xref: /freebsd/sys/kern/kern_sig.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 #include "opt_procdesc.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/capability.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/procdesc.h>
65 #include <sys/posix4.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/sdt.h>
70 #include <sys/sbuf.h>
71 #include <sys/sleepqueue.h>
72 #include <sys/smp.h>
73 #include <sys/stat.h>
74 #include <sys/sx.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/sysctl.h>
77 #include <sys/sysent.h>
78 #include <sys/syslog.h>
79 #include <sys/sysproto.h>
80 #include <sys/timers.h>
81 #include <sys/unistd.h>
82 #include <sys/wait.h>
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #include <sys/jail.h>
88 
89 #include <machine/cpu.h>
90 
91 #include <security/audit/audit.h>
92 
93 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
94 
95 SDT_PROVIDER_DECLARE(proc);
96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
107 
108 static int	coredump(struct thread *);
109 static int	killpg1(struct thread *td, int sig, int pgid, int all,
110 		    ksiginfo_t *ksi);
111 static int	issignal(struct thread *td, int stop_allowed);
112 static int	sigprop(int sig);
113 static void	tdsigwakeup(struct thread *, int, sig_t, int);
114 static void	sig_suspend_threads(struct thread *, struct proc *, int);
115 static int	filt_sigattach(struct knote *kn);
116 static void	filt_sigdetach(struct knote *kn);
117 static int	filt_signal(struct knote *kn, long hint);
118 static struct thread *sigtd(struct proc *p, int sig, int prop);
119 static void	sigqueue_start(void);
120 
121 static uma_zone_t	ksiginfo_zone = NULL;
122 struct filterops sig_filtops = {
123 	.f_isfd = 0,
124 	.f_attach = filt_sigattach,
125 	.f_detach = filt_sigdetach,
126 	.f_event = filt_signal,
127 };
128 
129 static int	kern_logsigexit = 1;
130 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
131     &kern_logsigexit, 0,
132     "Log processes quitting on abnormal signals to syslog(3)");
133 
134 static int	kern_forcesigexit = 1;
135 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
136     &kern_forcesigexit, 0, "Force trap signal to be handled");
137 
138 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
139     "POSIX real time signal");
140 
141 static int	max_pending_per_proc = 128;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
143     &max_pending_per_proc, 0, "Max pending signals per proc");
144 
145 static int	preallocate_siginfo = 1024;
146 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
148     &preallocate_siginfo, 0, "Preallocated signal memory size");
149 
150 static int	signal_overflow = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
152     &signal_overflow, 0, "Number of signals overflew");
153 
154 static int	signal_alloc_fail = 0;
155 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
156     &signal_alloc_fail, 0, "signals failed to be allocated");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	capmode_coredump;
178 TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
179 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
180     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
181 
182 static int	do_coredump = 1;
183 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
184 	&do_coredump, 0, "Enable/Disable coredumps");
185 
186 static int	set_core_nodump_flag = 0;
187 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
188 	0, "Enable setting the NODUMP flag on coredump files");
189 
190 /*
191  * Signal properties and actions.
192  * The array below categorizes the signals and their default actions
193  * according to the following properties:
194  */
195 #define	SA_KILL		0x01		/* terminates process by default */
196 #define	SA_CORE		0x02		/* ditto and coredumps */
197 #define	SA_STOP		0x04		/* suspend process */
198 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
199 #define	SA_IGNORE	0x10		/* ignore by default */
200 #define	SA_CONT		0x20		/* continue if suspended */
201 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
202 
203 static int sigproptbl[NSIG] = {
204 	SA_KILL,			/* SIGHUP */
205 	SA_KILL,			/* SIGINT */
206 	SA_KILL|SA_CORE,		/* SIGQUIT */
207 	SA_KILL|SA_CORE,		/* SIGILL */
208 	SA_KILL|SA_CORE,		/* SIGTRAP */
209 	SA_KILL|SA_CORE,		/* SIGABRT */
210 	SA_KILL|SA_CORE,		/* SIGEMT */
211 	SA_KILL|SA_CORE,		/* SIGFPE */
212 	SA_KILL,			/* SIGKILL */
213 	SA_KILL|SA_CORE,		/* SIGBUS */
214 	SA_KILL|SA_CORE,		/* SIGSEGV */
215 	SA_KILL|SA_CORE,		/* SIGSYS */
216 	SA_KILL,			/* SIGPIPE */
217 	SA_KILL,			/* SIGALRM */
218 	SA_KILL,			/* SIGTERM */
219 	SA_IGNORE,			/* SIGURG */
220 	SA_STOP,			/* SIGSTOP */
221 	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
222 	SA_IGNORE|SA_CONT,		/* SIGCONT */
223 	SA_IGNORE,			/* SIGCHLD */
224 	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
225 	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
226 	SA_IGNORE,			/* SIGIO */
227 	SA_KILL,			/* SIGXCPU */
228 	SA_KILL,			/* SIGXFSZ */
229 	SA_KILL,			/* SIGVTALRM */
230 	SA_KILL,			/* SIGPROF */
231 	SA_IGNORE,			/* SIGWINCH  */
232 	SA_IGNORE,			/* SIGINFO */
233 	SA_KILL,			/* SIGUSR1 */
234 	SA_KILL,			/* SIGUSR2 */
235 };
236 
237 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
238 
239 static void
240 sigqueue_start(void)
241 {
242 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
243 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
244 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
245 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
246 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
247 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
248 }
249 
250 ksiginfo_t *
251 ksiginfo_alloc(int wait)
252 {
253 	int flags;
254 
255 	flags = M_ZERO;
256 	if (! wait)
257 		flags |= M_NOWAIT;
258 	if (ksiginfo_zone != NULL)
259 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
260 	return (NULL);
261 }
262 
263 void
264 ksiginfo_free(ksiginfo_t *ksi)
265 {
266 	uma_zfree(ksiginfo_zone, ksi);
267 }
268 
269 static __inline int
270 ksiginfo_tryfree(ksiginfo_t *ksi)
271 {
272 	if (!(ksi->ksi_flags & KSI_EXT)) {
273 		uma_zfree(ksiginfo_zone, ksi);
274 		return (1);
275 	}
276 	return (0);
277 }
278 
279 void
280 sigqueue_init(sigqueue_t *list, struct proc *p)
281 {
282 	SIGEMPTYSET(list->sq_signals);
283 	SIGEMPTYSET(list->sq_kill);
284 	TAILQ_INIT(&list->sq_list);
285 	list->sq_proc = p;
286 	list->sq_flags = SQ_INIT;
287 }
288 
289 /*
290  * Get a signal's ksiginfo.
291  * Return:
292  *	0	-	signal not found
293  *	others	-	signal number
294  */
295 static int
296 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
297 {
298 	struct proc *p = sq->sq_proc;
299 	struct ksiginfo *ksi, *next;
300 	int count = 0;
301 
302 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
303 
304 	if (!SIGISMEMBER(sq->sq_signals, signo))
305 		return (0);
306 
307 	if (SIGISMEMBER(sq->sq_kill, signo)) {
308 		count++;
309 		SIGDELSET(sq->sq_kill, signo);
310 	}
311 
312 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
313 		if (ksi->ksi_signo == signo) {
314 			if (count == 0) {
315 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
316 				ksi->ksi_sigq = NULL;
317 				ksiginfo_copy(ksi, si);
318 				if (ksiginfo_tryfree(ksi) && p != NULL)
319 					p->p_pendingcnt--;
320 			}
321 			if (++count > 1)
322 				break;
323 		}
324 	}
325 
326 	if (count <= 1)
327 		SIGDELSET(sq->sq_signals, signo);
328 	si->ksi_signo = signo;
329 	return (signo);
330 }
331 
332 void
333 sigqueue_take(ksiginfo_t *ksi)
334 {
335 	struct ksiginfo *kp;
336 	struct proc	*p;
337 	sigqueue_t	*sq;
338 
339 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
340 		return;
341 
342 	p = sq->sq_proc;
343 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
344 	ksi->ksi_sigq = NULL;
345 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
346 		p->p_pendingcnt--;
347 
348 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
349 	     kp = TAILQ_NEXT(kp, ksi_link)) {
350 		if (kp->ksi_signo == ksi->ksi_signo)
351 			break;
352 	}
353 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
354 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
355 }
356 
357 static int
358 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
359 {
360 	struct proc *p = sq->sq_proc;
361 	struct ksiginfo *ksi;
362 	int ret = 0;
363 
364 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
365 
366 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
367 		SIGADDSET(sq->sq_kill, signo);
368 		goto out_set_bit;
369 	}
370 
371 	/* directly insert the ksi, don't copy it */
372 	if (si->ksi_flags & KSI_INS) {
373 		if (si->ksi_flags & KSI_HEAD)
374 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
375 		else
376 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
377 		si->ksi_sigq = sq;
378 		goto out_set_bit;
379 	}
380 
381 	if (__predict_false(ksiginfo_zone == NULL)) {
382 		SIGADDSET(sq->sq_kill, signo);
383 		goto out_set_bit;
384 	}
385 
386 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
387 		signal_overflow++;
388 		ret = EAGAIN;
389 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
390 		signal_alloc_fail++;
391 		ret = EAGAIN;
392 	} else {
393 		if (p != NULL)
394 			p->p_pendingcnt++;
395 		ksiginfo_copy(si, ksi);
396 		ksi->ksi_signo = signo;
397 		if (si->ksi_flags & KSI_HEAD)
398 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
399 		else
400 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
401 		ksi->ksi_sigq = sq;
402 	}
403 
404 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
405 	    (si->ksi_flags & KSI_SIGQ) == 0) {
406 		if (ret != 0)
407 			SIGADDSET(sq->sq_kill, signo);
408 		ret = 0;
409 		goto out_set_bit;
410 	}
411 
412 	if (ret != 0)
413 		return (ret);
414 
415 out_set_bit:
416 	SIGADDSET(sq->sq_signals, signo);
417 	return (ret);
418 }
419 
420 void
421 sigqueue_flush(sigqueue_t *sq)
422 {
423 	struct proc *p = sq->sq_proc;
424 	ksiginfo_t *ksi;
425 
426 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
427 
428 	if (p != NULL)
429 		PROC_LOCK_ASSERT(p, MA_OWNED);
430 
431 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
432 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
433 		ksi->ksi_sigq = NULL;
434 		if (ksiginfo_tryfree(ksi) && p != NULL)
435 			p->p_pendingcnt--;
436 	}
437 
438 	SIGEMPTYSET(sq->sq_signals);
439 	SIGEMPTYSET(sq->sq_kill);
440 }
441 
442 static void
443 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
444 {
445 	sigset_t tmp;
446 	struct proc *p1, *p2;
447 	ksiginfo_t *ksi, *next;
448 
449 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
450 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
451 	p1 = src->sq_proc;
452 	p2 = dst->sq_proc;
453 	/* Move siginfo to target list */
454 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
455 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
456 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
457 			if (p1 != NULL)
458 				p1->p_pendingcnt--;
459 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
460 			ksi->ksi_sigq = dst;
461 			if (p2 != NULL)
462 				p2->p_pendingcnt++;
463 		}
464 	}
465 
466 	/* Move pending bits to target list */
467 	tmp = src->sq_kill;
468 	SIGSETAND(tmp, *set);
469 	SIGSETOR(dst->sq_kill, tmp);
470 	SIGSETNAND(src->sq_kill, tmp);
471 
472 	tmp = src->sq_signals;
473 	SIGSETAND(tmp, *set);
474 	SIGSETOR(dst->sq_signals, tmp);
475 	SIGSETNAND(src->sq_signals, tmp);
476 }
477 
478 #if 0
479 static void
480 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
481 {
482 	sigset_t set;
483 
484 	SIGEMPTYSET(set);
485 	SIGADDSET(set, signo);
486 	sigqueue_move_set(src, dst, &set);
487 }
488 #endif
489 
490 static void
491 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
492 {
493 	struct proc *p = sq->sq_proc;
494 	ksiginfo_t *ksi, *next;
495 
496 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
497 
498 	/* Remove siginfo queue */
499 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
500 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
501 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
502 			ksi->ksi_sigq = NULL;
503 			if (ksiginfo_tryfree(ksi) && p != NULL)
504 				p->p_pendingcnt--;
505 		}
506 	}
507 	SIGSETNAND(sq->sq_kill, *set);
508 	SIGSETNAND(sq->sq_signals, *set);
509 }
510 
511 void
512 sigqueue_delete(sigqueue_t *sq, int signo)
513 {
514 	sigset_t set;
515 
516 	SIGEMPTYSET(set);
517 	SIGADDSET(set, signo);
518 	sigqueue_delete_set(sq, &set);
519 }
520 
521 /* Remove a set of signals for a process */
522 static void
523 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
524 {
525 	sigqueue_t worklist;
526 	struct thread *td0;
527 
528 	PROC_LOCK_ASSERT(p, MA_OWNED);
529 
530 	sigqueue_init(&worklist, NULL);
531 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
532 
533 	FOREACH_THREAD_IN_PROC(p, td0)
534 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
535 
536 	sigqueue_flush(&worklist);
537 }
538 
539 void
540 sigqueue_delete_proc(struct proc *p, int signo)
541 {
542 	sigset_t set;
543 
544 	SIGEMPTYSET(set);
545 	SIGADDSET(set, signo);
546 	sigqueue_delete_set_proc(p, &set);
547 }
548 
549 static void
550 sigqueue_delete_stopmask_proc(struct proc *p)
551 {
552 	sigset_t set;
553 
554 	SIGEMPTYSET(set);
555 	SIGADDSET(set, SIGSTOP);
556 	SIGADDSET(set, SIGTSTP);
557 	SIGADDSET(set, SIGTTIN);
558 	SIGADDSET(set, SIGTTOU);
559 	sigqueue_delete_set_proc(p, &set);
560 }
561 
562 /*
563  * Determine signal that should be delivered to process p, the current
564  * process, 0 if none.  If there is a pending stop signal with default
565  * action, the process stops in issignal().
566  */
567 int
568 cursig(struct thread *td, int stop_allowed)
569 {
570 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
571 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
572 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
573 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
574 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
575 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
576 }
577 
578 /*
579  * Arrange for ast() to handle unmasked pending signals on return to user
580  * mode.  This must be called whenever a signal is added to td_sigqueue or
581  * unmasked in td_sigmask.
582  */
583 void
584 signotify(struct thread *td)
585 {
586 	struct proc *p;
587 
588 	p = td->td_proc;
589 
590 	PROC_LOCK_ASSERT(p, MA_OWNED);
591 
592 	if (SIGPENDING(td)) {
593 		thread_lock(td);
594 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
595 		thread_unlock(td);
596 	}
597 }
598 
599 int
600 sigonstack(size_t sp)
601 {
602 	struct thread *td = curthread;
603 
604 	return ((td->td_pflags & TDP_ALTSTACK) ?
605 #if defined(COMPAT_43)
606 	    ((td->td_sigstk.ss_size == 0) ?
607 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
608 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
609 #else
610 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
611 #endif
612 	    : 0);
613 }
614 
615 static __inline int
616 sigprop(int sig)
617 {
618 
619 	if (sig > 0 && sig < NSIG)
620 		return (sigproptbl[_SIG_IDX(sig)]);
621 	return (0);
622 }
623 
624 int
625 sig_ffs(sigset_t *set)
626 {
627 	int i;
628 
629 	for (i = 0; i < _SIG_WORDS; i++)
630 		if (set->__bits[i])
631 			return (ffs(set->__bits[i]) + (i * 32));
632 	return (0);
633 }
634 
635 /*
636  * kern_sigaction
637  * sigaction
638  * freebsd4_sigaction
639  * osigaction
640  */
641 int
642 kern_sigaction(td, sig, act, oact, flags)
643 	struct thread *td;
644 	register int sig;
645 	struct sigaction *act, *oact;
646 	int flags;
647 {
648 	struct sigacts *ps;
649 	struct proc *p = td->td_proc;
650 
651 	if (!_SIG_VALID(sig))
652 		return (EINVAL);
653 
654 	PROC_LOCK(p);
655 	ps = p->p_sigacts;
656 	mtx_lock(&ps->ps_mtx);
657 	if (oact) {
658 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
659 		oact->sa_flags = 0;
660 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
661 			oact->sa_flags |= SA_ONSTACK;
662 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
663 			oact->sa_flags |= SA_RESTART;
664 		if (SIGISMEMBER(ps->ps_sigreset, sig))
665 			oact->sa_flags |= SA_RESETHAND;
666 		if (SIGISMEMBER(ps->ps_signodefer, sig))
667 			oact->sa_flags |= SA_NODEFER;
668 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
669 			oact->sa_flags |= SA_SIGINFO;
670 			oact->sa_sigaction =
671 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
672 		} else
673 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
674 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
675 			oact->sa_flags |= SA_NOCLDSTOP;
676 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
677 			oact->sa_flags |= SA_NOCLDWAIT;
678 	}
679 	if (act) {
680 		if ((sig == SIGKILL || sig == SIGSTOP) &&
681 		    act->sa_handler != SIG_DFL) {
682 			mtx_unlock(&ps->ps_mtx);
683 			PROC_UNLOCK(p);
684 			return (EINVAL);
685 		}
686 
687 		/*
688 		 * Change setting atomically.
689 		 */
690 
691 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
692 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
693 		if (act->sa_flags & SA_SIGINFO) {
694 			ps->ps_sigact[_SIG_IDX(sig)] =
695 			    (__sighandler_t *)act->sa_sigaction;
696 			SIGADDSET(ps->ps_siginfo, sig);
697 		} else {
698 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
699 			SIGDELSET(ps->ps_siginfo, sig);
700 		}
701 		if (!(act->sa_flags & SA_RESTART))
702 			SIGADDSET(ps->ps_sigintr, sig);
703 		else
704 			SIGDELSET(ps->ps_sigintr, sig);
705 		if (act->sa_flags & SA_ONSTACK)
706 			SIGADDSET(ps->ps_sigonstack, sig);
707 		else
708 			SIGDELSET(ps->ps_sigonstack, sig);
709 		if (act->sa_flags & SA_RESETHAND)
710 			SIGADDSET(ps->ps_sigreset, sig);
711 		else
712 			SIGDELSET(ps->ps_sigreset, sig);
713 		if (act->sa_flags & SA_NODEFER)
714 			SIGADDSET(ps->ps_signodefer, sig);
715 		else
716 			SIGDELSET(ps->ps_signodefer, sig);
717 		if (sig == SIGCHLD) {
718 			if (act->sa_flags & SA_NOCLDSTOP)
719 				ps->ps_flag |= PS_NOCLDSTOP;
720 			else
721 				ps->ps_flag &= ~PS_NOCLDSTOP;
722 			if (act->sa_flags & SA_NOCLDWAIT) {
723 				/*
724 				 * Paranoia: since SA_NOCLDWAIT is implemented
725 				 * by reparenting the dying child to PID 1 (and
726 				 * trust it to reap the zombie), PID 1 itself
727 				 * is forbidden to set SA_NOCLDWAIT.
728 				 */
729 				if (p->p_pid == 1)
730 					ps->ps_flag &= ~PS_NOCLDWAIT;
731 				else
732 					ps->ps_flag |= PS_NOCLDWAIT;
733 			} else
734 				ps->ps_flag &= ~PS_NOCLDWAIT;
735 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
736 				ps->ps_flag |= PS_CLDSIGIGN;
737 			else
738 				ps->ps_flag &= ~PS_CLDSIGIGN;
739 		}
740 		/*
741 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
742 		 * and for signals set to SIG_DFL where the default is to
743 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
744 		 * have to restart the process.
745 		 */
746 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
747 		    (sigprop(sig) & SA_IGNORE &&
748 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
749 			/* never to be seen again */
750 			sigqueue_delete_proc(p, sig);
751 			if (sig != SIGCONT)
752 				/* easier in psignal */
753 				SIGADDSET(ps->ps_sigignore, sig);
754 			SIGDELSET(ps->ps_sigcatch, sig);
755 		} else {
756 			SIGDELSET(ps->ps_sigignore, sig);
757 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
758 				SIGDELSET(ps->ps_sigcatch, sig);
759 			else
760 				SIGADDSET(ps->ps_sigcatch, sig);
761 		}
762 #ifdef COMPAT_FREEBSD4
763 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
764 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
765 		    (flags & KSA_FREEBSD4) == 0)
766 			SIGDELSET(ps->ps_freebsd4, sig);
767 		else
768 			SIGADDSET(ps->ps_freebsd4, sig);
769 #endif
770 #ifdef COMPAT_43
771 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
772 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
773 		    (flags & KSA_OSIGSET) == 0)
774 			SIGDELSET(ps->ps_osigset, sig);
775 		else
776 			SIGADDSET(ps->ps_osigset, sig);
777 #endif
778 	}
779 	mtx_unlock(&ps->ps_mtx);
780 	PROC_UNLOCK(p);
781 	return (0);
782 }
783 
784 #ifndef _SYS_SYSPROTO_H_
785 struct sigaction_args {
786 	int	sig;
787 	struct	sigaction *act;
788 	struct	sigaction *oact;
789 };
790 #endif
791 int
792 sys_sigaction(td, uap)
793 	struct thread *td;
794 	register struct sigaction_args *uap;
795 {
796 	struct sigaction act, oact;
797 	register struct sigaction *actp, *oactp;
798 	int error;
799 
800 	actp = (uap->act != NULL) ? &act : NULL;
801 	oactp = (uap->oact != NULL) ? &oact : NULL;
802 	if (actp) {
803 		error = copyin(uap->act, actp, sizeof(act));
804 		if (error)
805 			return (error);
806 	}
807 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
808 	if (oactp && !error)
809 		error = copyout(oactp, uap->oact, sizeof(oact));
810 	return (error);
811 }
812 
813 #ifdef COMPAT_FREEBSD4
814 #ifndef _SYS_SYSPROTO_H_
815 struct freebsd4_sigaction_args {
816 	int	sig;
817 	struct	sigaction *act;
818 	struct	sigaction *oact;
819 };
820 #endif
821 int
822 freebsd4_sigaction(td, uap)
823 	struct thread *td;
824 	register struct freebsd4_sigaction_args *uap;
825 {
826 	struct sigaction act, oact;
827 	register struct sigaction *actp, *oactp;
828 	int error;
829 
830 
831 	actp = (uap->act != NULL) ? &act : NULL;
832 	oactp = (uap->oact != NULL) ? &oact : NULL;
833 	if (actp) {
834 		error = copyin(uap->act, actp, sizeof(act));
835 		if (error)
836 			return (error);
837 	}
838 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
839 	if (oactp && !error)
840 		error = copyout(oactp, uap->oact, sizeof(oact));
841 	return (error);
842 }
843 #endif	/* COMAPT_FREEBSD4 */
844 
845 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
846 #ifndef _SYS_SYSPROTO_H_
847 struct osigaction_args {
848 	int	signum;
849 	struct	osigaction *nsa;
850 	struct	osigaction *osa;
851 };
852 #endif
853 int
854 osigaction(td, uap)
855 	struct thread *td;
856 	register struct osigaction_args *uap;
857 {
858 	struct osigaction sa;
859 	struct sigaction nsa, osa;
860 	register struct sigaction *nsap, *osap;
861 	int error;
862 
863 	if (uap->signum <= 0 || uap->signum >= ONSIG)
864 		return (EINVAL);
865 
866 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
867 	osap = (uap->osa != NULL) ? &osa : NULL;
868 
869 	if (nsap) {
870 		error = copyin(uap->nsa, &sa, sizeof(sa));
871 		if (error)
872 			return (error);
873 		nsap->sa_handler = sa.sa_handler;
874 		nsap->sa_flags = sa.sa_flags;
875 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
876 	}
877 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
878 	if (osap && !error) {
879 		sa.sa_handler = osap->sa_handler;
880 		sa.sa_flags = osap->sa_flags;
881 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
882 		error = copyout(&sa, uap->osa, sizeof(sa));
883 	}
884 	return (error);
885 }
886 
887 #if !defined(__i386__)
888 /* Avoid replicating the same stub everywhere */
889 int
890 osigreturn(td, uap)
891 	struct thread *td;
892 	struct osigreturn_args *uap;
893 {
894 
895 	return (nosys(td, (struct nosys_args *)uap));
896 }
897 #endif
898 #endif /* COMPAT_43 */
899 
900 /*
901  * Initialize signal state for process 0;
902  * set to ignore signals that are ignored by default.
903  */
904 void
905 siginit(p)
906 	struct proc *p;
907 {
908 	register int i;
909 	struct sigacts *ps;
910 
911 	PROC_LOCK(p);
912 	ps = p->p_sigacts;
913 	mtx_lock(&ps->ps_mtx);
914 	for (i = 1; i <= NSIG; i++)
915 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
916 			SIGADDSET(ps->ps_sigignore, i);
917 	mtx_unlock(&ps->ps_mtx);
918 	PROC_UNLOCK(p);
919 }
920 
921 /*
922  * Reset signals for an exec of the specified process.
923  */
924 void
925 execsigs(struct proc *p)
926 {
927 	struct sigacts *ps;
928 	int sig;
929 	struct thread *td;
930 
931 	/*
932 	 * Reset caught signals.  Held signals remain held
933 	 * through td_sigmask (unless they were caught,
934 	 * and are now ignored by default).
935 	 */
936 	PROC_LOCK_ASSERT(p, MA_OWNED);
937 	td = FIRST_THREAD_IN_PROC(p);
938 	ps = p->p_sigacts;
939 	mtx_lock(&ps->ps_mtx);
940 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
941 		sig = sig_ffs(&ps->ps_sigcatch);
942 		SIGDELSET(ps->ps_sigcatch, sig);
943 		if (sigprop(sig) & SA_IGNORE) {
944 			if (sig != SIGCONT)
945 				SIGADDSET(ps->ps_sigignore, sig);
946 			sigqueue_delete_proc(p, sig);
947 		}
948 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
949 	}
950 	/*
951 	 * Reset stack state to the user stack.
952 	 * Clear set of signals caught on the signal stack.
953 	 */
954 	td->td_sigstk.ss_flags = SS_DISABLE;
955 	td->td_sigstk.ss_size = 0;
956 	td->td_sigstk.ss_sp = 0;
957 	td->td_pflags &= ~TDP_ALTSTACK;
958 	/*
959 	 * Reset no zombies if child dies flag as Solaris does.
960 	 */
961 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
962 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
963 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
964 	mtx_unlock(&ps->ps_mtx);
965 }
966 
967 /*
968  * kern_sigprocmask()
969  *
970  *	Manipulate signal mask.
971  */
972 int
973 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
974     int flags)
975 {
976 	sigset_t new_block, oset1;
977 	struct proc *p;
978 	int error;
979 
980 	p = td->td_proc;
981 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
982 		PROC_LOCK(p);
983 	if (oset != NULL)
984 		*oset = td->td_sigmask;
985 
986 	error = 0;
987 	if (set != NULL) {
988 		switch (how) {
989 		case SIG_BLOCK:
990 			SIG_CANTMASK(*set);
991 			oset1 = td->td_sigmask;
992 			SIGSETOR(td->td_sigmask, *set);
993 			new_block = td->td_sigmask;
994 			SIGSETNAND(new_block, oset1);
995 			break;
996 		case SIG_UNBLOCK:
997 			SIGSETNAND(td->td_sigmask, *set);
998 			signotify(td);
999 			goto out;
1000 		case SIG_SETMASK:
1001 			SIG_CANTMASK(*set);
1002 			oset1 = td->td_sigmask;
1003 			if (flags & SIGPROCMASK_OLD)
1004 				SIGSETLO(td->td_sigmask, *set);
1005 			else
1006 				td->td_sigmask = *set;
1007 			new_block = td->td_sigmask;
1008 			SIGSETNAND(new_block, oset1);
1009 			signotify(td);
1010 			break;
1011 		default:
1012 			error = EINVAL;
1013 			goto out;
1014 		}
1015 
1016 		/*
1017 		 * The new_block set contains signals that were not previously
1018 		 * blocked, but are blocked now.
1019 		 *
1020 		 * In case we block any signal that was not previously blocked
1021 		 * for td, and process has the signal pending, try to schedule
1022 		 * signal delivery to some thread that does not block the
1023 		 * signal, possibly waking it up.
1024 		 */
1025 		if (p->p_numthreads != 1)
1026 			reschedule_signals(p, new_block, flags);
1027 	}
1028 
1029 out:
1030 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1031 		PROC_UNLOCK(p);
1032 	return (error);
1033 }
1034 
1035 #ifndef _SYS_SYSPROTO_H_
1036 struct sigprocmask_args {
1037 	int	how;
1038 	const sigset_t *set;
1039 	sigset_t *oset;
1040 };
1041 #endif
1042 int
1043 sys_sigprocmask(td, uap)
1044 	register struct thread *td;
1045 	struct sigprocmask_args *uap;
1046 {
1047 	sigset_t set, oset;
1048 	sigset_t *setp, *osetp;
1049 	int error;
1050 
1051 	setp = (uap->set != NULL) ? &set : NULL;
1052 	osetp = (uap->oset != NULL) ? &oset : NULL;
1053 	if (setp) {
1054 		error = copyin(uap->set, setp, sizeof(set));
1055 		if (error)
1056 			return (error);
1057 	}
1058 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1059 	if (osetp && !error) {
1060 		error = copyout(osetp, uap->oset, sizeof(oset));
1061 	}
1062 	return (error);
1063 }
1064 
1065 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1066 #ifndef _SYS_SYSPROTO_H_
1067 struct osigprocmask_args {
1068 	int	how;
1069 	osigset_t mask;
1070 };
1071 #endif
1072 int
1073 osigprocmask(td, uap)
1074 	register struct thread *td;
1075 	struct osigprocmask_args *uap;
1076 {
1077 	sigset_t set, oset;
1078 	int error;
1079 
1080 	OSIG2SIG(uap->mask, set);
1081 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1082 	SIG2OSIG(oset, td->td_retval[0]);
1083 	return (error);
1084 }
1085 #endif /* COMPAT_43 */
1086 
1087 int
1088 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1089 {
1090 	ksiginfo_t ksi;
1091 	sigset_t set;
1092 	int error;
1093 
1094 	error = copyin(uap->set, &set, sizeof(set));
1095 	if (error) {
1096 		td->td_retval[0] = error;
1097 		return (0);
1098 	}
1099 
1100 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1101 	if (error) {
1102 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1103 			error = ERESTART;
1104 		if (error == ERESTART)
1105 			return (error);
1106 		td->td_retval[0] = error;
1107 		return (0);
1108 	}
1109 
1110 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1111 	td->td_retval[0] = error;
1112 	return (0);
1113 }
1114 
1115 int
1116 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1117 {
1118 	struct timespec ts;
1119 	struct timespec *timeout;
1120 	sigset_t set;
1121 	ksiginfo_t ksi;
1122 	int error;
1123 
1124 	if (uap->timeout) {
1125 		error = copyin(uap->timeout, &ts, sizeof(ts));
1126 		if (error)
1127 			return (error);
1128 
1129 		timeout = &ts;
1130 	} else
1131 		timeout = NULL;
1132 
1133 	error = copyin(uap->set, &set, sizeof(set));
1134 	if (error)
1135 		return (error);
1136 
1137 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1138 	if (error)
1139 		return (error);
1140 
1141 	if (uap->info)
1142 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1143 
1144 	if (error == 0)
1145 		td->td_retval[0] = ksi.ksi_signo;
1146 	return (error);
1147 }
1148 
1149 int
1150 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1151 {
1152 	ksiginfo_t ksi;
1153 	sigset_t set;
1154 	int error;
1155 
1156 	error = copyin(uap->set, &set, sizeof(set));
1157 	if (error)
1158 		return (error);
1159 
1160 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1161 	if (error)
1162 		return (error);
1163 
1164 	if (uap->info)
1165 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1166 
1167 	if (error == 0)
1168 		td->td_retval[0] = ksi.ksi_signo;
1169 	return (error);
1170 }
1171 
1172 int
1173 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1174 	struct timespec *timeout)
1175 {
1176 	struct sigacts *ps;
1177 	sigset_t saved_mask, new_block;
1178 	struct proc *p;
1179 	int error, sig, timo, timevalid = 0;
1180 	struct timespec rts, ets, ts;
1181 	struct timeval tv;
1182 
1183 	p = td->td_proc;
1184 	error = 0;
1185 	ets.tv_sec = 0;
1186 	ets.tv_nsec = 0;
1187 
1188 	if (timeout != NULL) {
1189 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1190 			timevalid = 1;
1191 			getnanouptime(&rts);
1192 			ets = rts;
1193 			timespecadd(&ets, timeout);
1194 		}
1195 	}
1196 	ksiginfo_init(ksi);
1197 	/* Some signals can not be waited for. */
1198 	SIG_CANTMASK(waitset);
1199 	ps = p->p_sigacts;
1200 	PROC_LOCK(p);
1201 	saved_mask = td->td_sigmask;
1202 	SIGSETNAND(td->td_sigmask, waitset);
1203 	for (;;) {
1204 		mtx_lock(&ps->ps_mtx);
1205 		sig = cursig(td, SIG_STOP_ALLOWED);
1206 		mtx_unlock(&ps->ps_mtx);
1207 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1208 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1209 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1210 				error = 0;
1211 				break;
1212 			}
1213 		}
1214 
1215 		if (error != 0)
1216 			break;
1217 
1218 		/*
1219 		 * POSIX says this must be checked after looking for pending
1220 		 * signals.
1221 		 */
1222 		if (timeout != NULL) {
1223 			if (!timevalid) {
1224 				error = EINVAL;
1225 				break;
1226 			}
1227 			getnanouptime(&rts);
1228 			if (timespeccmp(&rts, &ets, >=)) {
1229 				error = EAGAIN;
1230 				break;
1231 			}
1232 			ts = ets;
1233 			timespecsub(&ts, &rts);
1234 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1235 			timo = tvtohz(&tv);
1236 		} else {
1237 			timo = 0;
1238 		}
1239 
1240 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1241 
1242 		if (timeout != NULL) {
1243 			if (error == ERESTART) {
1244 				/* Timeout can not be restarted. */
1245 				error = EINTR;
1246 			} else if (error == EAGAIN) {
1247 				/* We will calculate timeout by ourself. */
1248 				error = 0;
1249 			}
1250 		}
1251 	}
1252 
1253 	new_block = saved_mask;
1254 	SIGSETNAND(new_block, td->td_sigmask);
1255 	td->td_sigmask = saved_mask;
1256 	/*
1257 	 * Fewer signals can be delivered to us, reschedule signal
1258 	 * notification.
1259 	 */
1260 	if (p->p_numthreads != 1)
1261 		reschedule_signals(p, new_block, 0);
1262 
1263 	if (error == 0) {
1264 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1265 
1266 		if (ksi->ksi_code == SI_TIMER)
1267 			itimer_accept(p, ksi->ksi_timerid, ksi);
1268 
1269 #ifdef KTRACE
1270 		if (KTRPOINT(td, KTR_PSIG)) {
1271 			sig_t action;
1272 
1273 			mtx_lock(&ps->ps_mtx);
1274 			action = ps->ps_sigact[_SIG_IDX(sig)];
1275 			mtx_unlock(&ps->ps_mtx);
1276 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1277 		}
1278 #endif
1279 		if (sig == SIGKILL)
1280 			sigexit(td, sig);
1281 	}
1282 	PROC_UNLOCK(p);
1283 	return (error);
1284 }
1285 
1286 #ifndef _SYS_SYSPROTO_H_
1287 struct sigpending_args {
1288 	sigset_t	*set;
1289 };
1290 #endif
1291 int
1292 sys_sigpending(td, uap)
1293 	struct thread *td;
1294 	struct sigpending_args *uap;
1295 {
1296 	struct proc *p = td->td_proc;
1297 	sigset_t pending;
1298 
1299 	PROC_LOCK(p);
1300 	pending = p->p_sigqueue.sq_signals;
1301 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1302 	PROC_UNLOCK(p);
1303 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1304 }
1305 
1306 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1307 #ifndef _SYS_SYSPROTO_H_
1308 struct osigpending_args {
1309 	int	dummy;
1310 };
1311 #endif
1312 int
1313 osigpending(td, uap)
1314 	struct thread *td;
1315 	struct osigpending_args *uap;
1316 {
1317 	struct proc *p = td->td_proc;
1318 	sigset_t pending;
1319 
1320 	PROC_LOCK(p);
1321 	pending = p->p_sigqueue.sq_signals;
1322 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1323 	PROC_UNLOCK(p);
1324 	SIG2OSIG(pending, td->td_retval[0]);
1325 	return (0);
1326 }
1327 #endif /* COMPAT_43 */
1328 
1329 #if defined(COMPAT_43)
1330 /*
1331  * Generalized interface signal handler, 4.3-compatible.
1332  */
1333 #ifndef _SYS_SYSPROTO_H_
1334 struct osigvec_args {
1335 	int	signum;
1336 	struct	sigvec *nsv;
1337 	struct	sigvec *osv;
1338 };
1339 #endif
1340 /* ARGSUSED */
1341 int
1342 osigvec(td, uap)
1343 	struct thread *td;
1344 	register struct osigvec_args *uap;
1345 {
1346 	struct sigvec vec;
1347 	struct sigaction nsa, osa;
1348 	register struct sigaction *nsap, *osap;
1349 	int error;
1350 
1351 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1352 		return (EINVAL);
1353 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1354 	osap = (uap->osv != NULL) ? &osa : NULL;
1355 	if (nsap) {
1356 		error = copyin(uap->nsv, &vec, sizeof(vec));
1357 		if (error)
1358 			return (error);
1359 		nsap->sa_handler = vec.sv_handler;
1360 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1361 		nsap->sa_flags = vec.sv_flags;
1362 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1363 	}
1364 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1365 	if (osap && !error) {
1366 		vec.sv_handler = osap->sa_handler;
1367 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1368 		vec.sv_flags = osap->sa_flags;
1369 		vec.sv_flags &= ~SA_NOCLDWAIT;
1370 		vec.sv_flags ^= SA_RESTART;
1371 		error = copyout(&vec, uap->osv, sizeof(vec));
1372 	}
1373 	return (error);
1374 }
1375 
1376 #ifndef _SYS_SYSPROTO_H_
1377 struct osigblock_args {
1378 	int	mask;
1379 };
1380 #endif
1381 int
1382 osigblock(td, uap)
1383 	register struct thread *td;
1384 	struct osigblock_args *uap;
1385 {
1386 	sigset_t set, oset;
1387 
1388 	OSIG2SIG(uap->mask, set);
1389 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1390 	SIG2OSIG(oset, td->td_retval[0]);
1391 	return (0);
1392 }
1393 
1394 #ifndef _SYS_SYSPROTO_H_
1395 struct osigsetmask_args {
1396 	int	mask;
1397 };
1398 #endif
1399 int
1400 osigsetmask(td, uap)
1401 	struct thread *td;
1402 	struct osigsetmask_args *uap;
1403 {
1404 	sigset_t set, oset;
1405 
1406 	OSIG2SIG(uap->mask, set);
1407 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1408 	SIG2OSIG(oset, td->td_retval[0]);
1409 	return (0);
1410 }
1411 #endif /* COMPAT_43 */
1412 
1413 /*
1414  * Suspend calling thread until signal, providing mask to be set in the
1415  * meantime.
1416  */
1417 #ifndef _SYS_SYSPROTO_H_
1418 struct sigsuspend_args {
1419 	const sigset_t *sigmask;
1420 };
1421 #endif
1422 /* ARGSUSED */
1423 int
1424 sys_sigsuspend(td, uap)
1425 	struct thread *td;
1426 	struct sigsuspend_args *uap;
1427 {
1428 	sigset_t mask;
1429 	int error;
1430 
1431 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1432 	if (error)
1433 		return (error);
1434 	return (kern_sigsuspend(td, mask));
1435 }
1436 
1437 int
1438 kern_sigsuspend(struct thread *td, sigset_t mask)
1439 {
1440 	struct proc *p = td->td_proc;
1441 	int has_sig, sig;
1442 
1443 	/*
1444 	 * When returning from sigsuspend, we want
1445 	 * the old mask to be restored after the
1446 	 * signal handler has finished.  Thus, we
1447 	 * save it here and mark the sigacts structure
1448 	 * to indicate this.
1449 	 */
1450 	PROC_LOCK(p);
1451 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1452 	    SIGPROCMASK_PROC_LOCKED);
1453 	td->td_pflags |= TDP_OLDMASK;
1454 
1455 	/*
1456 	 * Process signals now. Otherwise, we can get spurious wakeup
1457 	 * due to signal entered process queue, but delivered to other
1458 	 * thread. But sigsuspend should return only on signal
1459 	 * delivery.
1460 	 */
1461 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1462 	for (has_sig = 0; !has_sig;) {
1463 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1464 			0) == 0)
1465 			/* void */;
1466 		thread_suspend_check(0);
1467 		mtx_lock(&p->p_sigacts->ps_mtx);
1468 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1469 			has_sig += postsig(sig);
1470 		mtx_unlock(&p->p_sigacts->ps_mtx);
1471 	}
1472 	PROC_UNLOCK(p);
1473 	td->td_errno = EINTR;
1474 	td->td_pflags |= TDP_NERRNO;
1475 	return (EJUSTRETURN);
1476 }
1477 
1478 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1479 /*
1480  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1481  * convention: libc stub passes mask, not pointer, to save a copyin.
1482  */
1483 #ifndef _SYS_SYSPROTO_H_
1484 struct osigsuspend_args {
1485 	osigset_t mask;
1486 };
1487 #endif
1488 /* ARGSUSED */
1489 int
1490 osigsuspend(td, uap)
1491 	struct thread *td;
1492 	struct osigsuspend_args *uap;
1493 {
1494 	sigset_t mask;
1495 
1496 	OSIG2SIG(uap->mask, mask);
1497 	return (kern_sigsuspend(td, mask));
1498 }
1499 #endif /* COMPAT_43 */
1500 
1501 #if defined(COMPAT_43)
1502 #ifndef _SYS_SYSPROTO_H_
1503 struct osigstack_args {
1504 	struct	sigstack *nss;
1505 	struct	sigstack *oss;
1506 };
1507 #endif
1508 /* ARGSUSED */
1509 int
1510 osigstack(td, uap)
1511 	struct thread *td;
1512 	register struct osigstack_args *uap;
1513 {
1514 	struct sigstack nss, oss;
1515 	int error = 0;
1516 
1517 	if (uap->nss != NULL) {
1518 		error = copyin(uap->nss, &nss, sizeof(nss));
1519 		if (error)
1520 			return (error);
1521 	}
1522 	oss.ss_sp = td->td_sigstk.ss_sp;
1523 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1524 	if (uap->nss != NULL) {
1525 		td->td_sigstk.ss_sp = nss.ss_sp;
1526 		td->td_sigstk.ss_size = 0;
1527 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1528 		td->td_pflags |= TDP_ALTSTACK;
1529 	}
1530 	if (uap->oss != NULL)
1531 		error = copyout(&oss, uap->oss, sizeof(oss));
1532 
1533 	return (error);
1534 }
1535 #endif /* COMPAT_43 */
1536 
1537 #ifndef _SYS_SYSPROTO_H_
1538 struct sigaltstack_args {
1539 	stack_t	*ss;
1540 	stack_t	*oss;
1541 };
1542 #endif
1543 /* ARGSUSED */
1544 int
1545 sys_sigaltstack(td, uap)
1546 	struct thread *td;
1547 	register struct sigaltstack_args *uap;
1548 {
1549 	stack_t ss, oss;
1550 	int error;
1551 
1552 	if (uap->ss != NULL) {
1553 		error = copyin(uap->ss, &ss, sizeof(ss));
1554 		if (error)
1555 			return (error);
1556 	}
1557 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1558 	    (uap->oss != NULL) ? &oss : NULL);
1559 	if (error)
1560 		return (error);
1561 	if (uap->oss != NULL)
1562 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1563 	return (error);
1564 }
1565 
1566 int
1567 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1568 {
1569 	struct proc *p = td->td_proc;
1570 	int oonstack;
1571 
1572 	oonstack = sigonstack(cpu_getstack(td));
1573 
1574 	if (oss != NULL) {
1575 		*oss = td->td_sigstk;
1576 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1577 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1578 	}
1579 
1580 	if (ss != NULL) {
1581 		if (oonstack)
1582 			return (EPERM);
1583 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1584 			return (EINVAL);
1585 		if (!(ss->ss_flags & SS_DISABLE)) {
1586 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1587 				return (ENOMEM);
1588 
1589 			td->td_sigstk = *ss;
1590 			td->td_pflags |= TDP_ALTSTACK;
1591 		} else {
1592 			td->td_pflags &= ~TDP_ALTSTACK;
1593 		}
1594 	}
1595 	return (0);
1596 }
1597 
1598 /*
1599  * Common code for kill process group/broadcast kill.
1600  * cp is calling process.
1601  */
1602 static int
1603 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1604 {
1605 	struct proc *p;
1606 	struct pgrp *pgrp;
1607 	int err;
1608 	int ret;
1609 
1610 	ret = ESRCH;
1611 	if (all) {
1612 		/*
1613 		 * broadcast
1614 		 */
1615 		sx_slock(&allproc_lock);
1616 		FOREACH_PROC_IN_SYSTEM(p) {
1617 			PROC_LOCK(p);
1618 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1619 			    p == td->td_proc || p->p_state == PRS_NEW) {
1620 				PROC_UNLOCK(p);
1621 				continue;
1622 			}
1623 			err = p_cansignal(td, p, sig);
1624 			if (err == 0) {
1625 				if (sig)
1626 					pksignal(p, sig, ksi);
1627 				ret = err;
1628 			}
1629 			else if (ret == ESRCH)
1630 				ret = err;
1631 			PROC_UNLOCK(p);
1632 		}
1633 		sx_sunlock(&allproc_lock);
1634 	} else {
1635 		sx_slock(&proctree_lock);
1636 		if (pgid == 0) {
1637 			/*
1638 			 * zero pgid means send to my process group.
1639 			 */
1640 			pgrp = td->td_proc->p_pgrp;
1641 			PGRP_LOCK(pgrp);
1642 		} else {
1643 			pgrp = pgfind(pgid);
1644 			if (pgrp == NULL) {
1645 				sx_sunlock(&proctree_lock);
1646 				return (ESRCH);
1647 			}
1648 		}
1649 		sx_sunlock(&proctree_lock);
1650 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1651 			PROC_LOCK(p);
1652 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1653 			    p->p_state == PRS_NEW) {
1654 				PROC_UNLOCK(p);
1655 				continue;
1656 			}
1657 			err = p_cansignal(td, p, sig);
1658 			if (err == 0) {
1659 				if (sig)
1660 					pksignal(p, sig, ksi);
1661 				ret = err;
1662 			}
1663 			else if (ret == ESRCH)
1664 				ret = err;
1665 			PROC_UNLOCK(p);
1666 		}
1667 		PGRP_UNLOCK(pgrp);
1668 	}
1669 	return (ret);
1670 }
1671 
1672 #ifndef _SYS_SYSPROTO_H_
1673 struct kill_args {
1674 	int	pid;
1675 	int	signum;
1676 };
1677 #endif
1678 /* ARGSUSED */
1679 int
1680 sys_kill(struct thread *td, struct kill_args *uap)
1681 {
1682 	ksiginfo_t ksi;
1683 	struct proc *p;
1684 	int error;
1685 
1686 	/*
1687 	 * A process in capability mode can send signals only to himself.
1688 	 * The main rationale behind this is that abort(3) is implemented as
1689 	 * kill(getpid(), SIGABRT).
1690 	 */
1691 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1692 		return (ECAPMODE);
1693 
1694 	AUDIT_ARG_SIGNUM(uap->signum);
1695 	AUDIT_ARG_PID(uap->pid);
1696 	if ((u_int)uap->signum > _SIG_MAXSIG)
1697 		return (EINVAL);
1698 
1699 	ksiginfo_init(&ksi);
1700 	ksi.ksi_signo = uap->signum;
1701 	ksi.ksi_code = SI_USER;
1702 	ksi.ksi_pid = td->td_proc->p_pid;
1703 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1704 
1705 	if (uap->pid > 0) {
1706 		/* kill single process */
1707 		if ((p = pfind(uap->pid)) == NULL) {
1708 			if ((p = zpfind(uap->pid)) == NULL)
1709 				return (ESRCH);
1710 		}
1711 		AUDIT_ARG_PROCESS(p);
1712 		error = p_cansignal(td, p, uap->signum);
1713 		if (error == 0 && uap->signum)
1714 			pksignal(p, uap->signum, &ksi);
1715 		PROC_UNLOCK(p);
1716 		return (error);
1717 	}
1718 	switch (uap->pid) {
1719 	case -1:		/* broadcast signal */
1720 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1721 	case 0:			/* signal own process group */
1722 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1723 	default:		/* negative explicit process group */
1724 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1725 	}
1726 	/* NOTREACHED */
1727 }
1728 
1729 int
1730 sys_pdkill(td, uap)
1731 	struct thread *td;
1732 	struct pdkill_args *uap;
1733 {
1734 #ifdef PROCDESC
1735 	struct proc *p;
1736 	int error;
1737 
1738 	AUDIT_ARG_SIGNUM(uap->signum);
1739 	AUDIT_ARG_FD(uap->fd);
1740 	if ((u_int)uap->signum > _SIG_MAXSIG)
1741 		return (EINVAL);
1742 
1743 	error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
1744 	if (error)
1745 		return (error);
1746 	AUDIT_ARG_PROCESS(p);
1747 	error = p_cansignal(td, p, uap->signum);
1748 	if (error == 0 && uap->signum)
1749 		kern_psignal(p, uap->signum);
1750 	PROC_UNLOCK(p);
1751 	return (error);
1752 #else
1753 	return (ENOSYS);
1754 #endif
1755 }
1756 
1757 #if defined(COMPAT_43)
1758 #ifndef _SYS_SYSPROTO_H_
1759 struct okillpg_args {
1760 	int	pgid;
1761 	int	signum;
1762 };
1763 #endif
1764 /* ARGSUSED */
1765 int
1766 okillpg(struct thread *td, struct okillpg_args *uap)
1767 {
1768 	ksiginfo_t ksi;
1769 
1770 	AUDIT_ARG_SIGNUM(uap->signum);
1771 	AUDIT_ARG_PID(uap->pgid);
1772 	if ((u_int)uap->signum > _SIG_MAXSIG)
1773 		return (EINVAL);
1774 
1775 	ksiginfo_init(&ksi);
1776 	ksi.ksi_signo = uap->signum;
1777 	ksi.ksi_code = SI_USER;
1778 	ksi.ksi_pid = td->td_proc->p_pid;
1779 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1780 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1781 }
1782 #endif /* COMPAT_43 */
1783 
1784 #ifndef _SYS_SYSPROTO_H_
1785 struct sigqueue_args {
1786 	pid_t pid;
1787 	int signum;
1788 	/* union sigval */ void *value;
1789 };
1790 #endif
1791 int
1792 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1793 {
1794 	ksiginfo_t ksi;
1795 	struct proc *p;
1796 	int error;
1797 
1798 	if ((u_int)uap->signum > _SIG_MAXSIG)
1799 		return (EINVAL);
1800 
1801 	/*
1802 	 * Specification says sigqueue can only send signal to
1803 	 * single process.
1804 	 */
1805 	if (uap->pid <= 0)
1806 		return (EINVAL);
1807 
1808 	if ((p = pfind(uap->pid)) == NULL) {
1809 		if ((p = zpfind(uap->pid)) == NULL)
1810 			return (ESRCH);
1811 	}
1812 	error = p_cansignal(td, p, uap->signum);
1813 	if (error == 0 && uap->signum != 0) {
1814 		ksiginfo_init(&ksi);
1815 		ksi.ksi_flags = KSI_SIGQ;
1816 		ksi.ksi_signo = uap->signum;
1817 		ksi.ksi_code = SI_QUEUE;
1818 		ksi.ksi_pid = td->td_proc->p_pid;
1819 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1820 		ksi.ksi_value.sival_ptr = uap->value;
1821 		error = pksignal(p, ksi.ksi_signo, &ksi);
1822 	}
1823 	PROC_UNLOCK(p);
1824 	return (error);
1825 }
1826 
1827 /*
1828  * Send a signal to a process group.
1829  */
1830 void
1831 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1832 {
1833 	struct pgrp *pgrp;
1834 
1835 	if (pgid != 0) {
1836 		sx_slock(&proctree_lock);
1837 		pgrp = pgfind(pgid);
1838 		sx_sunlock(&proctree_lock);
1839 		if (pgrp != NULL) {
1840 			pgsignal(pgrp, sig, 0, ksi);
1841 			PGRP_UNLOCK(pgrp);
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  * Send a signal to a process group.  If checktty is 1,
1848  * limit to members which have a controlling terminal.
1849  */
1850 void
1851 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1852 {
1853 	struct proc *p;
1854 
1855 	if (pgrp) {
1856 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1857 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1858 			PROC_LOCK(p);
1859 			if (p->p_state == PRS_NORMAL &&
1860 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1861 				pksignal(p, sig, ksi);
1862 			PROC_UNLOCK(p);
1863 		}
1864 	}
1865 }
1866 
1867 /*
1868  * Send a signal caused by a trap to the current thread.  If it will be
1869  * caught immediately, deliver it with correct code.  Otherwise, post it
1870  * normally.
1871  */
1872 void
1873 trapsignal(struct thread *td, ksiginfo_t *ksi)
1874 {
1875 	struct sigacts *ps;
1876 	sigset_t mask;
1877 	struct proc *p;
1878 	int sig;
1879 	int code;
1880 
1881 	p = td->td_proc;
1882 	sig = ksi->ksi_signo;
1883 	code = ksi->ksi_code;
1884 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1885 
1886 	PROC_LOCK(p);
1887 	ps = p->p_sigacts;
1888 	mtx_lock(&ps->ps_mtx);
1889 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1890 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1891 		td->td_ru.ru_nsignals++;
1892 #ifdef KTRACE
1893 		if (KTRPOINT(curthread, KTR_PSIG))
1894 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1895 			    &td->td_sigmask, code);
1896 #endif
1897 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1898 				ksi, &td->td_sigmask);
1899 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1900 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1901 			SIGADDSET(mask, sig);
1902 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1903 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1904 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1905 			/*
1906 			 * See kern_sigaction() for origin of this code.
1907 			 */
1908 			SIGDELSET(ps->ps_sigcatch, sig);
1909 			if (sig != SIGCONT &&
1910 			    sigprop(sig) & SA_IGNORE)
1911 				SIGADDSET(ps->ps_sigignore, sig);
1912 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1913 		}
1914 		mtx_unlock(&ps->ps_mtx);
1915 	} else {
1916 		/*
1917 		 * Avoid a possible infinite loop if the thread
1918 		 * masking the signal or process is ignoring the
1919 		 * signal.
1920 		 */
1921 		if (kern_forcesigexit &&
1922 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1923 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1924 			SIGDELSET(td->td_sigmask, sig);
1925 			SIGDELSET(ps->ps_sigcatch, sig);
1926 			SIGDELSET(ps->ps_sigignore, sig);
1927 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1928 		}
1929 		mtx_unlock(&ps->ps_mtx);
1930 		p->p_code = code;	/* XXX for core dump/debugger */
1931 		p->p_sig = sig;		/* XXX to verify code */
1932 		tdsendsignal(p, td, sig, ksi);
1933 	}
1934 	PROC_UNLOCK(p);
1935 }
1936 
1937 static struct thread *
1938 sigtd(struct proc *p, int sig, int prop)
1939 {
1940 	struct thread *td, *signal_td;
1941 
1942 	PROC_LOCK_ASSERT(p, MA_OWNED);
1943 
1944 	/*
1945 	 * Check if current thread can handle the signal without
1946 	 * switching context to another thread.
1947 	 */
1948 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1949 		return (curthread);
1950 	signal_td = NULL;
1951 	FOREACH_THREAD_IN_PROC(p, td) {
1952 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1953 			signal_td = td;
1954 			break;
1955 		}
1956 	}
1957 	if (signal_td == NULL)
1958 		signal_td = FIRST_THREAD_IN_PROC(p);
1959 	return (signal_td);
1960 }
1961 
1962 /*
1963  * Send the signal to the process.  If the signal has an action, the action
1964  * is usually performed by the target process rather than the caller; we add
1965  * the signal to the set of pending signals for the process.
1966  *
1967  * Exceptions:
1968  *   o When a stop signal is sent to a sleeping process that takes the
1969  *     default action, the process is stopped without awakening it.
1970  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1971  *     regardless of the signal action (eg, blocked or ignored).
1972  *
1973  * Other ignored signals are discarded immediately.
1974  *
1975  * NB: This function may be entered from the debugger via the "kill" DDB
1976  * command.  There is little that can be done to mitigate the possibly messy
1977  * side effects of this unwise possibility.
1978  */
1979 void
1980 kern_psignal(struct proc *p, int sig)
1981 {
1982 	ksiginfo_t ksi;
1983 
1984 	ksiginfo_init(&ksi);
1985 	ksi.ksi_signo = sig;
1986 	ksi.ksi_code = SI_KERNEL;
1987 	(void) tdsendsignal(p, NULL, sig, &ksi);
1988 }
1989 
1990 int
1991 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1992 {
1993 
1994 	return (tdsendsignal(p, NULL, sig, ksi));
1995 }
1996 
1997 /* Utility function for finding a thread to send signal event to. */
1998 int
1999 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2000 {
2001 	struct thread *td;
2002 
2003 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2004 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2005 		if (td == NULL)
2006 			return (ESRCH);
2007 		*ttd = td;
2008 	} else {
2009 		*ttd = NULL;
2010 		PROC_LOCK(p);
2011 	}
2012 	return (0);
2013 }
2014 
2015 void
2016 tdsignal(struct thread *td, int sig)
2017 {
2018 	ksiginfo_t ksi;
2019 
2020 	ksiginfo_init(&ksi);
2021 	ksi.ksi_signo = sig;
2022 	ksi.ksi_code = SI_KERNEL;
2023 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2024 }
2025 
2026 void
2027 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2028 {
2029 
2030 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2031 }
2032 
2033 int
2034 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2035 {
2036 	sig_t action;
2037 	sigqueue_t *sigqueue;
2038 	int prop;
2039 	struct sigacts *ps;
2040 	int intrval;
2041 	int ret = 0;
2042 	int wakeup_swapper;
2043 
2044 	MPASS(td == NULL || p == td->td_proc);
2045 	PROC_LOCK_ASSERT(p, MA_OWNED);
2046 
2047 	if (!_SIG_VALID(sig))
2048 		panic("%s(): invalid signal %d", __func__, sig);
2049 
2050 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2051 
2052 	/*
2053 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2054 	 */
2055 	if (p->p_state == PRS_ZOMBIE) {
2056 		if (ksi && (ksi->ksi_flags & KSI_INS))
2057 			ksiginfo_tryfree(ksi);
2058 		return (ret);
2059 	}
2060 
2061 	ps = p->p_sigacts;
2062 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2063 	prop = sigprop(sig);
2064 
2065 	if (td == NULL) {
2066 		td = sigtd(p, sig, prop);
2067 		sigqueue = &p->p_sigqueue;
2068 	} else {
2069 		KASSERT(td->td_proc == p, ("invalid thread"));
2070 		sigqueue = &td->td_sigqueue;
2071 	}
2072 
2073 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2074 
2075 	/*
2076 	 * If the signal is being ignored,
2077 	 * then we forget about it immediately.
2078 	 * (Note: we don't set SIGCONT in ps_sigignore,
2079 	 * and if it is set to SIG_IGN,
2080 	 * action will be SIG_DFL here.)
2081 	 */
2082 	mtx_lock(&ps->ps_mtx);
2083 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2084 		SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
2085 
2086 		mtx_unlock(&ps->ps_mtx);
2087 		if (ksi && (ksi->ksi_flags & KSI_INS))
2088 			ksiginfo_tryfree(ksi);
2089 		return (ret);
2090 	}
2091 	if (SIGISMEMBER(td->td_sigmask, sig))
2092 		action = SIG_HOLD;
2093 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2094 		action = SIG_CATCH;
2095 	else
2096 		action = SIG_DFL;
2097 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2098 		intrval = EINTR;
2099 	else
2100 		intrval = ERESTART;
2101 	mtx_unlock(&ps->ps_mtx);
2102 
2103 	if (prop & SA_CONT)
2104 		sigqueue_delete_stopmask_proc(p);
2105 	else if (prop & SA_STOP) {
2106 		/*
2107 		 * If sending a tty stop signal to a member of an orphaned
2108 		 * process group, discard the signal here if the action
2109 		 * is default; don't stop the process below if sleeping,
2110 		 * and don't clear any pending SIGCONT.
2111 		 */
2112 		if ((prop & SA_TTYSTOP) &&
2113 		    (p->p_pgrp->pg_jobc == 0) &&
2114 		    (action == SIG_DFL)) {
2115 			if (ksi && (ksi->ksi_flags & KSI_INS))
2116 				ksiginfo_tryfree(ksi);
2117 			return (ret);
2118 		}
2119 		sigqueue_delete_proc(p, SIGCONT);
2120 		if (p->p_flag & P_CONTINUED) {
2121 			p->p_flag &= ~P_CONTINUED;
2122 			PROC_LOCK(p->p_pptr);
2123 			sigqueue_take(p->p_ksi);
2124 			PROC_UNLOCK(p->p_pptr);
2125 		}
2126 	}
2127 
2128 	ret = sigqueue_add(sigqueue, sig, ksi);
2129 	if (ret != 0)
2130 		return (ret);
2131 	signotify(td);
2132 	/*
2133 	 * Defer further processing for signals which are held,
2134 	 * except that stopped processes must be continued by SIGCONT.
2135 	 */
2136 	if (action == SIG_HOLD &&
2137 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2138 		return (ret);
2139 	/*
2140 	 * SIGKILL: Remove procfs STOPEVENTs.
2141 	 */
2142 	if (sig == SIGKILL) {
2143 		/* from procfs_ioctl.c: PIOCBIC */
2144 		p->p_stops = 0;
2145 		/* from procfs_ioctl.c: PIOCCONT */
2146 		p->p_step = 0;
2147 		wakeup(&p->p_step);
2148 	}
2149 	/*
2150 	 * Some signals have a process-wide effect and a per-thread
2151 	 * component.  Most processing occurs when the process next
2152 	 * tries to cross the user boundary, however there are some
2153 	 * times when processing needs to be done immediatly, such as
2154 	 * waking up threads so that they can cross the user boundary.
2155 	 * We try do the per-process part here.
2156 	 */
2157 	if (P_SHOULDSTOP(p)) {
2158 		KASSERT(!(p->p_flag & P_WEXIT),
2159 		    ("signal to stopped but exiting process"));
2160 		if (sig == SIGKILL) {
2161 			/*
2162 			 * If traced process is already stopped,
2163 			 * then no further action is necessary.
2164 			 */
2165 			if (p->p_flag & P_TRACED)
2166 				goto out;
2167 			/*
2168 			 * SIGKILL sets process running.
2169 			 * It will die elsewhere.
2170 			 * All threads must be restarted.
2171 			 */
2172 			p->p_flag &= ~P_STOPPED_SIG;
2173 			goto runfast;
2174 		}
2175 
2176 		if (prop & SA_CONT) {
2177 			/*
2178 			 * If traced process is already stopped,
2179 			 * then no further action is necessary.
2180 			 */
2181 			if (p->p_flag & P_TRACED)
2182 				goto out;
2183 			/*
2184 			 * If SIGCONT is default (or ignored), we continue the
2185 			 * process but don't leave the signal in sigqueue as
2186 			 * it has no further action.  If SIGCONT is held, we
2187 			 * continue the process and leave the signal in
2188 			 * sigqueue.  If the process catches SIGCONT, let it
2189 			 * handle the signal itself.  If it isn't waiting on
2190 			 * an event, it goes back to run state.
2191 			 * Otherwise, process goes back to sleep state.
2192 			 */
2193 			p->p_flag &= ~P_STOPPED_SIG;
2194 			PROC_SLOCK(p);
2195 			if (p->p_numthreads == p->p_suspcount) {
2196 				PROC_SUNLOCK(p);
2197 				p->p_flag |= P_CONTINUED;
2198 				p->p_xstat = SIGCONT;
2199 				PROC_LOCK(p->p_pptr);
2200 				childproc_continued(p);
2201 				PROC_UNLOCK(p->p_pptr);
2202 				PROC_SLOCK(p);
2203 			}
2204 			if (action == SIG_DFL) {
2205 				thread_unsuspend(p);
2206 				PROC_SUNLOCK(p);
2207 				sigqueue_delete(sigqueue, sig);
2208 				goto out;
2209 			}
2210 			if (action == SIG_CATCH) {
2211 				/*
2212 				 * The process wants to catch it so it needs
2213 				 * to run at least one thread, but which one?
2214 				 */
2215 				PROC_SUNLOCK(p);
2216 				goto runfast;
2217 			}
2218 			/*
2219 			 * The signal is not ignored or caught.
2220 			 */
2221 			thread_unsuspend(p);
2222 			PROC_SUNLOCK(p);
2223 			goto out;
2224 		}
2225 
2226 		if (prop & SA_STOP) {
2227 			/*
2228 			 * If traced process is already stopped,
2229 			 * then no further action is necessary.
2230 			 */
2231 			if (p->p_flag & P_TRACED)
2232 				goto out;
2233 			/*
2234 			 * Already stopped, don't need to stop again
2235 			 * (If we did the shell could get confused).
2236 			 * Just make sure the signal STOP bit set.
2237 			 */
2238 			p->p_flag |= P_STOPPED_SIG;
2239 			sigqueue_delete(sigqueue, sig);
2240 			goto out;
2241 		}
2242 
2243 		/*
2244 		 * All other kinds of signals:
2245 		 * If a thread is sleeping interruptibly, simulate a
2246 		 * wakeup so that when it is continued it will be made
2247 		 * runnable and can look at the signal.  However, don't make
2248 		 * the PROCESS runnable, leave it stopped.
2249 		 * It may run a bit until it hits a thread_suspend_check().
2250 		 */
2251 		wakeup_swapper = 0;
2252 		PROC_SLOCK(p);
2253 		thread_lock(td);
2254 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2255 			wakeup_swapper = sleepq_abort(td, intrval);
2256 		thread_unlock(td);
2257 		PROC_SUNLOCK(p);
2258 		if (wakeup_swapper)
2259 			kick_proc0();
2260 		goto out;
2261 		/*
2262 		 * Mutexes are short lived. Threads waiting on them will
2263 		 * hit thread_suspend_check() soon.
2264 		 */
2265 	} else if (p->p_state == PRS_NORMAL) {
2266 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2267 			tdsigwakeup(td, sig, action, intrval);
2268 			goto out;
2269 		}
2270 
2271 		MPASS(action == SIG_DFL);
2272 
2273 		if (prop & SA_STOP) {
2274 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2275 				goto out;
2276 			p->p_flag |= P_STOPPED_SIG;
2277 			p->p_xstat = sig;
2278 			PROC_SLOCK(p);
2279 			sig_suspend_threads(td, p, 1);
2280 			if (p->p_numthreads == p->p_suspcount) {
2281 				/*
2282 				 * only thread sending signal to another
2283 				 * process can reach here, if thread is sending
2284 				 * signal to its process, because thread does
2285 				 * not suspend itself here, p_numthreads
2286 				 * should never be equal to p_suspcount.
2287 				 */
2288 				thread_stopped(p);
2289 				PROC_SUNLOCK(p);
2290 				sigqueue_delete_proc(p, p->p_xstat);
2291 			} else
2292 				PROC_SUNLOCK(p);
2293 			goto out;
2294 		}
2295 	} else {
2296 		/* Not in "NORMAL" state. discard the signal. */
2297 		sigqueue_delete(sigqueue, sig);
2298 		goto out;
2299 	}
2300 
2301 	/*
2302 	 * The process is not stopped so we need to apply the signal to all the
2303 	 * running threads.
2304 	 */
2305 runfast:
2306 	tdsigwakeup(td, sig, action, intrval);
2307 	PROC_SLOCK(p);
2308 	thread_unsuspend(p);
2309 	PROC_SUNLOCK(p);
2310 out:
2311 	/* If we jump here, proc slock should not be owned. */
2312 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2313 	return (ret);
2314 }
2315 
2316 /*
2317  * The force of a signal has been directed against a single
2318  * thread.  We need to see what we can do about knocking it
2319  * out of any sleep it may be in etc.
2320  */
2321 static void
2322 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2323 {
2324 	struct proc *p = td->td_proc;
2325 	register int prop;
2326 	int wakeup_swapper;
2327 
2328 	wakeup_swapper = 0;
2329 	PROC_LOCK_ASSERT(p, MA_OWNED);
2330 	prop = sigprop(sig);
2331 
2332 	PROC_SLOCK(p);
2333 	thread_lock(td);
2334 	/*
2335 	 * Bring the priority of a thread up if we want it to get
2336 	 * killed in this lifetime.
2337 	 */
2338 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2339 		sched_prio(td, PUSER);
2340 	if (TD_ON_SLEEPQ(td)) {
2341 		/*
2342 		 * If thread is sleeping uninterruptibly
2343 		 * we can't interrupt the sleep... the signal will
2344 		 * be noticed when the process returns through
2345 		 * trap() or syscall().
2346 		 */
2347 		if ((td->td_flags & TDF_SINTR) == 0)
2348 			goto out;
2349 		/*
2350 		 * If SIGCONT is default (or ignored) and process is
2351 		 * asleep, we are finished; the process should not
2352 		 * be awakened.
2353 		 */
2354 		if ((prop & SA_CONT) && action == SIG_DFL) {
2355 			thread_unlock(td);
2356 			PROC_SUNLOCK(p);
2357 			sigqueue_delete(&p->p_sigqueue, sig);
2358 			/*
2359 			 * It may be on either list in this state.
2360 			 * Remove from both for now.
2361 			 */
2362 			sigqueue_delete(&td->td_sigqueue, sig);
2363 			return;
2364 		}
2365 
2366 		/*
2367 		 * Give low priority threads a better chance to run.
2368 		 */
2369 		if (td->td_priority > PUSER)
2370 			sched_prio(td, PUSER);
2371 
2372 		wakeup_swapper = sleepq_abort(td, intrval);
2373 	} else {
2374 		/*
2375 		 * Other states do nothing with the signal immediately,
2376 		 * other than kicking ourselves if we are running.
2377 		 * It will either never be noticed, or noticed very soon.
2378 		 */
2379 #ifdef SMP
2380 		if (TD_IS_RUNNING(td) && td != curthread)
2381 			forward_signal(td);
2382 #endif
2383 	}
2384 out:
2385 	PROC_SUNLOCK(p);
2386 	thread_unlock(td);
2387 	if (wakeup_swapper)
2388 		kick_proc0();
2389 }
2390 
2391 static void
2392 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2393 {
2394 	struct thread *td2;
2395 	int wakeup_swapper;
2396 
2397 	PROC_LOCK_ASSERT(p, MA_OWNED);
2398 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2399 
2400 	wakeup_swapper = 0;
2401 	FOREACH_THREAD_IN_PROC(p, td2) {
2402 		thread_lock(td2);
2403 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2404 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2405 		    (td2->td_flags & TDF_SINTR)) {
2406 			if (td2->td_flags & TDF_SBDRY) {
2407 				if (TD_IS_SUSPENDED(td2))
2408 					wakeup_swapper |=
2409 					    thread_unsuspend_one(td2);
2410 				if (TD_ON_SLEEPQ(td2))
2411 					wakeup_swapper |=
2412 					    sleepq_abort(td2, ERESTART);
2413 			} else if (!TD_IS_SUSPENDED(td2)) {
2414 				thread_suspend_one(td2);
2415 			}
2416 		} else if (!TD_IS_SUSPENDED(td2)) {
2417 			if (sending || td != td2)
2418 				td2->td_flags |= TDF_ASTPENDING;
2419 #ifdef SMP
2420 			if (TD_IS_RUNNING(td2) && td2 != td)
2421 				forward_signal(td2);
2422 #endif
2423 		}
2424 		thread_unlock(td2);
2425 	}
2426 	if (wakeup_swapper)
2427 		kick_proc0();
2428 }
2429 
2430 int
2431 ptracestop(struct thread *td, int sig)
2432 {
2433 	struct proc *p = td->td_proc;
2434 
2435 	PROC_LOCK_ASSERT(p, MA_OWNED);
2436 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2437 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2438 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2439 
2440 	td->td_dbgflags |= TDB_XSIG;
2441 	td->td_xsig = sig;
2442 	PROC_SLOCK(p);
2443 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2444 		if (p->p_flag & P_SINGLE_EXIT) {
2445 			td->td_dbgflags &= ~TDB_XSIG;
2446 			PROC_SUNLOCK(p);
2447 			return (sig);
2448 		}
2449 		/*
2450 		 * Just make wait() to work, the last stopped thread
2451 		 * will win.
2452 		 */
2453 		p->p_xstat = sig;
2454 		p->p_xthread = td;
2455 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2456 		sig_suspend_threads(td, p, 0);
2457 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2458 			td->td_dbgflags &= ~TDB_STOPATFORK;
2459 			cv_broadcast(&p->p_dbgwait);
2460 		}
2461 stopme:
2462 		thread_suspend_switch(td);
2463 		if (p->p_xthread == td)
2464 			p->p_xthread = NULL;
2465 		if (!(p->p_flag & P_TRACED))
2466 			break;
2467 		if (td->td_dbgflags & TDB_SUSPEND) {
2468 			if (p->p_flag & P_SINGLE_EXIT)
2469 				break;
2470 			goto stopme;
2471 		}
2472 	}
2473 	PROC_SUNLOCK(p);
2474 	return (td->td_xsig);
2475 }
2476 
2477 static void
2478 reschedule_signals(struct proc *p, sigset_t block, int flags)
2479 {
2480 	struct sigacts *ps;
2481 	struct thread *td;
2482 	int sig;
2483 
2484 	PROC_LOCK_ASSERT(p, MA_OWNED);
2485 	if (SIGISEMPTY(p->p_siglist))
2486 		return;
2487 	ps = p->p_sigacts;
2488 	SIGSETAND(block, p->p_siglist);
2489 	while ((sig = sig_ffs(&block)) != 0) {
2490 		SIGDELSET(block, sig);
2491 		td = sigtd(p, sig, 0);
2492 		signotify(td);
2493 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2494 			mtx_lock(&ps->ps_mtx);
2495 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2496 			tdsigwakeup(td, sig, SIG_CATCH,
2497 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2498 			     ERESTART));
2499 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2500 			mtx_unlock(&ps->ps_mtx);
2501 	}
2502 }
2503 
2504 void
2505 tdsigcleanup(struct thread *td)
2506 {
2507 	struct proc *p;
2508 	sigset_t unblocked;
2509 
2510 	p = td->td_proc;
2511 	PROC_LOCK_ASSERT(p, MA_OWNED);
2512 
2513 	sigqueue_flush(&td->td_sigqueue);
2514 	if (p->p_numthreads == 1)
2515 		return;
2516 
2517 	/*
2518 	 * Since we cannot handle signals, notify signal post code
2519 	 * about this by filling the sigmask.
2520 	 *
2521 	 * Also, if needed, wake up thread(s) that do not block the
2522 	 * same signals as the exiting thread, since the thread might
2523 	 * have been selected for delivery and woken up.
2524 	 */
2525 	SIGFILLSET(unblocked);
2526 	SIGSETNAND(unblocked, td->td_sigmask);
2527 	SIGFILLSET(td->td_sigmask);
2528 	reschedule_signals(p, unblocked, 0);
2529 
2530 }
2531 
2532 /*
2533  * If the current process has received a signal (should be caught or cause
2534  * termination, should interrupt current syscall), return the signal number.
2535  * Stop signals with default action are processed immediately, then cleared;
2536  * they aren't returned.  This is checked after each entry to the system for
2537  * a syscall or trap (though this can usually be done without calling issignal
2538  * by checking the pending signal masks in cursig.) The normal call
2539  * sequence is
2540  *
2541  *	while (sig = cursig(curthread))
2542  *		postsig(sig);
2543  */
2544 static int
2545 issignal(struct thread *td, int stop_allowed)
2546 {
2547 	struct proc *p;
2548 	struct sigacts *ps;
2549 	struct sigqueue *queue;
2550 	sigset_t sigpending;
2551 	int sig, prop, newsig;
2552 
2553 	p = td->td_proc;
2554 	ps = p->p_sigacts;
2555 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2556 	PROC_LOCK_ASSERT(p, MA_OWNED);
2557 	for (;;) {
2558 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2559 
2560 		sigpending = td->td_sigqueue.sq_signals;
2561 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2562 		SIGSETNAND(sigpending, td->td_sigmask);
2563 
2564 		if (p->p_flag & P_PPWAIT)
2565 			SIG_STOPSIGMASK(sigpending);
2566 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2567 			return (0);
2568 		sig = sig_ffs(&sigpending);
2569 
2570 		if (p->p_stops & S_SIG) {
2571 			mtx_unlock(&ps->ps_mtx);
2572 			stopevent(p, S_SIG, sig);
2573 			mtx_lock(&ps->ps_mtx);
2574 		}
2575 
2576 		/*
2577 		 * We should see pending but ignored signals
2578 		 * only if P_TRACED was on when they were posted.
2579 		 */
2580 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2581 			sigqueue_delete(&td->td_sigqueue, sig);
2582 			sigqueue_delete(&p->p_sigqueue, sig);
2583 			continue;
2584 		}
2585 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2586 			/*
2587 			 * If traced, always stop.
2588 			 * Remove old signal from queue before the stop.
2589 			 * XXX shrug off debugger, it causes siginfo to
2590 			 * be thrown away.
2591 			 */
2592 			queue = &td->td_sigqueue;
2593 			td->td_dbgksi.ksi_signo = 0;
2594 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2595 				queue = &p->p_sigqueue;
2596 				sigqueue_get(queue, sig, &td->td_dbgksi);
2597 			}
2598 
2599 			mtx_unlock(&ps->ps_mtx);
2600 			newsig = ptracestop(td, sig);
2601 			mtx_lock(&ps->ps_mtx);
2602 
2603 			if (sig != newsig) {
2604 
2605 				/*
2606 				 * If parent wants us to take the signal,
2607 				 * then it will leave it in p->p_xstat;
2608 				 * otherwise we just look for signals again.
2609 				*/
2610 				if (newsig == 0)
2611 					continue;
2612 				sig = newsig;
2613 
2614 				/*
2615 				 * Put the new signal into td_sigqueue. If the
2616 				 * signal is being masked, look for other
2617 				 * signals.
2618 				 */
2619 				sigqueue_add(queue, sig, NULL);
2620 				if (SIGISMEMBER(td->td_sigmask, sig))
2621 					continue;
2622 				signotify(td);
2623 			} else {
2624 				if (td->td_dbgksi.ksi_signo != 0) {
2625 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2626 					if (sigqueue_add(&td->td_sigqueue, sig,
2627 					    &td->td_dbgksi) != 0)
2628 						td->td_dbgksi.ksi_signo = 0;
2629 				}
2630 				if (td->td_dbgksi.ksi_signo == 0)
2631 					sigqueue_add(&td->td_sigqueue, sig,
2632 					    NULL);
2633 			}
2634 
2635 			/*
2636 			 * If the traced bit got turned off, go back up
2637 			 * to the top to rescan signals.  This ensures
2638 			 * that p_sig* and p_sigact are consistent.
2639 			 */
2640 			if ((p->p_flag & P_TRACED) == 0)
2641 				continue;
2642 		}
2643 
2644 		prop = sigprop(sig);
2645 
2646 		/*
2647 		 * Decide whether the signal should be returned.
2648 		 * Return the signal's number, or fall through
2649 		 * to clear it from the pending mask.
2650 		 */
2651 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2652 
2653 		case (intptr_t)SIG_DFL:
2654 			/*
2655 			 * Don't take default actions on system processes.
2656 			 */
2657 			if (p->p_pid <= 1) {
2658 #ifdef DIAGNOSTIC
2659 				/*
2660 				 * Are you sure you want to ignore SIGSEGV
2661 				 * in init? XXX
2662 				 */
2663 				printf("Process (pid %lu) got signal %d\n",
2664 					(u_long)p->p_pid, sig);
2665 #endif
2666 				break;		/* == ignore */
2667 			}
2668 			/*
2669 			 * If there is a pending stop signal to process
2670 			 * with default action, stop here,
2671 			 * then clear the signal.  However,
2672 			 * if process is member of an orphaned
2673 			 * process group, ignore tty stop signals.
2674 			 */
2675 			if (prop & SA_STOP) {
2676 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2677 				    (p->p_pgrp->pg_jobc == 0 &&
2678 				     prop & SA_TTYSTOP))
2679 					break;	/* == ignore */
2680 
2681 				/* Ignore, but do not drop the stop signal. */
2682 				if (stop_allowed != SIG_STOP_ALLOWED)
2683 					return (sig);
2684 				mtx_unlock(&ps->ps_mtx);
2685 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2686 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2687 				p->p_flag |= P_STOPPED_SIG;
2688 				p->p_xstat = sig;
2689 				PROC_SLOCK(p);
2690 				sig_suspend_threads(td, p, 0);
2691 				thread_suspend_switch(td);
2692 				PROC_SUNLOCK(p);
2693 				mtx_lock(&ps->ps_mtx);
2694 				break;
2695 			} else if (prop & SA_IGNORE) {
2696 				/*
2697 				 * Except for SIGCONT, shouldn't get here.
2698 				 * Default action is to ignore; drop it.
2699 				 */
2700 				break;		/* == ignore */
2701 			} else
2702 				return (sig);
2703 			/*NOTREACHED*/
2704 
2705 		case (intptr_t)SIG_IGN:
2706 			/*
2707 			 * Masking above should prevent us ever trying
2708 			 * to take action on an ignored signal other
2709 			 * than SIGCONT, unless process is traced.
2710 			 */
2711 			if ((prop & SA_CONT) == 0 &&
2712 			    (p->p_flag & P_TRACED) == 0)
2713 				printf("issignal\n");
2714 			break;		/* == ignore */
2715 
2716 		default:
2717 			/*
2718 			 * This signal has an action, let
2719 			 * postsig() process it.
2720 			 */
2721 			return (sig);
2722 		}
2723 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2724 		sigqueue_delete(&p->p_sigqueue, sig);
2725 	}
2726 	/* NOTREACHED */
2727 }
2728 
2729 void
2730 thread_stopped(struct proc *p)
2731 {
2732 	int n;
2733 
2734 	PROC_LOCK_ASSERT(p, MA_OWNED);
2735 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2736 	n = p->p_suspcount;
2737 	if (p == curproc)
2738 		n++;
2739 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2740 		PROC_SUNLOCK(p);
2741 		p->p_flag &= ~P_WAITED;
2742 		PROC_LOCK(p->p_pptr);
2743 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2744 			CLD_TRAPPED : CLD_STOPPED);
2745 		PROC_UNLOCK(p->p_pptr);
2746 		PROC_SLOCK(p);
2747 	}
2748 }
2749 
2750 /*
2751  * Take the action for the specified signal
2752  * from the current set of pending signals.
2753  */
2754 int
2755 postsig(sig)
2756 	register int sig;
2757 {
2758 	struct thread *td = curthread;
2759 	register struct proc *p = td->td_proc;
2760 	struct sigacts *ps;
2761 	sig_t action;
2762 	ksiginfo_t ksi;
2763 	sigset_t returnmask, mask;
2764 
2765 	KASSERT(sig != 0, ("postsig"));
2766 
2767 	PROC_LOCK_ASSERT(p, MA_OWNED);
2768 	ps = p->p_sigacts;
2769 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2770 	ksiginfo_init(&ksi);
2771 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2772 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2773 		return (0);
2774 	ksi.ksi_signo = sig;
2775 	if (ksi.ksi_code == SI_TIMER)
2776 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2777 	action = ps->ps_sigact[_SIG_IDX(sig)];
2778 #ifdef KTRACE
2779 	if (KTRPOINT(td, KTR_PSIG))
2780 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2781 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2782 #endif
2783 	if (p->p_stops & S_SIG) {
2784 		mtx_unlock(&ps->ps_mtx);
2785 		stopevent(p, S_SIG, sig);
2786 		mtx_lock(&ps->ps_mtx);
2787 	}
2788 
2789 	if (action == SIG_DFL) {
2790 		/*
2791 		 * Default action, where the default is to kill
2792 		 * the process.  (Other cases were ignored above.)
2793 		 */
2794 		mtx_unlock(&ps->ps_mtx);
2795 		sigexit(td, sig);
2796 		/* NOTREACHED */
2797 	} else {
2798 		/*
2799 		 * If we get here, the signal must be caught.
2800 		 */
2801 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2802 		    ("postsig action"));
2803 		/*
2804 		 * Set the new mask value and also defer further
2805 		 * occurrences of this signal.
2806 		 *
2807 		 * Special case: user has done a sigsuspend.  Here the
2808 		 * current mask is not of interest, but rather the
2809 		 * mask from before the sigsuspend is what we want
2810 		 * restored after the signal processing is completed.
2811 		 */
2812 		if (td->td_pflags & TDP_OLDMASK) {
2813 			returnmask = td->td_oldsigmask;
2814 			td->td_pflags &= ~TDP_OLDMASK;
2815 		} else
2816 			returnmask = td->td_sigmask;
2817 
2818 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2819 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2820 			SIGADDSET(mask, sig);
2821 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2822 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2823 
2824 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2825 			/*
2826 			 * See kern_sigaction() for origin of this code.
2827 			 */
2828 			SIGDELSET(ps->ps_sigcatch, sig);
2829 			if (sig != SIGCONT &&
2830 			    sigprop(sig) & SA_IGNORE)
2831 				SIGADDSET(ps->ps_sigignore, sig);
2832 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2833 		}
2834 		td->td_ru.ru_nsignals++;
2835 		if (p->p_sig == sig) {
2836 			p->p_code = 0;
2837 			p->p_sig = 0;
2838 		}
2839 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2840 	}
2841 	return (1);
2842 }
2843 
2844 /*
2845  * Kill the current process for stated reason.
2846  */
2847 void
2848 killproc(p, why)
2849 	struct proc *p;
2850 	char *why;
2851 {
2852 
2853 	PROC_LOCK_ASSERT(p, MA_OWNED);
2854 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2855 	    p->p_comm);
2856 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2857 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2858 	p->p_flag |= P_WKILLED;
2859 	kern_psignal(p, SIGKILL);
2860 }
2861 
2862 /*
2863  * Force the current process to exit with the specified signal, dumping core
2864  * if appropriate.  We bypass the normal tests for masked and caught signals,
2865  * allowing unrecoverable failures to terminate the process without changing
2866  * signal state.  Mark the accounting record with the signal termination.
2867  * If dumping core, save the signal number for the debugger.  Calls exit and
2868  * does not return.
2869  */
2870 void
2871 sigexit(td, sig)
2872 	struct thread *td;
2873 	int sig;
2874 {
2875 	struct proc *p = td->td_proc;
2876 
2877 	PROC_LOCK_ASSERT(p, MA_OWNED);
2878 	p->p_acflag |= AXSIG;
2879 	/*
2880 	 * We must be single-threading to generate a core dump.  This
2881 	 * ensures that the registers in the core file are up-to-date.
2882 	 * Also, the ELF dump handler assumes that the thread list doesn't
2883 	 * change out from under it.
2884 	 *
2885 	 * XXX If another thread attempts to single-thread before us
2886 	 *     (e.g. via fork()), we won't get a dump at all.
2887 	 */
2888 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2889 		p->p_sig = sig;
2890 		/*
2891 		 * Log signals which would cause core dumps
2892 		 * (Log as LOG_INFO to appease those who don't want
2893 		 * these messages.)
2894 		 * XXX : Todo, as well as euid, write out ruid too
2895 		 * Note that coredump() drops proc lock.
2896 		 */
2897 		if (coredump(td) == 0)
2898 			sig |= WCOREFLAG;
2899 		if (kern_logsigexit)
2900 			log(LOG_INFO,
2901 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2902 			    p->p_pid, p->p_comm,
2903 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2904 			    sig &~ WCOREFLAG,
2905 			    sig & WCOREFLAG ? " (core dumped)" : "");
2906 	} else
2907 		PROC_UNLOCK(p);
2908 	exit1(td, W_EXITCODE(0, sig));
2909 	/* NOTREACHED */
2910 }
2911 
2912 /*
2913  * Send queued SIGCHLD to parent when child process's state
2914  * is changed.
2915  */
2916 static void
2917 sigparent(struct proc *p, int reason, int status)
2918 {
2919 	PROC_LOCK_ASSERT(p, MA_OWNED);
2920 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2921 
2922 	if (p->p_ksi != NULL) {
2923 		p->p_ksi->ksi_signo  = SIGCHLD;
2924 		p->p_ksi->ksi_code   = reason;
2925 		p->p_ksi->ksi_status = status;
2926 		p->p_ksi->ksi_pid    = p->p_pid;
2927 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2928 		if (KSI_ONQ(p->p_ksi))
2929 			return;
2930 	}
2931 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2932 }
2933 
2934 static void
2935 childproc_jobstate(struct proc *p, int reason, int status)
2936 {
2937 	struct sigacts *ps;
2938 
2939 	PROC_LOCK_ASSERT(p, MA_OWNED);
2940 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2941 
2942 	/*
2943 	 * Wake up parent sleeping in kern_wait(), also send
2944 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2945 	 * that parent will awake, because parent may masked
2946 	 * the signal.
2947 	 */
2948 	p->p_pptr->p_flag |= P_STATCHILD;
2949 	wakeup(p->p_pptr);
2950 
2951 	ps = p->p_pptr->p_sigacts;
2952 	mtx_lock(&ps->ps_mtx);
2953 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2954 		mtx_unlock(&ps->ps_mtx);
2955 		sigparent(p, reason, status);
2956 	} else
2957 		mtx_unlock(&ps->ps_mtx);
2958 }
2959 
2960 void
2961 childproc_stopped(struct proc *p, int reason)
2962 {
2963 	childproc_jobstate(p, reason, p->p_xstat);
2964 }
2965 
2966 void
2967 childproc_continued(struct proc *p)
2968 {
2969 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2970 }
2971 
2972 void
2973 childproc_exited(struct proc *p)
2974 {
2975 	int reason;
2976 	int status = p->p_xstat; /* convert to int */
2977 
2978 	reason = CLD_EXITED;
2979 	if (WCOREDUMP(status))
2980 		reason = CLD_DUMPED;
2981 	else if (WIFSIGNALED(status))
2982 		reason = CLD_KILLED;
2983 	/*
2984 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2985 	 * done in exit1().
2986 	 */
2987 	sigparent(p, reason, status);
2988 }
2989 
2990 /*
2991  * We only have 1 character for the core count in the format
2992  * string, so the range will be 0-9
2993  */
2994 #define MAX_NUM_CORES 10
2995 static int num_cores = 5;
2996 
2997 static int
2998 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2999 {
3000 	int error;
3001 	int new_val;
3002 
3003 	new_val = num_cores;
3004 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3005 	if (error != 0 || req->newptr == NULL)
3006 		return (error);
3007 	if (new_val > MAX_NUM_CORES)
3008 		new_val = MAX_NUM_CORES;
3009 	if (new_val < 0)
3010 		new_val = 0;
3011 	num_cores = new_val;
3012 	return (0);
3013 }
3014 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3015 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3016 
3017 #if defined(COMPRESS_USER_CORES)
3018 int compress_user_cores = 1;
3019 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3020     &compress_user_cores, 0, "Compression of user corefiles");
3021 
3022 int compress_user_cores_gzlevel = -1; /* default level */
3023 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3024     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3025 
3026 #define GZ_SUFFIX	".gz"
3027 #define GZ_SUFFIX_LEN	3
3028 #endif
3029 
3030 static char corefilename[MAXPATHLEN] = {"%N.core"};
3031 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3032 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3033     sizeof(corefilename), "Process corefile name format string");
3034 
3035 /*
3036  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3037  * Expand the name described in corefilename, using name, uid, and pid
3038  * and open/create core file.
3039  * corefilename is a printf-like string, with three format specifiers:
3040  *	%N	name of process ("name")
3041  *	%P	process id (pid)
3042  *	%U	user id (uid)
3043  * For example, "%N.core" is the default; they can be disabled completely
3044  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3045  * This is controlled by the sysctl variable kern.corefile (see above).
3046  */
3047 static int
3048 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3049     int compress, struct vnode **vpp, char **namep)
3050 {
3051 	struct nameidata nd;
3052 	struct sbuf sb;
3053 	const char *format;
3054 	char *hostname, *name;
3055 	int indexpos, i, error, cmode, flags, oflags;
3056 
3057 	hostname = NULL;
3058 	format = corefilename;
3059 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3060 	indexpos = -1;
3061 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3062 	for (i = 0; format[i] != '\0'; i++) {
3063 		switch (format[i]) {
3064 		case '%':	/* Format character */
3065 			i++;
3066 			switch (format[i]) {
3067 			case '%':
3068 				sbuf_putc(&sb, '%');
3069 				break;
3070 			case 'H':	/* hostname */
3071 				if (hostname == NULL) {
3072 					hostname = malloc(MAXHOSTNAMELEN,
3073 					    M_TEMP, M_WAITOK);
3074 				}
3075 				getcredhostname(td->td_ucred, hostname,
3076 				    MAXHOSTNAMELEN);
3077 				sbuf_printf(&sb, "%s", hostname);
3078 				break;
3079 			case 'I':	/* autoincrementing index */
3080 				sbuf_printf(&sb, "0");
3081 				indexpos = sbuf_len(&sb) - 1;
3082 				break;
3083 			case 'N':	/* process name */
3084 				sbuf_printf(&sb, "%s", comm);
3085 				break;
3086 			case 'P':	/* process id */
3087 				sbuf_printf(&sb, "%u", pid);
3088 				break;
3089 			case 'U':	/* user id */
3090 				sbuf_printf(&sb, "%u", uid);
3091 				break;
3092 			default:
3093 				log(LOG_ERR,
3094 				    "Unknown format character %c in "
3095 				    "corename `%s'\n", format[i], format);
3096 				break;
3097 			}
3098 			break;
3099 		default:
3100 			sbuf_putc(&sb, format[i]);
3101 		}
3102 	}
3103 	free(hostname, M_TEMP);
3104 #ifdef COMPRESS_USER_CORES
3105 	if (compress)
3106 		sbuf_printf(&sb, GZ_SUFFIX);
3107 #endif
3108 	if (sbuf_error(&sb) != 0) {
3109 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3110 		    "long\n", (long)pid, comm, (u_long)uid);
3111 		sbuf_delete(&sb);
3112 		free(name, M_TEMP);
3113 		return (ENOMEM);
3114 	}
3115 	sbuf_finish(&sb);
3116 	sbuf_delete(&sb);
3117 
3118 	cmode = S_IRUSR | S_IWUSR;
3119 	oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3120 
3121 	/*
3122 	 * If the core format has a %I in it, then we need to check
3123 	 * for existing corefiles before returning a name.
3124 	 * To do this we iterate over 0..num_cores to find a
3125 	 * non-existing core file name to use.
3126 	 */
3127 	if (indexpos != -1) {
3128 		for (i = 0; i < num_cores; i++) {
3129 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3130 			name[indexpos] = '0' + i;
3131 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3132 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3133 			    td->td_ucred, NULL);
3134 			if (error) {
3135 				if (error == EEXIST)
3136 					continue;
3137 				log(LOG_ERR,
3138 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3139 				    "on initial open test, error = %d\n",
3140 				    pid, comm, uid, name, error);
3141 			}
3142 			goto out;
3143 		}
3144 	}
3145 
3146 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3147 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3148 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3149 out:
3150 	if (error) {
3151 #ifdef AUDIT
3152 		audit_proc_coredump(td, name, error);
3153 #endif
3154 		free(name, M_TEMP);
3155 		return (error);
3156 	}
3157 	NDFREE(&nd, NDF_ONLY_PNBUF);
3158 	*vpp = nd.ni_vp;
3159 	*namep = name;
3160 	return (0);
3161 }
3162 
3163 /*
3164  * Dump a process' core.  The main routine does some
3165  * policy checking, and creates the name of the coredump;
3166  * then it passes on a vnode and a size limit to the process-specific
3167  * coredump routine if there is one; if there _is not_ one, it returns
3168  * ENOSYS; otherwise it returns the error from the process-specific routine.
3169  */
3170 
3171 static int
3172 coredump(struct thread *td)
3173 {
3174 	struct proc *p = td->td_proc;
3175 	struct ucred *cred = td->td_ucred;
3176 	struct vnode *vp;
3177 	struct flock lf;
3178 	struct vattr vattr;
3179 	int error, error1, locked;
3180 	struct mount *mp;
3181 	char *name;			/* name of corefile */
3182 	off_t limit;
3183 	int compress;
3184 
3185 #ifdef COMPRESS_USER_CORES
3186 	compress = compress_user_cores;
3187 #else
3188 	compress = 0;
3189 #endif
3190 	PROC_LOCK_ASSERT(p, MA_OWNED);
3191 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3192 	_STOPEVENT(p, S_CORE, 0);
3193 
3194 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
3195 		PROC_UNLOCK(p);
3196 		return (EFAULT);
3197 	}
3198 
3199 	/*
3200 	 * Note that the bulk of limit checking is done after
3201 	 * the corefile is created.  The exception is if the limit
3202 	 * for corefiles is 0, in which case we don't bother
3203 	 * creating the corefile at all.  This layout means that
3204 	 * a corefile is truncated instead of not being created,
3205 	 * if it is larger than the limit.
3206 	 */
3207 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3208 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3209 		PROC_UNLOCK(p);
3210 		return (EFBIG);
3211 	}
3212 	PROC_UNLOCK(p);
3213 
3214 restart:
3215 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3216 	    &vp, &name);
3217 	if (error != 0)
3218 		return (error);
3219 
3220 	/* Don't dump to non-regular files or files with links. */
3221 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3222 	    vattr.va_nlink != 1) {
3223 		VOP_UNLOCK(vp, 0);
3224 		error = EFAULT;
3225 		goto close;
3226 	}
3227 
3228 	VOP_UNLOCK(vp, 0);
3229 	lf.l_whence = SEEK_SET;
3230 	lf.l_start = 0;
3231 	lf.l_len = 0;
3232 	lf.l_type = F_WRLCK;
3233 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3234 
3235 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3236 		lf.l_type = F_UNLCK;
3237 		if (locked)
3238 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3239 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3240 			goto out;
3241 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3242 			goto out;
3243 		goto restart;
3244 	}
3245 
3246 	VATTR_NULL(&vattr);
3247 	vattr.va_size = 0;
3248 	if (set_core_nodump_flag)
3249 		vattr.va_flags = UF_NODUMP;
3250 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3251 	VOP_SETATTR(vp, &vattr, cred);
3252 	VOP_UNLOCK(vp, 0);
3253 	vn_finished_write(mp);
3254 	PROC_LOCK(p);
3255 	p->p_acflag |= ACORE;
3256 	PROC_UNLOCK(p);
3257 
3258 	if (p->p_sysent->sv_coredump != NULL) {
3259 		error = p->p_sysent->sv_coredump(td, vp, limit,
3260 		    compress ? IMGACT_CORE_COMPRESS : 0);
3261 	} else {
3262 		error = ENOSYS;
3263 	}
3264 
3265 	if (locked) {
3266 		lf.l_type = F_UNLCK;
3267 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3268 	}
3269 close:
3270 	error1 = vn_close(vp, FWRITE, cred, td);
3271 	if (error == 0)
3272 		error = error1;
3273 out:
3274 #ifdef AUDIT
3275 	audit_proc_coredump(td, name, error);
3276 #endif
3277 	free(name, M_TEMP);
3278 	return (error);
3279 }
3280 
3281 /*
3282  * Nonexistent system call-- signal process (may want to handle it).  Flag
3283  * error in case process won't see signal immediately (blocked or ignored).
3284  */
3285 #ifndef _SYS_SYSPROTO_H_
3286 struct nosys_args {
3287 	int	dummy;
3288 };
3289 #endif
3290 /* ARGSUSED */
3291 int
3292 nosys(td, args)
3293 	struct thread *td;
3294 	struct nosys_args *args;
3295 {
3296 	struct proc *p = td->td_proc;
3297 
3298 	PROC_LOCK(p);
3299 	tdsignal(td, SIGSYS);
3300 	PROC_UNLOCK(p);
3301 	return (ENOSYS);
3302 }
3303 
3304 /*
3305  * Send a SIGIO or SIGURG signal to a process or process group using stored
3306  * credentials rather than those of the current process.
3307  */
3308 void
3309 pgsigio(sigiop, sig, checkctty)
3310 	struct sigio **sigiop;
3311 	int sig, checkctty;
3312 {
3313 	ksiginfo_t ksi;
3314 	struct sigio *sigio;
3315 
3316 	ksiginfo_init(&ksi);
3317 	ksi.ksi_signo = sig;
3318 	ksi.ksi_code = SI_KERNEL;
3319 
3320 	SIGIO_LOCK();
3321 	sigio = *sigiop;
3322 	if (sigio == NULL) {
3323 		SIGIO_UNLOCK();
3324 		return;
3325 	}
3326 	if (sigio->sio_pgid > 0) {
3327 		PROC_LOCK(sigio->sio_proc);
3328 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3329 			kern_psignal(sigio->sio_proc, sig);
3330 		PROC_UNLOCK(sigio->sio_proc);
3331 	} else if (sigio->sio_pgid < 0) {
3332 		struct proc *p;
3333 
3334 		PGRP_LOCK(sigio->sio_pgrp);
3335 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3336 			PROC_LOCK(p);
3337 			if (p->p_state == PRS_NORMAL &&
3338 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3339 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3340 				kern_psignal(p, sig);
3341 			PROC_UNLOCK(p);
3342 		}
3343 		PGRP_UNLOCK(sigio->sio_pgrp);
3344 	}
3345 	SIGIO_UNLOCK();
3346 }
3347 
3348 static int
3349 filt_sigattach(struct knote *kn)
3350 {
3351 	struct proc *p = curproc;
3352 
3353 	kn->kn_ptr.p_proc = p;
3354 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3355 
3356 	knlist_add(&p->p_klist, kn, 0);
3357 
3358 	return (0);
3359 }
3360 
3361 static void
3362 filt_sigdetach(struct knote *kn)
3363 {
3364 	struct proc *p = kn->kn_ptr.p_proc;
3365 
3366 	knlist_remove(&p->p_klist, kn, 0);
3367 }
3368 
3369 /*
3370  * signal knotes are shared with proc knotes, so we apply a mask to
3371  * the hint in order to differentiate them from process hints.  This
3372  * could be avoided by using a signal-specific knote list, but probably
3373  * isn't worth the trouble.
3374  */
3375 static int
3376 filt_signal(struct knote *kn, long hint)
3377 {
3378 
3379 	if (hint & NOTE_SIGNAL) {
3380 		hint &= ~NOTE_SIGNAL;
3381 
3382 		if (kn->kn_id == hint)
3383 			kn->kn_data++;
3384 	}
3385 	return (kn->kn_data != 0);
3386 }
3387 
3388 struct sigacts *
3389 sigacts_alloc(void)
3390 {
3391 	struct sigacts *ps;
3392 
3393 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3394 	ps->ps_refcnt = 1;
3395 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3396 	return (ps);
3397 }
3398 
3399 void
3400 sigacts_free(struct sigacts *ps)
3401 {
3402 
3403 	mtx_lock(&ps->ps_mtx);
3404 	ps->ps_refcnt--;
3405 	if (ps->ps_refcnt == 0) {
3406 		mtx_destroy(&ps->ps_mtx);
3407 		free(ps, M_SUBPROC);
3408 	} else
3409 		mtx_unlock(&ps->ps_mtx);
3410 }
3411 
3412 struct sigacts *
3413 sigacts_hold(struct sigacts *ps)
3414 {
3415 	mtx_lock(&ps->ps_mtx);
3416 	ps->ps_refcnt++;
3417 	mtx_unlock(&ps->ps_mtx);
3418 	return (ps);
3419 }
3420 
3421 void
3422 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3423 {
3424 
3425 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3426 	mtx_lock(&src->ps_mtx);
3427 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3428 	mtx_unlock(&src->ps_mtx);
3429 }
3430 
3431 int
3432 sigacts_shared(struct sigacts *ps)
3433 {
3434 	int shared;
3435 
3436 	mtx_lock(&ps->ps_mtx);
3437 	shared = ps->ps_refcnt > 1;
3438 	mtx_unlock(&ps->ps_mtx);
3439 	return (shared);
3440 }
3441