xref: /freebsd/sys/kern/kern_sig.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/unistd.h>
73 #include <sys/wait.h>
74 
75 #include <machine/cpu.h>
76 
77 #if defined (__alpha__) && !defined(COMPAT_43)
78 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
79 #endif
80 
81 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
82 
83 static int	coredump(struct thread *);
84 static char	*expand_name(const char *, uid_t, pid_t);
85 static int	killpg1(struct thread *td, int sig, int pgid, int all);
86 static int	issignal(struct thread *p);
87 static int	sigprop(int sig);
88 static void	stop(struct proc *);
89 static void	tdsigwakeup(struct thread *td, int sig, sig_t action);
90 static int	filt_sigattach(struct knote *kn);
91 static void	filt_sigdetach(struct knote *kn);
92 static int	filt_signal(struct knote *kn, long hint);
93 static struct thread *sigtd(struct proc *p, int sig, int prop);
94 static int	kern_sigtimedwait(struct thread *td, sigset_t set,
95 				siginfo_t *info, struct timespec *timeout);
96 static void	do_tdsignal(struct thread *td, int sig, sigtarget_t target);
97 
98 struct filterops sig_filtops =
99 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
100 
101 static int	kern_logsigexit = 1;
102 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
103     &kern_logsigexit, 0,
104     "Log processes quitting on abnormal signals to syslog(3)");
105 
106 /*
107  * Policy -- Can ucred cr1 send SIGIO to process cr2?
108  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
109  * in the right situations.
110  */
111 #define CANSIGIO(cr1, cr2) \
112 	((cr1)->cr_uid == 0 || \
113 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
114 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
115 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
116 	    (cr1)->cr_uid == (cr2)->cr_uid)
117 
118 int sugid_coredump;
119 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
120     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
121 
122 static int	do_coredump = 1;
123 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
124 	&do_coredump, 0, "Enable/Disable coredumps");
125 
126 static int	set_core_nodump_flag = 0;
127 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
128 	0, "Enable setting the NODUMP flag on coredump files");
129 
130 /*
131  * Signal properties and actions.
132  * The array below categorizes the signals and their default actions
133  * according to the following properties:
134  */
135 #define	SA_KILL		0x01		/* terminates process by default */
136 #define	SA_CORE		0x02		/* ditto and coredumps */
137 #define	SA_STOP		0x04		/* suspend process */
138 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
139 #define	SA_IGNORE	0x10		/* ignore by default */
140 #define	SA_CONT		0x20		/* continue if suspended */
141 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
142 #define	SA_PROC		0x80		/* deliverable to any thread */
143 
144 static int sigproptbl[NSIG] = {
145         SA_KILL|SA_PROC,		/* SIGHUP */
146         SA_KILL|SA_PROC,		/* SIGINT */
147         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
148         SA_KILL|SA_CORE,		/* SIGILL */
149         SA_KILL|SA_CORE,		/* SIGTRAP */
150         SA_KILL|SA_CORE,		/* SIGABRT */
151         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
152         SA_KILL|SA_CORE,		/* SIGFPE */
153         SA_KILL|SA_PROC,		/* SIGKILL */
154         SA_KILL|SA_CORE,		/* SIGBUS */
155         SA_KILL|SA_CORE,		/* SIGSEGV */
156         SA_KILL|SA_CORE,		/* SIGSYS */
157         SA_KILL|SA_PROC,		/* SIGPIPE */
158         SA_KILL|SA_PROC,		/* SIGALRM */
159         SA_KILL|SA_PROC,		/* SIGTERM */
160         SA_IGNORE|SA_PROC,		/* SIGURG */
161         SA_STOP|SA_PROC,		/* SIGSTOP */
162         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
163         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
164         SA_IGNORE|SA_PROC,		/* SIGCHLD */
165         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
166         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
167         SA_IGNORE|SA_PROC,		/* SIGIO */
168         SA_KILL,			/* SIGXCPU */
169         SA_KILL,			/* SIGXFSZ */
170         SA_KILL|SA_PROC,		/* SIGVTALRM */
171         SA_KILL|SA_PROC,		/* SIGPROF */
172         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
173         SA_IGNORE|SA_PROC,		/* SIGINFO */
174         SA_KILL|SA_PROC,		/* SIGUSR1 */
175         SA_KILL|SA_PROC,		/* SIGUSR2 */
176 };
177 
178 /*
179  * Determine signal that should be delivered to process p, the current
180  * process, 0 if none.  If there is a pending stop signal with default
181  * action, the process stops in issignal().
182  * XXXKSE   the check for a pending stop is not done under KSE
183  *
184  * MP SAFE.
185  */
186 int
187 cursig(struct thread *td)
188 {
189 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
190 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
191 	mtx_assert(&sched_lock, MA_NOTOWNED);
192 	return (SIGPENDING(td) ? issignal(td) : 0);
193 }
194 
195 /*
196  * Arrange for ast() to handle unmasked pending signals on return to user
197  * mode.  This must be called whenever a signal is added to td_siglist or
198  * unmasked in td_sigmask.
199  */
200 void
201 signotify(struct thread *td)
202 {
203 	struct proc *p;
204 	sigset_t set, saved;
205 
206 	p = td->td_proc;
207 
208 	PROC_LOCK_ASSERT(p, MA_OWNED);
209 
210 	/*
211 	 * If our mask changed we may have to move signal that were
212 	 * previously masked by all threads to our siglist.
213 	 */
214 	set = p->p_siglist;
215 	if (p->p_flag & P_SA)
216 		saved = p->p_siglist;
217 	SIGSETNAND(set, td->td_sigmask);
218 	SIGSETNAND(p->p_siglist, set);
219 	SIGSETOR(td->td_siglist, set);
220 
221 	if (SIGPENDING(td)) {
222 		mtx_lock_spin(&sched_lock);
223 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
224 		mtx_unlock_spin(&sched_lock);
225 	}
226 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
227 		if (!SIGSETEQ(saved, p->p_siglist)) {
228 			/* pending set changed */
229 			p->p_flag |= P_SIGEVENT;
230 			wakeup(&p->p_siglist);
231 		}
232 	}
233 }
234 
235 int
236 sigonstack(size_t sp)
237 {
238 	struct thread *td = curthread;
239 
240 	return ((td->td_pflags & TDP_ALTSTACK) ?
241 #if defined(COMPAT_43)
242 	    ((td->td_sigstk.ss_size == 0) ?
243 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
244 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
245 #else
246 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
247 #endif
248 	    : 0);
249 }
250 
251 static __inline int
252 sigprop(int sig)
253 {
254 
255 	if (sig > 0 && sig < NSIG)
256 		return (sigproptbl[_SIG_IDX(sig)]);
257 	return (0);
258 }
259 
260 int
261 sig_ffs(sigset_t *set)
262 {
263 	int i;
264 
265 	for (i = 0; i < _SIG_WORDS; i++)
266 		if (set->__bits[i])
267 			return (ffs(set->__bits[i]) + (i * 32));
268 	return (0);
269 }
270 
271 /*
272  * kern_sigaction
273  * sigaction
274  * freebsd4_sigaction
275  * osigaction
276  *
277  * MPSAFE
278  */
279 int
280 kern_sigaction(td, sig, act, oact, flags)
281 	struct thread *td;
282 	register int sig;
283 	struct sigaction *act, *oact;
284 	int flags;
285 {
286 	struct sigacts *ps;
287 	struct thread *td0;
288 	struct proc *p = td->td_proc;
289 
290 	if (!_SIG_VALID(sig))
291 		return (EINVAL);
292 
293 	PROC_LOCK(p);
294 	ps = p->p_sigacts;
295 	mtx_lock(&ps->ps_mtx);
296 	if (oact) {
297 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
298 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
299 		oact->sa_flags = 0;
300 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
301 			oact->sa_flags |= SA_ONSTACK;
302 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
303 			oact->sa_flags |= SA_RESTART;
304 		if (SIGISMEMBER(ps->ps_sigreset, sig))
305 			oact->sa_flags |= SA_RESETHAND;
306 		if (SIGISMEMBER(ps->ps_signodefer, sig))
307 			oact->sa_flags |= SA_NODEFER;
308 		if (SIGISMEMBER(ps->ps_siginfo, sig))
309 			oact->sa_flags |= SA_SIGINFO;
310 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
311 			oact->sa_flags |= SA_NOCLDSTOP;
312 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
313 			oact->sa_flags |= SA_NOCLDWAIT;
314 	}
315 	if (act) {
316 		if ((sig == SIGKILL || sig == SIGSTOP) &&
317 		    act->sa_handler != SIG_DFL) {
318 			mtx_unlock(&ps->ps_mtx);
319 			PROC_UNLOCK(p);
320 			return (EINVAL);
321 		}
322 
323 		/*
324 		 * Change setting atomically.
325 		 */
326 
327 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
328 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
329 		if (act->sa_flags & SA_SIGINFO) {
330 			ps->ps_sigact[_SIG_IDX(sig)] =
331 			    (__sighandler_t *)act->sa_sigaction;
332 			SIGADDSET(ps->ps_siginfo, sig);
333 		} else {
334 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
335 			SIGDELSET(ps->ps_siginfo, sig);
336 		}
337 		if (!(act->sa_flags & SA_RESTART))
338 			SIGADDSET(ps->ps_sigintr, sig);
339 		else
340 			SIGDELSET(ps->ps_sigintr, sig);
341 		if (act->sa_flags & SA_ONSTACK)
342 			SIGADDSET(ps->ps_sigonstack, sig);
343 		else
344 			SIGDELSET(ps->ps_sigonstack, sig);
345 		if (act->sa_flags & SA_RESETHAND)
346 			SIGADDSET(ps->ps_sigreset, sig);
347 		else
348 			SIGDELSET(ps->ps_sigreset, sig);
349 		if (act->sa_flags & SA_NODEFER)
350 			SIGADDSET(ps->ps_signodefer, sig);
351 		else
352 			SIGDELSET(ps->ps_signodefer, sig);
353 		if (sig == SIGCHLD) {
354 			if (act->sa_flags & SA_NOCLDSTOP)
355 				ps->ps_flag |= PS_NOCLDSTOP;
356 			else
357 				ps->ps_flag &= ~PS_NOCLDSTOP;
358 			if (act->sa_flags & SA_NOCLDWAIT) {
359 				/*
360 				 * Paranoia: since SA_NOCLDWAIT is implemented
361 				 * by reparenting the dying child to PID 1 (and
362 				 * trust it to reap the zombie), PID 1 itself
363 				 * is forbidden to set SA_NOCLDWAIT.
364 				 */
365 				if (p->p_pid == 1)
366 					ps->ps_flag &= ~PS_NOCLDWAIT;
367 				else
368 					ps->ps_flag |= PS_NOCLDWAIT;
369 			} else
370 				ps->ps_flag &= ~PS_NOCLDWAIT;
371 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
372 				ps->ps_flag |= PS_CLDSIGIGN;
373 			else
374 				ps->ps_flag &= ~PS_CLDSIGIGN;
375 		}
376 		/*
377 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
378 		 * and for signals set to SIG_DFL where the default is to
379 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
380 		 * have to restart the process.
381 		 */
382 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
383 		    (sigprop(sig) & SA_IGNORE &&
384 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
385 			if ((p->p_flag & P_SA) &&
386 			     SIGISMEMBER(p->p_siglist, sig)) {
387 				p->p_flag |= P_SIGEVENT;
388 				wakeup(&p->p_siglist);
389 			}
390 			/* never to be seen again */
391 			SIGDELSET(p->p_siglist, sig);
392 			mtx_lock_spin(&sched_lock);
393 			FOREACH_THREAD_IN_PROC(p, td0)
394 				SIGDELSET(td0->td_siglist, sig);
395 			mtx_unlock_spin(&sched_lock);
396 			if (sig != SIGCONT)
397 				/* easier in psignal */
398 				SIGADDSET(ps->ps_sigignore, sig);
399 			SIGDELSET(ps->ps_sigcatch, sig);
400 		} else {
401 			SIGDELSET(ps->ps_sigignore, sig);
402 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
403 				SIGDELSET(ps->ps_sigcatch, sig);
404 			else
405 				SIGADDSET(ps->ps_sigcatch, sig);
406 		}
407 #ifdef COMPAT_FREEBSD4
408 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
409 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
410 		    (flags & KSA_FREEBSD4) == 0)
411 			SIGDELSET(ps->ps_freebsd4, sig);
412 		else
413 			SIGADDSET(ps->ps_freebsd4, sig);
414 #endif
415 #ifdef COMPAT_43
416 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
417 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
418 		    (flags & KSA_OSIGSET) == 0)
419 			SIGDELSET(ps->ps_osigset, sig);
420 		else
421 			SIGADDSET(ps->ps_osigset, sig);
422 #endif
423 	}
424 	mtx_unlock(&ps->ps_mtx);
425 	PROC_UNLOCK(p);
426 	return (0);
427 }
428 
429 #ifndef _SYS_SYSPROTO_H_
430 struct sigaction_args {
431 	int	sig;
432 	struct	sigaction *act;
433 	struct	sigaction *oact;
434 };
435 #endif
436 /*
437  * MPSAFE
438  */
439 int
440 sigaction(td, uap)
441 	struct thread *td;
442 	register struct sigaction_args *uap;
443 {
444 	struct sigaction act, oact;
445 	register struct sigaction *actp, *oactp;
446 	int error;
447 
448 	actp = (uap->act != NULL) ? &act : NULL;
449 	oactp = (uap->oact != NULL) ? &oact : NULL;
450 	if (actp) {
451 		error = copyin(uap->act, actp, sizeof(act));
452 		if (error)
453 			return (error);
454 	}
455 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
456 	if (oactp && !error)
457 		error = copyout(oactp, uap->oact, sizeof(oact));
458 	return (error);
459 }
460 
461 #ifdef COMPAT_FREEBSD4
462 #ifndef _SYS_SYSPROTO_H_
463 struct freebsd4_sigaction_args {
464 	int	sig;
465 	struct	sigaction *act;
466 	struct	sigaction *oact;
467 };
468 #endif
469 /*
470  * MPSAFE
471  */
472 int
473 freebsd4_sigaction(td, uap)
474 	struct thread *td;
475 	register struct freebsd4_sigaction_args *uap;
476 {
477 	struct sigaction act, oact;
478 	register struct sigaction *actp, *oactp;
479 	int error;
480 
481 
482 	actp = (uap->act != NULL) ? &act : NULL;
483 	oactp = (uap->oact != NULL) ? &oact : NULL;
484 	if (actp) {
485 		error = copyin(uap->act, actp, sizeof(act));
486 		if (error)
487 			return (error);
488 	}
489 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
490 	if (oactp && !error)
491 		error = copyout(oactp, uap->oact, sizeof(oact));
492 	return (error);
493 }
494 #endif	/* COMAPT_FREEBSD4 */
495 
496 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
497 #ifndef _SYS_SYSPROTO_H_
498 struct osigaction_args {
499 	int	signum;
500 	struct	osigaction *nsa;
501 	struct	osigaction *osa;
502 };
503 #endif
504 /*
505  * MPSAFE
506  */
507 int
508 osigaction(td, uap)
509 	struct thread *td;
510 	register struct osigaction_args *uap;
511 {
512 	struct osigaction sa;
513 	struct sigaction nsa, osa;
514 	register struct sigaction *nsap, *osap;
515 	int error;
516 
517 	if (uap->signum <= 0 || uap->signum >= ONSIG)
518 		return (EINVAL);
519 
520 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
521 	osap = (uap->osa != NULL) ? &osa : NULL;
522 
523 	if (nsap) {
524 		error = copyin(uap->nsa, &sa, sizeof(sa));
525 		if (error)
526 			return (error);
527 		nsap->sa_handler = sa.sa_handler;
528 		nsap->sa_flags = sa.sa_flags;
529 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
530 	}
531 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
532 	if (osap && !error) {
533 		sa.sa_handler = osap->sa_handler;
534 		sa.sa_flags = osap->sa_flags;
535 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
536 		error = copyout(&sa, uap->osa, sizeof(sa));
537 	}
538 	return (error);
539 }
540 
541 #if !defined(__i386__) && !defined(__alpha__)
542 /* Avoid replicating the same stub everywhere */
543 int
544 osigreturn(td, uap)
545 	struct thread *td;
546 	struct osigreturn_args *uap;
547 {
548 
549 	return (nosys(td, (struct nosys_args *)uap));
550 }
551 #endif
552 #endif /* COMPAT_43 */
553 
554 /*
555  * Initialize signal state for process 0;
556  * set to ignore signals that are ignored by default.
557  */
558 void
559 siginit(p)
560 	struct proc *p;
561 {
562 	register int i;
563 	struct sigacts *ps;
564 
565 	PROC_LOCK(p);
566 	ps = p->p_sigacts;
567 	mtx_lock(&ps->ps_mtx);
568 	for (i = 1; i <= NSIG; i++)
569 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
570 			SIGADDSET(ps->ps_sigignore, i);
571 	mtx_unlock(&ps->ps_mtx);
572 	PROC_UNLOCK(p);
573 }
574 
575 /*
576  * Reset signals for an exec of the specified process.
577  */
578 void
579 execsigs(struct proc *p)
580 {
581 	struct sigacts *ps;
582 	int sig;
583 	struct thread *td;
584 
585 	/*
586 	 * Reset caught signals.  Held signals remain held
587 	 * through td_sigmask (unless they were caught,
588 	 * and are now ignored by default).
589 	 */
590 	PROC_LOCK_ASSERT(p, MA_OWNED);
591 	td = FIRST_THREAD_IN_PROC(p);
592 	ps = p->p_sigacts;
593 	mtx_lock(&ps->ps_mtx);
594 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
595 		sig = sig_ffs(&ps->ps_sigcatch);
596 		SIGDELSET(ps->ps_sigcatch, sig);
597 		if (sigprop(sig) & SA_IGNORE) {
598 			if (sig != SIGCONT)
599 				SIGADDSET(ps->ps_sigignore, sig);
600 			SIGDELSET(p->p_siglist, sig);
601 			/*
602 			 * There is only one thread at this point.
603 			 */
604 			SIGDELSET(td->td_siglist, sig);
605 		}
606 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
607 	}
608 	/*
609 	 * Reset stack state to the user stack.
610 	 * Clear set of signals caught on the signal stack.
611 	 */
612 	td->td_sigstk.ss_flags = SS_DISABLE;
613 	td->td_sigstk.ss_size = 0;
614 	td->td_sigstk.ss_sp = 0;
615 	td->td_pflags &= ~TDP_ALTSTACK;
616 	/*
617 	 * Reset no zombies if child dies flag as Solaris does.
618 	 */
619 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
620 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
621 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
622 	mtx_unlock(&ps->ps_mtx);
623 }
624 
625 /*
626  * kern_sigprocmask()
627  *
628  *	Manipulate signal mask.
629  */
630 int
631 kern_sigprocmask(td, how, set, oset, old)
632 	struct thread *td;
633 	int how;
634 	sigset_t *set, *oset;
635 	int old;
636 {
637 	int error;
638 
639 	PROC_LOCK(td->td_proc);
640 	if (oset != NULL)
641 		*oset = td->td_sigmask;
642 
643 	error = 0;
644 	if (set != NULL) {
645 		switch (how) {
646 		case SIG_BLOCK:
647 			SIG_CANTMASK(*set);
648 			SIGSETOR(td->td_sigmask, *set);
649 			break;
650 		case SIG_UNBLOCK:
651 			SIGSETNAND(td->td_sigmask, *set);
652 			signotify(td);
653 			break;
654 		case SIG_SETMASK:
655 			SIG_CANTMASK(*set);
656 			if (old)
657 				SIGSETLO(td->td_sigmask, *set);
658 			else
659 				td->td_sigmask = *set;
660 			signotify(td);
661 			break;
662 		default:
663 			error = EINVAL;
664 			break;
665 		}
666 	}
667 	PROC_UNLOCK(td->td_proc);
668 	return (error);
669 }
670 
671 /*
672  * sigprocmask() - MP SAFE
673  */
674 
675 #ifndef _SYS_SYSPROTO_H_
676 struct sigprocmask_args {
677 	int	how;
678 	const sigset_t *set;
679 	sigset_t *oset;
680 };
681 #endif
682 int
683 sigprocmask(td, uap)
684 	register struct thread *td;
685 	struct sigprocmask_args *uap;
686 {
687 	sigset_t set, oset;
688 	sigset_t *setp, *osetp;
689 	int error;
690 
691 	setp = (uap->set != NULL) ? &set : NULL;
692 	osetp = (uap->oset != NULL) ? &oset : NULL;
693 	if (setp) {
694 		error = copyin(uap->set, setp, sizeof(set));
695 		if (error)
696 			return (error);
697 	}
698 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
699 	if (osetp && !error) {
700 		error = copyout(osetp, uap->oset, sizeof(oset));
701 	}
702 	return (error);
703 }
704 
705 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
706 /*
707  * osigprocmask() - MP SAFE
708  */
709 #ifndef _SYS_SYSPROTO_H_
710 struct osigprocmask_args {
711 	int	how;
712 	osigset_t mask;
713 };
714 #endif
715 int
716 osigprocmask(td, uap)
717 	register struct thread *td;
718 	struct osigprocmask_args *uap;
719 {
720 	sigset_t set, oset;
721 	int error;
722 
723 	OSIG2SIG(uap->mask, set);
724 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
725 	SIG2OSIG(oset, td->td_retval[0]);
726 	return (error);
727 }
728 #endif /* COMPAT_43 */
729 
730 #ifndef _SYS_SYSPROTO_H_
731 struct sigpending_args {
732 	sigset_t	*set;
733 };
734 #endif
735 /*
736  * MPSAFE
737  */
738 int
739 sigwait(struct thread *td, struct sigwait_args *uap)
740 {
741 	siginfo_t info;
742 	sigset_t set;
743 	int error;
744 
745 	error = copyin(uap->set, &set, sizeof(set));
746 	if (error) {
747 		td->td_retval[0] = error;
748 		return (0);
749 	}
750 
751 	error = kern_sigtimedwait(td, set, &info, NULL);
752 	if (error) {
753 		if (error == ERESTART)
754 			return (error);
755 		td->td_retval[0] = error;
756 		return (0);
757 	}
758 
759 	error = copyout(&info.si_signo, uap->sig, sizeof(info.si_signo));
760 	/* Repost if we got an error. */
761 	if (error && info.si_signo) {
762 		PROC_LOCK(td->td_proc);
763 		tdsignal(td, info.si_signo, SIGTARGET_TD);
764 		PROC_UNLOCK(td->td_proc);
765 	}
766 	td->td_retval[0] = error;
767 	return (0);
768 }
769 /*
770  * MPSAFE
771  */
772 int
773 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
774 {
775 	struct timespec ts;
776 	struct timespec *timeout;
777 	sigset_t set;
778 	siginfo_t info;
779 	int error;
780 
781 	if (uap->timeout) {
782 		error = copyin(uap->timeout, &ts, sizeof(ts));
783 		if (error)
784 			return (error);
785 
786 		timeout = &ts;
787 	} else
788 		timeout = NULL;
789 
790 	error = copyin(uap->set, &set, sizeof(set));
791 	if (error)
792 		return (error);
793 
794 	error = kern_sigtimedwait(td, set, &info, timeout);
795 	if (error)
796 		return (error);
797 
798 	if (uap->info)
799 		error = copyout(&info, uap->info, sizeof(info));
800 	/* Repost if we got an error. */
801 	if (error && info.si_signo) {
802 		PROC_LOCK(td->td_proc);
803 		tdsignal(td, info.si_signo, SIGTARGET_TD);
804 		PROC_UNLOCK(td->td_proc);
805 	} else {
806 		td->td_retval[0] = info.si_signo;
807 	}
808 	return (error);
809 }
810 
811 /*
812  * MPSAFE
813  */
814 int
815 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
816 {
817 	siginfo_t info;
818 	sigset_t set;
819 	int error;
820 
821 	error = copyin(uap->set, &set, sizeof(set));
822 	if (error)
823 		return (error);
824 
825 	error = kern_sigtimedwait(td, set, &info, NULL);
826 	if (error)
827 		return (error);
828 
829 	if (uap->info)
830 		error = copyout(&info, uap->info, sizeof(info));
831 	/* Repost if we got an error. */
832 	if (error && info.si_signo) {
833 		PROC_LOCK(td->td_proc);
834 		tdsignal(td, info.si_signo, SIGTARGET_TD);
835 		PROC_UNLOCK(td->td_proc);
836 	} else {
837 		td->td_retval[0] = info.si_signo;
838 	}
839 	return (error);
840 }
841 
842 static int
843 kern_sigtimedwait(struct thread *td, sigset_t waitset, siginfo_t *info,
844     struct timespec *timeout)
845 {
846 	struct sigacts *ps;
847 	sigset_t savedmask;
848 	struct proc *p;
849 	int error, sig, hz, i, timevalid = 0;
850 	struct timespec rts, ets, ts;
851 	struct timeval tv;
852 
853 	p = td->td_proc;
854 	error = 0;
855 	sig = 0;
856 	SIG_CANTMASK(waitset);
857 
858 	PROC_LOCK(p);
859 	ps = p->p_sigacts;
860 	savedmask = td->td_sigmask;
861 	if (timeout) {
862 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
863 			timevalid = 1;
864 			getnanouptime(&rts);
865 		 	ets = rts;
866 			timespecadd(&ets, timeout);
867 		}
868 	}
869 
870 again:
871 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
872 		if (!SIGISMEMBER(waitset, i))
873 			continue;
874 		if (SIGISMEMBER(td->td_siglist, i)) {
875 			SIGFILLSET(td->td_sigmask);
876 			SIG_CANTMASK(td->td_sigmask);
877 			SIGDELSET(td->td_sigmask, i);
878 			mtx_lock(&ps->ps_mtx);
879 			sig = cursig(td);
880 			i = 0;
881 			mtx_unlock(&ps->ps_mtx);
882 		} else if (SIGISMEMBER(p->p_siglist, i)) {
883 			if (p->p_flag & P_SA) {
884 				p->p_flag |= P_SIGEVENT;
885 				wakeup(&p->p_siglist);
886 			}
887 			SIGDELSET(p->p_siglist, i);
888 			SIGADDSET(td->td_siglist, i);
889 			SIGFILLSET(td->td_sigmask);
890 			SIG_CANTMASK(td->td_sigmask);
891 			SIGDELSET(td->td_sigmask, i);
892 			mtx_lock(&ps->ps_mtx);
893 			sig = cursig(td);
894 			i = 0;
895 			mtx_unlock(&ps->ps_mtx);
896 		}
897 		if (sig)
898 			goto out;
899 	}
900 	if (error)
901 		goto out;
902 
903 	/*
904 	 * POSIX says this must be checked after looking for pending
905 	 * signals.
906 	 */
907 	if (timeout) {
908 		if (!timevalid) {
909 			error = EINVAL;
910 			goto out;
911 		}
912 		getnanouptime(&rts);
913 		if (timespeccmp(&rts, &ets, >=)) {
914 			error = EAGAIN;
915 			goto out;
916 		}
917 		ts = ets;
918 		timespecsub(&ts, &rts);
919 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
920 		hz = tvtohz(&tv);
921 	} else
922 		hz = 0;
923 
924 	td->td_sigmask = savedmask;
925 	SIGSETNAND(td->td_sigmask, waitset);
926 	signotify(td);
927 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
928 	if (timeout) {
929 		if (error == ERESTART) {
930 			/* timeout can not be restarted. */
931 			error = EINTR;
932 		} else if (error == EAGAIN) {
933 			/* will calculate timeout by ourself. */
934 			error = 0;
935 		}
936 	}
937 	goto again;
938 
939 out:
940 	td->td_sigmask = savedmask;
941 	signotify(td);
942 	if (sig) {
943 		sig_t action;
944 
945 		error = 0;
946 		mtx_lock(&ps->ps_mtx);
947 		action = ps->ps_sigact[_SIG_IDX(sig)];
948 		mtx_unlock(&ps->ps_mtx);
949 #ifdef KTRACE
950 		if (KTRPOINT(td, KTR_PSIG))
951 			ktrpsig(sig, action, &td->td_sigmask, 0);
952 #endif
953 		_STOPEVENT(p, S_SIG, sig);
954 
955 		SIGDELSET(td->td_siglist, sig);
956 		bzero(info, sizeof(*info));
957 		info->si_signo = sig;
958 		info->si_code = 0;
959 	}
960 	PROC_UNLOCK(p);
961 	return (error);
962 }
963 
964 /*
965  * MPSAFE
966  */
967 int
968 sigpending(td, uap)
969 	struct thread *td;
970 	struct sigpending_args *uap;
971 {
972 	struct proc *p = td->td_proc;
973 	sigset_t siglist;
974 
975 	PROC_LOCK(p);
976 	siglist = p->p_siglist;
977 	SIGSETOR(siglist, td->td_siglist);
978 	PROC_UNLOCK(p);
979 	return (copyout(&siglist, uap->set, sizeof(sigset_t)));
980 }
981 
982 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
983 #ifndef _SYS_SYSPROTO_H_
984 struct osigpending_args {
985 	int	dummy;
986 };
987 #endif
988 /*
989  * MPSAFE
990  */
991 int
992 osigpending(td, uap)
993 	struct thread *td;
994 	struct osigpending_args *uap;
995 {
996 	struct proc *p = td->td_proc;
997 	sigset_t siglist;
998 
999 	PROC_LOCK(p);
1000 	siglist = p->p_siglist;
1001 	SIGSETOR(siglist, td->td_siglist);
1002 	PROC_UNLOCK(p);
1003 	SIG2OSIG(siglist, td->td_retval[0]);
1004 	return (0);
1005 }
1006 #endif /* COMPAT_43 */
1007 
1008 #if defined(COMPAT_43)
1009 /*
1010  * Generalized interface signal handler, 4.3-compatible.
1011  */
1012 #ifndef _SYS_SYSPROTO_H_
1013 struct osigvec_args {
1014 	int	signum;
1015 	struct	sigvec *nsv;
1016 	struct	sigvec *osv;
1017 };
1018 #endif
1019 /*
1020  * MPSAFE
1021  */
1022 /* ARGSUSED */
1023 int
1024 osigvec(td, uap)
1025 	struct thread *td;
1026 	register struct osigvec_args *uap;
1027 {
1028 	struct sigvec vec;
1029 	struct sigaction nsa, osa;
1030 	register struct sigaction *nsap, *osap;
1031 	int error;
1032 
1033 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1034 		return (EINVAL);
1035 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1036 	osap = (uap->osv != NULL) ? &osa : NULL;
1037 	if (nsap) {
1038 		error = copyin(uap->nsv, &vec, sizeof(vec));
1039 		if (error)
1040 			return (error);
1041 		nsap->sa_handler = vec.sv_handler;
1042 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1043 		nsap->sa_flags = vec.sv_flags;
1044 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1045 	}
1046 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1047 	if (osap && !error) {
1048 		vec.sv_handler = osap->sa_handler;
1049 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1050 		vec.sv_flags = osap->sa_flags;
1051 		vec.sv_flags &= ~SA_NOCLDWAIT;
1052 		vec.sv_flags ^= SA_RESTART;
1053 		error = copyout(&vec, uap->osv, sizeof(vec));
1054 	}
1055 	return (error);
1056 }
1057 
1058 #ifndef _SYS_SYSPROTO_H_
1059 struct osigblock_args {
1060 	int	mask;
1061 };
1062 #endif
1063 /*
1064  * MPSAFE
1065  */
1066 int
1067 osigblock(td, uap)
1068 	register struct thread *td;
1069 	struct osigblock_args *uap;
1070 {
1071 	struct proc *p = td->td_proc;
1072 	sigset_t set;
1073 
1074 	OSIG2SIG(uap->mask, set);
1075 	SIG_CANTMASK(set);
1076 	PROC_LOCK(p);
1077 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1078 	SIGSETOR(td->td_sigmask, set);
1079 	PROC_UNLOCK(p);
1080 	return (0);
1081 }
1082 
1083 #ifndef _SYS_SYSPROTO_H_
1084 struct osigsetmask_args {
1085 	int	mask;
1086 };
1087 #endif
1088 /*
1089  * MPSAFE
1090  */
1091 int
1092 osigsetmask(td, uap)
1093 	struct thread *td;
1094 	struct osigsetmask_args *uap;
1095 {
1096 	struct proc *p = td->td_proc;
1097 	sigset_t set;
1098 
1099 	OSIG2SIG(uap->mask, set);
1100 	SIG_CANTMASK(set);
1101 	PROC_LOCK(p);
1102 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1103 	SIGSETLO(td->td_sigmask, set);
1104 	signotify(td);
1105 	PROC_UNLOCK(p);
1106 	return (0);
1107 }
1108 #endif /* COMPAT_43 */
1109 
1110 /*
1111  * Suspend process until signal, providing mask to be set
1112  * in the meantime.
1113  ***** XXXKSE this doesn't make sense under KSE.
1114  ***** Do we suspend the thread or all threads in the process?
1115  ***** How do we suspend threads running NOW on another processor?
1116  */
1117 #ifndef _SYS_SYSPROTO_H_
1118 struct sigsuspend_args {
1119 	const sigset_t *sigmask;
1120 };
1121 #endif
1122 /*
1123  * MPSAFE
1124  */
1125 /* ARGSUSED */
1126 int
1127 sigsuspend(td, uap)
1128 	struct thread *td;
1129 	struct sigsuspend_args *uap;
1130 {
1131 	sigset_t mask;
1132 	int error;
1133 
1134 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1135 	if (error)
1136 		return (error);
1137 	return (kern_sigsuspend(td, mask));
1138 }
1139 
1140 int
1141 kern_sigsuspend(struct thread *td, sigset_t mask)
1142 {
1143 	struct proc *p = td->td_proc;
1144 
1145 	/*
1146 	 * When returning from sigsuspend, we want
1147 	 * the old mask to be restored after the
1148 	 * signal handler has finished.  Thus, we
1149 	 * save it here and mark the sigacts structure
1150 	 * to indicate this.
1151 	 */
1152 	PROC_LOCK(p);
1153 	td->td_oldsigmask = td->td_sigmask;
1154 	td->td_pflags |= TDP_OLDMASK;
1155 	SIG_CANTMASK(mask);
1156 	td->td_sigmask = mask;
1157 	signotify(td);
1158 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1159 		/* void */;
1160 	PROC_UNLOCK(p);
1161 	/* always return EINTR rather than ERESTART... */
1162 	return (EINTR);
1163 }
1164 
1165 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1166 /*
1167  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1168  * convention: libc stub passes mask, not pointer, to save a copyin.
1169  */
1170 #ifndef _SYS_SYSPROTO_H_
1171 struct osigsuspend_args {
1172 	osigset_t mask;
1173 };
1174 #endif
1175 /*
1176  * MPSAFE
1177  */
1178 /* ARGSUSED */
1179 int
1180 osigsuspend(td, uap)
1181 	struct thread *td;
1182 	struct osigsuspend_args *uap;
1183 {
1184 	struct proc *p = td->td_proc;
1185 	sigset_t mask;
1186 
1187 	PROC_LOCK(p);
1188 	td->td_oldsigmask = td->td_sigmask;
1189 	td->td_pflags |= TDP_OLDMASK;
1190 	OSIG2SIG(uap->mask, mask);
1191 	SIG_CANTMASK(mask);
1192 	SIGSETLO(td->td_sigmask, mask);
1193 	signotify(td);
1194 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1195 		/* void */;
1196 	PROC_UNLOCK(p);
1197 	/* always return EINTR rather than ERESTART... */
1198 	return (EINTR);
1199 }
1200 #endif /* COMPAT_43 */
1201 
1202 #if defined(COMPAT_43)
1203 #ifndef _SYS_SYSPROTO_H_
1204 struct osigstack_args {
1205 	struct	sigstack *nss;
1206 	struct	sigstack *oss;
1207 };
1208 #endif
1209 /*
1210  * MPSAFE
1211  */
1212 /* ARGSUSED */
1213 int
1214 osigstack(td, uap)
1215 	struct thread *td;
1216 	register struct osigstack_args *uap;
1217 {
1218 	struct sigstack nss, oss;
1219 	int error = 0;
1220 
1221 	if (uap->nss != NULL) {
1222 		error = copyin(uap->nss, &nss, sizeof(nss));
1223 		if (error)
1224 			return (error);
1225 	}
1226 	oss.ss_sp = td->td_sigstk.ss_sp;
1227 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1228 	if (uap->nss != NULL) {
1229 		td->td_sigstk.ss_sp = nss.ss_sp;
1230 		td->td_sigstk.ss_size = 0;
1231 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1232 		td->td_pflags |= TDP_ALTSTACK;
1233 	}
1234 	if (uap->oss != NULL)
1235 		error = copyout(&oss, uap->oss, sizeof(oss));
1236 
1237 	return (error);
1238 }
1239 #endif /* COMPAT_43 */
1240 
1241 #ifndef _SYS_SYSPROTO_H_
1242 struct sigaltstack_args {
1243 	stack_t	*ss;
1244 	stack_t	*oss;
1245 };
1246 #endif
1247 /*
1248  * MPSAFE
1249  */
1250 /* ARGSUSED */
1251 int
1252 sigaltstack(td, uap)
1253 	struct thread *td;
1254 	register struct sigaltstack_args *uap;
1255 {
1256 	stack_t ss, oss;
1257 	int error;
1258 
1259 	if (uap->ss != NULL) {
1260 		error = copyin(uap->ss, &ss, sizeof(ss));
1261 		if (error)
1262 			return (error);
1263 	}
1264 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1265 	    (uap->oss != NULL) ? &oss : NULL);
1266 	if (error)
1267 		return (error);
1268 	if (uap->oss != NULL)
1269 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1270 	return (error);
1271 }
1272 
1273 int
1274 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1275 {
1276 	struct proc *p = td->td_proc;
1277 	int oonstack;
1278 
1279 	oonstack = sigonstack(cpu_getstack(td));
1280 
1281 	if (oss != NULL) {
1282 		*oss = td->td_sigstk;
1283 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1284 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1285 	}
1286 
1287 	if (ss != NULL) {
1288 		if (oonstack)
1289 			return (EPERM);
1290 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1291 			return (EINVAL);
1292 		if (!(ss->ss_flags & SS_DISABLE)) {
1293 			if (ss->ss_size < p->p_sysent->sv_minsigstksz) {
1294 				return (ENOMEM);
1295 			}
1296 			td->td_sigstk = *ss;
1297 			td->td_pflags |= TDP_ALTSTACK;
1298 		} else {
1299 			td->td_pflags &= ~TDP_ALTSTACK;
1300 		}
1301 	}
1302 	return (0);
1303 }
1304 
1305 /*
1306  * Common code for kill process group/broadcast kill.
1307  * cp is calling process.
1308  */
1309 static int
1310 killpg1(td, sig, pgid, all)
1311 	register struct thread *td;
1312 	int sig, pgid, all;
1313 {
1314 	register struct proc *p;
1315 	struct pgrp *pgrp;
1316 	int nfound = 0;
1317 
1318 	if (all) {
1319 		/*
1320 		 * broadcast
1321 		 */
1322 		sx_slock(&allproc_lock);
1323 		LIST_FOREACH(p, &allproc, p_list) {
1324 			PROC_LOCK(p);
1325 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1326 			    p == td->td_proc) {
1327 				PROC_UNLOCK(p);
1328 				continue;
1329 			}
1330 			if (p_cansignal(td, p, sig) == 0) {
1331 				nfound++;
1332 				if (sig)
1333 					psignal(p, sig);
1334 			}
1335 			PROC_UNLOCK(p);
1336 		}
1337 		sx_sunlock(&allproc_lock);
1338 	} else {
1339 		sx_slock(&proctree_lock);
1340 		if (pgid == 0) {
1341 			/*
1342 			 * zero pgid means send to my process group.
1343 			 */
1344 			pgrp = td->td_proc->p_pgrp;
1345 			PGRP_LOCK(pgrp);
1346 		} else {
1347 			pgrp = pgfind(pgid);
1348 			if (pgrp == NULL) {
1349 				sx_sunlock(&proctree_lock);
1350 				return (ESRCH);
1351 			}
1352 		}
1353 		sx_sunlock(&proctree_lock);
1354 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1355 			PROC_LOCK(p);
1356 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1357 				PROC_UNLOCK(p);
1358 				continue;
1359 			}
1360 			if (p_cansignal(td, p, sig) == 0) {
1361 				nfound++;
1362 				if (sig)
1363 					psignal(p, sig);
1364 			}
1365 			PROC_UNLOCK(p);
1366 		}
1367 		PGRP_UNLOCK(pgrp);
1368 	}
1369 	return (nfound ? 0 : ESRCH);
1370 }
1371 
1372 #ifndef _SYS_SYSPROTO_H_
1373 struct kill_args {
1374 	int	pid;
1375 	int	signum;
1376 };
1377 #endif
1378 /*
1379  * MPSAFE
1380  */
1381 /* ARGSUSED */
1382 int
1383 kill(td, uap)
1384 	register struct thread *td;
1385 	register struct kill_args *uap;
1386 {
1387 	register struct proc *p;
1388 	int error;
1389 
1390 	if ((u_int)uap->signum > _SIG_MAXSIG)
1391 		return (EINVAL);
1392 
1393 	if (uap->pid > 0) {
1394 		/* kill single process */
1395 		if ((p = pfind(uap->pid)) == NULL) {
1396 			if ((p = zpfind(uap->pid)) == NULL)
1397 				return (ESRCH);
1398 		}
1399 		error = p_cansignal(td, p, uap->signum);
1400 		if (error == 0 && uap->signum)
1401 			psignal(p, uap->signum);
1402 		PROC_UNLOCK(p);
1403 		return (error);
1404 	}
1405 	switch (uap->pid) {
1406 	case -1:		/* broadcast signal */
1407 		return (killpg1(td, uap->signum, 0, 1));
1408 	case 0:			/* signal own process group */
1409 		return (killpg1(td, uap->signum, 0, 0));
1410 	default:		/* negative explicit process group */
1411 		return (killpg1(td, uap->signum, -uap->pid, 0));
1412 	}
1413 	/* NOTREACHED */
1414 }
1415 
1416 #if defined(COMPAT_43)
1417 #ifndef _SYS_SYSPROTO_H_
1418 struct okillpg_args {
1419 	int	pgid;
1420 	int	signum;
1421 };
1422 #endif
1423 /*
1424  * MPSAFE
1425  */
1426 /* ARGSUSED */
1427 int
1428 okillpg(td, uap)
1429 	struct thread *td;
1430 	register struct okillpg_args *uap;
1431 {
1432 
1433 	if ((u_int)uap->signum > _SIG_MAXSIG)
1434 		return (EINVAL);
1435 	return (killpg1(td, uap->signum, uap->pgid, 0));
1436 }
1437 #endif /* COMPAT_43 */
1438 
1439 /*
1440  * Send a signal to a process group.
1441  */
1442 void
1443 gsignal(pgid, sig)
1444 	int pgid, sig;
1445 {
1446 	struct pgrp *pgrp;
1447 
1448 	if (pgid != 0) {
1449 		sx_slock(&proctree_lock);
1450 		pgrp = pgfind(pgid);
1451 		sx_sunlock(&proctree_lock);
1452 		if (pgrp != NULL) {
1453 			pgsignal(pgrp, sig, 0);
1454 			PGRP_UNLOCK(pgrp);
1455 		}
1456 	}
1457 }
1458 
1459 /*
1460  * Send a signal to a process group.  If checktty is 1,
1461  * limit to members which have a controlling terminal.
1462  */
1463 void
1464 pgsignal(pgrp, sig, checkctty)
1465 	struct pgrp *pgrp;
1466 	int sig, checkctty;
1467 {
1468 	register struct proc *p;
1469 
1470 	if (pgrp) {
1471 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1472 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1473 			PROC_LOCK(p);
1474 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1475 				psignal(p, sig);
1476 			PROC_UNLOCK(p);
1477 		}
1478 	}
1479 }
1480 
1481 /*
1482  * Send a signal caused by a trap to the current thread.
1483  * If it will be caught immediately, deliver it with correct code.
1484  * Otherwise, post it normally.
1485  *
1486  * MPSAFE
1487  */
1488 void
1489 trapsignal(struct thread *td, int sig, u_long code)
1490 {
1491 	struct sigacts *ps;
1492 	struct proc *p;
1493 	siginfo_t siginfo;
1494 	int error;
1495 
1496 	p = td->td_proc;
1497 	if (td->td_pflags & TDP_SA) {
1498 		if (td->td_mailbox == NULL)
1499 			thread_user_enter(td);
1500 		PROC_LOCK(p);
1501 		SIGDELSET(td->td_sigmask, sig);
1502 		mtx_lock_spin(&sched_lock);
1503 		/*
1504 		 * Force scheduling an upcall, so UTS has chance to
1505 		 * process the signal before thread runs again in
1506 		 * userland.
1507 		 */
1508 		if (td->td_upcall)
1509 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1510 		mtx_unlock_spin(&sched_lock);
1511 	} else {
1512 		PROC_LOCK(p);
1513 	}
1514 	ps = p->p_sigacts;
1515 	mtx_lock(&ps->ps_mtx);
1516 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1517 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1518 		p->p_stats->p_ru.ru_nsignals++;
1519 #ifdef KTRACE
1520 		if (KTRPOINT(curthread, KTR_PSIG))
1521 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1522 			    &td->td_sigmask, code);
1523 #endif
1524 		if (!(td->td_pflags & TDP_SA))
1525 			(*p->p_sysent->sv_sendsig)(
1526 				ps->ps_sigact[_SIG_IDX(sig)], sig,
1527 				&td->td_sigmask, code);
1528 		else if (td->td_mailbox == NULL) {
1529 			mtx_unlock(&ps->ps_mtx);
1530 			/* UTS caused a sync signal */
1531 			p->p_code = code;	/* XXX for core dump/debugger */
1532 			p->p_sig = sig;		/* XXX to verify code */
1533 			sigexit(td, sig);
1534 		} else {
1535 			cpu_thread_siginfo(sig, code, &siginfo);
1536 			mtx_unlock(&ps->ps_mtx);
1537 			SIGADDSET(td->td_sigmask, sig);
1538 			PROC_UNLOCK(p);
1539 			error = copyout(&siginfo, &td->td_mailbox->tm_syncsig,
1540 			    sizeof(siginfo));
1541 			PROC_LOCK(p);
1542 			/* UTS memory corrupted */
1543 			if (error)
1544 				sigexit(td, SIGSEGV);
1545 			mtx_lock(&ps->ps_mtx);
1546 		}
1547 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1548 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1549 			SIGADDSET(td->td_sigmask, sig);
1550 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1551 			/*
1552 			 * See kern_sigaction() for origin of this code.
1553 			 */
1554 			SIGDELSET(ps->ps_sigcatch, sig);
1555 			if (sig != SIGCONT &&
1556 			    sigprop(sig) & SA_IGNORE)
1557 				SIGADDSET(ps->ps_sigignore, sig);
1558 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1559 		}
1560 		mtx_unlock(&ps->ps_mtx);
1561 	} else {
1562 		mtx_unlock(&ps->ps_mtx);
1563 		p->p_code = code;	/* XXX for core dump/debugger */
1564 		p->p_sig = sig;		/* XXX to verify code */
1565 		tdsignal(td, sig, SIGTARGET_TD);
1566 	}
1567 	PROC_UNLOCK(p);
1568 }
1569 
1570 static struct thread *
1571 sigtd(struct proc *p, int sig, int prop)
1572 {
1573 	struct thread *td, *signal_td;
1574 
1575 	PROC_LOCK_ASSERT(p, MA_OWNED);
1576 
1577 	/*
1578 	 * Check if current thread can handle the signal without
1579 	 * switching conetxt to another thread.
1580 	 */
1581 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1582 		return (curthread);
1583 	signal_td = NULL;
1584 	mtx_lock_spin(&sched_lock);
1585 	FOREACH_THREAD_IN_PROC(p, td) {
1586 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1587 			signal_td = td;
1588 			break;
1589 		}
1590 	}
1591 	if (signal_td == NULL)
1592 		signal_td = FIRST_THREAD_IN_PROC(p);
1593 	mtx_unlock_spin(&sched_lock);
1594 	return (signal_td);
1595 }
1596 
1597 /*
1598  * Send the signal to the process.  If the signal has an action, the action
1599  * is usually performed by the target process rather than the caller; we add
1600  * the signal to the set of pending signals for the process.
1601  *
1602  * Exceptions:
1603  *   o When a stop signal is sent to a sleeping process that takes the
1604  *     default action, the process is stopped without awakening it.
1605  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1606  *     regardless of the signal action (eg, blocked or ignored).
1607  *
1608  * Other ignored signals are discarded immediately.
1609  *
1610  * MPSAFE
1611  */
1612 void
1613 psignal(struct proc *p, int sig)
1614 {
1615 	struct thread *td;
1616 	int prop;
1617 
1618 	if (!_SIG_VALID(sig))
1619 		panic("psignal(): invalid signal");
1620 
1621 	PROC_LOCK_ASSERT(p, MA_OWNED);
1622 	/*
1623 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1624 	 */
1625 	if (p->p_state == PRS_ZOMBIE)
1626 		return;
1627 	prop = sigprop(sig);
1628 
1629 	/*
1630 	 * Find a thread to deliver the signal to.
1631 	 */
1632 	td = sigtd(p, sig, prop);
1633 
1634 	tdsignal(td, sig, SIGTARGET_P);
1635 }
1636 
1637 /*
1638  * MPSAFE
1639  */
1640 void
1641 tdsignal(struct thread *td, int sig, sigtarget_t target)
1642 {
1643 	sigset_t saved;
1644 	struct proc *p = td->td_proc;
1645 
1646 	if (p->p_flag & P_SA)
1647 		saved = p->p_siglist;
1648 	do_tdsignal(td, sig, target);
1649 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
1650 		if (!SIGSETEQ(saved, p->p_siglist)) {
1651 			/* pending set changed */
1652 			p->p_flag |= P_SIGEVENT;
1653 			wakeup(&p->p_siglist);
1654 		}
1655 	}
1656 }
1657 
1658 static void
1659 do_tdsignal(struct thread *td, int sig, sigtarget_t target)
1660 {
1661 	struct proc *p;
1662 	register sig_t action;
1663 	sigset_t *siglist;
1664 	struct thread *td0;
1665 	register int prop;
1666 	struct sigacts *ps;
1667 
1668 	if (!_SIG_VALID(sig))
1669 		panic("do_tdsignal(): invalid signal");
1670 
1671 	p = td->td_proc;
1672 	ps = p->p_sigacts;
1673 
1674 	PROC_LOCK_ASSERT(p, MA_OWNED);
1675 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
1676 
1677 	prop = sigprop(sig);
1678 
1679 	/*
1680 	 * If the signal is blocked and not destined for this thread, then
1681 	 * assign it to the process so that we can find it later in the first
1682 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1683 	 */
1684 	if (target == SIGTARGET_TD) {
1685 		siglist = &td->td_siglist;
1686 	} else {
1687 		if (!SIGISMEMBER(td->td_sigmask, sig))
1688 			siglist = &td->td_siglist;
1689 		else
1690 			siglist = &p->p_siglist;
1691 	}
1692 
1693 	/*
1694 	 * If proc is traced, always give parent a chance;
1695 	 * if signal event is tracked by procfs, give *that*
1696 	 * a chance, as well.
1697 	 */
1698 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
1699 		action = SIG_DFL;
1700 	} else {
1701 		/*
1702 		 * If the signal is being ignored,
1703 		 * then we forget about it immediately.
1704 		 * (Note: we don't set SIGCONT in ps_sigignore,
1705 		 * and if it is set to SIG_IGN,
1706 		 * action will be SIG_DFL here.)
1707 		 */
1708 		mtx_lock(&ps->ps_mtx);
1709 		if (SIGISMEMBER(ps->ps_sigignore, sig) ||
1710 		    (p->p_flag & P_WEXIT)) {
1711 			mtx_unlock(&ps->ps_mtx);
1712 			return;
1713 		}
1714 		if (SIGISMEMBER(td->td_sigmask, sig))
1715 			action = SIG_HOLD;
1716 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
1717 			action = SIG_CATCH;
1718 		else
1719 			action = SIG_DFL;
1720 		mtx_unlock(&ps->ps_mtx);
1721 	}
1722 
1723 	if (prop & SA_CONT) {
1724 		SIG_STOPSIGMASK(p->p_siglist);
1725 		/*
1726 		 * XXX Should investigate leaving STOP and CONT sigs only in
1727 		 * the proc's siglist.
1728 		 */
1729 		mtx_lock_spin(&sched_lock);
1730 		FOREACH_THREAD_IN_PROC(p, td0)
1731 			SIG_STOPSIGMASK(td0->td_siglist);
1732 		mtx_unlock_spin(&sched_lock);
1733 	}
1734 
1735 	if (prop & SA_STOP) {
1736 		/*
1737 		 * If sending a tty stop signal to a member of an orphaned
1738 		 * process group, discard the signal here if the action
1739 		 * is default; don't stop the process below if sleeping,
1740 		 * and don't clear any pending SIGCONT.
1741 		 */
1742 		if ((prop & SA_TTYSTOP) &&
1743 		    (p->p_pgrp->pg_jobc == 0) &&
1744 		    (action == SIG_DFL))
1745 		        return;
1746 		SIG_CONTSIGMASK(p->p_siglist);
1747 		mtx_lock_spin(&sched_lock);
1748 		FOREACH_THREAD_IN_PROC(p, td0)
1749 			SIG_CONTSIGMASK(td0->td_siglist);
1750 		mtx_unlock_spin(&sched_lock);
1751 		p->p_flag &= ~P_CONTINUED;
1752 	}
1753 
1754 	SIGADDSET(*siglist, sig);
1755 	signotify(td);			/* uses schedlock */
1756 	/*
1757 	 * Defer further processing for signals which are held,
1758 	 * except that stopped processes must be continued by SIGCONT.
1759 	 */
1760 	if (action == SIG_HOLD &&
1761 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
1762 		return;
1763 	/*
1764 	 * SIGKILL: Remove procfs STOPEVENTs.
1765 	 */
1766 	if (sig == SIGKILL) {
1767 		/* from procfs_ioctl.c: PIOCBIC */
1768 		p->p_stops = 0;
1769 		/* from procfs_ioctl.c: PIOCCONT */
1770 		p->p_step = 0;
1771 		wakeup(&p->p_step);
1772 	}
1773 	/*
1774 	 * Some signals have a process-wide effect and a per-thread
1775 	 * component.  Most processing occurs when the process next
1776 	 * tries to cross the user boundary, however there are some
1777 	 * times when processing needs to be done immediatly, such as
1778 	 * waking up threads so that they can cross the user boundary.
1779 	 * We try do the per-process part here.
1780 	 */
1781 	if (P_SHOULDSTOP(p)) {
1782 		/*
1783 		 * The process is in stopped mode. All the threads should be
1784 		 * either winding down or already on the suspended queue.
1785 		 */
1786 		if (p->p_flag & P_TRACED) {
1787 			/*
1788 			 * The traced process is already stopped,
1789 			 * so no further action is necessary.
1790 			 * No signal can restart us.
1791 			 */
1792 			goto out;
1793 		}
1794 
1795 		if (sig == SIGKILL) {
1796 			/*
1797 			 * SIGKILL sets process running.
1798 			 * It will die elsewhere.
1799 			 * All threads must be restarted.
1800 			 */
1801 			p->p_flag &= ~P_STOPPED_SIG;
1802 			goto runfast;
1803 		}
1804 
1805 		if (prop & SA_CONT) {
1806 			/*
1807 			 * If SIGCONT is default (or ignored), we continue the
1808 			 * process but don't leave the signal in siglist as
1809 			 * it has no further action.  If SIGCONT is held, we
1810 			 * continue the process and leave the signal in
1811 			 * siglist.  If the process catches SIGCONT, let it
1812 			 * handle the signal itself.  If it isn't waiting on
1813 			 * an event, it goes back to run state.
1814 			 * Otherwise, process goes back to sleep state.
1815 			 */
1816 			p->p_flag &= ~P_STOPPED_SIG;
1817 			p->p_flag |= P_CONTINUED;
1818 			if (action == SIG_DFL) {
1819 				SIGDELSET(*siglist, sig);
1820 			} else if (action == SIG_CATCH) {
1821 				/*
1822 				 * The process wants to catch it so it needs
1823 				 * to run at least one thread, but which one?
1824 				 * It would seem that the answer would be to
1825 				 * run an upcall in the next KSE to run, and
1826 				 * deliver the signal that way. In a NON KSE
1827 				 * process, we need to make sure that the
1828 				 * single thread is runnable asap.
1829 				 * XXXKSE for now however, make them all run.
1830 				 */
1831 				goto runfast;
1832 			}
1833 			/*
1834 			 * The signal is not ignored or caught.
1835 			 */
1836 			mtx_lock_spin(&sched_lock);
1837 			thread_unsuspend(p);
1838 			mtx_unlock_spin(&sched_lock);
1839 			goto out;
1840 		}
1841 
1842 		if (prop & SA_STOP) {
1843 			/*
1844 			 * Already stopped, don't need to stop again
1845 			 * (If we did the shell could get confused).
1846 			 * Just make sure the signal STOP bit set.
1847 			 */
1848 			p->p_flag |= P_STOPPED_SIG;
1849 			SIGDELSET(*siglist, sig);
1850 			goto out;
1851 		}
1852 
1853 		/*
1854 		 * All other kinds of signals:
1855 		 * If a thread is sleeping interruptibly, simulate a
1856 		 * wakeup so that when it is continued it will be made
1857 		 * runnable and can look at the signal.  However, don't make
1858 		 * the PROCESS runnable, leave it stopped.
1859 		 * It may run a bit until it hits a thread_suspend_check().
1860 		 */
1861 		mtx_lock_spin(&sched_lock);
1862 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
1863 			sleepq_abort(td);
1864 		mtx_unlock_spin(&sched_lock);
1865 		goto out;
1866 		/*
1867 		 * Mutexes are short lived. Threads waiting on them will
1868 		 * hit thread_suspend_check() soon.
1869 		 */
1870 	}  else if (p->p_state == PRS_NORMAL) {
1871 		if ((p->p_flag & P_TRACED) || (action != SIG_DFL) ||
1872 			!(prop & SA_STOP)) {
1873 			mtx_lock_spin(&sched_lock);
1874 			tdsigwakeup(td, sig, action);
1875 			mtx_unlock_spin(&sched_lock);
1876 			goto out;
1877 		}
1878 		if (prop & SA_STOP) {
1879 			if (p->p_flag & P_PPWAIT)
1880 				goto out;
1881 			p->p_flag |= P_STOPPED_SIG;
1882 			p->p_xstat = sig;
1883 			p->p_xthread = td;
1884 			mtx_lock_spin(&sched_lock);
1885 			FOREACH_THREAD_IN_PROC(p, td0) {
1886 				if (TD_IS_SLEEPING(td0) &&
1887 				    (td0->td_flags & TDF_SINTR) &&
1888 				    !TD_IS_SUSPENDED(td0)) {
1889 					thread_suspend_one(td0);
1890 				} else if (td != td0) {
1891 					td0->td_flags |= TDF_ASTPENDING;
1892 				}
1893 			}
1894 			thread_stopped(p);
1895 			if (p->p_numthreads == p->p_suspcount) {
1896 				SIGDELSET(p->p_siglist, p->p_xstat);
1897 				FOREACH_THREAD_IN_PROC(p, td0)
1898 					SIGDELSET(td0->td_siglist, p->p_xstat);
1899 			}
1900 			mtx_unlock_spin(&sched_lock);
1901 			goto out;
1902 		}
1903 		else
1904 			goto runfast;
1905 		/* NOTREACHED */
1906 	} else {
1907 		/* Not in "NORMAL" state. discard the signal. */
1908 		SIGDELSET(*siglist, sig);
1909 		goto out;
1910 	}
1911 
1912 	/*
1913 	 * The process is not stopped so we need to apply the signal to all the
1914 	 * running threads.
1915 	 */
1916 
1917 runfast:
1918 	mtx_lock_spin(&sched_lock);
1919 	tdsigwakeup(td, sig, action);
1920 	thread_unsuspend(p);
1921 	mtx_unlock_spin(&sched_lock);
1922 out:
1923 	/* If we jump here, sched_lock should not be owned. */
1924 	mtx_assert(&sched_lock, MA_NOTOWNED);
1925 }
1926 
1927 /*
1928  * The force of a signal has been directed against a single
1929  * thread.  We need to see what we can do about knocking it
1930  * out of any sleep it may be in etc.
1931  */
1932 static void
1933 tdsigwakeup(struct thread *td, int sig, sig_t action)
1934 {
1935 	struct proc *p = td->td_proc;
1936 	register int prop;
1937 
1938 	PROC_LOCK_ASSERT(p, MA_OWNED);
1939 	mtx_assert(&sched_lock, MA_OWNED);
1940 	prop = sigprop(sig);
1941 
1942 	/*
1943 	 * Bring the priority of a thread up if we want it to get
1944 	 * killed in this lifetime.
1945 	 */
1946 	if (action == SIG_DFL && (prop & SA_KILL)) {
1947 		if (p->p_nice > 0)
1948 			sched_nice(td->td_proc, 0);
1949 		if (td->td_priority > PUSER)
1950 			sched_prio(td, PUSER);
1951 	}
1952 
1953 	if (TD_ON_SLEEPQ(td)) {
1954 		/*
1955 		 * If thread is sleeping uninterruptibly
1956 		 * we can't interrupt the sleep... the signal will
1957 		 * be noticed when the process returns through
1958 		 * trap() or syscall().
1959 		 */
1960 		if ((td->td_flags & TDF_SINTR) == 0)
1961 			return;
1962 		/*
1963 		 * Process is sleeping and traced.  Make it runnable
1964 		 * so it can discover the signal in issignal() and stop
1965 		 * for its parent.
1966 		 */
1967 		if (p->p_flag & P_TRACED) {
1968 			p->p_flag &= ~P_STOPPED_TRACE;
1969 		} else {
1970 			/*
1971 			 * If SIGCONT is default (or ignored) and process is
1972 			 * asleep, we are finished; the process should not
1973 			 * be awakened.
1974 			 */
1975 			if ((prop & SA_CONT) && action == SIG_DFL) {
1976 				SIGDELSET(p->p_siglist, sig);
1977 				/*
1978 				 * It may be on either list in this state.
1979 				 * Remove from both for now.
1980 				 */
1981 				SIGDELSET(td->td_siglist, sig);
1982 				return;
1983 			}
1984 
1985 			/*
1986 			 * Give low priority threads a better chance to run.
1987 			 */
1988 			if (td->td_priority > PUSER)
1989 				sched_prio(td, PUSER);
1990 		}
1991 		sleepq_abort(td);
1992 	} else {
1993 		/*
1994 		 * Other states do nothing with the signal immediately,
1995 		 * other than kicking ourselves if we are running.
1996 		 * It will either never be noticed, or noticed very soon.
1997 		 */
1998 #ifdef SMP
1999 		if (TD_IS_RUNNING(td) && td != curthread)
2000 			forward_signal(td);
2001 #endif
2002 	}
2003 }
2004 
2005 int
2006 ptracestop(struct thread *td, int sig)
2007 {
2008 	struct proc *p = td->td_proc;
2009 	struct thread *td0;
2010 
2011 	PROC_LOCK_ASSERT(p, MA_OWNED);
2012 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2013 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2014 
2015 	mtx_lock_spin(&sched_lock);
2016 	td->td_flags |= TDF_XSIG;
2017 	mtx_unlock_spin(&sched_lock);
2018 	td->td_xsig = sig;
2019 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2020 		if (p->p_flag & P_SINGLE_EXIT) {
2021 			mtx_lock_spin(&sched_lock);
2022 			td->td_flags &= ~TDF_XSIG;
2023 			mtx_unlock_spin(&sched_lock);
2024 			return (sig);
2025 		}
2026 		/*
2027 		 * Just make wait() to work, the last stopped thread
2028 		 * will win.
2029 		 */
2030 		p->p_xstat = sig;
2031 		p->p_xthread = td;
2032 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2033 		mtx_lock_spin(&sched_lock);
2034 		FOREACH_THREAD_IN_PROC(p, td0) {
2035 			if (TD_IS_SLEEPING(td0) &&
2036 			    (td0->td_flags & TDF_SINTR) &&
2037 			    !TD_IS_SUSPENDED(td0)) {
2038 				thread_suspend_one(td0);
2039 			} else if (td != td0) {
2040 				td0->td_flags |= TDF_ASTPENDING;
2041 			}
2042 		}
2043 stopme:
2044 		thread_stopped(p);
2045 		thread_suspend_one(td);
2046 		PROC_UNLOCK(p);
2047 		DROP_GIANT();
2048 		mi_switch(SW_VOL, NULL);
2049 		mtx_unlock_spin(&sched_lock);
2050 		PICKUP_GIANT();
2051 		PROC_LOCK(p);
2052 		if (!(p->p_flag & P_TRACED))
2053 			break;
2054 		if (td->td_flags & TDF_DBSUSPEND) {
2055 			if (p->p_flag & P_SINGLE_EXIT)
2056 				break;
2057 			mtx_lock_spin(&sched_lock);
2058 			goto stopme;
2059 		}
2060 	}
2061 	return (td->td_xsig);
2062 }
2063 
2064 /*
2065  * If the current process has received a signal (should be caught or cause
2066  * termination, should interrupt current syscall), return the signal number.
2067  * Stop signals with default action are processed immediately, then cleared;
2068  * they aren't returned.  This is checked after each entry to the system for
2069  * a syscall or trap (though this can usually be done without calling issignal
2070  * by checking the pending signal masks in cursig.) The normal call
2071  * sequence is
2072  *
2073  *	while (sig = cursig(curthread))
2074  *		postsig(sig);
2075  */
2076 static int
2077 issignal(td)
2078 	struct thread *td;
2079 {
2080 	struct proc *p;
2081 	struct sigacts *ps;
2082 	sigset_t sigpending;
2083 	int sig, prop, newsig;
2084 	struct thread *td0;
2085 
2086 	p = td->td_proc;
2087 	ps = p->p_sigacts;
2088 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2089 	PROC_LOCK_ASSERT(p, MA_OWNED);
2090 	for (;;) {
2091 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2092 
2093 		sigpending = td->td_siglist;
2094 		SIGSETNAND(sigpending, td->td_sigmask);
2095 
2096 		if (p->p_flag & P_PPWAIT)
2097 			SIG_STOPSIGMASK(sigpending);
2098 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2099 			return (0);
2100 		sig = sig_ffs(&sigpending);
2101 
2102 		if (p->p_stops & S_SIG) {
2103 			mtx_unlock(&ps->ps_mtx);
2104 			stopevent(p, S_SIG, sig);
2105 			mtx_lock(&ps->ps_mtx);
2106 		}
2107 
2108 		/*
2109 		 * We should see pending but ignored signals
2110 		 * only if P_TRACED was on when they were posted.
2111 		 */
2112 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2113 			SIGDELSET(td->td_siglist, sig);
2114 			if (td->td_pflags & TDP_SA)
2115 				SIGADDSET(td->td_sigmask, sig);
2116 			continue;
2117 		}
2118 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2119 			/*
2120 			 * If traced, always stop.
2121 			 */
2122 			mtx_unlock(&ps->ps_mtx);
2123 			newsig = ptracestop(td, sig);
2124 			mtx_lock(&ps->ps_mtx);
2125 
2126 			/*
2127 			 * If parent wants us to take the signal,
2128 			 * then it will leave it in p->p_xstat;
2129 			 * otherwise we just look for signals again.
2130 			 */
2131 			SIGDELSET(td->td_siglist, sig);	/* clear old signal */
2132 			if (td->td_pflags & TDP_SA)
2133 				SIGADDSET(td->td_sigmask, sig);
2134 			if (newsig == 0)
2135 				continue;
2136 			sig = newsig;
2137 			/*
2138 			 * If the traced bit got turned off, go back up
2139 			 * to the top to rescan signals.  This ensures
2140 			 * that p_sig* and p_sigact are consistent.
2141 			 */
2142 			if ((p->p_flag & P_TRACED) == 0)
2143 				continue;
2144 
2145 			/*
2146 			 * Put the new signal into td_siglist.  If the
2147 			 * signal is being masked, look for other signals.
2148 			 */
2149 			SIGADDSET(td->td_siglist, sig);
2150 			if (td->td_pflags & TDP_SA)
2151 				SIGDELSET(td->td_sigmask, sig);
2152 			if (SIGISMEMBER(td->td_sigmask, sig))
2153 				continue;
2154 			signotify(td);
2155 		}
2156 
2157 		prop = sigprop(sig);
2158 
2159 		/*
2160 		 * Decide whether the signal should be returned.
2161 		 * Return the signal's number, or fall through
2162 		 * to clear it from the pending mask.
2163 		 */
2164 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2165 
2166 		case (intptr_t)SIG_DFL:
2167 			/*
2168 			 * Don't take default actions on system processes.
2169 			 */
2170 			if (p->p_pid <= 1) {
2171 #ifdef DIAGNOSTIC
2172 				/*
2173 				 * Are you sure you want to ignore SIGSEGV
2174 				 * in init? XXX
2175 				 */
2176 				printf("Process (pid %lu) got signal %d\n",
2177 					(u_long)p->p_pid, sig);
2178 #endif
2179 				break;		/* == ignore */
2180 			}
2181 			/*
2182 			 * If there is a pending stop signal to process
2183 			 * with default action, stop here,
2184 			 * then clear the signal.  However,
2185 			 * if process is member of an orphaned
2186 			 * process group, ignore tty stop signals.
2187 			 */
2188 			if (prop & SA_STOP) {
2189 				if (p->p_flag & P_TRACED ||
2190 		    		    (p->p_pgrp->pg_jobc == 0 &&
2191 				     prop & SA_TTYSTOP))
2192 					break;	/* == ignore */
2193 				mtx_unlock(&ps->ps_mtx);
2194 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2195 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2196 				p->p_flag |= P_STOPPED_SIG;
2197 				p->p_xstat = sig;
2198 				p->p_xthread = td;
2199 				mtx_lock_spin(&sched_lock);
2200 				FOREACH_THREAD_IN_PROC(p, td0) {
2201 					if (TD_IS_SLEEPING(td0) &&
2202 					    (td0->td_flags & TDF_SINTR) &&
2203 					    !TD_IS_SUSPENDED(td0)) {
2204 						thread_suspend_one(td0);
2205 					} else if (td != td0) {
2206 						td0->td_flags |= TDF_ASTPENDING;
2207 					}
2208 				}
2209 				thread_stopped(p);
2210 				thread_suspend_one(td);
2211 				PROC_UNLOCK(p);
2212 				DROP_GIANT();
2213 				mi_switch(SW_INVOL, NULL);
2214 				mtx_unlock_spin(&sched_lock);
2215 				PICKUP_GIANT();
2216 				PROC_LOCK(p);
2217 				mtx_lock(&ps->ps_mtx);
2218 				break;
2219 			} else if (prop & SA_IGNORE) {
2220 				/*
2221 				 * Except for SIGCONT, shouldn't get here.
2222 				 * Default action is to ignore; drop it.
2223 				 */
2224 				break;		/* == ignore */
2225 			} else
2226 				return (sig);
2227 			/*NOTREACHED*/
2228 
2229 		case (intptr_t)SIG_IGN:
2230 			/*
2231 			 * Masking above should prevent us ever trying
2232 			 * to take action on an ignored signal other
2233 			 * than SIGCONT, unless process is traced.
2234 			 */
2235 			if ((prop & SA_CONT) == 0 &&
2236 			    (p->p_flag & P_TRACED) == 0)
2237 				printf("issignal\n");
2238 			break;		/* == ignore */
2239 
2240 		default:
2241 			/*
2242 			 * This signal has an action, let
2243 			 * postsig() process it.
2244 			 */
2245 			return (sig);
2246 		}
2247 		SIGDELSET(td->td_siglist, sig);		/* take the signal! */
2248 	}
2249 	/* NOTREACHED */
2250 }
2251 
2252 /*
2253  * Put the argument process into the stopped state and notify the parent
2254  * via wakeup.  Signals are handled elsewhere.  The process must not be
2255  * on the run queue.  Must be called with the proc p locked.
2256  */
2257 static void
2258 stop(struct proc *p)
2259 {
2260 
2261 	PROC_LOCK_ASSERT(p, MA_OWNED);
2262 	p->p_flag |= P_STOPPED_SIG;
2263 	p->p_flag &= ~P_WAITED;
2264 	wakeup(p->p_pptr);
2265 }
2266 
2267 /*
2268  * MPSAFE
2269  */
2270 void
2271 thread_stopped(struct proc *p)
2272 {
2273 	struct proc *p1 = curthread->td_proc;
2274 	struct sigacts *ps;
2275 	int n;
2276 
2277 	PROC_LOCK_ASSERT(p, MA_OWNED);
2278 	mtx_assert(&sched_lock, MA_OWNED);
2279 	n = p->p_suspcount;
2280 	if (p == p1)
2281 		n++;
2282 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2283 		mtx_unlock_spin(&sched_lock);
2284 		stop(p);
2285 		PROC_LOCK(p->p_pptr);
2286 		ps = p->p_pptr->p_sigacts;
2287 		mtx_lock(&ps->ps_mtx);
2288 		if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2289 			mtx_unlock(&ps->ps_mtx);
2290 			psignal(p->p_pptr, SIGCHLD);
2291 		} else
2292 			mtx_unlock(&ps->ps_mtx);
2293 		PROC_UNLOCK(p->p_pptr);
2294 		mtx_lock_spin(&sched_lock);
2295 	}
2296 }
2297 
2298 /*
2299  * Take the action for the specified signal
2300  * from the current set of pending signals.
2301  */
2302 void
2303 postsig(sig)
2304 	register int sig;
2305 {
2306 	struct thread *td = curthread;
2307 	register struct proc *p = td->td_proc;
2308 	struct sigacts *ps;
2309 	sig_t action;
2310 	sigset_t returnmask;
2311 	int code;
2312 
2313 	KASSERT(sig != 0, ("postsig"));
2314 
2315 	PROC_LOCK_ASSERT(p, MA_OWNED);
2316 	ps = p->p_sigacts;
2317 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2318 	SIGDELSET(td->td_siglist, sig);
2319 	action = ps->ps_sigact[_SIG_IDX(sig)];
2320 #ifdef KTRACE
2321 	if (KTRPOINT(td, KTR_PSIG))
2322 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2323 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2324 #endif
2325 	if (p->p_stops & S_SIG) {
2326 		mtx_unlock(&ps->ps_mtx);
2327 		stopevent(p, S_SIG, sig);
2328 		mtx_lock(&ps->ps_mtx);
2329 	}
2330 
2331 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2332 		/*
2333 		 * Default action, where the default is to kill
2334 		 * the process.  (Other cases were ignored above.)
2335 		 */
2336 		mtx_unlock(&ps->ps_mtx);
2337 		sigexit(td, sig);
2338 		/* NOTREACHED */
2339 	} else {
2340 		if (td->td_pflags & TDP_SA) {
2341 			if (sig == SIGKILL) {
2342 				mtx_unlock(&ps->ps_mtx);
2343 				sigexit(td, sig);
2344 			}
2345 		}
2346 
2347 		/*
2348 		 * If we get here, the signal must be caught.
2349 		 */
2350 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2351 		    ("postsig action"));
2352 		/*
2353 		 * Set the new mask value and also defer further
2354 		 * occurrences of this signal.
2355 		 *
2356 		 * Special case: user has done a sigsuspend.  Here the
2357 		 * current mask is not of interest, but rather the
2358 		 * mask from before the sigsuspend is what we want
2359 		 * restored after the signal processing is completed.
2360 		 */
2361 		if (td->td_pflags & TDP_OLDMASK) {
2362 			returnmask = td->td_oldsigmask;
2363 			td->td_pflags &= ~TDP_OLDMASK;
2364 		} else
2365 			returnmask = td->td_sigmask;
2366 
2367 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2368 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2369 			SIGADDSET(td->td_sigmask, sig);
2370 
2371 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2372 			/*
2373 			 * See kern_sigaction() for origin of this code.
2374 			 */
2375 			SIGDELSET(ps->ps_sigcatch, sig);
2376 			if (sig != SIGCONT &&
2377 			    sigprop(sig) & SA_IGNORE)
2378 				SIGADDSET(ps->ps_sigignore, sig);
2379 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2380 		}
2381 		p->p_stats->p_ru.ru_nsignals++;
2382 		if (p->p_sig != sig) {
2383 			code = 0;
2384 		} else {
2385 			code = p->p_code;
2386 			p->p_code = 0;
2387 			p->p_sig = 0;
2388 		}
2389 		if (td->td_pflags & TDP_SA)
2390 			thread_signal_add(curthread, sig);
2391 		else
2392 			(*p->p_sysent->sv_sendsig)(action, sig,
2393 			    &returnmask, code);
2394 	}
2395 }
2396 
2397 /*
2398  * Kill the current process for stated reason.
2399  */
2400 void
2401 killproc(p, why)
2402 	struct proc *p;
2403 	char *why;
2404 {
2405 
2406 	PROC_LOCK_ASSERT(p, MA_OWNED);
2407 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2408 		p, p->p_pid, p->p_comm);
2409 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2410 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2411 	psignal(p, SIGKILL);
2412 }
2413 
2414 /*
2415  * Force the current process to exit with the specified signal, dumping core
2416  * if appropriate.  We bypass the normal tests for masked and caught signals,
2417  * allowing unrecoverable failures to terminate the process without changing
2418  * signal state.  Mark the accounting record with the signal termination.
2419  * If dumping core, save the signal number for the debugger.  Calls exit and
2420  * does not return.
2421  *
2422  * MPSAFE
2423  */
2424 void
2425 sigexit(td, sig)
2426 	struct thread *td;
2427 	int sig;
2428 {
2429 	struct proc *p = td->td_proc;
2430 
2431 	PROC_LOCK_ASSERT(p, MA_OWNED);
2432 	p->p_acflag |= AXSIG;
2433 	/*
2434 	 * We must be single-threading to generate a core dump.  This
2435 	 * ensures that the registers in the core file are up-to-date.
2436 	 * Also, the ELF dump handler assumes that the thread list doesn't
2437 	 * change out from under it.
2438 	 *
2439 	 * XXX If another thread attempts to single-thread before us
2440 	 *     (e.g. via fork()), we won't get a dump at all.
2441 	 */
2442 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2443 		p->p_sig = sig;
2444 		/*
2445 		 * Log signals which would cause core dumps
2446 		 * (Log as LOG_INFO to appease those who don't want
2447 		 * these messages.)
2448 		 * XXX : Todo, as well as euid, write out ruid too
2449 		 * Note that coredump() drops proc lock.
2450 		 */
2451 		if (coredump(td) == 0)
2452 			sig |= WCOREFLAG;
2453 		if (kern_logsigexit)
2454 			log(LOG_INFO,
2455 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2456 			    p->p_pid, p->p_comm,
2457 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2458 			    sig &~ WCOREFLAG,
2459 			    sig & WCOREFLAG ? " (core dumped)" : "");
2460 	} else
2461 		PROC_UNLOCK(p);
2462 	exit1(td, W_EXITCODE(0, sig));
2463 	/* NOTREACHED */
2464 }
2465 
2466 static char corefilename[MAXPATHLEN] = {"%N.core"};
2467 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2468 	      sizeof(corefilename), "process corefile name format string");
2469 
2470 /*
2471  * expand_name(name, uid, pid)
2472  * Expand the name described in corefilename, using name, uid, and pid.
2473  * corefilename is a printf-like string, with three format specifiers:
2474  *	%N	name of process ("name")
2475  *	%P	process id (pid)
2476  *	%U	user id (uid)
2477  * For example, "%N.core" is the default; they can be disabled completely
2478  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2479  * This is controlled by the sysctl variable kern.corefile (see above).
2480  */
2481 
2482 static char *
2483 expand_name(name, uid, pid)
2484 	const char *name;
2485 	uid_t uid;
2486 	pid_t pid;
2487 {
2488 	const char *format, *appendstr;
2489 	char *temp;
2490 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2491 	size_t i, l, n;
2492 
2493 	format = corefilename;
2494 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2495 	if (temp == NULL)
2496 		return (NULL);
2497 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2498 		switch (format[i]) {
2499 		case '%':	/* Format character */
2500 			i++;
2501 			switch (format[i]) {
2502 			case '%':
2503 				appendstr = "%";
2504 				break;
2505 			case 'N':	/* process name */
2506 				appendstr = name;
2507 				break;
2508 			case 'P':	/* process id */
2509 				sprintf(buf, "%u", pid);
2510 				appendstr = buf;
2511 				break;
2512 			case 'U':	/* user id */
2513 				sprintf(buf, "%u", uid);
2514 				appendstr = buf;
2515 				break;
2516 			default:
2517 				appendstr = "";
2518 			  	log(LOG_ERR,
2519 				    "Unknown format character %c in `%s'\n",
2520 				    format[i], format);
2521 			}
2522 			l = strlen(appendstr);
2523 			if ((n + l) >= MAXPATHLEN)
2524 				goto toolong;
2525 			memcpy(temp + n, appendstr, l);
2526 			n += l;
2527 			break;
2528 		default:
2529 			temp[n++] = format[i];
2530 		}
2531 	}
2532 	if (format[i] != '\0')
2533 		goto toolong;
2534 	return (temp);
2535 toolong:
2536 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
2537 	    (long)pid, name, (u_long)uid);
2538 	free(temp, M_TEMP);
2539 	return (NULL);
2540 }
2541 
2542 /*
2543  * Dump a process' core.  The main routine does some
2544  * policy checking, and creates the name of the coredump;
2545  * then it passes on a vnode and a size limit to the process-specific
2546  * coredump routine if there is one; if there _is not_ one, it returns
2547  * ENOSYS; otherwise it returns the error from the process-specific routine.
2548  */
2549 
2550 static int
2551 coredump(struct thread *td)
2552 {
2553 	struct proc *p = td->td_proc;
2554 	register struct vnode *vp;
2555 	register struct ucred *cred = td->td_ucred;
2556 	struct flock lf;
2557 	struct nameidata nd;
2558 	struct vattr vattr;
2559 	int error, error1, flags, locked;
2560 	struct mount *mp;
2561 	char *name;			/* name of corefile */
2562 	off_t limit;
2563 
2564 	PROC_LOCK_ASSERT(p, MA_OWNED);
2565 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
2566 	_STOPEVENT(p, S_CORE, 0);
2567 
2568 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2569 		PROC_UNLOCK(p);
2570 		return (EFAULT);
2571 	}
2572 
2573 	/*
2574 	 * Note that the bulk of limit checking is done after
2575 	 * the corefile is created.  The exception is if the limit
2576 	 * for corefiles is 0, in which case we don't bother
2577 	 * creating the corefile at all.  This layout means that
2578 	 * a corefile is truncated instead of not being created,
2579 	 * if it is larger than the limit.
2580 	 */
2581 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2582 	PROC_UNLOCK(p);
2583 	if (limit == 0)
2584 		return (EFBIG);
2585 
2586 	mtx_lock(&Giant);
2587 restart:
2588 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2589 	if (name == NULL) {
2590 		mtx_unlock(&Giant);
2591 		return (EINVAL);
2592 	}
2593 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
2594 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2595 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
2596 	free(name, M_TEMP);
2597 	if (error) {
2598 		mtx_unlock(&Giant);
2599 		return (error);
2600 	}
2601 	NDFREE(&nd, NDF_ONLY_PNBUF);
2602 	vp = nd.ni_vp;
2603 
2604 	/* Don't dump to non-regular files or files with links. */
2605 	if (vp->v_type != VREG ||
2606 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
2607 		VOP_UNLOCK(vp, 0, td);
2608 		error = EFAULT;
2609 		goto out;
2610 	}
2611 
2612 	VOP_UNLOCK(vp, 0, td);
2613 	lf.l_whence = SEEK_SET;
2614 	lf.l_start = 0;
2615 	lf.l_len = 0;
2616 	lf.l_type = F_WRLCK;
2617 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2618 
2619 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2620 		lf.l_type = F_UNLCK;
2621 		if (locked)
2622 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2623 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2624 			return (error);
2625 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2626 			return (error);
2627 		goto restart;
2628 	}
2629 
2630 	VATTR_NULL(&vattr);
2631 	vattr.va_size = 0;
2632 	if (set_core_nodump_flag)
2633 		vattr.va_flags = UF_NODUMP;
2634 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2635 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2636 	VOP_SETATTR(vp, &vattr, cred, td);
2637 	VOP_UNLOCK(vp, 0, td);
2638 	PROC_LOCK(p);
2639 	p->p_acflag |= ACORE;
2640 	PROC_UNLOCK(p);
2641 
2642 	error = p->p_sysent->sv_coredump ?
2643 	  p->p_sysent->sv_coredump(td, vp, limit) :
2644 	  ENOSYS;
2645 
2646 	if (locked) {
2647 		lf.l_type = F_UNLCK;
2648 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2649 	}
2650 	vn_finished_write(mp);
2651 out:
2652 	error1 = vn_close(vp, FWRITE, cred, td);
2653 	mtx_unlock(&Giant);
2654 	if (error == 0)
2655 		error = error1;
2656 	return (error);
2657 }
2658 
2659 /*
2660  * Nonexistent system call-- signal process (may want to handle it).
2661  * Flag error in case process won't see signal immediately (blocked or ignored).
2662  */
2663 #ifndef _SYS_SYSPROTO_H_
2664 struct nosys_args {
2665 	int	dummy;
2666 };
2667 #endif
2668 /*
2669  * MPSAFE
2670  */
2671 /* ARGSUSED */
2672 int
2673 nosys(td, args)
2674 	struct thread *td;
2675 	struct nosys_args *args;
2676 {
2677 	struct proc *p = td->td_proc;
2678 
2679 	PROC_LOCK(p);
2680 	psignal(p, SIGSYS);
2681 	PROC_UNLOCK(p);
2682 	return (ENOSYS);
2683 }
2684 
2685 /*
2686  * Send a SIGIO or SIGURG signal to a process or process group using
2687  * stored credentials rather than those of the current process.
2688  */
2689 void
2690 pgsigio(sigiop, sig, checkctty)
2691 	struct sigio **sigiop;
2692 	int sig, checkctty;
2693 {
2694 	struct sigio *sigio;
2695 
2696 	SIGIO_LOCK();
2697 	sigio = *sigiop;
2698 	if (sigio == NULL) {
2699 		SIGIO_UNLOCK();
2700 		return;
2701 	}
2702 	if (sigio->sio_pgid > 0) {
2703 		PROC_LOCK(sigio->sio_proc);
2704 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
2705 			psignal(sigio->sio_proc, sig);
2706 		PROC_UNLOCK(sigio->sio_proc);
2707 	} else if (sigio->sio_pgid < 0) {
2708 		struct proc *p;
2709 
2710 		PGRP_LOCK(sigio->sio_pgrp);
2711 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
2712 			PROC_LOCK(p);
2713 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
2714 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
2715 				psignal(p, sig);
2716 			PROC_UNLOCK(p);
2717 		}
2718 		PGRP_UNLOCK(sigio->sio_pgrp);
2719 	}
2720 	SIGIO_UNLOCK();
2721 }
2722 
2723 static int
2724 filt_sigattach(struct knote *kn)
2725 {
2726 	struct proc *p = curproc;
2727 
2728 	kn->kn_ptr.p_proc = p;
2729 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2730 
2731 	knlist_add(&p->p_klist, kn, 0);
2732 
2733 	return (0);
2734 }
2735 
2736 static void
2737 filt_sigdetach(struct knote *kn)
2738 {
2739 	struct proc *p = kn->kn_ptr.p_proc;
2740 
2741 	knlist_remove(&p->p_klist, kn, 0);
2742 }
2743 
2744 /*
2745  * signal knotes are shared with proc knotes, so we apply a mask to
2746  * the hint in order to differentiate them from process hints.  This
2747  * could be avoided by using a signal-specific knote list, but probably
2748  * isn't worth the trouble.
2749  */
2750 static int
2751 filt_signal(struct knote *kn, long hint)
2752 {
2753 
2754 	if (hint & NOTE_SIGNAL) {
2755 		hint &= ~NOTE_SIGNAL;
2756 
2757 		if (kn->kn_id == hint)
2758 			kn->kn_data++;
2759 	}
2760 	return (kn->kn_data != 0);
2761 }
2762 
2763 struct sigacts *
2764 sigacts_alloc(void)
2765 {
2766 	struct sigacts *ps;
2767 
2768 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
2769 	ps->ps_refcnt = 1;
2770 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
2771 	return (ps);
2772 }
2773 
2774 void
2775 sigacts_free(struct sigacts *ps)
2776 {
2777 
2778 	mtx_lock(&ps->ps_mtx);
2779 	ps->ps_refcnt--;
2780 	if (ps->ps_refcnt == 0) {
2781 		mtx_destroy(&ps->ps_mtx);
2782 		free(ps, M_SUBPROC);
2783 	} else
2784 		mtx_unlock(&ps->ps_mtx);
2785 }
2786 
2787 struct sigacts *
2788 sigacts_hold(struct sigacts *ps)
2789 {
2790 	mtx_lock(&ps->ps_mtx);
2791 	ps->ps_refcnt++;
2792 	mtx_unlock(&ps->ps_mtx);
2793 	return (ps);
2794 }
2795 
2796 void
2797 sigacts_copy(struct sigacts *dest, struct sigacts *src)
2798 {
2799 
2800 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
2801 	mtx_lock(&src->ps_mtx);
2802 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
2803 	mtx_unlock(&src->ps_mtx);
2804 }
2805 
2806 int
2807 sigacts_shared(struct sigacts *ps)
2808 {
2809 	int shared;
2810 
2811 	mtx_lock(&ps->ps_mtx);
2812 	shared = ps->ps_refcnt > 1;
2813 	mtx_unlock(&ps->ps_mtx);
2814 	return (shared);
2815 }
2816