xref: /freebsd/sys/kern/kern_sig.c (revision b4a58fbf640409a1e507d9f7b411c83a3f83a2f3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 
218 static int sigproptbl[NSIG] = {
219 	[SIGHUP] =	SIGPROP_KILL,
220 	[SIGINT] =	SIGPROP_KILL,
221 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
222 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGKILL] =	SIGPROP_KILL,
228 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
229 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGPIPE] =	SIGPROP_KILL,
232 	[SIGALRM] =	SIGPROP_KILL,
233 	[SIGTERM] =	SIGPROP_KILL,
234 	[SIGURG] =	SIGPROP_IGNORE,
235 	[SIGSTOP] =	SIGPROP_STOP,
236 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
237 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
238 	[SIGCHLD] =	SIGPROP_IGNORE,
239 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
240 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGIO] =	SIGPROP_IGNORE,
242 	[SIGXCPU] =	SIGPROP_KILL,
243 	[SIGXFSZ] =	SIGPROP_KILL,
244 	[SIGVTALRM] =	SIGPROP_KILL,
245 	[SIGPROF] =	SIGPROP_KILL,
246 	[SIGWINCH] =	SIGPROP_IGNORE,
247 	[SIGINFO] =	SIGPROP_IGNORE,
248 	[SIGUSR1] =	SIGPROP_KILL,
249 	[SIGUSR2] =	SIGPROP_KILL,
250 };
251 
252 sigset_t fastblock_mask;
253 
254 static void
255 sigqueue_start(void)
256 {
257 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
258 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
259 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
260 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
261 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
262 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
263 	SIGFILLSET(fastblock_mask);
264 	SIG_CANTMASK(fastblock_mask);
265 }
266 
267 ksiginfo_t *
268 ksiginfo_alloc(int wait)
269 {
270 	int flags;
271 
272 	flags = M_ZERO;
273 	if (! wait)
274 		flags |= M_NOWAIT;
275 	if (ksiginfo_zone != NULL)
276 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
277 	return (NULL);
278 }
279 
280 void
281 ksiginfo_free(ksiginfo_t *ksi)
282 {
283 	uma_zfree(ksiginfo_zone, ksi);
284 }
285 
286 static __inline int
287 ksiginfo_tryfree(ksiginfo_t *ksi)
288 {
289 	if (!(ksi->ksi_flags & KSI_EXT)) {
290 		uma_zfree(ksiginfo_zone, ksi);
291 		return (1);
292 	}
293 	return (0);
294 }
295 
296 void
297 sigqueue_init(sigqueue_t *list, struct proc *p)
298 {
299 	SIGEMPTYSET(list->sq_signals);
300 	SIGEMPTYSET(list->sq_kill);
301 	SIGEMPTYSET(list->sq_ptrace);
302 	TAILQ_INIT(&list->sq_list);
303 	list->sq_proc = p;
304 	list->sq_flags = SQ_INIT;
305 }
306 
307 /*
308  * Get a signal's ksiginfo.
309  * Return:
310  *	0	-	signal not found
311  *	others	-	signal number
312  */
313 static int
314 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
315 {
316 	struct proc *p = sq->sq_proc;
317 	struct ksiginfo *ksi, *next;
318 	int count = 0;
319 
320 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
321 
322 	if (!SIGISMEMBER(sq->sq_signals, signo))
323 		return (0);
324 
325 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
326 		count++;
327 		SIGDELSET(sq->sq_ptrace, signo);
328 		si->ksi_flags |= KSI_PTRACE;
329 	}
330 	if (SIGISMEMBER(sq->sq_kill, signo)) {
331 		count++;
332 		if (count == 1)
333 			SIGDELSET(sq->sq_kill, signo);
334 	}
335 
336 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
337 		if (ksi->ksi_signo == signo) {
338 			if (count == 0) {
339 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
340 				ksi->ksi_sigq = NULL;
341 				ksiginfo_copy(ksi, si);
342 				if (ksiginfo_tryfree(ksi) && p != NULL)
343 					p->p_pendingcnt--;
344 			}
345 			if (++count > 1)
346 				break;
347 		}
348 	}
349 
350 	if (count <= 1)
351 		SIGDELSET(sq->sq_signals, signo);
352 	si->ksi_signo = signo;
353 	return (signo);
354 }
355 
356 void
357 sigqueue_take(ksiginfo_t *ksi)
358 {
359 	struct ksiginfo *kp;
360 	struct proc	*p;
361 	sigqueue_t	*sq;
362 
363 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
364 		return;
365 
366 	p = sq->sq_proc;
367 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
368 	ksi->ksi_sigq = NULL;
369 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
370 		p->p_pendingcnt--;
371 
372 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
373 	     kp = TAILQ_NEXT(kp, ksi_link)) {
374 		if (kp->ksi_signo == ksi->ksi_signo)
375 			break;
376 	}
377 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
378 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
379 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
380 }
381 
382 static int
383 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
384 {
385 	struct proc *p = sq->sq_proc;
386 	struct ksiginfo *ksi;
387 	int ret = 0;
388 
389 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
390 
391 	/*
392 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
393 	 * for these signals.
394 	 */
395 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	/* directly insert the ksi, don't copy it */
401 	if (si->ksi_flags & KSI_INS) {
402 		if (si->ksi_flags & KSI_HEAD)
403 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
404 		else
405 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
406 		si->ksi_sigq = sq;
407 		goto out_set_bit;
408 	}
409 
410 	if (__predict_false(ksiginfo_zone == NULL)) {
411 		SIGADDSET(sq->sq_kill, signo);
412 		goto out_set_bit;
413 	}
414 
415 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
416 		signal_overflow++;
417 		ret = EAGAIN;
418 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
419 		signal_alloc_fail++;
420 		ret = EAGAIN;
421 	} else {
422 		if (p != NULL)
423 			p->p_pendingcnt++;
424 		ksiginfo_copy(si, ksi);
425 		ksi->ksi_signo = signo;
426 		if (si->ksi_flags & KSI_HEAD)
427 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
428 		else
429 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
430 		ksi->ksi_sigq = sq;
431 	}
432 
433 	if (ret != 0) {
434 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
435 			SIGADDSET(sq->sq_ptrace, signo);
436 			ret = 0;
437 			goto out_set_bit;
438 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
439 		    (si->ksi_flags & KSI_SIGQ) == 0) {
440 			SIGADDSET(sq->sq_kill, signo);
441 			ret = 0;
442 			goto out_set_bit;
443 		}
444 		return (ret);
445 	}
446 
447 out_set_bit:
448 	SIGADDSET(sq->sq_signals, signo);
449 	return (ret);
450 }
451 
452 void
453 sigqueue_flush(sigqueue_t *sq)
454 {
455 	struct proc *p = sq->sq_proc;
456 	ksiginfo_t *ksi;
457 
458 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
459 
460 	if (p != NULL)
461 		PROC_LOCK_ASSERT(p, MA_OWNED);
462 
463 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
464 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
465 		ksi->ksi_sigq = NULL;
466 		if (ksiginfo_tryfree(ksi) && p != NULL)
467 			p->p_pendingcnt--;
468 	}
469 
470 	SIGEMPTYSET(sq->sq_signals);
471 	SIGEMPTYSET(sq->sq_kill);
472 	SIGEMPTYSET(sq->sq_ptrace);
473 }
474 
475 static void
476 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
477 {
478 	sigset_t tmp;
479 	struct proc *p1, *p2;
480 	ksiginfo_t *ksi, *next;
481 
482 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
483 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
484 	p1 = src->sq_proc;
485 	p2 = dst->sq_proc;
486 	/* Move siginfo to target list */
487 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
488 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
489 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
490 			if (p1 != NULL)
491 				p1->p_pendingcnt--;
492 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = dst;
494 			if (p2 != NULL)
495 				p2->p_pendingcnt++;
496 		}
497 	}
498 
499 	/* Move pending bits to target list */
500 	tmp = src->sq_kill;
501 	SIGSETAND(tmp, *set);
502 	SIGSETOR(dst->sq_kill, tmp);
503 	SIGSETNAND(src->sq_kill, tmp);
504 
505 	tmp = src->sq_ptrace;
506 	SIGSETAND(tmp, *set);
507 	SIGSETOR(dst->sq_ptrace, tmp);
508 	SIGSETNAND(src->sq_ptrace, tmp);
509 
510 	tmp = src->sq_signals;
511 	SIGSETAND(tmp, *set);
512 	SIGSETOR(dst->sq_signals, tmp);
513 	SIGSETNAND(src->sq_signals, tmp);
514 }
515 
516 #if 0
517 static void
518 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
519 {
520 	sigset_t set;
521 
522 	SIGEMPTYSET(set);
523 	SIGADDSET(set, signo);
524 	sigqueue_move_set(src, dst, &set);
525 }
526 #endif
527 
528 static void
529 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
530 {
531 	struct proc *p = sq->sq_proc;
532 	ksiginfo_t *ksi, *next;
533 
534 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
535 
536 	/* Remove siginfo queue */
537 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
538 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
539 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
540 			ksi->ksi_sigq = NULL;
541 			if (ksiginfo_tryfree(ksi) && p != NULL)
542 				p->p_pendingcnt--;
543 		}
544 	}
545 	SIGSETNAND(sq->sq_kill, *set);
546 	SIGSETNAND(sq->sq_ptrace, *set);
547 	SIGSETNAND(sq->sq_signals, *set);
548 }
549 
550 void
551 sigqueue_delete(sigqueue_t *sq, int signo)
552 {
553 	sigset_t set;
554 
555 	SIGEMPTYSET(set);
556 	SIGADDSET(set, signo);
557 	sigqueue_delete_set(sq, &set);
558 }
559 
560 /* Remove a set of signals for a process */
561 static void
562 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
563 {
564 	sigqueue_t worklist;
565 	struct thread *td0;
566 
567 	PROC_LOCK_ASSERT(p, MA_OWNED);
568 
569 	sigqueue_init(&worklist, NULL);
570 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
571 
572 	FOREACH_THREAD_IN_PROC(p, td0)
573 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
574 
575 	sigqueue_flush(&worklist);
576 }
577 
578 void
579 sigqueue_delete_proc(struct proc *p, int signo)
580 {
581 	sigset_t set;
582 
583 	SIGEMPTYSET(set);
584 	SIGADDSET(set, signo);
585 	sigqueue_delete_set_proc(p, &set);
586 }
587 
588 static void
589 sigqueue_delete_stopmask_proc(struct proc *p)
590 {
591 	sigset_t set;
592 
593 	SIGEMPTYSET(set);
594 	SIGADDSET(set, SIGSTOP);
595 	SIGADDSET(set, SIGTSTP);
596 	SIGADDSET(set, SIGTTIN);
597 	SIGADDSET(set, SIGTTOU);
598 	sigqueue_delete_set_proc(p, &set);
599 }
600 
601 /*
602  * Determine signal that should be delivered to thread td, the current
603  * thread, 0 if none.  If there is a pending stop signal with default
604  * action, the process stops in issignal().
605  */
606 int
607 cursig(struct thread *td)
608 {
609 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
610 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
611 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
612 	return (SIGPENDING(td) ? issignal(td) : 0);
613 }
614 
615 /*
616  * Arrange for ast() to handle unmasked pending signals on return to user
617  * mode.  This must be called whenever a signal is added to td_sigqueue or
618  * unmasked in td_sigmask.
619  */
620 void
621 signotify(struct thread *td)
622 {
623 
624 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
625 
626 	if (SIGPENDING(td)) {
627 		thread_lock(td);
628 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
629 		thread_unlock(td);
630 	}
631 }
632 
633 /*
634  * Returns 1 (true) if altstack is configured for the thread, and the
635  * passed stack bottom address falls into the altstack range.  Handles
636  * the 43 compat special case where the alt stack size is zero.
637  */
638 int
639 sigonstack(size_t sp)
640 {
641 	struct thread *td;
642 
643 	td = curthread;
644 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
645 		return (0);
646 #if defined(COMPAT_43)
647 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
648 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
649 #endif
650 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
651 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
652 }
653 
654 static __inline int
655 sigprop(int sig)
656 {
657 
658 	if (sig > 0 && sig < nitems(sigproptbl))
659 		return (sigproptbl[sig]);
660 	return (0);
661 }
662 
663 int
664 sig_ffs(sigset_t *set)
665 {
666 	int i;
667 
668 	for (i = 0; i < _SIG_WORDS; i++)
669 		if (set->__bits[i])
670 			return (ffs(set->__bits[i]) + (i * 32));
671 	return (0);
672 }
673 
674 static bool
675 sigact_flag_test(const struct sigaction *act, int flag)
676 {
677 
678 	/*
679 	 * SA_SIGINFO is reset when signal disposition is set to
680 	 * ignore or default.  Other flags are kept according to user
681 	 * settings.
682 	 */
683 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
684 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
685 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
686 }
687 
688 /*
689  * kern_sigaction
690  * sigaction
691  * freebsd4_sigaction
692  * osigaction
693  */
694 int
695 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
696     struct sigaction *oact, int flags)
697 {
698 	struct sigacts *ps;
699 	struct proc *p = td->td_proc;
700 
701 	if (!_SIG_VALID(sig))
702 		return (EINVAL);
703 	if (act != NULL && act->sa_handler != SIG_DFL &&
704 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
705 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
706 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
707 		return (EINVAL);
708 
709 	PROC_LOCK(p);
710 	ps = p->p_sigacts;
711 	mtx_lock(&ps->ps_mtx);
712 	if (oact) {
713 		memset(oact, 0, sizeof(*oact));
714 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
715 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
716 			oact->sa_flags |= SA_ONSTACK;
717 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
718 			oact->sa_flags |= SA_RESTART;
719 		if (SIGISMEMBER(ps->ps_sigreset, sig))
720 			oact->sa_flags |= SA_RESETHAND;
721 		if (SIGISMEMBER(ps->ps_signodefer, sig))
722 			oact->sa_flags |= SA_NODEFER;
723 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
724 			oact->sa_flags |= SA_SIGINFO;
725 			oact->sa_sigaction =
726 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
727 		} else
728 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
729 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
730 			oact->sa_flags |= SA_NOCLDSTOP;
731 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
732 			oact->sa_flags |= SA_NOCLDWAIT;
733 	}
734 	if (act) {
735 		if ((sig == SIGKILL || sig == SIGSTOP) &&
736 		    act->sa_handler != SIG_DFL) {
737 			mtx_unlock(&ps->ps_mtx);
738 			PROC_UNLOCK(p);
739 			return (EINVAL);
740 		}
741 
742 		/*
743 		 * Change setting atomically.
744 		 */
745 
746 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
747 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
748 		if (sigact_flag_test(act, SA_SIGINFO)) {
749 			ps->ps_sigact[_SIG_IDX(sig)] =
750 			    (__sighandler_t *)act->sa_sigaction;
751 			SIGADDSET(ps->ps_siginfo, sig);
752 		} else {
753 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
754 			SIGDELSET(ps->ps_siginfo, sig);
755 		}
756 		if (!sigact_flag_test(act, SA_RESTART))
757 			SIGADDSET(ps->ps_sigintr, sig);
758 		else
759 			SIGDELSET(ps->ps_sigintr, sig);
760 		if (sigact_flag_test(act, SA_ONSTACK))
761 			SIGADDSET(ps->ps_sigonstack, sig);
762 		else
763 			SIGDELSET(ps->ps_sigonstack, sig);
764 		if (sigact_flag_test(act, SA_RESETHAND))
765 			SIGADDSET(ps->ps_sigreset, sig);
766 		else
767 			SIGDELSET(ps->ps_sigreset, sig);
768 		if (sigact_flag_test(act, SA_NODEFER))
769 			SIGADDSET(ps->ps_signodefer, sig);
770 		else
771 			SIGDELSET(ps->ps_signodefer, sig);
772 		if (sig == SIGCHLD) {
773 			if (act->sa_flags & SA_NOCLDSTOP)
774 				ps->ps_flag |= PS_NOCLDSTOP;
775 			else
776 				ps->ps_flag &= ~PS_NOCLDSTOP;
777 			if (act->sa_flags & SA_NOCLDWAIT) {
778 				/*
779 				 * Paranoia: since SA_NOCLDWAIT is implemented
780 				 * by reparenting the dying child to PID 1 (and
781 				 * trust it to reap the zombie), PID 1 itself
782 				 * is forbidden to set SA_NOCLDWAIT.
783 				 */
784 				if (p->p_pid == 1)
785 					ps->ps_flag &= ~PS_NOCLDWAIT;
786 				else
787 					ps->ps_flag |= PS_NOCLDWAIT;
788 			} else
789 				ps->ps_flag &= ~PS_NOCLDWAIT;
790 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
791 				ps->ps_flag |= PS_CLDSIGIGN;
792 			else
793 				ps->ps_flag &= ~PS_CLDSIGIGN;
794 		}
795 		/*
796 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
797 		 * and for signals set to SIG_DFL where the default is to
798 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
799 		 * have to restart the process.
800 		 */
801 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
802 		    (sigprop(sig) & SIGPROP_IGNORE &&
803 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
804 			/* never to be seen again */
805 			sigqueue_delete_proc(p, sig);
806 			if (sig != SIGCONT)
807 				/* easier in psignal */
808 				SIGADDSET(ps->ps_sigignore, sig);
809 			SIGDELSET(ps->ps_sigcatch, sig);
810 		} else {
811 			SIGDELSET(ps->ps_sigignore, sig);
812 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
813 				SIGDELSET(ps->ps_sigcatch, sig);
814 			else
815 				SIGADDSET(ps->ps_sigcatch, sig);
816 		}
817 #ifdef COMPAT_FREEBSD4
818 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
819 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
820 		    (flags & KSA_FREEBSD4) == 0)
821 			SIGDELSET(ps->ps_freebsd4, sig);
822 		else
823 			SIGADDSET(ps->ps_freebsd4, sig);
824 #endif
825 #ifdef COMPAT_43
826 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
827 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
828 		    (flags & KSA_OSIGSET) == 0)
829 			SIGDELSET(ps->ps_osigset, sig);
830 		else
831 			SIGADDSET(ps->ps_osigset, sig);
832 #endif
833 	}
834 	mtx_unlock(&ps->ps_mtx);
835 	PROC_UNLOCK(p);
836 	return (0);
837 }
838 
839 #ifndef _SYS_SYSPROTO_H_
840 struct sigaction_args {
841 	int	sig;
842 	struct	sigaction *act;
843 	struct	sigaction *oact;
844 };
845 #endif
846 int
847 sys_sigaction(struct thread *td, struct sigaction_args *uap)
848 {
849 	struct sigaction act, oact;
850 	struct sigaction *actp, *oactp;
851 	int error;
852 
853 	actp = (uap->act != NULL) ? &act : NULL;
854 	oactp = (uap->oact != NULL) ? &oact : NULL;
855 	if (actp) {
856 		error = copyin(uap->act, actp, sizeof(act));
857 		if (error)
858 			return (error);
859 	}
860 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
861 	if (oactp && !error)
862 		error = copyout(oactp, uap->oact, sizeof(oact));
863 	return (error);
864 }
865 
866 #ifdef COMPAT_FREEBSD4
867 #ifndef _SYS_SYSPROTO_H_
868 struct freebsd4_sigaction_args {
869 	int	sig;
870 	struct	sigaction *act;
871 	struct	sigaction *oact;
872 };
873 #endif
874 int
875 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
876 {
877 	struct sigaction act, oact;
878 	struct sigaction *actp, *oactp;
879 	int error;
880 
881 	actp = (uap->act != NULL) ? &act : NULL;
882 	oactp = (uap->oact != NULL) ? &oact : NULL;
883 	if (actp) {
884 		error = copyin(uap->act, actp, sizeof(act));
885 		if (error)
886 			return (error);
887 	}
888 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
889 	if (oactp && !error)
890 		error = copyout(oactp, uap->oact, sizeof(oact));
891 	return (error);
892 }
893 #endif	/* COMAPT_FREEBSD4 */
894 
895 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
896 #ifndef _SYS_SYSPROTO_H_
897 struct osigaction_args {
898 	int	signum;
899 	struct	osigaction *nsa;
900 	struct	osigaction *osa;
901 };
902 #endif
903 int
904 osigaction(struct thread *td, struct osigaction_args *uap)
905 {
906 	struct osigaction sa;
907 	struct sigaction nsa, osa;
908 	struct sigaction *nsap, *osap;
909 	int error;
910 
911 	if (uap->signum <= 0 || uap->signum >= ONSIG)
912 		return (EINVAL);
913 
914 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
915 	osap = (uap->osa != NULL) ? &osa : NULL;
916 
917 	if (nsap) {
918 		error = copyin(uap->nsa, &sa, sizeof(sa));
919 		if (error)
920 			return (error);
921 		nsap->sa_handler = sa.sa_handler;
922 		nsap->sa_flags = sa.sa_flags;
923 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
924 	}
925 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
926 	if (osap && !error) {
927 		sa.sa_handler = osap->sa_handler;
928 		sa.sa_flags = osap->sa_flags;
929 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
930 		error = copyout(&sa, uap->osa, sizeof(sa));
931 	}
932 	return (error);
933 }
934 
935 #if !defined(__i386__)
936 /* Avoid replicating the same stub everywhere */
937 int
938 osigreturn(struct thread *td, struct osigreturn_args *uap)
939 {
940 
941 	return (nosys(td, (struct nosys_args *)uap));
942 }
943 #endif
944 #endif /* COMPAT_43 */
945 
946 /*
947  * Initialize signal state for process 0;
948  * set to ignore signals that are ignored by default.
949  */
950 void
951 siginit(struct proc *p)
952 {
953 	int i;
954 	struct sigacts *ps;
955 
956 	PROC_LOCK(p);
957 	ps = p->p_sigacts;
958 	mtx_lock(&ps->ps_mtx);
959 	for (i = 1; i <= NSIG; i++) {
960 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
961 			SIGADDSET(ps->ps_sigignore, i);
962 		}
963 	}
964 	mtx_unlock(&ps->ps_mtx);
965 	PROC_UNLOCK(p);
966 }
967 
968 /*
969  * Reset specified signal to the default disposition.
970  */
971 static void
972 sigdflt(struct sigacts *ps, int sig)
973 {
974 
975 	mtx_assert(&ps->ps_mtx, MA_OWNED);
976 	SIGDELSET(ps->ps_sigcatch, sig);
977 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
978 		SIGADDSET(ps->ps_sigignore, sig);
979 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
980 	SIGDELSET(ps->ps_siginfo, sig);
981 }
982 
983 /*
984  * Reset signals for an exec of the specified process.
985  */
986 void
987 execsigs(struct proc *p)
988 {
989 	struct sigacts *ps;
990 	struct thread *td;
991 
992 	/*
993 	 * Reset caught signals.  Held signals remain held
994 	 * through td_sigmask (unless they were caught,
995 	 * and are now ignored by default).
996 	 */
997 	PROC_LOCK_ASSERT(p, MA_OWNED);
998 	ps = p->p_sigacts;
999 	mtx_lock(&ps->ps_mtx);
1000 	sig_drop_caught(p);
1001 
1002 	/*
1003 	 * Reset stack state to the user stack.
1004 	 * Clear set of signals caught on the signal stack.
1005 	 */
1006 	td = curthread;
1007 	MPASS(td->td_proc == p);
1008 	td->td_sigstk.ss_flags = SS_DISABLE;
1009 	td->td_sigstk.ss_size = 0;
1010 	td->td_sigstk.ss_sp = 0;
1011 	td->td_pflags &= ~TDP_ALTSTACK;
1012 	/*
1013 	 * Reset no zombies if child dies flag as Solaris does.
1014 	 */
1015 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1016 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1017 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1018 	mtx_unlock(&ps->ps_mtx);
1019 }
1020 
1021 /*
1022  * kern_sigprocmask()
1023  *
1024  *	Manipulate signal mask.
1025  */
1026 int
1027 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1028     int flags)
1029 {
1030 	sigset_t new_block, oset1;
1031 	struct proc *p;
1032 	int error;
1033 
1034 	p = td->td_proc;
1035 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1036 		PROC_LOCK_ASSERT(p, MA_OWNED);
1037 	else
1038 		PROC_LOCK(p);
1039 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1040 	    ? MA_OWNED : MA_NOTOWNED);
1041 	if (oset != NULL)
1042 		*oset = td->td_sigmask;
1043 
1044 	error = 0;
1045 	if (set != NULL) {
1046 		switch (how) {
1047 		case SIG_BLOCK:
1048 			SIG_CANTMASK(*set);
1049 			oset1 = td->td_sigmask;
1050 			SIGSETOR(td->td_sigmask, *set);
1051 			new_block = td->td_sigmask;
1052 			SIGSETNAND(new_block, oset1);
1053 			break;
1054 		case SIG_UNBLOCK:
1055 			SIGSETNAND(td->td_sigmask, *set);
1056 			signotify(td);
1057 			goto out;
1058 		case SIG_SETMASK:
1059 			SIG_CANTMASK(*set);
1060 			oset1 = td->td_sigmask;
1061 			if (flags & SIGPROCMASK_OLD)
1062 				SIGSETLO(td->td_sigmask, *set);
1063 			else
1064 				td->td_sigmask = *set;
1065 			new_block = td->td_sigmask;
1066 			SIGSETNAND(new_block, oset1);
1067 			signotify(td);
1068 			break;
1069 		default:
1070 			error = EINVAL;
1071 			goto out;
1072 		}
1073 
1074 		/*
1075 		 * The new_block set contains signals that were not previously
1076 		 * blocked, but are blocked now.
1077 		 *
1078 		 * In case we block any signal that was not previously blocked
1079 		 * for td, and process has the signal pending, try to schedule
1080 		 * signal delivery to some thread that does not block the
1081 		 * signal, possibly waking it up.
1082 		 */
1083 		if (p->p_numthreads != 1)
1084 			reschedule_signals(p, new_block, flags);
1085 	}
1086 
1087 out:
1088 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1089 		PROC_UNLOCK(p);
1090 	return (error);
1091 }
1092 
1093 #ifndef _SYS_SYSPROTO_H_
1094 struct sigprocmask_args {
1095 	int	how;
1096 	const sigset_t *set;
1097 	sigset_t *oset;
1098 };
1099 #endif
1100 int
1101 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1102 {
1103 	sigset_t set, oset;
1104 	sigset_t *setp, *osetp;
1105 	int error;
1106 
1107 	setp = (uap->set != NULL) ? &set : NULL;
1108 	osetp = (uap->oset != NULL) ? &oset : NULL;
1109 	if (setp) {
1110 		error = copyin(uap->set, setp, sizeof(set));
1111 		if (error)
1112 			return (error);
1113 	}
1114 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1115 	if (osetp && !error) {
1116 		error = copyout(osetp, uap->oset, sizeof(oset));
1117 	}
1118 	return (error);
1119 }
1120 
1121 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1122 #ifndef _SYS_SYSPROTO_H_
1123 struct osigprocmask_args {
1124 	int	how;
1125 	osigset_t mask;
1126 };
1127 #endif
1128 int
1129 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1130 {
1131 	sigset_t set, oset;
1132 	int error;
1133 
1134 	OSIG2SIG(uap->mask, set);
1135 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1136 	SIG2OSIG(oset, td->td_retval[0]);
1137 	return (error);
1138 }
1139 #endif /* COMPAT_43 */
1140 
1141 int
1142 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1143 {
1144 	ksiginfo_t ksi;
1145 	sigset_t set;
1146 	int error;
1147 
1148 	error = copyin(uap->set, &set, sizeof(set));
1149 	if (error) {
1150 		td->td_retval[0] = error;
1151 		return (0);
1152 	}
1153 
1154 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1155 	if (error) {
1156 		/*
1157 		 * sigwait() function shall not return EINTR, but
1158 		 * the syscall does.  Non-ancient libc provides the
1159 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1160 		 * is used by libthr to handle required cancellation
1161 		 * point in the sigwait().
1162 		 */
1163 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1164 			return (ERESTART);
1165 		td->td_retval[0] = error;
1166 		return (0);
1167 	}
1168 
1169 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1170 	td->td_retval[0] = error;
1171 	return (0);
1172 }
1173 
1174 int
1175 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1176 {
1177 	struct timespec ts;
1178 	struct timespec *timeout;
1179 	sigset_t set;
1180 	ksiginfo_t ksi;
1181 	int error;
1182 
1183 	if (uap->timeout) {
1184 		error = copyin(uap->timeout, &ts, sizeof(ts));
1185 		if (error)
1186 			return (error);
1187 
1188 		timeout = &ts;
1189 	} else
1190 		timeout = NULL;
1191 
1192 	error = copyin(uap->set, &set, sizeof(set));
1193 	if (error)
1194 		return (error);
1195 
1196 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1197 	if (error)
1198 		return (error);
1199 
1200 	if (uap->info)
1201 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1202 
1203 	if (error == 0)
1204 		td->td_retval[0] = ksi.ksi_signo;
1205 	return (error);
1206 }
1207 
1208 int
1209 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1210 {
1211 	ksiginfo_t ksi;
1212 	sigset_t set;
1213 	int error;
1214 
1215 	error = copyin(uap->set, &set, sizeof(set));
1216 	if (error)
1217 		return (error);
1218 
1219 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1220 	if (error)
1221 		return (error);
1222 
1223 	if (uap->info)
1224 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1225 
1226 	if (error == 0)
1227 		td->td_retval[0] = ksi.ksi_signo;
1228 	return (error);
1229 }
1230 
1231 static void
1232 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1233 {
1234 	struct thread *thr;
1235 
1236 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1237 		if (thr == td)
1238 			thr->td_si = *si;
1239 		else
1240 			thr->td_si.si_signo = 0;
1241 	}
1242 }
1243 
1244 int
1245 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1246 	struct timespec *timeout)
1247 {
1248 	struct sigacts *ps;
1249 	sigset_t saved_mask, new_block;
1250 	struct proc *p;
1251 	int error, sig, timo, timevalid = 0;
1252 	struct timespec rts, ets, ts;
1253 	struct timeval tv;
1254 	bool traced;
1255 
1256 	p = td->td_proc;
1257 	error = 0;
1258 	ets.tv_sec = 0;
1259 	ets.tv_nsec = 0;
1260 	traced = false;
1261 
1262 	/* Ensure the sigfastblock value is up to date. */
1263 	sigfastblock_fetch(td);
1264 
1265 	if (timeout != NULL) {
1266 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1267 			timevalid = 1;
1268 			getnanouptime(&rts);
1269 			timespecadd(&rts, timeout, &ets);
1270 		}
1271 	}
1272 	ksiginfo_init(ksi);
1273 	/* Some signals can not be waited for. */
1274 	SIG_CANTMASK(waitset);
1275 	ps = p->p_sigacts;
1276 	PROC_LOCK(p);
1277 	saved_mask = td->td_sigmask;
1278 	SIGSETNAND(td->td_sigmask, waitset);
1279 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1280 	    !kern_sig_discard_ign) {
1281 		thread_lock(td);
1282 		td->td_flags |= TDF_SIGWAIT;
1283 		thread_unlock(td);
1284 	}
1285 	for (;;) {
1286 		mtx_lock(&ps->ps_mtx);
1287 		sig = cursig(td);
1288 		mtx_unlock(&ps->ps_mtx);
1289 		KASSERT(sig >= 0, ("sig %d", sig));
1290 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1291 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1292 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1293 				error = 0;
1294 				break;
1295 			}
1296 		}
1297 
1298 		if (error != 0)
1299 			break;
1300 
1301 		/*
1302 		 * POSIX says this must be checked after looking for pending
1303 		 * signals.
1304 		 */
1305 		if (timeout != NULL) {
1306 			if (!timevalid) {
1307 				error = EINVAL;
1308 				break;
1309 			}
1310 			getnanouptime(&rts);
1311 			if (timespeccmp(&rts, &ets, >=)) {
1312 				error = EAGAIN;
1313 				break;
1314 			}
1315 			timespecsub(&ets, &rts, &ts);
1316 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1317 			timo = tvtohz(&tv);
1318 		} else {
1319 			timo = 0;
1320 		}
1321 
1322 		if (traced) {
1323 			error = EINTR;
1324 			break;
1325 		}
1326 
1327 		error = msleep(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1328 		    "sigwait", timo);
1329 
1330 		/* The syscalls can not be restarted. */
1331 		if (error == ERESTART)
1332 			error = EINTR;
1333 
1334 		/* We will calculate timeout by ourself. */
1335 		if (timeout != NULL && error == EAGAIN)
1336 			error = 0;
1337 
1338 		/*
1339 		 * If PTRACE_SCE or PTRACE_SCX were set after
1340 		 * userspace entered the syscall, return spurious
1341 		 * EINTR after wait was done.  Only do this as last
1342 		 * resort after rechecking for possible queued signals
1343 		 * and expired timeouts.
1344 		 */
1345 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1346 			traced = true;
1347 	}
1348 	thread_lock(td);
1349 	td->td_flags &= ~TDF_SIGWAIT;
1350 	thread_unlock(td);
1351 
1352 	new_block = saved_mask;
1353 	SIGSETNAND(new_block, td->td_sigmask);
1354 	td->td_sigmask = saved_mask;
1355 	/*
1356 	 * Fewer signals can be delivered to us, reschedule signal
1357 	 * notification.
1358 	 */
1359 	if (p->p_numthreads != 1)
1360 		reschedule_signals(p, new_block, 0);
1361 
1362 	if (error == 0) {
1363 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1364 
1365 		if (ksi->ksi_code == SI_TIMER)
1366 			itimer_accept(p, ksi->ksi_timerid, ksi);
1367 
1368 #ifdef KTRACE
1369 		if (KTRPOINT(td, KTR_PSIG)) {
1370 			sig_t action;
1371 
1372 			mtx_lock(&ps->ps_mtx);
1373 			action = ps->ps_sigact[_SIG_IDX(sig)];
1374 			mtx_unlock(&ps->ps_mtx);
1375 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1376 		}
1377 #endif
1378 		if (sig == SIGKILL) {
1379 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1380 			sigexit(td, sig);
1381 		}
1382 	}
1383 	PROC_UNLOCK(p);
1384 	return (error);
1385 }
1386 
1387 #ifndef _SYS_SYSPROTO_H_
1388 struct sigpending_args {
1389 	sigset_t	*set;
1390 };
1391 #endif
1392 int
1393 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1394 {
1395 	struct proc *p = td->td_proc;
1396 	sigset_t pending;
1397 
1398 	PROC_LOCK(p);
1399 	pending = p->p_sigqueue.sq_signals;
1400 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1401 	PROC_UNLOCK(p);
1402 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1403 }
1404 
1405 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1406 #ifndef _SYS_SYSPROTO_H_
1407 struct osigpending_args {
1408 	int	dummy;
1409 };
1410 #endif
1411 int
1412 osigpending(struct thread *td, struct osigpending_args *uap)
1413 {
1414 	struct proc *p = td->td_proc;
1415 	sigset_t pending;
1416 
1417 	PROC_LOCK(p);
1418 	pending = p->p_sigqueue.sq_signals;
1419 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1420 	PROC_UNLOCK(p);
1421 	SIG2OSIG(pending, td->td_retval[0]);
1422 	return (0);
1423 }
1424 #endif /* COMPAT_43 */
1425 
1426 #if defined(COMPAT_43)
1427 /*
1428  * Generalized interface signal handler, 4.3-compatible.
1429  */
1430 #ifndef _SYS_SYSPROTO_H_
1431 struct osigvec_args {
1432 	int	signum;
1433 	struct	sigvec *nsv;
1434 	struct	sigvec *osv;
1435 };
1436 #endif
1437 /* ARGSUSED */
1438 int
1439 osigvec(struct thread *td, struct osigvec_args *uap)
1440 {
1441 	struct sigvec vec;
1442 	struct sigaction nsa, osa;
1443 	struct sigaction *nsap, *osap;
1444 	int error;
1445 
1446 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1447 		return (EINVAL);
1448 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1449 	osap = (uap->osv != NULL) ? &osa : NULL;
1450 	if (nsap) {
1451 		error = copyin(uap->nsv, &vec, sizeof(vec));
1452 		if (error)
1453 			return (error);
1454 		nsap->sa_handler = vec.sv_handler;
1455 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1456 		nsap->sa_flags = vec.sv_flags;
1457 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1458 	}
1459 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1460 	if (osap && !error) {
1461 		vec.sv_handler = osap->sa_handler;
1462 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1463 		vec.sv_flags = osap->sa_flags;
1464 		vec.sv_flags &= ~SA_NOCLDWAIT;
1465 		vec.sv_flags ^= SA_RESTART;
1466 		error = copyout(&vec, uap->osv, sizeof(vec));
1467 	}
1468 	return (error);
1469 }
1470 
1471 #ifndef _SYS_SYSPROTO_H_
1472 struct osigblock_args {
1473 	int	mask;
1474 };
1475 #endif
1476 int
1477 osigblock(struct thread *td, struct osigblock_args *uap)
1478 {
1479 	sigset_t set, oset;
1480 
1481 	OSIG2SIG(uap->mask, set);
1482 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1483 	SIG2OSIG(oset, td->td_retval[0]);
1484 	return (0);
1485 }
1486 
1487 #ifndef _SYS_SYSPROTO_H_
1488 struct osigsetmask_args {
1489 	int	mask;
1490 };
1491 #endif
1492 int
1493 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1494 {
1495 	sigset_t set, oset;
1496 
1497 	OSIG2SIG(uap->mask, set);
1498 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1499 	SIG2OSIG(oset, td->td_retval[0]);
1500 	return (0);
1501 }
1502 #endif /* COMPAT_43 */
1503 
1504 /*
1505  * Suspend calling thread until signal, providing mask to be set in the
1506  * meantime.
1507  */
1508 #ifndef _SYS_SYSPROTO_H_
1509 struct sigsuspend_args {
1510 	const sigset_t *sigmask;
1511 };
1512 #endif
1513 /* ARGSUSED */
1514 int
1515 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1516 {
1517 	sigset_t mask;
1518 	int error;
1519 
1520 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1521 	if (error)
1522 		return (error);
1523 	return (kern_sigsuspend(td, mask));
1524 }
1525 
1526 int
1527 kern_sigsuspend(struct thread *td, sigset_t mask)
1528 {
1529 	struct proc *p = td->td_proc;
1530 	int has_sig, sig;
1531 
1532 	/* Ensure the sigfastblock value is up to date. */
1533 	sigfastblock_fetch(td);
1534 
1535 	/*
1536 	 * When returning from sigsuspend, we want
1537 	 * the old mask to be restored after the
1538 	 * signal handler has finished.  Thus, we
1539 	 * save it here and mark the sigacts structure
1540 	 * to indicate this.
1541 	 */
1542 	PROC_LOCK(p);
1543 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1544 	    SIGPROCMASK_PROC_LOCKED);
1545 	td->td_pflags |= TDP_OLDMASK;
1546 
1547 	/*
1548 	 * Process signals now. Otherwise, we can get spurious wakeup
1549 	 * due to signal entered process queue, but delivered to other
1550 	 * thread. But sigsuspend should return only on signal
1551 	 * delivery.
1552 	 */
1553 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1554 	for (has_sig = 0; !has_sig;) {
1555 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1556 			0) == 0)
1557 			/* void */;
1558 		thread_suspend_check(0);
1559 		mtx_lock(&p->p_sigacts->ps_mtx);
1560 		while ((sig = cursig(td)) != 0) {
1561 			KASSERT(sig >= 0, ("sig %d", sig));
1562 			has_sig += postsig(sig);
1563 		}
1564 		mtx_unlock(&p->p_sigacts->ps_mtx);
1565 
1566 		/*
1567 		 * If PTRACE_SCE or PTRACE_SCX were set after
1568 		 * userspace entered the syscall, return spurious
1569 		 * EINTR.
1570 		 */
1571 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1572 			has_sig += 1;
1573 	}
1574 	PROC_UNLOCK(p);
1575 	td->td_errno = EINTR;
1576 	td->td_pflags |= TDP_NERRNO;
1577 	return (EJUSTRETURN);
1578 }
1579 
1580 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1581 /*
1582  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1583  * convention: libc stub passes mask, not pointer, to save a copyin.
1584  */
1585 #ifndef _SYS_SYSPROTO_H_
1586 struct osigsuspend_args {
1587 	osigset_t mask;
1588 };
1589 #endif
1590 /* ARGSUSED */
1591 int
1592 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1593 {
1594 	sigset_t mask;
1595 
1596 	OSIG2SIG(uap->mask, mask);
1597 	return (kern_sigsuspend(td, mask));
1598 }
1599 #endif /* COMPAT_43 */
1600 
1601 #if defined(COMPAT_43)
1602 #ifndef _SYS_SYSPROTO_H_
1603 struct osigstack_args {
1604 	struct	sigstack *nss;
1605 	struct	sigstack *oss;
1606 };
1607 #endif
1608 /* ARGSUSED */
1609 int
1610 osigstack(struct thread *td, struct osigstack_args *uap)
1611 {
1612 	struct sigstack nss, oss;
1613 	int error = 0;
1614 
1615 	if (uap->nss != NULL) {
1616 		error = copyin(uap->nss, &nss, sizeof(nss));
1617 		if (error)
1618 			return (error);
1619 	}
1620 	oss.ss_sp = td->td_sigstk.ss_sp;
1621 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1622 	if (uap->nss != NULL) {
1623 		td->td_sigstk.ss_sp = nss.ss_sp;
1624 		td->td_sigstk.ss_size = 0;
1625 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1626 		td->td_pflags |= TDP_ALTSTACK;
1627 	}
1628 	if (uap->oss != NULL)
1629 		error = copyout(&oss, uap->oss, sizeof(oss));
1630 
1631 	return (error);
1632 }
1633 #endif /* COMPAT_43 */
1634 
1635 #ifndef _SYS_SYSPROTO_H_
1636 struct sigaltstack_args {
1637 	stack_t	*ss;
1638 	stack_t	*oss;
1639 };
1640 #endif
1641 /* ARGSUSED */
1642 int
1643 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1644 {
1645 	stack_t ss, oss;
1646 	int error;
1647 
1648 	if (uap->ss != NULL) {
1649 		error = copyin(uap->ss, &ss, sizeof(ss));
1650 		if (error)
1651 			return (error);
1652 	}
1653 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1654 	    (uap->oss != NULL) ? &oss : NULL);
1655 	if (error)
1656 		return (error);
1657 	if (uap->oss != NULL)
1658 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1659 	return (error);
1660 }
1661 
1662 int
1663 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1664 {
1665 	struct proc *p = td->td_proc;
1666 	int oonstack;
1667 
1668 	oonstack = sigonstack(cpu_getstack(td));
1669 
1670 	if (oss != NULL) {
1671 		*oss = td->td_sigstk;
1672 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1673 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1674 	}
1675 
1676 	if (ss != NULL) {
1677 		if (oonstack)
1678 			return (EPERM);
1679 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1680 			return (EINVAL);
1681 		if (!(ss->ss_flags & SS_DISABLE)) {
1682 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1683 				return (ENOMEM);
1684 
1685 			td->td_sigstk = *ss;
1686 			td->td_pflags |= TDP_ALTSTACK;
1687 		} else {
1688 			td->td_pflags &= ~TDP_ALTSTACK;
1689 		}
1690 	}
1691 	return (0);
1692 }
1693 
1694 struct killpg1_ctx {
1695 	struct thread *td;
1696 	ksiginfo_t *ksi;
1697 	int sig;
1698 	bool sent;
1699 	bool found;
1700 	int ret;
1701 };
1702 
1703 static void
1704 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1705 {
1706 	int err;
1707 
1708 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1709 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1710 		return;
1711 	PROC_LOCK(p);
1712 	err = p_cansignal(arg->td, p, arg->sig);
1713 	if (err == 0 && arg->sig != 0)
1714 		pksignal(p, arg->sig, arg->ksi);
1715 	PROC_UNLOCK(p);
1716 	if (err != ESRCH)
1717 		arg->found = true;
1718 	if (err == 0)
1719 		arg->sent = true;
1720 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1721 		arg->ret = err;
1722 }
1723 
1724 /*
1725  * Common code for kill process group/broadcast kill.
1726  * cp is calling process.
1727  */
1728 static int
1729 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1730 {
1731 	struct proc *p;
1732 	struct pgrp *pgrp;
1733 	struct killpg1_ctx arg;
1734 
1735 	arg.td = td;
1736 	arg.ksi = ksi;
1737 	arg.sig = sig;
1738 	arg.sent = false;
1739 	arg.found = false;
1740 	arg.ret = 0;
1741 	if (all) {
1742 		/*
1743 		 * broadcast
1744 		 */
1745 		sx_slock(&allproc_lock);
1746 		FOREACH_PROC_IN_SYSTEM(p) {
1747 			killpg1_sendsig(p, true, &arg);
1748 		}
1749 		sx_sunlock(&allproc_lock);
1750 	} else {
1751 		sx_slock(&proctree_lock);
1752 		if (pgid == 0) {
1753 			/*
1754 			 * zero pgid means send to my process group.
1755 			 */
1756 			pgrp = td->td_proc->p_pgrp;
1757 			PGRP_LOCK(pgrp);
1758 		} else {
1759 			pgrp = pgfind(pgid);
1760 			if (pgrp == NULL) {
1761 				sx_sunlock(&proctree_lock);
1762 				return (ESRCH);
1763 			}
1764 		}
1765 		sx_sunlock(&proctree_lock);
1766 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1767 			killpg1_sendsig(p, false, &arg);
1768 		}
1769 		PGRP_UNLOCK(pgrp);
1770 	}
1771 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1772 	if (arg.ret == 0 && !arg.sent)
1773 		arg.ret = arg.found ? EPERM : ESRCH;
1774 	return (arg.ret);
1775 }
1776 
1777 #ifndef _SYS_SYSPROTO_H_
1778 struct kill_args {
1779 	int	pid;
1780 	int	signum;
1781 };
1782 #endif
1783 /* ARGSUSED */
1784 int
1785 sys_kill(struct thread *td, struct kill_args *uap)
1786 {
1787 
1788 	return (kern_kill(td, uap->pid, uap->signum));
1789 }
1790 
1791 int
1792 kern_kill(struct thread *td, pid_t pid, int signum)
1793 {
1794 	ksiginfo_t ksi;
1795 	struct proc *p;
1796 	int error;
1797 
1798 	/*
1799 	 * A process in capability mode can send signals only to himself.
1800 	 * The main rationale behind this is that abort(3) is implemented as
1801 	 * kill(getpid(), SIGABRT).
1802 	 */
1803 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1804 		return (ECAPMODE);
1805 
1806 	AUDIT_ARG_SIGNUM(signum);
1807 	AUDIT_ARG_PID(pid);
1808 	if ((u_int)signum > _SIG_MAXSIG)
1809 		return (EINVAL);
1810 
1811 	ksiginfo_init(&ksi);
1812 	ksi.ksi_signo = signum;
1813 	ksi.ksi_code = SI_USER;
1814 	ksi.ksi_pid = td->td_proc->p_pid;
1815 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1816 
1817 	if (pid > 0) {
1818 		/* kill single process */
1819 		if ((p = pfind_any(pid)) == NULL)
1820 			return (ESRCH);
1821 		AUDIT_ARG_PROCESS(p);
1822 		error = p_cansignal(td, p, signum);
1823 		if (error == 0 && signum)
1824 			pksignal(p, signum, &ksi);
1825 		PROC_UNLOCK(p);
1826 		return (error);
1827 	}
1828 	switch (pid) {
1829 	case -1:		/* broadcast signal */
1830 		return (killpg1(td, signum, 0, 1, &ksi));
1831 	case 0:			/* signal own process group */
1832 		return (killpg1(td, signum, 0, 0, &ksi));
1833 	default:		/* negative explicit process group */
1834 		return (killpg1(td, signum, -pid, 0, &ksi));
1835 	}
1836 	/* NOTREACHED */
1837 }
1838 
1839 int
1840 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1841 {
1842 	struct proc *p;
1843 	int error;
1844 
1845 	AUDIT_ARG_SIGNUM(uap->signum);
1846 	AUDIT_ARG_FD(uap->fd);
1847 	if ((u_int)uap->signum > _SIG_MAXSIG)
1848 		return (EINVAL);
1849 
1850 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1851 	if (error)
1852 		return (error);
1853 	AUDIT_ARG_PROCESS(p);
1854 	error = p_cansignal(td, p, uap->signum);
1855 	if (error == 0 && uap->signum)
1856 		kern_psignal(p, uap->signum);
1857 	PROC_UNLOCK(p);
1858 	return (error);
1859 }
1860 
1861 #if defined(COMPAT_43)
1862 #ifndef _SYS_SYSPROTO_H_
1863 struct okillpg_args {
1864 	int	pgid;
1865 	int	signum;
1866 };
1867 #endif
1868 /* ARGSUSED */
1869 int
1870 okillpg(struct thread *td, struct okillpg_args *uap)
1871 {
1872 	ksiginfo_t ksi;
1873 
1874 	AUDIT_ARG_SIGNUM(uap->signum);
1875 	AUDIT_ARG_PID(uap->pgid);
1876 	if ((u_int)uap->signum > _SIG_MAXSIG)
1877 		return (EINVAL);
1878 
1879 	ksiginfo_init(&ksi);
1880 	ksi.ksi_signo = uap->signum;
1881 	ksi.ksi_code = SI_USER;
1882 	ksi.ksi_pid = td->td_proc->p_pid;
1883 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1884 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1885 }
1886 #endif /* COMPAT_43 */
1887 
1888 #ifndef _SYS_SYSPROTO_H_
1889 struct sigqueue_args {
1890 	pid_t pid;
1891 	int signum;
1892 	/* union sigval */ void *value;
1893 };
1894 #endif
1895 int
1896 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1897 {
1898 	union sigval sv;
1899 
1900 	sv.sival_ptr = uap->value;
1901 
1902 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1903 }
1904 
1905 int
1906 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1907 {
1908 	ksiginfo_t ksi;
1909 	struct proc *p;
1910 	int error;
1911 
1912 	if ((u_int)signum > _SIG_MAXSIG)
1913 		return (EINVAL);
1914 
1915 	/*
1916 	 * Specification says sigqueue can only send signal to
1917 	 * single process.
1918 	 */
1919 	if (pid <= 0)
1920 		return (EINVAL);
1921 
1922 	if ((p = pfind_any(pid)) == NULL)
1923 		return (ESRCH);
1924 	error = p_cansignal(td, p, signum);
1925 	if (error == 0 && signum != 0) {
1926 		ksiginfo_init(&ksi);
1927 		ksi.ksi_flags = KSI_SIGQ;
1928 		ksi.ksi_signo = signum;
1929 		ksi.ksi_code = SI_QUEUE;
1930 		ksi.ksi_pid = td->td_proc->p_pid;
1931 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1932 		ksi.ksi_value = *value;
1933 		error = pksignal(p, ksi.ksi_signo, &ksi);
1934 	}
1935 	PROC_UNLOCK(p);
1936 	return (error);
1937 }
1938 
1939 /*
1940  * Send a signal to a process group.
1941  */
1942 void
1943 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1944 {
1945 	struct pgrp *pgrp;
1946 
1947 	if (pgid != 0) {
1948 		sx_slock(&proctree_lock);
1949 		pgrp = pgfind(pgid);
1950 		sx_sunlock(&proctree_lock);
1951 		if (pgrp != NULL) {
1952 			pgsignal(pgrp, sig, 0, ksi);
1953 			PGRP_UNLOCK(pgrp);
1954 		}
1955 	}
1956 }
1957 
1958 /*
1959  * Send a signal to a process group.  If checktty is 1,
1960  * limit to members which have a controlling terminal.
1961  */
1962 void
1963 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1964 {
1965 	struct proc *p;
1966 
1967 	if (pgrp) {
1968 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1969 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1970 			PROC_LOCK(p);
1971 			if (p->p_state == PRS_NORMAL &&
1972 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1973 				pksignal(p, sig, ksi);
1974 			PROC_UNLOCK(p);
1975 		}
1976 	}
1977 }
1978 
1979 /*
1980  * Recalculate the signal mask and reset the signal disposition after
1981  * usermode frame for delivery is formed.  Should be called after
1982  * mach-specific routine, because sysent->sv_sendsig() needs correct
1983  * ps_siginfo and signal mask.
1984  */
1985 static void
1986 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1987 {
1988 	sigset_t mask;
1989 
1990 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1991 	td->td_ru.ru_nsignals++;
1992 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1993 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1994 		SIGADDSET(mask, sig);
1995 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1996 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1997 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1998 		sigdflt(ps, sig);
1999 }
2000 
2001 /*
2002  * Send a signal caused by a trap to the current thread.  If it will be
2003  * caught immediately, deliver it with correct code.  Otherwise, post it
2004  * normally.
2005  */
2006 void
2007 trapsignal(struct thread *td, ksiginfo_t *ksi)
2008 {
2009 	struct sigacts *ps;
2010 	struct proc *p;
2011 	sigset_t sigmask;
2012 	int code, sig;
2013 
2014 	p = td->td_proc;
2015 	sig = ksi->ksi_signo;
2016 	code = ksi->ksi_code;
2017 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2018 
2019 	sigfastblock_fetch(td);
2020 	PROC_LOCK(p);
2021 	ps = p->p_sigacts;
2022 	mtx_lock(&ps->ps_mtx);
2023 	sigmask = td->td_sigmask;
2024 	if (td->td_sigblock_val != 0)
2025 		SIGSETOR(sigmask, fastblock_mask);
2026 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2027 	    !SIGISMEMBER(sigmask, sig)) {
2028 #ifdef KTRACE
2029 		if (KTRPOINT(curthread, KTR_PSIG))
2030 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2031 			    &td->td_sigmask, code);
2032 #endif
2033 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2034 				ksi, &td->td_sigmask);
2035 		postsig_done(sig, td, ps);
2036 		mtx_unlock(&ps->ps_mtx);
2037 	} else {
2038 		/*
2039 		 * Avoid a possible infinite loop if the thread
2040 		 * masking the signal or process is ignoring the
2041 		 * signal.
2042 		 */
2043 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2044 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2045 			SIGDELSET(td->td_sigmask, sig);
2046 			SIGDELSET(ps->ps_sigcatch, sig);
2047 			SIGDELSET(ps->ps_sigignore, sig);
2048 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2049 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2050 			td->td_sigblock_val = 0;
2051 		}
2052 		mtx_unlock(&ps->ps_mtx);
2053 		p->p_sig = sig;		/* XXX to verify code */
2054 		tdsendsignal(p, td, sig, ksi);
2055 	}
2056 	PROC_UNLOCK(p);
2057 }
2058 
2059 static struct thread *
2060 sigtd(struct proc *p, int sig, bool fast_sigblock)
2061 {
2062 	struct thread *td, *signal_td;
2063 
2064 	PROC_LOCK_ASSERT(p, MA_OWNED);
2065 	MPASS(!fast_sigblock || p == curproc);
2066 
2067 	/*
2068 	 * Check if current thread can handle the signal without
2069 	 * switching context to another thread.
2070 	 */
2071 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2072 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2073 		return (curthread);
2074 	signal_td = NULL;
2075 	FOREACH_THREAD_IN_PROC(p, td) {
2076 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2077 		    td != curthread || td->td_sigblock_val == 0)) {
2078 			signal_td = td;
2079 			break;
2080 		}
2081 	}
2082 	if (signal_td == NULL)
2083 		signal_td = FIRST_THREAD_IN_PROC(p);
2084 	return (signal_td);
2085 }
2086 
2087 /*
2088  * Send the signal to the process.  If the signal has an action, the action
2089  * is usually performed by the target process rather than the caller; we add
2090  * the signal to the set of pending signals for the process.
2091  *
2092  * Exceptions:
2093  *   o When a stop signal is sent to a sleeping process that takes the
2094  *     default action, the process is stopped without awakening it.
2095  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2096  *     regardless of the signal action (eg, blocked or ignored).
2097  *
2098  * Other ignored signals are discarded immediately.
2099  *
2100  * NB: This function may be entered from the debugger via the "kill" DDB
2101  * command.  There is little that can be done to mitigate the possibly messy
2102  * side effects of this unwise possibility.
2103  */
2104 void
2105 kern_psignal(struct proc *p, int sig)
2106 {
2107 	ksiginfo_t ksi;
2108 
2109 	ksiginfo_init(&ksi);
2110 	ksi.ksi_signo = sig;
2111 	ksi.ksi_code = SI_KERNEL;
2112 	(void) tdsendsignal(p, NULL, sig, &ksi);
2113 }
2114 
2115 int
2116 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2117 {
2118 
2119 	return (tdsendsignal(p, NULL, sig, ksi));
2120 }
2121 
2122 /* Utility function for finding a thread to send signal event to. */
2123 int
2124 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2125 {
2126 	struct thread *td;
2127 
2128 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2129 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2130 		if (td == NULL)
2131 			return (ESRCH);
2132 		*ttd = td;
2133 	} else {
2134 		*ttd = NULL;
2135 		PROC_LOCK(p);
2136 	}
2137 	return (0);
2138 }
2139 
2140 void
2141 tdsignal(struct thread *td, int sig)
2142 {
2143 	ksiginfo_t ksi;
2144 
2145 	ksiginfo_init(&ksi);
2146 	ksi.ksi_signo = sig;
2147 	ksi.ksi_code = SI_KERNEL;
2148 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2149 }
2150 
2151 void
2152 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2153 {
2154 
2155 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2156 }
2157 
2158 static int
2159 sig_sleepq_abort(struct thread *td, int intrval)
2160 {
2161 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2162 
2163 	if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0) {
2164 		thread_unlock(td);
2165 		return (0);
2166 	}
2167 	return (sleepq_abort(td, intrval));
2168 }
2169 
2170 int
2171 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2172 {
2173 	sig_t action;
2174 	sigqueue_t *sigqueue;
2175 	int prop;
2176 	struct sigacts *ps;
2177 	int intrval;
2178 	int ret = 0;
2179 	int wakeup_swapper;
2180 
2181 	MPASS(td == NULL || p == td->td_proc);
2182 	PROC_LOCK_ASSERT(p, MA_OWNED);
2183 
2184 	if (!_SIG_VALID(sig))
2185 		panic("%s(): invalid signal %d", __func__, sig);
2186 
2187 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2188 
2189 	/*
2190 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2191 	 */
2192 	if (p->p_state == PRS_ZOMBIE) {
2193 		if (ksi && (ksi->ksi_flags & KSI_INS))
2194 			ksiginfo_tryfree(ksi);
2195 		return (ret);
2196 	}
2197 
2198 	ps = p->p_sigacts;
2199 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2200 	prop = sigprop(sig);
2201 
2202 	if (td == NULL) {
2203 		td = sigtd(p, sig, false);
2204 		sigqueue = &p->p_sigqueue;
2205 	} else
2206 		sigqueue = &td->td_sigqueue;
2207 
2208 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2209 
2210 	/*
2211 	 * If the signal is being ignored, then we forget about it
2212 	 * immediately, except when the target process executes
2213 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2214 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2215 	 */
2216 	mtx_lock(&ps->ps_mtx);
2217 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2218 		if (kern_sig_discard_ign &&
2219 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2220 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2221 
2222 			mtx_unlock(&ps->ps_mtx);
2223 			if (ksi && (ksi->ksi_flags & KSI_INS))
2224 				ksiginfo_tryfree(ksi);
2225 			return (ret);
2226 		} else {
2227 			action = SIG_CATCH;
2228 			intrval = 0;
2229 		}
2230 	} else {
2231 		if (SIGISMEMBER(td->td_sigmask, sig))
2232 			action = SIG_HOLD;
2233 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2234 			action = SIG_CATCH;
2235 		else
2236 			action = SIG_DFL;
2237 		if (SIGISMEMBER(ps->ps_sigintr, sig))
2238 			intrval = EINTR;
2239 		else
2240 			intrval = ERESTART;
2241 	}
2242 	mtx_unlock(&ps->ps_mtx);
2243 
2244 	if (prop & SIGPROP_CONT)
2245 		sigqueue_delete_stopmask_proc(p);
2246 	else if (prop & SIGPROP_STOP) {
2247 		/*
2248 		 * If sending a tty stop signal to a member of an orphaned
2249 		 * process group, discard the signal here if the action
2250 		 * is default; don't stop the process below if sleeping,
2251 		 * and don't clear any pending SIGCONT.
2252 		 */
2253 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2254 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2255 		    action == SIG_DFL) {
2256 			if (ksi && (ksi->ksi_flags & KSI_INS))
2257 				ksiginfo_tryfree(ksi);
2258 			return (ret);
2259 		}
2260 		sigqueue_delete_proc(p, SIGCONT);
2261 		if (p->p_flag & P_CONTINUED) {
2262 			p->p_flag &= ~P_CONTINUED;
2263 			PROC_LOCK(p->p_pptr);
2264 			sigqueue_take(p->p_ksi);
2265 			PROC_UNLOCK(p->p_pptr);
2266 		}
2267 	}
2268 
2269 	ret = sigqueue_add(sigqueue, sig, ksi);
2270 	if (ret != 0)
2271 		return (ret);
2272 	signotify(td);
2273 	/*
2274 	 * Defer further processing for signals which are held,
2275 	 * except that stopped processes must be continued by SIGCONT.
2276 	 */
2277 	if (action == SIG_HOLD &&
2278 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2279 		return (ret);
2280 
2281 	wakeup_swapper = 0;
2282 
2283 	/*
2284 	 * Some signals have a process-wide effect and a per-thread
2285 	 * component.  Most processing occurs when the process next
2286 	 * tries to cross the user boundary, however there are some
2287 	 * times when processing needs to be done immediately, such as
2288 	 * waking up threads so that they can cross the user boundary.
2289 	 * We try to do the per-process part here.
2290 	 */
2291 	if (P_SHOULDSTOP(p)) {
2292 		KASSERT(!(p->p_flag & P_WEXIT),
2293 		    ("signal to stopped but exiting process"));
2294 		if (sig == SIGKILL) {
2295 			/*
2296 			 * If traced process is already stopped,
2297 			 * then no further action is necessary.
2298 			 */
2299 			if (p->p_flag & P_TRACED)
2300 				goto out;
2301 			/*
2302 			 * SIGKILL sets process running.
2303 			 * It will die elsewhere.
2304 			 * All threads must be restarted.
2305 			 */
2306 			p->p_flag &= ~P_STOPPED_SIG;
2307 			goto runfast;
2308 		}
2309 
2310 		if (prop & SIGPROP_CONT) {
2311 			/*
2312 			 * If traced process is already stopped,
2313 			 * then no further action is necessary.
2314 			 */
2315 			if (p->p_flag & P_TRACED)
2316 				goto out;
2317 			/*
2318 			 * If SIGCONT is default (or ignored), we continue the
2319 			 * process but don't leave the signal in sigqueue as
2320 			 * it has no further action.  If SIGCONT is held, we
2321 			 * continue the process and leave the signal in
2322 			 * sigqueue.  If the process catches SIGCONT, let it
2323 			 * handle the signal itself.  If it isn't waiting on
2324 			 * an event, it goes back to run state.
2325 			 * Otherwise, process goes back to sleep state.
2326 			 */
2327 			p->p_flag &= ~P_STOPPED_SIG;
2328 			PROC_SLOCK(p);
2329 			if (p->p_numthreads == p->p_suspcount) {
2330 				PROC_SUNLOCK(p);
2331 				p->p_flag |= P_CONTINUED;
2332 				p->p_xsig = SIGCONT;
2333 				PROC_LOCK(p->p_pptr);
2334 				childproc_continued(p);
2335 				PROC_UNLOCK(p->p_pptr);
2336 				PROC_SLOCK(p);
2337 			}
2338 			if (action == SIG_DFL) {
2339 				thread_unsuspend(p);
2340 				PROC_SUNLOCK(p);
2341 				sigqueue_delete(sigqueue, sig);
2342 				goto out_cont;
2343 			}
2344 			if (action == SIG_CATCH) {
2345 				/*
2346 				 * The process wants to catch it so it needs
2347 				 * to run at least one thread, but which one?
2348 				 */
2349 				PROC_SUNLOCK(p);
2350 				goto runfast;
2351 			}
2352 			/*
2353 			 * The signal is not ignored or caught.
2354 			 */
2355 			thread_unsuspend(p);
2356 			PROC_SUNLOCK(p);
2357 			goto out_cont;
2358 		}
2359 
2360 		if (prop & SIGPROP_STOP) {
2361 			/*
2362 			 * If traced process is already stopped,
2363 			 * then no further action is necessary.
2364 			 */
2365 			if (p->p_flag & P_TRACED)
2366 				goto out;
2367 			/*
2368 			 * Already stopped, don't need to stop again
2369 			 * (If we did the shell could get confused).
2370 			 * Just make sure the signal STOP bit set.
2371 			 */
2372 			p->p_flag |= P_STOPPED_SIG;
2373 			sigqueue_delete(sigqueue, sig);
2374 			goto out;
2375 		}
2376 
2377 		/*
2378 		 * All other kinds of signals:
2379 		 * If a thread is sleeping interruptibly, simulate a
2380 		 * wakeup so that when it is continued it will be made
2381 		 * runnable and can look at the signal.  However, don't make
2382 		 * the PROCESS runnable, leave it stopped.
2383 		 * It may run a bit until it hits a thread_suspend_check().
2384 		 */
2385 		PROC_SLOCK(p);
2386 		thread_lock(td);
2387 		if (TD_CAN_ABORT(td))
2388 			wakeup_swapper = sig_sleepq_abort(td, intrval);
2389 		else
2390 			thread_unlock(td);
2391 		PROC_SUNLOCK(p);
2392 		goto out;
2393 		/*
2394 		 * Mutexes are short lived. Threads waiting on them will
2395 		 * hit thread_suspend_check() soon.
2396 		 */
2397 	} else if (p->p_state == PRS_NORMAL) {
2398 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2399 			tdsigwakeup(td, sig, action, intrval);
2400 			goto out;
2401 		}
2402 
2403 		MPASS(action == SIG_DFL);
2404 
2405 		if (prop & SIGPROP_STOP) {
2406 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2407 				goto out;
2408 			p->p_flag |= P_STOPPED_SIG;
2409 			p->p_xsig = sig;
2410 			PROC_SLOCK(p);
2411 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2412 			if (p->p_numthreads == p->p_suspcount) {
2413 				/*
2414 				 * only thread sending signal to another
2415 				 * process can reach here, if thread is sending
2416 				 * signal to its process, because thread does
2417 				 * not suspend itself here, p_numthreads
2418 				 * should never be equal to p_suspcount.
2419 				 */
2420 				thread_stopped(p);
2421 				PROC_SUNLOCK(p);
2422 				sigqueue_delete_proc(p, p->p_xsig);
2423 			} else
2424 				PROC_SUNLOCK(p);
2425 			goto out;
2426 		}
2427 	} else {
2428 		/* Not in "NORMAL" state. discard the signal. */
2429 		sigqueue_delete(sigqueue, sig);
2430 		goto out;
2431 	}
2432 
2433 	/*
2434 	 * The process is not stopped so we need to apply the signal to all the
2435 	 * running threads.
2436 	 */
2437 runfast:
2438 	tdsigwakeup(td, sig, action, intrval);
2439 	PROC_SLOCK(p);
2440 	thread_unsuspend(p);
2441 	PROC_SUNLOCK(p);
2442 out_cont:
2443 	itimer_proc_continue(p);
2444 	kqtimer_proc_continue(p);
2445 out:
2446 	/* If we jump here, proc slock should not be owned. */
2447 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2448 	if (wakeup_swapper)
2449 		kick_proc0();
2450 
2451 	return (ret);
2452 }
2453 
2454 /*
2455  * The force of a signal has been directed against a single
2456  * thread.  We need to see what we can do about knocking it
2457  * out of any sleep it may be in etc.
2458  */
2459 static void
2460 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2461 {
2462 	struct proc *p = td->td_proc;
2463 	int prop, wakeup_swapper;
2464 
2465 	PROC_LOCK_ASSERT(p, MA_OWNED);
2466 	prop = sigprop(sig);
2467 
2468 	PROC_SLOCK(p);
2469 	thread_lock(td);
2470 	/*
2471 	 * Bring the priority of a thread up if we want it to get
2472 	 * killed in this lifetime.  Be careful to avoid bumping the
2473 	 * priority of the idle thread, since we still allow to signal
2474 	 * kernel processes.
2475 	 */
2476 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2477 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2478 		sched_prio(td, PUSER);
2479 	if (TD_ON_SLEEPQ(td)) {
2480 		/*
2481 		 * If thread is sleeping uninterruptibly
2482 		 * we can't interrupt the sleep... the signal will
2483 		 * be noticed when the process returns through
2484 		 * trap() or syscall().
2485 		 */
2486 		if ((td->td_flags & TDF_SINTR) == 0)
2487 			goto out;
2488 		/*
2489 		 * If SIGCONT is default (or ignored) and process is
2490 		 * asleep, we are finished; the process should not
2491 		 * be awakened.
2492 		 */
2493 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2494 			thread_unlock(td);
2495 			PROC_SUNLOCK(p);
2496 			sigqueue_delete(&p->p_sigqueue, sig);
2497 			/*
2498 			 * It may be on either list in this state.
2499 			 * Remove from both for now.
2500 			 */
2501 			sigqueue_delete(&td->td_sigqueue, sig);
2502 			return;
2503 		}
2504 
2505 		/*
2506 		 * Don't awaken a sleeping thread for SIGSTOP if the
2507 		 * STOP signal is deferred.
2508 		 */
2509 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2510 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2511 			goto out;
2512 
2513 		/*
2514 		 * Give low priority threads a better chance to run.
2515 		 */
2516 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2517 			sched_prio(td, PUSER);
2518 
2519 		wakeup_swapper = sig_sleepq_abort(td, intrval);
2520 		PROC_SUNLOCK(p);
2521 		if (wakeup_swapper)
2522 			kick_proc0();
2523 		return;
2524 	}
2525 
2526 	/*
2527 	 * Other states do nothing with the signal immediately,
2528 	 * other than kicking ourselves if we are running.
2529 	 * It will either never be noticed, or noticed very soon.
2530 	 */
2531 #ifdef SMP
2532 	if (TD_IS_RUNNING(td) && td != curthread)
2533 		forward_signal(td);
2534 #endif
2535 
2536 out:
2537 	PROC_SUNLOCK(p);
2538 	thread_unlock(td);
2539 }
2540 
2541 static void
2542 ptrace_coredump(struct thread *td)
2543 {
2544 	struct proc *p;
2545 	struct thr_coredump_req *tcq;
2546 	void *rl_cookie;
2547 
2548 	MPASS(td == curthread);
2549 	p = td->td_proc;
2550 	PROC_LOCK_ASSERT(p, MA_OWNED);
2551 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2552 		return;
2553 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2554 
2555 	tcq = td->td_coredump;
2556 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2557 
2558 	if (p->p_sysent->sv_coredump == NULL) {
2559 		tcq->tc_error = ENOSYS;
2560 		goto wake;
2561 	}
2562 
2563 	PROC_UNLOCK(p);
2564 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2565 
2566 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2567 	    tcq->tc_limit, tcq->tc_flags);
2568 
2569 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2570 	PROC_LOCK(p);
2571 wake:
2572 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2573 	td->td_coredump = NULL;
2574 	wakeup(p);
2575 }
2576 
2577 static int
2578 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2579 {
2580 	struct thread *td2;
2581 	int wakeup_swapper;
2582 
2583 	PROC_LOCK_ASSERT(p, MA_OWNED);
2584 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2585 	MPASS(sending || td == curthread);
2586 
2587 	wakeup_swapper = 0;
2588 	FOREACH_THREAD_IN_PROC(p, td2) {
2589 		thread_lock(td2);
2590 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2591 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2592 		    (td2->td_flags & TDF_SINTR)) {
2593 			if (td2->td_flags & TDF_SBDRY) {
2594 				/*
2595 				 * Once a thread is asleep with
2596 				 * TDF_SBDRY and without TDF_SERESTART
2597 				 * or TDF_SEINTR set, it should never
2598 				 * become suspended due to this check.
2599 				 */
2600 				KASSERT(!TD_IS_SUSPENDED(td2),
2601 				    ("thread with deferred stops suspended"));
2602 				if (TD_SBDRY_INTR(td2)) {
2603 					wakeup_swapper |= sleepq_abort(td2,
2604 					    TD_SBDRY_ERRNO(td2));
2605 					continue;
2606 				}
2607 			} else if (!TD_IS_SUSPENDED(td2))
2608 				thread_suspend_one(td2);
2609 		} else if (!TD_IS_SUSPENDED(td2)) {
2610 			if (sending || td != td2)
2611 				td2->td_flags |= TDF_ASTPENDING;
2612 #ifdef SMP
2613 			if (TD_IS_RUNNING(td2) && td2 != td)
2614 				forward_signal(td2);
2615 #endif
2616 		}
2617 		thread_unlock(td2);
2618 	}
2619 	return (wakeup_swapper);
2620 }
2621 
2622 /*
2623  * Stop the process for an event deemed interesting to the debugger. If si is
2624  * non-NULL, this is a signal exchange; the new signal requested by the
2625  * debugger will be returned for handling. If si is NULL, this is some other
2626  * type of interesting event. The debugger may request a signal be delivered in
2627  * that case as well, however it will be deferred until it can be handled.
2628  */
2629 int
2630 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2631 {
2632 	struct proc *p = td->td_proc;
2633 	struct thread *td2;
2634 	ksiginfo_t ksi;
2635 
2636 	PROC_LOCK_ASSERT(p, MA_OWNED);
2637 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2638 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2639 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2640 
2641 	td->td_xsig = sig;
2642 
2643 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2644 		td->td_dbgflags |= TDB_XSIG;
2645 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2646 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2647 		PROC_SLOCK(p);
2648 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2649 			if (P_KILLED(p)) {
2650 				/*
2651 				 * Ensure that, if we've been PT_KILLed, the
2652 				 * exit status reflects that. Another thread
2653 				 * may also be in ptracestop(), having just
2654 				 * received the SIGKILL, but this thread was
2655 				 * unsuspended first.
2656 				 */
2657 				td->td_dbgflags &= ~TDB_XSIG;
2658 				td->td_xsig = SIGKILL;
2659 				p->p_ptevents = 0;
2660 				break;
2661 			}
2662 			if (p->p_flag & P_SINGLE_EXIT &&
2663 			    !(td->td_dbgflags & TDB_EXIT)) {
2664 				/*
2665 				 * Ignore ptrace stops except for thread exit
2666 				 * events when the process exits.
2667 				 */
2668 				td->td_dbgflags &= ~TDB_XSIG;
2669 				PROC_SUNLOCK(p);
2670 				return (0);
2671 			}
2672 
2673 			/*
2674 			 * Make wait(2) work.  Ensure that right after the
2675 			 * attach, the thread which was decided to become the
2676 			 * leader of attach gets reported to the waiter.
2677 			 * Otherwise, just avoid overwriting another thread's
2678 			 * assignment to p_xthread.  If another thread has
2679 			 * already set p_xthread, the current thread will get
2680 			 * a chance to report itself upon the next iteration.
2681 			 */
2682 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2683 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2684 			    p->p_xthread == NULL)) {
2685 				p->p_xsig = sig;
2686 				p->p_xthread = td;
2687 
2688 				/*
2689 				 * If we are on sleepqueue already,
2690 				 * let sleepqueue code decide if it
2691 				 * needs to go sleep after attach.
2692 				 */
2693 				if (td->td_wchan == NULL)
2694 					td->td_dbgflags &= ~TDB_FSTP;
2695 
2696 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2697 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2698 				sig_suspend_threads(td, p, 0);
2699 			}
2700 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2701 				td->td_dbgflags &= ~TDB_STOPATFORK;
2702 			}
2703 stopme:
2704 			td->td_dbgflags |= TDB_SSWITCH;
2705 			thread_suspend_switch(td, p);
2706 			td->td_dbgflags &= ~TDB_SSWITCH;
2707 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2708 				PROC_SUNLOCK(p);
2709 				ptrace_coredump(td);
2710 				PROC_SLOCK(p);
2711 				goto stopme;
2712 			}
2713 			if (p->p_xthread == td)
2714 				p->p_xthread = NULL;
2715 			if (!(p->p_flag & P_TRACED))
2716 				break;
2717 			if (td->td_dbgflags & TDB_SUSPEND) {
2718 				if (p->p_flag & P_SINGLE_EXIT)
2719 					break;
2720 				goto stopme;
2721 			}
2722 		}
2723 		PROC_SUNLOCK(p);
2724 	}
2725 
2726 	if (si != NULL && sig == td->td_xsig) {
2727 		/* Parent wants us to take the original signal unchanged. */
2728 		si->ksi_flags |= KSI_HEAD;
2729 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2730 			si->ksi_signo = 0;
2731 	} else if (td->td_xsig != 0) {
2732 		/*
2733 		 * If parent wants us to take a new signal, then it will leave
2734 		 * it in td->td_xsig; otherwise we just look for signals again.
2735 		 */
2736 		ksiginfo_init(&ksi);
2737 		ksi.ksi_signo = td->td_xsig;
2738 		ksi.ksi_flags |= KSI_PTRACE;
2739 		td2 = sigtd(p, td->td_xsig, false);
2740 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2741 		if (td != td2)
2742 			return (0);
2743 	}
2744 
2745 	return (td->td_xsig);
2746 }
2747 
2748 static void
2749 reschedule_signals(struct proc *p, sigset_t block, int flags)
2750 {
2751 	struct sigacts *ps;
2752 	struct thread *td;
2753 	int sig;
2754 	bool fastblk, pslocked;
2755 
2756 	PROC_LOCK_ASSERT(p, MA_OWNED);
2757 	ps = p->p_sigacts;
2758 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2759 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2760 	if (SIGISEMPTY(p->p_siglist))
2761 		return;
2762 	SIGSETAND(block, p->p_siglist);
2763 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2764 	while ((sig = sig_ffs(&block)) != 0) {
2765 		SIGDELSET(block, sig);
2766 		td = sigtd(p, sig, fastblk);
2767 
2768 		/*
2769 		 * If sigtd() selected us despite sigfastblock is
2770 		 * blocking, do not activate AST or wake us, to avoid
2771 		 * loop in AST handler.
2772 		 */
2773 		if (fastblk && td == curthread)
2774 			continue;
2775 
2776 		signotify(td);
2777 		if (!pslocked)
2778 			mtx_lock(&ps->ps_mtx);
2779 		if (p->p_flag & P_TRACED ||
2780 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2781 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2782 			tdsigwakeup(td, sig, SIG_CATCH,
2783 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2784 			    ERESTART));
2785 		}
2786 		if (!pslocked)
2787 			mtx_unlock(&ps->ps_mtx);
2788 	}
2789 }
2790 
2791 void
2792 tdsigcleanup(struct thread *td)
2793 {
2794 	struct proc *p;
2795 	sigset_t unblocked;
2796 
2797 	p = td->td_proc;
2798 	PROC_LOCK_ASSERT(p, MA_OWNED);
2799 
2800 	sigqueue_flush(&td->td_sigqueue);
2801 	if (p->p_numthreads == 1)
2802 		return;
2803 
2804 	/*
2805 	 * Since we cannot handle signals, notify signal post code
2806 	 * about this by filling the sigmask.
2807 	 *
2808 	 * Also, if needed, wake up thread(s) that do not block the
2809 	 * same signals as the exiting thread, since the thread might
2810 	 * have been selected for delivery and woken up.
2811 	 */
2812 	SIGFILLSET(unblocked);
2813 	SIGSETNAND(unblocked, td->td_sigmask);
2814 	SIGFILLSET(td->td_sigmask);
2815 	reschedule_signals(p, unblocked, 0);
2816 
2817 }
2818 
2819 static int
2820 sigdeferstop_curr_flags(int cflags)
2821 {
2822 
2823 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2824 	    (cflags & TDF_SBDRY) != 0);
2825 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2826 }
2827 
2828 /*
2829  * Defer the delivery of SIGSTOP for the current thread, according to
2830  * the requested mode.  Returns previous flags, which must be restored
2831  * by sigallowstop().
2832  *
2833  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2834  * cleared by the current thread, which allow the lock-less read-only
2835  * accesses below.
2836  */
2837 int
2838 sigdeferstop_impl(int mode)
2839 {
2840 	struct thread *td;
2841 	int cflags, nflags;
2842 
2843 	td = curthread;
2844 	cflags = sigdeferstop_curr_flags(td->td_flags);
2845 	switch (mode) {
2846 	case SIGDEFERSTOP_NOP:
2847 		nflags = cflags;
2848 		break;
2849 	case SIGDEFERSTOP_OFF:
2850 		nflags = 0;
2851 		break;
2852 	case SIGDEFERSTOP_SILENT:
2853 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2854 		break;
2855 	case SIGDEFERSTOP_EINTR:
2856 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2857 		break;
2858 	case SIGDEFERSTOP_ERESTART:
2859 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2860 		break;
2861 	default:
2862 		panic("sigdeferstop: invalid mode %x", mode);
2863 		break;
2864 	}
2865 	if (cflags == nflags)
2866 		return (SIGDEFERSTOP_VAL_NCHG);
2867 	thread_lock(td);
2868 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2869 	thread_unlock(td);
2870 	return (cflags);
2871 }
2872 
2873 /*
2874  * Restores the STOP handling mode, typically permitting the delivery
2875  * of SIGSTOP for the current thread.  This does not immediately
2876  * suspend if a stop was posted.  Instead, the thread will suspend
2877  * either via ast() or a subsequent interruptible sleep.
2878  */
2879 void
2880 sigallowstop_impl(int prev)
2881 {
2882 	struct thread *td;
2883 	int cflags;
2884 
2885 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2886 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2887 	    ("sigallowstop: incorrect previous mode %x", prev));
2888 	td = curthread;
2889 	cflags = sigdeferstop_curr_flags(td->td_flags);
2890 	if (cflags != prev) {
2891 		thread_lock(td);
2892 		td->td_flags = (td->td_flags & ~cflags) | prev;
2893 		thread_unlock(td);
2894 	}
2895 }
2896 
2897 /*
2898  * If the current process has received a signal (should be caught or cause
2899  * termination, should interrupt current syscall), return the signal number.
2900  * Stop signals with default action are processed immediately, then cleared;
2901  * they aren't returned.  This is checked after each entry to the system for
2902  * a syscall or trap (though this can usually be done without calling issignal
2903  * by checking the pending signal masks in cursig.) The normal call
2904  * sequence is
2905  *
2906  *	while (sig = cursig(curthread))
2907  *		postsig(sig);
2908  */
2909 static int
2910 issignal(struct thread *td)
2911 {
2912 	struct proc *p;
2913 	struct sigacts *ps;
2914 	struct sigqueue *queue;
2915 	sigset_t sigpending;
2916 	ksiginfo_t ksi;
2917 	int prop, sig;
2918 
2919 	p = td->td_proc;
2920 	ps = p->p_sigacts;
2921 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2922 	PROC_LOCK_ASSERT(p, MA_OWNED);
2923 	for (;;) {
2924 		sigpending = td->td_sigqueue.sq_signals;
2925 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2926 		SIGSETNAND(sigpending, td->td_sigmask);
2927 
2928 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2929 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2930 			SIG_STOPSIGMASK(sigpending);
2931 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2932 			return (0);
2933 
2934 		/*
2935 		 * Do fast sigblock if requested by usermode.  Since
2936 		 * we do know that there was a signal pending at this
2937 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
2938 		 * usermode to perform a dummy call to
2939 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
2940 		 * delivery of postponed pending signal.
2941 		 */
2942 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
2943 			if (td->td_sigblock_val != 0)
2944 				SIGSETNAND(sigpending, fastblock_mask);
2945 			if (SIGISEMPTY(sigpending)) {
2946 				td->td_pflags |= TDP_SIGFASTPENDING;
2947 				return (0);
2948 			}
2949 		}
2950 
2951 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2952 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2953 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2954 			/*
2955 			 * If debugger just attached, always consume
2956 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2957 			 * execute the debugger attach ritual in
2958 			 * order.
2959 			 */
2960 			sig = SIGSTOP;
2961 			td->td_dbgflags |= TDB_FSTP;
2962 		} else {
2963 			sig = sig_ffs(&sigpending);
2964 		}
2965 
2966 		/*
2967 		 * We should allow pending but ignored signals below
2968 		 * only if there is sigwait() active, or P_TRACED was
2969 		 * on when they were posted.
2970 		 */
2971 		if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2972 		    (p->p_flag & P_TRACED) == 0 &&
2973 		    (td->td_flags & TDF_SIGWAIT) == 0) {
2974 			sigqueue_delete(&td->td_sigqueue, sig);
2975 			sigqueue_delete(&p->p_sigqueue, sig);
2976 			continue;
2977 		}
2978 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2979 			/*
2980 			 * If traced, always stop.
2981 			 * Remove old signal from queue before the stop.
2982 			 * XXX shrug off debugger, it causes siginfo to
2983 			 * be thrown away.
2984 			 */
2985 			queue = &td->td_sigqueue;
2986 			ksiginfo_init(&ksi);
2987 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2988 				queue = &p->p_sigqueue;
2989 				sigqueue_get(queue, sig, &ksi);
2990 			}
2991 			td->td_si = ksi.ksi_info;
2992 
2993 			mtx_unlock(&ps->ps_mtx);
2994 			sig = ptracestop(td, sig, &ksi);
2995 			mtx_lock(&ps->ps_mtx);
2996 
2997 			td->td_si.si_signo = 0;
2998 
2999 			/*
3000 			 * Keep looking if the debugger discarded or
3001 			 * replaced the signal.
3002 			 */
3003 			if (sig == 0)
3004 				continue;
3005 
3006 			/*
3007 			 * If the signal became masked, re-queue it.
3008 			 */
3009 			if (SIGISMEMBER(td->td_sigmask, sig)) {
3010 				ksi.ksi_flags |= KSI_HEAD;
3011 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
3012 				continue;
3013 			}
3014 
3015 			/*
3016 			 * If the traced bit got turned off, requeue
3017 			 * the signal and go back up to the top to
3018 			 * rescan signals.  This ensures that p_sig*
3019 			 * and p_sigact are consistent.
3020 			 */
3021 			if ((p->p_flag & P_TRACED) == 0) {
3022 				ksi.ksi_flags |= KSI_HEAD;
3023 				sigqueue_add(queue, sig, &ksi);
3024 				continue;
3025 			}
3026 		}
3027 
3028 		prop = sigprop(sig);
3029 
3030 		/*
3031 		 * Decide whether the signal should be returned.
3032 		 * Return the signal's number, or fall through
3033 		 * to clear it from the pending mask.
3034 		 */
3035 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3036 		case (intptr_t)SIG_DFL:
3037 			/*
3038 			 * Don't take default actions on system processes.
3039 			 */
3040 			if (p->p_pid <= 1) {
3041 #ifdef DIAGNOSTIC
3042 				/*
3043 				 * Are you sure you want to ignore SIGSEGV
3044 				 * in init? XXX
3045 				 */
3046 				printf("Process (pid %lu) got signal %d\n",
3047 					(u_long)p->p_pid, sig);
3048 #endif
3049 				break;		/* == ignore */
3050 			}
3051 			/*
3052 			 * If there is a pending stop signal to process with
3053 			 * default action, stop here, then clear the signal.
3054 			 * Traced or exiting processes should ignore stops.
3055 			 * Additionally, a member of an orphaned process group
3056 			 * should ignore tty stops.
3057 			 */
3058 			if (prop & SIGPROP_STOP) {
3059 				mtx_unlock(&ps->ps_mtx);
3060 				if ((p->p_flag & (P_TRACED | P_WEXIT |
3061 				    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3062 				    pg_flags & PGRP_ORPHANED) != 0 &&
3063 				    (prop & SIGPROP_TTYSTOP) != 0)) {
3064 					mtx_lock(&ps->ps_mtx);
3065 					break;	/* == ignore */
3066 				}
3067 				if (TD_SBDRY_INTR(td)) {
3068 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
3069 					    ("lost TDF_SBDRY"));
3070 					mtx_lock(&ps->ps_mtx);
3071 					return (-1);
3072 				}
3073 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3074 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
3075 				sigqueue_delete(&td->td_sigqueue, sig);
3076 				sigqueue_delete(&p->p_sigqueue, sig);
3077 				p->p_flag |= P_STOPPED_SIG;
3078 				p->p_xsig = sig;
3079 				PROC_SLOCK(p);
3080 				sig_suspend_threads(td, p, 0);
3081 				thread_suspend_switch(td, p);
3082 				PROC_SUNLOCK(p);
3083 				mtx_lock(&ps->ps_mtx);
3084 				goto next;
3085 			} else if ((prop & SIGPROP_IGNORE) != 0 &&
3086 			    (td->td_flags & TDF_SIGWAIT) == 0) {
3087 				/*
3088 				 * Default action is to ignore; drop it if
3089 				 * not in kern_sigtimedwait().
3090 				 */
3091 				break;		/* == ignore */
3092 			} else
3093 				return (sig);
3094 			/*NOTREACHED*/
3095 
3096 		case (intptr_t)SIG_IGN:
3097 			if ((td->td_flags & TDF_SIGWAIT) == 0)
3098 				break;		/* == ignore */
3099 			else
3100 				return (sig);
3101 
3102 		default:
3103 			/*
3104 			 * This signal has an action, let
3105 			 * postsig() process it.
3106 			 */
3107 			return (sig);
3108 		}
3109 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3110 		sigqueue_delete(&p->p_sigqueue, sig);
3111 next:;
3112 	}
3113 	/* NOTREACHED */
3114 }
3115 
3116 void
3117 thread_stopped(struct proc *p)
3118 {
3119 	int n;
3120 
3121 	PROC_LOCK_ASSERT(p, MA_OWNED);
3122 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3123 	n = p->p_suspcount;
3124 	if (p == curproc)
3125 		n++;
3126 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3127 		PROC_SUNLOCK(p);
3128 		p->p_flag &= ~P_WAITED;
3129 		PROC_LOCK(p->p_pptr);
3130 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3131 			CLD_TRAPPED : CLD_STOPPED);
3132 		PROC_UNLOCK(p->p_pptr);
3133 		PROC_SLOCK(p);
3134 	}
3135 }
3136 
3137 /*
3138  * Take the action for the specified signal
3139  * from the current set of pending signals.
3140  */
3141 int
3142 postsig(int sig)
3143 {
3144 	struct thread *td;
3145 	struct proc *p;
3146 	struct sigacts *ps;
3147 	sig_t action;
3148 	ksiginfo_t ksi;
3149 	sigset_t returnmask;
3150 
3151 	KASSERT(sig != 0, ("postsig"));
3152 
3153 	td = curthread;
3154 	p = td->td_proc;
3155 	PROC_LOCK_ASSERT(p, MA_OWNED);
3156 	ps = p->p_sigacts;
3157 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3158 	ksiginfo_init(&ksi);
3159 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3160 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3161 		return (0);
3162 	ksi.ksi_signo = sig;
3163 	if (ksi.ksi_code == SI_TIMER)
3164 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3165 	action = ps->ps_sigact[_SIG_IDX(sig)];
3166 #ifdef KTRACE
3167 	if (KTRPOINT(td, KTR_PSIG))
3168 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3169 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3170 #endif
3171 
3172 	if (action == SIG_DFL) {
3173 		/*
3174 		 * Default action, where the default is to kill
3175 		 * the process.  (Other cases were ignored above.)
3176 		 */
3177 		mtx_unlock(&ps->ps_mtx);
3178 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3179 		sigexit(td, sig);
3180 		/* NOTREACHED */
3181 	} else {
3182 		/*
3183 		 * If we get here, the signal must be caught.
3184 		 */
3185 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3186 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3187 		    ("postsig action: blocked sig %d", sig));
3188 
3189 		/*
3190 		 * Set the new mask value and also defer further
3191 		 * occurrences of this signal.
3192 		 *
3193 		 * Special case: user has done a sigsuspend.  Here the
3194 		 * current mask is not of interest, but rather the
3195 		 * mask from before the sigsuspend is what we want
3196 		 * restored after the signal processing is completed.
3197 		 */
3198 		if (td->td_pflags & TDP_OLDMASK) {
3199 			returnmask = td->td_oldsigmask;
3200 			td->td_pflags &= ~TDP_OLDMASK;
3201 		} else
3202 			returnmask = td->td_sigmask;
3203 
3204 		if (p->p_sig == sig) {
3205 			p->p_sig = 0;
3206 		}
3207 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3208 		postsig_done(sig, td, ps);
3209 	}
3210 	return (1);
3211 }
3212 
3213 int
3214 sig_ast_checksusp(struct thread *td)
3215 {
3216 	struct proc *p;
3217 	int ret;
3218 
3219 	p = td->td_proc;
3220 	PROC_LOCK_ASSERT(p, MA_OWNED);
3221 
3222 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3223 		return (0);
3224 
3225 	ret = thread_suspend_check(1);
3226 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3227 	return (ret);
3228 }
3229 
3230 int
3231 sig_ast_needsigchk(struct thread *td)
3232 {
3233 	struct proc *p;
3234 	struct sigacts *ps;
3235 	int ret, sig;
3236 
3237 	p = td->td_proc;
3238 	PROC_LOCK_ASSERT(p, MA_OWNED);
3239 
3240 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3241 		return (0);
3242 
3243 	ps = p->p_sigacts;
3244 	mtx_lock(&ps->ps_mtx);
3245 	sig = cursig(td);
3246 	if (sig == -1) {
3247 		mtx_unlock(&ps->ps_mtx);
3248 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3249 		KASSERT(TD_SBDRY_INTR(td),
3250 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3251 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3252 		    (TDF_SEINTR | TDF_SERESTART),
3253 		    ("both TDF_SEINTR and TDF_SERESTART"));
3254 		ret = TD_SBDRY_ERRNO(td);
3255 	} else if (sig != 0) {
3256 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3257 		mtx_unlock(&ps->ps_mtx);
3258 	} else {
3259 		mtx_unlock(&ps->ps_mtx);
3260 		ret = 0;
3261 	}
3262 
3263 	/*
3264 	 * Do not go into sleep if this thread was the ptrace(2)
3265 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3266 	 * but we usually act on the signal by interrupting sleep, and
3267 	 * should do that here as well.
3268 	 */
3269 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3270 		if (ret == 0)
3271 			ret = EINTR;
3272 		td->td_dbgflags &= ~TDB_FSTP;
3273 	}
3274 
3275 	return (ret);
3276 }
3277 
3278 int
3279 sig_intr(void)
3280 {
3281 	struct thread *td;
3282 	struct proc *p;
3283 	int ret;
3284 
3285 	td = curthread;
3286 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3287 		return (0);
3288 
3289 	p = td->td_proc;
3290 
3291 	PROC_LOCK(p);
3292 	ret = sig_ast_checksusp(td);
3293 	if (ret == 0)
3294 		ret = sig_ast_needsigchk(td);
3295 	PROC_UNLOCK(p);
3296 	return (ret);
3297 }
3298 
3299 bool
3300 curproc_sigkilled(void)
3301 {
3302 	struct thread *td;
3303 	struct proc *p;
3304 	struct sigacts *ps;
3305 	bool res;
3306 
3307 	td = curthread;
3308 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3309 		return (false);
3310 
3311 	p = td->td_proc;
3312 	PROC_LOCK(p);
3313 	ps = p->p_sigacts;
3314 	mtx_lock(&ps->ps_mtx);
3315 	res = SIGISMEMBER(td->td_sigqueue.sq_signals, SIGKILL) ||
3316 	    SIGISMEMBER(p->p_sigqueue.sq_signals, SIGKILL);
3317 	mtx_unlock(&ps->ps_mtx);
3318 	PROC_UNLOCK(p);
3319 	return (res);
3320 }
3321 
3322 void
3323 proc_wkilled(struct proc *p)
3324 {
3325 
3326 	PROC_LOCK_ASSERT(p, MA_OWNED);
3327 	if ((p->p_flag & P_WKILLED) == 0) {
3328 		p->p_flag |= P_WKILLED;
3329 		/*
3330 		 * Notify swapper that there is a process to swap in.
3331 		 * The notification is racy, at worst it would take 10
3332 		 * seconds for the swapper process to notice.
3333 		 */
3334 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3335 			wakeup(&proc0);
3336 	}
3337 }
3338 
3339 /*
3340  * Kill the current process for stated reason.
3341  */
3342 void
3343 killproc(struct proc *p, const char *why)
3344 {
3345 
3346 	PROC_LOCK_ASSERT(p, MA_OWNED);
3347 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3348 	    p->p_comm);
3349 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3350 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3351 	    p->p_ucred->cr_uid, why);
3352 	proc_wkilled(p);
3353 	kern_psignal(p, SIGKILL);
3354 }
3355 
3356 /*
3357  * Force the current process to exit with the specified signal, dumping core
3358  * if appropriate.  We bypass the normal tests for masked and caught signals,
3359  * allowing unrecoverable failures to terminate the process without changing
3360  * signal state.  Mark the accounting record with the signal termination.
3361  * If dumping core, save the signal number for the debugger.  Calls exit and
3362  * does not return.
3363  */
3364 void
3365 sigexit(struct thread *td, int sig)
3366 {
3367 	struct proc *p = td->td_proc;
3368 
3369 	PROC_LOCK_ASSERT(p, MA_OWNED);
3370 	p->p_acflag |= AXSIG;
3371 	/*
3372 	 * We must be single-threading to generate a core dump.  This
3373 	 * ensures that the registers in the core file are up-to-date.
3374 	 * Also, the ELF dump handler assumes that the thread list doesn't
3375 	 * change out from under it.
3376 	 *
3377 	 * XXX If another thread attempts to single-thread before us
3378 	 *     (e.g. via fork()), we won't get a dump at all.
3379 	 */
3380 	if ((sigprop(sig) & SIGPROP_CORE) &&
3381 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3382 		p->p_sig = sig;
3383 		/*
3384 		 * Log signals which would cause core dumps
3385 		 * (Log as LOG_INFO to appease those who don't want
3386 		 * these messages.)
3387 		 * XXX : Todo, as well as euid, write out ruid too
3388 		 * Note that coredump() drops proc lock.
3389 		 */
3390 		if (coredump(td) == 0)
3391 			sig |= WCOREFLAG;
3392 		if (kern_logsigexit)
3393 			log(LOG_INFO,
3394 			    "pid %d (%s), jid %d, uid %d: exited on "
3395 			    "signal %d%s\n", p->p_pid, p->p_comm,
3396 			    p->p_ucred->cr_prison->pr_id,
3397 			    td->td_ucred->cr_uid,
3398 			    sig &~ WCOREFLAG,
3399 			    sig & WCOREFLAG ? " (core dumped)" : "");
3400 	} else
3401 		PROC_UNLOCK(p);
3402 	exit1(td, 0, sig);
3403 	/* NOTREACHED */
3404 }
3405 
3406 /*
3407  * Send queued SIGCHLD to parent when child process's state
3408  * is changed.
3409  */
3410 static void
3411 sigparent(struct proc *p, int reason, int status)
3412 {
3413 	PROC_LOCK_ASSERT(p, MA_OWNED);
3414 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3415 
3416 	if (p->p_ksi != NULL) {
3417 		p->p_ksi->ksi_signo  = SIGCHLD;
3418 		p->p_ksi->ksi_code   = reason;
3419 		p->p_ksi->ksi_status = status;
3420 		p->p_ksi->ksi_pid    = p->p_pid;
3421 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3422 		if (KSI_ONQ(p->p_ksi))
3423 			return;
3424 	}
3425 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3426 }
3427 
3428 static void
3429 childproc_jobstate(struct proc *p, int reason, int sig)
3430 {
3431 	struct sigacts *ps;
3432 
3433 	PROC_LOCK_ASSERT(p, MA_OWNED);
3434 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3435 
3436 	/*
3437 	 * Wake up parent sleeping in kern_wait(), also send
3438 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3439 	 * that parent will awake, because parent may masked
3440 	 * the signal.
3441 	 */
3442 	p->p_pptr->p_flag |= P_STATCHILD;
3443 	wakeup(p->p_pptr);
3444 
3445 	ps = p->p_pptr->p_sigacts;
3446 	mtx_lock(&ps->ps_mtx);
3447 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3448 		mtx_unlock(&ps->ps_mtx);
3449 		sigparent(p, reason, sig);
3450 	} else
3451 		mtx_unlock(&ps->ps_mtx);
3452 }
3453 
3454 void
3455 childproc_stopped(struct proc *p, int reason)
3456 {
3457 
3458 	childproc_jobstate(p, reason, p->p_xsig);
3459 }
3460 
3461 void
3462 childproc_continued(struct proc *p)
3463 {
3464 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3465 }
3466 
3467 void
3468 childproc_exited(struct proc *p)
3469 {
3470 	int reason, status;
3471 
3472 	if (WCOREDUMP(p->p_xsig)) {
3473 		reason = CLD_DUMPED;
3474 		status = WTERMSIG(p->p_xsig);
3475 	} else if (WIFSIGNALED(p->p_xsig)) {
3476 		reason = CLD_KILLED;
3477 		status = WTERMSIG(p->p_xsig);
3478 	} else {
3479 		reason = CLD_EXITED;
3480 		status = p->p_xexit;
3481 	}
3482 	/*
3483 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3484 	 * done in exit1().
3485 	 */
3486 	sigparent(p, reason, status);
3487 }
3488 
3489 #define	MAX_NUM_CORE_FILES 100000
3490 #ifndef NUM_CORE_FILES
3491 #define	NUM_CORE_FILES 5
3492 #endif
3493 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3494 static int num_cores = NUM_CORE_FILES;
3495 
3496 static int
3497 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3498 {
3499 	int error;
3500 	int new_val;
3501 
3502 	new_val = num_cores;
3503 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3504 	if (error != 0 || req->newptr == NULL)
3505 		return (error);
3506 	if (new_val > MAX_NUM_CORE_FILES)
3507 		new_val = MAX_NUM_CORE_FILES;
3508 	if (new_val < 0)
3509 		new_val = 0;
3510 	num_cores = new_val;
3511 	return (0);
3512 }
3513 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3514     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3515     sysctl_debug_num_cores_check, "I",
3516     "Maximum number of generated process corefiles while using index format");
3517 
3518 #define	GZIP_SUFFIX	".gz"
3519 #define	ZSTD_SUFFIX	".zst"
3520 
3521 int compress_user_cores = 0;
3522 
3523 static int
3524 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3525 {
3526 	int error, val;
3527 
3528 	val = compress_user_cores;
3529 	error = sysctl_handle_int(oidp, &val, 0, req);
3530 	if (error != 0 || req->newptr == NULL)
3531 		return (error);
3532 	if (val != 0 && !compressor_avail(val))
3533 		return (EINVAL);
3534 	compress_user_cores = val;
3535 	return (error);
3536 }
3537 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3538     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3539     sysctl_compress_user_cores, "I",
3540     "Enable compression of user corefiles ("
3541     __XSTRING(COMPRESS_GZIP) " = gzip, "
3542     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3543 
3544 int compress_user_cores_level = 6;
3545 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3546     &compress_user_cores_level, 0,
3547     "Corefile compression level");
3548 
3549 /*
3550  * Protect the access to corefilename[] by allproc_lock.
3551  */
3552 #define	corefilename_lock	allproc_lock
3553 
3554 static char corefilename[MAXPATHLEN] = {"%N.core"};
3555 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3556 
3557 static int
3558 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3559 {
3560 	int error;
3561 
3562 	sx_xlock(&corefilename_lock);
3563 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3564 	    req);
3565 	sx_xunlock(&corefilename_lock);
3566 
3567 	return (error);
3568 }
3569 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3570     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3571     "Process corefile name format string");
3572 
3573 static void
3574 vnode_close_locked(struct thread *td, struct vnode *vp)
3575 {
3576 
3577 	VOP_UNLOCK(vp);
3578 	vn_close(vp, FWRITE, td->td_ucred, td);
3579 }
3580 
3581 /*
3582  * If the core format has a %I in it, then we need to check
3583  * for existing corefiles before defining a name.
3584  * To do this we iterate over 0..ncores to find a
3585  * non-existing core file name to use. If all core files are
3586  * already used we choose the oldest one.
3587  */
3588 static int
3589 corefile_open_last(struct thread *td, char *name, int indexpos,
3590     int indexlen, int ncores, struct vnode **vpp)
3591 {
3592 	struct vnode *oldvp, *nextvp, *vp;
3593 	struct vattr vattr;
3594 	struct nameidata nd;
3595 	int error, i, flags, oflags, cmode;
3596 	char ch;
3597 	struct timespec lasttime;
3598 
3599 	nextvp = oldvp = NULL;
3600 	cmode = S_IRUSR | S_IWUSR;
3601 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3602 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3603 
3604 	for (i = 0; i < ncores; i++) {
3605 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3606 
3607 		ch = name[indexpos + indexlen];
3608 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3609 		    i);
3610 		name[indexpos + indexlen] = ch;
3611 
3612 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3613 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3614 		    NULL);
3615 		if (error != 0)
3616 			break;
3617 
3618 		vp = nd.ni_vp;
3619 		NDFREE(&nd, NDF_ONLY_PNBUF);
3620 		if ((flags & O_CREAT) == O_CREAT) {
3621 			nextvp = vp;
3622 			break;
3623 		}
3624 
3625 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3626 		if (error != 0) {
3627 			vnode_close_locked(td, vp);
3628 			break;
3629 		}
3630 
3631 		if (oldvp == NULL ||
3632 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3633 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3634 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3635 			if (oldvp != NULL)
3636 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3637 			oldvp = vp;
3638 			VOP_UNLOCK(oldvp);
3639 			lasttime = vattr.va_mtime;
3640 		} else {
3641 			vnode_close_locked(td, vp);
3642 		}
3643 	}
3644 
3645 	if (oldvp != NULL) {
3646 		if (nextvp == NULL) {
3647 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3648 				error = EFAULT;
3649 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3650 			} else {
3651 				nextvp = oldvp;
3652 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3653 				if (error != 0) {
3654 					vn_close(nextvp, FWRITE, td->td_ucred,
3655 					    td);
3656 					nextvp = NULL;
3657 				}
3658 			}
3659 		} else {
3660 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3661 		}
3662 	}
3663 	if (error != 0) {
3664 		if (nextvp != NULL)
3665 			vnode_close_locked(td, oldvp);
3666 	} else {
3667 		*vpp = nextvp;
3668 	}
3669 
3670 	return (error);
3671 }
3672 
3673 /*
3674  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3675  * Expand the name described in corefilename, using name, uid, and pid
3676  * and open/create core file.
3677  * corefilename is a printf-like string, with three format specifiers:
3678  *	%N	name of process ("name")
3679  *	%P	process id (pid)
3680  *	%U	user id (uid)
3681  * For example, "%N.core" is the default; they can be disabled completely
3682  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3683  * This is controlled by the sysctl variable kern.corefile (see above).
3684  */
3685 static int
3686 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3687     int compress, int signum, struct vnode **vpp, char **namep)
3688 {
3689 	struct sbuf sb;
3690 	struct nameidata nd;
3691 	const char *format;
3692 	char *hostname, *name;
3693 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3694 
3695 	hostname = NULL;
3696 	format = corefilename;
3697 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3698 	indexlen = 0;
3699 	indexpos = -1;
3700 	ncores = num_cores;
3701 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3702 	sx_slock(&corefilename_lock);
3703 	for (i = 0; format[i] != '\0'; i++) {
3704 		switch (format[i]) {
3705 		case '%':	/* Format character */
3706 			i++;
3707 			switch (format[i]) {
3708 			case '%':
3709 				sbuf_putc(&sb, '%');
3710 				break;
3711 			case 'H':	/* hostname */
3712 				if (hostname == NULL) {
3713 					hostname = malloc(MAXHOSTNAMELEN,
3714 					    M_TEMP, M_WAITOK);
3715 				}
3716 				getcredhostname(td->td_ucred, hostname,
3717 				    MAXHOSTNAMELEN);
3718 				sbuf_printf(&sb, "%s", hostname);
3719 				break;
3720 			case 'I':	/* autoincrementing index */
3721 				if (indexpos != -1) {
3722 					sbuf_printf(&sb, "%%I");
3723 					break;
3724 				}
3725 
3726 				indexpos = sbuf_len(&sb);
3727 				sbuf_printf(&sb, "%u", ncores - 1);
3728 				indexlen = sbuf_len(&sb) - indexpos;
3729 				break;
3730 			case 'N':	/* process name */
3731 				sbuf_printf(&sb, "%s", comm);
3732 				break;
3733 			case 'P':	/* process id */
3734 				sbuf_printf(&sb, "%u", pid);
3735 				break;
3736 			case 'S':	/* signal number */
3737 				sbuf_printf(&sb, "%i", signum);
3738 				break;
3739 			case 'U':	/* user id */
3740 				sbuf_printf(&sb, "%u", uid);
3741 				break;
3742 			default:
3743 				log(LOG_ERR,
3744 				    "Unknown format character %c in "
3745 				    "corename `%s'\n", format[i], format);
3746 				break;
3747 			}
3748 			break;
3749 		default:
3750 			sbuf_putc(&sb, format[i]);
3751 			break;
3752 		}
3753 	}
3754 	sx_sunlock(&corefilename_lock);
3755 	free(hostname, M_TEMP);
3756 	if (compress == COMPRESS_GZIP)
3757 		sbuf_printf(&sb, GZIP_SUFFIX);
3758 	else if (compress == COMPRESS_ZSTD)
3759 		sbuf_printf(&sb, ZSTD_SUFFIX);
3760 	if (sbuf_error(&sb) != 0) {
3761 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3762 		    "long\n", (long)pid, comm, (u_long)uid);
3763 		sbuf_delete(&sb);
3764 		free(name, M_TEMP);
3765 		return (ENOMEM);
3766 	}
3767 	sbuf_finish(&sb);
3768 	sbuf_delete(&sb);
3769 
3770 	if (indexpos != -1) {
3771 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3772 		    vpp);
3773 		if (error != 0) {
3774 			log(LOG_ERR,
3775 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3776 			    "on initial open test, error = %d\n",
3777 			    pid, comm, uid, name, error);
3778 		}
3779 	} else {
3780 		cmode = S_IRUSR | S_IWUSR;
3781 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3782 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3783 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3784 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3785 			flags |= O_EXCL;
3786 
3787 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3788 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3789 		    NULL);
3790 		if (error == 0) {
3791 			*vpp = nd.ni_vp;
3792 			NDFREE(&nd, NDF_ONLY_PNBUF);
3793 		}
3794 	}
3795 
3796 	if (error != 0) {
3797 #ifdef AUDIT
3798 		audit_proc_coredump(td, name, error);
3799 #endif
3800 		free(name, M_TEMP);
3801 		return (error);
3802 	}
3803 	*namep = name;
3804 	return (0);
3805 }
3806 
3807 /*
3808  * Dump a process' core.  The main routine does some
3809  * policy checking, and creates the name of the coredump;
3810  * then it passes on a vnode and a size limit to the process-specific
3811  * coredump routine if there is one; if there _is not_ one, it returns
3812  * ENOSYS; otherwise it returns the error from the process-specific routine.
3813  */
3814 
3815 static int
3816 coredump(struct thread *td)
3817 {
3818 	struct proc *p = td->td_proc;
3819 	struct ucred *cred = td->td_ucred;
3820 	struct vnode *vp;
3821 	struct flock lf;
3822 	struct vattr vattr;
3823 	size_t fullpathsize;
3824 	int error, error1, locked;
3825 	char *name;			/* name of corefile */
3826 	void *rl_cookie;
3827 	off_t limit;
3828 	char *fullpath, *freepath = NULL;
3829 	struct sbuf *sb;
3830 
3831 	PROC_LOCK_ASSERT(p, MA_OWNED);
3832 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3833 
3834 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3835 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3836 		PROC_UNLOCK(p);
3837 		return (EFAULT);
3838 	}
3839 
3840 	/*
3841 	 * Note that the bulk of limit checking is done after
3842 	 * the corefile is created.  The exception is if the limit
3843 	 * for corefiles is 0, in which case we don't bother
3844 	 * creating the corefile at all.  This layout means that
3845 	 * a corefile is truncated instead of not being created,
3846 	 * if it is larger than the limit.
3847 	 */
3848 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3849 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3850 		PROC_UNLOCK(p);
3851 		return (EFBIG);
3852 	}
3853 	PROC_UNLOCK(p);
3854 
3855 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3856 	    compress_user_cores, p->p_sig, &vp, &name);
3857 	if (error != 0)
3858 		return (error);
3859 
3860 	/*
3861 	 * Don't dump to non-regular files or files with links.
3862 	 * Do not dump into system files. Effective user must own the corefile.
3863 	 */
3864 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3865 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3866 	    vattr.va_uid != cred->cr_uid) {
3867 		VOP_UNLOCK(vp);
3868 		error = EFAULT;
3869 		goto out;
3870 	}
3871 
3872 	VOP_UNLOCK(vp);
3873 
3874 	/* Postpone other writers, including core dumps of other processes. */
3875 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3876 
3877 	lf.l_whence = SEEK_SET;
3878 	lf.l_start = 0;
3879 	lf.l_len = 0;
3880 	lf.l_type = F_WRLCK;
3881 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3882 
3883 	VATTR_NULL(&vattr);
3884 	vattr.va_size = 0;
3885 	if (set_core_nodump_flag)
3886 		vattr.va_flags = UF_NODUMP;
3887 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3888 	VOP_SETATTR(vp, &vattr, cred);
3889 	VOP_UNLOCK(vp);
3890 	PROC_LOCK(p);
3891 	p->p_acflag |= ACORE;
3892 	PROC_UNLOCK(p);
3893 
3894 	if (p->p_sysent->sv_coredump != NULL) {
3895 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3896 	} else {
3897 		error = ENOSYS;
3898 	}
3899 
3900 	if (locked) {
3901 		lf.l_type = F_UNLCK;
3902 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3903 	}
3904 	vn_rangelock_unlock(vp, rl_cookie);
3905 
3906 	/*
3907 	 * Notify the userland helper that a process triggered a core dump.
3908 	 * This allows the helper to run an automated debugging session.
3909 	 */
3910 	if (error != 0 || coredump_devctl == 0)
3911 		goto out;
3912 	sb = sbuf_new_auto();
3913 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3914 		goto out2;
3915 	sbuf_printf(sb, "comm=\"");
3916 	devctl_safe_quote_sb(sb, fullpath);
3917 	free(freepath, M_TEMP);
3918 	sbuf_printf(sb, "\" core=\"");
3919 
3920 	/*
3921 	 * We can't lookup core file vp directly. When we're replacing a core, and
3922 	 * other random times, we flush the name cache, so it will fail. Instead,
3923 	 * if the path of the core is relative, add the current dir in front if it.
3924 	 */
3925 	if (name[0] != '/') {
3926 		fullpathsize = MAXPATHLEN;
3927 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3928 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3929 			free(freepath, M_TEMP);
3930 			goto out2;
3931 		}
3932 		devctl_safe_quote_sb(sb, fullpath);
3933 		free(freepath, M_TEMP);
3934 		sbuf_putc(sb, '/');
3935 	}
3936 	devctl_safe_quote_sb(sb, name);
3937 	sbuf_printf(sb, "\"");
3938 	if (sbuf_finish(sb) == 0)
3939 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3940 out2:
3941 	sbuf_delete(sb);
3942 out:
3943 	error1 = vn_close(vp, FWRITE, cred, td);
3944 	if (error == 0)
3945 		error = error1;
3946 #ifdef AUDIT
3947 	audit_proc_coredump(td, name, error);
3948 #endif
3949 	free(name, M_TEMP);
3950 	return (error);
3951 }
3952 
3953 /*
3954  * Nonexistent system call-- signal process (may want to handle it).  Flag
3955  * error in case process won't see signal immediately (blocked or ignored).
3956  */
3957 #ifndef _SYS_SYSPROTO_H_
3958 struct nosys_args {
3959 	int	dummy;
3960 };
3961 #endif
3962 /* ARGSUSED */
3963 int
3964 nosys(struct thread *td, struct nosys_args *args)
3965 {
3966 	struct proc *p;
3967 
3968 	p = td->td_proc;
3969 
3970 	PROC_LOCK(p);
3971 	tdsignal(td, SIGSYS);
3972 	PROC_UNLOCK(p);
3973 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3974 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3975 		    td->td_sa.code);
3976 	}
3977 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
3978 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
3979 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3980 		    td->td_sa.code);
3981 	}
3982 	return (ENOSYS);
3983 }
3984 
3985 /*
3986  * Send a SIGIO or SIGURG signal to a process or process group using stored
3987  * credentials rather than those of the current process.
3988  */
3989 void
3990 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3991 {
3992 	ksiginfo_t ksi;
3993 	struct sigio *sigio;
3994 
3995 	ksiginfo_init(&ksi);
3996 	ksi.ksi_signo = sig;
3997 	ksi.ksi_code = SI_KERNEL;
3998 
3999 	SIGIO_LOCK();
4000 	sigio = *sigiop;
4001 	if (sigio == NULL) {
4002 		SIGIO_UNLOCK();
4003 		return;
4004 	}
4005 	if (sigio->sio_pgid > 0) {
4006 		PROC_LOCK(sigio->sio_proc);
4007 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
4008 			kern_psignal(sigio->sio_proc, sig);
4009 		PROC_UNLOCK(sigio->sio_proc);
4010 	} else if (sigio->sio_pgid < 0) {
4011 		struct proc *p;
4012 
4013 		PGRP_LOCK(sigio->sio_pgrp);
4014 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
4015 			PROC_LOCK(p);
4016 			if (p->p_state == PRS_NORMAL &&
4017 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
4018 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
4019 				kern_psignal(p, sig);
4020 			PROC_UNLOCK(p);
4021 		}
4022 		PGRP_UNLOCK(sigio->sio_pgrp);
4023 	}
4024 	SIGIO_UNLOCK();
4025 }
4026 
4027 static int
4028 filt_sigattach(struct knote *kn)
4029 {
4030 	struct proc *p = curproc;
4031 
4032 	kn->kn_ptr.p_proc = p;
4033 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4034 
4035 	knlist_add(p->p_klist, kn, 0);
4036 
4037 	return (0);
4038 }
4039 
4040 static void
4041 filt_sigdetach(struct knote *kn)
4042 {
4043 	struct proc *p = kn->kn_ptr.p_proc;
4044 
4045 	knlist_remove(p->p_klist, kn, 0);
4046 }
4047 
4048 /*
4049  * signal knotes are shared with proc knotes, so we apply a mask to
4050  * the hint in order to differentiate them from process hints.  This
4051  * could be avoided by using a signal-specific knote list, but probably
4052  * isn't worth the trouble.
4053  */
4054 static int
4055 filt_signal(struct knote *kn, long hint)
4056 {
4057 
4058 	if (hint & NOTE_SIGNAL) {
4059 		hint &= ~NOTE_SIGNAL;
4060 
4061 		if (kn->kn_id == hint)
4062 			kn->kn_data++;
4063 	}
4064 	return (kn->kn_data != 0);
4065 }
4066 
4067 struct sigacts *
4068 sigacts_alloc(void)
4069 {
4070 	struct sigacts *ps;
4071 
4072 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4073 	refcount_init(&ps->ps_refcnt, 1);
4074 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4075 	return (ps);
4076 }
4077 
4078 void
4079 sigacts_free(struct sigacts *ps)
4080 {
4081 
4082 	if (refcount_release(&ps->ps_refcnt) == 0)
4083 		return;
4084 	mtx_destroy(&ps->ps_mtx);
4085 	free(ps, M_SUBPROC);
4086 }
4087 
4088 struct sigacts *
4089 sigacts_hold(struct sigacts *ps)
4090 {
4091 
4092 	refcount_acquire(&ps->ps_refcnt);
4093 	return (ps);
4094 }
4095 
4096 void
4097 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4098 {
4099 
4100 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4101 	mtx_lock(&src->ps_mtx);
4102 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4103 	mtx_unlock(&src->ps_mtx);
4104 }
4105 
4106 int
4107 sigacts_shared(struct sigacts *ps)
4108 {
4109 
4110 	return (ps->ps_refcnt > 1);
4111 }
4112 
4113 void
4114 sig_drop_caught(struct proc *p)
4115 {
4116 	int sig;
4117 	struct sigacts *ps;
4118 
4119 	ps = p->p_sigacts;
4120 	PROC_LOCK_ASSERT(p, MA_OWNED);
4121 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4122 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
4123 		sig = sig_ffs(&ps->ps_sigcatch);
4124 		sigdflt(ps, sig);
4125 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4126 			sigqueue_delete_proc(p, sig);
4127 	}
4128 }
4129 
4130 static void
4131 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4132 {
4133 	ksiginfo_t ksi;
4134 
4135 	/*
4136 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4137 	 * issue syscalls despite corruption.
4138 	 */
4139 	sigfastblock_clear(td);
4140 
4141 	if (!sendsig)
4142 		return;
4143 	ksiginfo_init_trap(&ksi);
4144 	ksi.ksi_signo = SIGSEGV;
4145 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4146 	ksi.ksi_addr = td->td_sigblock_ptr;
4147 	trapsignal(td, &ksi);
4148 }
4149 
4150 static bool
4151 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4152 {
4153 	uint32_t res;
4154 
4155 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4156 		return (true);
4157 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4158 		sigfastblock_failed(td, sendsig, false);
4159 		return (false);
4160 	}
4161 	*valp = res;
4162 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4163 	return (true);
4164 }
4165 
4166 static void
4167 sigfastblock_resched(struct thread *td, bool resched)
4168 {
4169 	struct proc *p;
4170 
4171 	if (resched) {
4172 		p = td->td_proc;
4173 		PROC_LOCK(p);
4174 		reschedule_signals(p, td->td_sigmask, 0);
4175 		PROC_UNLOCK(p);
4176 	}
4177 	thread_lock(td);
4178 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4179 	thread_unlock(td);
4180 }
4181 
4182 int
4183 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4184 {
4185 	struct proc *p;
4186 	int error, res;
4187 	uint32_t oldval;
4188 
4189 	error = 0;
4190 	p = td->td_proc;
4191 	switch (uap->cmd) {
4192 	case SIGFASTBLOCK_SETPTR:
4193 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4194 			error = EBUSY;
4195 			break;
4196 		}
4197 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4198 			error = EINVAL;
4199 			break;
4200 		}
4201 		td->td_pflags |= TDP_SIGFASTBLOCK;
4202 		td->td_sigblock_ptr = uap->ptr;
4203 		break;
4204 
4205 	case SIGFASTBLOCK_UNBLOCK:
4206 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4207 			error = EINVAL;
4208 			break;
4209 		}
4210 
4211 		for (;;) {
4212 			res = casueword32(td->td_sigblock_ptr,
4213 			    SIGFASTBLOCK_PEND, &oldval, 0);
4214 			if (res == -1) {
4215 				error = EFAULT;
4216 				sigfastblock_failed(td, false, true);
4217 				break;
4218 			}
4219 			if (res == 0)
4220 				break;
4221 			MPASS(res == 1);
4222 			if (oldval != SIGFASTBLOCK_PEND) {
4223 				error = EBUSY;
4224 				break;
4225 			}
4226 			error = thread_check_susp(td, false);
4227 			if (error != 0)
4228 				break;
4229 		}
4230 		if (error != 0)
4231 			break;
4232 
4233 		/*
4234 		 * td_sigblock_val is cleared there, but not on a
4235 		 * syscall exit.  The end effect is that a single
4236 		 * interruptible sleep, while user sigblock word is
4237 		 * set, might return EINTR or ERESTART to usermode
4238 		 * without delivering signal.  All further sleeps,
4239 		 * until userspace clears the word and does
4240 		 * sigfastblock(UNBLOCK), observe current word and no
4241 		 * longer get interrupted.  It is slight
4242 		 * non-conformance, with alternative to have read the
4243 		 * sigblock word on each syscall entry.
4244 		 */
4245 		td->td_sigblock_val = 0;
4246 
4247 		/*
4248 		 * Rely on normal ast mechanism to deliver pending
4249 		 * signals to current thread.  But notify others about
4250 		 * fake unblock.
4251 		 */
4252 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4253 
4254 		break;
4255 
4256 	case SIGFASTBLOCK_UNSETPTR:
4257 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4258 			error = EINVAL;
4259 			break;
4260 		}
4261 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4262 			error = EFAULT;
4263 			break;
4264 		}
4265 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4266 			error = EBUSY;
4267 			break;
4268 		}
4269 		sigfastblock_clear(td);
4270 		break;
4271 
4272 	default:
4273 		error = EINVAL;
4274 		break;
4275 	}
4276 	return (error);
4277 }
4278 
4279 void
4280 sigfastblock_clear(struct thread *td)
4281 {
4282 	bool resched;
4283 
4284 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4285 		return;
4286 	td->td_sigblock_val = 0;
4287 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4288 	    SIGPENDING(td);
4289 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4290 	sigfastblock_resched(td, resched);
4291 }
4292 
4293 void
4294 sigfastblock_fetch(struct thread *td)
4295 {
4296 	uint32_t val;
4297 
4298 	(void)sigfastblock_fetch_sig(td, true, &val);
4299 }
4300 
4301 static void
4302 sigfastblock_setpend1(struct thread *td)
4303 {
4304 	int res;
4305 	uint32_t oldval;
4306 
4307 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4308 		return;
4309 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4310 	if (res == -1) {
4311 		sigfastblock_failed(td, true, false);
4312 		return;
4313 	}
4314 	for (;;) {
4315 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4316 		    oldval | SIGFASTBLOCK_PEND);
4317 		if (res == -1) {
4318 			sigfastblock_failed(td, true, true);
4319 			return;
4320 		}
4321 		if (res == 0) {
4322 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4323 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4324 			break;
4325 		}
4326 		MPASS(res == 1);
4327 		if (thread_check_susp(td, false) != 0)
4328 			break;
4329 	}
4330 }
4331 
4332 void
4333 sigfastblock_setpend(struct thread *td, bool resched)
4334 {
4335 	struct proc *p;
4336 
4337 	sigfastblock_setpend1(td);
4338 	if (resched) {
4339 		p = td->td_proc;
4340 		PROC_LOCK(p);
4341 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4342 		PROC_UNLOCK(p);
4343 	}
4344 }
4345