xref: /freebsd/sys/kern/kern_sig.c (revision cf02bf2407cb217c99cc82f78b7a2e7f0703c9ee)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/smp.h>
64 #include <sys/stat.h>
65 #include <sys/sx.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/syslog.h>
70 #include <sys/sysproto.h>
71 #include <sys/unistd.h>
72 #include <sys/wait.h>
73 
74 #include <machine/cpu.h>
75 
76 #if defined (__alpha__) && !defined(COMPAT_43)
77 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
78 #endif
79 
80 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
81 
82 static int	coredump(struct thread *);
83 static char	*expand_name(const char *, uid_t, pid_t);
84 static int	killpg1(struct thread *td, int sig, int pgid, int all);
85 static int	issignal(struct thread *p);
86 static int	sigprop(int sig);
87 static void	stop(struct proc *);
88 static void	tdsigwakeup(struct thread *td, int sig, sig_t action);
89 static int	filt_sigattach(struct knote *kn);
90 static void	filt_sigdetach(struct knote *kn);
91 static int	filt_signal(struct knote *kn, long hint);
92 static struct thread *sigtd(struct proc *p, int sig, int prop);
93 static int	kern_sigtimedwait(struct thread *td, sigset_t set,
94 				siginfo_t *info, struct timespec *timeout);
95 static void	do_tdsignal(struct thread *td, int sig, sigtarget_t target);
96 
97 struct filterops sig_filtops =
98 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
99 
100 static int	kern_logsigexit = 1;
101 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
102     &kern_logsigexit, 0,
103     "Log processes quitting on abnormal signals to syslog(3)");
104 
105 /*
106  * Policy -- Can ucred cr1 send SIGIO to process cr2?
107  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
108  * in the right situations.
109  */
110 #define CANSIGIO(cr1, cr2) \
111 	((cr1)->cr_uid == 0 || \
112 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
113 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
114 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
115 	    (cr1)->cr_uid == (cr2)->cr_uid)
116 
117 int sugid_coredump;
118 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
119     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
120 
121 static int	do_coredump = 1;
122 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
123 	&do_coredump, 0, "Enable/Disable coredumps");
124 
125 /*
126  * Signal properties and actions.
127  * The array below categorizes the signals and their default actions
128  * according to the following properties:
129  */
130 #define	SA_KILL		0x01		/* terminates process by default */
131 #define	SA_CORE		0x02		/* ditto and coredumps */
132 #define	SA_STOP		0x04		/* suspend process */
133 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
134 #define	SA_IGNORE	0x10		/* ignore by default */
135 #define	SA_CONT		0x20		/* continue if suspended */
136 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
137 #define	SA_PROC		0x80		/* deliverable to any thread */
138 
139 static int sigproptbl[NSIG] = {
140         SA_KILL|SA_PROC,		/* SIGHUP */
141         SA_KILL|SA_PROC,		/* SIGINT */
142         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
143         SA_KILL|SA_CORE,		/* SIGILL */
144         SA_KILL|SA_CORE,		/* SIGTRAP */
145         SA_KILL|SA_CORE,		/* SIGABRT */
146         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
147         SA_KILL|SA_CORE,		/* SIGFPE */
148         SA_KILL|SA_PROC,		/* SIGKILL */
149         SA_KILL|SA_CORE,		/* SIGBUS */
150         SA_KILL|SA_CORE,		/* SIGSEGV */
151         SA_KILL|SA_CORE,		/* SIGSYS */
152         SA_KILL|SA_PROC,		/* SIGPIPE */
153         SA_KILL|SA_PROC,		/* SIGALRM */
154         SA_KILL|SA_PROC,		/* SIGTERM */
155         SA_IGNORE|SA_PROC,		/* SIGURG */
156         SA_STOP|SA_PROC,		/* SIGSTOP */
157         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
158         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
159         SA_IGNORE|SA_PROC,		/* SIGCHLD */
160         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
161         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
162         SA_IGNORE|SA_PROC,		/* SIGIO */
163         SA_KILL,			/* SIGXCPU */
164         SA_KILL,			/* SIGXFSZ */
165         SA_KILL|SA_PROC,		/* SIGVTALRM */
166         SA_KILL|SA_PROC,		/* SIGPROF */
167         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
168         SA_IGNORE|SA_PROC,		/* SIGINFO */
169         SA_KILL|SA_PROC,		/* SIGUSR1 */
170         SA_KILL|SA_PROC,		/* SIGUSR2 */
171 };
172 
173 /*
174  * Determine signal that should be delivered to process p, the current
175  * process, 0 if none.  If there is a pending stop signal with default
176  * action, the process stops in issignal().
177  * XXXKSE   the check for a pending stop is not done under KSE
178  *
179  * MP SAFE.
180  */
181 int
182 cursig(struct thread *td)
183 {
184 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
185 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
186 	mtx_assert(&sched_lock, MA_NOTOWNED);
187 	return (SIGPENDING(td) ? issignal(td) : 0);
188 }
189 
190 /*
191  * Arrange for ast() to handle unmasked pending signals on return to user
192  * mode.  This must be called whenever a signal is added to td_siglist or
193  * unmasked in td_sigmask.
194  */
195 void
196 signotify(struct thread *td)
197 {
198 	struct proc *p;
199 	sigset_t set, saved;
200 
201 	p = td->td_proc;
202 
203 	PROC_LOCK_ASSERT(p, MA_OWNED);
204 
205 	/*
206 	 * If our mask changed we may have to move signal that were
207 	 * previously masked by all threads to our siglist.
208 	 */
209 	set = p->p_siglist;
210 	if (p->p_flag & P_SA)
211 		saved = p->p_siglist;
212 	SIGSETNAND(set, td->td_sigmask);
213 	SIGSETNAND(p->p_siglist, set);
214 	SIGSETOR(td->td_siglist, set);
215 
216 	if (SIGPENDING(td)) {
217 		mtx_lock_spin(&sched_lock);
218 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
219 		mtx_unlock_spin(&sched_lock);
220 	}
221 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
222 		if (!SIGSETEQ(saved, p->p_siglist)) {
223 			/* pending set changed */
224 			p->p_flag |= P_SIGEVENT;
225 			wakeup(&p->p_siglist);
226 		}
227 	}
228 }
229 
230 int
231 sigonstack(size_t sp)
232 {
233 	struct thread *td = curthread;
234 
235 	return ((td->td_pflags & TDP_ALTSTACK) ?
236 #if defined(COMPAT_43)
237 	    ((td->td_sigstk.ss_size == 0) ?
238 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
239 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
240 #else
241 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
242 #endif
243 	    : 0);
244 }
245 
246 static __inline int
247 sigprop(int sig)
248 {
249 
250 	if (sig > 0 && sig < NSIG)
251 		return (sigproptbl[_SIG_IDX(sig)]);
252 	return (0);
253 }
254 
255 int
256 sig_ffs(sigset_t *set)
257 {
258 	int i;
259 
260 	for (i = 0; i < _SIG_WORDS; i++)
261 		if (set->__bits[i])
262 			return (ffs(set->__bits[i]) + (i * 32));
263 	return (0);
264 }
265 
266 /*
267  * kern_sigaction
268  * sigaction
269  * freebsd4_sigaction
270  * osigaction
271  *
272  * MPSAFE
273  */
274 int
275 kern_sigaction(td, sig, act, oact, flags)
276 	struct thread *td;
277 	register int sig;
278 	struct sigaction *act, *oact;
279 	int flags;
280 {
281 	struct sigacts *ps;
282 	struct thread *td0;
283 	struct proc *p = td->td_proc;
284 
285 	if (!_SIG_VALID(sig))
286 		return (EINVAL);
287 
288 	PROC_LOCK(p);
289 	ps = p->p_sigacts;
290 	mtx_lock(&ps->ps_mtx);
291 	if (oact) {
292 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
293 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
294 		oact->sa_flags = 0;
295 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
296 			oact->sa_flags |= SA_ONSTACK;
297 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
298 			oact->sa_flags |= SA_RESTART;
299 		if (SIGISMEMBER(ps->ps_sigreset, sig))
300 			oact->sa_flags |= SA_RESETHAND;
301 		if (SIGISMEMBER(ps->ps_signodefer, sig))
302 			oact->sa_flags |= SA_NODEFER;
303 		if (SIGISMEMBER(ps->ps_siginfo, sig))
304 			oact->sa_flags |= SA_SIGINFO;
305 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
306 			oact->sa_flags |= SA_NOCLDSTOP;
307 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
308 			oact->sa_flags |= SA_NOCLDWAIT;
309 	}
310 	if (act) {
311 		if ((sig == SIGKILL || sig == SIGSTOP) &&
312 		    act->sa_handler != SIG_DFL) {
313 			mtx_unlock(&ps->ps_mtx);
314 			PROC_UNLOCK(p);
315 			return (EINVAL);
316 		}
317 
318 		/*
319 		 * Change setting atomically.
320 		 */
321 
322 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
323 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
324 		if (act->sa_flags & SA_SIGINFO) {
325 			ps->ps_sigact[_SIG_IDX(sig)] =
326 			    (__sighandler_t *)act->sa_sigaction;
327 			SIGADDSET(ps->ps_siginfo, sig);
328 		} else {
329 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
330 			SIGDELSET(ps->ps_siginfo, sig);
331 		}
332 		if (!(act->sa_flags & SA_RESTART))
333 			SIGADDSET(ps->ps_sigintr, sig);
334 		else
335 			SIGDELSET(ps->ps_sigintr, sig);
336 		if (act->sa_flags & SA_ONSTACK)
337 			SIGADDSET(ps->ps_sigonstack, sig);
338 		else
339 			SIGDELSET(ps->ps_sigonstack, sig);
340 		if (act->sa_flags & SA_RESETHAND)
341 			SIGADDSET(ps->ps_sigreset, sig);
342 		else
343 			SIGDELSET(ps->ps_sigreset, sig);
344 		if (act->sa_flags & SA_NODEFER)
345 			SIGADDSET(ps->ps_signodefer, sig);
346 		else
347 			SIGDELSET(ps->ps_signodefer, sig);
348 		if (sig == SIGCHLD) {
349 			if (act->sa_flags & SA_NOCLDSTOP)
350 				ps->ps_flag |= PS_NOCLDSTOP;
351 			else
352 				ps->ps_flag &= ~PS_NOCLDSTOP;
353 			if (act->sa_flags & SA_NOCLDWAIT) {
354 				/*
355 				 * Paranoia: since SA_NOCLDWAIT is implemented
356 				 * by reparenting the dying child to PID 1 (and
357 				 * trust it to reap the zombie), PID 1 itself
358 				 * is forbidden to set SA_NOCLDWAIT.
359 				 */
360 				if (p->p_pid == 1)
361 					ps->ps_flag &= ~PS_NOCLDWAIT;
362 				else
363 					ps->ps_flag |= PS_NOCLDWAIT;
364 			} else
365 				ps->ps_flag &= ~PS_NOCLDWAIT;
366 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
367 				ps->ps_flag |= PS_CLDSIGIGN;
368 			else
369 				ps->ps_flag &= ~PS_CLDSIGIGN;
370 		}
371 		/*
372 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
373 		 * and for signals set to SIG_DFL where the default is to
374 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
375 		 * have to restart the process.
376 		 */
377 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
378 		    (sigprop(sig) & SA_IGNORE &&
379 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
380 			if ((p->p_flag & P_SA) &&
381 			     SIGISMEMBER(p->p_siglist, sig)) {
382 				p->p_flag |= P_SIGEVENT;
383 				wakeup(&p->p_siglist);
384 			}
385 			/* never to be seen again */
386 			SIGDELSET(p->p_siglist, sig);
387 			mtx_lock_spin(&sched_lock);
388 			FOREACH_THREAD_IN_PROC(p, td0)
389 				SIGDELSET(td0->td_siglist, sig);
390 			mtx_unlock_spin(&sched_lock);
391 			if (sig != SIGCONT)
392 				/* easier in psignal */
393 				SIGADDSET(ps->ps_sigignore, sig);
394 			SIGDELSET(ps->ps_sigcatch, sig);
395 		} else {
396 			SIGDELSET(ps->ps_sigignore, sig);
397 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
398 				SIGDELSET(ps->ps_sigcatch, sig);
399 			else
400 				SIGADDSET(ps->ps_sigcatch, sig);
401 		}
402 #ifdef COMPAT_FREEBSD4
403 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
404 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
405 		    (flags & KSA_FREEBSD4) == 0)
406 			SIGDELSET(ps->ps_freebsd4, sig);
407 		else
408 			SIGADDSET(ps->ps_freebsd4, sig);
409 #endif
410 #ifdef COMPAT_43
411 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
412 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
413 		    (flags & KSA_OSIGSET) == 0)
414 			SIGDELSET(ps->ps_osigset, sig);
415 		else
416 			SIGADDSET(ps->ps_osigset, sig);
417 #endif
418 	}
419 	mtx_unlock(&ps->ps_mtx);
420 	PROC_UNLOCK(p);
421 	return (0);
422 }
423 
424 #ifndef _SYS_SYSPROTO_H_
425 struct sigaction_args {
426 	int	sig;
427 	struct	sigaction *act;
428 	struct	sigaction *oact;
429 };
430 #endif
431 /*
432  * MPSAFE
433  */
434 int
435 sigaction(td, uap)
436 	struct thread *td;
437 	register struct sigaction_args *uap;
438 {
439 	struct sigaction act, oact;
440 	register struct sigaction *actp, *oactp;
441 	int error;
442 
443 	actp = (uap->act != NULL) ? &act : NULL;
444 	oactp = (uap->oact != NULL) ? &oact : NULL;
445 	if (actp) {
446 		error = copyin(uap->act, actp, sizeof(act));
447 		if (error)
448 			return (error);
449 	}
450 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
451 	if (oactp && !error)
452 		error = copyout(oactp, uap->oact, sizeof(oact));
453 	return (error);
454 }
455 
456 #ifdef COMPAT_FREEBSD4
457 #ifndef _SYS_SYSPROTO_H_
458 struct freebsd4_sigaction_args {
459 	int	sig;
460 	struct	sigaction *act;
461 	struct	sigaction *oact;
462 };
463 #endif
464 /*
465  * MPSAFE
466  */
467 int
468 freebsd4_sigaction(td, uap)
469 	struct thread *td;
470 	register struct freebsd4_sigaction_args *uap;
471 {
472 	struct sigaction act, oact;
473 	register struct sigaction *actp, *oactp;
474 	int error;
475 
476 
477 	actp = (uap->act != NULL) ? &act : NULL;
478 	oactp = (uap->oact != NULL) ? &oact : NULL;
479 	if (actp) {
480 		error = copyin(uap->act, actp, sizeof(act));
481 		if (error)
482 			return (error);
483 	}
484 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
485 	if (oactp && !error)
486 		error = copyout(oactp, uap->oact, sizeof(oact));
487 	return (error);
488 }
489 #endif	/* COMAPT_FREEBSD4 */
490 
491 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
492 #ifndef _SYS_SYSPROTO_H_
493 struct osigaction_args {
494 	int	signum;
495 	struct	osigaction *nsa;
496 	struct	osigaction *osa;
497 };
498 #endif
499 /*
500  * MPSAFE
501  */
502 int
503 osigaction(td, uap)
504 	struct thread *td;
505 	register struct osigaction_args *uap;
506 {
507 	struct osigaction sa;
508 	struct sigaction nsa, osa;
509 	register struct sigaction *nsap, *osap;
510 	int error;
511 
512 	if (uap->signum <= 0 || uap->signum >= ONSIG)
513 		return (EINVAL);
514 
515 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
516 	osap = (uap->osa != NULL) ? &osa : NULL;
517 
518 	if (nsap) {
519 		error = copyin(uap->nsa, &sa, sizeof(sa));
520 		if (error)
521 			return (error);
522 		nsap->sa_handler = sa.sa_handler;
523 		nsap->sa_flags = sa.sa_flags;
524 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
525 	}
526 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
527 	if (osap && !error) {
528 		sa.sa_handler = osap->sa_handler;
529 		sa.sa_flags = osap->sa_flags;
530 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
531 		error = copyout(&sa, uap->osa, sizeof(sa));
532 	}
533 	return (error);
534 }
535 
536 #if !defined(__i386__) && !defined(__alpha__)
537 /* Avoid replicating the same stub everywhere */
538 int
539 osigreturn(td, uap)
540 	struct thread *td;
541 	struct osigreturn_args *uap;
542 {
543 
544 	return (nosys(td, (struct nosys_args *)uap));
545 }
546 #endif
547 #endif /* COMPAT_43 */
548 
549 /*
550  * Initialize signal state for process 0;
551  * set to ignore signals that are ignored by default.
552  */
553 void
554 siginit(p)
555 	struct proc *p;
556 {
557 	register int i;
558 	struct sigacts *ps;
559 
560 	PROC_LOCK(p);
561 	ps = p->p_sigacts;
562 	mtx_lock(&ps->ps_mtx);
563 	for (i = 1; i <= NSIG; i++)
564 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
565 			SIGADDSET(ps->ps_sigignore, i);
566 	mtx_unlock(&ps->ps_mtx);
567 	PROC_UNLOCK(p);
568 }
569 
570 /*
571  * Reset signals for an exec of the specified process.
572  */
573 void
574 execsigs(struct proc *p)
575 {
576 	struct sigacts *ps;
577 	int sig;
578 	struct thread *td;
579 
580 	/*
581 	 * Reset caught signals.  Held signals remain held
582 	 * through td_sigmask (unless they were caught,
583 	 * and are now ignored by default).
584 	 */
585 	PROC_LOCK_ASSERT(p, MA_OWNED);
586 	td = FIRST_THREAD_IN_PROC(p);
587 	ps = p->p_sigacts;
588 	mtx_lock(&ps->ps_mtx);
589 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
590 		sig = sig_ffs(&ps->ps_sigcatch);
591 		SIGDELSET(ps->ps_sigcatch, sig);
592 		if (sigprop(sig) & SA_IGNORE) {
593 			if (sig != SIGCONT)
594 				SIGADDSET(ps->ps_sigignore, sig);
595 			SIGDELSET(p->p_siglist, sig);
596 			/*
597 			 * There is only one thread at this point.
598 			 */
599 			SIGDELSET(td->td_siglist, sig);
600 		}
601 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
602 	}
603 	/*
604 	 * Reset stack state to the user stack.
605 	 * Clear set of signals caught on the signal stack.
606 	 */
607 	td->td_sigstk.ss_flags = SS_DISABLE;
608 	td->td_sigstk.ss_size = 0;
609 	td->td_sigstk.ss_sp = 0;
610 	td->td_pflags &= ~TDP_ALTSTACK;
611 	/*
612 	 * Reset no zombies if child dies flag as Solaris does.
613 	 */
614 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
615 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
616 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
617 	mtx_unlock(&ps->ps_mtx);
618 }
619 
620 /*
621  * kern_sigprocmask()
622  *
623  *	Manipulate signal mask.
624  */
625 int
626 kern_sigprocmask(td, how, set, oset, old)
627 	struct thread *td;
628 	int how;
629 	sigset_t *set, *oset;
630 	int old;
631 {
632 	int error;
633 
634 	PROC_LOCK(td->td_proc);
635 	if (oset != NULL)
636 		*oset = td->td_sigmask;
637 
638 	error = 0;
639 	if (set != NULL) {
640 		switch (how) {
641 		case SIG_BLOCK:
642 			SIG_CANTMASK(*set);
643 			SIGSETOR(td->td_sigmask, *set);
644 			break;
645 		case SIG_UNBLOCK:
646 			SIGSETNAND(td->td_sigmask, *set);
647 			signotify(td);
648 			break;
649 		case SIG_SETMASK:
650 			SIG_CANTMASK(*set);
651 			if (old)
652 				SIGSETLO(td->td_sigmask, *set);
653 			else
654 				td->td_sigmask = *set;
655 			signotify(td);
656 			break;
657 		default:
658 			error = EINVAL;
659 			break;
660 		}
661 	}
662 	PROC_UNLOCK(td->td_proc);
663 	return (error);
664 }
665 
666 /*
667  * sigprocmask() - MP SAFE
668  */
669 
670 #ifndef _SYS_SYSPROTO_H_
671 struct sigprocmask_args {
672 	int	how;
673 	const sigset_t *set;
674 	sigset_t *oset;
675 };
676 #endif
677 int
678 sigprocmask(td, uap)
679 	register struct thread *td;
680 	struct sigprocmask_args *uap;
681 {
682 	sigset_t set, oset;
683 	sigset_t *setp, *osetp;
684 	int error;
685 
686 	setp = (uap->set != NULL) ? &set : NULL;
687 	osetp = (uap->oset != NULL) ? &oset : NULL;
688 	if (setp) {
689 		error = copyin(uap->set, setp, sizeof(set));
690 		if (error)
691 			return (error);
692 	}
693 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
694 	if (osetp && !error) {
695 		error = copyout(osetp, uap->oset, sizeof(oset));
696 	}
697 	return (error);
698 }
699 
700 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
701 /*
702  * osigprocmask() - MP SAFE
703  */
704 #ifndef _SYS_SYSPROTO_H_
705 struct osigprocmask_args {
706 	int	how;
707 	osigset_t mask;
708 };
709 #endif
710 int
711 osigprocmask(td, uap)
712 	register struct thread *td;
713 	struct osigprocmask_args *uap;
714 {
715 	sigset_t set, oset;
716 	int error;
717 
718 	OSIG2SIG(uap->mask, set);
719 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
720 	SIG2OSIG(oset, td->td_retval[0]);
721 	return (error);
722 }
723 #endif /* COMPAT_43 */
724 
725 #ifndef _SYS_SYSPROTO_H_
726 struct sigpending_args {
727 	sigset_t	*set;
728 };
729 #endif
730 /*
731  * MPSAFE
732  */
733 int
734 sigwait(struct thread *td, struct sigwait_args *uap)
735 {
736 	siginfo_t info;
737 	sigset_t set;
738 	int error;
739 
740 	error = copyin(uap->set, &set, sizeof(set));
741 	if (error) {
742 		td->td_retval[0] = error;
743 		return (0);
744 	}
745 
746 	error = kern_sigtimedwait(td, set, &info, NULL);
747 	if (error) {
748 		if (error == ERESTART)
749 			return (error);
750 		td->td_retval[0] = error;
751 		return (0);
752 	}
753 
754 	error = copyout(&info.si_signo, uap->sig, sizeof(info.si_signo));
755 	/* Repost if we got an error. */
756 	if (error && info.si_signo) {
757 		PROC_LOCK(td->td_proc);
758 		tdsignal(td, info.si_signo, SIGTARGET_TD);
759 		PROC_UNLOCK(td->td_proc);
760 	}
761 	td->td_retval[0] = error;
762 	return (0);
763 }
764 /*
765  * MPSAFE
766  */
767 int
768 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
769 {
770 	struct timespec ts;
771 	struct timespec *timeout;
772 	sigset_t set;
773 	siginfo_t info;
774 	int error;
775 
776 	if (uap->timeout) {
777 		error = copyin(uap->timeout, &ts, sizeof(ts));
778 		if (error)
779 			return (error);
780 
781 		timeout = &ts;
782 	} else
783 		timeout = NULL;
784 
785 	error = copyin(uap->set, &set, sizeof(set));
786 	if (error)
787 		return (error);
788 
789 	error = kern_sigtimedwait(td, set, &info, timeout);
790 	if (error)
791 		return (error);
792 
793 	if (uap->info)
794 		error = copyout(&info, uap->info, sizeof(info));
795 	/* Repost if we got an error. */
796 	if (error && info.si_signo) {
797 		PROC_LOCK(td->td_proc);
798 		tdsignal(td, info.si_signo, SIGTARGET_TD);
799 		PROC_UNLOCK(td->td_proc);
800 	} else {
801 		td->td_retval[0] = info.si_signo;
802 	}
803 	return (error);
804 }
805 
806 /*
807  * MPSAFE
808  */
809 int
810 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
811 {
812 	siginfo_t info;
813 	sigset_t set;
814 	int error;
815 
816 	error = copyin(uap->set, &set, sizeof(set));
817 	if (error)
818 		return (error);
819 
820 	error = kern_sigtimedwait(td, set, &info, NULL);
821 	if (error)
822 		return (error);
823 
824 	if (uap->info)
825 		error = copyout(&info, uap->info, sizeof(info));
826 	/* Repost if we got an error. */
827 	if (error && info.si_signo) {
828 		PROC_LOCK(td->td_proc);
829 		tdsignal(td, info.si_signo, SIGTARGET_TD);
830 		PROC_UNLOCK(td->td_proc);
831 	} else {
832 		td->td_retval[0] = info.si_signo;
833 	}
834 	return (error);
835 }
836 
837 static int
838 kern_sigtimedwait(struct thread *td, sigset_t waitset, siginfo_t *info,
839     struct timespec *timeout)
840 {
841 	struct sigacts *ps;
842 	sigset_t savedmask, sigset;
843 	struct proc *p;
844 	int error;
845 	int sig;
846 	int hz;
847 	int i;
848 
849 	p = td->td_proc;
850 	error = 0;
851 	sig = 0;
852 	SIG_CANTMASK(waitset);
853 
854 	PROC_LOCK(p);
855 	ps = p->p_sigacts;
856 	savedmask = td->td_sigmask;
857 
858 again:
859 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
860 		if (!SIGISMEMBER(waitset, i))
861 			continue;
862 		if (SIGISMEMBER(td->td_siglist, i)) {
863 			SIGFILLSET(td->td_sigmask);
864 			SIG_CANTMASK(td->td_sigmask);
865 			SIGDELSET(td->td_sigmask, i);
866 			mtx_lock(&ps->ps_mtx);
867 			sig = cursig(td);
868 			i = 0;
869 			mtx_unlock(&ps->ps_mtx);
870 		} else if (SIGISMEMBER(p->p_siglist, i)) {
871 			if (p->p_flag & P_SA) {
872 				p->p_flag |= P_SIGEVENT;
873 				wakeup(&p->p_siglist);
874 			}
875 			SIGDELSET(p->p_siglist, i);
876 			SIGADDSET(td->td_siglist, i);
877 			SIGFILLSET(td->td_sigmask);
878 			SIG_CANTMASK(td->td_sigmask);
879 			SIGDELSET(td->td_sigmask, i);
880 			mtx_lock(&ps->ps_mtx);
881 			sig = cursig(td);
882 			i = 0;
883 			mtx_unlock(&ps->ps_mtx);
884 		}
885 		if (sig) {
886 			td->td_sigmask = savedmask;
887 			signotify(td);
888 			goto out;
889 		}
890 	}
891 	if (error)
892 		goto out;
893 
894 	td->td_sigmask = savedmask;
895 	signotify(td);
896 	sigset = td->td_siglist;
897 	SIGSETOR(sigset, p->p_siglist);
898 	SIGSETAND(sigset, waitset);
899 	if (!SIGISEMPTY(sigset))
900 		goto again;
901 
902 	/*
903 	 * POSIX says this must be checked after looking for pending
904 	 * signals.
905 	 */
906 	if (timeout) {
907 		struct timeval tv;
908 
909 		if (timeout->tv_nsec < 0 || timeout->tv_nsec > 1000000000) {
910 			error = EINVAL;
911 			goto out;
912 		}
913 		if (timeout->tv_sec == 0 && timeout->tv_nsec == 0) {
914 			error = EAGAIN;
915 			goto out;
916 		}
917 		TIMESPEC_TO_TIMEVAL(&tv, timeout);
918 		hz = tvtohz(&tv);
919 	} else
920 		hz = 0;
921 
922 	td->td_waitset = &waitset;
923 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
924 	td->td_waitset = NULL;
925 	if (error == 0) /* surplus wakeup ? */
926 		error = EINTR;
927 	goto again;
928 
929 out:
930 	if (sig) {
931 		sig_t action;
932 
933 		error = 0;
934 		mtx_lock(&ps->ps_mtx);
935 		action = ps->ps_sigact[_SIG_IDX(sig)];
936 		mtx_unlock(&ps->ps_mtx);
937 #ifdef KTRACE
938 		if (KTRPOINT(td, KTR_PSIG))
939 			ktrpsig(sig, action, &td->td_sigmask, 0);
940 #endif
941 		_STOPEVENT(p, S_SIG, sig);
942 
943 		SIGDELSET(td->td_siglist, sig);
944 		info->si_signo = sig;
945 		info->si_code = 0;
946 	}
947 	PROC_UNLOCK(p);
948 	return (error);
949 }
950 
951 /*
952  * MPSAFE
953  */
954 int
955 sigpending(td, uap)
956 	struct thread *td;
957 	struct sigpending_args *uap;
958 {
959 	struct proc *p = td->td_proc;
960 	sigset_t siglist;
961 
962 	PROC_LOCK(p);
963 	siglist = p->p_siglist;
964 	SIGSETOR(siglist, td->td_siglist);
965 	PROC_UNLOCK(p);
966 	return (copyout(&siglist, uap->set, sizeof(sigset_t)));
967 }
968 
969 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
970 #ifndef _SYS_SYSPROTO_H_
971 struct osigpending_args {
972 	int	dummy;
973 };
974 #endif
975 /*
976  * MPSAFE
977  */
978 int
979 osigpending(td, uap)
980 	struct thread *td;
981 	struct osigpending_args *uap;
982 {
983 	struct proc *p = td->td_proc;
984 	sigset_t siglist;
985 
986 	PROC_LOCK(p);
987 	siglist = p->p_siglist;
988 	SIGSETOR(siglist, td->td_siglist);
989 	PROC_UNLOCK(p);
990 	SIG2OSIG(siglist, td->td_retval[0]);
991 	return (0);
992 }
993 #endif /* COMPAT_43 */
994 
995 #if defined(COMPAT_43)
996 /*
997  * Generalized interface signal handler, 4.3-compatible.
998  */
999 #ifndef _SYS_SYSPROTO_H_
1000 struct osigvec_args {
1001 	int	signum;
1002 	struct	sigvec *nsv;
1003 	struct	sigvec *osv;
1004 };
1005 #endif
1006 /*
1007  * MPSAFE
1008  */
1009 /* ARGSUSED */
1010 int
1011 osigvec(td, uap)
1012 	struct thread *td;
1013 	register struct osigvec_args *uap;
1014 {
1015 	struct sigvec vec;
1016 	struct sigaction nsa, osa;
1017 	register struct sigaction *nsap, *osap;
1018 	int error;
1019 
1020 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1021 		return (EINVAL);
1022 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1023 	osap = (uap->osv != NULL) ? &osa : NULL;
1024 	if (nsap) {
1025 		error = copyin(uap->nsv, &vec, sizeof(vec));
1026 		if (error)
1027 			return (error);
1028 		nsap->sa_handler = vec.sv_handler;
1029 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1030 		nsap->sa_flags = vec.sv_flags;
1031 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1032 	}
1033 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1034 	if (osap && !error) {
1035 		vec.sv_handler = osap->sa_handler;
1036 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1037 		vec.sv_flags = osap->sa_flags;
1038 		vec.sv_flags &= ~SA_NOCLDWAIT;
1039 		vec.sv_flags ^= SA_RESTART;
1040 		error = copyout(&vec, uap->osv, sizeof(vec));
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifndef _SYS_SYSPROTO_H_
1046 struct osigblock_args {
1047 	int	mask;
1048 };
1049 #endif
1050 /*
1051  * MPSAFE
1052  */
1053 int
1054 osigblock(td, uap)
1055 	register struct thread *td;
1056 	struct osigblock_args *uap;
1057 {
1058 	struct proc *p = td->td_proc;
1059 	sigset_t set;
1060 
1061 	OSIG2SIG(uap->mask, set);
1062 	SIG_CANTMASK(set);
1063 	PROC_LOCK(p);
1064 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1065 	SIGSETOR(td->td_sigmask, set);
1066 	PROC_UNLOCK(p);
1067 	return (0);
1068 }
1069 
1070 #ifndef _SYS_SYSPROTO_H_
1071 struct osigsetmask_args {
1072 	int	mask;
1073 };
1074 #endif
1075 /*
1076  * MPSAFE
1077  */
1078 int
1079 osigsetmask(td, uap)
1080 	struct thread *td;
1081 	struct osigsetmask_args *uap;
1082 {
1083 	struct proc *p = td->td_proc;
1084 	sigset_t set;
1085 
1086 	OSIG2SIG(uap->mask, set);
1087 	SIG_CANTMASK(set);
1088 	PROC_LOCK(p);
1089 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1090 	SIGSETLO(td->td_sigmask, set);
1091 	signotify(td);
1092 	PROC_UNLOCK(p);
1093 	return (0);
1094 }
1095 #endif /* COMPAT_43 */
1096 
1097 /*
1098  * Suspend process until signal, providing mask to be set
1099  * in the meantime.
1100  ***** XXXKSE this doesn't make sense under KSE.
1101  ***** Do we suspend the thread or all threads in the process?
1102  ***** How do we suspend threads running NOW on another processor?
1103  */
1104 #ifndef _SYS_SYSPROTO_H_
1105 struct sigsuspend_args {
1106 	const sigset_t *sigmask;
1107 };
1108 #endif
1109 /*
1110  * MPSAFE
1111  */
1112 /* ARGSUSED */
1113 int
1114 sigsuspend(td, uap)
1115 	struct thread *td;
1116 	struct sigsuspend_args *uap;
1117 {
1118 	sigset_t mask;
1119 	int error;
1120 
1121 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1122 	if (error)
1123 		return (error);
1124 	return (kern_sigsuspend(td, mask));
1125 }
1126 
1127 int
1128 kern_sigsuspend(struct thread *td, sigset_t mask)
1129 {
1130 	struct proc *p = td->td_proc;
1131 
1132 	/*
1133 	 * When returning from sigsuspend, we want
1134 	 * the old mask to be restored after the
1135 	 * signal handler has finished.  Thus, we
1136 	 * save it here and mark the sigacts structure
1137 	 * to indicate this.
1138 	 */
1139 	PROC_LOCK(p);
1140 	td->td_oldsigmask = td->td_sigmask;
1141 	td->td_pflags |= TDP_OLDMASK;
1142 	SIG_CANTMASK(mask);
1143 	td->td_sigmask = mask;
1144 	signotify(td);
1145 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1146 		/* void */;
1147 	PROC_UNLOCK(p);
1148 	/* always return EINTR rather than ERESTART... */
1149 	return (EINTR);
1150 }
1151 
1152 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1153 /*
1154  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1155  * convention: libc stub passes mask, not pointer, to save a copyin.
1156  */
1157 #ifndef _SYS_SYSPROTO_H_
1158 struct osigsuspend_args {
1159 	osigset_t mask;
1160 };
1161 #endif
1162 /*
1163  * MPSAFE
1164  */
1165 /* ARGSUSED */
1166 int
1167 osigsuspend(td, uap)
1168 	struct thread *td;
1169 	struct osigsuspend_args *uap;
1170 {
1171 	struct proc *p = td->td_proc;
1172 	sigset_t mask;
1173 
1174 	PROC_LOCK(p);
1175 	td->td_oldsigmask = td->td_sigmask;
1176 	td->td_pflags |= TDP_OLDMASK;
1177 	OSIG2SIG(uap->mask, mask);
1178 	SIG_CANTMASK(mask);
1179 	SIGSETLO(td->td_sigmask, mask);
1180 	signotify(td);
1181 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1182 		/* void */;
1183 	PROC_UNLOCK(p);
1184 	/* always return EINTR rather than ERESTART... */
1185 	return (EINTR);
1186 }
1187 #endif /* COMPAT_43 */
1188 
1189 #if defined(COMPAT_43)
1190 #ifndef _SYS_SYSPROTO_H_
1191 struct osigstack_args {
1192 	struct	sigstack *nss;
1193 	struct	sigstack *oss;
1194 };
1195 #endif
1196 /*
1197  * MPSAFE
1198  */
1199 /* ARGSUSED */
1200 int
1201 osigstack(td, uap)
1202 	struct thread *td;
1203 	register struct osigstack_args *uap;
1204 {
1205 	struct sigstack nss, oss;
1206 	int error = 0;
1207 
1208 	if (uap->nss != NULL) {
1209 		error = copyin(uap->nss, &nss, sizeof(nss));
1210 		if (error)
1211 			return (error);
1212 	}
1213 	oss.ss_sp = td->td_sigstk.ss_sp;
1214 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1215 	if (uap->nss != NULL) {
1216 		td->td_sigstk.ss_sp = nss.ss_sp;
1217 		td->td_sigstk.ss_size = 0;
1218 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1219 		td->td_pflags |= TDP_ALTSTACK;
1220 	}
1221 	if (uap->oss != NULL)
1222 		error = copyout(&oss, uap->oss, sizeof(oss));
1223 
1224 	return (error);
1225 }
1226 #endif /* COMPAT_43 */
1227 
1228 #ifndef _SYS_SYSPROTO_H_
1229 struct sigaltstack_args {
1230 	stack_t	*ss;
1231 	stack_t	*oss;
1232 };
1233 #endif
1234 /*
1235  * MPSAFE
1236  */
1237 /* ARGSUSED */
1238 int
1239 sigaltstack(td, uap)
1240 	struct thread *td;
1241 	register struct sigaltstack_args *uap;
1242 {
1243 	stack_t ss, oss;
1244 	int error;
1245 
1246 	if (uap->ss != NULL) {
1247 		error = copyin(uap->ss, &ss, sizeof(ss));
1248 		if (error)
1249 			return (error);
1250 	}
1251 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1252 	    (uap->oss != NULL) ? &oss : NULL);
1253 	if (error)
1254 		return (error);
1255 	if (uap->oss != NULL)
1256 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1257 	return (error);
1258 }
1259 
1260 int
1261 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1262 {
1263 	struct proc *p = td->td_proc;
1264 	int oonstack;
1265 
1266 	oonstack = sigonstack(cpu_getstack(td));
1267 
1268 	if (oss != NULL) {
1269 		*oss = td->td_sigstk;
1270 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1271 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1272 	}
1273 
1274 	if (ss != NULL) {
1275 		if (oonstack)
1276 			return (EPERM);
1277 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1278 			return (EINVAL);
1279 		if (!(ss->ss_flags & SS_DISABLE)) {
1280 			if (ss->ss_size < p->p_sysent->sv_minsigstksz) {
1281 				return (ENOMEM);
1282 			}
1283 			td->td_sigstk = *ss;
1284 			td->td_pflags |= TDP_ALTSTACK;
1285 		} else {
1286 			td->td_pflags &= ~TDP_ALTSTACK;
1287 		}
1288 	}
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Common code for kill process group/broadcast kill.
1294  * cp is calling process.
1295  */
1296 static int
1297 killpg1(td, sig, pgid, all)
1298 	register struct thread *td;
1299 	int sig, pgid, all;
1300 {
1301 	register struct proc *p;
1302 	struct pgrp *pgrp;
1303 	int nfound = 0;
1304 
1305 	if (all) {
1306 		/*
1307 		 * broadcast
1308 		 */
1309 		sx_slock(&allproc_lock);
1310 		LIST_FOREACH(p, &allproc, p_list) {
1311 			PROC_LOCK(p);
1312 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1313 			    p == td->td_proc) {
1314 				PROC_UNLOCK(p);
1315 				continue;
1316 			}
1317 			if (p_cansignal(td, p, sig) == 0) {
1318 				nfound++;
1319 				if (sig)
1320 					psignal(p, sig);
1321 			}
1322 			PROC_UNLOCK(p);
1323 		}
1324 		sx_sunlock(&allproc_lock);
1325 	} else {
1326 		sx_slock(&proctree_lock);
1327 		if (pgid == 0) {
1328 			/*
1329 			 * zero pgid means send to my process group.
1330 			 */
1331 			pgrp = td->td_proc->p_pgrp;
1332 			PGRP_LOCK(pgrp);
1333 		} else {
1334 			pgrp = pgfind(pgid);
1335 			if (pgrp == NULL) {
1336 				sx_sunlock(&proctree_lock);
1337 				return (ESRCH);
1338 			}
1339 		}
1340 		sx_sunlock(&proctree_lock);
1341 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1342 			PROC_LOCK(p);
1343 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1344 				PROC_UNLOCK(p);
1345 				continue;
1346 			}
1347 			if (p_cansignal(td, p, sig) == 0) {
1348 				nfound++;
1349 				if (sig)
1350 					psignal(p, sig);
1351 			}
1352 			PROC_UNLOCK(p);
1353 		}
1354 		PGRP_UNLOCK(pgrp);
1355 	}
1356 	return (nfound ? 0 : ESRCH);
1357 }
1358 
1359 #ifndef _SYS_SYSPROTO_H_
1360 struct kill_args {
1361 	int	pid;
1362 	int	signum;
1363 };
1364 #endif
1365 /*
1366  * MPSAFE
1367  */
1368 /* ARGSUSED */
1369 int
1370 kill(td, uap)
1371 	register struct thread *td;
1372 	register struct kill_args *uap;
1373 {
1374 	register struct proc *p;
1375 	int error;
1376 
1377 	if ((u_int)uap->signum > _SIG_MAXSIG)
1378 		return (EINVAL);
1379 
1380 	if (uap->pid > 0) {
1381 		/* kill single process */
1382 		if ((p = pfind(uap->pid)) == NULL) {
1383 			if ((p = zpfind(uap->pid)) == NULL)
1384 				return (ESRCH);
1385 		}
1386 		error = p_cansignal(td, p, uap->signum);
1387 		if (error == 0 && uap->signum)
1388 			psignal(p, uap->signum);
1389 		PROC_UNLOCK(p);
1390 		return (error);
1391 	}
1392 	switch (uap->pid) {
1393 	case -1:		/* broadcast signal */
1394 		return (killpg1(td, uap->signum, 0, 1));
1395 	case 0:			/* signal own process group */
1396 		return (killpg1(td, uap->signum, 0, 0));
1397 	default:		/* negative explicit process group */
1398 		return (killpg1(td, uap->signum, -uap->pid, 0));
1399 	}
1400 	/* NOTREACHED */
1401 }
1402 
1403 #if defined(COMPAT_43)
1404 #ifndef _SYS_SYSPROTO_H_
1405 struct okillpg_args {
1406 	int	pgid;
1407 	int	signum;
1408 };
1409 #endif
1410 /*
1411  * MPSAFE
1412  */
1413 /* ARGSUSED */
1414 int
1415 okillpg(td, uap)
1416 	struct thread *td;
1417 	register struct okillpg_args *uap;
1418 {
1419 
1420 	if ((u_int)uap->signum > _SIG_MAXSIG)
1421 		return (EINVAL);
1422 	return (killpg1(td, uap->signum, uap->pgid, 0));
1423 }
1424 #endif /* COMPAT_43 */
1425 
1426 /*
1427  * Send a signal to a process group.
1428  */
1429 void
1430 gsignal(pgid, sig)
1431 	int pgid, sig;
1432 {
1433 	struct pgrp *pgrp;
1434 
1435 	if (pgid != 0) {
1436 		sx_slock(&proctree_lock);
1437 		pgrp = pgfind(pgid);
1438 		sx_sunlock(&proctree_lock);
1439 		if (pgrp != NULL) {
1440 			pgsignal(pgrp, sig, 0);
1441 			PGRP_UNLOCK(pgrp);
1442 		}
1443 	}
1444 }
1445 
1446 /*
1447  * Send a signal to a process group.  If checktty is 1,
1448  * limit to members which have a controlling terminal.
1449  */
1450 void
1451 pgsignal(pgrp, sig, checkctty)
1452 	struct pgrp *pgrp;
1453 	int sig, checkctty;
1454 {
1455 	register struct proc *p;
1456 
1457 	if (pgrp) {
1458 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1459 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1460 			PROC_LOCK(p);
1461 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1462 				psignal(p, sig);
1463 			PROC_UNLOCK(p);
1464 		}
1465 	}
1466 }
1467 
1468 /*
1469  * Send a signal caused by a trap to the current thread.
1470  * If it will be caught immediately, deliver it with correct code.
1471  * Otherwise, post it normally.
1472  *
1473  * MPSAFE
1474  */
1475 void
1476 trapsignal(struct thread *td, int sig, u_long code)
1477 {
1478 	struct sigacts *ps;
1479 	struct proc *p;
1480 	siginfo_t siginfo;
1481 	int error;
1482 
1483 	p = td->td_proc;
1484 	if (td->td_pflags & TDP_SA) {
1485 		if (td->td_mailbox == NULL)
1486 			thread_user_enter(p, td);
1487 		PROC_LOCK(p);
1488 		SIGDELSET(td->td_sigmask, sig);
1489 		mtx_lock_spin(&sched_lock);
1490 		/*
1491 		 * Force scheduling an upcall, so UTS has chance to
1492 		 * process the signal before thread runs again in
1493 		 * userland.
1494 		 */
1495 		if (td->td_upcall)
1496 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1497 		mtx_unlock_spin(&sched_lock);
1498 	} else {
1499 		PROC_LOCK(p);
1500 	}
1501 	ps = p->p_sigacts;
1502 	mtx_lock(&ps->ps_mtx);
1503 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1504 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1505 		p->p_stats->p_ru.ru_nsignals++;
1506 #ifdef KTRACE
1507 		if (KTRPOINT(curthread, KTR_PSIG))
1508 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1509 			    &td->td_sigmask, code);
1510 #endif
1511 		if (!(td->td_pflags & TDP_SA))
1512 			(*p->p_sysent->sv_sendsig)(
1513 				ps->ps_sigact[_SIG_IDX(sig)], sig,
1514 				&td->td_sigmask, code);
1515 		else if (td->td_mailbox == NULL) {
1516 			mtx_unlock(&ps->ps_mtx);
1517 			/* UTS caused a sync signal */
1518 			p->p_code = code;	/* XXX for core dump/debugger */
1519 			p->p_sig = sig;		/* XXX to verify code */
1520 			sigexit(td, sig);
1521 		} else {
1522 			cpu_thread_siginfo(sig, code, &siginfo);
1523 			mtx_unlock(&ps->ps_mtx);
1524 			SIGADDSET(td->td_sigmask, sig);
1525 			PROC_UNLOCK(p);
1526 			error = copyout(&siginfo, &td->td_mailbox->tm_syncsig,
1527 			    sizeof(siginfo));
1528 			PROC_LOCK(p);
1529 			/* UTS memory corrupted */
1530 			if (error)
1531 				sigexit(td, SIGSEGV);
1532 			mtx_lock(&ps->ps_mtx);
1533 		}
1534 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1535 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1536 			SIGADDSET(td->td_sigmask, sig);
1537 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1538 			/*
1539 			 * See kern_sigaction() for origin of this code.
1540 			 */
1541 			SIGDELSET(ps->ps_sigcatch, sig);
1542 			if (sig != SIGCONT &&
1543 			    sigprop(sig) & SA_IGNORE)
1544 				SIGADDSET(ps->ps_sigignore, sig);
1545 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1546 		}
1547 		mtx_unlock(&ps->ps_mtx);
1548 	} else {
1549 		mtx_unlock(&ps->ps_mtx);
1550 		p->p_code = code;	/* XXX for core dump/debugger */
1551 		p->p_sig = sig;		/* XXX to verify code */
1552 		tdsignal(td, sig, SIGTARGET_TD);
1553 	}
1554 	PROC_UNLOCK(p);
1555 }
1556 
1557 static struct thread *
1558 sigtd(struct proc *p, int sig, int prop)
1559 {
1560 	struct thread *td, *signal_td;
1561 
1562 	PROC_LOCK_ASSERT(p, MA_OWNED);
1563 
1564 	/*
1565 	 * First find a thread in sigwait state and signal belongs to
1566 	 * its wait set. POSIX's arguments is that speed of delivering signal
1567 	 * to sigwait thread is faster than delivering signal to user stack.
1568 	 * If we can not find sigwait thread, then find the first thread in
1569 	 * the proc that doesn't have this signal masked, an exception is
1570 	 * if current thread is sending signal to its process, and it does not
1571 	 * mask the signal, it should get the signal, this is another fast
1572 	 * way to deliver signal.
1573 	 */
1574 	signal_td = NULL;
1575 	mtx_lock_spin(&sched_lock);
1576 	FOREACH_THREAD_IN_PROC(p, td) {
1577 		if (td->td_waitset != NULL &&
1578 		    SIGISMEMBER(*(td->td_waitset), sig)) {
1579 				mtx_unlock_spin(&sched_lock);
1580 				return (td);
1581 		}
1582 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1583 			if (td == curthread)
1584 				signal_td = curthread;
1585 			else if (signal_td == NULL)
1586 				signal_td = td;
1587 		}
1588 	}
1589 	if (signal_td == NULL)
1590 		signal_td = FIRST_THREAD_IN_PROC(p);
1591 	mtx_unlock_spin(&sched_lock);
1592 	return (signal_td);
1593 }
1594 
1595 /*
1596  * Send the signal to the process.  If the signal has an action, the action
1597  * is usually performed by the target process rather than the caller; we add
1598  * the signal to the set of pending signals for the process.
1599  *
1600  * Exceptions:
1601  *   o When a stop signal is sent to a sleeping process that takes the
1602  *     default action, the process is stopped without awakening it.
1603  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1604  *     regardless of the signal action (eg, blocked or ignored).
1605  *
1606  * Other ignored signals are discarded immediately.
1607  *
1608  * MPSAFE
1609  */
1610 void
1611 psignal(struct proc *p, int sig)
1612 {
1613 	struct thread *td;
1614 	int prop;
1615 
1616 	if (!_SIG_VALID(sig))
1617 		panic("psignal(): invalid signal");
1618 
1619 	PROC_LOCK_ASSERT(p, MA_OWNED);
1620 	/*
1621 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1622 	 */
1623 	if (p->p_state == PRS_ZOMBIE)
1624 		return;
1625 	prop = sigprop(sig);
1626 
1627 	/*
1628 	 * Find a thread to deliver the signal to.
1629 	 */
1630 	td = sigtd(p, sig, prop);
1631 
1632 	tdsignal(td, sig, SIGTARGET_P);
1633 }
1634 
1635 /*
1636  * MPSAFE
1637  */
1638 void
1639 tdsignal(struct thread *td, int sig, sigtarget_t target)
1640 {
1641 	sigset_t saved;
1642 	struct proc *p = td->td_proc;
1643 
1644 	if (p->p_flag & P_SA)
1645 		saved = p->p_siglist;
1646 	do_tdsignal(td, sig, target);
1647 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
1648 		if (!SIGSETEQ(saved, p->p_siglist)) {
1649 			/* pending set changed */
1650 			p->p_flag |= P_SIGEVENT;
1651 			wakeup(&p->p_siglist);
1652 		}
1653 	}
1654 }
1655 
1656 static void
1657 do_tdsignal(struct thread *td, int sig, sigtarget_t target)
1658 {
1659 	struct proc *p;
1660 	register sig_t action;
1661 	sigset_t *siglist;
1662 	struct thread *td0;
1663 	register int prop;
1664 	struct sigacts *ps;
1665 
1666 	if (!_SIG_VALID(sig))
1667 		panic("do_tdsignal(): invalid signal");
1668 
1669 	p = td->td_proc;
1670 	ps = p->p_sigacts;
1671 
1672 	PROC_LOCK_ASSERT(p, MA_OWNED);
1673 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1674 
1675 	prop = sigprop(sig);
1676 
1677 	/*
1678 	 * If the signal is blocked and not destined for this thread, then
1679 	 * assign it to the process so that we can find it later in the first
1680 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1681 	 */
1682 	if (target == SIGTARGET_TD) {
1683 		siglist = &td->td_siglist;
1684 	} else {
1685 		if (!SIGISMEMBER(td->td_sigmask, sig))
1686 			siglist = &td->td_siglist;
1687 		else if (td->td_waitset != NULL &&
1688 			SIGISMEMBER(*(td->td_waitset), sig))
1689 			siglist = &td->td_siglist;
1690 		else
1691 			siglist = &p->p_siglist;
1692 	}
1693 
1694 	/*
1695 	 * If proc is traced, always give parent a chance;
1696 	 * if signal event is tracked by procfs, give *that*
1697 	 * a chance, as well.
1698 	 */
1699 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
1700 		action = SIG_DFL;
1701 	} else {
1702 		/*
1703 		 * If the signal is being ignored,
1704 		 * then we forget about it immediately.
1705 		 * (Note: we don't set SIGCONT in ps_sigignore,
1706 		 * and if it is set to SIG_IGN,
1707 		 * action will be SIG_DFL here.)
1708 		 */
1709 		mtx_lock(&ps->ps_mtx);
1710 		if (SIGISMEMBER(ps->ps_sigignore, sig) ||
1711 		    (p->p_flag & P_WEXIT)) {
1712 			mtx_unlock(&ps->ps_mtx);
1713 			return;
1714 		}
1715 		if (((td->td_waitset == NULL) &&
1716 		     SIGISMEMBER(td->td_sigmask, sig)) ||
1717 		    ((td->td_waitset != NULL) &&
1718 		     SIGISMEMBER(td->td_sigmask, sig) &&
1719 		     !SIGISMEMBER(*(td->td_waitset), sig)))
1720 			action = SIG_HOLD;
1721 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
1722 			action = SIG_CATCH;
1723 		else
1724 			action = SIG_DFL;
1725 		mtx_unlock(&ps->ps_mtx);
1726 	}
1727 
1728 	if (prop & SA_CONT) {
1729 		SIG_STOPSIGMASK(p->p_siglist);
1730 		/*
1731 		 * XXX Should investigate leaving STOP and CONT sigs only in
1732 		 * the proc's siglist.
1733 		 */
1734 		mtx_lock_spin(&sched_lock);
1735 		FOREACH_THREAD_IN_PROC(p, td0)
1736 			SIG_STOPSIGMASK(td0->td_siglist);
1737 		mtx_unlock_spin(&sched_lock);
1738 	}
1739 
1740 	if (prop & SA_STOP) {
1741 		/*
1742 		 * If sending a tty stop signal to a member of an orphaned
1743 		 * process group, discard the signal here if the action
1744 		 * is default; don't stop the process below if sleeping,
1745 		 * and don't clear any pending SIGCONT.
1746 		 */
1747 		if ((prop & SA_TTYSTOP) &&
1748 		    (p->p_pgrp->pg_jobc == 0) &&
1749 		    (action == SIG_DFL))
1750 		        return;
1751 		SIG_CONTSIGMASK(p->p_siglist);
1752 		mtx_lock_spin(&sched_lock);
1753 		FOREACH_THREAD_IN_PROC(p, td0)
1754 			SIG_CONTSIGMASK(td0->td_siglist);
1755 		mtx_unlock_spin(&sched_lock);
1756 		p->p_flag &= ~P_CONTINUED;
1757 	}
1758 
1759 	SIGADDSET(*siglist, sig);
1760 	signotify(td);			/* uses schedlock */
1761 	if (siglist == &td->td_siglist && (td->td_waitset != NULL) &&
1762 	    action != SIG_HOLD) {
1763 		td->td_waitset = NULL;
1764 	}
1765 
1766 	/*
1767 	 * Defer further processing for signals which are held,
1768 	 * except that stopped processes must be continued by SIGCONT.
1769 	 */
1770 	if (action == SIG_HOLD &&
1771 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
1772 		return;
1773 	/*
1774 	 * Some signals have a process-wide effect and a per-thread
1775 	 * component.  Most processing occurs when the process next
1776 	 * tries to cross the user boundary, however there are some
1777 	 * times when processing needs to be done immediatly, such as
1778 	 * waking up threads so that they can cross the user boundary.
1779 	 * We try do the per-process part here.
1780 	 */
1781 	if (P_SHOULDSTOP(p)) {
1782 		/*
1783 		 * The process is in stopped mode. All the threads should be
1784 		 * either winding down or already on the suspended queue.
1785 		 */
1786 		if (p->p_flag & P_TRACED) {
1787 			/*
1788 			 * The traced process is already stopped,
1789 			 * so no further action is necessary.
1790 			 * No signal can restart us.
1791 			 */
1792 			goto out;
1793 		}
1794 
1795 		if (sig == SIGKILL) {
1796 			/*
1797 			 * SIGKILL sets process running.
1798 			 * It will die elsewhere.
1799 			 * All threads must be restarted.
1800 			 */
1801 			p->p_flag &= ~P_STOPPED;
1802 			goto runfast;
1803 		}
1804 
1805 		if (prop & SA_CONT) {
1806 			/*
1807 			 * If SIGCONT is default (or ignored), we continue the
1808 			 * process but don't leave the signal in siglist as
1809 			 * it has no further action.  If SIGCONT is held, we
1810 			 * continue the process and leave the signal in
1811 			 * siglist.  If the process catches SIGCONT, let it
1812 			 * handle the signal itself.  If it isn't waiting on
1813 			 * an event, it goes back to run state.
1814 			 * Otherwise, process goes back to sleep state.
1815 			 */
1816 			p->p_flag &= ~P_STOPPED_SIG;
1817 			p->p_flag |= P_CONTINUED;
1818 			if (action == SIG_DFL) {
1819 				SIGDELSET(*siglist, sig);
1820 			} else if (action == SIG_CATCH) {
1821 				/*
1822 				 * The process wants to catch it so it needs
1823 				 * to run at least one thread, but which one?
1824 				 * It would seem that the answer would be to
1825 				 * run an upcall in the next KSE to run, and
1826 				 * deliver the signal that way. In a NON KSE
1827 				 * process, we need to make sure that the
1828 				 * single thread is runnable asap.
1829 				 * XXXKSE for now however, make them all run.
1830 				 */
1831 				goto runfast;
1832 			}
1833 			/*
1834 			 * The signal is not ignored or caught.
1835 			 */
1836 			mtx_lock_spin(&sched_lock);
1837 			thread_unsuspend(p);
1838 			mtx_unlock_spin(&sched_lock);
1839 			goto out;
1840 		}
1841 
1842 		if (prop & SA_STOP) {
1843 			/*
1844 			 * Already stopped, don't need to stop again
1845 			 * (If we did the shell could get confused).
1846 			 * Just make sure the signal STOP bit set.
1847 			 */
1848 			p->p_flag |= P_STOPPED_SIG;
1849 			SIGDELSET(*siglist, sig);
1850 			goto out;
1851 		}
1852 
1853 		/*
1854 		 * All other kinds of signals:
1855 		 * If a thread is sleeping interruptibly, simulate a
1856 		 * wakeup so that when it is continued it will be made
1857 		 * runnable and can look at the signal.  However, don't make
1858 		 * the PROCESS runnable, leave it stopped.
1859 		 * It may run a bit until it hits a thread_suspend_check().
1860 		 */
1861 		mtx_lock_spin(&sched_lock);
1862 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
1863 			sleepq_abort(td);
1864 		mtx_unlock_spin(&sched_lock);
1865 		goto out;
1866 		/*
1867 		 * Mutexes are short lived. Threads waiting on them will
1868 		 * hit thread_suspend_check() soon.
1869 		 */
1870 	}  else if (p->p_state == PRS_NORMAL) {
1871 		if ((p->p_flag & P_TRACED) || (action != SIG_DFL) ||
1872 			!(prop & SA_STOP)) {
1873 			mtx_lock_spin(&sched_lock);
1874 			tdsigwakeup(td, sig, action);
1875 			mtx_unlock_spin(&sched_lock);
1876 			goto out;
1877 		}
1878 		if (prop & SA_STOP) {
1879 			if (p->p_flag & P_PPWAIT)
1880 				goto out;
1881 			p->p_flag |= P_STOPPED_SIG;
1882 			p->p_xstat = sig;
1883 			p->p_xthread = td;
1884 			mtx_lock_spin(&sched_lock);
1885 			FOREACH_THREAD_IN_PROC(p, td0) {
1886 				if (TD_IS_SLEEPING(td0) &&
1887 				    (td0->td_flags & TDF_SINTR) &&
1888 				    !TD_IS_SUSPENDED(td0)) {
1889 					thread_suspend_one(td0);
1890 				} else if (td != td0) {
1891 					td0->td_flags |= TDF_ASTPENDING;
1892 				}
1893 			}
1894 			thread_stopped(p);
1895 			if (p->p_numthreads == p->p_suspcount) {
1896 				SIGDELSET(p->p_siglist, p->p_xstat);
1897 				FOREACH_THREAD_IN_PROC(p, td0)
1898 					SIGDELSET(td0->td_siglist, p->p_xstat);
1899 			}
1900 			mtx_unlock_spin(&sched_lock);
1901 			goto out;
1902 		}
1903 		else
1904 			goto runfast;
1905 		/* NOTREACHED */
1906 	} else {
1907 		/* Not in "NORMAL" state. discard the signal. */
1908 		SIGDELSET(*siglist, sig);
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * The process is not stopped so we need to apply the signal to all the
1914 	 * running threads.
1915 	 */
1916 
1917 runfast:
1918 	mtx_lock_spin(&sched_lock);
1919 	tdsigwakeup(td, sig, action);
1920 	thread_unsuspend(p);
1921 	mtx_unlock_spin(&sched_lock);
1922 out:
1923 	/* If we jump here, sched_lock should not be owned. */
1924 	mtx_assert(&sched_lock, MA_NOTOWNED);
1925 }
1926 
1927 /*
1928  * The force of a signal has been directed against a single
1929  * thread.  We need to see what we can do about knocking it
1930  * out of any sleep it may be in etc.
1931  */
1932 static void
1933 tdsigwakeup(struct thread *td, int sig, sig_t action)
1934 {
1935 	struct proc *p = td->td_proc;
1936 	register int prop;
1937 
1938 	PROC_LOCK_ASSERT(p, MA_OWNED);
1939 	mtx_assert(&sched_lock, MA_OWNED);
1940 	prop = sigprop(sig);
1941 
1942 	/*
1943 	 * Bring the priority of a thread up if we want it to get
1944 	 * killed in this lifetime.
1945 	 */
1946 	if (action == SIG_DFL && (prop & SA_KILL)) {
1947 		if (td->td_priority > PUSER)
1948 			td->td_priority = PUSER;
1949 	}
1950 
1951 	if (TD_ON_SLEEPQ(td)) {
1952 		/*
1953 		 * If thread is sleeping uninterruptibly
1954 		 * we can't interrupt the sleep... the signal will
1955 		 * be noticed when the process returns through
1956 		 * trap() or syscall().
1957 		 */
1958 		if ((td->td_flags & TDF_SINTR) == 0)
1959 			return;
1960 		/*
1961 		 * Process is sleeping and traced.  Make it runnable
1962 		 * so it can discover the signal in issignal() and stop
1963 		 * for its parent.
1964 		 */
1965 		if (p->p_flag & P_TRACED) {
1966 			p->p_flag &= ~P_STOPPED_TRACE;
1967 		} else {
1968 			/*
1969 			 * If SIGCONT is default (or ignored) and process is
1970 			 * asleep, we are finished; the process should not
1971 			 * be awakened.
1972 			 */
1973 			if ((prop & SA_CONT) && action == SIG_DFL) {
1974 				SIGDELSET(p->p_siglist, sig);
1975 				/*
1976 				 * It may be on either list in this state.
1977 				 * Remove from both for now.
1978 				 */
1979 				SIGDELSET(td->td_siglist, sig);
1980 				return;
1981 			}
1982 
1983 			/*
1984 			 * Give low priority threads a better chance to run.
1985 			 */
1986 			if (td->td_priority > PUSER)
1987 				td->td_priority = PUSER;
1988 		}
1989 		sleepq_abort(td);
1990 	} else {
1991 		/*
1992 		 * Other states do nothing with the signal immediately,
1993 		 * other than kicking ourselves if we are running.
1994 		 * It will either never be noticed, or noticed very soon.
1995 		 */
1996 #ifdef SMP
1997 		if (TD_IS_RUNNING(td) && td != curthread)
1998 			forward_signal(td);
1999 #endif
2000 	}
2001 }
2002 
2003 int
2004 ptracestop(struct thread *td, int sig)
2005 {
2006 	struct proc *p = td->td_proc;
2007 	struct thread *td0;
2008 
2009 	PROC_LOCK_ASSERT(p, MA_OWNED);
2010 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2011 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2012 
2013 	mtx_lock_spin(&sched_lock);
2014 	td->td_flags |= TDF_XSIG;
2015 	mtx_unlock_spin(&sched_lock);
2016 	td->td_xsig = sig;
2017 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2018 		if (p->p_flag & P_SINGLE_EXIT) {
2019 			mtx_lock_spin(&sched_lock);
2020 			td->td_flags &= ~TDF_XSIG;
2021 			mtx_unlock_spin(&sched_lock);
2022 			return (sig);
2023 		}
2024 		/*
2025 		 * Just make wait() to work, the last stopped thread
2026 		 * will win.
2027 		 */
2028 		p->p_xstat = sig;
2029 		p->p_xthread = td;
2030 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2031 		mtx_lock_spin(&sched_lock);
2032 		FOREACH_THREAD_IN_PROC(p, td0) {
2033 			if (TD_IS_SLEEPING(td0) &&
2034 			    (td0->td_flags & TDF_SINTR) &&
2035 			    !TD_IS_SUSPENDED(td0)) {
2036 				thread_suspend_one(td0);
2037 			} else if (td != td0) {
2038 				td0->td_flags |= TDF_ASTPENDING;
2039 			}
2040 		}
2041 stopme:
2042 		thread_stopped(p);
2043 		thread_suspend_one(td);
2044 		PROC_UNLOCK(p);
2045 		DROP_GIANT();
2046 		mi_switch(SW_VOL, NULL);
2047 		mtx_unlock_spin(&sched_lock);
2048 		PICKUP_GIANT();
2049 		PROC_LOCK(p);
2050 		if (!(p->p_flag & P_TRACED))
2051 			break;
2052 		if (td->td_flags & TDF_DBSUSPEND) {
2053 			if (p->p_flag & P_SINGLE_EXIT)
2054 				break;
2055 			mtx_lock_spin(&sched_lock);
2056 			goto stopme;
2057 		}
2058 	}
2059 	return (td->td_xsig);
2060 }
2061 
2062 /*
2063  * If the current process has received a signal (should be caught or cause
2064  * termination, should interrupt current syscall), return the signal number.
2065  * Stop signals with default action are processed immediately, then cleared;
2066  * they aren't returned.  This is checked after each entry to the system for
2067  * a syscall or trap (though this can usually be done without calling issignal
2068  * by checking the pending signal masks in cursig.) The normal call
2069  * sequence is
2070  *
2071  *	while (sig = cursig(curthread))
2072  *		postsig(sig);
2073  */
2074 static int
2075 issignal(td)
2076 	struct thread *td;
2077 {
2078 	struct proc *p;
2079 	struct sigacts *ps;
2080 	sigset_t sigpending;
2081 	int sig, prop, newsig;
2082 	struct thread *td0;
2083 
2084 	p = td->td_proc;
2085 	ps = p->p_sigacts;
2086 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2087 	PROC_LOCK_ASSERT(p, MA_OWNED);
2088 	for (;;) {
2089 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2090 
2091 		sigpending = td->td_siglist;
2092 		SIGSETNAND(sigpending, td->td_sigmask);
2093 
2094 		if (p->p_flag & P_PPWAIT)
2095 			SIG_STOPSIGMASK(sigpending);
2096 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2097 			return (0);
2098 		sig = sig_ffs(&sigpending);
2099 
2100 		if (p->p_stops & S_SIG) {
2101 			mtx_unlock(&ps->ps_mtx);
2102 			stopevent(p, S_SIG, sig);
2103 			mtx_lock(&ps->ps_mtx);
2104 		}
2105 
2106 		/*
2107 		 * We should see pending but ignored signals
2108 		 * only if P_TRACED was on when they were posted.
2109 		 */
2110 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2111 			SIGDELSET(td->td_siglist, sig);
2112 			if (td->td_pflags & TDP_SA)
2113 				SIGADDSET(td->td_sigmask, sig);
2114 			continue;
2115 		}
2116 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2117 			/*
2118 			 * If traced, always stop.
2119 			 */
2120 			mtx_unlock(&ps->ps_mtx);
2121 			newsig = ptracestop(td, sig);
2122 			mtx_lock(&ps->ps_mtx);
2123 
2124 			/*
2125 			 * If parent wants us to take the signal,
2126 			 * then it will leave it in p->p_xstat;
2127 			 * otherwise we just look for signals again.
2128 			 */
2129 			SIGDELSET(td->td_siglist, sig);	/* clear old signal */
2130 			if (td->td_pflags & TDP_SA)
2131 				SIGADDSET(td->td_sigmask, sig);
2132 			if (newsig == 0)
2133 				continue;
2134 			sig = newsig;
2135 			/*
2136 			 * If the traced bit got turned off, go back up
2137 			 * to the top to rescan signals.  This ensures
2138 			 * that p_sig* and p_sigact are consistent.
2139 			 */
2140 			if ((p->p_flag & P_TRACED) == 0)
2141 				continue;
2142 
2143 			/*
2144 			 * Put the new signal into td_siglist.  If the
2145 			 * signal is being masked, look for other signals.
2146 			 */
2147 			SIGADDSET(td->td_siglist, sig);
2148 			if (td->td_pflags & TDP_SA)
2149 				SIGDELSET(td->td_sigmask, sig);
2150 			if (SIGISMEMBER(td->td_sigmask, sig))
2151 				continue;
2152 			signotify(td);
2153 		}
2154 
2155 		prop = sigprop(sig);
2156 
2157 		/*
2158 		 * Decide whether the signal should be returned.
2159 		 * Return the signal's number, or fall through
2160 		 * to clear it from the pending mask.
2161 		 */
2162 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2163 
2164 		case (intptr_t)SIG_DFL:
2165 			/*
2166 			 * Don't take default actions on system processes.
2167 			 */
2168 			if (p->p_pid <= 1) {
2169 #ifdef DIAGNOSTIC
2170 				/*
2171 				 * Are you sure you want to ignore SIGSEGV
2172 				 * in init? XXX
2173 				 */
2174 				printf("Process (pid %lu) got signal %d\n",
2175 					(u_long)p->p_pid, sig);
2176 #endif
2177 				break;		/* == ignore */
2178 			}
2179 			/*
2180 			 * If there is a pending stop signal to process
2181 			 * with default action, stop here,
2182 			 * then clear the signal.  However,
2183 			 * if process is member of an orphaned
2184 			 * process group, ignore tty stop signals.
2185 			 */
2186 			if (prop & SA_STOP) {
2187 				if (p->p_flag & P_TRACED ||
2188 		    		    (p->p_pgrp->pg_jobc == 0 &&
2189 				     prop & SA_TTYSTOP))
2190 					break;	/* == ignore */
2191 				mtx_unlock(&ps->ps_mtx);
2192 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2193 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2194 				p->p_flag |= P_STOPPED_SIG;
2195 				p->p_xstat = sig;
2196 				p->p_xthread = td;
2197 				mtx_lock_spin(&sched_lock);
2198 				FOREACH_THREAD_IN_PROC(p, td0) {
2199 					if (TD_IS_SLEEPING(td0) &&
2200 					    (td0->td_flags & TDF_SINTR) &&
2201 					    !TD_IS_SUSPENDED(td0)) {
2202 						thread_suspend_one(td0);
2203 					} else if (td != td0) {
2204 						td0->td_flags |= TDF_ASTPENDING;
2205 					}
2206 				}
2207 				thread_stopped(p);
2208 				thread_suspend_one(td);
2209 				PROC_UNLOCK(p);
2210 				DROP_GIANT();
2211 				mi_switch(SW_INVOL, NULL);
2212 				mtx_unlock_spin(&sched_lock);
2213 				PICKUP_GIANT();
2214 				PROC_LOCK(p);
2215 				mtx_lock(&ps->ps_mtx);
2216 				break;
2217 			} else if (prop & SA_IGNORE) {
2218 				/*
2219 				 * Except for SIGCONT, shouldn't get here.
2220 				 * Default action is to ignore; drop it.
2221 				 */
2222 				break;		/* == ignore */
2223 			} else
2224 				return (sig);
2225 			/*NOTREACHED*/
2226 
2227 		case (intptr_t)SIG_IGN:
2228 			/*
2229 			 * Masking above should prevent us ever trying
2230 			 * to take action on an ignored signal other
2231 			 * than SIGCONT, unless process is traced.
2232 			 */
2233 			if ((prop & SA_CONT) == 0 &&
2234 			    (p->p_flag & P_TRACED) == 0)
2235 				printf("issignal\n");
2236 			break;		/* == ignore */
2237 
2238 		default:
2239 			/*
2240 			 * This signal has an action, let
2241 			 * postsig() process it.
2242 			 */
2243 			return (sig);
2244 		}
2245 		SIGDELSET(td->td_siglist, sig);		/* take the signal! */
2246 	}
2247 	/* NOTREACHED */
2248 }
2249 
2250 /*
2251  * Put the argument process into the stopped state and notify the parent
2252  * via wakeup.  Signals are handled elsewhere.  The process must not be
2253  * on the run queue.  Must be called with the proc p locked.
2254  */
2255 static void
2256 stop(struct proc *p)
2257 {
2258 
2259 	PROC_LOCK_ASSERT(p, MA_OWNED);
2260 	p->p_flag |= P_STOPPED_SIG;
2261 	p->p_flag &= ~P_WAITED;
2262 	wakeup(p->p_pptr);
2263 }
2264 
2265 /*
2266  * MPSAFE
2267  */
2268 void
2269 thread_stopped(struct proc *p)
2270 {
2271 	struct proc *p1 = curthread->td_proc;
2272 	struct sigacts *ps;
2273 	int n;
2274 
2275 	PROC_LOCK_ASSERT(p, MA_OWNED);
2276 	mtx_assert(&sched_lock, MA_OWNED);
2277 	n = p->p_suspcount;
2278 	if (p == p1)
2279 		n++;
2280 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2281 		mtx_unlock_spin(&sched_lock);
2282 		stop(p);
2283 		PROC_LOCK(p->p_pptr);
2284 		ps = p->p_pptr->p_sigacts;
2285 		mtx_lock(&ps->ps_mtx);
2286 		if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2287 			mtx_unlock(&ps->ps_mtx);
2288 			psignal(p->p_pptr, SIGCHLD);
2289 		} else
2290 			mtx_unlock(&ps->ps_mtx);
2291 		PROC_UNLOCK(p->p_pptr);
2292 		mtx_lock_spin(&sched_lock);
2293 	}
2294 }
2295 
2296 /*
2297  * Take the action for the specified signal
2298  * from the current set of pending signals.
2299  */
2300 void
2301 postsig(sig)
2302 	register int sig;
2303 {
2304 	struct thread *td = curthread;
2305 	register struct proc *p = td->td_proc;
2306 	struct sigacts *ps;
2307 	sig_t action;
2308 	sigset_t returnmask;
2309 	int code;
2310 
2311 	KASSERT(sig != 0, ("postsig"));
2312 
2313 	PROC_LOCK_ASSERT(p, MA_OWNED);
2314 	ps = p->p_sigacts;
2315 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2316 	SIGDELSET(td->td_siglist, sig);
2317 	action = ps->ps_sigact[_SIG_IDX(sig)];
2318 #ifdef KTRACE
2319 	if (KTRPOINT(td, KTR_PSIG))
2320 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2321 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2322 #endif
2323 	if (p->p_stops & S_SIG) {
2324 		mtx_unlock(&ps->ps_mtx);
2325 		stopevent(p, S_SIG, sig);
2326 		mtx_lock(&ps->ps_mtx);
2327 	}
2328 
2329 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2330 		/*
2331 		 * Default action, where the default is to kill
2332 		 * the process.  (Other cases were ignored above.)
2333 		 */
2334 		mtx_unlock(&ps->ps_mtx);
2335 		sigexit(td, sig);
2336 		/* NOTREACHED */
2337 	} else {
2338 		if (td->td_pflags & TDP_SA) {
2339 			if (sig == SIGKILL) {
2340 				mtx_unlock(&ps->ps_mtx);
2341 				sigexit(td, sig);
2342 			}
2343 		}
2344 
2345 		/*
2346 		 * If we get here, the signal must be caught.
2347 		 */
2348 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2349 		    ("postsig action"));
2350 		/*
2351 		 * Set the new mask value and also defer further
2352 		 * occurrences of this signal.
2353 		 *
2354 		 * Special case: user has done a sigsuspend.  Here the
2355 		 * current mask is not of interest, but rather the
2356 		 * mask from before the sigsuspend is what we want
2357 		 * restored after the signal processing is completed.
2358 		 */
2359 		if (td->td_pflags & TDP_OLDMASK) {
2360 			returnmask = td->td_oldsigmask;
2361 			td->td_pflags &= ~TDP_OLDMASK;
2362 		} else
2363 			returnmask = td->td_sigmask;
2364 
2365 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2366 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2367 			SIGADDSET(td->td_sigmask, sig);
2368 
2369 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2370 			/*
2371 			 * See kern_sigaction() for origin of this code.
2372 			 */
2373 			SIGDELSET(ps->ps_sigcatch, sig);
2374 			if (sig != SIGCONT &&
2375 			    sigprop(sig) & SA_IGNORE)
2376 				SIGADDSET(ps->ps_sigignore, sig);
2377 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2378 		}
2379 		p->p_stats->p_ru.ru_nsignals++;
2380 		if (p->p_sig != sig) {
2381 			code = 0;
2382 		} else {
2383 			code = p->p_code;
2384 			p->p_code = 0;
2385 			p->p_sig = 0;
2386 		}
2387 		if (td->td_pflags & TDP_SA)
2388 			thread_signal_add(curthread, sig);
2389 		else
2390 			(*p->p_sysent->sv_sendsig)(action, sig,
2391 			    &returnmask, code);
2392 	}
2393 }
2394 
2395 /*
2396  * Kill the current process for stated reason.
2397  */
2398 void
2399 killproc(p, why)
2400 	struct proc *p;
2401 	char *why;
2402 {
2403 
2404 	PROC_LOCK_ASSERT(p, MA_OWNED);
2405 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2406 		p, p->p_pid, p->p_comm);
2407 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2408 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2409 	psignal(p, SIGKILL);
2410 }
2411 
2412 /*
2413  * Force the current process to exit with the specified signal, dumping core
2414  * if appropriate.  We bypass the normal tests for masked and caught signals,
2415  * allowing unrecoverable failures to terminate the process without changing
2416  * signal state.  Mark the accounting record with the signal termination.
2417  * If dumping core, save the signal number for the debugger.  Calls exit and
2418  * does not return.
2419  *
2420  * MPSAFE
2421  */
2422 void
2423 sigexit(td, sig)
2424 	struct thread *td;
2425 	int sig;
2426 {
2427 	struct proc *p = td->td_proc;
2428 
2429 	PROC_LOCK_ASSERT(p, MA_OWNED);
2430 	p->p_acflag |= AXSIG;
2431 	if (sigprop(sig) & SA_CORE) {
2432 		p->p_sig = sig;
2433 		/*
2434 		 * Log signals which would cause core dumps
2435 		 * (Log as LOG_INFO to appease those who don't want
2436 		 * these messages.)
2437 		 * XXX : Todo, as well as euid, write out ruid too
2438 		 * Note that coredump() drops proc lock.
2439 		 */
2440 		if (coredump(td) == 0)
2441 			sig |= WCOREFLAG;
2442 		if (kern_logsigexit)
2443 			log(LOG_INFO,
2444 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2445 			    p->p_pid, p->p_comm,
2446 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2447 			    sig &~ WCOREFLAG,
2448 			    sig & WCOREFLAG ? " (core dumped)" : "");
2449 	} else
2450 		PROC_UNLOCK(p);
2451 	exit1(td, W_EXITCODE(0, sig));
2452 	/* NOTREACHED */
2453 }
2454 
2455 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2456 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2457 	      sizeof(corefilename), "process corefile name format string");
2458 
2459 /*
2460  * expand_name(name, uid, pid)
2461  * Expand the name described in corefilename, using name, uid, and pid.
2462  * corefilename is a printf-like string, with three format specifiers:
2463  *	%N	name of process ("name")
2464  *	%P	process id (pid)
2465  *	%U	user id (uid)
2466  * For example, "%N.core" is the default; they can be disabled completely
2467  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2468  * This is controlled by the sysctl variable kern.corefile (see above).
2469  */
2470 
2471 static char *
2472 expand_name(name, uid, pid)
2473 	const char *name;
2474 	uid_t uid;
2475 	pid_t pid;
2476 {
2477 	const char *format, *appendstr;
2478 	char *temp;
2479 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2480 	size_t i, l, n;
2481 
2482 	format = corefilename;
2483 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2484 	if (temp == NULL)
2485 		return (NULL);
2486 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2487 		switch (format[i]) {
2488 		case '%':	/* Format character */
2489 			i++;
2490 			switch (format[i]) {
2491 			case '%':
2492 				appendstr = "%";
2493 				break;
2494 			case 'N':	/* process name */
2495 				appendstr = name;
2496 				break;
2497 			case 'P':	/* process id */
2498 				sprintf(buf, "%u", pid);
2499 				appendstr = buf;
2500 				break;
2501 			case 'U':	/* user id */
2502 				sprintf(buf, "%u", uid);
2503 				appendstr = buf;
2504 				break;
2505 			default:
2506 				appendstr = "";
2507 			  	log(LOG_ERR,
2508 				    "Unknown format character %c in `%s'\n",
2509 				    format[i], format);
2510 			}
2511 			l = strlen(appendstr);
2512 			if ((n + l) >= MAXPATHLEN)
2513 				goto toolong;
2514 			memcpy(temp + n, appendstr, l);
2515 			n += l;
2516 			break;
2517 		default:
2518 			temp[n++] = format[i];
2519 		}
2520 	}
2521 	if (format[i] != '\0')
2522 		goto toolong;
2523 	return (temp);
2524 toolong:
2525 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
2526 	    (long)pid, name, (u_long)uid);
2527 	free(temp, M_TEMP);
2528 	return (NULL);
2529 }
2530 
2531 /*
2532  * Dump a process' core.  The main routine does some
2533  * policy checking, and creates the name of the coredump;
2534  * then it passes on a vnode and a size limit to the process-specific
2535  * coredump routine if there is one; if there _is not_ one, it returns
2536  * ENOSYS; otherwise it returns the error from the process-specific routine.
2537  */
2538 
2539 static int
2540 coredump(struct thread *td)
2541 {
2542 	struct proc *p = td->td_proc;
2543 	register struct vnode *vp;
2544 	register struct ucred *cred = td->td_ucred;
2545 	struct flock lf;
2546 	struct nameidata nd;
2547 	struct vattr vattr;
2548 	int error, error1, flags, locked;
2549 	struct mount *mp;
2550 	char *name;			/* name of corefile */
2551 	off_t limit;
2552 
2553 	PROC_LOCK_ASSERT(p, MA_OWNED);
2554 	_STOPEVENT(p, S_CORE, 0);
2555 
2556 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2557 		PROC_UNLOCK(p);
2558 		return (EFAULT);
2559 	}
2560 
2561 	/*
2562 	 * Note that the bulk of limit checking is done after
2563 	 * the corefile is created.  The exception is if the limit
2564 	 * for corefiles is 0, in which case we don't bother
2565 	 * creating the corefile at all.  This layout means that
2566 	 * a corefile is truncated instead of not being created,
2567 	 * if it is larger than the limit.
2568 	 */
2569 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2570 	PROC_UNLOCK(p);
2571 	if (limit == 0)
2572 		return (EFBIG);
2573 
2574 	mtx_lock(&Giant);
2575 restart:
2576 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2577 	if (name == NULL) {
2578 		mtx_unlock(&Giant);
2579 		return (EINVAL);
2580 	}
2581 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
2582 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2583 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
2584 	free(name, M_TEMP);
2585 	if (error) {
2586 		mtx_unlock(&Giant);
2587 		return (error);
2588 	}
2589 	NDFREE(&nd, NDF_ONLY_PNBUF);
2590 	vp = nd.ni_vp;
2591 
2592 	/* Don't dump to non-regular files or files with links. */
2593 	if (vp->v_type != VREG ||
2594 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
2595 		VOP_UNLOCK(vp, 0, td);
2596 		error = EFAULT;
2597 		goto out;
2598 	}
2599 
2600 	VOP_UNLOCK(vp, 0, td);
2601 	lf.l_whence = SEEK_SET;
2602 	lf.l_start = 0;
2603 	lf.l_len = 0;
2604 	lf.l_type = F_WRLCK;
2605 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2606 
2607 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2608 		lf.l_type = F_UNLCK;
2609 		if (locked)
2610 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2611 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2612 			return (error);
2613 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2614 			return (error);
2615 		goto restart;
2616 	}
2617 
2618 	VATTR_NULL(&vattr);
2619 	vattr.va_size = 0;
2620 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2621 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2622 	VOP_SETATTR(vp, &vattr, cred, td);
2623 	VOP_UNLOCK(vp, 0, td);
2624 	PROC_LOCK(p);
2625 	p->p_acflag |= ACORE;
2626 	PROC_UNLOCK(p);
2627 
2628 	error = p->p_sysent->sv_coredump ?
2629 	  p->p_sysent->sv_coredump(td, vp, limit) :
2630 	  ENOSYS;
2631 
2632 	if (locked) {
2633 		lf.l_type = F_UNLCK;
2634 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2635 	}
2636 	vn_finished_write(mp);
2637 out:
2638 	error1 = vn_close(vp, FWRITE, cred, td);
2639 	mtx_unlock(&Giant);
2640 	if (error == 0)
2641 		error = error1;
2642 	return (error);
2643 }
2644 
2645 /*
2646  * Nonexistent system call-- signal process (may want to handle it).
2647  * Flag error in case process won't see signal immediately (blocked or ignored).
2648  */
2649 #ifndef _SYS_SYSPROTO_H_
2650 struct nosys_args {
2651 	int	dummy;
2652 };
2653 #endif
2654 /*
2655  * MPSAFE
2656  */
2657 /* ARGSUSED */
2658 int
2659 nosys(td, args)
2660 	struct thread *td;
2661 	struct nosys_args *args;
2662 {
2663 	struct proc *p = td->td_proc;
2664 
2665 	PROC_LOCK(p);
2666 	psignal(p, SIGSYS);
2667 	PROC_UNLOCK(p);
2668 	return (ENOSYS);
2669 }
2670 
2671 /*
2672  * Send a SIGIO or SIGURG signal to a process or process group using
2673  * stored credentials rather than those of the current process.
2674  */
2675 void
2676 pgsigio(sigiop, sig, checkctty)
2677 	struct sigio **sigiop;
2678 	int sig, checkctty;
2679 {
2680 	struct sigio *sigio;
2681 
2682 	SIGIO_LOCK();
2683 	sigio = *sigiop;
2684 	if (sigio == NULL) {
2685 		SIGIO_UNLOCK();
2686 		return;
2687 	}
2688 	if (sigio->sio_pgid > 0) {
2689 		PROC_LOCK(sigio->sio_proc);
2690 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
2691 			psignal(sigio->sio_proc, sig);
2692 		PROC_UNLOCK(sigio->sio_proc);
2693 	} else if (sigio->sio_pgid < 0) {
2694 		struct proc *p;
2695 
2696 		PGRP_LOCK(sigio->sio_pgrp);
2697 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
2698 			PROC_LOCK(p);
2699 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
2700 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
2701 				psignal(p, sig);
2702 			PROC_UNLOCK(p);
2703 		}
2704 		PGRP_UNLOCK(sigio->sio_pgrp);
2705 	}
2706 	SIGIO_UNLOCK();
2707 }
2708 
2709 static int
2710 filt_sigattach(struct knote *kn)
2711 {
2712 	struct proc *p = curproc;
2713 
2714 	kn->kn_ptr.p_proc = p;
2715 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2716 
2717 	PROC_LOCK(p);
2718 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2719 	PROC_UNLOCK(p);
2720 
2721 	return (0);
2722 }
2723 
2724 static void
2725 filt_sigdetach(struct knote *kn)
2726 {
2727 	struct proc *p = kn->kn_ptr.p_proc;
2728 
2729 	PROC_LOCK(p);
2730 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2731 	PROC_UNLOCK(p);
2732 }
2733 
2734 /*
2735  * signal knotes are shared with proc knotes, so we apply a mask to
2736  * the hint in order to differentiate them from process hints.  This
2737  * could be avoided by using a signal-specific knote list, but probably
2738  * isn't worth the trouble.
2739  */
2740 static int
2741 filt_signal(struct knote *kn, long hint)
2742 {
2743 
2744 	if (hint & NOTE_SIGNAL) {
2745 		hint &= ~NOTE_SIGNAL;
2746 
2747 		if (kn->kn_id == hint)
2748 			kn->kn_data++;
2749 	}
2750 	return (kn->kn_data != 0);
2751 }
2752 
2753 struct sigacts *
2754 sigacts_alloc(void)
2755 {
2756 	struct sigacts *ps;
2757 
2758 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
2759 	ps->ps_refcnt = 1;
2760 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
2761 	return (ps);
2762 }
2763 
2764 void
2765 sigacts_free(struct sigacts *ps)
2766 {
2767 
2768 	mtx_lock(&ps->ps_mtx);
2769 	ps->ps_refcnt--;
2770 	if (ps->ps_refcnt == 0) {
2771 		mtx_destroy(&ps->ps_mtx);
2772 		free(ps, M_SUBPROC);
2773 	} else
2774 		mtx_unlock(&ps->ps_mtx);
2775 }
2776 
2777 struct sigacts *
2778 sigacts_hold(struct sigacts *ps)
2779 {
2780 	mtx_lock(&ps->ps_mtx);
2781 	ps->ps_refcnt++;
2782 	mtx_unlock(&ps->ps_mtx);
2783 	return (ps);
2784 }
2785 
2786 void
2787 sigacts_copy(struct sigacts *dest, struct sigacts *src)
2788 {
2789 
2790 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
2791 	mtx_lock(&src->ps_mtx);
2792 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
2793 	mtx_unlock(&src->ps_mtx);
2794 }
2795 
2796 int
2797 sigacts_shared(struct sigacts *ps)
2798 {
2799 	int shared;
2800 
2801 	mtx_lock(&ps->ps_mtx);
2802 	shared = ps->ps_refcnt > 1;
2803 	mtx_unlock(&ps->ps_mtx);
2804 	return (shared);
2805 }
2806