xref: /freebsd/sys/kern/kern_sig.c (revision bc7512cc58af2e8bbe5bbf5ca0059b1daa1da897)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 
218 static int sigproptbl[NSIG] = {
219 	[SIGHUP] =	SIGPROP_KILL,
220 	[SIGINT] =	SIGPROP_KILL,
221 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
222 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGKILL] =	SIGPROP_KILL,
228 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
229 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGPIPE] =	SIGPROP_KILL,
232 	[SIGALRM] =	SIGPROP_KILL,
233 	[SIGTERM] =	SIGPROP_KILL,
234 	[SIGURG] =	SIGPROP_IGNORE,
235 	[SIGSTOP] =	SIGPROP_STOP,
236 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
237 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
238 	[SIGCHLD] =	SIGPROP_IGNORE,
239 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
240 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGIO] =	SIGPROP_IGNORE,
242 	[SIGXCPU] =	SIGPROP_KILL,
243 	[SIGXFSZ] =	SIGPROP_KILL,
244 	[SIGVTALRM] =	SIGPROP_KILL,
245 	[SIGPROF] =	SIGPROP_KILL,
246 	[SIGWINCH] =	SIGPROP_IGNORE,
247 	[SIGINFO] =	SIGPROP_IGNORE,
248 	[SIGUSR1] =	SIGPROP_KILL,
249 	[SIGUSR2] =	SIGPROP_KILL,
250 };
251 
252 #define	_SIG_FOREACH_ADVANCE(i, set) ({					\
253 	int __found;							\
254 	for (;;) {							\
255 		if (__bits != 0) {					\
256 			int __sig = ffs(__bits);			\
257 			__bits &= ~(1u << (__sig - 1));			\
258 			sig = __i * sizeof((set)->__bits[0]) * NBBY + __sig; \
259 			__found = 1;					\
260 			break;						\
261 		}							\
262 		if (++__i == _SIG_WORDS) {				\
263 			__found = 0;					\
264 			break;						\
265 		}							\
266 		__bits = (set)->__bits[__i];				\
267 	}								\
268 	__found != 0;							\
269 })
270 
271 #define	SIG_FOREACH(i, set)						\
272 	for (int32_t __i = -1, __bits = 0;				\
273 	    _SIG_FOREACH_ADVANCE(i, set); )				\
274 
275 sigset_t fastblock_mask;
276 
277 static void
278 sigqueue_start(void)
279 {
280 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
281 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
282 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
283 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
284 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
285 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
286 	SIGFILLSET(fastblock_mask);
287 	SIG_CANTMASK(fastblock_mask);
288 }
289 
290 ksiginfo_t *
291 ksiginfo_alloc(int wait)
292 {
293 	int flags;
294 
295 	flags = M_ZERO | (wait ? M_WAITOK : M_NOWAIT);
296 	if (ksiginfo_zone != NULL)
297 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
298 	return (NULL);
299 }
300 
301 void
302 ksiginfo_free(ksiginfo_t *ksi)
303 {
304 	uma_zfree(ksiginfo_zone, ksi);
305 }
306 
307 static __inline int
308 ksiginfo_tryfree(ksiginfo_t *ksi)
309 {
310 	if (!(ksi->ksi_flags & KSI_EXT)) {
311 		uma_zfree(ksiginfo_zone, ksi);
312 		return (1);
313 	}
314 	return (0);
315 }
316 
317 void
318 sigqueue_init(sigqueue_t *list, struct proc *p)
319 {
320 	SIGEMPTYSET(list->sq_signals);
321 	SIGEMPTYSET(list->sq_kill);
322 	SIGEMPTYSET(list->sq_ptrace);
323 	TAILQ_INIT(&list->sq_list);
324 	list->sq_proc = p;
325 	list->sq_flags = SQ_INIT;
326 }
327 
328 /*
329  * Get a signal's ksiginfo.
330  * Return:
331  *	0	-	signal not found
332  *	others	-	signal number
333  */
334 static int
335 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
336 {
337 	struct proc *p = sq->sq_proc;
338 	struct ksiginfo *ksi, *next;
339 	int count = 0;
340 
341 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
342 
343 	if (!SIGISMEMBER(sq->sq_signals, signo))
344 		return (0);
345 
346 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
347 		count++;
348 		SIGDELSET(sq->sq_ptrace, signo);
349 		si->ksi_flags |= KSI_PTRACE;
350 	}
351 	if (SIGISMEMBER(sq->sq_kill, signo)) {
352 		count++;
353 		if (count == 1)
354 			SIGDELSET(sq->sq_kill, signo);
355 	}
356 
357 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
358 		if (ksi->ksi_signo == signo) {
359 			if (count == 0) {
360 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
361 				ksi->ksi_sigq = NULL;
362 				ksiginfo_copy(ksi, si);
363 				if (ksiginfo_tryfree(ksi) && p != NULL)
364 					p->p_pendingcnt--;
365 			}
366 			if (++count > 1)
367 				break;
368 		}
369 	}
370 
371 	if (count <= 1)
372 		SIGDELSET(sq->sq_signals, signo);
373 	si->ksi_signo = signo;
374 	return (signo);
375 }
376 
377 void
378 sigqueue_take(ksiginfo_t *ksi)
379 {
380 	struct ksiginfo *kp;
381 	struct proc	*p;
382 	sigqueue_t	*sq;
383 
384 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
385 		return;
386 
387 	p = sq->sq_proc;
388 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
389 	ksi->ksi_sigq = NULL;
390 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
391 		p->p_pendingcnt--;
392 
393 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
394 	     kp = TAILQ_NEXT(kp, ksi_link)) {
395 		if (kp->ksi_signo == ksi->ksi_signo)
396 			break;
397 	}
398 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
399 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
400 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
401 }
402 
403 static int
404 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
405 {
406 	struct proc *p = sq->sq_proc;
407 	struct ksiginfo *ksi;
408 	int ret = 0;
409 
410 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
411 
412 	/*
413 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
414 	 * for these signals.
415 	 */
416 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
417 		SIGADDSET(sq->sq_kill, signo);
418 		goto out_set_bit;
419 	}
420 
421 	/* directly insert the ksi, don't copy it */
422 	if (si->ksi_flags & KSI_INS) {
423 		if (si->ksi_flags & KSI_HEAD)
424 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
425 		else
426 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
427 		si->ksi_sigq = sq;
428 		goto out_set_bit;
429 	}
430 
431 	if (__predict_false(ksiginfo_zone == NULL)) {
432 		SIGADDSET(sq->sq_kill, signo);
433 		goto out_set_bit;
434 	}
435 
436 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
437 		signal_overflow++;
438 		ret = EAGAIN;
439 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
440 		signal_alloc_fail++;
441 		ret = EAGAIN;
442 	} else {
443 		if (p != NULL)
444 			p->p_pendingcnt++;
445 		ksiginfo_copy(si, ksi);
446 		ksi->ksi_signo = signo;
447 		if (si->ksi_flags & KSI_HEAD)
448 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
449 		else
450 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
451 		ksi->ksi_sigq = sq;
452 	}
453 
454 	if (ret != 0) {
455 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
456 			SIGADDSET(sq->sq_ptrace, signo);
457 			ret = 0;
458 			goto out_set_bit;
459 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
460 		    (si->ksi_flags & KSI_SIGQ) == 0) {
461 			SIGADDSET(sq->sq_kill, signo);
462 			ret = 0;
463 			goto out_set_bit;
464 		}
465 		return (ret);
466 	}
467 
468 out_set_bit:
469 	SIGADDSET(sq->sq_signals, signo);
470 	return (ret);
471 }
472 
473 void
474 sigqueue_flush(sigqueue_t *sq)
475 {
476 	struct proc *p = sq->sq_proc;
477 	ksiginfo_t *ksi;
478 
479 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
480 
481 	if (p != NULL)
482 		PROC_LOCK_ASSERT(p, MA_OWNED);
483 
484 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
485 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
486 		ksi->ksi_sigq = NULL;
487 		if (ksiginfo_tryfree(ksi) && p != NULL)
488 			p->p_pendingcnt--;
489 	}
490 
491 	SIGEMPTYSET(sq->sq_signals);
492 	SIGEMPTYSET(sq->sq_kill);
493 	SIGEMPTYSET(sq->sq_ptrace);
494 }
495 
496 static void
497 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
498 {
499 	sigset_t tmp;
500 	struct proc *p1, *p2;
501 	ksiginfo_t *ksi, *next;
502 
503 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
504 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
505 	p1 = src->sq_proc;
506 	p2 = dst->sq_proc;
507 	/* Move siginfo to target list */
508 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
509 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
510 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
511 			if (p1 != NULL)
512 				p1->p_pendingcnt--;
513 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
514 			ksi->ksi_sigq = dst;
515 			if (p2 != NULL)
516 				p2->p_pendingcnt++;
517 		}
518 	}
519 
520 	/* Move pending bits to target list */
521 	tmp = src->sq_kill;
522 	SIGSETAND(tmp, *set);
523 	SIGSETOR(dst->sq_kill, tmp);
524 	SIGSETNAND(src->sq_kill, tmp);
525 
526 	tmp = src->sq_ptrace;
527 	SIGSETAND(tmp, *set);
528 	SIGSETOR(dst->sq_ptrace, tmp);
529 	SIGSETNAND(src->sq_ptrace, tmp);
530 
531 	tmp = src->sq_signals;
532 	SIGSETAND(tmp, *set);
533 	SIGSETOR(dst->sq_signals, tmp);
534 	SIGSETNAND(src->sq_signals, tmp);
535 }
536 
537 #if 0
538 static void
539 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
540 {
541 	sigset_t set;
542 
543 	SIGEMPTYSET(set);
544 	SIGADDSET(set, signo);
545 	sigqueue_move_set(src, dst, &set);
546 }
547 #endif
548 
549 static void
550 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
551 {
552 	struct proc *p = sq->sq_proc;
553 	ksiginfo_t *ksi, *next;
554 
555 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
556 
557 	/* Remove siginfo queue */
558 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
559 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
560 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
561 			ksi->ksi_sigq = NULL;
562 			if (ksiginfo_tryfree(ksi) && p != NULL)
563 				p->p_pendingcnt--;
564 		}
565 	}
566 	SIGSETNAND(sq->sq_kill, *set);
567 	SIGSETNAND(sq->sq_ptrace, *set);
568 	SIGSETNAND(sq->sq_signals, *set);
569 }
570 
571 void
572 sigqueue_delete(sigqueue_t *sq, int signo)
573 {
574 	sigset_t set;
575 
576 	SIGEMPTYSET(set);
577 	SIGADDSET(set, signo);
578 	sigqueue_delete_set(sq, &set);
579 }
580 
581 /* Remove a set of signals for a process */
582 static void
583 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
584 {
585 	sigqueue_t worklist;
586 	struct thread *td0;
587 
588 	PROC_LOCK_ASSERT(p, MA_OWNED);
589 
590 	sigqueue_init(&worklist, NULL);
591 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
592 
593 	FOREACH_THREAD_IN_PROC(p, td0)
594 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
595 
596 	sigqueue_flush(&worklist);
597 }
598 
599 void
600 sigqueue_delete_proc(struct proc *p, int signo)
601 {
602 	sigset_t set;
603 
604 	SIGEMPTYSET(set);
605 	SIGADDSET(set, signo);
606 	sigqueue_delete_set_proc(p, &set);
607 }
608 
609 static void
610 sigqueue_delete_stopmask_proc(struct proc *p)
611 {
612 	sigset_t set;
613 
614 	SIGEMPTYSET(set);
615 	SIGADDSET(set, SIGSTOP);
616 	SIGADDSET(set, SIGTSTP);
617 	SIGADDSET(set, SIGTTIN);
618 	SIGADDSET(set, SIGTTOU);
619 	sigqueue_delete_set_proc(p, &set);
620 }
621 
622 /*
623  * Determine signal that should be delivered to thread td, the current
624  * thread, 0 if none.  If there is a pending stop signal with default
625  * action, the process stops in issignal().
626  */
627 int
628 cursig(struct thread *td)
629 {
630 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
631 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
632 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
633 	return (SIGPENDING(td) ? issignal(td) : 0);
634 }
635 
636 /*
637  * Arrange for ast() to handle unmasked pending signals on return to user
638  * mode.  This must be called whenever a signal is added to td_sigqueue or
639  * unmasked in td_sigmask.
640  */
641 void
642 signotify(struct thread *td)
643 {
644 
645 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
646 
647 	if (SIGPENDING(td)) {
648 		thread_lock(td);
649 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
650 		thread_unlock(td);
651 	}
652 }
653 
654 /*
655  * Returns 1 (true) if altstack is configured for the thread, and the
656  * passed stack bottom address falls into the altstack range.  Handles
657  * the 43 compat special case where the alt stack size is zero.
658  */
659 int
660 sigonstack(size_t sp)
661 {
662 	struct thread *td;
663 
664 	td = curthread;
665 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
666 		return (0);
667 #if defined(COMPAT_43)
668 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
669 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
670 #endif
671 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
672 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
673 }
674 
675 static __inline int
676 sigprop(int sig)
677 {
678 
679 	if (sig > 0 && sig < nitems(sigproptbl))
680 		return (sigproptbl[sig]);
681 	return (0);
682 }
683 
684 static bool
685 sigact_flag_test(const struct sigaction *act, int flag)
686 {
687 
688 	/*
689 	 * SA_SIGINFO is reset when signal disposition is set to
690 	 * ignore or default.  Other flags are kept according to user
691 	 * settings.
692 	 */
693 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
694 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
695 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
696 }
697 
698 /*
699  * kern_sigaction
700  * sigaction
701  * freebsd4_sigaction
702  * osigaction
703  */
704 int
705 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
706     struct sigaction *oact, int flags)
707 {
708 	struct sigacts *ps;
709 	struct proc *p = td->td_proc;
710 
711 	if (!_SIG_VALID(sig))
712 		return (EINVAL);
713 	if (act != NULL && act->sa_handler != SIG_DFL &&
714 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
715 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
716 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
717 		return (EINVAL);
718 
719 	PROC_LOCK(p);
720 	ps = p->p_sigacts;
721 	mtx_lock(&ps->ps_mtx);
722 	if (oact) {
723 		memset(oact, 0, sizeof(*oact));
724 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
725 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
726 			oact->sa_flags |= SA_ONSTACK;
727 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
728 			oact->sa_flags |= SA_RESTART;
729 		if (SIGISMEMBER(ps->ps_sigreset, sig))
730 			oact->sa_flags |= SA_RESETHAND;
731 		if (SIGISMEMBER(ps->ps_signodefer, sig))
732 			oact->sa_flags |= SA_NODEFER;
733 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
734 			oact->sa_flags |= SA_SIGINFO;
735 			oact->sa_sigaction =
736 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
737 		} else
738 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
739 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
740 			oact->sa_flags |= SA_NOCLDSTOP;
741 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
742 			oact->sa_flags |= SA_NOCLDWAIT;
743 	}
744 	if (act) {
745 		if ((sig == SIGKILL || sig == SIGSTOP) &&
746 		    act->sa_handler != SIG_DFL) {
747 			mtx_unlock(&ps->ps_mtx);
748 			PROC_UNLOCK(p);
749 			return (EINVAL);
750 		}
751 
752 		/*
753 		 * Change setting atomically.
754 		 */
755 
756 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
757 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
758 		if (sigact_flag_test(act, SA_SIGINFO)) {
759 			ps->ps_sigact[_SIG_IDX(sig)] =
760 			    (__sighandler_t *)act->sa_sigaction;
761 			SIGADDSET(ps->ps_siginfo, sig);
762 		} else {
763 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
764 			SIGDELSET(ps->ps_siginfo, sig);
765 		}
766 		if (!sigact_flag_test(act, SA_RESTART))
767 			SIGADDSET(ps->ps_sigintr, sig);
768 		else
769 			SIGDELSET(ps->ps_sigintr, sig);
770 		if (sigact_flag_test(act, SA_ONSTACK))
771 			SIGADDSET(ps->ps_sigonstack, sig);
772 		else
773 			SIGDELSET(ps->ps_sigonstack, sig);
774 		if (sigact_flag_test(act, SA_RESETHAND))
775 			SIGADDSET(ps->ps_sigreset, sig);
776 		else
777 			SIGDELSET(ps->ps_sigreset, sig);
778 		if (sigact_flag_test(act, SA_NODEFER))
779 			SIGADDSET(ps->ps_signodefer, sig);
780 		else
781 			SIGDELSET(ps->ps_signodefer, sig);
782 		if (sig == SIGCHLD) {
783 			if (act->sa_flags & SA_NOCLDSTOP)
784 				ps->ps_flag |= PS_NOCLDSTOP;
785 			else
786 				ps->ps_flag &= ~PS_NOCLDSTOP;
787 			if (act->sa_flags & SA_NOCLDWAIT) {
788 				/*
789 				 * Paranoia: since SA_NOCLDWAIT is implemented
790 				 * by reparenting the dying child to PID 1 (and
791 				 * trust it to reap the zombie), PID 1 itself
792 				 * is forbidden to set SA_NOCLDWAIT.
793 				 */
794 				if (p->p_pid == 1)
795 					ps->ps_flag &= ~PS_NOCLDWAIT;
796 				else
797 					ps->ps_flag |= PS_NOCLDWAIT;
798 			} else
799 				ps->ps_flag &= ~PS_NOCLDWAIT;
800 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
801 				ps->ps_flag |= PS_CLDSIGIGN;
802 			else
803 				ps->ps_flag &= ~PS_CLDSIGIGN;
804 		}
805 		/*
806 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
807 		 * and for signals set to SIG_DFL where the default is to
808 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
809 		 * have to restart the process.
810 		 */
811 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
812 		    (sigprop(sig) & SIGPROP_IGNORE &&
813 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
814 			/* never to be seen again */
815 			sigqueue_delete_proc(p, sig);
816 			if (sig != SIGCONT)
817 				/* easier in psignal */
818 				SIGADDSET(ps->ps_sigignore, sig);
819 			SIGDELSET(ps->ps_sigcatch, sig);
820 		} else {
821 			SIGDELSET(ps->ps_sigignore, sig);
822 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
823 				SIGDELSET(ps->ps_sigcatch, sig);
824 			else
825 				SIGADDSET(ps->ps_sigcatch, sig);
826 		}
827 #ifdef COMPAT_FREEBSD4
828 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
829 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
830 		    (flags & KSA_FREEBSD4) == 0)
831 			SIGDELSET(ps->ps_freebsd4, sig);
832 		else
833 			SIGADDSET(ps->ps_freebsd4, sig);
834 #endif
835 #ifdef COMPAT_43
836 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
837 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
838 		    (flags & KSA_OSIGSET) == 0)
839 			SIGDELSET(ps->ps_osigset, sig);
840 		else
841 			SIGADDSET(ps->ps_osigset, sig);
842 #endif
843 	}
844 	mtx_unlock(&ps->ps_mtx);
845 	PROC_UNLOCK(p);
846 	return (0);
847 }
848 
849 #ifndef _SYS_SYSPROTO_H_
850 struct sigaction_args {
851 	int	sig;
852 	struct	sigaction *act;
853 	struct	sigaction *oact;
854 };
855 #endif
856 int
857 sys_sigaction(struct thread *td, struct sigaction_args *uap)
858 {
859 	struct sigaction act, oact;
860 	struct sigaction *actp, *oactp;
861 	int error;
862 
863 	actp = (uap->act != NULL) ? &act : NULL;
864 	oactp = (uap->oact != NULL) ? &oact : NULL;
865 	if (actp) {
866 		error = copyin(uap->act, actp, sizeof(act));
867 		if (error)
868 			return (error);
869 	}
870 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
871 	if (oactp && !error)
872 		error = copyout(oactp, uap->oact, sizeof(oact));
873 	return (error);
874 }
875 
876 #ifdef COMPAT_FREEBSD4
877 #ifndef _SYS_SYSPROTO_H_
878 struct freebsd4_sigaction_args {
879 	int	sig;
880 	struct	sigaction *act;
881 	struct	sigaction *oact;
882 };
883 #endif
884 int
885 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
886 {
887 	struct sigaction act, oact;
888 	struct sigaction *actp, *oactp;
889 	int error;
890 
891 	actp = (uap->act != NULL) ? &act : NULL;
892 	oactp = (uap->oact != NULL) ? &oact : NULL;
893 	if (actp) {
894 		error = copyin(uap->act, actp, sizeof(act));
895 		if (error)
896 			return (error);
897 	}
898 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
899 	if (oactp && !error)
900 		error = copyout(oactp, uap->oact, sizeof(oact));
901 	return (error);
902 }
903 #endif	/* COMAPT_FREEBSD4 */
904 
905 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
906 #ifndef _SYS_SYSPROTO_H_
907 struct osigaction_args {
908 	int	signum;
909 	struct	osigaction *nsa;
910 	struct	osigaction *osa;
911 };
912 #endif
913 int
914 osigaction(struct thread *td, struct osigaction_args *uap)
915 {
916 	struct osigaction sa;
917 	struct sigaction nsa, osa;
918 	struct sigaction *nsap, *osap;
919 	int error;
920 
921 	if (uap->signum <= 0 || uap->signum >= ONSIG)
922 		return (EINVAL);
923 
924 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
925 	osap = (uap->osa != NULL) ? &osa : NULL;
926 
927 	if (nsap) {
928 		error = copyin(uap->nsa, &sa, sizeof(sa));
929 		if (error)
930 			return (error);
931 		nsap->sa_handler = sa.sa_handler;
932 		nsap->sa_flags = sa.sa_flags;
933 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
934 	}
935 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
936 	if (osap && !error) {
937 		sa.sa_handler = osap->sa_handler;
938 		sa.sa_flags = osap->sa_flags;
939 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
940 		error = copyout(&sa, uap->osa, sizeof(sa));
941 	}
942 	return (error);
943 }
944 
945 #if !defined(__i386__)
946 /* Avoid replicating the same stub everywhere */
947 int
948 osigreturn(struct thread *td, struct osigreturn_args *uap)
949 {
950 
951 	return (nosys(td, (struct nosys_args *)uap));
952 }
953 #endif
954 #endif /* COMPAT_43 */
955 
956 /*
957  * Initialize signal state for process 0;
958  * set to ignore signals that are ignored by default.
959  */
960 void
961 siginit(struct proc *p)
962 {
963 	int i;
964 	struct sigacts *ps;
965 
966 	PROC_LOCK(p);
967 	ps = p->p_sigacts;
968 	mtx_lock(&ps->ps_mtx);
969 	for (i = 1; i <= NSIG; i++) {
970 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
971 			SIGADDSET(ps->ps_sigignore, i);
972 		}
973 	}
974 	mtx_unlock(&ps->ps_mtx);
975 	PROC_UNLOCK(p);
976 }
977 
978 /*
979  * Reset specified signal to the default disposition.
980  */
981 static void
982 sigdflt(struct sigacts *ps, int sig)
983 {
984 
985 	mtx_assert(&ps->ps_mtx, MA_OWNED);
986 	SIGDELSET(ps->ps_sigcatch, sig);
987 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
988 		SIGADDSET(ps->ps_sigignore, sig);
989 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
990 	SIGDELSET(ps->ps_siginfo, sig);
991 }
992 
993 /*
994  * Reset signals for an exec of the specified process.
995  */
996 void
997 execsigs(struct proc *p)
998 {
999 	struct sigacts *ps;
1000 	struct thread *td;
1001 
1002 	/*
1003 	 * Reset caught signals.  Held signals remain held
1004 	 * through td_sigmask (unless they were caught,
1005 	 * and are now ignored by default).
1006 	 */
1007 	PROC_LOCK_ASSERT(p, MA_OWNED);
1008 	ps = p->p_sigacts;
1009 	mtx_lock(&ps->ps_mtx);
1010 	sig_drop_caught(p);
1011 
1012 	/*
1013 	 * Reset stack state to the user stack.
1014 	 * Clear set of signals caught on the signal stack.
1015 	 */
1016 	td = curthread;
1017 	MPASS(td->td_proc == p);
1018 	td->td_sigstk.ss_flags = SS_DISABLE;
1019 	td->td_sigstk.ss_size = 0;
1020 	td->td_sigstk.ss_sp = 0;
1021 	td->td_pflags &= ~TDP_ALTSTACK;
1022 	/*
1023 	 * Reset no zombies if child dies flag as Solaris does.
1024 	 */
1025 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1026 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1027 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1028 	mtx_unlock(&ps->ps_mtx);
1029 }
1030 
1031 /*
1032  * kern_sigprocmask()
1033  *
1034  *	Manipulate signal mask.
1035  */
1036 int
1037 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1038     int flags)
1039 {
1040 	sigset_t new_block, oset1;
1041 	struct proc *p;
1042 	int error;
1043 
1044 	p = td->td_proc;
1045 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1046 		PROC_LOCK_ASSERT(p, MA_OWNED);
1047 	else
1048 		PROC_LOCK(p);
1049 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1050 	    ? MA_OWNED : MA_NOTOWNED);
1051 	if (oset != NULL)
1052 		*oset = td->td_sigmask;
1053 
1054 	error = 0;
1055 	if (set != NULL) {
1056 		switch (how) {
1057 		case SIG_BLOCK:
1058 			SIG_CANTMASK(*set);
1059 			oset1 = td->td_sigmask;
1060 			SIGSETOR(td->td_sigmask, *set);
1061 			new_block = td->td_sigmask;
1062 			SIGSETNAND(new_block, oset1);
1063 			break;
1064 		case SIG_UNBLOCK:
1065 			SIGSETNAND(td->td_sigmask, *set);
1066 			signotify(td);
1067 			goto out;
1068 		case SIG_SETMASK:
1069 			SIG_CANTMASK(*set);
1070 			oset1 = td->td_sigmask;
1071 			if (flags & SIGPROCMASK_OLD)
1072 				SIGSETLO(td->td_sigmask, *set);
1073 			else
1074 				td->td_sigmask = *set;
1075 			new_block = td->td_sigmask;
1076 			SIGSETNAND(new_block, oset1);
1077 			signotify(td);
1078 			break;
1079 		default:
1080 			error = EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		/*
1085 		 * The new_block set contains signals that were not previously
1086 		 * blocked, but are blocked now.
1087 		 *
1088 		 * In case we block any signal that was not previously blocked
1089 		 * for td, and process has the signal pending, try to schedule
1090 		 * signal delivery to some thread that does not block the
1091 		 * signal, possibly waking it up.
1092 		 */
1093 		if (p->p_numthreads != 1)
1094 			reschedule_signals(p, new_block, flags);
1095 	}
1096 
1097 out:
1098 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1099 		PROC_UNLOCK(p);
1100 	return (error);
1101 }
1102 
1103 #ifndef _SYS_SYSPROTO_H_
1104 struct sigprocmask_args {
1105 	int	how;
1106 	const sigset_t *set;
1107 	sigset_t *oset;
1108 };
1109 #endif
1110 int
1111 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1112 {
1113 	sigset_t set, oset;
1114 	sigset_t *setp, *osetp;
1115 	int error;
1116 
1117 	setp = (uap->set != NULL) ? &set : NULL;
1118 	osetp = (uap->oset != NULL) ? &oset : NULL;
1119 	if (setp) {
1120 		error = copyin(uap->set, setp, sizeof(set));
1121 		if (error)
1122 			return (error);
1123 	}
1124 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1125 	if (osetp && !error) {
1126 		error = copyout(osetp, uap->oset, sizeof(oset));
1127 	}
1128 	return (error);
1129 }
1130 
1131 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1132 #ifndef _SYS_SYSPROTO_H_
1133 struct osigprocmask_args {
1134 	int	how;
1135 	osigset_t mask;
1136 };
1137 #endif
1138 int
1139 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1140 {
1141 	sigset_t set, oset;
1142 	int error;
1143 
1144 	OSIG2SIG(uap->mask, set);
1145 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1146 	SIG2OSIG(oset, td->td_retval[0]);
1147 	return (error);
1148 }
1149 #endif /* COMPAT_43 */
1150 
1151 int
1152 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1153 {
1154 	ksiginfo_t ksi;
1155 	sigset_t set;
1156 	int error;
1157 
1158 	error = copyin(uap->set, &set, sizeof(set));
1159 	if (error) {
1160 		td->td_retval[0] = error;
1161 		return (0);
1162 	}
1163 
1164 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1165 	if (error) {
1166 		/*
1167 		 * sigwait() function shall not return EINTR, but
1168 		 * the syscall does.  Non-ancient libc provides the
1169 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1170 		 * is used by libthr to handle required cancellation
1171 		 * point in the sigwait().
1172 		 */
1173 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1174 			return (ERESTART);
1175 		td->td_retval[0] = error;
1176 		return (0);
1177 	}
1178 
1179 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1180 	td->td_retval[0] = error;
1181 	return (0);
1182 }
1183 
1184 int
1185 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1186 {
1187 	struct timespec ts;
1188 	struct timespec *timeout;
1189 	sigset_t set;
1190 	ksiginfo_t ksi;
1191 	int error;
1192 
1193 	if (uap->timeout) {
1194 		error = copyin(uap->timeout, &ts, sizeof(ts));
1195 		if (error)
1196 			return (error);
1197 
1198 		timeout = &ts;
1199 	} else
1200 		timeout = NULL;
1201 
1202 	error = copyin(uap->set, &set, sizeof(set));
1203 	if (error)
1204 		return (error);
1205 
1206 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1207 	if (error)
1208 		return (error);
1209 
1210 	if (uap->info)
1211 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1212 
1213 	if (error == 0)
1214 		td->td_retval[0] = ksi.ksi_signo;
1215 	return (error);
1216 }
1217 
1218 int
1219 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1220 {
1221 	ksiginfo_t ksi;
1222 	sigset_t set;
1223 	int error;
1224 
1225 	error = copyin(uap->set, &set, sizeof(set));
1226 	if (error)
1227 		return (error);
1228 
1229 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1230 	if (error)
1231 		return (error);
1232 
1233 	if (uap->info)
1234 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1235 
1236 	if (error == 0)
1237 		td->td_retval[0] = ksi.ksi_signo;
1238 	return (error);
1239 }
1240 
1241 static void
1242 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1243 {
1244 	struct thread *thr;
1245 
1246 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1247 		if (thr == td)
1248 			thr->td_si = *si;
1249 		else
1250 			thr->td_si.si_signo = 0;
1251 	}
1252 }
1253 
1254 int
1255 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1256 	struct timespec *timeout)
1257 {
1258 	struct sigacts *ps;
1259 	sigset_t saved_mask, new_block;
1260 	struct proc *p;
1261 	int error, sig, timevalid = 0;
1262 	sbintime_t sbt, precision, tsbt;
1263 	struct timespec ts;
1264 	bool traced;
1265 
1266 	p = td->td_proc;
1267 	error = 0;
1268 	traced = false;
1269 
1270 	/* Ensure the sigfastblock value is up to date. */
1271 	sigfastblock_fetch(td);
1272 
1273 	if (timeout != NULL) {
1274 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1275 			timevalid = 1;
1276 			ts = *timeout;
1277 			if (ts.tv_sec < INT32_MAX / 2) {
1278 				tsbt = tstosbt(ts);
1279 				precision = tsbt;
1280 				precision >>= tc_precexp;
1281 				if (TIMESEL(&sbt, tsbt))
1282 					sbt += tc_tick_sbt;
1283 				sbt += tsbt;
1284 			} else
1285 				precision = sbt = 0;
1286 		}
1287 	} else
1288 		precision = sbt = 0;
1289 	ksiginfo_init(ksi);
1290 	/* Some signals can not be waited for. */
1291 	SIG_CANTMASK(waitset);
1292 	ps = p->p_sigacts;
1293 	PROC_LOCK(p);
1294 	saved_mask = td->td_sigmask;
1295 	SIGSETNAND(td->td_sigmask, waitset);
1296 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1297 	    !kern_sig_discard_ign) {
1298 		thread_lock(td);
1299 		td->td_flags |= TDF_SIGWAIT;
1300 		thread_unlock(td);
1301 	}
1302 	for (;;) {
1303 		mtx_lock(&ps->ps_mtx);
1304 		sig = cursig(td);
1305 		mtx_unlock(&ps->ps_mtx);
1306 		KASSERT(sig >= 0, ("sig %d", sig));
1307 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1308 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1309 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1310 				error = 0;
1311 				break;
1312 			}
1313 		}
1314 
1315 		if (error != 0)
1316 			break;
1317 
1318 		/*
1319 		 * POSIX says this must be checked after looking for pending
1320 		 * signals.
1321 		 */
1322 		if (timeout != NULL && !timevalid) {
1323 			error = EINVAL;
1324 			break;
1325 		}
1326 
1327 		if (traced) {
1328 			error = EINTR;
1329 			break;
1330 		}
1331 
1332 		error = msleep_sbt(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1333 		    "sigwait", sbt, precision, C_ABSOLUTE);
1334 
1335 		/* The syscalls can not be restarted. */
1336 		if (error == ERESTART)
1337 			error = EINTR;
1338 
1339 		/*
1340 		 * If PTRACE_SCE or PTRACE_SCX were set after
1341 		 * userspace entered the syscall, return spurious
1342 		 * EINTR after wait was done.  Only do this as last
1343 		 * resort after rechecking for possible queued signals
1344 		 * and expired timeouts.
1345 		 */
1346 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1347 			traced = true;
1348 	}
1349 	thread_lock(td);
1350 	td->td_flags &= ~TDF_SIGWAIT;
1351 	thread_unlock(td);
1352 
1353 	new_block = saved_mask;
1354 	SIGSETNAND(new_block, td->td_sigmask);
1355 	td->td_sigmask = saved_mask;
1356 	/*
1357 	 * Fewer signals can be delivered to us, reschedule signal
1358 	 * notification.
1359 	 */
1360 	if (p->p_numthreads != 1)
1361 		reschedule_signals(p, new_block, 0);
1362 
1363 	if (error == 0) {
1364 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1365 
1366 		if (ksi->ksi_code == SI_TIMER)
1367 			itimer_accept(p, ksi->ksi_timerid, ksi);
1368 
1369 #ifdef KTRACE
1370 		if (KTRPOINT(td, KTR_PSIG)) {
1371 			sig_t action;
1372 
1373 			mtx_lock(&ps->ps_mtx);
1374 			action = ps->ps_sigact[_SIG_IDX(sig)];
1375 			mtx_unlock(&ps->ps_mtx);
1376 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1377 		}
1378 #endif
1379 		if (sig == SIGKILL) {
1380 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1381 			sigexit(td, sig);
1382 		}
1383 	}
1384 	PROC_UNLOCK(p);
1385 	return (error);
1386 }
1387 
1388 #ifndef _SYS_SYSPROTO_H_
1389 struct sigpending_args {
1390 	sigset_t	*set;
1391 };
1392 #endif
1393 int
1394 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1395 {
1396 	struct proc *p = td->td_proc;
1397 	sigset_t pending;
1398 
1399 	PROC_LOCK(p);
1400 	pending = p->p_sigqueue.sq_signals;
1401 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1402 	PROC_UNLOCK(p);
1403 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1404 }
1405 
1406 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigpending_args {
1409 	int	dummy;
1410 };
1411 #endif
1412 int
1413 osigpending(struct thread *td, struct osigpending_args *uap)
1414 {
1415 	struct proc *p = td->td_proc;
1416 	sigset_t pending;
1417 
1418 	PROC_LOCK(p);
1419 	pending = p->p_sigqueue.sq_signals;
1420 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1421 	PROC_UNLOCK(p);
1422 	SIG2OSIG(pending, td->td_retval[0]);
1423 	return (0);
1424 }
1425 #endif /* COMPAT_43 */
1426 
1427 #if defined(COMPAT_43)
1428 /*
1429  * Generalized interface signal handler, 4.3-compatible.
1430  */
1431 #ifndef _SYS_SYSPROTO_H_
1432 struct osigvec_args {
1433 	int	signum;
1434 	struct	sigvec *nsv;
1435 	struct	sigvec *osv;
1436 };
1437 #endif
1438 /* ARGSUSED */
1439 int
1440 osigvec(struct thread *td, struct osigvec_args *uap)
1441 {
1442 	struct sigvec vec;
1443 	struct sigaction nsa, osa;
1444 	struct sigaction *nsap, *osap;
1445 	int error;
1446 
1447 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1448 		return (EINVAL);
1449 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1450 	osap = (uap->osv != NULL) ? &osa : NULL;
1451 	if (nsap) {
1452 		error = copyin(uap->nsv, &vec, sizeof(vec));
1453 		if (error)
1454 			return (error);
1455 		nsap->sa_handler = vec.sv_handler;
1456 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1457 		nsap->sa_flags = vec.sv_flags;
1458 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1459 	}
1460 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1461 	if (osap && !error) {
1462 		vec.sv_handler = osap->sa_handler;
1463 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1464 		vec.sv_flags = osap->sa_flags;
1465 		vec.sv_flags &= ~SA_NOCLDWAIT;
1466 		vec.sv_flags ^= SA_RESTART;
1467 		error = copyout(&vec, uap->osv, sizeof(vec));
1468 	}
1469 	return (error);
1470 }
1471 
1472 #ifndef _SYS_SYSPROTO_H_
1473 struct osigblock_args {
1474 	int	mask;
1475 };
1476 #endif
1477 int
1478 osigblock(struct thread *td, struct osigblock_args *uap)
1479 {
1480 	sigset_t set, oset;
1481 
1482 	OSIG2SIG(uap->mask, set);
1483 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1484 	SIG2OSIG(oset, td->td_retval[0]);
1485 	return (0);
1486 }
1487 
1488 #ifndef _SYS_SYSPROTO_H_
1489 struct osigsetmask_args {
1490 	int	mask;
1491 };
1492 #endif
1493 int
1494 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1495 {
1496 	sigset_t set, oset;
1497 
1498 	OSIG2SIG(uap->mask, set);
1499 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1500 	SIG2OSIG(oset, td->td_retval[0]);
1501 	return (0);
1502 }
1503 #endif /* COMPAT_43 */
1504 
1505 /*
1506  * Suspend calling thread until signal, providing mask to be set in the
1507  * meantime.
1508  */
1509 #ifndef _SYS_SYSPROTO_H_
1510 struct sigsuspend_args {
1511 	const sigset_t *sigmask;
1512 };
1513 #endif
1514 /* ARGSUSED */
1515 int
1516 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1517 {
1518 	sigset_t mask;
1519 	int error;
1520 
1521 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1522 	if (error)
1523 		return (error);
1524 	return (kern_sigsuspend(td, mask));
1525 }
1526 
1527 int
1528 kern_sigsuspend(struct thread *td, sigset_t mask)
1529 {
1530 	struct proc *p = td->td_proc;
1531 	int has_sig, sig;
1532 
1533 	/* Ensure the sigfastblock value is up to date. */
1534 	sigfastblock_fetch(td);
1535 
1536 	/*
1537 	 * When returning from sigsuspend, we want
1538 	 * the old mask to be restored after the
1539 	 * signal handler has finished.  Thus, we
1540 	 * save it here and mark the sigacts structure
1541 	 * to indicate this.
1542 	 */
1543 	PROC_LOCK(p);
1544 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1545 	    SIGPROCMASK_PROC_LOCKED);
1546 	td->td_pflags |= TDP_OLDMASK;
1547 
1548 	/*
1549 	 * Process signals now. Otherwise, we can get spurious wakeup
1550 	 * due to signal entered process queue, but delivered to other
1551 	 * thread. But sigsuspend should return only on signal
1552 	 * delivery.
1553 	 */
1554 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1555 	for (has_sig = 0; !has_sig;) {
1556 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1557 			0) == 0)
1558 			/* void */;
1559 		thread_suspend_check(0);
1560 		mtx_lock(&p->p_sigacts->ps_mtx);
1561 		while ((sig = cursig(td)) != 0) {
1562 			KASSERT(sig >= 0, ("sig %d", sig));
1563 			has_sig += postsig(sig);
1564 		}
1565 		mtx_unlock(&p->p_sigacts->ps_mtx);
1566 
1567 		/*
1568 		 * If PTRACE_SCE or PTRACE_SCX were set after
1569 		 * userspace entered the syscall, return spurious
1570 		 * EINTR.
1571 		 */
1572 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1573 			has_sig += 1;
1574 	}
1575 	PROC_UNLOCK(p);
1576 	td->td_errno = EINTR;
1577 	td->td_pflags |= TDP_NERRNO;
1578 	return (EJUSTRETURN);
1579 }
1580 
1581 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1582 /*
1583  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1584  * convention: libc stub passes mask, not pointer, to save a copyin.
1585  */
1586 #ifndef _SYS_SYSPROTO_H_
1587 struct osigsuspend_args {
1588 	osigset_t mask;
1589 };
1590 #endif
1591 /* ARGSUSED */
1592 int
1593 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1594 {
1595 	sigset_t mask;
1596 
1597 	OSIG2SIG(uap->mask, mask);
1598 	return (kern_sigsuspend(td, mask));
1599 }
1600 #endif /* COMPAT_43 */
1601 
1602 #if defined(COMPAT_43)
1603 #ifndef _SYS_SYSPROTO_H_
1604 struct osigstack_args {
1605 	struct	sigstack *nss;
1606 	struct	sigstack *oss;
1607 };
1608 #endif
1609 /* ARGSUSED */
1610 int
1611 osigstack(struct thread *td, struct osigstack_args *uap)
1612 {
1613 	struct sigstack nss, oss;
1614 	int error = 0;
1615 
1616 	if (uap->nss != NULL) {
1617 		error = copyin(uap->nss, &nss, sizeof(nss));
1618 		if (error)
1619 			return (error);
1620 	}
1621 	oss.ss_sp = td->td_sigstk.ss_sp;
1622 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1623 	if (uap->nss != NULL) {
1624 		td->td_sigstk.ss_sp = nss.ss_sp;
1625 		td->td_sigstk.ss_size = 0;
1626 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1627 		td->td_pflags |= TDP_ALTSTACK;
1628 	}
1629 	if (uap->oss != NULL)
1630 		error = copyout(&oss, uap->oss, sizeof(oss));
1631 
1632 	return (error);
1633 }
1634 #endif /* COMPAT_43 */
1635 
1636 #ifndef _SYS_SYSPROTO_H_
1637 struct sigaltstack_args {
1638 	stack_t	*ss;
1639 	stack_t	*oss;
1640 };
1641 #endif
1642 /* ARGSUSED */
1643 int
1644 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1645 {
1646 	stack_t ss, oss;
1647 	int error;
1648 
1649 	if (uap->ss != NULL) {
1650 		error = copyin(uap->ss, &ss, sizeof(ss));
1651 		if (error)
1652 			return (error);
1653 	}
1654 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1655 	    (uap->oss != NULL) ? &oss : NULL);
1656 	if (error)
1657 		return (error);
1658 	if (uap->oss != NULL)
1659 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1660 	return (error);
1661 }
1662 
1663 int
1664 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1665 {
1666 	struct proc *p = td->td_proc;
1667 	int oonstack;
1668 
1669 	oonstack = sigonstack(cpu_getstack(td));
1670 
1671 	if (oss != NULL) {
1672 		*oss = td->td_sigstk;
1673 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1674 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1675 	}
1676 
1677 	if (ss != NULL) {
1678 		if (oonstack)
1679 			return (EPERM);
1680 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1681 			return (EINVAL);
1682 		if (!(ss->ss_flags & SS_DISABLE)) {
1683 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1684 				return (ENOMEM);
1685 
1686 			td->td_sigstk = *ss;
1687 			td->td_pflags |= TDP_ALTSTACK;
1688 		} else {
1689 			td->td_pflags &= ~TDP_ALTSTACK;
1690 		}
1691 	}
1692 	return (0);
1693 }
1694 
1695 struct killpg1_ctx {
1696 	struct thread *td;
1697 	ksiginfo_t *ksi;
1698 	int sig;
1699 	bool sent;
1700 	bool found;
1701 	int ret;
1702 };
1703 
1704 static void
1705 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1706 {
1707 	int err;
1708 
1709 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1710 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1711 		return;
1712 	PROC_LOCK(p);
1713 	err = p_cansignal(arg->td, p, arg->sig);
1714 	if (err == 0 && arg->sig != 0)
1715 		pksignal(p, arg->sig, arg->ksi);
1716 	PROC_UNLOCK(p);
1717 	if (err != ESRCH)
1718 		arg->found = true;
1719 	if (err == 0)
1720 		arg->sent = true;
1721 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1722 		arg->ret = err;
1723 }
1724 
1725 /*
1726  * Common code for kill process group/broadcast kill.
1727  * cp is calling process.
1728  */
1729 static int
1730 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1731 {
1732 	struct proc *p;
1733 	struct pgrp *pgrp;
1734 	struct killpg1_ctx arg;
1735 
1736 	arg.td = td;
1737 	arg.ksi = ksi;
1738 	arg.sig = sig;
1739 	arg.sent = false;
1740 	arg.found = false;
1741 	arg.ret = 0;
1742 	if (all) {
1743 		/*
1744 		 * broadcast
1745 		 */
1746 		sx_slock(&allproc_lock);
1747 		FOREACH_PROC_IN_SYSTEM(p) {
1748 			killpg1_sendsig(p, true, &arg);
1749 		}
1750 		sx_sunlock(&allproc_lock);
1751 	} else {
1752 		sx_slock(&proctree_lock);
1753 		if (pgid == 0) {
1754 			/*
1755 			 * zero pgid means send to my process group.
1756 			 */
1757 			pgrp = td->td_proc->p_pgrp;
1758 			PGRP_LOCK(pgrp);
1759 		} else {
1760 			pgrp = pgfind(pgid);
1761 			if (pgrp == NULL) {
1762 				sx_sunlock(&proctree_lock);
1763 				return (ESRCH);
1764 			}
1765 		}
1766 		sx_sunlock(&proctree_lock);
1767 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1768 			killpg1_sendsig(p, false, &arg);
1769 		}
1770 		PGRP_UNLOCK(pgrp);
1771 	}
1772 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1773 	if (arg.ret == 0 && !arg.sent)
1774 		arg.ret = arg.found ? EPERM : ESRCH;
1775 	return (arg.ret);
1776 }
1777 
1778 #ifndef _SYS_SYSPROTO_H_
1779 struct kill_args {
1780 	int	pid;
1781 	int	signum;
1782 };
1783 #endif
1784 /* ARGSUSED */
1785 int
1786 sys_kill(struct thread *td, struct kill_args *uap)
1787 {
1788 
1789 	return (kern_kill(td, uap->pid, uap->signum));
1790 }
1791 
1792 int
1793 kern_kill(struct thread *td, pid_t pid, int signum)
1794 {
1795 	ksiginfo_t ksi;
1796 	struct proc *p;
1797 	int error;
1798 
1799 	/*
1800 	 * A process in capability mode can send signals only to himself.
1801 	 * The main rationale behind this is that abort(3) is implemented as
1802 	 * kill(getpid(), SIGABRT).
1803 	 */
1804 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1805 		return (ECAPMODE);
1806 
1807 	AUDIT_ARG_SIGNUM(signum);
1808 	AUDIT_ARG_PID(pid);
1809 	if ((u_int)signum > _SIG_MAXSIG)
1810 		return (EINVAL);
1811 
1812 	ksiginfo_init(&ksi);
1813 	ksi.ksi_signo = signum;
1814 	ksi.ksi_code = SI_USER;
1815 	ksi.ksi_pid = td->td_proc->p_pid;
1816 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1817 
1818 	if (pid > 0) {
1819 		/* kill single process */
1820 		if ((p = pfind_any(pid)) == NULL)
1821 			return (ESRCH);
1822 		AUDIT_ARG_PROCESS(p);
1823 		error = p_cansignal(td, p, signum);
1824 		if (error == 0 && signum)
1825 			pksignal(p, signum, &ksi);
1826 		PROC_UNLOCK(p);
1827 		return (error);
1828 	}
1829 	switch (pid) {
1830 	case -1:		/* broadcast signal */
1831 		return (killpg1(td, signum, 0, 1, &ksi));
1832 	case 0:			/* signal own process group */
1833 		return (killpg1(td, signum, 0, 0, &ksi));
1834 	default:		/* negative explicit process group */
1835 		return (killpg1(td, signum, -pid, 0, &ksi));
1836 	}
1837 	/* NOTREACHED */
1838 }
1839 
1840 int
1841 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1842 {
1843 	struct proc *p;
1844 	int error;
1845 
1846 	AUDIT_ARG_SIGNUM(uap->signum);
1847 	AUDIT_ARG_FD(uap->fd);
1848 	if ((u_int)uap->signum > _SIG_MAXSIG)
1849 		return (EINVAL);
1850 
1851 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1852 	if (error)
1853 		return (error);
1854 	AUDIT_ARG_PROCESS(p);
1855 	error = p_cansignal(td, p, uap->signum);
1856 	if (error == 0 && uap->signum)
1857 		kern_psignal(p, uap->signum);
1858 	PROC_UNLOCK(p);
1859 	return (error);
1860 }
1861 
1862 #if defined(COMPAT_43)
1863 #ifndef _SYS_SYSPROTO_H_
1864 struct okillpg_args {
1865 	int	pgid;
1866 	int	signum;
1867 };
1868 #endif
1869 /* ARGSUSED */
1870 int
1871 okillpg(struct thread *td, struct okillpg_args *uap)
1872 {
1873 	ksiginfo_t ksi;
1874 
1875 	AUDIT_ARG_SIGNUM(uap->signum);
1876 	AUDIT_ARG_PID(uap->pgid);
1877 	if ((u_int)uap->signum > _SIG_MAXSIG)
1878 		return (EINVAL);
1879 
1880 	ksiginfo_init(&ksi);
1881 	ksi.ksi_signo = uap->signum;
1882 	ksi.ksi_code = SI_USER;
1883 	ksi.ksi_pid = td->td_proc->p_pid;
1884 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1885 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1886 }
1887 #endif /* COMPAT_43 */
1888 
1889 #ifndef _SYS_SYSPROTO_H_
1890 struct sigqueue_args {
1891 	pid_t pid;
1892 	int signum;
1893 	/* union sigval */ void *value;
1894 };
1895 #endif
1896 int
1897 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1898 {
1899 	union sigval sv;
1900 
1901 	sv.sival_ptr = uap->value;
1902 
1903 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1904 }
1905 
1906 int
1907 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1908 {
1909 	ksiginfo_t ksi;
1910 	struct proc *p;
1911 	int error;
1912 
1913 	if ((u_int)signum > _SIG_MAXSIG)
1914 		return (EINVAL);
1915 
1916 	/*
1917 	 * Specification says sigqueue can only send signal to
1918 	 * single process.
1919 	 */
1920 	if (pid <= 0)
1921 		return (EINVAL);
1922 
1923 	if ((p = pfind_any(pid)) == NULL)
1924 		return (ESRCH);
1925 	error = p_cansignal(td, p, signum);
1926 	if (error == 0 && signum != 0) {
1927 		ksiginfo_init(&ksi);
1928 		ksi.ksi_flags = KSI_SIGQ;
1929 		ksi.ksi_signo = signum;
1930 		ksi.ksi_code = SI_QUEUE;
1931 		ksi.ksi_pid = td->td_proc->p_pid;
1932 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1933 		ksi.ksi_value = *value;
1934 		error = pksignal(p, ksi.ksi_signo, &ksi);
1935 	}
1936 	PROC_UNLOCK(p);
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Send a signal to a process group.
1942  */
1943 void
1944 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1945 {
1946 	struct pgrp *pgrp;
1947 
1948 	if (pgid != 0) {
1949 		sx_slock(&proctree_lock);
1950 		pgrp = pgfind(pgid);
1951 		sx_sunlock(&proctree_lock);
1952 		if (pgrp != NULL) {
1953 			pgsignal(pgrp, sig, 0, ksi);
1954 			PGRP_UNLOCK(pgrp);
1955 		}
1956 	}
1957 }
1958 
1959 /*
1960  * Send a signal to a process group.  If checktty is 1,
1961  * limit to members which have a controlling terminal.
1962  */
1963 void
1964 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1965 {
1966 	struct proc *p;
1967 
1968 	if (pgrp) {
1969 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1970 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1971 			PROC_LOCK(p);
1972 			if (p->p_state == PRS_NORMAL &&
1973 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1974 				pksignal(p, sig, ksi);
1975 			PROC_UNLOCK(p);
1976 		}
1977 	}
1978 }
1979 
1980 /*
1981  * Recalculate the signal mask and reset the signal disposition after
1982  * usermode frame for delivery is formed.  Should be called after
1983  * mach-specific routine, because sysent->sv_sendsig() needs correct
1984  * ps_siginfo and signal mask.
1985  */
1986 static void
1987 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1988 {
1989 	sigset_t mask;
1990 
1991 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1992 	td->td_ru.ru_nsignals++;
1993 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1994 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1995 		SIGADDSET(mask, sig);
1996 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1997 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1998 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1999 		sigdflt(ps, sig);
2000 }
2001 
2002 /*
2003  * Send a signal caused by a trap to the current thread.  If it will be
2004  * caught immediately, deliver it with correct code.  Otherwise, post it
2005  * normally.
2006  */
2007 void
2008 trapsignal(struct thread *td, ksiginfo_t *ksi)
2009 {
2010 	struct sigacts *ps;
2011 	struct proc *p;
2012 	sigset_t sigmask;
2013 	int sig;
2014 
2015 	p = td->td_proc;
2016 	sig = ksi->ksi_signo;
2017 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2018 
2019 	sigfastblock_fetch(td);
2020 	PROC_LOCK(p);
2021 	ps = p->p_sigacts;
2022 	mtx_lock(&ps->ps_mtx);
2023 	sigmask = td->td_sigmask;
2024 	if (td->td_sigblock_val != 0)
2025 		SIGSETOR(sigmask, fastblock_mask);
2026 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2027 	    !SIGISMEMBER(sigmask, sig)) {
2028 #ifdef KTRACE
2029 		if (KTRPOINT(curthread, KTR_PSIG))
2030 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2031 			    &td->td_sigmask, ksi->ksi_code);
2032 #endif
2033 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2034 		    ksi, &td->td_sigmask);
2035 		postsig_done(sig, td, ps);
2036 		mtx_unlock(&ps->ps_mtx);
2037 	} else {
2038 		/*
2039 		 * Avoid a possible infinite loop if the thread
2040 		 * masking the signal or process is ignoring the
2041 		 * signal.
2042 		 */
2043 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2044 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2045 			SIGDELSET(td->td_sigmask, sig);
2046 			SIGDELSET(ps->ps_sigcatch, sig);
2047 			SIGDELSET(ps->ps_sigignore, sig);
2048 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2049 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2050 			td->td_sigblock_val = 0;
2051 		}
2052 		mtx_unlock(&ps->ps_mtx);
2053 		p->p_sig = sig;		/* XXX to verify code */
2054 		tdsendsignal(p, td, sig, ksi);
2055 	}
2056 	PROC_UNLOCK(p);
2057 }
2058 
2059 static struct thread *
2060 sigtd(struct proc *p, int sig, bool fast_sigblock)
2061 {
2062 	struct thread *td, *signal_td;
2063 
2064 	PROC_LOCK_ASSERT(p, MA_OWNED);
2065 	MPASS(!fast_sigblock || p == curproc);
2066 
2067 	/*
2068 	 * Check if current thread can handle the signal without
2069 	 * switching context to another thread.
2070 	 */
2071 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2072 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2073 		return (curthread);
2074 	signal_td = NULL;
2075 	FOREACH_THREAD_IN_PROC(p, td) {
2076 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2077 		    td != curthread || td->td_sigblock_val == 0)) {
2078 			signal_td = td;
2079 			break;
2080 		}
2081 	}
2082 	if (signal_td == NULL)
2083 		signal_td = FIRST_THREAD_IN_PROC(p);
2084 	return (signal_td);
2085 }
2086 
2087 /*
2088  * Send the signal to the process.  If the signal has an action, the action
2089  * is usually performed by the target process rather than the caller; we add
2090  * the signal to the set of pending signals for the process.
2091  *
2092  * Exceptions:
2093  *   o When a stop signal is sent to a sleeping process that takes the
2094  *     default action, the process is stopped without awakening it.
2095  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2096  *     regardless of the signal action (eg, blocked or ignored).
2097  *
2098  * Other ignored signals are discarded immediately.
2099  *
2100  * NB: This function may be entered from the debugger via the "kill" DDB
2101  * command.  There is little that can be done to mitigate the possibly messy
2102  * side effects of this unwise possibility.
2103  */
2104 void
2105 kern_psignal(struct proc *p, int sig)
2106 {
2107 	ksiginfo_t ksi;
2108 
2109 	ksiginfo_init(&ksi);
2110 	ksi.ksi_signo = sig;
2111 	ksi.ksi_code = SI_KERNEL;
2112 	(void) tdsendsignal(p, NULL, sig, &ksi);
2113 }
2114 
2115 int
2116 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2117 {
2118 
2119 	return (tdsendsignal(p, NULL, sig, ksi));
2120 }
2121 
2122 /* Utility function for finding a thread to send signal event to. */
2123 int
2124 sigev_findtd(struct proc *p, struct sigevent *sigev, struct thread **ttd)
2125 {
2126 	struct thread *td;
2127 
2128 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2129 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2130 		if (td == NULL)
2131 			return (ESRCH);
2132 		*ttd = td;
2133 	} else {
2134 		*ttd = NULL;
2135 		PROC_LOCK(p);
2136 	}
2137 	return (0);
2138 }
2139 
2140 void
2141 tdsignal(struct thread *td, int sig)
2142 {
2143 	ksiginfo_t ksi;
2144 
2145 	ksiginfo_init(&ksi);
2146 	ksi.ksi_signo = sig;
2147 	ksi.ksi_code = SI_KERNEL;
2148 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2149 }
2150 
2151 void
2152 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2153 {
2154 
2155 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2156 }
2157 
2158 static int
2159 sig_sleepq_abort(struct thread *td, int intrval)
2160 {
2161 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2162 
2163 	if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0) {
2164 		thread_unlock(td);
2165 		return (0);
2166 	}
2167 	return (sleepq_abort(td, intrval));
2168 }
2169 
2170 int
2171 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2172 {
2173 	sig_t action;
2174 	sigqueue_t *sigqueue;
2175 	int prop;
2176 	struct sigacts *ps;
2177 	int intrval;
2178 	int ret = 0;
2179 	int wakeup_swapper;
2180 
2181 	MPASS(td == NULL || p == td->td_proc);
2182 	PROC_LOCK_ASSERT(p, MA_OWNED);
2183 
2184 	if (!_SIG_VALID(sig))
2185 		panic("%s(): invalid signal %d", __func__, sig);
2186 
2187 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2188 
2189 	/*
2190 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2191 	 */
2192 	if (p->p_state == PRS_ZOMBIE) {
2193 		if (ksi && (ksi->ksi_flags & KSI_INS))
2194 			ksiginfo_tryfree(ksi);
2195 		return (ret);
2196 	}
2197 
2198 	ps = p->p_sigacts;
2199 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2200 	prop = sigprop(sig);
2201 
2202 	if (td == NULL) {
2203 		td = sigtd(p, sig, false);
2204 		sigqueue = &p->p_sigqueue;
2205 	} else
2206 		sigqueue = &td->td_sigqueue;
2207 
2208 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2209 
2210 	/*
2211 	 * If the signal is being ignored, then we forget about it
2212 	 * immediately, except when the target process executes
2213 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2214 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2215 	 */
2216 	mtx_lock(&ps->ps_mtx);
2217 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2218 		if (kern_sig_discard_ign &&
2219 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2220 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2221 
2222 			mtx_unlock(&ps->ps_mtx);
2223 			if (ksi && (ksi->ksi_flags & KSI_INS))
2224 				ksiginfo_tryfree(ksi);
2225 			return (ret);
2226 		} else {
2227 			action = SIG_CATCH;
2228 			intrval = 0;
2229 		}
2230 	} else {
2231 		if (SIGISMEMBER(td->td_sigmask, sig))
2232 			action = SIG_HOLD;
2233 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2234 			action = SIG_CATCH;
2235 		else
2236 			action = SIG_DFL;
2237 		if (SIGISMEMBER(ps->ps_sigintr, sig))
2238 			intrval = EINTR;
2239 		else
2240 			intrval = ERESTART;
2241 	}
2242 	mtx_unlock(&ps->ps_mtx);
2243 
2244 	if (prop & SIGPROP_CONT)
2245 		sigqueue_delete_stopmask_proc(p);
2246 	else if (prop & SIGPROP_STOP) {
2247 		/*
2248 		 * If sending a tty stop signal to a member of an orphaned
2249 		 * process group, discard the signal here if the action
2250 		 * is default; don't stop the process below if sleeping,
2251 		 * and don't clear any pending SIGCONT.
2252 		 */
2253 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2254 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2255 		    action == SIG_DFL) {
2256 			if (ksi && (ksi->ksi_flags & KSI_INS))
2257 				ksiginfo_tryfree(ksi);
2258 			return (ret);
2259 		}
2260 		sigqueue_delete_proc(p, SIGCONT);
2261 		if (p->p_flag & P_CONTINUED) {
2262 			p->p_flag &= ~P_CONTINUED;
2263 			PROC_LOCK(p->p_pptr);
2264 			sigqueue_take(p->p_ksi);
2265 			PROC_UNLOCK(p->p_pptr);
2266 		}
2267 	}
2268 
2269 	ret = sigqueue_add(sigqueue, sig, ksi);
2270 	if (ret != 0)
2271 		return (ret);
2272 	signotify(td);
2273 	/*
2274 	 * Defer further processing for signals which are held,
2275 	 * except that stopped processes must be continued by SIGCONT.
2276 	 */
2277 	if (action == SIG_HOLD &&
2278 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2279 		return (ret);
2280 
2281 	wakeup_swapper = 0;
2282 
2283 	/*
2284 	 * Some signals have a process-wide effect and a per-thread
2285 	 * component.  Most processing occurs when the process next
2286 	 * tries to cross the user boundary, however there are some
2287 	 * times when processing needs to be done immediately, such as
2288 	 * waking up threads so that they can cross the user boundary.
2289 	 * We try to do the per-process part here.
2290 	 */
2291 	if (P_SHOULDSTOP(p)) {
2292 		KASSERT(!(p->p_flag & P_WEXIT),
2293 		    ("signal to stopped but exiting process"));
2294 		if (sig == SIGKILL) {
2295 			/*
2296 			 * If traced process is already stopped,
2297 			 * then no further action is necessary.
2298 			 */
2299 			if (p->p_flag & P_TRACED)
2300 				goto out;
2301 			/*
2302 			 * SIGKILL sets process running.
2303 			 * It will die elsewhere.
2304 			 * All threads must be restarted.
2305 			 */
2306 			p->p_flag &= ~P_STOPPED_SIG;
2307 			goto runfast;
2308 		}
2309 
2310 		if (prop & SIGPROP_CONT) {
2311 			/*
2312 			 * If traced process is already stopped,
2313 			 * then no further action is necessary.
2314 			 */
2315 			if (p->p_flag & P_TRACED)
2316 				goto out;
2317 			/*
2318 			 * If SIGCONT is default (or ignored), we continue the
2319 			 * process but don't leave the signal in sigqueue as
2320 			 * it has no further action.  If SIGCONT is held, we
2321 			 * continue the process and leave the signal in
2322 			 * sigqueue.  If the process catches SIGCONT, let it
2323 			 * handle the signal itself.  If it isn't waiting on
2324 			 * an event, it goes back to run state.
2325 			 * Otherwise, process goes back to sleep state.
2326 			 */
2327 			p->p_flag &= ~P_STOPPED_SIG;
2328 			PROC_SLOCK(p);
2329 			if (p->p_numthreads == p->p_suspcount) {
2330 				PROC_SUNLOCK(p);
2331 				p->p_flag |= P_CONTINUED;
2332 				p->p_xsig = SIGCONT;
2333 				PROC_LOCK(p->p_pptr);
2334 				childproc_continued(p);
2335 				PROC_UNLOCK(p->p_pptr);
2336 				PROC_SLOCK(p);
2337 			}
2338 			if (action == SIG_DFL) {
2339 				thread_unsuspend(p);
2340 				PROC_SUNLOCK(p);
2341 				sigqueue_delete(sigqueue, sig);
2342 				goto out_cont;
2343 			}
2344 			if (action == SIG_CATCH) {
2345 				/*
2346 				 * The process wants to catch it so it needs
2347 				 * to run at least one thread, but which one?
2348 				 */
2349 				PROC_SUNLOCK(p);
2350 				goto runfast;
2351 			}
2352 			/*
2353 			 * The signal is not ignored or caught.
2354 			 */
2355 			thread_unsuspend(p);
2356 			PROC_SUNLOCK(p);
2357 			goto out_cont;
2358 		}
2359 
2360 		if (prop & SIGPROP_STOP) {
2361 			/*
2362 			 * If traced process is already stopped,
2363 			 * then no further action is necessary.
2364 			 */
2365 			if (p->p_flag & P_TRACED)
2366 				goto out;
2367 			/*
2368 			 * Already stopped, don't need to stop again
2369 			 * (If we did the shell could get confused).
2370 			 * Just make sure the signal STOP bit set.
2371 			 */
2372 			p->p_flag |= P_STOPPED_SIG;
2373 			sigqueue_delete(sigqueue, sig);
2374 			goto out;
2375 		}
2376 
2377 		/*
2378 		 * All other kinds of signals:
2379 		 * If a thread is sleeping interruptibly, simulate a
2380 		 * wakeup so that when it is continued it will be made
2381 		 * runnable and can look at the signal.  However, don't make
2382 		 * the PROCESS runnable, leave it stopped.
2383 		 * It may run a bit until it hits a thread_suspend_check().
2384 		 */
2385 		PROC_SLOCK(p);
2386 		thread_lock(td);
2387 		if (TD_CAN_ABORT(td))
2388 			wakeup_swapper = sig_sleepq_abort(td, intrval);
2389 		else
2390 			thread_unlock(td);
2391 		PROC_SUNLOCK(p);
2392 		goto out;
2393 		/*
2394 		 * Mutexes are short lived. Threads waiting on them will
2395 		 * hit thread_suspend_check() soon.
2396 		 */
2397 	} else if (p->p_state == PRS_NORMAL) {
2398 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2399 			tdsigwakeup(td, sig, action, intrval);
2400 			goto out;
2401 		}
2402 
2403 		MPASS(action == SIG_DFL);
2404 
2405 		if (prop & SIGPROP_STOP) {
2406 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2407 				goto out;
2408 			p->p_flag |= P_STOPPED_SIG;
2409 			p->p_xsig = sig;
2410 			PROC_SLOCK(p);
2411 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2412 			if (p->p_numthreads == p->p_suspcount) {
2413 				/*
2414 				 * only thread sending signal to another
2415 				 * process can reach here, if thread is sending
2416 				 * signal to its process, because thread does
2417 				 * not suspend itself here, p_numthreads
2418 				 * should never be equal to p_suspcount.
2419 				 */
2420 				thread_stopped(p);
2421 				PROC_SUNLOCK(p);
2422 				sigqueue_delete_proc(p, p->p_xsig);
2423 			} else
2424 				PROC_SUNLOCK(p);
2425 			goto out;
2426 		}
2427 	} else {
2428 		/* Not in "NORMAL" state. discard the signal. */
2429 		sigqueue_delete(sigqueue, sig);
2430 		goto out;
2431 	}
2432 
2433 	/*
2434 	 * The process is not stopped so we need to apply the signal to all the
2435 	 * running threads.
2436 	 */
2437 runfast:
2438 	tdsigwakeup(td, sig, action, intrval);
2439 	PROC_SLOCK(p);
2440 	thread_unsuspend(p);
2441 	PROC_SUNLOCK(p);
2442 out_cont:
2443 	itimer_proc_continue(p);
2444 	kqtimer_proc_continue(p);
2445 out:
2446 	/* If we jump here, proc slock should not be owned. */
2447 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2448 	if (wakeup_swapper)
2449 		kick_proc0();
2450 
2451 	return (ret);
2452 }
2453 
2454 /*
2455  * The force of a signal has been directed against a single
2456  * thread.  We need to see what we can do about knocking it
2457  * out of any sleep it may be in etc.
2458  */
2459 static void
2460 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2461 {
2462 	struct proc *p = td->td_proc;
2463 	int prop, wakeup_swapper;
2464 
2465 	PROC_LOCK_ASSERT(p, MA_OWNED);
2466 	prop = sigprop(sig);
2467 
2468 	PROC_SLOCK(p);
2469 	thread_lock(td);
2470 	/*
2471 	 * Bring the priority of a thread up if we want it to get
2472 	 * killed in this lifetime.  Be careful to avoid bumping the
2473 	 * priority of the idle thread, since we still allow to signal
2474 	 * kernel processes.
2475 	 */
2476 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2477 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2478 		sched_prio(td, PUSER);
2479 	if (TD_ON_SLEEPQ(td)) {
2480 		/*
2481 		 * If thread is sleeping uninterruptibly
2482 		 * we can't interrupt the sleep... the signal will
2483 		 * be noticed when the process returns through
2484 		 * trap() or syscall().
2485 		 */
2486 		if ((td->td_flags & TDF_SINTR) == 0)
2487 			goto out;
2488 		/*
2489 		 * If SIGCONT is default (or ignored) and process is
2490 		 * asleep, we are finished; the process should not
2491 		 * be awakened.
2492 		 */
2493 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2494 			thread_unlock(td);
2495 			PROC_SUNLOCK(p);
2496 			sigqueue_delete(&p->p_sigqueue, sig);
2497 			/*
2498 			 * It may be on either list in this state.
2499 			 * Remove from both for now.
2500 			 */
2501 			sigqueue_delete(&td->td_sigqueue, sig);
2502 			return;
2503 		}
2504 
2505 		/*
2506 		 * Don't awaken a sleeping thread for SIGSTOP if the
2507 		 * STOP signal is deferred.
2508 		 */
2509 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2510 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2511 			goto out;
2512 
2513 		/*
2514 		 * Give low priority threads a better chance to run.
2515 		 */
2516 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2517 			sched_prio(td, PUSER);
2518 
2519 		wakeup_swapper = sig_sleepq_abort(td, intrval);
2520 		PROC_SUNLOCK(p);
2521 		if (wakeup_swapper)
2522 			kick_proc0();
2523 		return;
2524 	}
2525 
2526 	/*
2527 	 * Other states do nothing with the signal immediately,
2528 	 * other than kicking ourselves if we are running.
2529 	 * It will either never be noticed, or noticed very soon.
2530 	 */
2531 #ifdef SMP
2532 	if (TD_IS_RUNNING(td) && td != curthread)
2533 		forward_signal(td);
2534 #endif
2535 
2536 out:
2537 	PROC_SUNLOCK(p);
2538 	thread_unlock(td);
2539 }
2540 
2541 static void
2542 ptrace_coredump(struct thread *td)
2543 {
2544 	struct proc *p;
2545 	struct thr_coredump_req *tcq;
2546 	void *rl_cookie;
2547 
2548 	MPASS(td == curthread);
2549 	p = td->td_proc;
2550 	PROC_LOCK_ASSERT(p, MA_OWNED);
2551 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2552 		return;
2553 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2554 
2555 	tcq = td->td_coredump;
2556 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2557 
2558 	if (p->p_sysent->sv_coredump == NULL) {
2559 		tcq->tc_error = ENOSYS;
2560 		goto wake;
2561 	}
2562 
2563 	PROC_UNLOCK(p);
2564 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2565 
2566 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2567 	    tcq->tc_limit, tcq->tc_flags);
2568 
2569 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2570 	PROC_LOCK(p);
2571 wake:
2572 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2573 	td->td_coredump = NULL;
2574 	wakeup(p);
2575 }
2576 
2577 static int
2578 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2579 {
2580 	struct thread *td2;
2581 	int wakeup_swapper;
2582 
2583 	PROC_LOCK_ASSERT(p, MA_OWNED);
2584 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2585 	MPASS(sending || td == curthread);
2586 
2587 	wakeup_swapper = 0;
2588 	FOREACH_THREAD_IN_PROC(p, td2) {
2589 		thread_lock(td2);
2590 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2591 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2592 		    (td2->td_flags & TDF_SINTR)) {
2593 			if (td2->td_flags & TDF_SBDRY) {
2594 				/*
2595 				 * Once a thread is asleep with
2596 				 * TDF_SBDRY and without TDF_SERESTART
2597 				 * or TDF_SEINTR set, it should never
2598 				 * become suspended due to this check.
2599 				 */
2600 				KASSERT(!TD_IS_SUSPENDED(td2),
2601 				    ("thread with deferred stops suspended"));
2602 				if (TD_SBDRY_INTR(td2)) {
2603 					wakeup_swapper |= sleepq_abort(td2,
2604 					    TD_SBDRY_ERRNO(td2));
2605 					continue;
2606 				}
2607 			} else if (!TD_IS_SUSPENDED(td2))
2608 				thread_suspend_one(td2);
2609 		} else if (!TD_IS_SUSPENDED(td2)) {
2610 			if (sending || td != td2)
2611 				td2->td_flags |= TDF_ASTPENDING;
2612 #ifdef SMP
2613 			if (TD_IS_RUNNING(td2) && td2 != td)
2614 				forward_signal(td2);
2615 #endif
2616 		}
2617 		thread_unlock(td2);
2618 	}
2619 	return (wakeup_swapper);
2620 }
2621 
2622 /*
2623  * Stop the process for an event deemed interesting to the debugger. If si is
2624  * non-NULL, this is a signal exchange; the new signal requested by the
2625  * debugger will be returned for handling. If si is NULL, this is some other
2626  * type of interesting event. The debugger may request a signal be delivered in
2627  * that case as well, however it will be deferred until it can be handled.
2628  */
2629 int
2630 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2631 {
2632 	struct proc *p = td->td_proc;
2633 	struct thread *td2;
2634 	ksiginfo_t ksi;
2635 
2636 	PROC_LOCK_ASSERT(p, MA_OWNED);
2637 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2638 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2639 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2640 
2641 	td->td_xsig = sig;
2642 
2643 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2644 		td->td_dbgflags |= TDB_XSIG;
2645 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2646 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2647 		PROC_SLOCK(p);
2648 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2649 			if (P_KILLED(p)) {
2650 				/*
2651 				 * Ensure that, if we've been PT_KILLed, the
2652 				 * exit status reflects that. Another thread
2653 				 * may also be in ptracestop(), having just
2654 				 * received the SIGKILL, but this thread was
2655 				 * unsuspended first.
2656 				 */
2657 				td->td_dbgflags &= ~TDB_XSIG;
2658 				td->td_xsig = SIGKILL;
2659 				p->p_ptevents = 0;
2660 				break;
2661 			}
2662 			if (p->p_flag & P_SINGLE_EXIT &&
2663 			    !(td->td_dbgflags & TDB_EXIT)) {
2664 				/*
2665 				 * Ignore ptrace stops except for thread exit
2666 				 * events when the process exits.
2667 				 */
2668 				td->td_dbgflags &= ~TDB_XSIG;
2669 				PROC_SUNLOCK(p);
2670 				return (0);
2671 			}
2672 
2673 			/*
2674 			 * Make wait(2) work.  Ensure that right after the
2675 			 * attach, the thread which was decided to become the
2676 			 * leader of attach gets reported to the waiter.
2677 			 * Otherwise, just avoid overwriting another thread's
2678 			 * assignment to p_xthread.  If another thread has
2679 			 * already set p_xthread, the current thread will get
2680 			 * a chance to report itself upon the next iteration.
2681 			 */
2682 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2683 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2684 			    p->p_xthread == NULL)) {
2685 				p->p_xsig = sig;
2686 				p->p_xthread = td;
2687 
2688 				/*
2689 				 * If we are on sleepqueue already,
2690 				 * let sleepqueue code decide if it
2691 				 * needs to go sleep after attach.
2692 				 */
2693 				if (td->td_wchan == NULL)
2694 					td->td_dbgflags &= ~TDB_FSTP;
2695 
2696 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2697 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2698 				sig_suspend_threads(td, p, 0);
2699 			}
2700 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2701 				td->td_dbgflags &= ~TDB_STOPATFORK;
2702 			}
2703 stopme:
2704 			td->td_dbgflags |= TDB_SSWITCH;
2705 			thread_suspend_switch(td, p);
2706 			td->td_dbgflags &= ~TDB_SSWITCH;
2707 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2708 				PROC_SUNLOCK(p);
2709 				ptrace_coredump(td);
2710 				PROC_SLOCK(p);
2711 				goto stopme;
2712 			}
2713 			if (p->p_xthread == td)
2714 				p->p_xthread = NULL;
2715 			if (!(p->p_flag & P_TRACED))
2716 				break;
2717 			if (td->td_dbgflags & TDB_SUSPEND) {
2718 				if (p->p_flag & P_SINGLE_EXIT)
2719 					break;
2720 				goto stopme;
2721 			}
2722 		}
2723 		PROC_SUNLOCK(p);
2724 	}
2725 
2726 	if (si != NULL && sig == td->td_xsig) {
2727 		/* Parent wants us to take the original signal unchanged. */
2728 		si->ksi_flags |= KSI_HEAD;
2729 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2730 			si->ksi_signo = 0;
2731 	} else if (td->td_xsig != 0) {
2732 		/*
2733 		 * If parent wants us to take a new signal, then it will leave
2734 		 * it in td->td_xsig; otherwise we just look for signals again.
2735 		 */
2736 		ksiginfo_init(&ksi);
2737 		ksi.ksi_signo = td->td_xsig;
2738 		ksi.ksi_flags |= KSI_PTRACE;
2739 		td2 = sigtd(p, td->td_xsig, false);
2740 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2741 		if (td != td2)
2742 			return (0);
2743 	}
2744 
2745 	return (td->td_xsig);
2746 }
2747 
2748 static void
2749 reschedule_signals(struct proc *p, sigset_t block, int flags)
2750 {
2751 	struct sigacts *ps;
2752 	struct thread *td;
2753 	int sig;
2754 	bool fastblk, pslocked;
2755 
2756 	PROC_LOCK_ASSERT(p, MA_OWNED);
2757 	ps = p->p_sigacts;
2758 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2759 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2760 	if (SIGISEMPTY(p->p_siglist))
2761 		return;
2762 	SIGSETAND(block, p->p_siglist);
2763 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2764 	SIG_FOREACH(sig, &block) {
2765 		td = sigtd(p, sig, fastblk);
2766 
2767 		/*
2768 		 * If sigtd() selected us despite sigfastblock is
2769 		 * blocking, do not activate AST or wake us, to avoid
2770 		 * loop in AST handler.
2771 		 */
2772 		if (fastblk && td == curthread)
2773 			continue;
2774 
2775 		signotify(td);
2776 		if (!pslocked)
2777 			mtx_lock(&ps->ps_mtx);
2778 		if (p->p_flag & P_TRACED ||
2779 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2780 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2781 			tdsigwakeup(td, sig, SIG_CATCH,
2782 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2783 			    ERESTART));
2784 		}
2785 		if (!pslocked)
2786 			mtx_unlock(&ps->ps_mtx);
2787 	}
2788 }
2789 
2790 void
2791 tdsigcleanup(struct thread *td)
2792 {
2793 	struct proc *p;
2794 	sigset_t unblocked;
2795 
2796 	p = td->td_proc;
2797 	PROC_LOCK_ASSERT(p, MA_OWNED);
2798 
2799 	sigqueue_flush(&td->td_sigqueue);
2800 	if (p->p_numthreads == 1)
2801 		return;
2802 
2803 	/*
2804 	 * Since we cannot handle signals, notify signal post code
2805 	 * about this by filling the sigmask.
2806 	 *
2807 	 * Also, if needed, wake up thread(s) that do not block the
2808 	 * same signals as the exiting thread, since the thread might
2809 	 * have been selected for delivery and woken up.
2810 	 */
2811 	SIGFILLSET(unblocked);
2812 	SIGSETNAND(unblocked, td->td_sigmask);
2813 	SIGFILLSET(td->td_sigmask);
2814 	reschedule_signals(p, unblocked, 0);
2815 
2816 }
2817 
2818 static int
2819 sigdeferstop_curr_flags(int cflags)
2820 {
2821 
2822 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2823 	    (cflags & TDF_SBDRY) != 0);
2824 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2825 }
2826 
2827 /*
2828  * Defer the delivery of SIGSTOP for the current thread, according to
2829  * the requested mode.  Returns previous flags, which must be restored
2830  * by sigallowstop().
2831  *
2832  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2833  * cleared by the current thread, which allow the lock-less read-only
2834  * accesses below.
2835  */
2836 int
2837 sigdeferstop_impl(int mode)
2838 {
2839 	struct thread *td;
2840 	int cflags, nflags;
2841 
2842 	td = curthread;
2843 	cflags = sigdeferstop_curr_flags(td->td_flags);
2844 	switch (mode) {
2845 	case SIGDEFERSTOP_NOP:
2846 		nflags = cflags;
2847 		break;
2848 	case SIGDEFERSTOP_OFF:
2849 		nflags = 0;
2850 		break;
2851 	case SIGDEFERSTOP_SILENT:
2852 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2853 		break;
2854 	case SIGDEFERSTOP_EINTR:
2855 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2856 		break;
2857 	case SIGDEFERSTOP_ERESTART:
2858 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2859 		break;
2860 	default:
2861 		panic("sigdeferstop: invalid mode %x", mode);
2862 		break;
2863 	}
2864 	if (cflags == nflags)
2865 		return (SIGDEFERSTOP_VAL_NCHG);
2866 	thread_lock(td);
2867 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2868 	thread_unlock(td);
2869 	return (cflags);
2870 }
2871 
2872 /*
2873  * Restores the STOP handling mode, typically permitting the delivery
2874  * of SIGSTOP for the current thread.  This does not immediately
2875  * suspend if a stop was posted.  Instead, the thread will suspend
2876  * either via ast() or a subsequent interruptible sleep.
2877  */
2878 void
2879 sigallowstop_impl(int prev)
2880 {
2881 	struct thread *td;
2882 	int cflags;
2883 
2884 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2885 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2886 	    ("sigallowstop: incorrect previous mode %x", prev));
2887 	td = curthread;
2888 	cflags = sigdeferstop_curr_flags(td->td_flags);
2889 	if (cflags != prev) {
2890 		thread_lock(td);
2891 		td->td_flags = (td->td_flags & ~cflags) | prev;
2892 		thread_unlock(td);
2893 	}
2894 }
2895 
2896 enum sigstatus {
2897 	SIGSTATUS_HANDLE,
2898 	SIGSTATUS_HANDLED,
2899 	SIGSTATUS_IGNORE,
2900 	SIGSTATUS_SBDRY_STOP,
2901 };
2902 
2903 /*
2904  * The thread has signal "sig" pending.  Figure out what to do with it:
2905  *
2906  * _HANDLE     -> the caller should handle the signal
2907  * _HANDLED    -> handled internally, reload pending signal set
2908  * _IGNORE     -> ignored, remove from the set of pending signals and try the
2909  *                next pending signal
2910  * _SBDRY_STOP -> the signal should stop the thread but this is not
2911  *                permitted in the current context
2912  */
2913 static enum sigstatus
2914 sigprocess(struct thread *td, int sig)
2915 {
2916 	struct proc *p;
2917 	struct sigacts *ps;
2918 	struct sigqueue *queue;
2919 	ksiginfo_t ksi;
2920 	int prop;
2921 
2922 	KASSERT(_SIG_VALID(sig), ("%s: invalid signal %d", __func__, sig));
2923 
2924 	p = td->td_proc;
2925 	ps = p->p_sigacts;
2926 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2927 	PROC_LOCK_ASSERT(p, MA_OWNED);
2928 
2929 	/*
2930 	 * We should allow pending but ignored signals below
2931 	 * only if there is sigwait() active, or P_TRACED was
2932 	 * on when they were posted.
2933 	 */
2934 	if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2935 	    (p->p_flag & P_TRACED) == 0 &&
2936 	    (td->td_flags & TDF_SIGWAIT) == 0) {
2937 		return (SIGSTATUS_IGNORE);
2938 	}
2939 
2940 	if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2941 		/*
2942 		 * If traced, always stop.
2943 		 * Remove old signal from queue before the stop.
2944 		 * XXX shrug off debugger, it causes siginfo to
2945 		 * be thrown away.
2946 		 */
2947 		queue = &td->td_sigqueue;
2948 		ksiginfo_init(&ksi);
2949 		if (sigqueue_get(queue, sig, &ksi) == 0) {
2950 			queue = &p->p_sigqueue;
2951 			sigqueue_get(queue, sig, &ksi);
2952 		}
2953 		td->td_si = ksi.ksi_info;
2954 
2955 		mtx_unlock(&ps->ps_mtx);
2956 		sig = ptracestop(td, sig, &ksi);
2957 		mtx_lock(&ps->ps_mtx);
2958 
2959 		td->td_si.si_signo = 0;
2960 
2961 		/*
2962 		 * Keep looking if the debugger discarded or
2963 		 * replaced the signal.
2964 		 */
2965 		if (sig == 0)
2966 			return (SIGSTATUS_HANDLED);
2967 
2968 		/*
2969 		 * If the signal became masked, re-queue it.
2970 		 */
2971 		if (SIGISMEMBER(td->td_sigmask, sig)) {
2972 			ksi.ksi_flags |= KSI_HEAD;
2973 			sigqueue_add(&p->p_sigqueue, sig, &ksi);
2974 			return (SIGSTATUS_HANDLED);
2975 		}
2976 
2977 		/*
2978 		 * If the traced bit got turned off, requeue the signal and
2979 		 * reload the set of pending signals.  This ensures that p_sig*
2980 		 * and p_sigact are consistent.
2981 		 */
2982 		if ((p->p_flag & P_TRACED) == 0) {
2983 			if ((ksi.ksi_flags & KSI_PTRACE) == 0) {
2984 				ksi.ksi_flags |= KSI_HEAD;
2985 				sigqueue_add(queue, sig, &ksi);
2986 			}
2987 			return (SIGSTATUS_HANDLED);
2988 		}
2989 	}
2990 
2991 	/*
2992 	 * Decide whether the signal should be returned.
2993 	 * Return the signal's number, or fall through
2994 	 * to clear it from the pending mask.
2995 	 */
2996 	switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2997 	case (intptr_t)SIG_DFL:
2998 		/*
2999 		 * Don't take default actions on system processes.
3000 		 */
3001 		if (p->p_pid <= 1) {
3002 #ifdef DIAGNOSTIC
3003 			/*
3004 			 * Are you sure you want to ignore SIGSEGV
3005 			 * in init? XXX
3006 			 */
3007 			printf("Process (pid %lu) got signal %d\n",
3008 				(u_long)p->p_pid, sig);
3009 #endif
3010 			return (SIGSTATUS_IGNORE);
3011 		}
3012 
3013 		/*
3014 		 * If there is a pending stop signal to process with
3015 		 * default action, stop here, then clear the signal.
3016 		 * Traced or exiting processes should ignore stops.
3017 		 * Additionally, a member of an orphaned process group
3018 		 * should ignore tty stops.
3019 		 */
3020 		prop = sigprop(sig);
3021 		if (prop & SIGPROP_STOP) {
3022 			mtx_unlock(&ps->ps_mtx);
3023 			if ((p->p_flag & (P_TRACED | P_WEXIT |
3024 			    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3025 			    pg_flags & PGRP_ORPHANED) != 0 &&
3026 			    (prop & SIGPROP_TTYSTOP) != 0)) {
3027 				mtx_lock(&ps->ps_mtx);
3028 				return (SIGSTATUS_IGNORE);
3029 			}
3030 			if (TD_SBDRY_INTR(td)) {
3031 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
3032 				    ("lost TDF_SBDRY"));
3033 				mtx_lock(&ps->ps_mtx);
3034 				return (SIGSTATUS_SBDRY_STOP);
3035 			}
3036 			WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3037 			    &p->p_mtx.lock_object, "Catching SIGSTOP");
3038 			sigqueue_delete(&td->td_sigqueue, sig);
3039 			sigqueue_delete(&p->p_sigqueue, sig);
3040 			p->p_flag |= P_STOPPED_SIG;
3041 			p->p_xsig = sig;
3042 			PROC_SLOCK(p);
3043 			sig_suspend_threads(td, p, 0);
3044 			thread_suspend_switch(td, p);
3045 			PROC_SUNLOCK(p);
3046 			mtx_lock(&ps->ps_mtx);
3047 			return (SIGSTATUS_HANDLED);
3048 		} else if ((prop & SIGPROP_IGNORE) != 0 &&
3049 		    (td->td_flags & TDF_SIGWAIT) == 0) {
3050 			/*
3051 			 * Default action is to ignore; drop it if
3052 			 * not in kern_sigtimedwait().
3053 			 */
3054 			return (SIGSTATUS_IGNORE);
3055 		} else {
3056 			return (SIGSTATUS_HANDLE);
3057 		}
3058 
3059 	case (intptr_t)SIG_IGN:
3060 		if ((td->td_flags & TDF_SIGWAIT) == 0)
3061 			return (SIGSTATUS_IGNORE);
3062 		else
3063 			return (SIGSTATUS_HANDLE);
3064 
3065 	default:
3066 		/*
3067 		 * This signal has an action, let postsig() process it.
3068 		 */
3069 		return (SIGSTATUS_HANDLE);
3070 	}
3071 }
3072 
3073 /*
3074  * If the current process has received a signal (should be caught or cause
3075  * termination, should interrupt current syscall), return the signal number.
3076  * Stop signals with default action are processed immediately, then cleared;
3077  * they aren't returned.  This is checked after each entry to the system for
3078  * a syscall or trap (though this can usually be done without calling
3079  * issignal by checking the pending signal masks in cursig.) The normal call
3080  * sequence is
3081  *
3082  *	while (sig = cursig(curthread))
3083  *		postsig(sig);
3084  */
3085 static int
3086 issignal(struct thread *td)
3087 {
3088 	struct proc *p;
3089 	sigset_t sigpending;
3090 	int sig;
3091 
3092 	p = td->td_proc;
3093 	PROC_LOCK_ASSERT(p, MA_OWNED);
3094 
3095 	for (;;) {
3096 		sigpending = td->td_sigqueue.sq_signals;
3097 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
3098 		SIGSETNAND(sigpending, td->td_sigmask);
3099 
3100 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
3101 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
3102 			SIG_STOPSIGMASK(sigpending);
3103 		if (SIGISEMPTY(sigpending))	/* no signal to send */
3104 			return (0);
3105 
3106 		/*
3107 		 * Do fast sigblock if requested by usermode.  Since
3108 		 * we do know that there was a signal pending at this
3109 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
3110 		 * usermode to perform a dummy call to
3111 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
3112 		 * delivery of postponed pending signal.
3113 		 */
3114 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
3115 			if (td->td_sigblock_val != 0)
3116 				SIGSETNAND(sigpending, fastblock_mask);
3117 			if (SIGISEMPTY(sigpending)) {
3118 				td->td_pflags |= TDP_SIGFASTPENDING;
3119 				return (0);
3120 			}
3121 		}
3122 
3123 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
3124 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
3125 		    SIGISMEMBER(sigpending, SIGSTOP)) {
3126 			/*
3127 			 * If debugger just attached, always consume
3128 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
3129 			 * execute the debugger attach ritual in
3130 			 * order.
3131 			 */
3132 			td->td_dbgflags |= TDB_FSTP;
3133 			SIGEMPTYSET(sigpending);
3134 			SIGADDSET(sigpending, SIGSTOP);
3135 		}
3136 
3137 		SIG_FOREACH(sig, &sigpending) {
3138 			switch (sigprocess(td, sig)) {
3139 			case SIGSTATUS_HANDLE:
3140 				return (sig);
3141 			case SIGSTATUS_HANDLED:
3142 				goto next;
3143 			case SIGSTATUS_IGNORE:
3144 				sigqueue_delete(&td->td_sigqueue, sig);
3145 				sigqueue_delete(&p->p_sigqueue, sig);
3146 				break;
3147 			case SIGSTATUS_SBDRY_STOP:
3148 				return (-1);
3149 			}
3150 		}
3151 next:;
3152 	}
3153 }
3154 
3155 void
3156 thread_stopped(struct proc *p)
3157 {
3158 	int n;
3159 
3160 	PROC_LOCK_ASSERT(p, MA_OWNED);
3161 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3162 	n = p->p_suspcount;
3163 	if (p == curproc)
3164 		n++;
3165 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3166 		PROC_SUNLOCK(p);
3167 		p->p_flag &= ~P_WAITED;
3168 		PROC_LOCK(p->p_pptr);
3169 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3170 			CLD_TRAPPED : CLD_STOPPED);
3171 		PROC_UNLOCK(p->p_pptr);
3172 		PROC_SLOCK(p);
3173 	}
3174 }
3175 
3176 /*
3177  * Take the action for the specified signal
3178  * from the current set of pending signals.
3179  */
3180 int
3181 postsig(int sig)
3182 {
3183 	struct thread *td;
3184 	struct proc *p;
3185 	struct sigacts *ps;
3186 	sig_t action;
3187 	ksiginfo_t ksi;
3188 	sigset_t returnmask;
3189 
3190 	KASSERT(sig != 0, ("postsig"));
3191 
3192 	td = curthread;
3193 	p = td->td_proc;
3194 	PROC_LOCK_ASSERT(p, MA_OWNED);
3195 	ps = p->p_sigacts;
3196 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3197 	ksiginfo_init(&ksi);
3198 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3199 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3200 		return (0);
3201 	ksi.ksi_signo = sig;
3202 	if (ksi.ksi_code == SI_TIMER)
3203 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3204 	action = ps->ps_sigact[_SIG_IDX(sig)];
3205 #ifdef KTRACE
3206 	if (KTRPOINT(td, KTR_PSIG))
3207 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3208 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3209 #endif
3210 
3211 	if (action == SIG_DFL) {
3212 		/*
3213 		 * Default action, where the default is to kill
3214 		 * the process.  (Other cases were ignored above.)
3215 		 */
3216 		mtx_unlock(&ps->ps_mtx);
3217 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3218 		sigexit(td, sig);
3219 		/* NOTREACHED */
3220 	} else {
3221 		/*
3222 		 * If we get here, the signal must be caught.
3223 		 */
3224 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3225 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3226 		    ("postsig action: blocked sig %d", sig));
3227 
3228 		/*
3229 		 * Set the new mask value and also defer further
3230 		 * occurrences of this signal.
3231 		 *
3232 		 * Special case: user has done a sigsuspend.  Here the
3233 		 * current mask is not of interest, but rather the
3234 		 * mask from before the sigsuspend is what we want
3235 		 * restored after the signal processing is completed.
3236 		 */
3237 		if (td->td_pflags & TDP_OLDMASK) {
3238 			returnmask = td->td_oldsigmask;
3239 			td->td_pflags &= ~TDP_OLDMASK;
3240 		} else
3241 			returnmask = td->td_sigmask;
3242 
3243 		if (p->p_sig == sig) {
3244 			p->p_sig = 0;
3245 		}
3246 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3247 		postsig_done(sig, td, ps);
3248 	}
3249 	return (1);
3250 }
3251 
3252 int
3253 sig_ast_checksusp(struct thread *td)
3254 {
3255 	struct proc *p __diagused;
3256 	int ret;
3257 
3258 	p = td->td_proc;
3259 	PROC_LOCK_ASSERT(p, MA_OWNED);
3260 
3261 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3262 		return (0);
3263 
3264 	ret = thread_suspend_check(1);
3265 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3266 	return (ret);
3267 }
3268 
3269 int
3270 sig_ast_needsigchk(struct thread *td)
3271 {
3272 	struct proc *p;
3273 	struct sigacts *ps;
3274 	int ret, sig;
3275 
3276 	p = td->td_proc;
3277 	PROC_LOCK_ASSERT(p, MA_OWNED);
3278 
3279 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3280 		return (0);
3281 
3282 	ps = p->p_sigacts;
3283 	mtx_lock(&ps->ps_mtx);
3284 	sig = cursig(td);
3285 	if (sig == -1) {
3286 		mtx_unlock(&ps->ps_mtx);
3287 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3288 		KASSERT(TD_SBDRY_INTR(td),
3289 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3290 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3291 		    (TDF_SEINTR | TDF_SERESTART),
3292 		    ("both TDF_SEINTR and TDF_SERESTART"));
3293 		ret = TD_SBDRY_ERRNO(td);
3294 	} else if (sig != 0) {
3295 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3296 		mtx_unlock(&ps->ps_mtx);
3297 	} else {
3298 		mtx_unlock(&ps->ps_mtx);
3299 		ret = 0;
3300 	}
3301 
3302 	/*
3303 	 * Do not go into sleep if this thread was the ptrace(2)
3304 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3305 	 * but we usually act on the signal by interrupting sleep, and
3306 	 * should do that here as well.
3307 	 */
3308 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3309 		if (ret == 0)
3310 			ret = EINTR;
3311 		td->td_dbgflags &= ~TDB_FSTP;
3312 	}
3313 
3314 	return (ret);
3315 }
3316 
3317 int
3318 sig_intr(void)
3319 {
3320 	struct thread *td;
3321 	struct proc *p;
3322 	int ret;
3323 
3324 	td = curthread;
3325 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3326 		return (0);
3327 
3328 	p = td->td_proc;
3329 
3330 	PROC_LOCK(p);
3331 	ret = sig_ast_checksusp(td);
3332 	if (ret == 0)
3333 		ret = sig_ast_needsigchk(td);
3334 	PROC_UNLOCK(p);
3335 	return (ret);
3336 }
3337 
3338 bool
3339 curproc_sigkilled(void)
3340 {
3341 	struct thread *td;
3342 	struct proc *p;
3343 	struct sigacts *ps;
3344 	bool res;
3345 
3346 	td = curthread;
3347 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3348 		return (false);
3349 
3350 	p = td->td_proc;
3351 	PROC_LOCK(p);
3352 	ps = p->p_sigacts;
3353 	mtx_lock(&ps->ps_mtx);
3354 	res = SIGISMEMBER(td->td_sigqueue.sq_signals, SIGKILL) ||
3355 	    SIGISMEMBER(p->p_sigqueue.sq_signals, SIGKILL);
3356 	mtx_unlock(&ps->ps_mtx);
3357 	PROC_UNLOCK(p);
3358 	return (res);
3359 }
3360 
3361 void
3362 proc_wkilled(struct proc *p)
3363 {
3364 
3365 	PROC_LOCK_ASSERT(p, MA_OWNED);
3366 	if ((p->p_flag & P_WKILLED) == 0) {
3367 		p->p_flag |= P_WKILLED;
3368 		/*
3369 		 * Notify swapper that there is a process to swap in.
3370 		 * The notification is racy, at worst it would take 10
3371 		 * seconds for the swapper process to notice.
3372 		 */
3373 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3374 			wakeup(&proc0);
3375 	}
3376 }
3377 
3378 /*
3379  * Kill the current process for stated reason.
3380  */
3381 void
3382 killproc(struct proc *p, const char *why)
3383 {
3384 
3385 	PROC_LOCK_ASSERT(p, MA_OWNED);
3386 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3387 	    p->p_comm);
3388 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3389 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3390 	    p->p_ucred->cr_uid, why);
3391 	proc_wkilled(p);
3392 	kern_psignal(p, SIGKILL);
3393 }
3394 
3395 /*
3396  * Force the current process to exit with the specified signal, dumping core
3397  * if appropriate.  We bypass the normal tests for masked and caught signals,
3398  * allowing unrecoverable failures to terminate the process without changing
3399  * signal state.  Mark the accounting record with the signal termination.
3400  * If dumping core, save the signal number for the debugger.  Calls exit and
3401  * does not return.
3402  */
3403 void
3404 sigexit(struct thread *td, int sig)
3405 {
3406 	struct proc *p = td->td_proc;
3407 
3408 	PROC_LOCK_ASSERT(p, MA_OWNED);
3409 	p->p_acflag |= AXSIG;
3410 	/*
3411 	 * We must be single-threading to generate a core dump.  This
3412 	 * ensures that the registers in the core file are up-to-date.
3413 	 * Also, the ELF dump handler assumes that the thread list doesn't
3414 	 * change out from under it.
3415 	 *
3416 	 * XXX If another thread attempts to single-thread before us
3417 	 *     (e.g. via fork()), we won't get a dump at all.
3418 	 */
3419 	if ((sigprop(sig) & SIGPROP_CORE) &&
3420 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3421 		p->p_sig = sig;
3422 		/*
3423 		 * Log signals which would cause core dumps
3424 		 * (Log as LOG_INFO to appease those who don't want
3425 		 * these messages.)
3426 		 * XXX : Todo, as well as euid, write out ruid too
3427 		 * Note that coredump() drops proc lock.
3428 		 */
3429 		if (coredump(td) == 0)
3430 			sig |= WCOREFLAG;
3431 		if (kern_logsigexit)
3432 			log(LOG_INFO,
3433 			    "pid %d (%s), jid %d, uid %d: exited on "
3434 			    "signal %d%s\n", p->p_pid, p->p_comm,
3435 			    p->p_ucred->cr_prison->pr_id,
3436 			    td->td_ucred->cr_uid,
3437 			    sig &~ WCOREFLAG,
3438 			    sig & WCOREFLAG ? " (core dumped)" : "");
3439 	} else
3440 		PROC_UNLOCK(p);
3441 	exit1(td, 0, sig);
3442 	/* NOTREACHED */
3443 }
3444 
3445 /*
3446  * Send queued SIGCHLD to parent when child process's state
3447  * is changed.
3448  */
3449 static void
3450 sigparent(struct proc *p, int reason, int status)
3451 {
3452 	PROC_LOCK_ASSERT(p, MA_OWNED);
3453 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3454 
3455 	if (p->p_ksi != NULL) {
3456 		p->p_ksi->ksi_signo  = SIGCHLD;
3457 		p->p_ksi->ksi_code   = reason;
3458 		p->p_ksi->ksi_status = status;
3459 		p->p_ksi->ksi_pid    = p->p_pid;
3460 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3461 		if (KSI_ONQ(p->p_ksi))
3462 			return;
3463 	}
3464 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3465 }
3466 
3467 static void
3468 childproc_jobstate(struct proc *p, int reason, int sig)
3469 {
3470 	struct sigacts *ps;
3471 
3472 	PROC_LOCK_ASSERT(p, MA_OWNED);
3473 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3474 
3475 	/*
3476 	 * Wake up parent sleeping in kern_wait(), also send
3477 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3478 	 * that parent will awake, because parent may masked
3479 	 * the signal.
3480 	 */
3481 	p->p_pptr->p_flag |= P_STATCHILD;
3482 	wakeup(p->p_pptr);
3483 
3484 	ps = p->p_pptr->p_sigacts;
3485 	mtx_lock(&ps->ps_mtx);
3486 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3487 		mtx_unlock(&ps->ps_mtx);
3488 		sigparent(p, reason, sig);
3489 	} else
3490 		mtx_unlock(&ps->ps_mtx);
3491 }
3492 
3493 void
3494 childproc_stopped(struct proc *p, int reason)
3495 {
3496 
3497 	childproc_jobstate(p, reason, p->p_xsig);
3498 }
3499 
3500 void
3501 childproc_continued(struct proc *p)
3502 {
3503 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3504 }
3505 
3506 void
3507 childproc_exited(struct proc *p)
3508 {
3509 	int reason, status;
3510 
3511 	if (WCOREDUMP(p->p_xsig)) {
3512 		reason = CLD_DUMPED;
3513 		status = WTERMSIG(p->p_xsig);
3514 	} else if (WIFSIGNALED(p->p_xsig)) {
3515 		reason = CLD_KILLED;
3516 		status = WTERMSIG(p->p_xsig);
3517 	} else {
3518 		reason = CLD_EXITED;
3519 		status = p->p_xexit;
3520 	}
3521 	/*
3522 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3523 	 * done in exit1().
3524 	 */
3525 	sigparent(p, reason, status);
3526 }
3527 
3528 #define	MAX_NUM_CORE_FILES 100000
3529 #ifndef NUM_CORE_FILES
3530 #define	NUM_CORE_FILES 5
3531 #endif
3532 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3533 static int num_cores = NUM_CORE_FILES;
3534 
3535 static int
3536 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3537 {
3538 	int error;
3539 	int new_val;
3540 
3541 	new_val = num_cores;
3542 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3543 	if (error != 0 || req->newptr == NULL)
3544 		return (error);
3545 	if (new_val > MAX_NUM_CORE_FILES)
3546 		new_val = MAX_NUM_CORE_FILES;
3547 	if (new_val < 0)
3548 		new_val = 0;
3549 	num_cores = new_val;
3550 	return (0);
3551 }
3552 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3553     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
3554     sysctl_debug_num_cores_check, "I",
3555     "Maximum number of generated process corefiles while using index format");
3556 
3557 #define	GZIP_SUFFIX	".gz"
3558 #define	ZSTD_SUFFIX	".zst"
3559 
3560 int compress_user_cores = 0;
3561 
3562 static int
3563 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3564 {
3565 	int error, val;
3566 
3567 	val = compress_user_cores;
3568 	error = sysctl_handle_int(oidp, &val, 0, req);
3569 	if (error != 0 || req->newptr == NULL)
3570 		return (error);
3571 	if (val != 0 && !compressor_avail(val))
3572 		return (EINVAL);
3573 	compress_user_cores = val;
3574 	return (error);
3575 }
3576 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3577     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3578     sysctl_compress_user_cores, "I",
3579     "Enable compression of user corefiles ("
3580     __XSTRING(COMPRESS_GZIP) " = gzip, "
3581     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3582 
3583 int compress_user_cores_level = 6;
3584 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3585     &compress_user_cores_level, 0,
3586     "Corefile compression level");
3587 
3588 /*
3589  * Protect the access to corefilename[] by allproc_lock.
3590  */
3591 #define	corefilename_lock	allproc_lock
3592 
3593 static char corefilename[MAXPATHLEN] = {"%N.core"};
3594 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3595 
3596 static int
3597 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3598 {
3599 	int error;
3600 
3601 	sx_xlock(&corefilename_lock);
3602 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3603 	    req);
3604 	sx_xunlock(&corefilename_lock);
3605 
3606 	return (error);
3607 }
3608 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3609     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3610     "Process corefile name format string");
3611 
3612 static void
3613 vnode_close_locked(struct thread *td, struct vnode *vp)
3614 {
3615 
3616 	VOP_UNLOCK(vp);
3617 	vn_close(vp, FWRITE, td->td_ucred, td);
3618 }
3619 
3620 /*
3621  * If the core format has a %I in it, then we need to check
3622  * for existing corefiles before defining a name.
3623  * To do this we iterate over 0..ncores to find a
3624  * non-existing core file name to use. If all core files are
3625  * already used we choose the oldest one.
3626  */
3627 static int
3628 corefile_open_last(struct thread *td, char *name, int indexpos,
3629     int indexlen, int ncores, struct vnode **vpp)
3630 {
3631 	struct vnode *oldvp, *nextvp, *vp;
3632 	struct vattr vattr;
3633 	struct nameidata nd;
3634 	int error, i, flags, oflags, cmode;
3635 	char ch;
3636 	struct timespec lasttime;
3637 
3638 	nextvp = oldvp = NULL;
3639 	cmode = S_IRUSR | S_IWUSR;
3640 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3641 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3642 
3643 	for (i = 0; i < ncores; i++) {
3644 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3645 
3646 		ch = name[indexpos + indexlen];
3647 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3648 		    i);
3649 		name[indexpos + indexlen] = ch;
3650 
3651 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
3652 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3653 		    NULL);
3654 		if (error != 0)
3655 			break;
3656 
3657 		vp = nd.ni_vp;
3658 		NDFREE_PNBUF(&nd);
3659 		if ((flags & O_CREAT) == O_CREAT) {
3660 			nextvp = vp;
3661 			break;
3662 		}
3663 
3664 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3665 		if (error != 0) {
3666 			vnode_close_locked(td, vp);
3667 			break;
3668 		}
3669 
3670 		if (oldvp == NULL ||
3671 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3672 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3673 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3674 			if (oldvp != NULL)
3675 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3676 			oldvp = vp;
3677 			VOP_UNLOCK(oldvp);
3678 			lasttime = vattr.va_mtime;
3679 		} else {
3680 			vnode_close_locked(td, vp);
3681 		}
3682 	}
3683 
3684 	if (oldvp != NULL) {
3685 		if (nextvp == NULL) {
3686 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3687 				error = EFAULT;
3688 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3689 			} else {
3690 				nextvp = oldvp;
3691 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3692 				if (error != 0) {
3693 					vn_close(nextvp, FWRITE, td->td_ucred,
3694 					    td);
3695 					nextvp = NULL;
3696 				}
3697 			}
3698 		} else {
3699 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3700 		}
3701 	}
3702 	if (error != 0) {
3703 		if (nextvp != NULL)
3704 			vnode_close_locked(td, oldvp);
3705 	} else {
3706 		*vpp = nextvp;
3707 	}
3708 
3709 	return (error);
3710 }
3711 
3712 /*
3713  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3714  * Expand the name described in corefilename, using name, uid, and pid
3715  * and open/create core file.
3716  * corefilename is a printf-like string, with three format specifiers:
3717  *	%N	name of process ("name")
3718  *	%P	process id (pid)
3719  *	%U	user id (uid)
3720  * For example, "%N.core" is the default; they can be disabled completely
3721  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3722  * This is controlled by the sysctl variable kern.corefile (see above).
3723  */
3724 static int
3725 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3726     int compress, int signum, struct vnode **vpp, char **namep)
3727 {
3728 	struct sbuf sb;
3729 	struct nameidata nd;
3730 	const char *format;
3731 	char *hostname, *name;
3732 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3733 
3734 	hostname = NULL;
3735 	format = corefilename;
3736 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3737 	indexlen = 0;
3738 	indexpos = -1;
3739 	ncores = num_cores;
3740 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3741 	sx_slock(&corefilename_lock);
3742 	for (i = 0; format[i] != '\0'; i++) {
3743 		switch (format[i]) {
3744 		case '%':	/* Format character */
3745 			i++;
3746 			switch (format[i]) {
3747 			case '%':
3748 				sbuf_putc(&sb, '%');
3749 				break;
3750 			case 'H':	/* hostname */
3751 				if (hostname == NULL) {
3752 					hostname = malloc(MAXHOSTNAMELEN,
3753 					    M_TEMP, M_WAITOK);
3754 				}
3755 				getcredhostname(td->td_ucred, hostname,
3756 				    MAXHOSTNAMELEN);
3757 				sbuf_printf(&sb, "%s", hostname);
3758 				break;
3759 			case 'I':	/* autoincrementing index */
3760 				if (indexpos != -1) {
3761 					sbuf_printf(&sb, "%%I");
3762 					break;
3763 				}
3764 
3765 				indexpos = sbuf_len(&sb);
3766 				sbuf_printf(&sb, "%u", ncores - 1);
3767 				indexlen = sbuf_len(&sb) - indexpos;
3768 				break;
3769 			case 'N':	/* process name */
3770 				sbuf_printf(&sb, "%s", comm);
3771 				break;
3772 			case 'P':	/* process id */
3773 				sbuf_printf(&sb, "%u", pid);
3774 				break;
3775 			case 'S':	/* signal number */
3776 				sbuf_printf(&sb, "%i", signum);
3777 				break;
3778 			case 'U':	/* user id */
3779 				sbuf_printf(&sb, "%u", uid);
3780 				break;
3781 			default:
3782 				log(LOG_ERR,
3783 				    "Unknown format character %c in "
3784 				    "corename `%s'\n", format[i], format);
3785 				break;
3786 			}
3787 			break;
3788 		default:
3789 			sbuf_putc(&sb, format[i]);
3790 			break;
3791 		}
3792 	}
3793 	sx_sunlock(&corefilename_lock);
3794 	free(hostname, M_TEMP);
3795 	if (compress == COMPRESS_GZIP)
3796 		sbuf_printf(&sb, GZIP_SUFFIX);
3797 	else if (compress == COMPRESS_ZSTD)
3798 		sbuf_printf(&sb, ZSTD_SUFFIX);
3799 	if (sbuf_error(&sb) != 0) {
3800 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3801 		    "long\n", (long)pid, comm, (u_long)uid);
3802 		sbuf_delete(&sb);
3803 		free(name, M_TEMP);
3804 		return (ENOMEM);
3805 	}
3806 	sbuf_finish(&sb);
3807 	sbuf_delete(&sb);
3808 
3809 	if (indexpos != -1) {
3810 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3811 		    vpp);
3812 		if (error != 0) {
3813 			log(LOG_ERR,
3814 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3815 			    "on initial open test, error = %d\n",
3816 			    pid, comm, uid, name, error);
3817 		}
3818 	} else {
3819 		cmode = S_IRUSR | S_IWUSR;
3820 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3821 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3822 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3823 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3824 			flags |= O_EXCL;
3825 
3826 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
3827 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3828 		    NULL);
3829 		if (error == 0) {
3830 			*vpp = nd.ni_vp;
3831 			NDFREE_PNBUF(&nd);
3832 		}
3833 	}
3834 
3835 	if (error != 0) {
3836 #ifdef AUDIT
3837 		audit_proc_coredump(td, name, error);
3838 #endif
3839 		free(name, M_TEMP);
3840 		return (error);
3841 	}
3842 	*namep = name;
3843 	return (0);
3844 }
3845 
3846 /*
3847  * Dump a process' core.  The main routine does some
3848  * policy checking, and creates the name of the coredump;
3849  * then it passes on a vnode and a size limit to the process-specific
3850  * coredump routine if there is one; if there _is not_ one, it returns
3851  * ENOSYS; otherwise it returns the error from the process-specific routine.
3852  */
3853 
3854 static int
3855 coredump(struct thread *td)
3856 {
3857 	struct proc *p = td->td_proc;
3858 	struct ucred *cred = td->td_ucred;
3859 	struct vnode *vp;
3860 	struct flock lf;
3861 	struct vattr vattr;
3862 	size_t fullpathsize;
3863 	int error, error1, locked;
3864 	char *name;			/* name of corefile */
3865 	void *rl_cookie;
3866 	off_t limit;
3867 	char *fullpath, *freepath = NULL;
3868 	struct sbuf *sb;
3869 
3870 	PROC_LOCK_ASSERT(p, MA_OWNED);
3871 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3872 
3873 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3874 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3875 		PROC_UNLOCK(p);
3876 		return (EFAULT);
3877 	}
3878 
3879 	/*
3880 	 * Note that the bulk of limit checking is done after
3881 	 * the corefile is created.  The exception is if the limit
3882 	 * for corefiles is 0, in which case we don't bother
3883 	 * creating the corefile at all.  This layout means that
3884 	 * a corefile is truncated instead of not being created,
3885 	 * if it is larger than the limit.
3886 	 */
3887 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3888 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3889 		PROC_UNLOCK(p);
3890 		return (EFBIG);
3891 	}
3892 	PROC_UNLOCK(p);
3893 
3894 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3895 	    compress_user_cores, p->p_sig, &vp, &name);
3896 	if (error != 0)
3897 		return (error);
3898 
3899 	/*
3900 	 * Don't dump to non-regular files or files with links.
3901 	 * Do not dump into system files. Effective user must own the corefile.
3902 	 */
3903 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3904 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3905 	    vattr.va_uid != cred->cr_uid) {
3906 		VOP_UNLOCK(vp);
3907 		error = EFAULT;
3908 		goto out;
3909 	}
3910 
3911 	VOP_UNLOCK(vp);
3912 
3913 	/* Postpone other writers, including core dumps of other processes. */
3914 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3915 
3916 	lf.l_whence = SEEK_SET;
3917 	lf.l_start = 0;
3918 	lf.l_len = 0;
3919 	lf.l_type = F_WRLCK;
3920 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3921 
3922 	VATTR_NULL(&vattr);
3923 	vattr.va_size = 0;
3924 	if (set_core_nodump_flag)
3925 		vattr.va_flags = UF_NODUMP;
3926 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3927 	VOP_SETATTR(vp, &vattr, cred);
3928 	VOP_UNLOCK(vp);
3929 	PROC_LOCK(p);
3930 	p->p_acflag |= ACORE;
3931 	PROC_UNLOCK(p);
3932 
3933 	if (p->p_sysent->sv_coredump != NULL) {
3934 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3935 	} else {
3936 		error = ENOSYS;
3937 	}
3938 
3939 	if (locked) {
3940 		lf.l_type = F_UNLCK;
3941 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3942 	}
3943 	vn_rangelock_unlock(vp, rl_cookie);
3944 
3945 	/*
3946 	 * Notify the userland helper that a process triggered a core dump.
3947 	 * This allows the helper to run an automated debugging session.
3948 	 */
3949 	if (error != 0 || coredump_devctl == 0)
3950 		goto out;
3951 	sb = sbuf_new_auto();
3952 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3953 		goto out2;
3954 	sbuf_printf(sb, "comm=\"");
3955 	devctl_safe_quote_sb(sb, fullpath);
3956 	free(freepath, M_TEMP);
3957 	sbuf_printf(sb, "\" core=\"");
3958 
3959 	/*
3960 	 * We can't lookup core file vp directly. When we're replacing a core, and
3961 	 * other random times, we flush the name cache, so it will fail. Instead,
3962 	 * if the path of the core is relative, add the current dir in front if it.
3963 	 */
3964 	if (name[0] != '/') {
3965 		fullpathsize = MAXPATHLEN;
3966 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3967 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3968 			free(freepath, M_TEMP);
3969 			goto out2;
3970 		}
3971 		devctl_safe_quote_sb(sb, fullpath);
3972 		free(freepath, M_TEMP);
3973 		sbuf_putc(sb, '/');
3974 	}
3975 	devctl_safe_quote_sb(sb, name);
3976 	sbuf_printf(sb, "\"");
3977 	if (sbuf_finish(sb) == 0)
3978 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3979 out2:
3980 	sbuf_delete(sb);
3981 out:
3982 	error1 = vn_close(vp, FWRITE, cred, td);
3983 	if (error == 0)
3984 		error = error1;
3985 #ifdef AUDIT
3986 	audit_proc_coredump(td, name, error);
3987 #endif
3988 	free(name, M_TEMP);
3989 	return (error);
3990 }
3991 
3992 /*
3993  * Nonexistent system call-- signal process (may want to handle it).  Flag
3994  * error in case process won't see signal immediately (blocked or ignored).
3995  */
3996 #ifndef _SYS_SYSPROTO_H_
3997 struct nosys_args {
3998 	int	dummy;
3999 };
4000 #endif
4001 /* ARGSUSED */
4002 int
4003 nosys(struct thread *td, struct nosys_args *args)
4004 {
4005 	struct proc *p;
4006 
4007 	p = td->td_proc;
4008 
4009 	PROC_LOCK(p);
4010 	tdsignal(td, SIGSYS);
4011 	PROC_UNLOCK(p);
4012 	if (kern_lognosys == 1 || kern_lognosys == 3) {
4013 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4014 		    td->td_sa.code);
4015 	}
4016 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
4017 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
4018 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4019 		    td->td_sa.code);
4020 	}
4021 	return (ENOSYS);
4022 }
4023 
4024 /*
4025  * Send a SIGIO or SIGURG signal to a process or process group using stored
4026  * credentials rather than those of the current process.
4027  */
4028 void
4029 pgsigio(struct sigio **sigiop, int sig, int checkctty)
4030 {
4031 	ksiginfo_t ksi;
4032 	struct sigio *sigio;
4033 
4034 	ksiginfo_init(&ksi);
4035 	ksi.ksi_signo = sig;
4036 	ksi.ksi_code = SI_KERNEL;
4037 
4038 	SIGIO_LOCK();
4039 	sigio = *sigiop;
4040 	if (sigio == NULL) {
4041 		SIGIO_UNLOCK();
4042 		return;
4043 	}
4044 	if (sigio->sio_pgid > 0) {
4045 		PROC_LOCK(sigio->sio_proc);
4046 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
4047 			kern_psignal(sigio->sio_proc, sig);
4048 		PROC_UNLOCK(sigio->sio_proc);
4049 	} else if (sigio->sio_pgid < 0) {
4050 		struct proc *p;
4051 
4052 		PGRP_LOCK(sigio->sio_pgrp);
4053 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
4054 			PROC_LOCK(p);
4055 			if (p->p_state == PRS_NORMAL &&
4056 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
4057 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
4058 				kern_psignal(p, sig);
4059 			PROC_UNLOCK(p);
4060 		}
4061 		PGRP_UNLOCK(sigio->sio_pgrp);
4062 	}
4063 	SIGIO_UNLOCK();
4064 }
4065 
4066 static int
4067 filt_sigattach(struct knote *kn)
4068 {
4069 	struct proc *p = curproc;
4070 
4071 	kn->kn_ptr.p_proc = p;
4072 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4073 
4074 	knlist_add(p->p_klist, kn, 0);
4075 
4076 	return (0);
4077 }
4078 
4079 static void
4080 filt_sigdetach(struct knote *kn)
4081 {
4082 	struct proc *p = kn->kn_ptr.p_proc;
4083 
4084 	knlist_remove(p->p_klist, kn, 0);
4085 }
4086 
4087 /*
4088  * signal knotes are shared with proc knotes, so we apply a mask to
4089  * the hint in order to differentiate them from process hints.  This
4090  * could be avoided by using a signal-specific knote list, but probably
4091  * isn't worth the trouble.
4092  */
4093 static int
4094 filt_signal(struct knote *kn, long hint)
4095 {
4096 
4097 	if (hint & NOTE_SIGNAL) {
4098 		hint &= ~NOTE_SIGNAL;
4099 
4100 		if (kn->kn_id == hint)
4101 			kn->kn_data++;
4102 	}
4103 	return (kn->kn_data != 0);
4104 }
4105 
4106 struct sigacts *
4107 sigacts_alloc(void)
4108 {
4109 	struct sigacts *ps;
4110 
4111 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4112 	refcount_init(&ps->ps_refcnt, 1);
4113 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4114 	return (ps);
4115 }
4116 
4117 void
4118 sigacts_free(struct sigacts *ps)
4119 {
4120 
4121 	if (refcount_release(&ps->ps_refcnt) == 0)
4122 		return;
4123 	mtx_destroy(&ps->ps_mtx);
4124 	free(ps, M_SUBPROC);
4125 }
4126 
4127 struct sigacts *
4128 sigacts_hold(struct sigacts *ps)
4129 {
4130 
4131 	refcount_acquire(&ps->ps_refcnt);
4132 	return (ps);
4133 }
4134 
4135 void
4136 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4137 {
4138 
4139 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4140 	mtx_lock(&src->ps_mtx);
4141 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4142 	mtx_unlock(&src->ps_mtx);
4143 }
4144 
4145 int
4146 sigacts_shared(struct sigacts *ps)
4147 {
4148 
4149 	return (ps->ps_refcnt > 1);
4150 }
4151 
4152 void
4153 sig_drop_caught(struct proc *p)
4154 {
4155 	int sig;
4156 	struct sigacts *ps;
4157 
4158 	ps = p->p_sigacts;
4159 	PROC_LOCK_ASSERT(p, MA_OWNED);
4160 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4161 	SIG_FOREACH(sig, &ps->ps_sigcatch) {
4162 		sigdflt(ps, sig);
4163 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4164 			sigqueue_delete_proc(p, sig);
4165 	}
4166 }
4167 
4168 static void
4169 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4170 {
4171 	ksiginfo_t ksi;
4172 
4173 	/*
4174 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4175 	 * issue syscalls despite corruption.
4176 	 */
4177 	sigfastblock_clear(td);
4178 
4179 	if (!sendsig)
4180 		return;
4181 	ksiginfo_init_trap(&ksi);
4182 	ksi.ksi_signo = SIGSEGV;
4183 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4184 	ksi.ksi_addr = td->td_sigblock_ptr;
4185 	trapsignal(td, &ksi);
4186 }
4187 
4188 static bool
4189 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4190 {
4191 	uint32_t res;
4192 
4193 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4194 		return (true);
4195 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4196 		sigfastblock_failed(td, sendsig, false);
4197 		return (false);
4198 	}
4199 	*valp = res;
4200 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4201 	return (true);
4202 }
4203 
4204 static void
4205 sigfastblock_resched(struct thread *td, bool resched)
4206 {
4207 	struct proc *p;
4208 
4209 	if (resched) {
4210 		p = td->td_proc;
4211 		PROC_LOCK(p);
4212 		reschedule_signals(p, td->td_sigmask, 0);
4213 		PROC_UNLOCK(p);
4214 	}
4215 	thread_lock(td);
4216 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4217 	thread_unlock(td);
4218 }
4219 
4220 int
4221 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4222 {
4223 	struct proc *p;
4224 	int error, res;
4225 	uint32_t oldval;
4226 
4227 	error = 0;
4228 	p = td->td_proc;
4229 	switch (uap->cmd) {
4230 	case SIGFASTBLOCK_SETPTR:
4231 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4232 			error = EBUSY;
4233 			break;
4234 		}
4235 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4236 			error = EINVAL;
4237 			break;
4238 		}
4239 		td->td_pflags |= TDP_SIGFASTBLOCK;
4240 		td->td_sigblock_ptr = uap->ptr;
4241 		break;
4242 
4243 	case SIGFASTBLOCK_UNBLOCK:
4244 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4245 			error = EINVAL;
4246 			break;
4247 		}
4248 
4249 		for (;;) {
4250 			res = casueword32(td->td_sigblock_ptr,
4251 			    SIGFASTBLOCK_PEND, &oldval, 0);
4252 			if (res == -1) {
4253 				error = EFAULT;
4254 				sigfastblock_failed(td, false, true);
4255 				break;
4256 			}
4257 			if (res == 0)
4258 				break;
4259 			MPASS(res == 1);
4260 			if (oldval != SIGFASTBLOCK_PEND) {
4261 				error = EBUSY;
4262 				break;
4263 			}
4264 			error = thread_check_susp(td, false);
4265 			if (error != 0)
4266 				break;
4267 		}
4268 		if (error != 0)
4269 			break;
4270 
4271 		/*
4272 		 * td_sigblock_val is cleared there, but not on a
4273 		 * syscall exit.  The end effect is that a single
4274 		 * interruptible sleep, while user sigblock word is
4275 		 * set, might return EINTR or ERESTART to usermode
4276 		 * without delivering signal.  All further sleeps,
4277 		 * until userspace clears the word and does
4278 		 * sigfastblock(UNBLOCK), observe current word and no
4279 		 * longer get interrupted.  It is slight
4280 		 * non-conformance, with alternative to have read the
4281 		 * sigblock word on each syscall entry.
4282 		 */
4283 		td->td_sigblock_val = 0;
4284 
4285 		/*
4286 		 * Rely on normal ast mechanism to deliver pending
4287 		 * signals to current thread.  But notify others about
4288 		 * fake unblock.
4289 		 */
4290 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4291 
4292 		break;
4293 
4294 	case SIGFASTBLOCK_UNSETPTR:
4295 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4296 			error = EINVAL;
4297 			break;
4298 		}
4299 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4300 			error = EFAULT;
4301 			break;
4302 		}
4303 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4304 			error = EBUSY;
4305 			break;
4306 		}
4307 		sigfastblock_clear(td);
4308 		break;
4309 
4310 	default:
4311 		error = EINVAL;
4312 		break;
4313 	}
4314 	return (error);
4315 }
4316 
4317 void
4318 sigfastblock_clear(struct thread *td)
4319 {
4320 	bool resched;
4321 
4322 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4323 		return;
4324 	td->td_sigblock_val = 0;
4325 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4326 	    SIGPENDING(td);
4327 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4328 	sigfastblock_resched(td, resched);
4329 }
4330 
4331 void
4332 sigfastblock_fetch(struct thread *td)
4333 {
4334 	uint32_t val;
4335 
4336 	(void)sigfastblock_fetch_sig(td, true, &val);
4337 }
4338 
4339 static void
4340 sigfastblock_setpend1(struct thread *td)
4341 {
4342 	int res;
4343 	uint32_t oldval;
4344 
4345 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4346 		return;
4347 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4348 	if (res == -1) {
4349 		sigfastblock_failed(td, true, false);
4350 		return;
4351 	}
4352 	for (;;) {
4353 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4354 		    oldval | SIGFASTBLOCK_PEND);
4355 		if (res == -1) {
4356 			sigfastblock_failed(td, true, true);
4357 			return;
4358 		}
4359 		if (res == 0) {
4360 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4361 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4362 			break;
4363 		}
4364 		MPASS(res == 1);
4365 		if (thread_check_susp(td, false) != 0)
4366 			break;
4367 	}
4368 }
4369 
4370 void
4371 sigfastblock_setpend(struct thread *td, bool resched)
4372 {
4373 	struct proc *p;
4374 
4375 	sigfastblock_setpend1(td);
4376 	if (resched) {
4377 		p = td->td_proc;
4378 		PROC_LOCK(p);
4379 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4380 		PROC_UNLOCK(p);
4381 	}
4382 }
4383