	}
2191 
2192 	ret = sigqueue_add(sigqueue, sig, ksi);
2193 	if (ret != 0)
2194 		return (ret);
2195 	signotify(td);
2196 	/*
2197 	 * Defer further processing for signals which are held,
2198 	 * except that stopped processes must be continued by SIGCONT.
2199 	 */
2200 	if (action == SIG_HOLD &&
2201 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2202 		return (ret);
2203 
2204 	/* SIGKILL: Remove procfs STOPEVENTs. */
2205 	if (sig == SIGKILL) {
2206 		/* from procfs_ioctl.c: PIOCBIC */
2207 		p->p_stops = 0;
2208 		/* from procfs_ioctl.c: PIOCCONT */
2209 		p->p_step = 0;
2210 		wakeup(&p->p_step);
2211 	}
2212 	/*
2213 	 * Some signals have a process-wide effect and a per-thread
2214 	 * component.  Most processing occurs when the process next
2215 	 * tries to cross the user boundary, however there are some
2216 	 * times when processing needs to be done immediately, such as
2217 	 * waking up threads so that they can cross the user boundary.
2218 	 * We try to do the per-process part here.
2219 	 */
2220 	if (P_SHOULDSTOP(p)) {
2221 		KASSERT(!(p->p_flag & P_WEXIT),
2222 		    ("signal to stopped but exiting process"));
2223 		if (sig == SIGKILL) {
2224 			/*
2225 			 * If traced process is already stopped,
2226 			 * then no further action is necessary.
2227 			 */
2228 			if (p->p_flag & P_TRACED)
2229 				goto out;
2230 			/*
2231 			 * SIGKILL sets process running.
2232 			 * It will die elsewhere.
2233 			 * All threads must be restarted.
2234 			 */
2235 			p->p_flag &= ~P_STOPPED_SIG;
2236 			goto runfast;
2237 		}
2238 
2239 		if (prop & SIGPROP_CONT) {
2240 			/*
2241 			 * If traced process is already stopped,
2242 			 * then no further action is necessary.
2243 			 */
2244 			if (p->p_flag & P_TRACED)
2245 				goto out;
2246 			/*
2247 			 * If SIGCONT is default (or ignored), we continue the
2248 			 * process but don't leave the signal in sigqueue as
2249 			 * it has no further action.  If SIGCONT is held, we
2250 			 * continue the process and leave the signal in
2251 			 * sigqueue.  If the process catches SIGCONT, let it
2252 			 * handle the signal itself.  If it isn't waiting on
2253 			 * an event, it goes back to run state.
2254 			 * Otherwise, process goes back to sleep state.
2255 			 */
2256 			p->p_flag &= ~P_STOPPED_SIG;
2257 			PROC_SLOCK(p);
2258 			if (p->p_numthreads == p->p_suspcount) {
2259 				PROC_SUNLOCK(p);
2260 				p->p_flag |= P_CONTINUED;
2261 				p->p_xsig = SIGCONT;
2262 				PROC_LOCK(p->p_pptr);
2263 				childproc_continued(p);
2264 				PROC_UNLOCK(p->p_pptr);
2265 				PROC_SLOCK(p);
2266 			}
2267 			if (action == SIG_DFL) {
2268 				thread_unsuspend(p);
2269 				PROC_SUNLOCK(p);
2270 				sigqueue_delete(sigqueue, sig);
2271 				goto out;
2272 			}
2273 			if (action == SIG_CATCH) {
2274 				/*
2275 				 * The process wants to catch it so it needs
2276 				 * to run at least one thread, but which one?
2277 				 */
2278 				PROC_SUNLOCK(p);
2279 				goto runfast;
2280 			}
2281 			/*
2282 			 * The signal is not ignored or caught.
2283 			 */
2284 			thread_unsuspend(p);
2285 			PROC_SUNLOCK(p);
2286 			goto out;
2287 		}
2288 
2289 		if (prop & SIGPROP_STOP) {
2290 			/*
2291 			 * If traced process is already stopped,
2292 			 * then no further action is necessary.
2293 			 */
2294 			if (p->p_flag & P_TRACED)
2295 				goto out;
2296 			/*
2297 			 * Already stopped, don't need to stop again
2298 			 * (If we did the shell could get confused).
2299 			 * Just make sure the signal STOP bit set.
2300 			 */
2301 			p->p_flag |= P_STOPPED_SIG;
2302 			sigqueue_delete(sigqueue, sig);
2303 			goto out;
2304 		}
2305 
2306 		/*
2307 		 * All other kinds of signals:
2308 		 * If a thread is sleeping interruptibly, simulate a
2309 		 * wakeup so that when it is continued it will be made
2310 		 * runnable and can look at the signal.  However, don't make
2311 		 * the PROCESS runnable, leave it stopped.
2312 		 * It may run a bit until it hits a thread_suspend_check().
2313 		 */
2314 		wakeup_swapper = 0;
2315 		PROC_SLOCK(p);
2316 		thread_lock(td);
2317 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2318 			wakeup_swapper = sleepq_abort(td, intrval);
2319 		thread_unlock(td);
2320 		PROC_SUNLOCK(p);
2321 		if (wakeup_swapper)
2322 			kick_proc0();
2323 		goto out;
2324 		/*
2325 		 * Mutexes are short lived. Threads waiting on them will
2326 		 * hit thread_suspend_check() soon.
2327 		 */
2328 	} else if (p->p_state == PRS_NORMAL) {
2329 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2330 			tdsigwakeup(td, sig, action, intrval);
2331 			goto out;
2332 		}
2333 
2334 		MPASS(action == SIG_DFL);
2335 
2336 		if (prop & SIGPROP_STOP) {
2337 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2338 				goto out;
2339 			p->p_flag |= P_STOPPED_SIG;
2340 			p->p_xsig = sig;
2341 			PROC_SLOCK(p);
2342 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2343 			if (p->p_numthreads == p->p_suspcount) {
2344 				/*
2345 				 * only thread sending signal to another
2346 				 * process can reach here, if thread is sending
2347 				 * signal to its process, because thread does
2348 				 * not suspend itself here, p_numthreads
2349 				 * should never be equal to p_suspcount.
2350 				 */
2351 				thread_stopped(p);
2352 				PROC_SUNLOCK(p);
2353 				sigqueue_delete_proc(p, p->p_xsig);
2354 			} else
2355 				PROC_SUNLOCK(p);
2356 			if (wakeup_swapper)
2357 				kick_proc0();
2358 			goto out;
2359 		}
2360 	} else {
2361 		/* Not in "NORMAL" state. discard the signal. */
2362 		sigqueue_delete(sigqueue, sig);
2363 		goto out;
2364 	}
2365 
2366 	/*
2367 	 * The process is not stopped so we need to apply the signal to all the
2368 	 * running threads.
2369 	 */
2370 runfast:
2371 	tdsigwakeup(td, sig, action, intrval);
2372 	PROC_SLOCK(p);
2373 	thread_unsuspend(p);
2374 	PROC_SUNLOCK(p);
2375 out:
2376 	/* If we jump here, proc slock should not be owned. */
2377 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2378 	return (ret);
2379 }
2380 
2381 /*
2382  * The force of a signal has been directed against a single
2383  * thread.  We need to see what we can do about knocking it
2384  * out of any sleep it may be in etc.
2385  */
2386 static void
2387 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2388 {
2389 	struct proc *p = td->td_proc;
2390 	int prop;
2391 	int wakeup_swapper;
2392 
2393 	wakeup_swapper = 0;
2394 	PROC_LOCK_ASSERT(p, MA_OWNED);
2395 	prop = sigprop(sig);
2396 
2397 	PROC_SLOCK(p);
2398 	thread_lock(td);
2399 	/*
2400 	 * Bring the priority of a thread up if we want it to get
2401 	 * killed in this lifetime.  Be careful to avoid bumping the
2402 	 * priority of the idle thread, since we still allow to signal
2403 	 * kernel processes.
2404 	 */
2405 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2406 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2407 		sched_prio(td, PUSER);
2408 	if (TD_ON_SLEEPQ(td)) {
2409 		/*
2410 		 * If thread is sleeping uninterruptibly
2411 		 * we can't interrupt the sleep... the signal will
2412 		 * be noticed when the process returns through
2413 		 * trap() or syscall().
2414 		 */
2415 		if ((td->td_flags & TDF_SINTR) == 0)
2416 			goto out;
2417 		/*
2418 		 * If SIGCONT is default (or ignored) and process is
2419 		 * asleep, we are finished; the process should not
2420 		 * be awakened.
2421 		 */
2422 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2423 			thread_unlock(td);
2424 			PROC_SUNLOCK(p);
2425 			sigqueue_delete(&p->p_sigqueue, sig);
2426 			/*
2427 			 * It may be on either list in this state.
2428 			 * Remove from both for now.
2429 			 */
2430 			sigqueue_delete(&td->td_sigqueue, sig);
2431 			return;
2432 		}
2433 
2434 		/*
2435 		 * Don't awaken a sleeping thread for SIGSTOP if the
2436 		 * STOP signal is deferred.
2437 		 */
2438 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2439 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2440 			goto out;
2441 
2442 		/*
2443 		 * Give low priority threads a better chance to run.
2444 		 */
2445 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2446 			sched_prio(td, PUSER);
2447 
2448 		wakeup_swapper = sleepq_abort(td, intrval);
2449 	} else {
2450 		/*
2451 		 * Other states do nothing with the signal immediately,
2452 		 * other than kicking ourselves if we are running.
2453 		 * It will either never be noticed, or noticed very soon.
2454 		 */
2455 #ifdef SMP
2456 		if (TD_IS_RUNNING(td) && td != curthread)
2457 			forward_signal(td);
2458 #endif
2459 	}
2460 out:
2461 	PROC_SUNLOCK(p);
2462 	thread_unlock(td);
2463 	if (wakeup_swapper)
2464 		kick_proc0();
2465 }
2466 
2467 static int
2468 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2469 {
2470 	struct thread *td2;
2471 	int wakeup_swapper;
2472 
2473 	PROC_LOCK_ASSERT(p, MA_OWNED);
2474 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2475 	MPASS(sending || td == curthread);
2476 
2477 	wakeup_swapper = 0;
2478 	FOREACH_THREAD_IN_PROC(p, td2) {
2479 		thread_lock(td2);
2480 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2481 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2482 		    (td2->td_flags & TDF_SINTR)) {
2483 			if (td2->td_flags & TDF_SBDRY) {
2484 				/*
2485 				 * Once a thread is asleep with
2486 				 * TDF_SBDRY and without TDF_SERESTART
2487 				 * or TDF_SEINTR set, it should never
2488 				 * become suspended due to this check.
2489 				 */
2490 				KASSERT(!TD_IS_SUSPENDED(td2),
2491 				    ("thread with deferred stops suspended"));
2492 				if (TD_SBDRY_INTR(td2))
2493 					wakeup_swapper |= sleepq_abort(td2,
2494 					    TD_SBDRY_ERRNO(td2));
2495 			} else if (!TD_IS_SUSPENDED(td2)) {
2496 				thread_suspend_one(td2);
2497 			}
2498 		} else if (!TD_IS_SUSPENDED(td2)) {
2499 			if (sending || td != td2)
2500 				td2->td_flags |= TDF_ASTPENDING;
2501 #ifdef SMP
2502 			if (TD_IS_RUNNING(td2) && td2 != td)
2503 				forward_signal(td2);
2504 #endif
2505 		}
2506 		thread_unlock(td2);
2507 	}
2508 	return (wakeup_swapper);
2509 }
2510 
2511 /*
2512  * Stop the process for an event deemed interesting to the debugger. If si is
2513  * non-NULL, this is a signal exchange; the new signal requested by the
2514  * debugger will be returned for handling. If si is NULL, this is some other
2515  * type of interesting event. The debugger may request a signal be delivered in
2516  * that case as well, however it will be deferred until it can be handled.
2517  */
2518 int
2519 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2520 {
2521 	struct proc *p = td->td_proc;
2522 	struct thread *td2;
2523 	ksiginfo_t ksi;
2524 	int prop;
2525 
2526 	PROC_LOCK_ASSERT(p, MA_OWNED);
2527 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2528 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2529 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2530 
2531 	td->td_xsig = sig;
2532 
2533 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2534 		td->td_dbgflags |= TDB_XSIG;
2535 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2536 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2537 		PROC_SLOCK(p);
2538 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2539 			if (P_KILLED(p)) {
2540 				/*
2541 				 * Ensure that, if we've been PT_KILLed, the
2542 				 * exit status reflects that. Another thread
2543 				 * may also be in ptracestop(), having just
2544 				 * received the SIGKILL, but this thread was
2545 				 * unsuspended first.
2546 				 */
2547 				td->td_dbgflags &= ~TDB_XSIG;
2548 				td->td_xsig = SIGKILL;
2549 				p->p_ptevents = 0;
2550 				break;
2551 			}
2552 			if (p->p_flag & P_SINGLE_EXIT &&
2553 			    !(td->td_dbgflags & TDB_EXIT)) {
2554 				/*
2555 				 * Ignore ptrace stops except for thread exit
2556 				 * events when the process exits.
2557 				 */
2558 				td->td_dbgflags &= ~TDB_XSIG;
2559 				PROC_SUNLOCK(p);
2560 				return (0);
2561 			}
2562 
2563 			/*
2564 			 * Make wait(2) work.  Ensure that right after the
2565 			 * attach, the thread which was decided to become the
2566 			 * leader of attach gets reported to the waiter.
2567 			 * Otherwise, just avoid overwriting another thread's
2568 			 * assignment to p_xthread.  If another thread has
2569 			 * already set p_xthread, the current thread will get
2570 			 * a chance to report itself upon the next iteration.
2571 			 */
2572 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2573 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2574 			    p->p_xthread == NULL)) {
2575 				p->p_xsig = sig;
2576 				p->p_xthread = td;
2577 				td->td_dbgflags &= ~TDB_FSTP;
2578 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2579 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2580 				sig_suspend_threads(td, p, 0);
2581 			}
2582 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2583 				td->td_dbgflags &= ~TDB_STOPATFORK;
2584 				cv_broadcast(&p->p_dbgwait);
2585 			}
2586 stopme:
2587 			thread_suspend_switch(td, p);
2588 			if (p->p_xthread == td)
2589 				p->p_xthread = NULL;
2590 			if (!(p->p_flag & P_TRACED))
2591 				break;
2592 			if (td->td_dbgflags & TDB_SUSPEND) {
2593 				if (p->p_flag & P_SINGLE_EXIT)
2594 					break;
2595 				goto stopme;
2596 			}
2597 		}
2598 		PROC_SUNLOCK(p);
2599 	}
2600 
2601 	if (si != NULL && sig == td->td_xsig) {
2602 		/* Parent wants us to take the original signal unchanged. */
2603 		si->ksi_flags |= KSI_HEAD;
2604 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2605 			si->ksi_signo = 0;
2606 	} else if (td->td_xsig != 0) {
2607 		/*
2608 		 * If parent wants us to take a new signal, then it will leave
2609 		 * it in td->td_xsig; otherwise we just look for signals again.
2610 		 */
2611 		ksiginfo_init(&ksi);
2612 		ksi.ksi_signo = td->td_xsig;
2613 		ksi.ksi_flags |= KSI_PTRACE;
2614 		prop = sigprop(td->td_xsig);
2615 		td2 = sigtd(p, td->td_xsig, prop);
2616 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2617 		if (td != td2)
2618 			return (0);
2619 	}
2620 
2621 	return (td->td_xsig);
2622 }
2623 
2624 static void
2625 reschedule_signals(struct proc *p, sigset_t block, int flags)
2626 {
2627 	struct sigacts *ps;
2628 	struct thread *td;
2629 	int sig;
2630 
2631 	PROC_LOCK_ASSERT(p, MA_OWNED);
2632 	ps = p->p_sigacts;
2633 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2634 	    MA_OWNED : MA_NOTOWNED);
2635 	if (SIGISEMPTY(p->p_siglist))
2636 		return;
2637 	SIGSETAND(block, p->p_siglist);
2638 	while ((sig = sig_ffs(&block)) != 0) {
2639 		SIGDELSET(block, sig);
2640 		td = sigtd(p, sig, 0);
2641 		signotify(td);
2642 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2643 			mtx_lock(&ps->ps_mtx);
2644 		if (p->p_flag & P_TRACED ||
2645 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2646 		    !SIGISMEMBER(td->td_sigmask, sig)))
2647 			tdsigwakeup(td, sig, SIG_CATCH,
2648 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2649 			     ERESTART));
2650 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2651 			mtx_unlock(&ps->ps_mtx);
2652 	}
2653 }
2654 
2655 void
2656 tdsigcleanup(struct thread *td)
2657 {
2658 	struct proc *p;
2659 	sigset_t unblocked;
2660 
2661 	p = td->td_proc;
2662 	PROC_LOCK_ASSERT(p, MA_OWNED);
2663 
2664 	sigqueue_flush(&td->td_sigqueue);
2665 	if (p->p_numthreads == 1)
2666 		return;
2667 
2668 	/*
2669 	 * Since we cannot handle signals, notify signal post code
2670 	 * about this by filling the sigmask.
2671 	 *
2672 	 * Also, if needed, wake up thread(s) that do not block the
2673 	 * same signals as the exiting thread, since the thread might
2674 	 * have been selected for delivery and woken up.
2675 	 */
2676 	SIGFILLSET(unblocked);
2677 	SIGSETNAND(unblocked, td->td_sigmask);
2678 	SIGFILLSET(td->td_sigmask);
2679 	reschedule_signals(p, unblocked, 0);
2680 
2681 }
2682 
2683 static int
2684 sigdeferstop_curr_flags(int cflags)
2685 {
2686 
2687 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2688 	    (cflags & TDF_SBDRY) != 0);
2689 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2690 }
2691 
2692 /*
2693  * Defer the delivery of SIGSTOP for the current thread, according to
2694  * the requested mode.  Returns previous flags, which must be restored
2695  * by sigallowstop().
2696  *
2697  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2698  * cleared by the current thread, which allow the lock-less read-only
2699  * accesses below.
2700  */
2701 int
2702 sigdeferstop_impl(int mode)
2703 {
2704 	struct thread *td;
2705 	int cflags, nflags;
2706 
2707 	td = curthread;
2708 	cflags = sigdeferstop_curr_flags(td->td_flags);
2709 	switch (mode) {
2710 	case SIGDEFERSTOP_NOP:
2711 		nflags = cflags;
2712 		break;
2713 	case SIGDEFERSTOP_OFF:
2714 		nflags = 0;
2715 		break;
2716 	case SIGDEFERSTOP_SILENT:
2717 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2718 		break;
2719 	case SIGDEFERSTOP_EINTR:
2720 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2721 		break;
2722 	case SIGDEFERSTOP_ERESTART:
2723 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2724 		break;
2725 	default:
2726 		panic("sigdeferstop: invalid mode %x", mode);
2727 		break;
2728 	}
2729 	if (cflags == nflags)
2730 		return (SIGDEFERSTOP_VAL_NCHG);
2731 	thread_lock(td);
2732 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2733 	thread_unlock(td);
2734 	return (cflags);
2735 }
2736 
2737 /*
2738  * Restores the STOP handling mode, typically permitting the delivery
2739  * of SIGSTOP for the current thread.  This does not immediately
2740  * suspend if a stop was posted.  Instead, the thread will suspend
2741  * either via ast() or a subsequent interruptible sleep.
2742  */
2743 void
2744 sigallowstop_impl(int prev)
2745 {
2746 	struct thread *td;
2747 	int cflags;
2748 
2749 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2750 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2751 	    ("sigallowstop: incorrect previous mode %x", prev));
2752 	td = curthread;
2753 	cflags = sigdeferstop_curr_flags(td->td_flags);
2754 	if (cflags != prev) {
2755 		thread_lock(td);
2756 		td->td_flags = (td->td_flags & ~cflags) | prev;
2757 		thread_unlock(td);
2758 	}
2759 }
2760 
2761 /*
2762  * If the current process has received a signal (should be caught or cause
2763  * termination, should interrupt current syscall), return the signal number.
2764  * Stop signals with default action are processed immediately, then cleared;
2765  * they aren't returned.  This is checked after each entry to the system for
2766  * a syscall or trap (though this can usually be done without calling issignal
2767  * by checking the pending signal masks in cursig.) The normal call
2768  * sequence is
2769  *
2770  *	while (sig = cursig(curthread))
2771  *		postsig(sig);
2772  */
2773 static int
2774 issignal(struct thread *td)
2775 {
2776 	struct proc *p;
2777 	struct sigacts *ps;
2778 	struct sigqueue *queue;
2779 	sigset_t sigpending;
2780 	ksiginfo_t ksi;
2781 	int prop, sig, traced;
2782 
2783 	p = td->td_proc;
2784 	ps = p->p_sigacts;
2785 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2786 	PROC_LOCK_ASSERT(p, MA_OWNED);
2787 	for (;;) {
2788 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2789 
2790 		sigpending = td->td_sigqueue.sq_signals;
2791 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2792 		SIGSETNAND(sigpending, td->td_sigmask);
2793 
2794 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2795 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2796 			SIG_STOPSIGMASK(sigpending);
2797 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2798 			return (0);
2799 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2800 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2801 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2802 			/*
2803 			 * If debugger just attached, always consume
2804 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2805 			 * execute the debugger attach ritual in
2806 			 * order.
2807 			 */
2808 			sig = SIGSTOP;
2809 			td->td_dbgflags |= TDB_FSTP;
2810 		} else {
2811 			sig = sig_ffs(&sigpending);
2812 		}
2813 
2814 		if (p->p_stops & S_SIG) {
2815 			mtx_unlock(&ps->ps_mtx);
2816 			stopevent(p, S_SIG, sig);
2817 			mtx_lock(&ps->ps_mtx);
2818 		}
2819 
2820 		/*
2821 		 * We should see pending but ignored signals
2822 		 * only if P_TRACED was on when they were posted.
2823 		 */
2824 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2825 			sigqueue_delete(&td->td_sigqueue, sig);
2826 			sigqueue_delete(&p->p_sigqueue, sig);
2827 			continue;
2828 		}
2829 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2830 			/*
2831 			 * If traced, always stop.
2832 			 * Remove old signal from queue before the stop.
2833 			 * XXX shrug off debugger, it causes siginfo to
2834 			 * be thrown away.
2835 			 */
2836 			queue = &td->td_sigqueue;
2837 			ksiginfo_init(&ksi);
2838 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2839 				queue = &p->p_sigqueue;
2840 				sigqueue_get(queue, sig, &ksi);
2841 			}
2842 			td->td_si = ksi.ksi_info;
2843 
2844 			mtx_unlock(&ps->ps_mtx);
2845 			sig = ptracestop(td, sig, &ksi);
2846 			mtx_lock(&ps->ps_mtx);
2847 
2848 			/*
2849 			 * Keep looking if the debugger discarded or
2850 			 * replaced the signal.
2851 			 */
2852 			if (sig == 0)
2853 				continue;
2854 
2855 			/*
2856 			 * If the signal became masked, re-queue it.
2857 			 */
2858 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2859 				ksi.ksi_flags |= KSI_HEAD;
2860 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2861 				continue;
2862 			}
2863 
2864 			/*
2865 			 * If the traced bit got turned off, requeue
2866 			 * the signal and go back up to the top to
2867 			 * rescan signals.  This ensures that p_sig*
2868 			 * and p_sigact are consistent.
2869 			 */
2870 			if ((p->p_flag & P_TRACED) == 0) {
2871 				ksi.ksi_flags |= KSI_HEAD;
2872 				sigqueue_add(queue, sig, &ksi);
2873 				continue;
2874 			}
2875 		}
2876 
2877 		prop = sigprop(sig);
2878 
2879 		/*
2880 		 * Decide whether the signal should be returned.
2881 		 * Return the signal's number, or fall through
2882 		 * to clear it from the pending mask.
2883 		 */
2884 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2885 
2886 		case (intptr_t)SIG_DFL:
2887 			/*
2888 			 * Don't take default actions on system processes.
2889 			 */
2890 			if (p->p_pid <= 1) {
2891 #ifdef DIAGNOSTIC
2892 				/*
2893 				 * Are you sure you want to ignore SIGSEGV
2894 				 * in init? XXX
2895 				 */
2896 				printf("Process (pid %lu) got signal %d\n",
2897 					(u_long)p->p_pid, sig);
2898 #endif
2899 				break;		/* == ignore */
2900 			}
2901 			/*
2902 			 * If there is a pending stop signal to process with
2903 			 * default action, stop here, then clear the signal.
2904 			 * Traced or exiting processes should ignore stops.
2905 			 * Additionally, a member of an orphaned process group
2906 			 * should ignore tty stops.
2907 			 */
2908 			if (prop & SIGPROP_STOP) {
2909 				if (p->p_flag &
2910 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2911 				    (p->p_pgrp->pg_jobc == 0 &&
2912 				     prop & SIGPROP_TTYSTOP))
2913 					break;	/* == ignore */
2914 				if (TD_SBDRY_INTR(td)) {
2915 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2916 					    ("lost TDF_SBDRY"));
2917 					return (-1);
2918 				}
2919 				mtx_unlock(&ps->ps_mtx);
2920 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2921 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2922 				sigqueue_delete(&td->td_sigqueue, sig);
2923 				sigqueue_delete(&p->p_sigqueue, sig);
2924 				p->p_flag |= P_STOPPED_SIG;
2925 				p->p_xsig = sig;
2926 				PROC_SLOCK(p);
2927 				sig_suspend_threads(td, p, 0);
2928 				thread_suspend_switch(td, p);
2929 				PROC_SUNLOCK(p);
2930 				mtx_lock(&ps->ps_mtx);
2931 				goto next;
2932 			} else if (prop & SIGPROP_IGNORE) {
2933 				/*
2934 				 * Except for SIGCONT, shouldn't get here.
2935 				 * Default action is to ignore; drop it.
2936 				 */
2937 				break;		/* == ignore */
2938 			} else
2939 				return (sig);
2940 			/*NOTREACHED*/
2941 
2942 		case (intptr_t)SIG_IGN:
2943 			/*
2944 			 * Masking above should prevent us ever trying
2945 			 * to take action on an ignored signal other
2946 			 * than SIGCONT, unless process is traced.
2947 			 */
2948 			if ((prop & SIGPROP_CONT) == 0 &&
2949 			    (p->p_flag & P_TRACED) == 0)
2950 				printf("issignal\n");
2951 			break;		/* == ignore */
2952 
2953 		default:
2954 			/*
2955 			 * This signal has an action, let
2956 			 * postsig() process it.
2957 			 */
2958 			return (sig);
2959 		}
2960 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2961 		sigqueue_delete(&p->p_sigqueue, sig);
2962 next:;
2963 	}
2964 	/* NOTREACHED */
2965 }
2966 
2967 void
2968 thread_stopped(struct proc *p)
2969 {
2970 	int n;
2971 
2972 	PROC_LOCK_ASSERT(p, MA_OWNED);
2973 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2974 	n = p->p_suspcount;
2975 	if (p == curproc)
2976 		n++;
2977 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2978 		PROC_SUNLOCK(p);
2979 		p->p_flag &= ~P_WAITED;
2980 		PROC_LOCK(p->p_pptr);
2981 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2982 			CLD_TRAPPED : CLD_STOPPED);
2983 		PROC_UNLOCK(p->p_pptr);
2984 		PROC_SLOCK(p);
2985 	}
2986 }
2987 
2988 /*
2989  * Take the action for the specified signal
2990  * from the current set of pending signals.
2991  */
2992 int
2993 postsig(int sig)
2994 {
2995 	struct thread *td;
2996 	struct proc *p;
2997 	struct sigacts *ps;
2998 	sig_t action;
2999 	ksiginfo_t ksi;
3000 	sigset_t returnmask;
3001 
3002 	KASSERT(sig != 0, ("postsig"));
3003 
3004 	td = curthread;
3005 	p = td->td_proc;
3006 	PROC_LOCK_ASSERT(p, MA_OWNED);
3007 	ps = p->p_sigacts;
3008 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3009 	ksiginfo_init(&ksi);
3010 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3011 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3012 		return (0);
3013 	ksi.ksi_signo = sig;
3014 	if (ksi.ksi_code == SI_TIMER)
3015 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3016 	action = ps->ps_sigact[_SIG_IDX(sig)];
3017 #ifdef KTRACE
3018 	if (KTRPOINT(td, KTR_PSIG))
3019 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3020 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3021 #endif
3022 	if ((p->p_stops & S_SIG) != 0) {
3023 		mtx_unlock(&ps->ps_mtx);
3024 		stopevent(p, S_SIG, sig);
3025 		mtx_lock(&ps->ps_mtx);
3026 	}
3027 
3028 	if (action == SIG_DFL) {
3029 		/*
3030 		 * Default action, where the default is to kill
3031 		 * the process.  (Other cases were ignored above.)
3032 		 */
3033 		mtx_unlock(&ps->ps_mtx);
3034 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3035 		sigexit(td, sig);
3036 		/* NOTREACHED */
3037 	} else {
3038 		/*
3039 		 * If we get here, the signal must be caught.
3040 		 */
3041 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3042 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3043 		    ("postsig action: blocked sig %d", sig));
3044 
3045 		/*
3046 		 * Set the new mask value and also defer further
3047 		 * occurrences of this signal.
3048 		 *
3049 		 * Special case: user has done a sigsuspend.  Here the
3050 		 * current mask is not of interest, but rather the
3051 		 * mask from before the sigsuspend is what we want
3052 		 * restored after the signal processing is completed.
3053 		 */
3054 		if (td->td_pflags & TDP_OLDMASK) {
3055 			returnmask = td->td_oldsigmask;
3056 			td->td_pflags &= ~TDP_OLDMASK;
3057 		} else
3058 			returnmask = td->td_sigmask;
3059 
3060 		if (p->p_sig == sig) {
3061 			p->p_code = 0;
3062 			p->p_sig = 0;
3063 		}
3064 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3065 		postsig_done(sig, td, ps);
3066 	}
3067 	return (1);
3068 }
3069 
3070 /*
3071  * Kill the current process for stated reason.
3072  */
3073 void
3074 killproc(struct proc *p, char *why)
3075 {
3076 
3077 	PROC_LOCK_ASSERT(p, MA_OWNED);
3078 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3079 	    p->p_comm);
3080 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3081 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3082 	p->p_flag |= P_WKILLED;
3083 	kern_psignal(p, SIGKILL);
3084 }
3085 
3086 /*
3087  * Force the current process to exit with the specified signal, dumping core
3088  * if appropriate.  We bypass the normal tests for masked and caught signals,
3089  * allowing unrecoverable failures to terminate the process without changing
3090  * signal state.  Mark the accounting record with the signal termination.
3091  * If dumping core, save the signal number for the debugger.  Calls exit and
3092  * does not return.
3093  */
3094 void
3095 sigexit(struct thread *td, int sig)
3096 {
3097 	struct proc *p = td->td_proc;
3098 
3099 	PROC_LOCK_ASSERT(p, MA_OWNED);
3100 	p->p_acflag |= AXSIG;
3101 	/*
3102 	 * We must be single-threading to generate a core dump.  This
3103 	 * ensures that the registers in the core file are up-to-date.
3104 	 * Also, the ELF dump handler assumes that the thread list doesn't
3105 	 * change out from under it.
3106 	 *
3107 	 * XXX If another thread attempts to single-thread before us
3108 	 *     (e.g. via fork()), we won't get a dump at all.
3109 	 */
3110 	if ((sigprop(sig) & SIGPROP_CORE) &&
3111 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3112 		p->p_sig = sig;
3113 		/*
3114 		 * Log signals which would cause core dumps
3115 		 * (Log as LOG_INFO to appease those who don't want
3116 		 * these messages.)
3117 		 * XXX : Todo, as well as euid, write out ruid too
3118 		 * Note that coredump() drops proc lock.
3119 		 */
3120 		if (coredump(td) == 0)
3121 			sig |= WCOREFLAG;
3122 		if (kern_logsigexit)
3123 			log(LOG_INFO,
3124 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3125 			    p->p_pid, p->p_comm,
3126 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3127 			    sig &~ WCOREFLAG,
3128 			    sig & WCOREFLAG ? " (core dumped)" : "");
3129 	} else
3130 		PROC_UNLOCK(p);
3131 	exit1(td, 0, sig);
3132 	/* NOTREACHED */
3133 }
3134 
3135 /*
3136  * Send queued SIGCHLD to parent when child process's state
3137  * is changed.
3138  */
3139 static void
3140 sigparent(struct proc *p, int reason, int status)
3141 {
3142 	PROC_LOCK_ASSERT(p, MA_OWNED);
3143 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3144 
3145 	if (p->p_ksi != NULL) {
3146 		p->p_ksi->ksi_signo  = SIGCHLD;
3147 		p->p_ksi->ksi_code   = reason;
3148 		p->p_ksi->ksi_status = status;
3149 		p->p_ksi->ksi_pid    = p->p_pid;
3150 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3151 		if (KSI_ONQ(p->p_ksi))
3152 			return;
3153 	}
3154 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3155 }
3156 
3157 static void
3158 childproc_jobstate(struct proc *p, int reason, int sig)
3159 {
3160 	struct sigacts *ps;
3161 
3162 	PROC_LOCK_ASSERT(p, MA_OWNED);
3163 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3164 
3165 	/*
3166 	 * Wake up parent sleeping in kern_wait(), also send
3167 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3168 	 * that parent will awake, because parent may masked
3169 	 * the signal.
3170 	 */
3171 	p->p_pptr->p_flag |= P_STATCHILD;
3172 	wakeup(p->p_pptr);
3173 
3174 	ps = p->p_pptr->p_sigacts;
3175 	mtx_lock(&ps->ps_mtx);
3176 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3177 		mtx_unlock(&ps->ps_mtx);
3178 		sigparent(p, reason, sig);
3179 	} else
3180 		mtx_unlock(&ps->ps_mtx);
3181 }
3182 
3183 void
3184 childproc_stopped(struct proc *p, int reason)
3185 {
3186 
3187 	childproc_jobstate(p, reason, p->p_xsig);
3188 }
3189 
3190 void
3191 childproc_continued(struct proc *p)
3192 {
3193 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3194 }
3195 
3196 void
3197 childproc_exited(struct proc *p)
3198 {
3199 	int reason, status;
3200 
3201 	if (WCOREDUMP(p->p_xsig)) {
3202 		reason = CLD_DUMPED;
3203 		status = WTERMSIG(p->p_xsig);
3204 	} else if (WIFSIGNALED(p->p_xsig)) {
3205 		reason = CLD_KILLED;
3206 		status = WTERMSIG(p->p_xsig);
3207 	} else {
3208 		reason = CLD_EXITED;
3209 		status = p->p_xexit;
3210 	}
3211 	/*
3212 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3213 	 * done in exit1().
3214 	 */
3215 	sigparent(p, reason, status);
3216 }
3217 
3218 /*
3219  * We only have 1 character for the core count in the format
3220  * string, so the range will be 0-9
3221  */
3222 #define	MAX_NUM_CORE_FILES 10
3223 #ifndef NUM_CORE_FILES
3224 #define	NUM_CORE_FILES 5
3225 #endif
3226 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3227 static int num_cores = NUM_CORE_FILES;
3228 
3229 static int
3230 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3231 {
3232 	int error;
3233 	int new_val;
3234 
3235 	new_val = num_cores;
3236 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3237 	if (error != 0 || req->newptr == NULL)
3238 		return (error);
3239 	if (new_val > MAX_NUM_CORE_FILES)
3240 		new_val = MAX_NUM_CORE_FILES;
3241 	if (new_val < 0)
3242 		new_val = 0;
3243 	num_cores = new_val;
3244 	return (0);
3245 }
3246 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3247 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3248 
3249 #define	GZIP_SUFFIX	".gz"
3250 #define	ZSTD_SUFFIX	".zst"
3251 
3252 int compress_user_cores = 0;
3253 
3254 static int
3255 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3256 {
3257 	int error, val;
3258 
3259 	val = compress_user_cores;
3260 	error = sysctl_handle_int(oidp, &val, 0, req);
3261 	if (error != 0 || req->newptr == NULL)
3262 		return (error);
3263 	if (val != 0 && !compressor_avail(val))
3264 		return (EINVAL);
3265 	compress_user_cores = val;
3266 	return (error);
3267 }
3268 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3269     0, sizeof(int), sysctl_compress_user_cores, "I",
3270     "Enable compression of user corefiles ("
3271     __XSTRING(COMPRESS_GZIP) " = gzip, "
3272     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3273 
3274 int compress_user_cores_level = 6;
3275 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3276     &compress_user_cores_level, 0,
3277     "Corefile compression level");
3278 
3279 /*
3280  * Protect the access to corefilename[] by allproc_lock.
3281  */
3282 #define	corefilename_lock	allproc_lock
3283 
3284 static char corefilename[MAXPATHLEN] = {"%N.core"};
3285 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3286 
3287 static int
3288 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3289 {
3290 	int error;
3291 
3292 	sx_xlock(&corefilename_lock);
3293 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3294 	    req);
3295 	sx_xunlock(&corefilename_lock);
3296 
3297 	return (error);
3298 }
3299 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3300     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3301     "Process corefile name format string");
3302 
3303 /*
3304  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3305  * Expand the name described in corefilename, using name, uid, and pid
3306  * and open/create core file.
3307  * corefilename is a printf-like string, with three format specifiers:
3308  *	%N	name of process ("name")
3309  *	%P	process id (pid)
3310  *	%U	user id (uid)
3311  * For example, "%N.core" is the default; they can be disabled completely
3312  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3313  * This is controlled by the sysctl variable kern.corefile (see above).
3314  */
3315 static int
3316 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3317     int compress, struct vnode **vpp, char **namep)
3318 {
3319 	struct nameidata nd;
3320 	struct sbuf sb;
3321 	const char *format;
3322 	char *hostname, *name;
3323 	int indexpos, i, error, cmode, flags, oflags;
3324 
3325 	hostname = NULL;
3326 	format = corefilename;
3327 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3328 	indexpos = -1;
3329 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3330 	sx_slock(&corefilename_lock);
3331 	for (i = 0; format[i] != '\0'; i++) {
3332 		switch (format[i]) {
3333 		case '%':	/* Format character */
3334 			i++;
3335 			switch (format[i]) {
3336 			case '%':
3337 				sbuf_putc(&sb, '%');
3338 				break;
3339 			case 'H':	/* hostname */
3340 				if (hostname == NULL) {
3341 					hostname = malloc(MAXHOSTNAMELEN,
3342 					    M_TEMP, M_WAITOK);
3343 				}
3344 				getcredhostname(td->td_ucred, hostname,
3345 				    MAXHOSTNAMELEN);
3346 				sbuf_printf(&sb, "%s", hostname);
3347 				break;
3348 			case 'I':	/* autoincrementing index */
3349 				sbuf_printf(&sb, "0");
3350 				indexpos = sbuf_len(&sb) - 1;
3351 				break;
3352 			case 'N':	/* process name */
3353 				sbuf_printf(&sb, "%s", comm);
3354 				break;
3355 			case 'P':	/* process id */
3356 				sbuf_printf(&sb, "%u", pid);
3357 				break;
3358 			case 'U':	/* user id */
3359 				sbuf_printf(&sb, "%u", uid);
3360 				break;
3361 			default:
3362 				log(LOG_ERR,
3363 				    "Unknown format character %c in "
3364 				    "corename `%s'\n", format[i], format);
3365 				break;
3366 			}
3367 			break;
3368 		default:
3369 			sbuf_putc(&sb, format[i]);
3370 			break;
3371 		}
3372 	}
3373 	sx_sunlock(&corefilename_lock);
3374 	free(hostname, M_TEMP);
3375 	if (compress == COMPRESS_GZIP)
3376 		sbuf_printf(&sb, GZIP_SUFFIX);
3377 	else if (compress == COMPRESS_ZSTD)
3378 		sbuf_printf(&sb, ZSTD_SUFFIX);
3379 	if (sbuf_error(&sb) != 0) {
3380 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3381 		    "long\n", (long)pid, comm, (u_long)uid);
3382 		sbuf_delete(&sb);
3383 		free(name, M_TEMP);
3384 		return (ENOMEM);
3385 	}
3386 	sbuf_finish(&sb);
3387 	sbuf_delete(&sb);
3388 
3389 	cmode = S_IRUSR | S_IWUSR;
3390 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3391 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3392 
3393 	/*
3394 	 * If the core format has a %I in it, then we need to check
3395 	 * for existing corefiles before returning a name.
3396 	 * To do this we iterate over 0..num_cores to find a
3397 	 * non-existing core file name to use.
3398 	 */
3399 	if (indexpos != -1) {
3400 		for (i = 0; i < num_cores; i++) {
3401 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3402 			name[indexpos] = '0' + i;
3403 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3404 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3405 			    td->td_ucred, NULL);
3406 			if (error) {
3407 				if (error == EEXIST)
3408 					continue;
3409 				log(LOG_ERR,
3410 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3411 				    "on initial open test, error = %d\n",
3412 				    pid, comm, uid, name, error);
3413 			}
3414 			goto out;
3415 		}
3416 	}
3417 
3418 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3419 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3420 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3421 out:
3422 	if (error) {
3423 #ifdef AUDIT
3424 		audit_proc_coredump(td, name, error);
3425 #endif
3426 		free(name, M_TEMP);
3427 		return (error);
3428 	}
3429 	NDFREE(&nd, NDF_ONLY_PNBUF);
3430 	*vpp = nd.ni_vp;
3431 	*namep = name;
3432 	return (0);
3433 }
3434 
3435 static int
3436 coredump_sanitise_path(const char *path)
3437 {
3438 	size_t i;
3439 
3440 	/*
3441 	 * Only send a subset of ASCII to devd(8) because it
3442 	 * might pass these strings to sh -c.
3443 	 */
3444 	for (i = 0; path[i]; i++)
3445 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3446 		    path[i] != '/' && path[i] != '.' &&
3447 		    path[i] != '-')
3448 			return (0);
3449 
3450 	return (1);
3451 }
3452 
3453 /*
3454  * Dump a process' core.  The main routine does some
3455  * policy checking, and creates the name of the coredump;
3456  * then it passes on a vnode and a size limit to the process-specific
3457  * coredump routine if there is one; if there _is not_ one, it returns
3458  * ENOSYS; otherwise it returns the error from the process-specific routine.
3459  */
3460 
3461 static int
3462 coredump(struct thread *td)
3463 {
3464 	struct proc *p = td->td_proc;
3465 	struct ucred *cred = td->td_ucred;
3466 	struct vnode *vp;
3467 	struct flock lf;
3468 	struct vattr vattr;
3469 	int error, error1, locked;
3470 	char *name;			/* name of corefile */
3471 	void *rl_cookie;
3472 	off_t limit;
3473 	char *data = NULL;
3474 	char *fullpath, *freepath = NULL;
3475 	size_t len;
3476 	static const char comm_name[] = "comm=";
3477 	static const char core_name[] = "core=";
3478 
3479 	PROC_LOCK_ASSERT(p, MA_OWNED);
3480 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3481 	_STOPEVENT(p, S_CORE, 0);
3482 
3483 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3484 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3485 		PROC_UNLOCK(p);
3486 		return (EFAULT);
3487 	}
3488 
3489 	/*
3490 	 * Note that the bulk of limit checking is done after
3491 	 * the corefile is created.  The exception is if the limit
3492 	 * for corefiles is 0, in which case we don't bother
3493 	 * creating the corefile at all.  This layout means that
3494 	 * a corefile is truncated instead of not being created,
3495 	 * if it is larger than the limit.
3496 	 */
3497 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3498 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3499 		PROC_UNLOCK(p);
3500 		return (EFBIG);
3501 	}
3502 	PROC_UNLOCK(p);
3503 
3504 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3505 	    compress_user_cores, &vp, &name);
3506 	if (error != 0)
3507 		return (error);
3508 
3509 	/*
3510 	 * Don't dump to non-regular files or files with links.
3511 	 * Do not dump into system files.
3512 	 */
3513 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3514 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3515 		VOP_UNLOCK(vp, 0);
3516 		error = EFAULT;
3517 		goto out;
3518 	}
3519 
3520 	VOP_UNLOCK(vp, 0);
3521 
3522 	/* Postpone other writers, including core dumps of other processes. */
3523 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3524 
3525 	lf.l_whence = SEEK_SET;
3526 	lf.l_start = 0;
3527 	lf.l_len = 0;
3528 	lf.l_type = F_WRLCK;
3529 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3530 
3531 	VATTR_NULL(&vattr);
3532 	vattr.va_size = 0;
3533 	if (set_core_nodump_flag)
3534 		vattr.va_flags = UF_NODUMP;
3535 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3536 	VOP_SETATTR(vp, &vattr, cred);
3537 	VOP_UNLOCK(vp, 0);
3538 	PROC_LOCK(p);
3539 	p->p_acflag |= ACORE;
3540 	PROC_UNLOCK(p);
3541 
3542 	if (p->p_sysent->sv_coredump != NULL) {
3543 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3544 	} else {
3545 		error = ENOSYS;
3546 	}
3547 
3548 	if (locked) {
3549 		lf.l_type = F_UNLCK;
3550 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3551 	}
3552 	vn_rangelock_unlock(vp, rl_cookie);
3553 
3554 	/*
3555 	 * Notify the userland helper that a process triggered a core dump.
3556 	 * This allows the helper to run an automated debugging session.
3557 	 */
3558 	if (error != 0 || coredump_devctl == 0)
3559 		goto out;
3560 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3561 	    sizeof(' ') + sizeof(core_name) - 1;
3562 	data = malloc(len, M_TEMP, M_WAITOK);
3563 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3564 		goto out;
3565 	if (!coredump_sanitise_path(fullpath))
3566 		goto out;
3567 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3568 	free(freepath, M_TEMP);
3569 	freepath = NULL;
3570 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3571 		goto out;
3572 	if (!coredump_sanitise_path(fullpath))
3573 		goto out;
3574 	strlcat(data, core_name, len);
3575 	strlcat(data, fullpath, len);
3576 	devctl_notify("kernel", "signal", "coredump", data);
3577 out:
3578 	error1 = vn_close(vp, FWRITE, cred, td);
3579 	if (error == 0)
3580 		error = error1;
3581 #ifdef AUDIT
3582 	audit_proc_coredump(td, name, error);
3583 #endif
3584 	free(freepath, M_TEMP);
3585 	free(data, M_TEMP);
3586 	free(name, M_TEMP);
3587 	return (error);
3588 }
3589 
3590 /*
3591  * Nonexistent system call-- signal process (may want to handle it).  Flag
3592  * error in case process won't see signal immediately (blocked or ignored).
3593  */
3594 #ifndef _SYS_SYSPROTO_H_
3595 struct nosys_args {
3596 	int	dummy;
3597 };
3598 #endif
3599 /* ARGSUSED */
3600 int
3601 nosys(struct thread *td, struct nosys_args *args)
3602 {
3603 	struct proc *p;
3604 
3605 	p = td->td_proc;
3606 
3607 	PROC_LOCK(p);
3608 	tdsignal(td, SIGSYS);
3609 	PROC_UNLOCK(p);
3610 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3611 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3612 		    td->td_sa.code);
3613 	}
3614 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3615 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3616 		    td->td_sa.code);
3617 	}
3618 	return (ENOSYS);
3619 }
3620 
3621 /*
3622  * Send a SIGIO or SIGURG signal to a process or process group using stored
3623  * credentials rather than those of the current process.
3624  */
3625 void
3626 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3627 {
3628 	ksiginfo_t ksi;
3629 	struct sigio *sigio;
3630 
3631 	ksiginfo_init(&ksi);
3632 	ksi.ksi_signo = sig;
3633 	ksi.ksi_code = SI_KERNEL;
3634 
3635 	SIGIO_LOCK();
3636 	sigio = *sigiop;
3637 	if (sigio == NULL) {
3638 		SIGIO_UNLOCK();
3639 		return;
3640 	}
3641 	if (sigio->sio_pgid > 0) {
3642 		PROC_LOCK(sigio->sio_proc);
3643 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3644 			kern_psignal(sigio->sio_proc, sig);
3645 		PROC_UNLOCK(sigio->sio_proc);
3646 	} else if (sigio->sio_pgid < 0) {
3647 		struct proc *p;
3648 
3649 		PGRP_LOCK(sigio->sio_pgrp);
3650 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3651 			PROC_LOCK(p);
3652 			if (p->p_state == PRS_NORMAL &&
3653 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3654 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3655 				kern_psignal(p, sig);
3656 			PROC_UNLOCK(p);
3657 		}
3658 		PGRP_UNLOCK(sigio->sio_pgrp);
3659 	}
3660 	SIGIO_UNLOCK();
3661 }
3662 
3663 static int
3664 filt_sigattach(struct knote *kn)
3665 {
3666 	struct proc *p = curproc;
3667 
3668 	kn->kn_ptr.p_proc = p;
3669 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3670 
3671 	knlist_add(p->p_klist, kn, 0);
3672 
3673 	return (0);
3674 }
3675 
3676 static void
3677 filt_sigdetach(struct knote *kn)
3678 {
3679 	struct proc *p = kn->kn_ptr.p_proc;
3680 
3681 	knlist_remove(p->p_klist, kn, 0);
3682 }
3683 
3684 /*
3685  * signal knotes are shared with proc knotes, so we apply a mask to
3686  * the hint in order to differentiate them from process hints.  This
3687  * could be avoided by using a signal-specific knote list, but probably
3688  * isn't worth the trouble.
3689  */
3690 static int
3691 filt_signal(struct knote *kn, long hint)
3692 {
3693 
3694 	if (hint & NOTE_SIGNAL) {
3695 		hint &= ~NOTE_SIGNAL;
3696 
3697 		if (kn->kn_id == hint)
3698 			kn->kn_data++;
3699 	}
3700 	return (kn->kn_data != 0);
3701 }
3702 
3703 struct sigacts *
3704 sigacts_alloc(void)
3705 {
3706 	struct sigacts *ps;
3707 
3708 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3709 	refcount_init(&ps->ps_refcnt, 1);
3710 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3711 	return (ps);
3712 }
3713 
3714 void
3715 sigacts_free(struct sigacts *ps)
3716 {
3717 
3718 	if (refcount_release(&ps->ps_refcnt) == 0)
3719 		return;
3720 	mtx_destroy(&ps->ps_mtx);
3721 	free(ps, M_SUBPROC);
3722 }
3723 
3724 struct sigacts *
3725 sigacts_hold(struct sigacts *ps)
3726 {
3727 
3728 	refcount_acquire(&ps->ps_refcnt);
3729 	return (ps);
3730 }
3731 
3732 void
3733 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3734 {
3735 
3736 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3737 	mtx_lock(&src->ps_mtx);
3738 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3739 	mtx_unlock(&src->ps_mtx);
3740 }
3741 
3742 int
3743 sigacts_shared(struct sigacts *ps)
3744 {
3745 
3746 	return (ps->ps_refcnt > 1);
3747 }
3748