xref: /freebsd/sys/kern/kern_sig.c (revision c1d255d3ffdbe447de3ab875bf4e7d7accc5bfc5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
218 
219 static int sigproptbl[NSIG] = {
220 	[SIGHUP] =	SIGPROP_KILL,
221 	[SIGINT] =	SIGPROP_KILL,
222 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
228 	[SIGKILL] =	SIGPROP_KILL,
229 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
232 	[SIGPIPE] =	SIGPROP_KILL,
233 	[SIGALRM] =	SIGPROP_KILL,
234 	[SIGTERM] =	SIGPROP_KILL,
235 	[SIGURG] =	SIGPROP_IGNORE,
236 	[SIGSTOP] =	SIGPROP_STOP,
237 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
238 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
239 	[SIGCHLD] =	SIGPROP_IGNORE,
240 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
242 	[SIGIO] =	SIGPROP_IGNORE,
243 	[SIGXCPU] =	SIGPROP_KILL,
244 	[SIGXFSZ] =	SIGPROP_KILL,
245 	[SIGVTALRM] =	SIGPROP_KILL,
246 	[SIGPROF] =	SIGPROP_KILL,
247 	[SIGWINCH] =	SIGPROP_IGNORE,
248 	[SIGINFO] =	SIGPROP_IGNORE,
249 	[SIGUSR1] =	SIGPROP_KILL,
250 	[SIGUSR2] =	SIGPROP_KILL,
251 };
252 
253 sigset_t fastblock_mask;
254 
255 static void
256 sigqueue_start(void)
257 {
258 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
259 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
260 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
261 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
262 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
263 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
264 	SIGFILLSET(fastblock_mask);
265 	SIG_CANTMASK(fastblock_mask);
266 }
267 
268 ksiginfo_t *
269 ksiginfo_alloc(int wait)
270 {
271 	int flags;
272 
273 	flags = M_ZERO;
274 	if (! wait)
275 		flags |= M_NOWAIT;
276 	if (ksiginfo_zone != NULL)
277 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
278 	return (NULL);
279 }
280 
281 void
282 ksiginfo_free(ksiginfo_t *ksi)
283 {
284 	uma_zfree(ksiginfo_zone, ksi);
285 }
286 
287 static __inline int
288 ksiginfo_tryfree(ksiginfo_t *ksi)
289 {
290 	if (!(ksi->ksi_flags & KSI_EXT)) {
291 		uma_zfree(ksiginfo_zone, ksi);
292 		return (1);
293 	}
294 	return (0);
295 }
296 
297 void
298 sigqueue_init(sigqueue_t *list, struct proc *p)
299 {
300 	SIGEMPTYSET(list->sq_signals);
301 	SIGEMPTYSET(list->sq_kill);
302 	SIGEMPTYSET(list->sq_ptrace);
303 	TAILQ_INIT(&list->sq_list);
304 	list->sq_proc = p;
305 	list->sq_flags = SQ_INIT;
306 }
307 
308 /*
309  * Get a signal's ksiginfo.
310  * Return:
311  *	0	-	signal not found
312  *	others	-	signal number
313  */
314 static int
315 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
316 {
317 	struct proc *p = sq->sq_proc;
318 	struct ksiginfo *ksi, *next;
319 	int count = 0;
320 
321 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
322 
323 	if (!SIGISMEMBER(sq->sq_signals, signo))
324 		return (0);
325 
326 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
327 		count++;
328 		SIGDELSET(sq->sq_ptrace, signo);
329 		si->ksi_flags |= KSI_PTRACE;
330 	}
331 	if (SIGISMEMBER(sq->sq_kill, signo)) {
332 		count++;
333 		if (count == 1)
334 			SIGDELSET(sq->sq_kill, signo);
335 	}
336 
337 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
338 		if (ksi->ksi_signo == signo) {
339 			if (count == 0) {
340 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
341 				ksi->ksi_sigq = NULL;
342 				ksiginfo_copy(ksi, si);
343 				if (ksiginfo_tryfree(ksi) && p != NULL)
344 					p->p_pendingcnt--;
345 			}
346 			if (++count > 1)
347 				break;
348 		}
349 	}
350 
351 	if (count <= 1)
352 		SIGDELSET(sq->sq_signals, signo);
353 	si->ksi_signo = signo;
354 	return (signo);
355 }
356 
357 void
358 sigqueue_take(ksiginfo_t *ksi)
359 {
360 	struct ksiginfo *kp;
361 	struct proc	*p;
362 	sigqueue_t	*sq;
363 
364 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
365 		return;
366 
367 	p = sq->sq_proc;
368 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
369 	ksi->ksi_sigq = NULL;
370 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
371 		p->p_pendingcnt--;
372 
373 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
374 	     kp = TAILQ_NEXT(kp, ksi_link)) {
375 		if (kp->ksi_signo == ksi->ksi_signo)
376 			break;
377 	}
378 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
379 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
380 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
381 }
382 
383 static int
384 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
385 {
386 	struct proc *p = sq->sq_proc;
387 	struct ksiginfo *ksi;
388 	int ret = 0;
389 
390 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
391 
392 	/*
393 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
394 	 * for these signals.
395 	 */
396 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	/* directly insert the ksi, don't copy it */
402 	if (si->ksi_flags & KSI_INS) {
403 		if (si->ksi_flags & KSI_HEAD)
404 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
405 		else
406 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
407 		si->ksi_sigq = sq;
408 		goto out_set_bit;
409 	}
410 
411 	if (__predict_false(ksiginfo_zone == NULL)) {
412 		SIGADDSET(sq->sq_kill, signo);
413 		goto out_set_bit;
414 	}
415 
416 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
417 		signal_overflow++;
418 		ret = EAGAIN;
419 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
420 		signal_alloc_fail++;
421 		ret = EAGAIN;
422 	} else {
423 		if (p != NULL)
424 			p->p_pendingcnt++;
425 		ksiginfo_copy(si, ksi);
426 		ksi->ksi_signo = signo;
427 		if (si->ksi_flags & KSI_HEAD)
428 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
429 		else
430 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
431 		ksi->ksi_sigq = sq;
432 	}
433 
434 	if (ret != 0) {
435 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
436 			SIGADDSET(sq->sq_ptrace, signo);
437 			ret = 0;
438 			goto out_set_bit;
439 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
440 		    (si->ksi_flags & KSI_SIGQ) == 0) {
441 			SIGADDSET(sq->sq_kill, signo);
442 			ret = 0;
443 			goto out_set_bit;
444 		}
445 		return (ret);
446 	}
447 
448 out_set_bit:
449 	SIGADDSET(sq->sq_signals, signo);
450 	return (ret);
451 }
452 
453 void
454 sigqueue_flush(sigqueue_t *sq)
455 {
456 	struct proc *p = sq->sq_proc;
457 	ksiginfo_t *ksi;
458 
459 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
460 
461 	if (p != NULL)
462 		PROC_LOCK_ASSERT(p, MA_OWNED);
463 
464 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
465 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
466 		ksi->ksi_sigq = NULL;
467 		if (ksiginfo_tryfree(ksi) && p != NULL)
468 			p->p_pendingcnt--;
469 	}
470 
471 	SIGEMPTYSET(sq->sq_signals);
472 	SIGEMPTYSET(sq->sq_kill);
473 	SIGEMPTYSET(sq->sq_ptrace);
474 }
475 
476 static void
477 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
478 {
479 	sigset_t tmp;
480 	struct proc *p1, *p2;
481 	ksiginfo_t *ksi, *next;
482 
483 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
484 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
485 	p1 = src->sq_proc;
486 	p2 = dst->sq_proc;
487 	/* Move siginfo to target list */
488 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
489 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
490 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
491 			if (p1 != NULL)
492 				p1->p_pendingcnt--;
493 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
494 			ksi->ksi_sigq = dst;
495 			if (p2 != NULL)
496 				p2->p_pendingcnt++;
497 		}
498 	}
499 
500 	/* Move pending bits to target list */
501 	tmp = src->sq_kill;
502 	SIGSETAND(tmp, *set);
503 	SIGSETOR(dst->sq_kill, tmp);
504 	SIGSETNAND(src->sq_kill, tmp);
505 
506 	tmp = src->sq_ptrace;
507 	SIGSETAND(tmp, *set);
508 	SIGSETOR(dst->sq_ptrace, tmp);
509 	SIGSETNAND(src->sq_ptrace, tmp);
510 
511 	tmp = src->sq_signals;
512 	SIGSETAND(tmp, *set);
513 	SIGSETOR(dst->sq_signals, tmp);
514 	SIGSETNAND(src->sq_signals, tmp);
515 }
516 
517 #if 0
518 static void
519 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
520 {
521 	sigset_t set;
522 
523 	SIGEMPTYSET(set);
524 	SIGADDSET(set, signo);
525 	sigqueue_move_set(src, dst, &set);
526 }
527 #endif
528 
529 static void
530 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
531 {
532 	struct proc *p = sq->sq_proc;
533 	ksiginfo_t *ksi, *next;
534 
535 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
536 
537 	/* Remove siginfo queue */
538 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
539 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
540 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
541 			ksi->ksi_sigq = NULL;
542 			if (ksiginfo_tryfree(ksi) && p != NULL)
543 				p->p_pendingcnt--;
544 		}
545 	}
546 	SIGSETNAND(sq->sq_kill, *set);
547 	SIGSETNAND(sq->sq_ptrace, *set);
548 	SIGSETNAND(sq->sq_signals, *set);
549 }
550 
551 void
552 sigqueue_delete(sigqueue_t *sq, int signo)
553 {
554 	sigset_t set;
555 
556 	SIGEMPTYSET(set);
557 	SIGADDSET(set, signo);
558 	sigqueue_delete_set(sq, &set);
559 }
560 
561 /* Remove a set of signals for a process */
562 static void
563 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
564 {
565 	sigqueue_t worklist;
566 	struct thread *td0;
567 
568 	PROC_LOCK_ASSERT(p, MA_OWNED);
569 
570 	sigqueue_init(&worklist, NULL);
571 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
572 
573 	FOREACH_THREAD_IN_PROC(p, td0)
574 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
575 
576 	sigqueue_flush(&worklist);
577 }
578 
579 void
580 sigqueue_delete_proc(struct proc *p, int signo)
581 {
582 	sigset_t set;
583 
584 	SIGEMPTYSET(set);
585 	SIGADDSET(set, signo);
586 	sigqueue_delete_set_proc(p, &set);
587 }
588 
589 static void
590 sigqueue_delete_stopmask_proc(struct proc *p)
591 {
592 	sigset_t set;
593 
594 	SIGEMPTYSET(set);
595 	SIGADDSET(set, SIGSTOP);
596 	SIGADDSET(set, SIGTSTP);
597 	SIGADDSET(set, SIGTTIN);
598 	SIGADDSET(set, SIGTTOU);
599 	sigqueue_delete_set_proc(p, &set);
600 }
601 
602 /*
603  * Determine signal that should be delivered to thread td, the current
604  * thread, 0 if none.  If there is a pending stop signal with default
605  * action, the process stops in issignal().
606  */
607 int
608 cursig(struct thread *td)
609 {
610 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
611 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
612 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
613 	return (SIGPENDING(td) ? issignal(td) : 0);
614 }
615 
616 /*
617  * Arrange for ast() to handle unmasked pending signals on return to user
618  * mode.  This must be called whenever a signal is added to td_sigqueue or
619  * unmasked in td_sigmask.
620  */
621 void
622 signotify(struct thread *td)
623 {
624 
625 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
626 
627 	if (SIGPENDING(td)) {
628 		thread_lock(td);
629 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
630 		thread_unlock(td);
631 	}
632 }
633 
634 /*
635  * Returns 1 (true) if altstack is configured for the thread, and the
636  * passed stack bottom address falls into the altstack range.  Handles
637  * the 43 compat special case where the alt stack size is zero.
638  */
639 int
640 sigonstack(size_t sp)
641 {
642 	struct thread *td;
643 
644 	td = curthread;
645 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
646 		return (0);
647 #if defined(COMPAT_43)
648 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
649 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
650 #endif
651 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
652 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
653 }
654 
655 static __inline int
656 sigprop(int sig)
657 {
658 
659 	if (sig > 0 && sig < nitems(sigproptbl))
660 		return (sigproptbl[sig]);
661 	return (0);
662 }
663 
664 int
665 sig_ffs(sigset_t *set)
666 {
667 	int i;
668 
669 	for (i = 0; i < _SIG_WORDS; i++)
670 		if (set->__bits[i])
671 			return (ffs(set->__bits[i]) + (i * 32));
672 	return (0);
673 }
674 
675 static bool
676 sigact_flag_test(const struct sigaction *act, int flag)
677 {
678 
679 	/*
680 	 * SA_SIGINFO is reset when signal disposition is set to
681 	 * ignore or default.  Other flags are kept according to user
682 	 * settings.
683 	 */
684 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
685 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
686 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
687 }
688 
689 /*
690  * kern_sigaction
691  * sigaction
692  * freebsd4_sigaction
693  * osigaction
694  */
695 int
696 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
697     struct sigaction *oact, int flags)
698 {
699 	struct sigacts *ps;
700 	struct proc *p = td->td_proc;
701 
702 	if (!_SIG_VALID(sig))
703 		return (EINVAL);
704 	if (act != NULL && act->sa_handler != SIG_DFL &&
705 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
706 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
707 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
708 		return (EINVAL);
709 
710 	PROC_LOCK(p);
711 	ps = p->p_sigacts;
712 	mtx_lock(&ps->ps_mtx);
713 	if (oact) {
714 		memset(oact, 0, sizeof(*oact));
715 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
716 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
717 			oact->sa_flags |= SA_ONSTACK;
718 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
719 			oact->sa_flags |= SA_RESTART;
720 		if (SIGISMEMBER(ps->ps_sigreset, sig))
721 			oact->sa_flags |= SA_RESETHAND;
722 		if (SIGISMEMBER(ps->ps_signodefer, sig))
723 			oact->sa_flags |= SA_NODEFER;
724 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
725 			oact->sa_flags |= SA_SIGINFO;
726 			oact->sa_sigaction =
727 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
728 		} else
729 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
730 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
731 			oact->sa_flags |= SA_NOCLDSTOP;
732 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
733 			oact->sa_flags |= SA_NOCLDWAIT;
734 	}
735 	if (act) {
736 		if ((sig == SIGKILL || sig == SIGSTOP) &&
737 		    act->sa_handler != SIG_DFL) {
738 			mtx_unlock(&ps->ps_mtx);
739 			PROC_UNLOCK(p);
740 			return (EINVAL);
741 		}
742 
743 		/*
744 		 * Change setting atomically.
745 		 */
746 
747 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
748 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
749 		if (sigact_flag_test(act, SA_SIGINFO)) {
750 			ps->ps_sigact[_SIG_IDX(sig)] =
751 			    (__sighandler_t *)act->sa_sigaction;
752 			SIGADDSET(ps->ps_siginfo, sig);
753 		} else {
754 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
755 			SIGDELSET(ps->ps_siginfo, sig);
756 		}
757 		if (!sigact_flag_test(act, SA_RESTART))
758 			SIGADDSET(ps->ps_sigintr, sig);
759 		else
760 			SIGDELSET(ps->ps_sigintr, sig);
761 		if (sigact_flag_test(act, SA_ONSTACK))
762 			SIGADDSET(ps->ps_sigonstack, sig);
763 		else
764 			SIGDELSET(ps->ps_sigonstack, sig);
765 		if (sigact_flag_test(act, SA_RESETHAND))
766 			SIGADDSET(ps->ps_sigreset, sig);
767 		else
768 			SIGDELSET(ps->ps_sigreset, sig);
769 		if (sigact_flag_test(act, SA_NODEFER))
770 			SIGADDSET(ps->ps_signodefer, sig);
771 		else
772 			SIGDELSET(ps->ps_signodefer, sig);
773 		if (sig == SIGCHLD) {
774 			if (act->sa_flags & SA_NOCLDSTOP)
775 				ps->ps_flag |= PS_NOCLDSTOP;
776 			else
777 				ps->ps_flag &= ~PS_NOCLDSTOP;
778 			if (act->sa_flags & SA_NOCLDWAIT) {
779 				/*
780 				 * Paranoia: since SA_NOCLDWAIT is implemented
781 				 * by reparenting the dying child to PID 1 (and
782 				 * trust it to reap the zombie), PID 1 itself
783 				 * is forbidden to set SA_NOCLDWAIT.
784 				 */
785 				if (p->p_pid == 1)
786 					ps->ps_flag &= ~PS_NOCLDWAIT;
787 				else
788 					ps->ps_flag |= PS_NOCLDWAIT;
789 			} else
790 				ps->ps_flag &= ~PS_NOCLDWAIT;
791 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
792 				ps->ps_flag |= PS_CLDSIGIGN;
793 			else
794 				ps->ps_flag &= ~PS_CLDSIGIGN;
795 		}
796 		/*
797 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
798 		 * and for signals set to SIG_DFL where the default is to
799 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
800 		 * have to restart the process.
801 		 */
802 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
803 		    (sigprop(sig) & SIGPROP_IGNORE &&
804 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
805 			/* never to be seen again */
806 			sigqueue_delete_proc(p, sig);
807 			if (sig != SIGCONT)
808 				/* easier in psignal */
809 				SIGADDSET(ps->ps_sigignore, sig);
810 			SIGDELSET(ps->ps_sigcatch, sig);
811 		} else {
812 			SIGDELSET(ps->ps_sigignore, sig);
813 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
814 				SIGDELSET(ps->ps_sigcatch, sig);
815 			else
816 				SIGADDSET(ps->ps_sigcatch, sig);
817 		}
818 #ifdef COMPAT_FREEBSD4
819 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
820 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
821 		    (flags & KSA_FREEBSD4) == 0)
822 			SIGDELSET(ps->ps_freebsd4, sig);
823 		else
824 			SIGADDSET(ps->ps_freebsd4, sig);
825 #endif
826 #ifdef COMPAT_43
827 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
828 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
829 		    (flags & KSA_OSIGSET) == 0)
830 			SIGDELSET(ps->ps_osigset, sig);
831 		else
832 			SIGADDSET(ps->ps_osigset, sig);
833 #endif
834 	}
835 	mtx_unlock(&ps->ps_mtx);
836 	PROC_UNLOCK(p);
837 	return (0);
838 }
839 
840 #ifndef _SYS_SYSPROTO_H_
841 struct sigaction_args {
842 	int	sig;
843 	struct	sigaction *act;
844 	struct	sigaction *oact;
845 };
846 #endif
847 int
848 sys_sigaction(struct thread *td, struct sigaction_args *uap)
849 {
850 	struct sigaction act, oact;
851 	struct sigaction *actp, *oactp;
852 	int error;
853 
854 	actp = (uap->act != NULL) ? &act : NULL;
855 	oactp = (uap->oact != NULL) ? &oact : NULL;
856 	if (actp) {
857 		error = copyin(uap->act, actp, sizeof(act));
858 		if (error)
859 			return (error);
860 	}
861 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
862 	if (oactp && !error)
863 		error = copyout(oactp, uap->oact, sizeof(oact));
864 	return (error);
865 }
866 
867 #ifdef COMPAT_FREEBSD4
868 #ifndef _SYS_SYSPROTO_H_
869 struct freebsd4_sigaction_args {
870 	int	sig;
871 	struct	sigaction *act;
872 	struct	sigaction *oact;
873 };
874 #endif
875 int
876 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
877 {
878 	struct sigaction act, oact;
879 	struct sigaction *actp, *oactp;
880 	int error;
881 
882 	actp = (uap->act != NULL) ? &act : NULL;
883 	oactp = (uap->oact != NULL) ? &oact : NULL;
884 	if (actp) {
885 		error = copyin(uap->act, actp, sizeof(act));
886 		if (error)
887 			return (error);
888 	}
889 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
890 	if (oactp && !error)
891 		error = copyout(oactp, uap->oact, sizeof(oact));
892 	return (error);
893 }
894 #endif	/* COMAPT_FREEBSD4 */
895 
896 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
897 #ifndef _SYS_SYSPROTO_H_
898 struct osigaction_args {
899 	int	signum;
900 	struct	osigaction *nsa;
901 	struct	osigaction *osa;
902 };
903 #endif
904 int
905 osigaction(struct thread *td, struct osigaction_args *uap)
906 {
907 	struct osigaction sa;
908 	struct sigaction nsa, osa;
909 	struct sigaction *nsap, *osap;
910 	int error;
911 
912 	if (uap->signum <= 0 || uap->signum >= ONSIG)
913 		return (EINVAL);
914 
915 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
916 	osap = (uap->osa != NULL) ? &osa : NULL;
917 
918 	if (nsap) {
919 		error = copyin(uap->nsa, &sa, sizeof(sa));
920 		if (error)
921 			return (error);
922 		nsap->sa_handler = sa.sa_handler;
923 		nsap->sa_flags = sa.sa_flags;
924 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
925 	}
926 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
927 	if (osap && !error) {
928 		sa.sa_handler = osap->sa_handler;
929 		sa.sa_flags = osap->sa_flags;
930 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
931 		error = copyout(&sa, uap->osa, sizeof(sa));
932 	}
933 	return (error);
934 }
935 
936 #if !defined(__i386__)
937 /* Avoid replicating the same stub everywhere */
938 int
939 osigreturn(struct thread *td, struct osigreturn_args *uap)
940 {
941 
942 	return (nosys(td, (struct nosys_args *)uap));
943 }
944 #endif
945 #endif /* COMPAT_43 */
946 
947 /*
948  * Initialize signal state for process 0;
949  * set to ignore signals that are ignored by default.
950  */
951 void
952 siginit(struct proc *p)
953 {
954 	int i;
955 	struct sigacts *ps;
956 
957 	PROC_LOCK(p);
958 	ps = p->p_sigacts;
959 	mtx_lock(&ps->ps_mtx);
960 	for (i = 1; i <= NSIG; i++) {
961 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
962 			SIGADDSET(ps->ps_sigignore, i);
963 		}
964 	}
965 	mtx_unlock(&ps->ps_mtx);
966 	PROC_UNLOCK(p);
967 }
968 
969 /*
970  * Reset specified signal to the default disposition.
971  */
972 static void
973 sigdflt(struct sigacts *ps, int sig)
974 {
975 
976 	mtx_assert(&ps->ps_mtx, MA_OWNED);
977 	SIGDELSET(ps->ps_sigcatch, sig);
978 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
979 		SIGADDSET(ps->ps_sigignore, sig);
980 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
981 	SIGDELSET(ps->ps_siginfo, sig);
982 }
983 
984 /*
985  * Reset signals for an exec of the specified process.
986  */
987 void
988 execsigs(struct proc *p)
989 {
990 	sigset_t osigignore;
991 	struct sigacts *ps;
992 	int sig;
993 	struct thread *td;
994 
995 	/*
996 	 * Reset caught signals.  Held signals remain held
997 	 * through td_sigmask (unless they were caught,
998 	 * and are now ignored by default).
999 	 */
1000 	PROC_LOCK_ASSERT(p, MA_OWNED);
1001 	ps = p->p_sigacts;
1002 	mtx_lock(&ps->ps_mtx);
1003 	sig_drop_caught(p);
1004 
1005 	/*
1006 	 * As CloudABI processes cannot modify signal handlers, fully
1007 	 * reset all signals to their default behavior. Do ignore
1008 	 * SIGPIPE, as it would otherwise be impossible to recover from
1009 	 * writes to broken pipes and sockets.
1010 	 */
1011 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1012 		osigignore = ps->ps_sigignore;
1013 		while (SIGNOTEMPTY(osigignore)) {
1014 			sig = sig_ffs(&osigignore);
1015 			SIGDELSET(osigignore, sig);
1016 			if (sig != SIGPIPE)
1017 				sigdflt(ps, sig);
1018 		}
1019 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1020 	}
1021 
1022 	/*
1023 	 * Reset stack state to the user stack.
1024 	 * Clear set of signals caught on the signal stack.
1025 	 */
1026 	td = curthread;
1027 	MPASS(td->td_proc == p);
1028 	td->td_sigstk.ss_flags = SS_DISABLE;
1029 	td->td_sigstk.ss_size = 0;
1030 	td->td_sigstk.ss_sp = 0;
1031 	td->td_pflags &= ~TDP_ALTSTACK;
1032 	/*
1033 	 * Reset no zombies if child dies flag as Solaris does.
1034 	 */
1035 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1036 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1037 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1038 	mtx_unlock(&ps->ps_mtx);
1039 }
1040 
1041 /*
1042  * kern_sigprocmask()
1043  *
1044  *	Manipulate signal mask.
1045  */
1046 int
1047 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1048     int flags)
1049 {
1050 	sigset_t new_block, oset1;
1051 	struct proc *p;
1052 	int error;
1053 
1054 	p = td->td_proc;
1055 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1056 		PROC_LOCK_ASSERT(p, MA_OWNED);
1057 	else
1058 		PROC_LOCK(p);
1059 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1060 	    ? MA_OWNED : MA_NOTOWNED);
1061 	if (oset != NULL)
1062 		*oset = td->td_sigmask;
1063 
1064 	error = 0;
1065 	if (set != NULL) {
1066 		switch (how) {
1067 		case SIG_BLOCK:
1068 			SIG_CANTMASK(*set);
1069 			oset1 = td->td_sigmask;
1070 			SIGSETOR(td->td_sigmask, *set);
1071 			new_block = td->td_sigmask;
1072 			SIGSETNAND(new_block, oset1);
1073 			break;
1074 		case SIG_UNBLOCK:
1075 			SIGSETNAND(td->td_sigmask, *set);
1076 			signotify(td);
1077 			goto out;
1078 		case SIG_SETMASK:
1079 			SIG_CANTMASK(*set);
1080 			oset1 = td->td_sigmask;
1081 			if (flags & SIGPROCMASK_OLD)
1082 				SIGSETLO(td->td_sigmask, *set);
1083 			else
1084 				td->td_sigmask = *set;
1085 			new_block = td->td_sigmask;
1086 			SIGSETNAND(new_block, oset1);
1087 			signotify(td);
1088 			break;
1089 		default:
1090 			error = EINVAL;
1091 			goto out;
1092 		}
1093 
1094 		/*
1095 		 * The new_block set contains signals that were not previously
1096 		 * blocked, but are blocked now.
1097 		 *
1098 		 * In case we block any signal that was not previously blocked
1099 		 * for td, and process has the signal pending, try to schedule
1100 		 * signal delivery to some thread that does not block the
1101 		 * signal, possibly waking it up.
1102 		 */
1103 		if (p->p_numthreads != 1)
1104 			reschedule_signals(p, new_block, flags);
1105 	}
1106 
1107 out:
1108 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1109 		PROC_UNLOCK(p);
1110 	return (error);
1111 }
1112 
1113 #ifndef _SYS_SYSPROTO_H_
1114 struct sigprocmask_args {
1115 	int	how;
1116 	const sigset_t *set;
1117 	sigset_t *oset;
1118 };
1119 #endif
1120 int
1121 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1122 {
1123 	sigset_t set, oset;
1124 	sigset_t *setp, *osetp;
1125 	int error;
1126 
1127 	setp = (uap->set != NULL) ? &set : NULL;
1128 	osetp = (uap->oset != NULL) ? &oset : NULL;
1129 	if (setp) {
1130 		error = copyin(uap->set, setp, sizeof(set));
1131 		if (error)
1132 			return (error);
1133 	}
1134 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1135 	if (osetp && !error) {
1136 		error = copyout(osetp, uap->oset, sizeof(oset));
1137 	}
1138 	return (error);
1139 }
1140 
1141 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1142 #ifndef _SYS_SYSPROTO_H_
1143 struct osigprocmask_args {
1144 	int	how;
1145 	osigset_t mask;
1146 };
1147 #endif
1148 int
1149 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1150 {
1151 	sigset_t set, oset;
1152 	int error;
1153 
1154 	OSIG2SIG(uap->mask, set);
1155 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1156 	SIG2OSIG(oset, td->td_retval[0]);
1157 	return (error);
1158 }
1159 #endif /* COMPAT_43 */
1160 
1161 int
1162 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1163 {
1164 	ksiginfo_t ksi;
1165 	sigset_t set;
1166 	int error;
1167 
1168 	error = copyin(uap->set, &set, sizeof(set));
1169 	if (error) {
1170 		td->td_retval[0] = error;
1171 		return (0);
1172 	}
1173 
1174 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1175 	if (error) {
1176 		/*
1177 		 * sigwait() function shall not return EINTR, but
1178 		 * the syscall does.  Non-ancient libc provides the
1179 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1180 		 * is used by libthr to handle required cancellation
1181 		 * point in the sigwait().
1182 		 */
1183 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1184 			return (ERESTART);
1185 		td->td_retval[0] = error;
1186 		return (0);
1187 	}
1188 
1189 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1190 	td->td_retval[0] = error;
1191 	return (0);
1192 }
1193 
1194 int
1195 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1196 {
1197 	struct timespec ts;
1198 	struct timespec *timeout;
1199 	sigset_t set;
1200 	ksiginfo_t ksi;
1201 	int error;
1202 
1203 	if (uap->timeout) {
1204 		error = copyin(uap->timeout, &ts, sizeof(ts));
1205 		if (error)
1206 			return (error);
1207 
1208 		timeout = &ts;
1209 	} else
1210 		timeout = NULL;
1211 
1212 	error = copyin(uap->set, &set, sizeof(set));
1213 	if (error)
1214 		return (error);
1215 
1216 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1217 	if (error)
1218 		return (error);
1219 
1220 	if (uap->info)
1221 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1222 
1223 	if (error == 0)
1224 		td->td_retval[0] = ksi.ksi_signo;
1225 	return (error);
1226 }
1227 
1228 int
1229 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1230 {
1231 	ksiginfo_t ksi;
1232 	sigset_t set;
1233 	int error;
1234 
1235 	error = copyin(uap->set, &set, sizeof(set));
1236 	if (error)
1237 		return (error);
1238 
1239 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1240 	if (error)
1241 		return (error);
1242 
1243 	if (uap->info)
1244 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1245 
1246 	if (error == 0)
1247 		td->td_retval[0] = ksi.ksi_signo;
1248 	return (error);
1249 }
1250 
1251 static void
1252 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1253 {
1254 	struct thread *thr;
1255 
1256 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1257 		if (thr == td)
1258 			thr->td_si = *si;
1259 		else
1260 			thr->td_si.si_signo = 0;
1261 	}
1262 }
1263 
1264 int
1265 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1266 	struct timespec *timeout)
1267 {
1268 	struct sigacts *ps;
1269 	sigset_t saved_mask, new_block;
1270 	struct proc *p;
1271 	int error, sig, timo, timevalid = 0;
1272 	struct timespec rts, ets, ts;
1273 	struct timeval tv;
1274 	bool traced;
1275 
1276 	p = td->td_proc;
1277 	error = 0;
1278 	ets.tv_sec = 0;
1279 	ets.tv_nsec = 0;
1280 	traced = false;
1281 
1282 	/* Ensure the sigfastblock value is up to date. */
1283 	sigfastblock_fetch(td);
1284 
1285 	if (timeout != NULL) {
1286 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1287 			timevalid = 1;
1288 			getnanouptime(&rts);
1289 			timespecadd(&rts, timeout, &ets);
1290 		}
1291 	}
1292 	ksiginfo_init(ksi);
1293 	/* Some signals can not be waited for. */
1294 	SIG_CANTMASK(waitset);
1295 	ps = p->p_sigacts;
1296 	PROC_LOCK(p);
1297 	saved_mask = td->td_sigmask;
1298 	SIGSETNAND(td->td_sigmask, waitset);
1299 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1300 	    !kern_sig_discard_ign)
1301 		td->td_pflags2 |= TDP2_SIGWAIT;
1302 	for (;;) {
1303 		mtx_lock(&ps->ps_mtx);
1304 		sig = cursig(td);
1305 		mtx_unlock(&ps->ps_mtx);
1306 		KASSERT(sig >= 0, ("sig %d", sig));
1307 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1308 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1309 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1310 				error = 0;
1311 				break;
1312 			}
1313 		}
1314 
1315 		if (error != 0)
1316 			break;
1317 
1318 		/*
1319 		 * POSIX says this must be checked after looking for pending
1320 		 * signals.
1321 		 */
1322 		if (timeout != NULL) {
1323 			if (!timevalid) {
1324 				error = EINVAL;
1325 				break;
1326 			}
1327 			getnanouptime(&rts);
1328 			if (timespeccmp(&rts, &ets, >=)) {
1329 				error = EAGAIN;
1330 				break;
1331 			}
1332 			timespecsub(&ets, &rts, &ts);
1333 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1334 			timo = tvtohz(&tv);
1335 		} else {
1336 			timo = 0;
1337 		}
1338 
1339 		if (traced) {
1340 			error = EINTR;
1341 			break;
1342 		}
1343 
1344 		error = msleep(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1345 		    "sigwait", timo);
1346 
1347 		/* The syscalls can not be restarted. */
1348 		if (error == ERESTART)
1349 			error = EINTR;
1350 
1351 		/* We will calculate timeout by ourself. */
1352 		if (timeout != NULL && error == EAGAIN)
1353 			error = 0;
1354 
1355 		/*
1356 		 * If PTRACE_SCE or PTRACE_SCX were set after
1357 		 * userspace entered the syscall, return spurious
1358 		 * EINTR after wait was done.  Only do this as last
1359 		 * resort after rechecking for possible queued signals
1360 		 * and expired timeouts.
1361 		 */
1362 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1363 			traced = true;
1364 	}
1365 	td->td_pflags2 &= ~TDP2_SIGWAIT;
1366 
1367 	new_block = saved_mask;
1368 	SIGSETNAND(new_block, td->td_sigmask);
1369 	td->td_sigmask = saved_mask;
1370 	/*
1371 	 * Fewer signals can be delivered to us, reschedule signal
1372 	 * notification.
1373 	 */
1374 	if (p->p_numthreads != 1)
1375 		reschedule_signals(p, new_block, 0);
1376 
1377 	if (error == 0) {
1378 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1379 
1380 		if (ksi->ksi_code == SI_TIMER)
1381 			itimer_accept(p, ksi->ksi_timerid, ksi);
1382 
1383 #ifdef KTRACE
1384 		if (KTRPOINT(td, KTR_PSIG)) {
1385 			sig_t action;
1386 
1387 			mtx_lock(&ps->ps_mtx);
1388 			action = ps->ps_sigact[_SIG_IDX(sig)];
1389 			mtx_unlock(&ps->ps_mtx);
1390 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1391 		}
1392 #endif
1393 		if (sig == SIGKILL) {
1394 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1395 			sigexit(td, sig);
1396 		}
1397 	}
1398 	PROC_UNLOCK(p);
1399 	return (error);
1400 }
1401 
1402 #ifndef _SYS_SYSPROTO_H_
1403 struct sigpending_args {
1404 	sigset_t	*set;
1405 };
1406 #endif
1407 int
1408 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1409 {
1410 	struct proc *p = td->td_proc;
1411 	sigset_t pending;
1412 
1413 	PROC_LOCK(p);
1414 	pending = p->p_sigqueue.sq_signals;
1415 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1416 	PROC_UNLOCK(p);
1417 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1418 }
1419 
1420 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1421 #ifndef _SYS_SYSPROTO_H_
1422 struct osigpending_args {
1423 	int	dummy;
1424 };
1425 #endif
1426 int
1427 osigpending(struct thread *td, struct osigpending_args *uap)
1428 {
1429 	struct proc *p = td->td_proc;
1430 	sigset_t pending;
1431 
1432 	PROC_LOCK(p);
1433 	pending = p->p_sigqueue.sq_signals;
1434 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1435 	PROC_UNLOCK(p);
1436 	SIG2OSIG(pending, td->td_retval[0]);
1437 	return (0);
1438 }
1439 #endif /* COMPAT_43 */
1440 
1441 #if defined(COMPAT_43)
1442 /*
1443  * Generalized interface signal handler, 4.3-compatible.
1444  */
1445 #ifndef _SYS_SYSPROTO_H_
1446 struct osigvec_args {
1447 	int	signum;
1448 	struct	sigvec *nsv;
1449 	struct	sigvec *osv;
1450 };
1451 #endif
1452 /* ARGSUSED */
1453 int
1454 osigvec(struct thread *td, struct osigvec_args *uap)
1455 {
1456 	struct sigvec vec;
1457 	struct sigaction nsa, osa;
1458 	struct sigaction *nsap, *osap;
1459 	int error;
1460 
1461 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1462 		return (EINVAL);
1463 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1464 	osap = (uap->osv != NULL) ? &osa : NULL;
1465 	if (nsap) {
1466 		error = copyin(uap->nsv, &vec, sizeof(vec));
1467 		if (error)
1468 			return (error);
1469 		nsap->sa_handler = vec.sv_handler;
1470 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1471 		nsap->sa_flags = vec.sv_flags;
1472 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1473 	}
1474 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1475 	if (osap && !error) {
1476 		vec.sv_handler = osap->sa_handler;
1477 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1478 		vec.sv_flags = osap->sa_flags;
1479 		vec.sv_flags &= ~SA_NOCLDWAIT;
1480 		vec.sv_flags ^= SA_RESTART;
1481 		error = copyout(&vec, uap->osv, sizeof(vec));
1482 	}
1483 	return (error);
1484 }
1485 
1486 #ifndef _SYS_SYSPROTO_H_
1487 struct osigblock_args {
1488 	int	mask;
1489 };
1490 #endif
1491 int
1492 osigblock(struct thread *td, struct osigblock_args *uap)
1493 {
1494 	sigset_t set, oset;
1495 
1496 	OSIG2SIG(uap->mask, set);
1497 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1498 	SIG2OSIG(oset, td->td_retval[0]);
1499 	return (0);
1500 }
1501 
1502 #ifndef _SYS_SYSPROTO_H_
1503 struct osigsetmask_args {
1504 	int	mask;
1505 };
1506 #endif
1507 int
1508 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1509 {
1510 	sigset_t set, oset;
1511 
1512 	OSIG2SIG(uap->mask, set);
1513 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1514 	SIG2OSIG(oset, td->td_retval[0]);
1515 	return (0);
1516 }
1517 #endif /* COMPAT_43 */
1518 
1519 /*
1520  * Suspend calling thread until signal, providing mask to be set in the
1521  * meantime.
1522  */
1523 #ifndef _SYS_SYSPROTO_H_
1524 struct sigsuspend_args {
1525 	const sigset_t *sigmask;
1526 };
1527 #endif
1528 /* ARGSUSED */
1529 int
1530 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1531 {
1532 	sigset_t mask;
1533 	int error;
1534 
1535 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1536 	if (error)
1537 		return (error);
1538 	return (kern_sigsuspend(td, mask));
1539 }
1540 
1541 int
1542 kern_sigsuspend(struct thread *td, sigset_t mask)
1543 {
1544 	struct proc *p = td->td_proc;
1545 	int has_sig, sig;
1546 
1547 	/* Ensure the sigfastblock value is up to date. */
1548 	sigfastblock_fetch(td);
1549 
1550 	/*
1551 	 * When returning from sigsuspend, we want
1552 	 * the old mask to be restored after the
1553 	 * signal handler has finished.  Thus, we
1554 	 * save it here and mark the sigacts structure
1555 	 * to indicate this.
1556 	 */
1557 	PROC_LOCK(p);
1558 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1559 	    SIGPROCMASK_PROC_LOCKED);
1560 	td->td_pflags |= TDP_OLDMASK;
1561 
1562 	/*
1563 	 * Process signals now. Otherwise, we can get spurious wakeup
1564 	 * due to signal entered process queue, but delivered to other
1565 	 * thread. But sigsuspend should return only on signal
1566 	 * delivery.
1567 	 */
1568 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1569 	for (has_sig = 0; !has_sig;) {
1570 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1571 			0) == 0)
1572 			/* void */;
1573 		thread_suspend_check(0);
1574 		mtx_lock(&p->p_sigacts->ps_mtx);
1575 		while ((sig = cursig(td)) != 0) {
1576 			KASSERT(sig >= 0, ("sig %d", sig));
1577 			has_sig += postsig(sig);
1578 		}
1579 		mtx_unlock(&p->p_sigacts->ps_mtx);
1580 
1581 		/*
1582 		 * If PTRACE_SCE or PTRACE_SCX were set after
1583 		 * userspace entered the syscall, return spurious
1584 		 * EINTR.
1585 		 */
1586 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1587 			has_sig += 1;
1588 	}
1589 	PROC_UNLOCK(p);
1590 	td->td_errno = EINTR;
1591 	td->td_pflags |= TDP_NERRNO;
1592 	return (EJUSTRETURN);
1593 }
1594 
1595 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1596 /*
1597  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1598  * convention: libc stub passes mask, not pointer, to save a copyin.
1599  */
1600 #ifndef _SYS_SYSPROTO_H_
1601 struct osigsuspend_args {
1602 	osigset_t mask;
1603 };
1604 #endif
1605 /* ARGSUSED */
1606 int
1607 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1608 {
1609 	sigset_t mask;
1610 
1611 	OSIG2SIG(uap->mask, mask);
1612 	return (kern_sigsuspend(td, mask));
1613 }
1614 #endif /* COMPAT_43 */
1615 
1616 #if defined(COMPAT_43)
1617 #ifndef _SYS_SYSPROTO_H_
1618 struct osigstack_args {
1619 	struct	sigstack *nss;
1620 	struct	sigstack *oss;
1621 };
1622 #endif
1623 /* ARGSUSED */
1624 int
1625 osigstack(struct thread *td, struct osigstack_args *uap)
1626 {
1627 	struct sigstack nss, oss;
1628 	int error = 0;
1629 
1630 	if (uap->nss != NULL) {
1631 		error = copyin(uap->nss, &nss, sizeof(nss));
1632 		if (error)
1633 			return (error);
1634 	}
1635 	oss.ss_sp = td->td_sigstk.ss_sp;
1636 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1637 	if (uap->nss != NULL) {
1638 		td->td_sigstk.ss_sp = nss.ss_sp;
1639 		td->td_sigstk.ss_size = 0;
1640 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1641 		td->td_pflags |= TDP_ALTSTACK;
1642 	}
1643 	if (uap->oss != NULL)
1644 		error = copyout(&oss, uap->oss, sizeof(oss));
1645 
1646 	return (error);
1647 }
1648 #endif /* COMPAT_43 */
1649 
1650 #ifndef _SYS_SYSPROTO_H_
1651 struct sigaltstack_args {
1652 	stack_t	*ss;
1653 	stack_t	*oss;
1654 };
1655 #endif
1656 /* ARGSUSED */
1657 int
1658 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1659 {
1660 	stack_t ss, oss;
1661 	int error;
1662 
1663 	if (uap->ss != NULL) {
1664 		error = copyin(uap->ss, &ss, sizeof(ss));
1665 		if (error)
1666 			return (error);
1667 	}
1668 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1669 	    (uap->oss != NULL) ? &oss : NULL);
1670 	if (error)
1671 		return (error);
1672 	if (uap->oss != NULL)
1673 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1674 	return (error);
1675 }
1676 
1677 int
1678 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1679 {
1680 	struct proc *p = td->td_proc;
1681 	int oonstack;
1682 
1683 	oonstack = sigonstack(cpu_getstack(td));
1684 
1685 	if (oss != NULL) {
1686 		*oss = td->td_sigstk;
1687 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1688 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1689 	}
1690 
1691 	if (ss != NULL) {
1692 		if (oonstack)
1693 			return (EPERM);
1694 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1695 			return (EINVAL);
1696 		if (!(ss->ss_flags & SS_DISABLE)) {
1697 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1698 				return (ENOMEM);
1699 
1700 			td->td_sigstk = *ss;
1701 			td->td_pflags |= TDP_ALTSTACK;
1702 		} else {
1703 			td->td_pflags &= ~TDP_ALTSTACK;
1704 		}
1705 	}
1706 	return (0);
1707 }
1708 
1709 struct killpg1_ctx {
1710 	struct thread *td;
1711 	ksiginfo_t *ksi;
1712 	int sig;
1713 	bool sent;
1714 	bool found;
1715 	int ret;
1716 };
1717 
1718 static void
1719 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1720 {
1721 	int err;
1722 
1723 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1724 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1725 		return;
1726 	PROC_LOCK(p);
1727 	err = p_cansignal(arg->td, p, arg->sig);
1728 	if (err == 0 && arg->sig != 0)
1729 		pksignal(p, arg->sig, arg->ksi);
1730 	PROC_UNLOCK(p);
1731 	if (err != ESRCH)
1732 		arg->found = true;
1733 	if (err == 0)
1734 		arg->sent = true;
1735 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1736 		arg->ret = err;
1737 }
1738 
1739 /*
1740  * Common code for kill process group/broadcast kill.
1741  * cp is calling process.
1742  */
1743 static int
1744 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1745 {
1746 	struct proc *p;
1747 	struct pgrp *pgrp;
1748 	struct killpg1_ctx arg;
1749 
1750 	arg.td = td;
1751 	arg.ksi = ksi;
1752 	arg.sig = sig;
1753 	arg.sent = false;
1754 	arg.found = false;
1755 	arg.ret = 0;
1756 	if (all) {
1757 		/*
1758 		 * broadcast
1759 		 */
1760 		sx_slock(&allproc_lock);
1761 		FOREACH_PROC_IN_SYSTEM(p) {
1762 			killpg1_sendsig(p, true, &arg);
1763 		}
1764 		sx_sunlock(&allproc_lock);
1765 	} else {
1766 		sx_slock(&proctree_lock);
1767 		if (pgid == 0) {
1768 			/*
1769 			 * zero pgid means send to my process group.
1770 			 */
1771 			pgrp = td->td_proc->p_pgrp;
1772 			PGRP_LOCK(pgrp);
1773 		} else {
1774 			pgrp = pgfind(pgid);
1775 			if (pgrp == NULL) {
1776 				sx_sunlock(&proctree_lock);
1777 				return (ESRCH);
1778 			}
1779 		}
1780 		sx_sunlock(&proctree_lock);
1781 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1782 			killpg1_sendsig(p, false, &arg);
1783 		}
1784 		PGRP_UNLOCK(pgrp);
1785 	}
1786 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1787 	if (arg.ret == 0 && !arg.sent)
1788 		arg.ret = arg.found ? EPERM : ESRCH;
1789 	return (arg.ret);
1790 }
1791 
1792 #ifndef _SYS_SYSPROTO_H_
1793 struct kill_args {
1794 	int	pid;
1795 	int	signum;
1796 };
1797 #endif
1798 /* ARGSUSED */
1799 int
1800 sys_kill(struct thread *td, struct kill_args *uap)
1801 {
1802 
1803 	return (kern_kill(td, uap->pid, uap->signum));
1804 }
1805 
1806 int
1807 kern_kill(struct thread *td, pid_t pid, int signum)
1808 {
1809 	ksiginfo_t ksi;
1810 	struct proc *p;
1811 	int error;
1812 
1813 	/*
1814 	 * A process in capability mode can send signals only to himself.
1815 	 * The main rationale behind this is that abort(3) is implemented as
1816 	 * kill(getpid(), SIGABRT).
1817 	 */
1818 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1819 		return (ECAPMODE);
1820 
1821 	AUDIT_ARG_SIGNUM(signum);
1822 	AUDIT_ARG_PID(pid);
1823 	if ((u_int)signum > _SIG_MAXSIG)
1824 		return (EINVAL);
1825 
1826 	ksiginfo_init(&ksi);
1827 	ksi.ksi_signo = signum;
1828 	ksi.ksi_code = SI_USER;
1829 	ksi.ksi_pid = td->td_proc->p_pid;
1830 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1831 
1832 	if (pid > 0) {
1833 		/* kill single process */
1834 		if ((p = pfind_any(pid)) == NULL)
1835 			return (ESRCH);
1836 		AUDIT_ARG_PROCESS(p);
1837 		error = p_cansignal(td, p, signum);
1838 		if (error == 0 && signum)
1839 			pksignal(p, signum, &ksi);
1840 		PROC_UNLOCK(p);
1841 		return (error);
1842 	}
1843 	switch (pid) {
1844 	case -1:		/* broadcast signal */
1845 		return (killpg1(td, signum, 0, 1, &ksi));
1846 	case 0:			/* signal own process group */
1847 		return (killpg1(td, signum, 0, 0, &ksi));
1848 	default:		/* negative explicit process group */
1849 		return (killpg1(td, signum, -pid, 0, &ksi));
1850 	}
1851 	/* NOTREACHED */
1852 }
1853 
1854 int
1855 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1856 {
1857 	struct proc *p;
1858 	int error;
1859 
1860 	AUDIT_ARG_SIGNUM(uap->signum);
1861 	AUDIT_ARG_FD(uap->fd);
1862 	if ((u_int)uap->signum > _SIG_MAXSIG)
1863 		return (EINVAL);
1864 
1865 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1866 	if (error)
1867 		return (error);
1868 	AUDIT_ARG_PROCESS(p);
1869 	error = p_cansignal(td, p, uap->signum);
1870 	if (error == 0 && uap->signum)
1871 		kern_psignal(p, uap->signum);
1872 	PROC_UNLOCK(p);
1873 	return (error);
1874 }
1875 
1876 #if defined(COMPAT_43)
1877 #ifndef _SYS_SYSPROTO_H_
1878 struct okillpg_args {
1879 	int	pgid;
1880 	int	signum;
1881 };
1882 #endif
1883 /* ARGSUSED */
1884 int
1885 okillpg(struct thread *td, struct okillpg_args *uap)
1886 {
1887 	ksiginfo_t ksi;
1888 
1889 	AUDIT_ARG_SIGNUM(uap->signum);
1890 	AUDIT_ARG_PID(uap->pgid);
1891 	if ((u_int)uap->signum > _SIG_MAXSIG)
1892 		return (EINVAL);
1893 
1894 	ksiginfo_init(&ksi);
1895 	ksi.ksi_signo = uap->signum;
1896 	ksi.ksi_code = SI_USER;
1897 	ksi.ksi_pid = td->td_proc->p_pid;
1898 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1899 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1900 }
1901 #endif /* COMPAT_43 */
1902 
1903 #ifndef _SYS_SYSPROTO_H_
1904 struct sigqueue_args {
1905 	pid_t pid;
1906 	int signum;
1907 	/* union sigval */ void *value;
1908 };
1909 #endif
1910 int
1911 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1912 {
1913 	union sigval sv;
1914 
1915 	sv.sival_ptr = uap->value;
1916 
1917 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1918 }
1919 
1920 int
1921 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1922 {
1923 	ksiginfo_t ksi;
1924 	struct proc *p;
1925 	int error;
1926 
1927 	if ((u_int)signum > _SIG_MAXSIG)
1928 		return (EINVAL);
1929 
1930 	/*
1931 	 * Specification says sigqueue can only send signal to
1932 	 * single process.
1933 	 */
1934 	if (pid <= 0)
1935 		return (EINVAL);
1936 
1937 	if ((p = pfind_any(pid)) == NULL)
1938 		return (ESRCH);
1939 	error = p_cansignal(td, p, signum);
1940 	if (error == 0 && signum != 0) {
1941 		ksiginfo_init(&ksi);
1942 		ksi.ksi_flags = KSI_SIGQ;
1943 		ksi.ksi_signo = signum;
1944 		ksi.ksi_code = SI_QUEUE;
1945 		ksi.ksi_pid = td->td_proc->p_pid;
1946 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1947 		ksi.ksi_value = *value;
1948 		error = pksignal(p, ksi.ksi_signo, &ksi);
1949 	}
1950 	PROC_UNLOCK(p);
1951 	return (error);
1952 }
1953 
1954 /*
1955  * Send a signal to a process group.
1956  */
1957 void
1958 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1959 {
1960 	struct pgrp *pgrp;
1961 
1962 	if (pgid != 0) {
1963 		sx_slock(&proctree_lock);
1964 		pgrp = pgfind(pgid);
1965 		sx_sunlock(&proctree_lock);
1966 		if (pgrp != NULL) {
1967 			pgsignal(pgrp, sig, 0, ksi);
1968 			PGRP_UNLOCK(pgrp);
1969 		}
1970 	}
1971 }
1972 
1973 /*
1974  * Send a signal to a process group.  If checktty is 1,
1975  * limit to members which have a controlling terminal.
1976  */
1977 void
1978 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1979 {
1980 	struct proc *p;
1981 
1982 	if (pgrp) {
1983 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1984 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1985 			PROC_LOCK(p);
1986 			if (p->p_state == PRS_NORMAL &&
1987 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1988 				pksignal(p, sig, ksi);
1989 			PROC_UNLOCK(p);
1990 		}
1991 	}
1992 }
1993 
1994 /*
1995  * Recalculate the signal mask and reset the signal disposition after
1996  * usermode frame for delivery is formed.  Should be called after
1997  * mach-specific routine, because sysent->sv_sendsig() needs correct
1998  * ps_siginfo and signal mask.
1999  */
2000 static void
2001 postsig_done(int sig, struct thread *td, struct sigacts *ps)
2002 {
2003 	sigset_t mask;
2004 
2005 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2006 	td->td_ru.ru_nsignals++;
2007 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
2008 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
2009 		SIGADDSET(mask, sig);
2010 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2011 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2012 	if (SIGISMEMBER(ps->ps_sigreset, sig))
2013 		sigdflt(ps, sig);
2014 }
2015 
2016 /*
2017  * Send a signal caused by a trap to the current thread.  If it will be
2018  * caught immediately, deliver it with correct code.  Otherwise, post it
2019  * normally.
2020  */
2021 void
2022 trapsignal(struct thread *td, ksiginfo_t *ksi)
2023 {
2024 	struct sigacts *ps;
2025 	struct proc *p;
2026 	sigset_t sigmask;
2027 	int code, sig;
2028 
2029 	p = td->td_proc;
2030 	sig = ksi->ksi_signo;
2031 	code = ksi->ksi_code;
2032 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2033 
2034 	sigfastblock_fetch(td);
2035 	PROC_LOCK(p);
2036 	ps = p->p_sigacts;
2037 	mtx_lock(&ps->ps_mtx);
2038 	sigmask = td->td_sigmask;
2039 	if (td->td_sigblock_val != 0)
2040 		SIGSETOR(sigmask, fastblock_mask);
2041 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2042 	    !SIGISMEMBER(sigmask, sig)) {
2043 #ifdef KTRACE
2044 		if (KTRPOINT(curthread, KTR_PSIG))
2045 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2046 			    &td->td_sigmask, code);
2047 #endif
2048 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2049 				ksi, &td->td_sigmask);
2050 		postsig_done(sig, td, ps);
2051 		mtx_unlock(&ps->ps_mtx);
2052 	} else {
2053 		/*
2054 		 * Avoid a possible infinite loop if the thread
2055 		 * masking the signal or process is ignoring the
2056 		 * signal.
2057 		 */
2058 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2059 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2060 			SIGDELSET(td->td_sigmask, sig);
2061 			SIGDELSET(ps->ps_sigcatch, sig);
2062 			SIGDELSET(ps->ps_sigignore, sig);
2063 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2064 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2065 			td->td_sigblock_val = 0;
2066 		}
2067 		mtx_unlock(&ps->ps_mtx);
2068 		p->p_sig = sig;		/* XXX to verify code */
2069 		tdsendsignal(p, td, sig, ksi);
2070 	}
2071 	PROC_UNLOCK(p);
2072 }
2073 
2074 static struct thread *
2075 sigtd(struct proc *p, int sig, bool fast_sigblock)
2076 {
2077 	struct thread *td, *signal_td;
2078 
2079 	PROC_LOCK_ASSERT(p, MA_OWNED);
2080 	MPASS(!fast_sigblock || p == curproc);
2081 
2082 	/*
2083 	 * Check if current thread can handle the signal without
2084 	 * switching context to another thread.
2085 	 */
2086 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2087 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2088 		return (curthread);
2089 	signal_td = NULL;
2090 	FOREACH_THREAD_IN_PROC(p, td) {
2091 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2092 		    td != curthread || td->td_sigblock_val == 0)) {
2093 			signal_td = td;
2094 			break;
2095 		}
2096 	}
2097 	if (signal_td == NULL)
2098 		signal_td = FIRST_THREAD_IN_PROC(p);
2099 	return (signal_td);
2100 }
2101 
2102 /*
2103  * Send the signal to the process.  If the signal has an action, the action
2104  * is usually performed by the target process rather than the caller; we add
2105  * the signal to the set of pending signals for the process.
2106  *
2107  * Exceptions:
2108  *   o When a stop signal is sent to a sleeping process that takes the
2109  *     default action, the process is stopped without awakening it.
2110  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2111  *     regardless of the signal action (eg, blocked or ignored).
2112  *
2113  * Other ignored signals are discarded immediately.
2114  *
2115  * NB: This function may be entered from the debugger via the "kill" DDB
2116  * command.  There is little that can be done to mitigate the possibly messy
2117  * side effects of this unwise possibility.
2118  */
2119 void
2120 kern_psignal(struct proc *p, int sig)
2121 {
2122 	ksiginfo_t ksi;
2123 
2124 	ksiginfo_init(&ksi);
2125 	ksi.ksi_signo = sig;
2126 	ksi.ksi_code = SI_KERNEL;
2127 	(void) tdsendsignal(p, NULL, sig, &ksi);
2128 }
2129 
2130 int
2131 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2132 {
2133 
2134 	return (tdsendsignal(p, NULL, sig, ksi));
2135 }
2136 
2137 /* Utility function for finding a thread to send signal event to. */
2138 int
2139 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2140 {
2141 	struct thread *td;
2142 
2143 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2144 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2145 		if (td == NULL)
2146 			return (ESRCH);
2147 		*ttd = td;
2148 	} else {
2149 		*ttd = NULL;
2150 		PROC_LOCK(p);
2151 	}
2152 	return (0);
2153 }
2154 
2155 void
2156 tdsignal(struct thread *td, int sig)
2157 {
2158 	ksiginfo_t ksi;
2159 
2160 	ksiginfo_init(&ksi);
2161 	ksi.ksi_signo = sig;
2162 	ksi.ksi_code = SI_KERNEL;
2163 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2164 }
2165 
2166 void
2167 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2168 {
2169 
2170 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2171 }
2172 
2173 int
2174 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2175 {
2176 	sig_t action;
2177 	sigqueue_t *sigqueue;
2178 	int prop;
2179 	struct sigacts *ps;
2180 	int intrval;
2181 	int ret = 0;
2182 	int wakeup_swapper;
2183 
2184 	MPASS(td == NULL || p == td->td_proc);
2185 	PROC_LOCK_ASSERT(p, MA_OWNED);
2186 
2187 	if (!_SIG_VALID(sig))
2188 		panic("%s(): invalid signal %d", __func__, sig);
2189 
2190 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2191 
2192 	/*
2193 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2194 	 */
2195 	if (p->p_state == PRS_ZOMBIE) {
2196 		if (ksi && (ksi->ksi_flags & KSI_INS))
2197 			ksiginfo_tryfree(ksi);
2198 		return (ret);
2199 	}
2200 
2201 	ps = p->p_sigacts;
2202 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2203 	prop = sigprop(sig);
2204 
2205 	if (td == NULL) {
2206 		td = sigtd(p, sig, false);
2207 		sigqueue = &p->p_sigqueue;
2208 	} else
2209 		sigqueue = &td->td_sigqueue;
2210 
2211 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2212 
2213 	/*
2214 	 * If the signal is being ignored, then we forget about it
2215 	 * immediately, except when the target process executes
2216 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2217 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2218 	 */
2219 	mtx_lock(&ps->ps_mtx);
2220 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2221 		if (kern_sig_discard_ign &&
2222 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2223 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2224 
2225 			mtx_unlock(&ps->ps_mtx);
2226 			if (ksi && (ksi->ksi_flags & KSI_INS))
2227 				ksiginfo_tryfree(ksi);
2228 			return (ret);
2229 		} else {
2230 			action = SIG_CATCH;
2231 		}
2232 	} else if (SIGISMEMBER(td->td_sigmask, sig))
2233 		action = SIG_HOLD;
2234 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2235 		action = SIG_CATCH;
2236 	else
2237 		action = SIG_DFL;
2238 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2239 		intrval = EINTR;
2240 	else
2241 		intrval = ERESTART;
2242 	mtx_unlock(&ps->ps_mtx);
2243 
2244 	if (prop & SIGPROP_CONT)
2245 		sigqueue_delete_stopmask_proc(p);
2246 	else if (prop & SIGPROP_STOP) {
2247 		/*
2248 		 * If sending a tty stop signal to a member of an orphaned
2249 		 * process group, discard the signal here if the action
2250 		 * is default; don't stop the process below if sleeping,
2251 		 * and don't clear any pending SIGCONT.
2252 		 */
2253 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2254 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2255 		    action == SIG_DFL) {
2256 			if (ksi && (ksi->ksi_flags & KSI_INS))
2257 				ksiginfo_tryfree(ksi);
2258 			return (ret);
2259 		}
2260 		sigqueue_delete_proc(p, SIGCONT);
2261 		if (p->p_flag & P_CONTINUED) {
2262 			p->p_flag &= ~P_CONTINUED;
2263 			PROC_LOCK(p->p_pptr);
2264 			sigqueue_take(p->p_ksi);
2265 			PROC_UNLOCK(p->p_pptr);
2266 		}
2267 	}
2268 
2269 	ret = sigqueue_add(sigqueue, sig, ksi);
2270 	if (ret != 0)
2271 		return (ret);
2272 	signotify(td);
2273 	/*
2274 	 * Defer further processing for signals which are held,
2275 	 * except that stopped processes must be continued by SIGCONT.
2276 	 */
2277 	if (action == SIG_HOLD &&
2278 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2279 		return (ret);
2280 
2281 	wakeup_swapper = 0;
2282 
2283 	/*
2284 	 * Some signals have a process-wide effect and a per-thread
2285 	 * component.  Most processing occurs when the process next
2286 	 * tries to cross the user boundary, however there are some
2287 	 * times when processing needs to be done immediately, such as
2288 	 * waking up threads so that they can cross the user boundary.
2289 	 * We try to do the per-process part here.
2290 	 */
2291 	if (P_SHOULDSTOP(p)) {
2292 		KASSERT(!(p->p_flag & P_WEXIT),
2293 		    ("signal to stopped but exiting process"));
2294 		if (sig == SIGKILL) {
2295 			/*
2296 			 * If traced process is already stopped,
2297 			 * then no further action is necessary.
2298 			 */
2299 			if (p->p_flag & P_TRACED)
2300 				goto out;
2301 			/*
2302 			 * SIGKILL sets process running.
2303 			 * It will die elsewhere.
2304 			 * All threads must be restarted.
2305 			 */
2306 			p->p_flag &= ~P_STOPPED_SIG;
2307 			goto runfast;
2308 		}
2309 
2310 		if (prop & SIGPROP_CONT) {
2311 			/*
2312 			 * If traced process is already stopped,
2313 			 * then no further action is necessary.
2314 			 */
2315 			if (p->p_flag & P_TRACED)
2316 				goto out;
2317 			/*
2318 			 * If SIGCONT is default (or ignored), we continue the
2319 			 * process but don't leave the signal in sigqueue as
2320 			 * it has no further action.  If SIGCONT is held, we
2321 			 * continue the process and leave the signal in
2322 			 * sigqueue.  If the process catches SIGCONT, let it
2323 			 * handle the signal itself.  If it isn't waiting on
2324 			 * an event, it goes back to run state.
2325 			 * Otherwise, process goes back to sleep state.
2326 			 */
2327 			p->p_flag &= ~P_STOPPED_SIG;
2328 			PROC_SLOCK(p);
2329 			if (p->p_numthreads == p->p_suspcount) {
2330 				PROC_SUNLOCK(p);
2331 				p->p_flag |= P_CONTINUED;
2332 				p->p_xsig = SIGCONT;
2333 				PROC_LOCK(p->p_pptr);
2334 				childproc_continued(p);
2335 				PROC_UNLOCK(p->p_pptr);
2336 				PROC_SLOCK(p);
2337 			}
2338 			if (action == SIG_DFL) {
2339 				thread_unsuspend(p);
2340 				PROC_SUNLOCK(p);
2341 				sigqueue_delete(sigqueue, sig);
2342 				goto out_cont;
2343 			}
2344 			if (action == SIG_CATCH) {
2345 				/*
2346 				 * The process wants to catch it so it needs
2347 				 * to run at least one thread, but which one?
2348 				 */
2349 				PROC_SUNLOCK(p);
2350 				goto runfast;
2351 			}
2352 			/*
2353 			 * The signal is not ignored or caught.
2354 			 */
2355 			thread_unsuspend(p);
2356 			PROC_SUNLOCK(p);
2357 			goto out_cont;
2358 		}
2359 
2360 		if (prop & SIGPROP_STOP) {
2361 			/*
2362 			 * If traced process is already stopped,
2363 			 * then no further action is necessary.
2364 			 */
2365 			if (p->p_flag & P_TRACED)
2366 				goto out;
2367 			/*
2368 			 * Already stopped, don't need to stop again
2369 			 * (If we did the shell could get confused).
2370 			 * Just make sure the signal STOP bit set.
2371 			 */
2372 			p->p_flag |= P_STOPPED_SIG;
2373 			sigqueue_delete(sigqueue, sig);
2374 			goto out;
2375 		}
2376 
2377 		/*
2378 		 * All other kinds of signals:
2379 		 * If a thread is sleeping interruptibly, simulate a
2380 		 * wakeup so that when it is continued it will be made
2381 		 * runnable and can look at the signal.  However, don't make
2382 		 * the PROCESS runnable, leave it stopped.
2383 		 * It may run a bit until it hits a thread_suspend_check().
2384 		 */
2385 		PROC_SLOCK(p);
2386 		thread_lock(td);
2387 		if (TD_CAN_ABORT(td))
2388 			wakeup_swapper = sleepq_abort(td, intrval);
2389 		else
2390 			thread_unlock(td);
2391 		PROC_SUNLOCK(p);
2392 		goto out;
2393 		/*
2394 		 * Mutexes are short lived. Threads waiting on them will
2395 		 * hit thread_suspend_check() soon.
2396 		 */
2397 	} else if (p->p_state == PRS_NORMAL) {
2398 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2399 			tdsigwakeup(td, sig, action, intrval);
2400 			goto out;
2401 		}
2402 
2403 		MPASS(action == SIG_DFL);
2404 
2405 		if (prop & SIGPROP_STOP) {
2406 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2407 				goto out;
2408 			p->p_flag |= P_STOPPED_SIG;
2409 			p->p_xsig = sig;
2410 			PROC_SLOCK(p);
2411 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2412 			if (p->p_numthreads == p->p_suspcount) {
2413 				/*
2414 				 * only thread sending signal to another
2415 				 * process can reach here, if thread is sending
2416 				 * signal to its process, because thread does
2417 				 * not suspend itself here, p_numthreads
2418 				 * should never be equal to p_suspcount.
2419 				 */
2420 				thread_stopped(p);
2421 				PROC_SUNLOCK(p);
2422 				sigqueue_delete_proc(p, p->p_xsig);
2423 			} else
2424 				PROC_SUNLOCK(p);
2425 			goto out;
2426 		}
2427 	} else {
2428 		/* Not in "NORMAL" state. discard the signal. */
2429 		sigqueue_delete(sigqueue, sig);
2430 		goto out;
2431 	}
2432 
2433 	/*
2434 	 * The process is not stopped so we need to apply the signal to all the
2435 	 * running threads.
2436 	 */
2437 runfast:
2438 	tdsigwakeup(td, sig, action, intrval);
2439 	PROC_SLOCK(p);
2440 	thread_unsuspend(p);
2441 	PROC_SUNLOCK(p);
2442 out_cont:
2443 	itimer_proc_continue(p);
2444 	kqtimer_proc_continue(p);
2445 out:
2446 	/* If we jump here, proc slock should not be owned. */
2447 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2448 	if (wakeup_swapper)
2449 		kick_proc0();
2450 
2451 	return (ret);
2452 }
2453 
2454 /*
2455  * The force of a signal has been directed against a single
2456  * thread.  We need to see what we can do about knocking it
2457  * out of any sleep it may be in etc.
2458  */
2459 static void
2460 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2461 {
2462 	struct proc *p = td->td_proc;
2463 	int prop, wakeup_swapper;
2464 
2465 	PROC_LOCK_ASSERT(p, MA_OWNED);
2466 	prop = sigprop(sig);
2467 
2468 	PROC_SLOCK(p);
2469 	thread_lock(td);
2470 	/*
2471 	 * Bring the priority of a thread up if we want it to get
2472 	 * killed in this lifetime.  Be careful to avoid bumping the
2473 	 * priority of the idle thread, since we still allow to signal
2474 	 * kernel processes.
2475 	 */
2476 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2477 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2478 		sched_prio(td, PUSER);
2479 	if (TD_ON_SLEEPQ(td)) {
2480 		/*
2481 		 * If thread is sleeping uninterruptibly
2482 		 * we can't interrupt the sleep... the signal will
2483 		 * be noticed when the process returns through
2484 		 * trap() or syscall().
2485 		 */
2486 		if ((td->td_flags & TDF_SINTR) == 0)
2487 			goto out;
2488 		/*
2489 		 * If SIGCONT is default (or ignored) and process is
2490 		 * asleep, we are finished; the process should not
2491 		 * be awakened.
2492 		 */
2493 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2494 			thread_unlock(td);
2495 			PROC_SUNLOCK(p);
2496 			sigqueue_delete(&p->p_sigqueue, sig);
2497 			/*
2498 			 * It may be on either list in this state.
2499 			 * Remove from both for now.
2500 			 */
2501 			sigqueue_delete(&td->td_sigqueue, sig);
2502 			return;
2503 		}
2504 
2505 		/*
2506 		 * Don't awaken a sleeping thread for SIGSTOP if the
2507 		 * STOP signal is deferred.
2508 		 */
2509 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2510 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2511 			goto out;
2512 
2513 		/*
2514 		 * Give low priority threads a better chance to run.
2515 		 */
2516 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2517 			sched_prio(td, PUSER);
2518 
2519 		wakeup_swapper = sleepq_abort(td, intrval);
2520 		PROC_SUNLOCK(p);
2521 		if (wakeup_swapper)
2522 			kick_proc0();
2523 		return;
2524 	}
2525 
2526 	/*
2527 	 * Other states do nothing with the signal immediately,
2528 	 * other than kicking ourselves if we are running.
2529 	 * It will either never be noticed, or noticed very soon.
2530 	 */
2531 #ifdef SMP
2532 	if (TD_IS_RUNNING(td) && td != curthread)
2533 		forward_signal(td);
2534 #endif
2535 
2536 out:
2537 	PROC_SUNLOCK(p);
2538 	thread_unlock(td);
2539 }
2540 
2541 static void
2542 ptrace_coredump(struct thread *td)
2543 {
2544 	struct proc *p;
2545 	struct thr_coredump_req *tcq;
2546 	void *rl_cookie;
2547 
2548 	MPASS(td == curthread);
2549 	p = td->td_proc;
2550 	PROC_LOCK_ASSERT(p, MA_OWNED);
2551 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2552 		return;
2553 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2554 
2555 	tcq = td->td_coredump;
2556 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2557 
2558 	if (p->p_sysent->sv_coredump == NULL) {
2559 		tcq->tc_error = ENOSYS;
2560 		goto wake;
2561 	}
2562 
2563 	PROC_UNLOCK(p);
2564 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2565 
2566 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2567 	    tcq->tc_limit, tcq->tc_flags);
2568 
2569 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2570 	PROC_LOCK(p);
2571 wake:
2572 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2573 	td->td_coredump = NULL;
2574 	wakeup(p);
2575 }
2576 
2577 static int
2578 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2579 {
2580 	struct thread *td2;
2581 	int wakeup_swapper;
2582 
2583 	PROC_LOCK_ASSERT(p, MA_OWNED);
2584 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2585 	MPASS(sending || td == curthread);
2586 
2587 	wakeup_swapper = 0;
2588 	FOREACH_THREAD_IN_PROC(p, td2) {
2589 		thread_lock(td2);
2590 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2591 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2592 		    (td2->td_flags & TDF_SINTR)) {
2593 			if (td2->td_flags & TDF_SBDRY) {
2594 				/*
2595 				 * Once a thread is asleep with
2596 				 * TDF_SBDRY and without TDF_SERESTART
2597 				 * or TDF_SEINTR set, it should never
2598 				 * become suspended due to this check.
2599 				 */
2600 				KASSERT(!TD_IS_SUSPENDED(td2),
2601 				    ("thread with deferred stops suspended"));
2602 				if (TD_SBDRY_INTR(td2)) {
2603 					wakeup_swapper |= sleepq_abort(td2,
2604 					    TD_SBDRY_ERRNO(td2));
2605 					continue;
2606 				}
2607 			} else if (!TD_IS_SUSPENDED(td2))
2608 				thread_suspend_one(td2);
2609 		} else if (!TD_IS_SUSPENDED(td2)) {
2610 			if (sending || td != td2)
2611 				td2->td_flags |= TDF_ASTPENDING;
2612 #ifdef SMP
2613 			if (TD_IS_RUNNING(td2) && td2 != td)
2614 				forward_signal(td2);
2615 #endif
2616 		}
2617 		thread_unlock(td2);
2618 	}
2619 	return (wakeup_swapper);
2620 }
2621 
2622 /*
2623  * Stop the process for an event deemed interesting to the debugger. If si is
2624  * non-NULL, this is a signal exchange; the new signal requested by the
2625  * debugger will be returned for handling. If si is NULL, this is some other
2626  * type of interesting event. The debugger may request a signal be delivered in
2627  * that case as well, however it will be deferred until it can be handled.
2628  */
2629 int
2630 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2631 {
2632 	struct proc *p = td->td_proc;
2633 	struct thread *td2;
2634 	ksiginfo_t ksi;
2635 
2636 	PROC_LOCK_ASSERT(p, MA_OWNED);
2637 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2638 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2639 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2640 
2641 	td->td_xsig = sig;
2642 
2643 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2644 		td->td_dbgflags |= TDB_XSIG;
2645 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2646 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2647 		PROC_SLOCK(p);
2648 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2649 			if (P_KILLED(p)) {
2650 				/*
2651 				 * Ensure that, if we've been PT_KILLed, the
2652 				 * exit status reflects that. Another thread
2653 				 * may also be in ptracestop(), having just
2654 				 * received the SIGKILL, but this thread was
2655 				 * unsuspended first.
2656 				 */
2657 				td->td_dbgflags &= ~TDB_XSIG;
2658 				td->td_xsig = SIGKILL;
2659 				p->p_ptevents = 0;
2660 				break;
2661 			}
2662 			if (p->p_flag & P_SINGLE_EXIT &&
2663 			    !(td->td_dbgflags & TDB_EXIT)) {
2664 				/*
2665 				 * Ignore ptrace stops except for thread exit
2666 				 * events when the process exits.
2667 				 */
2668 				td->td_dbgflags &= ~TDB_XSIG;
2669 				PROC_SUNLOCK(p);
2670 				return (0);
2671 			}
2672 
2673 			/*
2674 			 * Make wait(2) work.  Ensure that right after the
2675 			 * attach, the thread which was decided to become the
2676 			 * leader of attach gets reported to the waiter.
2677 			 * Otherwise, just avoid overwriting another thread's
2678 			 * assignment to p_xthread.  If another thread has
2679 			 * already set p_xthread, the current thread will get
2680 			 * a chance to report itself upon the next iteration.
2681 			 */
2682 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2683 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2684 			    p->p_xthread == NULL)) {
2685 				p->p_xsig = sig;
2686 				p->p_xthread = td;
2687 
2688 				/*
2689 				 * If we are on sleepqueue already,
2690 				 * let sleepqueue code decide if it
2691 				 * needs to go sleep after attach.
2692 				 */
2693 				if (td->td_wchan == NULL)
2694 					td->td_dbgflags &= ~TDB_FSTP;
2695 
2696 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2697 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2698 				sig_suspend_threads(td, p, 0);
2699 			}
2700 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2701 				td->td_dbgflags &= ~TDB_STOPATFORK;
2702 			}
2703 stopme:
2704 			td->td_dbgflags |= TDB_SSWITCH;
2705 			thread_suspend_switch(td, p);
2706 			td->td_dbgflags &= ~TDB_SSWITCH;
2707 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2708 				PROC_SUNLOCK(p);
2709 				ptrace_coredump(td);
2710 				PROC_SLOCK(p);
2711 				goto stopme;
2712 			}
2713 			if (p->p_xthread == td)
2714 				p->p_xthread = NULL;
2715 			if (!(p->p_flag & P_TRACED))
2716 				break;
2717 			if (td->td_dbgflags & TDB_SUSPEND) {
2718 				if (p->p_flag & P_SINGLE_EXIT)
2719 					break;
2720 				goto stopme;
2721 			}
2722 		}
2723 		PROC_SUNLOCK(p);
2724 	}
2725 
2726 	if (si != NULL && sig == td->td_xsig) {
2727 		/* Parent wants us to take the original signal unchanged. */
2728 		si->ksi_flags |= KSI_HEAD;
2729 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2730 			si->ksi_signo = 0;
2731 	} else if (td->td_xsig != 0) {
2732 		/*
2733 		 * If parent wants us to take a new signal, then it will leave
2734 		 * it in td->td_xsig; otherwise we just look for signals again.
2735 		 */
2736 		ksiginfo_init(&ksi);
2737 		ksi.ksi_signo = td->td_xsig;
2738 		ksi.ksi_flags |= KSI_PTRACE;
2739 		td2 = sigtd(p, td->td_xsig, false);
2740 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2741 		if (td != td2)
2742 			return (0);
2743 	}
2744 
2745 	return (td->td_xsig);
2746 }
2747 
2748 static void
2749 reschedule_signals(struct proc *p, sigset_t block, int flags)
2750 {
2751 	struct sigacts *ps;
2752 	struct thread *td;
2753 	int sig;
2754 	bool fastblk, pslocked;
2755 
2756 	PROC_LOCK_ASSERT(p, MA_OWNED);
2757 	ps = p->p_sigacts;
2758 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2759 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2760 	if (SIGISEMPTY(p->p_siglist))
2761 		return;
2762 	SIGSETAND(block, p->p_siglist);
2763 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2764 	while ((sig = sig_ffs(&block)) != 0) {
2765 		SIGDELSET(block, sig);
2766 		td = sigtd(p, sig, fastblk);
2767 
2768 		/*
2769 		 * If sigtd() selected us despite sigfastblock is
2770 		 * blocking, do not activate AST or wake us, to avoid
2771 		 * loop in AST handler.
2772 		 */
2773 		if (fastblk && td == curthread)
2774 			continue;
2775 
2776 		signotify(td);
2777 		if (!pslocked)
2778 			mtx_lock(&ps->ps_mtx);
2779 		if (p->p_flag & P_TRACED ||
2780 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2781 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2782 			tdsigwakeup(td, sig, SIG_CATCH,
2783 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2784 			    ERESTART));
2785 		}
2786 		if (!pslocked)
2787 			mtx_unlock(&ps->ps_mtx);
2788 	}
2789 }
2790 
2791 void
2792 tdsigcleanup(struct thread *td)
2793 {
2794 	struct proc *p;
2795 	sigset_t unblocked;
2796 
2797 	p = td->td_proc;
2798 	PROC_LOCK_ASSERT(p, MA_OWNED);
2799 
2800 	sigqueue_flush(&td->td_sigqueue);
2801 	if (p->p_numthreads == 1)
2802 		return;
2803 
2804 	/*
2805 	 * Since we cannot handle signals, notify signal post code
2806 	 * about this by filling the sigmask.
2807 	 *
2808 	 * Also, if needed, wake up thread(s) that do not block the
2809 	 * same signals as the exiting thread, since the thread might
2810 	 * have been selected for delivery and woken up.
2811 	 */
2812 	SIGFILLSET(unblocked);
2813 	SIGSETNAND(unblocked, td->td_sigmask);
2814 	SIGFILLSET(td->td_sigmask);
2815 	reschedule_signals(p, unblocked, 0);
2816 
2817 }
2818 
2819 static int
2820 sigdeferstop_curr_flags(int cflags)
2821 {
2822 
2823 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2824 	    (cflags & TDF_SBDRY) != 0);
2825 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2826 }
2827 
2828 /*
2829  * Defer the delivery of SIGSTOP for the current thread, according to
2830  * the requested mode.  Returns previous flags, which must be restored
2831  * by sigallowstop().
2832  *
2833  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2834  * cleared by the current thread, which allow the lock-less read-only
2835  * accesses below.
2836  */
2837 int
2838 sigdeferstop_impl(int mode)
2839 {
2840 	struct thread *td;
2841 	int cflags, nflags;
2842 
2843 	td = curthread;
2844 	cflags = sigdeferstop_curr_flags(td->td_flags);
2845 	switch (mode) {
2846 	case SIGDEFERSTOP_NOP:
2847 		nflags = cflags;
2848 		break;
2849 	case SIGDEFERSTOP_OFF:
2850 		nflags = 0;
2851 		break;
2852 	case SIGDEFERSTOP_SILENT:
2853 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2854 		break;
2855 	case SIGDEFERSTOP_EINTR:
2856 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2857 		break;
2858 	case SIGDEFERSTOP_ERESTART:
2859 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2860 		break;
2861 	default:
2862 		panic("sigdeferstop: invalid mode %x", mode);
2863 		break;
2864 	}
2865 	if (cflags == nflags)
2866 		return (SIGDEFERSTOP_VAL_NCHG);
2867 	thread_lock(td);
2868 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2869 	thread_unlock(td);
2870 	return (cflags);
2871 }
2872 
2873 /*
2874  * Restores the STOP handling mode, typically permitting the delivery
2875  * of SIGSTOP for the current thread.  This does not immediately
2876  * suspend if a stop was posted.  Instead, the thread will suspend
2877  * either via ast() or a subsequent interruptible sleep.
2878  */
2879 void
2880 sigallowstop_impl(int prev)
2881 {
2882 	struct thread *td;
2883 	int cflags;
2884 
2885 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2886 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2887 	    ("sigallowstop: incorrect previous mode %x", prev));
2888 	td = curthread;
2889 	cflags = sigdeferstop_curr_flags(td->td_flags);
2890 	if (cflags != prev) {
2891 		thread_lock(td);
2892 		td->td_flags = (td->td_flags & ~cflags) | prev;
2893 		thread_unlock(td);
2894 	}
2895 }
2896 
2897 /*
2898  * If the current process has received a signal (should be caught or cause
2899  * termination, should interrupt current syscall), return the signal number.
2900  * Stop signals with default action are processed immediately, then cleared;
2901  * they aren't returned.  This is checked after each entry to the system for
2902  * a syscall or trap (though this can usually be done without calling issignal
2903  * by checking the pending signal masks in cursig.) The normal call
2904  * sequence is
2905  *
2906  *	while (sig = cursig(curthread))
2907  *		postsig(sig);
2908  */
2909 static int
2910 issignal(struct thread *td)
2911 {
2912 	struct proc *p;
2913 	struct sigacts *ps;
2914 	struct sigqueue *queue;
2915 	sigset_t sigpending;
2916 	ksiginfo_t ksi;
2917 	int prop, sig;
2918 
2919 	p = td->td_proc;
2920 	ps = p->p_sigacts;
2921 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2922 	PROC_LOCK_ASSERT(p, MA_OWNED);
2923 	for (;;) {
2924 		sigpending = td->td_sigqueue.sq_signals;
2925 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2926 		SIGSETNAND(sigpending, td->td_sigmask);
2927 
2928 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2929 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2930 			SIG_STOPSIGMASK(sigpending);
2931 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2932 			return (0);
2933 
2934 		/*
2935 		 * Do fast sigblock if requested by usermode.  Since
2936 		 * we do know that there was a signal pending at this
2937 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
2938 		 * usermode to perform a dummy call to
2939 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
2940 		 * delivery of postponed pending signal.
2941 		 */
2942 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
2943 			if (td->td_sigblock_val != 0)
2944 				SIGSETNAND(sigpending, fastblock_mask);
2945 			if (SIGISEMPTY(sigpending)) {
2946 				td->td_pflags |= TDP_SIGFASTPENDING;
2947 				return (0);
2948 			}
2949 		}
2950 
2951 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2952 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2953 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2954 			/*
2955 			 * If debugger just attached, always consume
2956 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2957 			 * execute the debugger attach ritual in
2958 			 * order.
2959 			 */
2960 			sig = SIGSTOP;
2961 			td->td_dbgflags |= TDB_FSTP;
2962 		} else {
2963 			sig = sig_ffs(&sigpending);
2964 		}
2965 
2966 		/*
2967 		 * We should allow pending but ignored signals below
2968 		 * only if there is sigwait() active, or P_TRACED was
2969 		 * on when they were posted.
2970 		 */
2971 		if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2972 		    (p->p_flag & P_TRACED) == 0 &&
2973 		    (td->td_pflags2 & TDP2_SIGWAIT) == 0) {
2974 			sigqueue_delete(&td->td_sigqueue, sig);
2975 			sigqueue_delete(&p->p_sigqueue, sig);
2976 			continue;
2977 		}
2978 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2979 			/*
2980 			 * If traced, always stop.
2981 			 * Remove old signal from queue before the stop.
2982 			 * XXX shrug off debugger, it causes siginfo to
2983 			 * be thrown away.
2984 			 */
2985 			queue = &td->td_sigqueue;
2986 			ksiginfo_init(&ksi);
2987 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2988 				queue = &p->p_sigqueue;
2989 				sigqueue_get(queue, sig, &ksi);
2990 			}
2991 			td->td_si = ksi.ksi_info;
2992 
2993 			mtx_unlock(&ps->ps_mtx);
2994 			sig = ptracestop(td, sig, &ksi);
2995 			mtx_lock(&ps->ps_mtx);
2996 
2997 			td->td_si.si_signo = 0;
2998 
2999 			/*
3000 			 * Keep looking if the debugger discarded or
3001 			 * replaced the signal.
3002 			 */
3003 			if (sig == 0)
3004 				continue;
3005 
3006 			/*
3007 			 * If the signal became masked, re-queue it.
3008 			 */
3009 			if (SIGISMEMBER(td->td_sigmask, sig)) {
3010 				ksi.ksi_flags |= KSI_HEAD;
3011 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
3012 				continue;
3013 			}
3014 
3015 			/*
3016 			 * If the traced bit got turned off, requeue
3017 			 * the signal and go back up to the top to
3018 			 * rescan signals.  This ensures that p_sig*
3019 			 * and p_sigact are consistent.
3020 			 */
3021 			if ((p->p_flag & P_TRACED) == 0) {
3022 				ksi.ksi_flags |= KSI_HEAD;
3023 				sigqueue_add(queue, sig, &ksi);
3024 				continue;
3025 			}
3026 		}
3027 
3028 		prop = sigprop(sig);
3029 
3030 		/*
3031 		 * Decide whether the signal should be returned.
3032 		 * Return the signal's number, or fall through
3033 		 * to clear it from the pending mask.
3034 		 */
3035 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3036 		case (intptr_t)SIG_DFL:
3037 			/*
3038 			 * Don't take default actions on system processes.
3039 			 */
3040 			if (p->p_pid <= 1) {
3041 #ifdef DIAGNOSTIC
3042 				/*
3043 				 * Are you sure you want to ignore SIGSEGV
3044 				 * in init? XXX
3045 				 */
3046 				printf("Process (pid %lu) got signal %d\n",
3047 					(u_long)p->p_pid, sig);
3048 #endif
3049 				break;		/* == ignore */
3050 			}
3051 			/*
3052 			 * If there is a pending stop signal to process with
3053 			 * default action, stop here, then clear the signal.
3054 			 * Traced or exiting processes should ignore stops.
3055 			 * Additionally, a member of an orphaned process group
3056 			 * should ignore tty stops.
3057 			 */
3058 			if (prop & SIGPROP_STOP) {
3059 				mtx_unlock(&ps->ps_mtx);
3060 				if ((p->p_flag & (P_TRACED | P_WEXIT |
3061 				    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3062 				    pg_flags & PGRP_ORPHANED) != 0 &&
3063 				    (prop & SIGPROP_TTYSTOP) != 0)) {
3064 					mtx_lock(&ps->ps_mtx);
3065 					break;	/* == ignore */
3066 				}
3067 				if (TD_SBDRY_INTR(td)) {
3068 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
3069 					    ("lost TDF_SBDRY"));
3070 					mtx_lock(&ps->ps_mtx);
3071 					return (-1);
3072 				}
3073 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3074 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
3075 				sigqueue_delete(&td->td_sigqueue, sig);
3076 				sigqueue_delete(&p->p_sigqueue, sig);
3077 				p->p_flag |= P_STOPPED_SIG;
3078 				p->p_xsig = sig;
3079 				PROC_SLOCK(p);
3080 				sig_suspend_threads(td, p, 0);
3081 				thread_suspend_switch(td, p);
3082 				PROC_SUNLOCK(p);
3083 				mtx_lock(&ps->ps_mtx);
3084 				goto next;
3085 			} else if ((prop & SIGPROP_IGNORE) != 0 &&
3086 			    (td->td_pflags2 & TDP2_SIGWAIT) == 0) {
3087 				/*
3088 				 * Default action is to ignore; drop it if
3089 				 * not in kern_sigtimedwait().
3090 				 */
3091 				break;		/* == ignore */
3092 			} else
3093 				return (sig);
3094 			/*NOTREACHED*/
3095 
3096 		case (intptr_t)SIG_IGN:
3097 			if ((td->td_pflags2 & TDP2_SIGWAIT) == 0)
3098 				break;		/* == ignore */
3099 			else
3100 				return (sig);
3101 
3102 		default:
3103 			/*
3104 			 * This signal has an action, let
3105 			 * postsig() process it.
3106 			 */
3107 			return (sig);
3108 		}
3109 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3110 		sigqueue_delete(&p->p_sigqueue, sig);
3111 next:;
3112 	}
3113 	/* NOTREACHED */
3114 }
3115 
3116 void
3117 thread_stopped(struct proc *p)
3118 {
3119 	int n;
3120 
3121 	PROC_LOCK_ASSERT(p, MA_OWNED);
3122 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3123 	n = p->p_suspcount;
3124 	if (p == curproc)
3125 		n++;
3126 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3127 		PROC_SUNLOCK(p);
3128 		p->p_flag &= ~P_WAITED;
3129 		PROC_LOCK(p->p_pptr);
3130 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3131 			CLD_TRAPPED : CLD_STOPPED);
3132 		PROC_UNLOCK(p->p_pptr);
3133 		PROC_SLOCK(p);
3134 	}
3135 }
3136 
3137 /*
3138  * Take the action for the specified signal
3139  * from the current set of pending signals.
3140  */
3141 int
3142 postsig(int sig)
3143 {
3144 	struct thread *td;
3145 	struct proc *p;
3146 	struct sigacts *ps;
3147 	sig_t action;
3148 	ksiginfo_t ksi;
3149 	sigset_t returnmask;
3150 
3151 	KASSERT(sig != 0, ("postsig"));
3152 
3153 	td = curthread;
3154 	p = td->td_proc;
3155 	PROC_LOCK_ASSERT(p, MA_OWNED);
3156 	ps = p->p_sigacts;
3157 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3158 	ksiginfo_init(&ksi);
3159 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3160 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3161 		return (0);
3162 	ksi.ksi_signo = sig;
3163 	if (ksi.ksi_code == SI_TIMER)
3164 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3165 	action = ps->ps_sigact[_SIG_IDX(sig)];
3166 #ifdef KTRACE
3167 	if (KTRPOINT(td, KTR_PSIG))
3168 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3169 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3170 #endif
3171 
3172 	if (action == SIG_DFL) {
3173 		/*
3174 		 * Default action, where the default is to kill
3175 		 * the process.  (Other cases were ignored above.)
3176 		 */
3177 		mtx_unlock(&ps->ps_mtx);
3178 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3179 		sigexit(td, sig);
3180 		/* NOTREACHED */
3181 	} else {
3182 		/*
3183 		 * If we get here, the signal must be caught.
3184 		 */
3185 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3186 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3187 		    ("postsig action: blocked sig %d", sig));
3188 
3189 		/*
3190 		 * Set the new mask value and also defer further
3191 		 * occurrences of this signal.
3192 		 *
3193 		 * Special case: user has done a sigsuspend.  Here the
3194 		 * current mask is not of interest, but rather the
3195 		 * mask from before the sigsuspend is what we want
3196 		 * restored after the signal processing is completed.
3197 		 */
3198 		if (td->td_pflags & TDP_OLDMASK) {
3199 			returnmask = td->td_oldsigmask;
3200 			td->td_pflags &= ~TDP_OLDMASK;
3201 		} else
3202 			returnmask = td->td_sigmask;
3203 
3204 		if (p->p_sig == sig) {
3205 			p->p_sig = 0;
3206 		}
3207 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3208 		postsig_done(sig, td, ps);
3209 	}
3210 	return (1);
3211 }
3212 
3213 int
3214 sig_ast_checksusp(struct thread *td)
3215 {
3216 	struct proc *p;
3217 	int ret;
3218 
3219 	p = td->td_proc;
3220 	PROC_LOCK_ASSERT(p, MA_OWNED);
3221 
3222 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3223 		return (0);
3224 
3225 	ret = thread_suspend_check(1);
3226 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3227 	return (ret);
3228 }
3229 
3230 int
3231 sig_ast_needsigchk(struct thread *td)
3232 {
3233 	struct proc *p;
3234 	struct sigacts *ps;
3235 	int ret, sig;
3236 
3237 	p = td->td_proc;
3238 	PROC_LOCK_ASSERT(p, MA_OWNED);
3239 
3240 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3241 		return (0);
3242 
3243 	ps = p->p_sigacts;
3244 	mtx_lock(&ps->ps_mtx);
3245 	sig = cursig(td);
3246 	if (sig == -1) {
3247 		mtx_unlock(&ps->ps_mtx);
3248 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3249 		KASSERT(TD_SBDRY_INTR(td),
3250 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3251 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3252 		    (TDF_SEINTR | TDF_SERESTART),
3253 		    ("both TDF_SEINTR and TDF_SERESTART"));
3254 		ret = TD_SBDRY_ERRNO(td);
3255 	} else if (sig != 0) {
3256 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3257 		mtx_unlock(&ps->ps_mtx);
3258 	} else {
3259 		mtx_unlock(&ps->ps_mtx);
3260 		ret = 0;
3261 	}
3262 
3263 	/*
3264 	 * Do not go into sleep if this thread was the ptrace(2)
3265 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3266 	 * but we usually act on the signal by interrupting sleep, and
3267 	 * should do that here as well.
3268 	 */
3269 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3270 		if (ret == 0)
3271 			ret = EINTR;
3272 		td->td_dbgflags &= ~TDB_FSTP;
3273 	}
3274 
3275 	return (ret);
3276 }
3277 
3278 int
3279 sig_intr(void)
3280 {
3281 	struct thread *td;
3282 	struct proc *p;
3283 	int ret;
3284 
3285 	td = curthread;
3286 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3287 		return (0);
3288 
3289 	p = td->td_proc;
3290 
3291 	PROC_LOCK(p);
3292 	ret = sig_ast_checksusp(td);
3293 	if (ret == 0)
3294 		ret = sig_ast_needsigchk(td);
3295 	PROC_UNLOCK(p);
3296 	return (ret);
3297 }
3298 
3299 void
3300 proc_wkilled(struct proc *p)
3301 {
3302 
3303 	PROC_LOCK_ASSERT(p, MA_OWNED);
3304 	if ((p->p_flag & P_WKILLED) == 0) {
3305 		p->p_flag |= P_WKILLED;
3306 		/*
3307 		 * Notify swapper that there is a process to swap in.
3308 		 * The notification is racy, at worst it would take 10
3309 		 * seconds for the swapper process to notice.
3310 		 */
3311 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3312 			wakeup(&proc0);
3313 	}
3314 }
3315 
3316 /*
3317  * Kill the current process for stated reason.
3318  */
3319 void
3320 killproc(struct proc *p, const char *why)
3321 {
3322 
3323 	PROC_LOCK_ASSERT(p, MA_OWNED);
3324 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3325 	    p->p_comm);
3326 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3327 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3328 	    p->p_ucred->cr_uid, why);
3329 	proc_wkilled(p);
3330 	kern_psignal(p, SIGKILL);
3331 }
3332 
3333 /*
3334  * Force the current process to exit with the specified signal, dumping core
3335  * if appropriate.  We bypass the normal tests for masked and caught signals,
3336  * allowing unrecoverable failures to terminate the process without changing
3337  * signal state.  Mark the accounting record with the signal termination.
3338  * If dumping core, save the signal number for the debugger.  Calls exit and
3339  * does not return.
3340  */
3341 void
3342 sigexit(struct thread *td, int sig)
3343 {
3344 	struct proc *p = td->td_proc;
3345 
3346 	PROC_LOCK_ASSERT(p, MA_OWNED);
3347 	p->p_acflag |= AXSIG;
3348 	/*
3349 	 * We must be single-threading to generate a core dump.  This
3350 	 * ensures that the registers in the core file are up-to-date.
3351 	 * Also, the ELF dump handler assumes that the thread list doesn't
3352 	 * change out from under it.
3353 	 *
3354 	 * XXX If another thread attempts to single-thread before us
3355 	 *     (e.g. via fork()), we won't get a dump at all.
3356 	 */
3357 	if ((sigprop(sig) & SIGPROP_CORE) &&
3358 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3359 		p->p_sig = sig;
3360 		/*
3361 		 * Log signals which would cause core dumps
3362 		 * (Log as LOG_INFO to appease those who don't want
3363 		 * these messages.)
3364 		 * XXX : Todo, as well as euid, write out ruid too
3365 		 * Note that coredump() drops proc lock.
3366 		 */
3367 		if (coredump(td) == 0)
3368 			sig |= WCOREFLAG;
3369 		if (kern_logsigexit)
3370 			log(LOG_INFO,
3371 			    "pid %d (%s), jid %d, uid %d: exited on "
3372 			    "signal %d%s\n", p->p_pid, p->p_comm,
3373 			    p->p_ucred->cr_prison->pr_id,
3374 			    td->td_ucred->cr_uid,
3375 			    sig &~ WCOREFLAG,
3376 			    sig & WCOREFLAG ? " (core dumped)" : "");
3377 	} else
3378 		PROC_UNLOCK(p);
3379 	exit1(td, 0, sig);
3380 	/* NOTREACHED */
3381 }
3382 
3383 /*
3384  * Send queued SIGCHLD to parent when child process's state
3385  * is changed.
3386  */
3387 static void
3388 sigparent(struct proc *p, int reason, int status)
3389 {
3390 	PROC_LOCK_ASSERT(p, MA_OWNED);
3391 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3392 
3393 	if (p->p_ksi != NULL) {
3394 		p->p_ksi->ksi_signo  = SIGCHLD;
3395 		p->p_ksi->ksi_code   = reason;
3396 		p->p_ksi->ksi_status = status;
3397 		p->p_ksi->ksi_pid    = p->p_pid;
3398 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3399 		if (KSI_ONQ(p->p_ksi))
3400 			return;
3401 	}
3402 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3403 }
3404 
3405 static void
3406 childproc_jobstate(struct proc *p, int reason, int sig)
3407 {
3408 	struct sigacts *ps;
3409 
3410 	PROC_LOCK_ASSERT(p, MA_OWNED);
3411 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3412 
3413 	/*
3414 	 * Wake up parent sleeping in kern_wait(), also send
3415 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3416 	 * that parent will awake, because parent may masked
3417 	 * the signal.
3418 	 */
3419 	p->p_pptr->p_flag |= P_STATCHILD;
3420 	wakeup(p->p_pptr);
3421 
3422 	ps = p->p_pptr->p_sigacts;
3423 	mtx_lock(&ps->ps_mtx);
3424 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3425 		mtx_unlock(&ps->ps_mtx);
3426 		sigparent(p, reason, sig);
3427 	} else
3428 		mtx_unlock(&ps->ps_mtx);
3429 }
3430 
3431 void
3432 childproc_stopped(struct proc *p, int reason)
3433 {
3434 
3435 	childproc_jobstate(p, reason, p->p_xsig);
3436 }
3437 
3438 void
3439 childproc_continued(struct proc *p)
3440 {
3441 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3442 }
3443 
3444 void
3445 childproc_exited(struct proc *p)
3446 {
3447 	int reason, status;
3448 
3449 	if (WCOREDUMP(p->p_xsig)) {
3450 		reason = CLD_DUMPED;
3451 		status = WTERMSIG(p->p_xsig);
3452 	} else if (WIFSIGNALED(p->p_xsig)) {
3453 		reason = CLD_KILLED;
3454 		status = WTERMSIG(p->p_xsig);
3455 	} else {
3456 		reason = CLD_EXITED;
3457 		status = p->p_xexit;
3458 	}
3459 	/*
3460 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3461 	 * done in exit1().
3462 	 */
3463 	sigparent(p, reason, status);
3464 }
3465 
3466 #define	MAX_NUM_CORE_FILES 100000
3467 #ifndef NUM_CORE_FILES
3468 #define	NUM_CORE_FILES 5
3469 #endif
3470 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3471 static int num_cores = NUM_CORE_FILES;
3472 
3473 static int
3474 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3475 {
3476 	int error;
3477 	int new_val;
3478 
3479 	new_val = num_cores;
3480 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3481 	if (error != 0 || req->newptr == NULL)
3482 		return (error);
3483 	if (new_val > MAX_NUM_CORE_FILES)
3484 		new_val = MAX_NUM_CORE_FILES;
3485 	if (new_val < 0)
3486 		new_val = 0;
3487 	num_cores = new_val;
3488 	return (0);
3489 }
3490 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3491     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3492     sysctl_debug_num_cores_check, "I",
3493     "Maximum number of generated process corefiles while using index format");
3494 
3495 #define	GZIP_SUFFIX	".gz"
3496 #define	ZSTD_SUFFIX	".zst"
3497 
3498 int compress_user_cores = 0;
3499 
3500 static int
3501 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3502 {
3503 	int error, val;
3504 
3505 	val = compress_user_cores;
3506 	error = sysctl_handle_int(oidp, &val, 0, req);
3507 	if (error != 0 || req->newptr == NULL)
3508 		return (error);
3509 	if (val != 0 && !compressor_avail(val))
3510 		return (EINVAL);
3511 	compress_user_cores = val;
3512 	return (error);
3513 }
3514 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3515     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3516     sysctl_compress_user_cores, "I",
3517     "Enable compression of user corefiles ("
3518     __XSTRING(COMPRESS_GZIP) " = gzip, "
3519     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3520 
3521 int compress_user_cores_level = 6;
3522 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3523     &compress_user_cores_level, 0,
3524     "Corefile compression level");
3525 
3526 /*
3527  * Protect the access to corefilename[] by allproc_lock.
3528  */
3529 #define	corefilename_lock	allproc_lock
3530 
3531 static char corefilename[MAXPATHLEN] = {"%N.core"};
3532 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3533 
3534 static int
3535 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3536 {
3537 	int error;
3538 
3539 	sx_xlock(&corefilename_lock);
3540 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3541 	    req);
3542 	sx_xunlock(&corefilename_lock);
3543 
3544 	return (error);
3545 }
3546 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3547     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3548     "Process corefile name format string");
3549 
3550 static void
3551 vnode_close_locked(struct thread *td, struct vnode *vp)
3552 {
3553 
3554 	VOP_UNLOCK(vp);
3555 	vn_close(vp, FWRITE, td->td_ucred, td);
3556 }
3557 
3558 /*
3559  * If the core format has a %I in it, then we need to check
3560  * for existing corefiles before defining a name.
3561  * To do this we iterate over 0..ncores to find a
3562  * non-existing core file name to use. If all core files are
3563  * already used we choose the oldest one.
3564  */
3565 static int
3566 corefile_open_last(struct thread *td, char *name, int indexpos,
3567     int indexlen, int ncores, struct vnode **vpp)
3568 {
3569 	struct vnode *oldvp, *nextvp, *vp;
3570 	struct vattr vattr;
3571 	struct nameidata nd;
3572 	int error, i, flags, oflags, cmode;
3573 	char ch;
3574 	struct timespec lasttime;
3575 
3576 	nextvp = oldvp = NULL;
3577 	cmode = S_IRUSR | S_IWUSR;
3578 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3579 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3580 
3581 	for (i = 0; i < ncores; i++) {
3582 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3583 
3584 		ch = name[indexpos + indexlen];
3585 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3586 		    i);
3587 		name[indexpos + indexlen] = ch;
3588 
3589 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3590 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3591 		    NULL);
3592 		if (error != 0)
3593 			break;
3594 
3595 		vp = nd.ni_vp;
3596 		NDFREE(&nd, NDF_ONLY_PNBUF);
3597 		if ((flags & O_CREAT) == O_CREAT) {
3598 			nextvp = vp;
3599 			break;
3600 		}
3601 
3602 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3603 		if (error != 0) {
3604 			vnode_close_locked(td, vp);
3605 			break;
3606 		}
3607 
3608 		if (oldvp == NULL ||
3609 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3610 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3611 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3612 			if (oldvp != NULL)
3613 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3614 			oldvp = vp;
3615 			VOP_UNLOCK(oldvp);
3616 			lasttime = vattr.va_mtime;
3617 		} else {
3618 			vnode_close_locked(td, vp);
3619 		}
3620 	}
3621 
3622 	if (oldvp != NULL) {
3623 		if (nextvp == NULL) {
3624 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3625 				error = EFAULT;
3626 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3627 			} else {
3628 				nextvp = oldvp;
3629 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3630 				if (error != 0) {
3631 					vn_close(nextvp, FWRITE, td->td_ucred,
3632 					    td);
3633 					nextvp = NULL;
3634 				}
3635 			}
3636 		} else {
3637 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3638 		}
3639 	}
3640 	if (error != 0) {
3641 		if (nextvp != NULL)
3642 			vnode_close_locked(td, oldvp);
3643 	} else {
3644 		*vpp = nextvp;
3645 	}
3646 
3647 	return (error);
3648 }
3649 
3650 /*
3651  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3652  * Expand the name described in corefilename, using name, uid, and pid
3653  * and open/create core file.
3654  * corefilename is a printf-like string, with three format specifiers:
3655  *	%N	name of process ("name")
3656  *	%P	process id (pid)
3657  *	%U	user id (uid)
3658  * For example, "%N.core" is the default; they can be disabled completely
3659  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3660  * This is controlled by the sysctl variable kern.corefile (see above).
3661  */
3662 static int
3663 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3664     int compress, int signum, struct vnode **vpp, char **namep)
3665 {
3666 	struct sbuf sb;
3667 	struct nameidata nd;
3668 	const char *format;
3669 	char *hostname, *name;
3670 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3671 
3672 	hostname = NULL;
3673 	format = corefilename;
3674 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3675 	indexlen = 0;
3676 	indexpos = -1;
3677 	ncores = num_cores;
3678 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3679 	sx_slock(&corefilename_lock);
3680 	for (i = 0; format[i] != '\0'; i++) {
3681 		switch (format[i]) {
3682 		case '%':	/* Format character */
3683 			i++;
3684 			switch (format[i]) {
3685 			case '%':
3686 				sbuf_putc(&sb, '%');
3687 				break;
3688 			case 'H':	/* hostname */
3689 				if (hostname == NULL) {
3690 					hostname = malloc(MAXHOSTNAMELEN,
3691 					    M_TEMP, M_WAITOK);
3692 				}
3693 				getcredhostname(td->td_ucred, hostname,
3694 				    MAXHOSTNAMELEN);
3695 				sbuf_printf(&sb, "%s", hostname);
3696 				break;
3697 			case 'I':	/* autoincrementing index */
3698 				if (indexpos != -1) {
3699 					sbuf_printf(&sb, "%%I");
3700 					break;
3701 				}
3702 
3703 				indexpos = sbuf_len(&sb);
3704 				sbuf_printf(&sb, "%u", ncores - 1);
3705 				indexlen = sbuf_len(&sb) - indexpos;
3706 				break;
3707 			case 'N':	/* process name */
3708 				sbuf_printf(&sb, "%s", comm);
3709 				break;
3710 			case 'P':	/* process id */
3711 				sbuf_printf(&sb, "%u", pid);
3712 				break;
3713 			case 'S':	/* signal number */
3714 				sbuf_printf(&sb, "%i", signum);
3715 				break;
3716 			case 'U':	/* user id */
3717 				sbuf_printf(&sb, "%u", uid);
3718 				break;
3719 			default:
3720 				log(LOG_ERR,
3721 				    "Unknown format character %c in "
3722 				    "corename `%s'\n", format[i], format);
3723 				break;
3724 			}
3725 			break;
3726 		default:
3727 			sbuf_putc(&sb, format[i]);
3728 			break;
3729 		}
3730 	}
3731 	sx_sunlock(&corefilename_lock);
3732 	free(hostname, M_TEMP);
3733 	if (compress == COMPRESS_GZIP)
3734 		sbuf_printf(&sb, GZIP_SUFFIX);
3735 	else if (compress == COMPRESS_ZSTD)
3736 		sbuf_printf(&sb, ZSTD_SUFFIX);
3737 	if (sbuf_error(&sb) != 0) {
3738 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3739 		    "long\n", (long)pid, comm, (u_long)uid);
3740 		sbuf_delete(&sb);
3741 		free(name, M_TEMP);
3742 		return (ENOMEM);
3743 	}
3744 	sbuf_finish(&sb);
3745 	sbuf_delete(&sb);
3746 
3747 	if (indexpos != -1) {
3748 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3749 		    vpp);
3750 		if (error != 0) {
3751 			log(LOG_ERR,
3752 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3753 			    "on initial open test, error = %d\n",
3754 			    pid, comm, uid, name, error);
3755 		}
3756 	} else {
3757 		cmode = S_IRUSR | S_IWUSR;
3758 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3759 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3760 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3761 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3762 			flags |= O_EXCL;
3763 
3764 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3765 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3766 		    NULL);
3767 		if (error == 0) {
3768 			*vpp = nd.ni_vp;
3769 			NDFREE(&nd, NDF_ONLY_PNBUF);
3770 		}
3771 	}
3772 
3773 	if (error != 0) {
3774 #ifdef AUDIT
3775 		audit_proc_coredump(td, name, error);
3776 #endif
3777 		free(name, M_TEMP);
3778 		return (error);
3779 	}
3780 	*namep = name;
3781 	return (0);
3782 }
3783 
3784 /*
3785  * Dump a process' core.  The main routine does some
3786  * policy checking, and creates the name of the coredump;
3787  * then it passes on a vnode and a size limit to the process-specific
3788  * coredump routine if there is one; if there _is not_ one, it returns
3789  * ENOSYS; otherwise it returns the error from the process-specific routine.
3790  */
3791 
3792 static int
3793 coredump(struct thread *td)
3794 {
3795 	struct proc *p = td->td_proc;
3796 	struct ucred *cred = td->td_ucred;
3797 	struct vnode *vp;
3798 	struct flock lf;
3799 	struct vattr vattr;
3800 	size_t fullpathsize;
3801 	int error, error1, locked;
3802 	char *name;			/* name of corefile */
3803 	void *rl_cookie;
3804 	off_t limit;
3805 	char *fullpath, *freepath = NULL;
3806 	struct sbuf *sb;
3807 
3808 	PROC_LOCK_ASSERT(p, MA_OWNED);
3809 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3810 
3811 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3812 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3813 		PROC_UNLOCK(p);
3814 		return (EFAULT);
3815 	}
3816 
3817 	/*
3818 	 * Note that the bulk of limit checking is done after
3819 	 * the corefile is created.  The exception is if the limit
3820 	 * for corefiles is 0, in which case we don't bother
3821 	 * creating the corefile at all.  This layout means that
3822 	 * a corefile is truncated instead of not being created,
3823 	 * if it is larger than the limit.
3824 	 */
3825 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3826 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3827 		PROC_UNLOCK(p);
3828 		return (EFBIG);
3829 	}
3830 	PROC_UNLOCK(p);
3831 
3832 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3833 	    compress_user_cores, p->p_sig, &vp, &name);
3834 	if (error != 0)
3835 		return (error);
3836 
3837 	/*
3838 	 * Don't dump to non-regular files or files with links.
3839 	 * Do not dump into system files. Effective user must own the corefile.
3840 	 */
3841 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3842 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3843 	    vattr.va_uid != cred->cr_uid) {
3844 		VOP_UNLOCK(vp);
3845 		error = EFAULT;
3846 		goto out;
3847 	}
3848 
3849 	VOP_UNLOCK(vp);
3850 
3851 	/* Postpone other writers, including core dumps of other processes. */
3852 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3853 
3854 	lf.l_whence = SEEK_SET;
3855 	lf.l_start = 0;
3856 	lf.l_len = 0;
3857 	lf.l_type = F_WRLCK;
3858 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3859 
3860 	VATTR_NULL(&vattr);
3861 	vattr.va_size = 0;
3862 	if (set_core_nodump_flag)
3863 		vattr.va_flags = UF_NODUMP;
3864 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3865 	VOP_SETATTR(vp, &vattr, cred);
3866 	VOP_UNLOCK(vp);
3867 	PROC_LOCK(p);
3868 	p->p_acflag |= ACORE;
3869 	PROC_UNLOCK(p);
3870 
3871 	if (p->p_sysent->sv_coredump != NULL) {
3872 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3873 	} else {
3874 		error = ENOSYS;
3875 	}
3876 
3877 	if (locked) {
3878 		lf.l_type = F_UNLCK;
3879 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3880 	}
3881 	vn_rangelock_unlock(vp, rl_cookie);
3882 
3883 	/*
3884 	 * Notify the userland helper that a process triggered a core dump.
3885 	 * This allows the helper to run an automated debugging session.
3886 	 */
3887 	if (error != 0 || coredump_devctl == 0)
3888 		goto out;
3889 	sb = sbuf_new_auto();
3890 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3891 		goto out2;
3892 	sbuf_printf(sb, "comm=\"");
3893 	devctl_safe_quote_sb(sb, fullpath);
3894 	free(freepath, M_TEMP);
3895 	sbuf_printf(sb, "\" core=\"");
3896 
3897 	/*
3898 	 * We can't lookup core file vp directly. When we're replacing a core, and
3899 	 * other random times, we flush the name cache, so it will fail. Instead,
3900 	 * if the path of the core is relative, add the current dir in front if it.
3901 	 */
3902 	if (name[0] != '/') {
3903 		fullpathsize = MAXPATHLEN;
3904 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3905 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3906 			free(freepath, M_TEMP);
3907 			goto out2;
3908 		}
3909 		devctl_safe_quote_sb(sb, fullpath);
3910 		free(freepath, M_TEMP);
3911 		sbuf_putc(sb, '/');
3912 	}
3913 	devctl_safe_quote_sb(sb, name);
3914 	sbuf_printf(sb, "\"");
3915 	if (sbuf_finish(sb) == 0)
3916 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3917 out2:
3918 	sbuf_delete(sb);
3919 out:
3920 	error1 = vn_close(vp, FWRITE, cred, td);
3921 	if (error == 0)
3922 		error = error1;
3923 #ifdef AUDIT
3924 	audit_proc_coredump(td, name, error);
3925 #endif
3926 	free(name, M_TEMP);
3927 	return (error);
3928 }
3929 
3930 /*
3931  * Nonexistent system call-- signal process (may want to handle it).  Flag
3932  * error in case process won't see signal immediately (blocked or ignored).
3933  */
3934 #ifndef _SYS_SYSPROTO_H_
3935 struct nosys_args {
3936 	int	dummy;
3937 };
3938 #endif
3939 /* ARGSUSED */
3940 int
3941 nosys(struct thread *td, struct nosys_args *args)
3942 {
3943 	struct proc *p;
3944 
3945 	p = td->td_proc;
3946 
3947 	PROC_LOCK(p);
3948 	tdsignal(td, SIGSYS);
3949 	PROC_UNLOCK(p);
3950 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3951 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3952 		    td->td_sa.code);
3953 	}
3954 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
3955 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
3956 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3957 		    td->td_sa.code);
3958 	}
3959 	return (ENOSYS);
3960 }
3961 
3962 /*
3963  * Send a SIGIO or SIGURG signal to a process or process group using stored
3964  * credentials rather than those of the current process.
3965  */
3966 void
3967 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3968 {
3969 	ksiginfo_t ksi;
3970 	struct sigio *sigio;
3971 
3972 	ksiginfo_init(&ksi);
3973 	ksi.ksi_signo = sig;
3974 	ksi.ksi_code = SI_KERNEL;
3975 
3976 	SIGIO_LOCK();
3977 	sigio = *sigiop;
3978 	if (sigio == NULL) {
3979 		SIGIO_UNLOCK();
3980 		return;
3981 	}
3982 	if (sigio->sio_pgid > 0) {
3983 		PROC_LOCK(sigio->sio_proc);
3984 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3985 			kern_psignal(sigio->sio_proc, sig);
3986 		PROC_UNLOCK(sigio->sio_proc);
3987 	} else if (sigio->sio_pgid < 0) {
3988 		struct proc *p;
3989 
3990 		PGRP_LOCK(sigio->sio_pgrp);
3991 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3992 			PROC_LOCK(p);
3993 			if (p->p_state == PRS_NORMAL &&
3994 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3995 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3996 				kern_psignal(p, sig);
3997 			PROC_UNLOCK(p);
3998 		}
3999 		PGRP_UNLOCK(sigio->sio_pgrp);
4000 	}
4001 	SIGIO_UNLOCK();
4002 }
4003 
4004 static int
4005 filt_sigattach(struct knote *kn)
4006 {
4007 	struct proc *p = curproc;
4008 
4009 	kn->kn_ptr.p_proc = p;
4010 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4011 
4012 	knlist_add(p->p_klist, kn, 0);
4013 
4014 	return (0);
4015 }
4016 
4017 static void
4018 filt_sigdetach(struct knote *kn)
4019 {
4020 	struct proc *p = kn->kn_ptr.p_proc;
4021 
4022 	knlist_remove(p->p_klist, kn, 0);
4023 }
4024 
4025 /*
4026  * signal knotes are shared with proc knotes, so we apply a mask to
4027  * the hint in order to differentiate them from process hints.  This
4028  * could be avoided by using a signal-specific knote list, but probably
4029  * isn't worth the trouble.
4030  */
4031 static int
4032 filt_signal(struct knote *kn, long hint)
4033 {
4034 
4035 	if (hint & NOTE_SIGNAL) {
4036 		hint &= ~NOTE_SIGNAL;
4037 
4038 		if (kn->kn_id == hint)
4039 			kn->kn_data++;
4040 	}
4041 	return (kn->kn_data != 0);
4042 }
4043 
4044 struct sigacts *
4045 sigacts_alloc(void)
4046 {
4047 	struct sigacts *ps;
4048 
4049 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4050 	refcount_init(&ps->ps_refcnt, 1);
4051 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4052 	return (ps);
4053 }
4054 
4055 void
4056 sigacts_free(struct sigacts *ps)
4057 {
4058 
4059 	if (refcount_release(&ps->ps_refcnt) == 0)
4060 		return;
4061 	mtx_destroy(&ps->ps_mtx);
4062 	free(ps, M_SUBPROC);
4063 }
4064 
4065 struct sigacts *
4066 sigacts_hold(struct sigacts *ps)
4067 {
4068 
4069 	refcount_acquire(&ps->ps_refcnt);
4070 	return (ps);
4071 }
4072 
4073 void
4074 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4075 {
4076 
4077 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4078 	mtx_lock(&src->ps_mtx);
4079 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4080 	mtx_unlock(&src->ps_mtx);
4081 }
4082 
4083 int
4084 sigacts_shared(struct sigacts *ps)
4085 {
4086 
4087 	return (ps->ps_refcnt > 1);
4088 }
4089 
4090 void
4091 sig_drop_caught(struct proc *p)
4092 {
4093 	int sig;
4094 	struct sigacts *ps;
4095 
4096 	ps = p->p_sigacts;
4097 	PROC_LOCK_ASSERT(p, MA_OWNED);
4098 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4099 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
4100 		sig = sig_ffs(&ps->ps_sigcatch);
4101 		sigdflt(ps, sig);
4102 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4103 			sigqueue_delete_proc(p, sig);
4104 	}
4105 }
4106 
4107 static void
4108 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4109 {
4110 	ksiginfo_t ksi;
4111 
4112 	/*
4113 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4114 	 * issue syscalls despite corruption.
4115 	 */
4116 	sigfastblock_clear(td);
4117 
4118 	if (!sendsig)
4119 		return;
4120 	ksiginfo_init_trap(&ksi);
4121 	ksi.ksi_signo = SIGSEGV;
4122 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4123 	ksi.ksi_addr = td->td_sigblock_ptr;
4124 	trapsignal(td, &ksi);
4125 }
4126 
4127 static bool
4128 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4129 {
4130 	uint32_t res;
4131 
4132 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4133 		return (true);
4134 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4135 		sigfastblock_failed(td, sendsig, false);
4136 		return (false);
4137 	}
4138 	*valp = res;
4139 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4140 	return (true);
4141 }
4142 
4143 static void
4144 sigfastblock_resched(struct thread *td, bool resched)
4145 {
4146 	struct proc *p;
4147 
4148 	if (resched) {
4149 		p = td->td_proc;
4150 		PROC_LOCK(p);
4151 		reschedule_signals(p, td->td_sigmask, 0);
4152 		PROC_UNLOCK(p);
4153 	}
4154 	thread_lock(td);
4155 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4156 	thread_unlock(td);
4157 }
4158 
4159 int
4160 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4161 {
4162 	struct proc *p;
4163 	int error, res;
4164 	uint32_t oldval;
4165 
4166 	error = 0;
4167 	p = td->td_proc;
4168 	switch (uap->cmd) {
4169 	case SIGFASTBLOCK_SETPTR:
4170 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4171 			error = EBUSY;
4172 			break;
4173 		}
4174 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4175 			error = EINVAL;
4176 			break;
4177 		}
4178 		td->td_pflags |= TDP_SIGFASTBLOCK;
4179 		td->td_sigblock_ptr = uap->ptr;
4180 		break;
4181 
4182 	case SIGFASTBLOCK_UNBLOCK:
4183 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4184 			error = EINVAL;
4185 			break;
4186 		}
4187 
4188 		for (;;) {
4189 			res = casueword32(td->td_sigblock_ptr,
4190 			    SIGFASTBLOCK_PEND, &oldval, 0);
4191 			if (res == -1) {
4192 				error = EFAULT;
4193 				sigfastblock_failed(td, false, true);
4194 				break;
4195 			}
4196 			if (res == 0)
4197 				break;
4198 			MPASS(res == 1);
4199 			if (oldval != SIGFASTBLOCK_PEND) {
4200 				error = EBUSY;
4201 				break;
4202 			}
4203 			error = thread_check_susp(td, false);
4204 			if (error != 0)
4205 				break;
4206 		}
4207 		if (error != 0)
4208 			break;
4209 
4210 		/*
4211 		 * td_sigblock_val is cleared there, but not on a
4212 		 * syscall exit.  The end effect is that a single
4213 		 * interruptible sleep, while user sigblock word is
4214 		 * set, might return EINTR or ERESTART to usermode
4215 		 * without delivering signal.  All further sleeps,
4216 		 * until userspace clears the word and does
4217 		 * sigfastblock(UNBLOCK), observe current word and no
4218 		 * longer get interrupted.  It is slight
4219 		 * non-conformance, with alternative to have read the
4220 		 * sigblock word on each syscall entry.
4221 		 */
4222 		td->td_sigblock_val = 0;
4223 
4224 		/*
4225 		 * Rely on normal ast mechanism to deliver pending
4226 		 * signals to current thread.  But notify others about
4227 		 * fake unblock.
4228 		 */
4229 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4230 
4231 		break;
4232 
4233 	case SIGFASTBLOCK_UNSETPTR:
4234 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4235 			error = EINVAL;
4236 			break;
4237 		}
4238 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4239 			error = EFAULT;
4240 			break;
4241 		}
4242 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4243 			error = EBUSY;
4244 			break;
4245 		}
4246 		sigfastblock_clear(td);
4247 		break;
4248 
4249 	default:
4250 		error = EINVAL;
4251 		break;
4252 	}
4253 	return (error);
4254 }
4255 
4256 void
4257 sigfastblock_clear(struct thread *td)
4258 {
4259 	bool resched;
4260 
4261 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4262 		return;
4263 	td->td_sigblock_val = 0;
4264 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4265 	    SIGPENDING(td);
4266 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4267 	sigfastblock_resched(td, resched);
4268 }
4269 
4270 void
4271 sigfastblock_fetch(struct thread *td)
4272 {
4273 	uint32_t val;
4274 
4275 	(void)sigfastblock_fetch_sig(td, true, &val);
4276 }
4277 
4278 static void
4279 sigfastblock_setpend1(struct thread *td)
4280 {
4281 	int res;
4282 	uint32_t oldval;
4283 
4284 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4285 		return;
4286 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4287 	if (res == -1) {
4288 		sigfastblock_failed(td, true, false);
4289 		return;
4290 	}
4291 	for (;;) {
4292 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4293 		    oldval | SIGFASTBLOCK_PEND);
4294 		if (res == -1) {
4295 			sigfastblock_failed(td, true, true);
4296 			return;
4297 		}
4298 		if (res == 0) {
4299 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4300 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4301 			break;
4302 		}
4303 		MPASS(res == 1);
4304 		if (thread_check_susp(td, false) != 0)
4305 			break;
4306 	}
4307 }
4308 
4309 void
4310 sigfastblock_setpend(struct thread *td, bool resched)
4311 {
4312 	struct proc *p;
4313 
4314 	sigfastblock_setpend1(td);
4315 	if (resched) {
4316 		p = td->td_proc;
4317 		PROC_LOCK(p);
4318 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4319 		PROC_UNLOCK(p);
4320 	}
4321 }
4322