xref: /freebsd/sys/kern/kern_sig.c (revision b1d046441de9053152c7cf03d6b60d9882687e1b)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 #include "opt_procdesc.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/capability.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/procdesc.h>
65 #include <sys/posix4.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/sdt.h>
70 #include <sys/sbuf.h>
71 #include <sys/sleepqueue.h>
72 #include <sys/smp.h>
73 #include <sys/stat.h>
74 #include <sys/sx.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/sysctl.h>
77 #include <sys/sysent.h>
78 #include <sys/syslog.h>
79 #include <sys/sysproto.h>
80 #include <sys/timers.h>
81 #include <sys/unistd.h>
82 #include <sys/wait.h>
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #include <sys/jail.h>
88 
89 #include <machine/cpu.h>
90 
91 #include <security/audit/audit.h>
92 
93 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
94 
95 SDT_PROVIDER_DECLARE(proc);
96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
107 
108 static int	coredump(struct thread *);
109 static char	*expand_name(const char *, uid_t, pid_t, struct thread *, int);
110 static int	killpg1(struct thread *td, int sig, int pgid, int all,
111 		    ksiginfo_t *ksi);
112 static int	issignal(struct thread *td, int stop_allowed);
113 static int	sigprop(int sig);
114 static void	tdsigwakeup(struct thread *, int, sig_t, int);
115 static void	sig_suspend_threads(struct thread *, struct proc *, int);
116 static int	filt_sigattach(struct knote *kn);
117 static void	filt_sigdetach(struct knote *kn);
118 static int	filt_signal(struct knote *kn, long hint);
119 static struct thread *sigtd(struct proc *p, int sig, int prop);
120 static void	sigqueue_start(void);
121 
122 static uma_zone_t	ksiginfo_zone = NULL;
123 struct filterops sig_filtops = {
124 	.f_isfd = 0,
125 	.f_attach = filt_sigattach,
126 	.f_detach = filt_sigdetach,
127 	.f_event = filt_signal,
128 };
129 
130 static int	kern_logsigexit = 1;
131 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
132     &kern_logsigexit, 0,
133     "Log processes quitting on abnormal signals to syslog(3)");
134 
135 static int	kern_forcesigexit = 1;
136 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
137     &kern_forcesigexit, 0, "Force trap signal to be handled");
138 
139 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
140     "POSIX real time signal");
141 
142 static int	max_pending_per_proc = 128;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
144     &max_pending_per_proc, 0, "Max pending signals per proc");
145 
146 static int	preallocate_siginfo = 1024;
147 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
149     &preallocate_siginfo, 0, "Preallocated signal memory size");
150 
151 static int	signal_overflow = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
153     &signal_overflow, 0, "Number of signals overflew");
154 
155 static int	signal_alloc_fail = 0;
156 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
157     &signal_alloc_fail, 0, "signals failed to be allocated");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	do_coredump = 1;
178 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
179 	&do_coredump, 0, "Enable/Disable coredumps");
180 
181 static int	set_core_nodump_flag = 0;
182 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
183 	0, "Enable setting the NODUMP flag on coredump files");
184 
185 /*
186  * Signal properties and actions.
187  * The array below categorizes the signals and their default actions
188  * according to the following properties:
189  */
190 #define	SA_KILL		0x01		/* terminates process by default */
191 #define	SA_CORE		0x02		/* ditto and coredumps */
192 #define	SA_STOP		0x04		/* suspend process */
193 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
194 #define	SA_IGNORE	0x10		/* ignore by default */
195 #define	SA_CONT		0x20		/* continue if suspended */
196 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
197 #define	SA_PROC		0x80		/* deliverable to any thread */
198 
199 static int sigproptbl[NSIG] = {
200         SA_KILL|SA_PROC,		/* SIGHUP */
201         SA_KILL|SA_PROC,		/* SIGINT */
202         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
203         SA_KILL|SA_CORE,		/* SIGILL */
204         SA_KILL|SA_CORE,		/* SIGTRAP */
205         SA_KILL|SA_CORE,		/* SIGABRT */
206         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
207         SA_KILL|SA_CORE,		/* SIGFPE */
208         SA_KILL|SA_PROC,		/* SIGKILL */
209         SA_KILL|SA_CORE,		/* SIGBUS */
210         SA_KILL|SA_CORE,		/* SIGSEGV */
211         SA_KILL|SA_CORE,		/* SIGSYS */
212         SA_KILL|SA_PROC,		/* SIGPIPE */
213         SA_KILL|SA_PROC,		/* SIGALRM */
214         SA_KILL|SA_PROC,		/* SIGTERM */
215         SA_IGNORE|SA_PROC,		/* SIGURG */
216         SA_STOP|SA_PROC,		/* SIGSTOP */
217         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
218         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
219         SA_IGNORE|SA_PROC,		/* SIGCHLD */
220         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
221         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
222         SA_IGNORE|SA_PROC,		/* SIGIO */
223         SA_KILL,			/* SIGXCPU */
224         SA_KILL,			/* SIGXFSZ */
225         SA_KILL|SA_PROC,		/* SIGVTALRM */
226         SA_KILL|SA_PROC,		/* SIGPROF */
227         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
228         SA_IGNORE|SA_PROC,		/* SIGINFO */
229         SA_KILL|SA_PROC,		/* SIGUSR1 */
230         SA_KILL|SA_PROC,		/* SIGUSR2 */
231 };
232 
233 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
234 
235 static void
236 sigqueue_start(void)
237 {
238 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
239 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
240 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
241 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
242 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
243 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
244 }
245 
246 ksiginfo_t *
247 ksiginfo_alloc(int wait)
248 {
249 	int flags;
250 
251 	flags = M_ZERO;
252 	if (! wait)
253 		flags |= M_NOWAIT;
254 	if (ksiginfo_zone != NULL)
255 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
256 	return (NULL);
257 }
258 
259 void
260 ksiginfo_free(ksiginfo_t *ksi)
261 {
262 	uma_zfree(ksiginfo_zone, ksi);
263 }
264 
265 static __inline int
266 ksiginfo_tryfree(ksiginfo_t *ksi)
267 {
268 	if (!(ksi->ksi_flags & KSI_EXT)) {
269 		uma_zfree(ksiginfo_zone, ksi);
270 		return (1);
271 	}
272 	return (0);
273 }
274 
275 void
276 sigqueue_init(sigqueue_t *list, struct proc *p)
277 {
278 	SIGEMPTYSET(list->sq_signals);
279 	SIGEMPTYSET(list->sq_kill);
280 	TAILQ_INIT(&list->sq_list);
281 	list->sq_proc = p;
282 	list->sq_flags = SQ_INIT;
283 }
284 
285 /*
286  * Get a signal's ksiginfo.
287  * Return:
288  * 	0	-	signal not found
289  *	others	-	signal number
290  */
291 static int
292 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
293 {
294 	struct proc *p = sq->sq_proc;
295 	struct ksiginfo *ksi, *next;
296 	int count = 0;
297 
298 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
299 
300 	if (!SIGISMEMBER(sq->sq_signals, signo))
301 		return (0);
302 
303 	if (SIGISMEMBER(sq->sq_kill, signo)) {
304 		count++;
305 		SIGDELSET(sq->sq_kill, signo);
306 	}
307 
308 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
309 		if (ksi->ksi_signo == signo) {
310 			if (count == 0) {
311 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
312 				ksi->ksi_sigq = NULL;
313 				ksiginfo_copy(ksi, si);
314 				if (ksiginfo_tryfree(ksi) && p != NULL)
315 					p->p_pendingcnt--;
316 			}
317 			if (++count > 1)
318 				break;
319 		}
320 	}
321 
322 	if (count <= 1)
323 		SIGDELSET(sq->sq_signals, signo);
324 	si->ksi_signo = signo;
325 	return (signo);
326 }
327 
328 void
329 sigqueue_take(ksiginfo_t *ksi)
330 {
331 	struct ksiginfo *kp;
332 	struct proc	*p;
333 	sigqueue_t	*sq;
334 
335 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
336 		return;
337 
338 	p = sq->sq_proc;
339 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
340 	ksi->ksi_sigq = NULL;
341 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
342 		p->p_pendingcnt--;
343 
344 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
345 	     kp = TAILQ_NEXT(kp, ksi_link)) {
346 		if (kp->ksi_signo == ksi->ksi_signo)
347 			break;
348 	}
349 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
350 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
351 }
352 
353 static int
354 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
355 {
356 	struct proc *p = sq->sq_proc;
357 	struct ksiginfo *ksi;
358 	int ret = 0;
359 
360 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
361 
362 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
363 		SIGADDSET(sq->sq_kill, signo);
364 		goto out_set_bit;
365 	}
366 
367 	/* directly insert the ksi, don't copy it */
368 	if (si->ksi_flags & KSI_INS) {
369 		if (si->ksi_flags & KSI_HEAD)
370 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
371 		else
372 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
373 		si->ksi_sigq = sq;
374 		goto out_set_bit;
375 	}
376 
377 	if (__predict_false(ksiginfo_zone == NULL)) {
378 		SIGADDSET(sq->sq_kill, signo);
379 		goto out_set_bit;
380 	}
381 
382 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
383 		signal_overflow++;
384 		ret = EAGAIN;
385 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
386 		signal_alloc_fail++;
387 		ret = EAGAIN;
388 	} else {
389 		if (p != NULL)
390 			p->p_pendingcnt++;
391 		ksiginfo_copy(si, ksi);
392 		ksi->ksi_signo = signo;
393 		if (si->ksi_flags & KSI_HEAD)
394 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
395 		else
396 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
397 		ksi->ksi_sigq = sq;
398 	}
399 
400 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
401 	    (si->ksi_flags & KSI_SIGQ) == 0) {
402 		if (ret != 0)
403 			SIGADDSET(sq->sq_kill, signo);
404 		ret = 0;
405 		goto out_set_bit;
406 	}
407 
408 	if (ret != 0)
409 		return (ret);
410 
411 out_set_bit:
412 	SIGADDSET(sq->sq_signals, signo);
413 	return (ret);
414 }
415 
416 void
417 sigqueue_flush(sigqueue_t *sq)
418 {
419 	struct proc *p = sq->sq_proc;
420 	ksiginfo_t *ksi;
421 
422 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
423 
424 	if (p != NULL)
425 		PROC_LOCK_ASSERT(p, MA_OWNED);
426 
427 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
428 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
429 		ksi->ksi_sigq = NULL;
430 		if (ksiginfo_tryfree(ksi) && p != NULL)
431 			p->p_pendingcnt--;
432 	}
433 
434 	SIGEMPTYSET(sq->sq_signals);
435 	SIGEMPTYSET(sq->sq_kill);
436 }
437 
438 static void
439 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
440 {
441 	sigset_t tmp;
442 	struct proc *p1, *p2;
443 	ksiginfo_t *ksi, *next;
444 
445 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
446 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
447 	p1 = src->sq_proc;
448 	p2 = dst->sq_proc;
449 	/* Move siginfo to target list */
450 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
451 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
452 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
453 			if (p1 != NULL)
454 				p1->p_pendingcnt--;
455 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
456 			ksi->ksi_sigq = dst;
457 			if (p2 != NULL)
458 				p2->p_pendingcnt++;
459 		}
460 	}
461 
462 	/* Move pending bits to target list */
463 	tmp = src->sq_kill;
464 	SIGSETAND(tmp, *set);
465 	SIGSETOR(dst->sq_kill, tmp);
466 	SIGSETNAND(src->sq_kill, tmp);
467 
468 	tmp = src->sq_signals;
469 	SIGSETAND(tmp, *set);
470 	SIGSETOR(dst->sq_signals, tmp);
471 	SIGSETNAND(src->sq_signals, tmp);
472 }
473 
474 #if 0
475 static void
476 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
477 {
478 	sigset_t set;
479 
480 	SIGEMPTYSET(set);
481 	SIGADDSET(set, signo);
482 	sigqueue_move_set(src, dst, &set);
483 }
484 #endif
485 
486 static void
487 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
488 {
489 	struct proc *p = sq->sq_proc;
490 	ksiginfo_t *ksi, *next;
491 
492 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
493 
494 	/* Remove siginfo queue */
495 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
496 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
497 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
498 			ksi->ksi_sigq = NULL;
499 			if (ksiginfo_tryfree(ksi) && p != NULL)
500 				p->p_pendingcnt--;
501 		}
502 	}
503 	SIGSETNAND(sq->sq_kill, *set);
504 	SIGSETNAND(sq->sq_signals, *set);
505 }
506 
507 void
508 sigqueue_delete(sigqueue_t *sq, int signo)
509 {
510 	sigset_t set;
511 
512 	SIGEMPTYSET(set);
513 	SIGADDSET(set, signo);
514 	sigqueue_delete_set(sq, &set);
515 }
516 
517 /* Remove a set of signals for a process */
518 static void
519 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
520 {
521 	sigqueue_t worklist;
522 	struct thread *td0;
523 
524 	PROC_LOCK_ASSERT(p, MA_OWNED);
525 
526 	sigqueue_init(&worklist, NULL);
527 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
528 
529 	FOREACH_THREAD_IN_PROC(p, td0)
530 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
531 
532 	sigqueue_flush(&worklist);
533 }
534 
535 void
536 sigqueue_delete_proc(struct proc *p, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set_proc(p, &set);
543 }
544 
545 static void
546 sigqueue_delete_stopmask_proc(struct proc *p)
547 {
548 	sigset_t set;
549 
550 	SIGEMPTYSET(set);
551 	SIGADDSET(set, SIGSTOP);
552 	SIGADDSET(set, SIGTSTP);
553 	SIGADDSET(set, SIGTTIN);
554 	SIGADDSET(set, SIGTTOU);
555 	sigqueue_delete_set_proc(p, &set);
556 }
557 
558 /*
559  * Determine signal that should be delivered to process p, the current
560  * process, 0 if none.  If there is a pending stop signal with default
561  * action, the process stops in issignal().
562  */
563 int
564 cursig(struct thread *td, int stop_allowed)
565 {
566 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
567 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
568 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
569 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
570 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
571 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
572 }
573 
574 /*
575  * Arrange for ast() to handle unmasked pending signals on return to user
576  * mode.  This must be called whenever a signal is added to td_sigqueue or
577  * unmasked in td_sigmask.
578  */
579 void
580 signotify(struct thread *td)
581 {
582 	struct proc *p;
583 
584 	p = td->td_proc;
585 
586 	PROC_LOCK_ASSERT(p, MA_OWNED);
587 
588 	if (SIGPENDING(td)) {
589 		thread_lock(td);
590 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
591 		thread_unlock(td);
592 	}
593 }
594 
595 int
596 sigonstack(size_t sp)
597 {
598 	struct thread *td = curthread;
599 
600 	return ((td->td_pflags & TDP_ALTSTACK) ?
601 #if defined(COMPAT_43)
602 	    ((td->td_sigstk.ss_size == 0) ?
603 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
604 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
605 #else
606 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
607 #endif
608 	    : 0);
609 }
610 
611 static __inline int
612 sigprop(int sig)
613 {
614 
615 	if (sig > 0 && sig < NSIG)
616 		return (sigproptbl[_SIG_IDX(sig)]);
617 	return (0);
618 }
619 
620 int
621 sig_ffs(sigset_t *set)
622 {
623 	int i;
624 
625 	for (i = 0; i < _SIG_WORDS; i++)
626 		if (set->__bits[i])
627 			return (ffs(set->__bits[i]) + (i * 32));
628 	return (0);
629 }
630 
631 /*
632  * kern_sigaction
633  * sigaction
634  * freebsd4_sigaction
635  * osigaction
636  */
637 int
638 kern_sigaction(td, sig, act, oact, flags)
639 	struct thread *td;
640 	register int sig;
641 	struct sigaction *act, *oact;
642 	int flags;
643 {
644 	struct sigacts *ps;
645 	struct proc *p = td->td_proc;
646 
647 	if (!_SIG_VALID(sig))
648 		return (EINVAL);
649 
650 	PROC_LOCK(p);
651 	ps = p->p_sigacts;
652 	mtx_lock(&ps->ps_mtx);
653 	if (oact) {
654 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
655 		oact->sa_flags = 0;
656 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
657 			oact->sa_flags |= SA_ONSTACK;
658 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
659 			oact->sa_flags |= SA_RESTART;
660 		if (SIGISMEMBER(ps->ps_sigreset, sig))
661 			oact->sa_flags |= SA_RESETHAND;
662 		if (SIGISMEMBER(ps->ps_signodefer, sig))
663 			oact->sa_flags |= SA_NODEFER;
664 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
665 			oact->sa_flags |= SA_SIGINFO;
666 			oact->sa_sigaction =
667 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
668 		} else
669 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
670 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
671 			oact->sa_flags |= SA_NOCLDSTOP;
672 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
673 			oact->sa_flags |= SA_NOCLDWAIT;
674 	}
675 	if (act) {
676 		if ((sig == SIGKILL || sig == SIGSTOP) &&
677 		    act->sa_handler != SIG_DFL) {
678 			mtx_unlock(&ps->ps_mtx);
679 			PROC_UNLOCK(p);
680 			return (EINVAL);
681 		}
682 
683 		/*
684 		 * Change setting atomically.
685 		 */
686 
687 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
688 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
689 		if (act->sa_flags & SA_SIGINFO) {
690 			ps->ps_sigact[_SIG_IDX(sig)] =
691 			    (__sighandler_t *)act->sa_sigaction;
692 			SIGADDSET(ps->ps_siginfo, sig);
693 		} else {
694 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
695 			SIGDELSET(ps->ps_siginfo, sig);
696 		}
697 		if (!(act->sa_flags & SA_RESTART))
698 			SIGADDSET(ps->ps_sigintr, sig);
699 		else
700 			SIGDELSET(ps->ps_sigintr, sig);
701 		if (act->sa_flags & SA_ONSTACK)
702 			SIGADDSET(ps->ps_sigonstack, sig);
703 		else
704 			SIGDELSET(ps->ps_sigonstack, sig);
705 		if (act->sa_flags & SA_RESETHAND)
706 			SIGADDSET(ps->ps_sigreset, sig);
707 		else
708 			SIGDELSET(ps->ps_sigreset, sig);
709 		if (act->sa_flags & SA_NODEFER)
710 			SIGADDSET(ps->ps_signodefer, sig);
711 		else
712 			SIGDELSET(ps->ps_signodefer, sig);
713 		if (sig == SIGCHLD) {
714 			if (act->sa_flags & SA_NOCLDSTOP)
715 				ps->ps_flag |= PS_NOCLDSTOP;
716 			else
717 				ps->ps_flag &= ~PS_NOCLDSTOP;
718 			if (act->sa_flags & SA_NOCLDWAIT) {
719 				/*
720 				 * Paranoia: since SA_NOCLDWAIT is implemented
721 				 * by reparenting the dying child to PID 1 (and
722 				 * trust it to reap the zombie), PID 1 itself
723 				 * is forbidden to set SA_NOCLDWAIT.
724 				 */
725 				if (p->p_pid == 1)
726 					ps->ps_flag &= ~PS_NOCLDWAIT;
727 				else
728 					ps->ps_flag |= PS_NOCLDWAIT;
729 			} else
730 				ps->ps_flag &= ~PS_NOCLDWAIT;
731 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
732 				ps->ps_flag |= PS_CLDSIGIGN;
733 			else
734 				ps->ps_flag &= ~PS_CLDSIGIGN;
735 		}
736 		/*
737 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
738 		 * and for signals set to SIG_DFL where the default is to
739 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
740 		 * have to restart the process.
741 		 */
742 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
743 		    (sigprop(sig) & SA_IGNORE &&
744 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
745 			/* never to be seen again */
746 			sigqueue_delete_proc(p, sig);
747 			if (sig != SIGCONT)
748 				/* easier in psignal */
749 				SIGADDSET(ps->ps_sigignore, sig);
750 			SIGDELSET(ps->ps_sigcatch, sig);
751 		} else {
752 			SIGDELSET(ps->ps_sigignore, sig);
753 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
754 				SIGDELSET(ps->ps_sigcatch, sig);
755 			else
756 				SIGADDSET(ps->ps_sigcatch, sig);
757 		}
758 #ifdef COMPAT_FREEBSD4
759 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
760 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
761 		    (flags & KSA_FREEBSD4) == 0)
762 			SIGDELSET(ps->ps_freebsd4, sig);
763 		else
764 			SIGADDSET(ps->ps_freebsd4, sig);
765 #endif
766 #ifdef COMPAT_43
767 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
768 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
769 		    (flags & KSA_OSIGSET) == 0)
770 			SIGDELSET(ps->ps_osigset, sig);
771 		else
772 			SIGADDSET(ps->ps_osigset, sig);
773 #endif
774 	}
775 	mtx_unlock(&ps->ps_mtx);
776 	PROC_UNLOCK(p);
777 	return (0);
778 }
779 
780 #ifndef _SYS_SYSPROTO_H_
781 struct sigaction_args {
782 	int	sig;
783 	struct	sigaction *act;
784 	struct	sigaction *oact;
785 };
786 #endif
787 int
788 sys_sigaction(td, uap)
789 	struct thread *td;
790 	register struct sigaction_args *uap;
791 {
792 	struct sigaction act, oact;
793 	register struct sigaction *actp, *oactp;
794 	int error;
795 
796 	actp = (uap->act != NULL) ? &act : NULL;
797 	oactp = (uap->oact != NULL) ? &oact : NULL;
798 	if (actp) {
799 		error = copyin(uap->act, actp, sizeof(act));
800 		if (error)
801 			return (error);
802 	}
803 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
804 	if (oactp && !error)
805 		error = copyout(oactp, uap->oact, sizeof(oact));
806 	return (error);
807 }
808 
809 #ifdef COMPAT_FREEBSD4
810 #ifndef _SYS_SYSPROTO_H_
811 struct freebsd4_sigaction_args {
812 	int	sig;
813 	struct	sigaction *act;
814 	struct	sigaction *oact;
815 };
816 #endif
817 int
818 freebsd4_sigaction(td, uap)
819 	struct thread *td;
820 	register struct freebsd4_sigaction_args *uap;
821 {
822 	struct sigaction act, oact;
823 	register struct sigaction *actp, *oactp;
824 	int error;
825 
826 
827 	actp = (uap->act != NULL) ? &act : NULL;
828 	oactp = (uap->oact != NULL) ? &oact : NULL;
829 	if (actp) {
830 		error = copyin(uap->act, actp, sizeof(act));
831 		if (error)
832 			return (error);
833 	}
834 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
835 	if (oactp && !error)
836 		error = copyout(oactp, uap->oact, sizeof(oact));
837 	return (error);
838 }
839 #endif	/* COMAPT_FREEBSD4 */
840 
841 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
842 #ifndef _SYS_SYSPROTO_H_
843 struct osigaction_args {
844 	int	signum;
845 	struct	osigaction *nsa;
846 	struct	osigaction *osa;
847 };
848 #endif
849 int
850 osigaction(td, uap)
851 	struct thread *td;
852 	register struct osigaction_args *uap;
853 {
854 	struct osigaction sa;
855 	struct sigaction nsa, osa;
856 	register struct sigaction *nsap, *osap;
857 	int error;
858 
859 	if (uap->signum <= 0 || uap->signum >= ONSIG)
860 		return (EINVAL);
861 
862 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
863 	osap = (uap->osa != NULL) ? &osa : NULL;
864 
865 	if (nsap) {
866 		error = copyin(uap->nsa, &sa, sizeof(sa));
867 		if (error)
868 			return (error);
869 		nsap->sa_handler = sa.sa_handler;
870 		nsap->sa_flags = sa.sa_flags;
871 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
872 	}
873 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
874 	if (osap && !error) {
875 		sa.sa_handler = osap->sa_handler;
876 		sa.sa_flags = osap->sa_flags;
877 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
878 		error = copyout(&sa, uap->osa, sizeof(sa));
879 	}
880 	return (error);
881 }
882 
883 #if !defined(__i386__)
884 /* Avoid replicating the same stub everywhere */
885 int
886 osigreturn(td, uap)
887 	struct thread *td;
888 	struct osigreturn_args *uap;
889 {
890 
891 	return (nosys(td, (struct nosys_args *)uap));
892 }
893 #endif
894 #endif /* COMPAT_43 */
895 
896 /*
897  * Initialize signal state for process 0;
898  * set to ignore signals that are ignored by default.
899  */
900 void
901 siginit(p)
902 	struct proc *p;
903 {
904 	register int i;
905 	struct sigacts *ps;
906 
907 	PROC_LOCK(p);
908 	ps = p->p_sigacts;
909 	mtx_lock(&ps->ps_mtx);
910 	for (i = 1; i <= NSIG; i++)
911 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
912 			SIGADDSET(ps->ps_sigignore, i);
913 	mtx_unlock(&ps->ps_mtx);
914 	PROC_UNLOCK(p);
915 }
916 
917 /*
918  * Reset signals for an exec of the specified process.
919  */
920 void
921 execsigs(struct proc *p)
922 {
923 	struct sigacts *ps;
924 	int sig;
925 	struct thread *td;
926 
927 	/*
928 	 * Reset caught signals.  Held signals remain held
929 	 * through td_sigmask (unless they were caught,
930 	 * and are now ignored by default).
931 	 */
932 	PROC_LOCK_ASSERT(p, MA_OWNED);
933 	td = FIRST_THREAD_IN_PROC(p);
934 	ps = p->p_sigacts;
935 	mtx_lock(&ps->ps_mtx);
936 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
937 		sig = sig_ffs(&ps->ps_sigcatch);
938 		SIGDELSET(ps->ps_sigcatch, sig);
939 		if (sigprop(sig) & SA_IGNORE) {
940 			if (sig != SIGCONT)
941 				SIGADDSET(ps->ps_sigignore, sig);
942 			sigqueue_delete_proc(p, sig);
943 		}
944 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
945 	}
946 	/*
947 	 * Reset stack state to the user stack.
948 	 * Clear set of signals caught on the signal stack.
949 	 */
950 	td->td_sigstk.ss_flags = SS_DISABLE;
951 	td->td_sigstk.ss_size = 0;
952 	td->td_sigstk.ss_sp = 0;
953 	td->td_pflags &= ~TDP_ALTSTACK;
954 	/*
955 	 * Reset no zombies if child dies flag as Solaris does.
956 	 */
957 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
958 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
959 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
960 	mtx_unlock(&ps->ps_mtx);
961 }
962 
963 /*
964  * kern_sigprocmask()
965  *
966  *	Manipulate signal mask.
967  */
968 int
969 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
970     int flags)
971 {
972 	sigset_t new_block, oset1;
973 	struct proc *p;
974 	int error;
975 
976 	p = td->td_proc;
977 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
978 		PROC_LOCK(p);
979 	if (oset != NULL)
980 		*oset = td->td_sigmask;
981 
982 	error = 0;
983 	if (set != NULL) {
984 		switch (how) {
985 		case SIG_BLOCK:
986 			SIG_CANTMASK(*set);
987 			oset1 = td->td_sigmask;
988 			SIGSETOR(td->td_sigmask, *set);
989 			new_block = td->td_sigmask;
990 			SIGSETNAND(new_block, oset1);
991 			break;
992 		case SIG_UNBLOCK:
993 			SIGSETNAND(td->td_sigmask, *set);
994 			signotify(td);
995 			goto out;
996 		case SIG_SETMASK:
997 			SIG_CANTMASK(*set);
998 			oset1 = td->td_sigmask;
999 			if (flags & SIGPROCMASK_OLD)
1000 				SIGSETLO(td->td_sigmask, *set);
1001 			else
1002 				td->td_sigmask = *set;
1003 			new_block = td->td_sigmask;
1004 			SIGSETNAND(new_block, oset1);
1005 			signotify(td);
1006 			break;
1007 		default:
1008 			error = EINVAL;
1009 			goto out;
1010 		}
1011 
1012 		/*
1013 		 * The new_block set contains signals that were not previously
1014 		 * blocked, but are blocked now.
1015 		 *
1016 		 * In case we block any signal that was not previously blocked
1017 		 * for td, and process has the signal pending, try to schedule
1018 		 * signal delivery to some thread that does not block the
1019 		 * signal, possibly waking it up.
1020 		 */
1021 		if (p->p_numthreads != 1)
1022 			reschedule_signals(p, new_block, flags);
1023 	}
1024 
1025 out:
1026 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1027 		PROC_UNLOCK(p);
1028 	return (error);
1029 }
1030 
1031 #ifndef _SYS_SYSPROTO_H_
1032 struct sigprocmask_args {
1033 	int	how;
1034 	const sigset_t *set;
1035 	sigset_t *oset;
1036 };
1037 #endif
1038 int
1039 sys_sigprocmask(td, uap)
1040 	register struct thread *td;
1041 	struct sigprocmask_args *uap;
1042 {
1043 	sigset_t set, oset;
1044 	sigset_t *setp, *osetp;
1045 	int error;
1046 
1047 	setp = (uap->set != NULL) ? &set : NULL;
1048 	osetp = (uap->oset != NULL) ? &oset : NULL;
1049 	if (setp) {
1050 		error = copyin(uap->set, setp, sizeof(set));
1051 		if (error)
1052 			return (error);
1053 	}
1054 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1055 	if (osetp && !error) {
1056 		error = copyout(osetp, uap->oset, sizeof(oset));
1057 	}
1058 	return (error);
1059 }
1060 
1061 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1062 #ifndef _SYS_SYSPROTO_H_
1063 struct osigprocmask_args {
1064 	int	how;
1065 	osigset_t mask;
1066 };
1067 #endif
1068 int
1069 osigprocmask(td, uap)
1070 	register struct thread *td;
1071 	struct osigprocmask_args *uap;
1072 {
1073 	sigset_t set, oset;
1074 	int error;
1075 
1076 	OSIG2SIG(uap->mask, set);
1077 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1078 	SIG2OSIG(oset, td->td_retval[0]);
1079 	return (error);
1080 }
1081 #endif /* COMPAT_43 */
1082 
1083 int
1084 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1085 {
1086 	ksiginfo_t ksi;
1087 	sigset_t set;
1088 	int error;
1089 
1090 	error = copyin(uap->set, &set, sizeof(set));
1091 	if (error) {
1092 		td->td_retval[0] = error;
1093 		return (0);
1094 	}
1095 
1096 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1097 	if (error) {
1098 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1099 			error = ERESTART;
1100 		if (error == ERESTART)
1101 			return (error);
1102 		td->td_retval[0] = error;
1103 		return (0);
1104 	}
1105 
1106 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1107 	td->td_retval[0] = error;
1108 	return (0);
1109 }
1110 
1111 int
1112 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1113 {
1114 	struct timespec ts;
1115 	struct timespec *timeout;
1116 	sigset_t set;
1117 	ksiginfo_t ksi;
1118 	int error;
1119 
1120 	if (uap->timeout) {
1121 		error = copyin(uap->timeout, &ts, sizeof(ts));
1122 		if (error)
1123 			return (error);
1124 
1125 		timeout = &ts;
1126 	} else
1127 		timeout = NULL;
1128 
1129 	error = copyin(uap->set, &set, sizeof(set));
1130 	if (error)
1131 		return (error);
1132 
1133 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1134 	if (error)
1135 		return (error);
1136 
1137 	if (uap->info)
1138 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1139 
1140 	if (error == 0)
1141 		td->td_retval[0] = ksi.ksi_signo;
1142 	return (error);
1143 }
1144 
1145 int
1146 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1147 {
1148 	ksiginfo_t ksi;
1149 	sigset_t set;
1150 	int error;
1151 
1152 	error = copyin(uap->set, &set, sizeof(set));
1153 	if (error)
1154 		return (error);
1155 
1156 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1157 	if (error)
1158 		return (error);
1159 
1160 	if (uap->info)
1161 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1162 
1163 	if (error == 0)
1164 		td->td_retval[0] = ksi.ksi_signo;
1165 	return (error);
1166 }
1167 
1168 int
1169 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1170 	struct timespec *timeout)
1171 {
1172 	struct sigacts *ps;
1173 	sigset_t saved_mask, new_block;
1174 	struct proc *p;
1175 	int error, sig, timo, timevalid = 0;
1176 	struct timespec rts, ets, ts;
1177 	struct timeval tv;
1178 
1179 	p = td->td_proc;
1180 	error = 0;
1181 	ets.tv_sec = 0;
1182 	ets.tv_nsec = 0;
1183 
1184 	if (timeout != NULL) {
1185 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1186 			timevalid = 1;
1187 			getnanouptime(&rts);
1188 		 	ets = rts;
1189 			timespecadd(&ets, timeout);
1190 		}
1191 	}
1192 	ksiginfo_init(ksi);
1193 	/* Some signals can not be waited for. */
1194 	SIG_CANTMASK(waitset);
1195 	ps = p->p_sigacts;
1196 	PROC_LOCK(p);
1197 	saved_mask = td->td_sigmask;
1198 	SIGSETNAND(td->td_sigmask, waitset);
1199 	for (;;) {
1200 		mtx_lock(&ps->ps_mtx);
1201 		sig = cursig(td, SIG_STOP_ALLOWED);
1202 		mtx_unlock(&ps->ps_mtx);
1203 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1204 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1205 		    	    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1206 				error = 0;
1207 				break;
1208 			}
1209 		}
1210 
1211 		if (error != 0)
1212 			break;
1213 
1214 		/*
1215 		 * POSIX says this must be checked after looking for pending
1216 		 * signals.
1217 		 */
1218 		if (timeout != NULL) {
1219 			if (!timevalid) {
1220 				error = EINVAL;
1221 				break;
1222 			}
1223 			getnanouptime(&rts);
1224 			if (timespeccmp(&rts, &ets, >=)) {
1225 				error = EAGAIN;
1226 				break;
1227 			}
1228 			ts = ets;
1229 			timespecsub(&ts, &rts);
1230 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1231 			timo = tvtohz(&tv);
1232 		} else {
1233 			timo = 0;
1234 		}
1235 
1236 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1237 
1238 		if (timeout != NULL) {
1239 			if (error == ERESTART) {
1240 				/* Timeout can not be restarted. */
1241 				error = EINTR;
1242 			} else if (error == EAGAIN) {
1243 				/* We will calculate timeout by ourself. */
1244 				error = 0;
1245 			}
1246 		}
1247 	}
1248 
1249 	new_block = saved_mask;
1250 	SIGSETNAND(new_block, td->td_sigmask);
1251 	td->td_sigmask = saved_mask;
1252 	/*
1253 	 * Fewer signals can be delivered to us, reschedule signal
1254 	 * notification.
1255 	 */
1256 	if (p->p_numthreads != 1)
1257 		reschedule_signals(p, new_block, 0);
1258 
1259 	if (error == 0) {
1260 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1261 
1262 		if (ksi->ksi_code == SI_TIMER)
1263 			itimer_accept(p, ksi->ksi_timerid, ksi);
1264 
1265 #ifdef KTRACE
1266 		if (KTRPOINT(td, KTR_PSIG)) {
1267 			sig_t action;
1268 
1269 			mtx_lock(&ps->ps_mtx);
1270 			action = ps->ps_sigact[_SIG_IDX(sig)];
1271 			mtx_unlock(&ps->ps_mtx);
1272 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1273 		}
1274 #endif
1275 		if (sig == SIGKILL)
1276 			sigexit(td, sig);
1277 	}
1278 	PROC_UNLOCK(p);
1279 	return (error);
1280 }
1281 
1282 #ifndef _SYS_SYSPROTO_H_
1283 struct sigpending_args {
1284 	sigset_t	*set;
1285 };
1286 #endif
1287 int
1288 sys_sigpending(td, uap)
1289 	struct thread *td;
1290 	struct sigpending_args *uap;
1291 {
1292 	struct proc *p = td->td_proc;
1293 	sigset_t pending;
1294 
1295 	PROC_LOCK(p);
1296 	pending = p->p_sigqueue.sq_signals;
1297 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1298 	PROC_UNLOCK(p);
1299 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1300 }
1301 
1302 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1303 #ifndef _SYS_SYSPROTO_H_
1304 struct osigpending_args {
1305 	int	dummy;
1306 };
1307 #endif
1308 int
1309 osigpending(td, uap)
1310 	struct thread *td;
1311 	struct osigpending_args *uap;
1312 {
1313 	struct proc *p = td->td_proc;
1314 	sigset_t pending;
1315 
1316 	PROC_LOCK(p);
1317 	pending = p->p_sigqueue.sq_signals;
1318 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1319 	PROC_UNLOCK(p);
1320 	SIG2OSIG(pending, td->td_retval[0]);
1321 	return (0);
1322 }
1323 #endif /* COMPAT_43 */
1324 
1325 #if defined(COMPAT_43)
1326 /*
1327  * Generalized interface signal handler, 4.3-compatible.
1328  */
1329 #ifndef _SYS_SYSPROTO_H_
1330 struct osigvec_args {
1331 	int	signum;
1332 	struct	sigvec *nsv;
1333 	struct	sigvec *osv;
1334 };
1335 #endif
1336 /* ARGSUSED */
1337 int
1338 osigvec(td, uap)
1339 	struct thread *td;
1340 	register struct osigvec_args *uap;
1341 {
1342 	struct sigvec vec;
1343 	struct sigaction nsa, osa;
1344 	register struct sigaction *nsap, *osap;
1345 	int error;
1346 
1347 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1348 		return (EINVAL);
1349 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1350 	osap = (uap->osv != NULL) ? &osa : NULL;
1351 	if (nsap) {
1352 		error = copyin(uap->nsv, &vec, sizeof(vec));
1353 		if (error)
1354 			return (error);
1355 		nsap->sa_handler = vec.sv_handler;
1356 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1357 		nsap->sa_flags = vec.sv_flags;
1358 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1359 	}
1360 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1361 	if (osap && !error) {
1362 		vec.sv_handler = osap->sa_handler;
1363 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1364 		vec.sv_flags = osap->sa_flags;
1365 		vec.sv_flags &= ~SA_NOCLDWAIT;
1366 		vec.sv_flags ^= SA_RESTART;
1367 		error = copyout(&vec, uap->osv, sizeof(vec));
1368 	}
1369 	return (error);
1370 }
1371 
1372 #ifndef _SYS_SYSPROTO_H_
1373 struct osigblock_args {
1374 	int	mask;
1375 };
1376 #endif
1377 int
1378 osigblock(td, uap)
1379 	register struct thread *td;
1380 	struct osigblock_args *uap;
1381 {
1382 	sigset_t set, oset;
1383 
1384 	OSIG2SIG(uap->mask, set);
1385 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1386 	SIG2OSIG(oset, td->td_retval[0]);
1387 	return (0);
1388 }
1389 
1390 #ifndef _SYS_SYSPROTO_H_
1391 struct osigsetmask_args {
1392 	int	mask;
1393 };
1394 #endif
1395 int
1396 osigsetmask(td, uap)
1397 	struct thread *td;
1398 	struct osigsetmask_args *uap;
1399 {
1400 	sigset_t set, oset;
1401 
1402 	OSIG2SIG(uap->mask, set);
1403 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1404 	SIG2OSIG(oset, td->td_retval[0]);
1405 	return (0);
1406 }
1407 #endif /* COMPAT_43 */
1408 
1409 /*
1410  * Suspend calling thread until signal, providing mask to be set in the
1411  * meantime.
1412  */
1413 #ifndef _SYS_SYSPROTO_H_
1414 struct sigsuspend_args {
1415 	const sigset_t *sigmask;
1416 };
1417 #endif
1418 /* ARGSUSED */
1419 int
1420 sys_sigsuspend(td, uap)
1421 	struct thread *td;
1422 	struct sigsuspend_args *uap;
1423 {
1424 	sigset_t mask;
1425 	int error;
1426 
1427 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1428 	if (error)
1429 		return (error);
1430 	return (kern_sigsuspend(td, mask));
1431 }
1432 
1433 int
1434 kern_sigsuspend(struct thread *td, sigset_t mask)
1435 {
1436 	struct proc *p = td->td_proc;
1437 	int has_sig, sig;
1438 
1439 	/*
1440 	 * When returning from sigsuspend, we want
1441 	 * the old mask to be restored after the
1442 	 * signal handler has finished.  Thus, we
1443 	 * save it here and mark the sigacts structure
1444 	 * to indicate this.
1445 	 */
1446 	PROC_LOCK(p);
1447 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1448 	    SIGPROCMASK_PROC_LOCKED);
1449 	td->td_pflags |= TDP_OLDMASK;
1450 
1451 	/*
1452 	 * Process signals now. Otherwise, we can get spurious wakeup
1453 	 * due to signal entered process queue, but delivered to other
1454 	 * thread. But sigsuspend should return only on signal
1455 	 * delivery.
1456 	 */
1457 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1458 	for (has_sig = 0; !has_sig;) {
1459 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1460 			0) == 0)
1461 			/* void */;
1462 		thread_suspend_check(0);
1463 		mtx_lock(&p->p_sigacts->ps_mtx);
1464 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1465 			has_sig += postsig(sig);
1466 		mtx_unlock(&p->p_sigacts->ps_mtx);
1467 	}
1468 	PROC_UNLOCK(p);
1469 	return (EJUSTRETURN);
1470 }
1471 
1472 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1473 /*
1474  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1475  * convention: libc stub passes mask, not pointer, to save a copyin.
1476  */
1477 #ifndef _SYS_SYSPROTO_H_
1478 struct osigsuspend_args {
1479 	osigset_t mask;
1480 };
1481 #endif
1482 /* ARGSUSED */
1483 int
1484 osigsuspend(td, uap)
1485 	struct thread *td;
1486 	struct osigsuspend_args *uap;
1487 {
1488 	sigset_t mask;
1489 
1490 	OSIG2SIG(uap->mask, mask);
1491 	return (kern_sigsuspend(td, mask));
1492 }
1493 #endif /* COMPAT_43 */
1494 
1495 #if defined(COMPAT_43)
1496 #ifndef _SYS_SYSPROTO_H_
1497 struct osigstack_args {
1498 	struct	sigstack *nss;
1499 	struct	sigstack *oss;
1500 };
1501 #endif
1502 /* ARGSUSED */
1503 int
1504 osigstack(td, uap)
1505 	struct thread *td;
1506 	register struct osigstack_args *uap;
1507 {
1508 	struct sigstack nss, oss;
1509 	int error = 0;
1510 
1511 	if (uap->nss != NULL) {
1512 		error = copyin(uap->nss, &nss, sizeof(nss));
1513 		if (error)
1514 			return (error);
1515 	}
1516 	oss.ss_sp = td->td_sigstk.ss_sp;
1517 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1518 	if (uap->nss != NULL) {
1519 		td->td_sigstk.ss_sp = nss.ss_sp;
1520 		td->td_sigstk.ss_size = 0;
1521 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1522 		td->td_pflags |= TDP_ALTSTACK;
1523 	}
1524 	if (uap->oss != NULL)
1525 		error = copyout(&oss, uap->oss, sizeof(oss));
1526 
1527 	return (error);
1528 }
1529 #endif /* COMPAT_43 */
1530 
1531 #ifndef _SYS_SYSPROTO_H_
1532 struct sigaltstack_args {
1533 	stack_t	*ss;
1534 	stack_t	*oss;
1535 };
1536 #endif
1537 /* ARGSUSED */
1538 int
1539 sys_sigaltstack(td, uap)
1540 	struct thread *td;
1541 	register struct sigaltstack_args *uap;
1542 {
1543 	stack_t ss, oss;
1544 	int error;
1545 
1546 	if (uap->ss != NULL) {
1547 		error = copyin(uap->ss, &ss, sizeof(ss));
1548 		if (error)
1549 			return (error);
1550 	}
1551 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1552 	    (uap->oss != NULL) ? &oss : NULL);
1553 	if (error)
1554 		return (error);
1555 	if (uap->oss != NULL)
1556 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1557 	return (error);
1558 }
1559 
1560 int
1561 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1562 {
1563 	struct proc *p = td->td_proc;
1564 	int oonstack;
1565 
1566 	oonstack = sigonstack(cpu_getstack(td));
1567 
1568 	if (oss != NULL) {
1569 		*oss = td->td_sigstk;
1570 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1571 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1572 	}
1573 
1574 	if (ss != NULL) {
1575 		if (oonstack)
1576 			return (EPERM);
1577 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1578 			return (EINVAL);
1579 		if (!(ss->ss_flags & SS_DISABLE)) {
1580 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1581 				return (ENOMEM);
1582 
1583 			td->td_sigstk = *ss;
1584 			td->td_pflags |= TDP_ALTSTACK;
1585 		} else {
1586 			td->td_pflags &= ~TDP_ALTSTACK;
1587 		}
1588 	}
1589 	return (0);
1590 }
1591 
1592 /*
1593  * Common code for kill process group/broadcast kill.
1594  * cp is calling process.
1595  */
1596 static int
1597 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1598 {
1599 	struct proc *p;
1600 	struct pgrp *pgrp;
1601 	int nfound = 0;
1602 
1603 	if (all) {
1604 		/*
1605 		 * broadcast
1606 		 */
1607 		sx_slock(&allproc_lock);
1608 		FOREACH_PROC_IN_SYSTEM(p) {
1609 			PROC_LOCK(p);
1610 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1611 			    p == td->td_proc || p->p_state == PRS_NEW) {
1612 				PROC_UNLOCK(p);
1613 				continue;
1614 			}
1615 			if (p_cansignal(td, p, sig) == 0) {
1616 				nfound++;
1617 				if (sig)
1618 					pksignal(p, sig, ksi);
1619 			}
1620 			PROC_UNLOCK(p);
1621 		}
1622 		sx_sunlock(&allproc_lock);
1623 	} else {
1624 		sx_slock(&proctree_lock);
1625 		if (pgid == 0) {
1626 			/*
1627 			 * zero pgid means send to my process group.
1628 			 */
1629 			pgrp = td->td_proc->p_pgrp;
1630 			PGRP_LOCK(pgrp);
1631 		} else {
1632 			pgrp = pgfind(pgid);
1633 			if (pgrp == NULL) {
1634 				sx_sunlock(&proctree_lock);
1635 				return (ESRCH);
1636 			}
1637 		}
1638 		sx_sunlock(&proctree_lock);
1639 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1640 			PROC_LOCK(p);
1641 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1642 			    p->p_state == PRS_NEW) {
1643 				PROC_UNLOCK(p);
1644 				continue;
1645 			}
1646 			if (p_cansignal(td, p, sig) == 0) {
1647 				nfound++;
1648 				if (sig)
1649 					pksignal(p, sig, ksi);
1650 			}
1651 			PROC_UNLOCK(p);
1652 		}
1653 		PGRP_UNLOCK(pgrp);
1654 	}
1655 	return (nfound ? 0 : ESRCH);
1656 }
1657 
1658 #ifndef _SYS_SYSPROTO_H_
1659 struct kill_args {
1660 	int	pid;
1661 	int	signum;
1662 };
1663 #endif
1664 /* ARGSUSED */
1665 int
1666 sys_kill(struct thread *td, struct kill_args *uap)
1667 {
1668 	ksiginfo_t ksi;
1669 	struct proc *p;
1670 	int error;
1671 
1672 	AUDIT_ARG_SIGNUM(uap->signum);
1673 	AUDIT_ARG_PID(uap->pid);
1674 	if ((u_int)uap->signum > _SIG_MAXSIG)
1675 		return (EINVAL);
1676 
1677 	ksiginfo_init(&ksi);
1678 	ksi.ksi_signo = uap->signum;
1679 	ksi.ksi_code = SI_USER;
1680 	ksi.ksi_pid = td->td_proc->p_pid;
1681 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1682 
1683 	if (uap->pid > 0) {
1684 		/* kill single process */
1685 		if ((p = pfind(uap->pid)) == NULL) {
1686 			if ((p = zpfind(uap->pid)) == NULL)
1687 				return (ESRCH);
1688 		}
1689 		AUDIT_ARG_PROCESS(p);
1690 		error = p_cansignal(td, p, uap->signum);
1691 		if (error == 0 && uap->signum)
1692 			pksignal(p, uap->signum, &ksi);
1693 		PROC_UNLOCK(p);
1694 		return (error);
1695 	}
1696 	switch (uap->pid) {
1697 	case -1:		/* broadcast signal */
1698 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1699 	case 0:			/* signal own process group */
1700 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1701 	default:		/* negative explicit process group */
1702 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1703 	}
1704 	/* NOTREACHED */
1705 }
1706 
1707 int
1708 sys_pdkill(td, uap)
1709 	struct thread *td;
1710 	struct pdkill_args *uap;
1711 {
1712 #ifdef PROCDESC
1713 	struct proc *p;
1714 	int error;
1715 
1716 	AUDIT_ARG_SIGNUM(uap->signum);
1717 	AUDIT_ARG_FD(uap->fd);
1718 	if ((u_int)uap->signum > _SIG_MAXSIG)
1719 		return (EINVAL);
1720 
1721 	error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
1722 	if (error)
1723 		return (error);
1724 	AUDIT_ARG_PROCESS(p);
1725 	error = p_cansignal(td, p, uap->signum);
1726 	if (error == 0 && uap->signum)
1727 		kern_psignal(p, uap->signum);
1728 	PROC_UNLOCK(p);
1729 	return (error);
1730 #else
1731 	return (ENOSYS);
1732 #endif
1733 }
1734 
1735 #if defined(COMPAT_43)
1736 #ifndef _SYS_SYSPROTO_H_
1737 struct okillpg_args {
1738 	int	pgid;
1739 	int	signum;
1740 };
1741 #endif
1742 /* ARGSUSED */
1743 int
1744 okillpg(struct thread *td, struct okillpg_args *uap)
1745 {
1746 	ksiginfo_t ksi;
1747 
1748 	AUDIT_ARG_SIGNUM(uap->signum);
1749 	AUDIT_ARG_PID(uap->pgid);
1750 	if ((u_int)uap->signum > _SIG_MAXSIG)
1751 		return (EINVAL);
1752 
1753 	ksiginfo_init(&ksi);
1754 	ksi.ksi_signo = uap->signum;
1755 	ksi.ksi_code = SI_USER;
1756 	ksi.ksi_pid = td->td_proc->p_pid;
1757 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1758 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1759 }
1760 #endif /* COMPAT_43 */
1761 
1762 #ifndef _SYS_SYSPROTO_H_
1763 struct sigqueue_args {
1764 	pid_t pid;
1765 	int signum;
1766 	/* union sigval */ void *value;
1767 };
1768 #endif
1769 int
1770 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1771 {
1772 	ksiginfo_t ksi;
1773 	struct proc *p;
1774 	int error;
1775 
1776 	if ((u_int)uap->signum > _SIG_MAXSIG)
1777 		return (EINVAL);
1778 
1779 	/*
1780 	 * Specification says sigqueue can only send signal to
1781 	 * single process.
1782 	 */
1783 	if (uap->pid <= 0)
1784 		return (EINVAL);
1785 
1786 	if ((p = pfind(uap->pid)) == NULL) {
1787 		if ((p = zpfind(uap->pid)) == NULL)
1788 			return (ESRCH);
1789 	}
1790 	error = p_cansignal(td, p, uap->signum);
1791 	if (error == 0 && uap->signum != 0) {
1792 		ksiginfo_init(&ksi);
1793 		ksi.ksi_flags = KSI_SIGQ;
1794 		ksi.ksi_signo = uap->signum;
1795 		ksi.ksi_code = SI_QUEUE;
1796 		ksi.ksi_pid = td->td_proc->p_pid;
1797 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1798 		ksi.ksi_value.sival_ptr = uap->value;
1799 		error = pksignal(p, ksi.ksi_signo, &ksi);
1800 	}
1801 	PROC_UNLOCK(p);
1802 	return (error);
1803 }
1804 
1805 /*
1806  * Send a signal to a process group.
1807  */
1808 void
1809 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1810 {
1811 	struct pgrp *pgrp;
1812 
1813 	if (pgid != 0) {
1814 		sx_slock(&proctree_lock);
1815 		pgrp = pgfind(pgid);
1816 		sx_sunlock(&proctree_lock);
1817 		if (pgrp != NULL) {
1818 			pgsignal(pgrp, sig, 0, ksi);
1819 			PGRP_UNLOCK(pgrp);
1820 		}
1821 	}
1822 }
1823 
1824 /*
1825  * Send a signal to a process group.  If checktty is 1,
1826  * limit to members which have a controlling terminal.
1827  */
1828 void
1829 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1830 {
1831 	struct proc *p;
1832 
1833 	if (pgrp) {
1834 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1835 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1836 			PROC_LOCK(p);
1837 			if (p->p_state == PRS_NORMAL &&
1838 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1839 				pksignal(p, sig, ksi);
1840 			PROC_UNLOCK(p);
1841 		}
1842 	}
1843 }
1844 
1845 /*
1846  * Send a signal caused by a trap to the current thread.  If it will be
1847  * caught immediately, deliver it with correct code.  Otherwise, post it
1848  * normally.
1849  */
1850 void
1851 trapsignal(struct thread *td, ksiginfo_t *ksi)
1852 {
1853 	struct sigacts *ps;
1854 	sigset_t mask;
1855 	struct proc *p;
1856 	int sig;
1857 	int code;
1858 
1859 	p = td->td_proc;
1860 	sig = ksi->ksi_signo;
1861 	code = ksi->ksi_code;
1862 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1863 
1864 	PROC_LOCK(p);
1865 	ps = p->p_sigacts;
1866 	mtx_lock(&ps->ps_mtx);
1867 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1868 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1869 		td->td_ru.ru_nsignals++;
1870 #ifdef KTRACE
1871 		if (KTRPOINT(curthread, KTR_PSIG))
1872 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1873 			    &td->td_sigmask, code);
1874 #endif
1875 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1876 				ksi, &td->td_sigmask);
1877 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1878 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1879 			SIGADDSET(mask, sig);
1880 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1881 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1882 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1883 			/*
1884 			 * See kern_sigaction() for origin of this code.
1885 			 */
1886 			SIGDELSET(ps->ps_sigcatch, sig);
1887 			if (sig != SIGCONT &&
1888 			    sigprop(sig) & SA_IGNORE)
1889 				SIGADDSET(ps->ps_sigignore, sig);
1890 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1891 		}
1892 		mtx_unlock(&ps->ps_mtx);
1893 	} else {
1894 		/*
1895 		 * Avoid a possible infinite loop if the thread
1896 		 * masking the signal or process is ignoring the
1897 		 * signal.
1898 		 */
1899 		if (kern_forcesigexit &&
1900 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1901 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1902 			SIGDELSET(td->td_sigmask, sig);
1903 			SIGDELSET(ps->ps_sigcatch, sig);
1904 			SIGDELSET(ps->ps_sigignore, sig);
1905 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1906 		}
1907 		mtx_unlock(&ps->ps_mtx);
1908 		p->p_code = code;	/* XXX for core dump/debugger */
1909 		p->p_sig = sig;		/* XXX to verify code */
1910 		tdsendsignal(p, td, sig, ksi);
1911 	}
1912 	PROC_UNLOCK(p);
1913 }
1914 
1915 static struct thread *
1916 sigtd(struct proc *p, int sig, int prop)
1917 {
1918 	struct thread *td, *signal_td;
1919 
1920 	PROC_LOCK_ASSERT(p, MA_OWNED);
1921 
1922 	/*
1923 	 * Check if current thread can handle the signal without
1924 	 * switching context to another thread.
1925 	 */
1926 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1927 		return (curthread);
1928 	signal_td = NULL;
1929 	FOREACH_THREAD_IN_PROC(p, td) {
1930 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1931 			signal_td = td;
1932 			break;
1933 		}
1934 	}
1935 	if (signal_td == NULL)
1936 		signal_td = FIRST_THREAD_IN_PROC(p);
1937 	return (signal_td);
1938 }
1939 
1940 /*
1941  * Send the signal to the process.  If the signal has an action, the action
1942  * is usually performed by the target process rather than the caller; we add
1943  * the signal to the set of pending signals for the process.
1944  *
1945  * Exceptions:
1946  *   o When a stop signal is sent to a sleeping process that takes the
1947  *     default action, the process is stopped without awakening it.
1948  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1949  *     regardless of the signal action (eg, blocked or ignored).
1950  *
1951  * Other ignored signals are discarded immediately.
1952  *
1953  * NB: This function may be entered from the debugger via the "kill" DDB
1954  * command.  There is little that can be done to mitigate the possibly messy
1955  * side effects of this unwise possibility.
1956  */
1957 void
1958 kern_psignal(struct proc *p, int sig)
1959 {
1960 	ksiginfo_t ksi;
1961 
1962 	ksiginfo_init(&ksi);
1963 	ksi.ksi_signo = sig;
1964 	ksi.ksi_code = SI_KERNEL;
1965 	(void) tdsendsignal(p, NULL, sig, &ksi);
1966 }
1967 
1968 int
1969 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1970 {
1971 
1972 	return (tdsendsignal(p, NULL, sig, ksi));
1973 }
1974 
1975 /* Utility function for finding a thread to send signal event to. */
1976 int
1977 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1978 {
1979 	struct thread *td;
1980 
1981 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1982 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1983 		if (td == NULL)
1984 			return (ESRCH);
1985 		*ttd = td;
1986 	} else {
1987 		*ttd = NULL;
1988 		PROC_LOCK(p);
1989 	}
1990 	return (0);
1991 }
1992 
1993 void
1994 tdsignal(struct thread *td, int sig)
1995 {
1996 	ksiginfo_t ksi;
1997 
1998 	ksiginfo_init(&ksi);
1999 	ksi.ksi_signo = sig;
2000 	ksi.ksi_code = SI_KERNEL;
2001 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2002 }
2003 
2004 void
2005 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2006 {
2007 
2008 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2009 }
2010 
2011 int
2012 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2013 {
2014 	sig_t action;
2015 	sigqueue_t *sigqueue;
2016 	int prop;
2017 	struct sigacts *ps;
2018 	int intrval;
2019 	int ret = 0;
2020 	int wakeup_swapper;
2021 
2022 	MPASS(td == NULL || p == td->td_proc);
2023 	PROC_LOCK_ASSERT(p, MA_OWNED);
2024 
2025 	if (!_SIG_VALID(sig))
2026 		panic("%s(): invalid signal %d", __func__, sig);
2027 
2028 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2029 
2030 	/*
2031 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2032 	 */
2033 	if (p->p_state == PRS_ZOMBIE) {
2034 		if (ksi && (ksi->ksi_flags & KSI_INS))
2035 			ksiginfo_tryfree(ksi);
2036 		return (ret);
2037 	}
2038 
2039 	ps = p->p_sigacts;
2040 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2041 	prop = sigprop(sig);
2042 
2043 	if (td == NULL) {
2044 		td = sigtd(p, sig, prop);
2045 		sigqueue = &p->p_sigqueue;
2046 	} else {
2047 		KASSERT(td->td_proc == p, ("invalid thread"));
2048 		sigqueue = &td->td_sigqueue;
2049 	}
2050 
2051 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2052 
2053 	/*
2054 	 * If the signal is being ignored,
2055 	 * then we forget about it immediately.
2056 	 * (Note: we don't set SIGCONT in ps_sigignore,
2057 	 * and if it is set to SIG_IGN,
2058 	 * action will be SIG_DFL here.)
2059 	 */
2060 	mtx_lock(&ps->ps_mtx);
2061 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2062 		SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
2063 
2064 		mtx_unlock(&ps->ps_mtx);
2065 		if (ksi && (ksi->ksi_flags & KSI_INS))
2066 			ksiginfo_tryfree(ksi);
2067 		return (ret);
2068 	}
2069 	if (SIGISMEMBER(td->td_sigmask, sig))
2070 		action = SIG_HOLD;
2071 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2072 		action = SIG_CATCH;
2073 	else
2074 		action = SIG_DFL;
2075 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2076 		intrval = EINTR;
2077 	else
2078 		intrval = ERESTART;
2079 	mtx_unlock(&ps->ps_mtx);
2080 
2081 	if (prop & SA_CONT)
2082 		sigqueue_delete_stopmask_proc(p);
2083 	else if (prop & SA_STOP) {
2084 		/*
2085 		 * If sending a tty stop signal to a member of an orphaned
2086 		 * process group, discard the signal here if the action
2087 		 * is default; don't stop the process below if sleeping,
2088 		 * and don't clear any pending SIGCONT.
2089 		 */
2090 		if ((prop & SA_TTYSTOP) &&
2091 		    (p->p_pgrp->pg_jobc == 0) &&
2092 		    (action == SIG_DFL)) {
2093 			if (ksi && (ksi->ksi_flags & KSI_INS))
2094 				ksiginfo_tryfree(ksi);
2095 			return (ret);
2096 		}
2097 		sigqueue_delete_proc(p, SIGCONT);
2098 		if (p->p_flag & P_CONTINUED) {
2099 			p->p_flag &= ~P_CONTINUED;
2100 			PROC_LOCK(p->p_pptr);
2101 			sigqueue_take(p->p_ksi);
2102 			PROC_UNLOCK(p->p_pptr);
2103 		}
2104 	}
2105 
2106 	ret = sigqueue_add(sigqueue, sig, ksi);
2107 	if (ret != 0)
2108 		return (ret);
2109 	signotify(td);
2110 	/*
2111 	 * Defer further processing for signals which are held,
2112 	 * except that stopped processes must be continued by SIGCONT.
2113 	 */
2114 	if (action == SIG_HOLD &&
2115 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2116 		return (ret);
2117 	/*
2118 	 * SIGKILL: Remove procfs STOPEVENTs.
2119 	 */
2120 	if (sig == SIGKILL) {
2121 		/* from procfs_ioctl.c: PIOCBIC */
2122 		p->p_stops = 0;
2123 		/* from procfs_ioctl.c: PIOCCONT */
2124 		p->p_step = 0;
2125 		wakeup(&p->p_step);
2126 	}
2127 	/*
2128 	 * Some signals have a process-wide effect and a per-thread
2129 	 * component.  Most processing occurs when the process next
2130 	 * tries to cross the user boundary, however there are some
2131 	 * times when processing needs to be done immediatly, such as
2132 	 * waking up threads so that they can cross the user boundary.
2133 	 * We try do the per-process part here.
2134 	 */
2135 	if (P_SHOULDSTOP(p)) {
2136 		if (sig == SIGKILL) {
2137 			/*
2138 			 * If traced process is already stopped,
2139 			 * then no further action is necessary.
2140 			 */
2141 			if (p->p_flag & P_TRACED)
2142 				goto out;
2143 			/*
2144 			 * SIGKILL sets process running.
2145 			 * It will die elsewhere.
2146 			 * All threads must be restarted.
2147 			 */
2148 			p->p_flag &= ~P_STOPPED_SIG;
2149 			goto runfast;
2150 		}
2151 
2152 		if (prop & SA_CONT) {
2153 			/*
2154 			 * If traced process is already stopped,
2155 			 * then no further action is necessary.
2156 			 */
2157 			if (p->p_flag & P_TRACED)
2158 				goto out;
2159 			/*
2160 			 * If SIGCONT is default (or ignored), we continue the
2161 			 * process but don't leave the signal in sigqueue as
2162 			 * it has no further action.  If SIGCONT is held, we
2163 			 * continue the process and leave the signal in
2164 			 * sigqueue.  If the process catches SIGCONT, let it
2165 			 * handle the signal itself.  If it isn't waiting on
2166 			 * an event, it goes back to run state.
2167 			 * Otherwise, process goes back to sleep state.
2168 			 */
2169 			p->p_flag &= ~P_STOPPED_SIG;
2170 			PROC_SLOCK(p);
2171 			if (p->p_numthreads == p->p_suspcount) {
2172 				PROC_SUNLOCK(p);
2173 				p->p_flag |= P_CONTINUED;
2174 				p->p_xstat = SIGCONT;
2175 				PROC_LOCK(p->p_pptr);
2176 				childproc_continued(p);
2177 				PROC_UNLOCK(p->p_pptr);
2178 				PROC_SLOCK(p);
2179 			}
2180 			if (action == SIG_DFL) {
2181 				thread_unsuspend(p);
2182 				PROC_SUNLOCK(p);
2183 				sigqueue_delete(sigqueue, sig);
2184 				goto out;
2185 			}
2186 			if (action == SIG_CATCH) {
2187 				/*
2188 				 * The process wants to catch it so it needs
2189 				 * to run at least one thread, but which one?
2190 				 */
2191 				PROC_SUNLOCK(p);
2192 				goto runfast;
2193 			}
2194 			/*
2195 			 * The signal is not ignored or caught.
2196 			 */
2197 			thread_unsuspend(p);
2198 			PROC_SUNLOCK(p);
2199 			goto out;
2200 		}
2201 
2202 		if (prop & SA_STOP) {
2203 			/*
2204 			 * If traced process is already stopped,
2205 			 * then no further action is necessary.
2206 			 */
2207 			if (p->p_flag & P_TRACED)
2208 				goto out;
2209 			/*
2210 			 * Already stopped, don't need to stop again
2211 			 * (If we did the shell could get confused).
2212 			 * Just make sure the signal STOP bit set.
2213 			 */
2214 			p->p_flag |= P_STOPPED_SIG;
2215 			sigqueue_delete(sigqueue, sig);
2216 			goto out;
2217 		}
2218 
2219 		/*
2220 		 * All other kinds of signals:
2221 		 * If a thread is sleeping interruptibly, simulate a
2222 		 * wakeup so that when it is continued it will be made
2223 		 * runnable and can look at the signal.  However, don't make
2224 		 * the PROCESS runnable, leave it stopped.
2225 		 * It may run a bit until it hits a thread_suspend_check().
2226 		 */
2227 		wakeup_swapper = 0;
2228 		PROC_SLOCK(p);
2229 		thread_lock(td);
2230 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2231 			wakeup_swapper = sleepq_abort(td, intrval);
2232 		thread_unlock(td);
2233 		PROC_SUNLOCK(p);
2234 		if (wakeup_swapper)
2235 			kick_proc0();
2236 		goto out;
2237 		/*
2238 		 * Mutexes are short lived. Threads waiting on them will
2239 		 * hit thread_suspend_check() soon.
2240 		 */
2241 	} else if (p->p_state == PRS_NORMAL) {
2242 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2243 			tdsigwakeup(td, sig, action, intrval);
2244 			goto out;
2245 		}
2246 
2247 		MPASS(action == SIG_DFL);
2248 
2249 		if (prop & SA_STOP) {
2250 			if (p->p_flag & P_PPWAIT)
2251 				goto out;
2252 			p->p_flag |= P_STOPPED_SIG;
2253 			p->p_xstat = sig;
2254 			PROC_SLOCK(p);
2255 			sig_suspend_threads(td, p, 1);
2256 			if (p->p_numthreads == p->p_suspcount) {
2257 				/*
2258 				 * only thread sending signal to another
2259 				 * process can reach here, if thread is sending
2260 				 * signal to its process, because thread does
2261 				 * not suspend itself here, p_numthreads
2262 				 * should never be equal to p_suspcount.
2263 				 */
2264 				thread_stopped(p);
2265 				PROC_SUNLOCK(p);
2266 				sigqueue_delete_proc(p, p->p_xstat);
2267 			} else
2268 				PROC_SUNLOCK(p);
2269 			goto out;
2270 		}
2271 	} else {
2272 		/* Not in "NORMAL" state. discard the signal. */
2273 		sigqueue_delete(sigqueue, sig);
2274 		goto out;
2275 	}
2276 
2277 	/*
2278 	 * The process is not stopped so we need to apply the signal to all the
2279 	 * running threads.
2280 	 */
2281 runfast:
2282 	tdsigwakeup(td, sig, action, intrval);
2283 	PROC_SLOCK(p);
2284 	thread_unsuspend(p);
2285 	PROC_SUNLOCK(p);
2286 out:
2287 	/* If we jump here, proc slock should not be owned. */
2288 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2289 	return (ret);
2290 }
2291 
2292 /*
2293  * The force of a signal has been directed against a single
2294  * thread.  We need to see what we can do about knocking it
2295  * out of any sleep it may be in etc.
2296  */
2297 static void
2298 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2299 {
2300 	struct proc *p = td->td_proc;
2301 	register int prop;
2302 	int wakeup_swapper;
2303 
2304 	wakeup_swapper = 0;
2305 	PROC_LOCK_ASSERT(p, MA_OWNED);
2306 	prop = sigprop(sig);
2307 
2308 	PROC_SLOCK(p);
2309 	thread_lock(td);
2310 	/*
2311 	 * Bring the priority of a thread up if we want it to get
2312 	 * killed in this lifetime.
2313 	 */
2314 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2315 		sched_prio(td, PUSER);
2316 	if (TD_ON_SLEEPQ(td)) {
2317 		/*
2318 		 * If thread is sleeping uninterruptibly
2319 		 * we can't interrupt the sleep... the signal will
2320 		 * be noticed when the process returns through
2321 		 * trap() or syscall().
2322 		 */
2323 		if ((td->td_flags & TDF_SINTR) == 0)
2324 			goto out;
2325 		/*
2326 		 * If SIGCONT is default (or ignored) and process is
2327 		 * asleep, we are finished; the process should not
2328 		 * be awakened.
2329 		 */
2330 		if ((prop & SA_CONT) && action == SIG_DFL) {
2331 			thread_unlock(td);
2332 			PROC_SUNLOCK(p);
2333 			sigqueue_delete(&p->p_sigqueue, sig);
2334 			/*
2335 			 * It may be on either list in this state.
2336 			 * Remove from both for now.
2337 			 */
2338 			sigqueue_delete(&td->td_sigqueue, sig);
2339 			return;
2340 		}
2341 
2342 		/*
2343 		 * Give low priority threads a better chance to run.
2344 		 */
2345 		if (td->td_priority > PUSER)
2346 			sched_prio(td, PUSER);
2347 
2348 		wakeup_swapper = sleepq_abort(td, intrval);
2349 	} else {
2350 		/*
2351 		 * Other states do nothing with the signal immediately,
2352 		 * other than kicking ourselves if we are running.
2353 		 * It will either never be noticed, or noticed very soon.
2354 		 */
2355 #ifdef SMP
2356 		if (TD_IS_RUNNING(td) && td != curthread)
2357 			forward_signal(td);
2358 #endif
2359 	}
2360 out:
2361 	PROC_SUNLOCK(p);
2362 	thread_unlock(td);
2363 	if (wakeup_swapper)
2364 		kick_proc0();
2365 }
2366 
2367 static void
2368 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2369 {
2370 	struct thread *td2;
2371 	int wakeup_swapper;
2372 
2373 	PROC_LOCK_ASSERT(p, MA_OWNED);
2374 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2375 
2376 	wakeup_swapper = 0;
2377 	FOREACH_THREAD_IN_PROC(p, td2) {
2378 		thread_lock(td2);
2379 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2380 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2381 		    (td2->td_flags & TDF_SINTR)) {
2382 			if (td2->td_flags & TDF_SBDRY) {
2383 				if (TD_IS_SUSPENDED(td2))
2384 					wakeup_swapper |=
2385 					    thread_unsuspend_one(td2);
2386 				if (TD_ON_SLEEPQ(td2))
2387 					wakeup_swapper |=
2388 					    sleepq_abort(td2, ERESTART);
2389 			} else if (!TD_IS_SUSPENDED(td2)) {
2390 				thread_suspend_one(td2);
2391 			}
2392 		} else if (!TD_IS_SUSPENDED(td2)) {
2393 			if (sending || td != td2)
2394 				td2->td_flags |= TDF_ASTPENDING;
2395 #ifdef SMP
2396 			if (TD_IS_RUNNING(td2) && td2 != td)
2397 				forward_signal(td2);
2398 #endif
2399 		}
2400 		thread_unlock(td2);
2401 	}
2402 	if (wakeup_swapper)
2403 		kick_proc0();
2404 }
2405 
2406 int
2407 ptracestop(struct thread *td, int sig)
2408 {
2409 	struct proc *p = td->td_proc;
2410 
2411 	PROC_LOCK_ASSERT(p, MA_OWNED);
2412 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2413 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2414 
2415 	td->td_dbgflags |= TDB_XSIG;
2416 	td->td_xsig = sig;
2417 	PROC_SLOCK(p);
2418 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2419 		if (p->p_flag & P_SINGLE_EXIT) {
2420 			td->td_dbgflags &= ~TDB_XSIG;
2421 			PROC_SUNLOCK(p);
2422 			return (sig);
2423 		}
2424 		/*
2425 		 * Just make wait() to work, the last stopped thread
2426 		 * will win.
2427 		 */
2428 		p->p_xstat = sig;
2429 		p->p_xthread = td;
2430 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2431 		sig_suspend_threads(td, p, 0);
2432 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2433 			td->td_dbgflags &= ~TDB_STOPATFORK;
2434 			cv_broadcast(&p->p_dbgwait);
2435 		}
2436 stopme:
2437 		thread_suspend_switch(td);
2438 		if (!(p->p_flag & P_TRACED)) {
2439 			break;
2440 		}
2441 		if (td->td_dbgflags & TDB_SUSPEND) {
2442 			if (p->p_flag & P_SINGLE_EXIT)
2443 				break;
2444 			goto stopme;
2445 		}
2446 	}
2447 	PROC_SUNLOCK(p);
2448 	return (td->td_xsig);
2449 }
2450 
2451 static void
2452 reschedule_signals(struct proc *p, sigset_t block, int flags)
2453 {
2454 	struct sigacts *ps;
2455 	struct thread *td;
2456 	int sig;
2457 
2458 	PROC_LOCK_ASSERT(p, MA_OWNED);
2459 	if (SIGISEMPTY(p->p_siglist))
2460 		return;
2461 	ps = p->p_sigacts;
2462 	SIGSETAND(block, p->p_siglist);
2463 	while ((sig = sig_ffs(&block)) != 0) {
2464 		SIGDELSET(block, sig);
2465 		td = sigtd(p, sig, 0);
2466 		signotify(td);
2467 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2468 			mtx_lock(&ps->ps_mtx);
2469 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2470 			tdsigwakeup(td, sig, SIG_CATCH,
2471 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2472 			     ERESTART));
2473 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2474 			mtx_unlock(&ps->ps_mtx);
2475 	}
2476 }
2477 
2478 void
2479 tdsigcleanup(struct thread *td)
2480 {
2481 	struct proc *p;
2482 	sigset_t unblocked;
2483 
2484 	p = td->td_proc;
2485 	PROC_LOCK_ASSERT(p, MA_OWNED);
2486 
2487 	sigqueue_flush(&td->td_sigqueue);
2488 	if (p->p_numthreads == 1)
2489 		return;
2490 
2491 	/*
2492 	 * Since we cannot handle signals, notify signal post code
2493 	 * about this by filling the sigmask.
2494 	 *
2495 	 * Also, if needed, wake up thread(s) that do not block the
2496 	 * same signals as the exiting thread, since the thread might
2497 	 * have been selected for delivery and woken up.
2498 	 */
2499 	SIGFILLSET(unblocked);
2500 	SIGSETNAND(unblocked, td->td_sigmask);
2501 	SIGFILLSET(td->td_sigmask);
2502 	reschedule_signals(p, unblocked, 0);
2503 
2504 }
2505 
2506 /*
2507  * If the current process has received a signal (should be caught or cause
2508  * termination, should interrupt current syscall), return the signal number.
2509  * Stop signals with default action are processed immediately, then cleared;
2510  * they aren't returned.  This is checked after each entry to the system for
2511  * a syscall or trap (though this can usually be done without calling issignal
2512  * by checking the pending signal masks in cursig.) The normal call
2513  * sequence is
2514  *
2515  *	while (sig = cursig(curthread))
2516  *		postsig(sig);
2517  */
2518 static int
2519 issignal(struct thread *td, int stop_allowed)
2520 {
2521 	struct proc *p;
2522 	struct sigacts *ps;
2523 	struct sigqueue *queue;
2524 	sigset_t sigpending;
2525 	int sig, prop, newsig;
2526 
2527 	p = td->td_proc;
2528 	ps = p->p_sigacts;
2529 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2530 	PROC_LOCK_ASSERT(p, MA_OWNED);
2531 	for (;;) {
2532 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2533 
2534 		sigpending = td->td_sigqueue.sq_signals;
2535 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2536 		SIGSETNAND(sigpending, td->td_sigmask);
2537 
2538 		if (p->p_flag & P_PPWAIT)
2539 			SIG_STOPSIGMASK(sigpending);
2540 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2541 			return (0);
2542 		sig = sig_ffs(&sigpending);
2543 
2544 		if (p->p_stops & S_SIG) {
2545 			mtx_unlock(&ps->ps_mtx);
2546 			stopevent(p, S_SIG, sig);
2547 			mtx_lock(&ps->ps_mtx);
2548 		}
2549 
2550 		/*
2551 		 * We should see pending but ignored signals
2552 		 * only if P_TRACED was on when they were posted.
2553 		 */
2554 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2555 			sigqueue_delete(&td->td_sigqueue, sig);
2556 			sigqueue_delete(&p->p_sigqueue, sig);
2557 			continue;
2558 		}
2559 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2560 			/*
2561 			 * If traced, always stop.
2562 			 * Remove old signal from queue before the stop.
2563 			 * XXX shrug off debugger, it causes siginfo to
2564 			 * be thrown away.
2565 			 */
2566 			queue = &td->td_sigqueue;
2567 			td->td_dbgksi.ksi_signo = 0;
2568 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2569 				queue = &p->p_sigqueue;
2570 				sigqueue_get(queue, sig, &td->td_dbgksi);
2571 			}
2572 
2573 			mtx_unlock(&ps->ps_mtx);
2574 			newsig = ptracestop(td, sig);
2575 			mtx_lock(&ps->ps_mtx);
2576 
2577 			if (sig != newsig) {
2578 
2579 				/*
2580 				 * If parent wants us to take the signal,
2581 				 * then it will leave it in p->p_xstat;
2582 				 * otherwise we just look for signals again.
2583 			 	*/
2584 				if (newsig == 0)
2585 					continue;
2586 				sig = newsig;
2587 
2588 				/*
2589 				 * Put the new signal into td_sigqueue. If the
2590 				 * signal is being masked, look for other signals.
2591 				 */
2592 				sigqueue_add(queue, sig, NULL);
2593 				if (SIGISMEMBER(td->td_sigmask, sig))
2594 					continue;
2595 				signotify(td);
2596 			} else {
2597 				if (td->td_dbgksi.ksi_signo != 0) {
2598 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2599 					if (sigqueue_add(&td->td_sigqueue, sig,
2600 					    &td->td_dbgksi) != 0)
2601 						td->td_dbgksi.ksi_signo = 0;
2602 				}
2603 				if (td->td_dbgksi.ksi_signo == 0)
2604 					sigqueue_add(&td->td_sigqueue, sig,
2605 					    NULL);
2606 			}
2607 
2608 			/*
2609 			 * If the traced bit got turned off, go back up
2610 			 * to the top to rescan signals.  This ensures
2611 			 * that p_sig* and p_sigact are consistent.
2612 			 */
2613 			if ((p->p_flag & P_TRACED) == 0)
2614 				continue;
2615 		}
2616 
2617 		prop = sigprop(sig);
2618 
2619 		/*
2620 		 * Decide whether the signal should be returned.
2621 		 * Return the signal's number, or fall through
2622 		 * to clear it from the pending mask.
2623 		 */
2624 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2625 
2626 		case (intptr_t)SIG_DFL:
2627 			/*
2628 			 * Don't take default actions on system processes.
2629 			 */
2630 			if (p->p_pid <= 1) {
2631 #ifdef DIAGNOSTIC
2632 				/*
2633 				 * Are you sure you want to ignore SIGSEGV
2634 				 * in init? XXX
2635 				 */
2636 				printf("Process (pid %lu) got signal %d\n",
2637 					(u_long)p->p_pid, sig);
2638 #endif
2639 				break;		/* == ignore */
2640 			}
2641 			/*
2642 			 * If there is a pending stop signal to process
2643 			 * with default action, stop here,
2644 			 * then clear the signal.  However,
2645 			 * if process is member of an orphaned
2646 			 * process group, ignore tty stop signals.
2647 			 */
2648 			if (prop & SA_STOP) {
2649 				if (p->p_flag & P_TRACED ||
2650 		    		    (p->p_pgrp->pg_jobc == 0 &&
2651 				     prop & SA_TTYSTOP))
2652 					break;	/* == ignore */
2653 
2654 				/* Ignore, but do not drop the stop signal. */
2655 				if (stop_allowed != SIG_STOP_ALLOWED)
2656 					return (sig);
2657 				mtx_unlock(&ps->ps_mtx);
2658 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2659 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2660 				p->p_flag |= P_STOPPED_SIG;
2661 				p->p_xstat = sig;
2662 				PROC_SLOCK(p);
2663 				sig_suspend_threads(td, p, 0);
2664 				thread_suspend_switch(td);
2665 				PROC_SUNLOCK(p);
2666 				mtx_lock(&ps->ps_mtx);
2667 				break;
2668 			} else if (prop & SA_IGNORE) {
2669 				/*
2670 				 * Except for SIGCONT, shouldn't get here.
2671 				 * Default action is to ignore; drop it.
2672 				 */
2673 				break;		/* == ignore */
2674 			} else
2675 				return (sig);
2676 			/*NOTREACHED*/
2677 
2678 		case (intptr_t)SIG_IGN:
2679 			/*
2680 			 * Masking above should prevent us ever trying
2681 			 * to take action on an ignored signal other
2682 			 * than SIGCONT, unless process is traced.
2683 			 */
2684 			if ((prop & SA_CONT) == 0 &&
2685 			    (p->p_flag & P_TRACED) == 0)
2686 				printf("issignal\n");
2687 			break;		/* == ignore */
2688 
2689 		default:
2690 			/*
2691 			 * This signal has an action, let
2692 			 * postsig() process it.
2693 			 */
2694 			return (sig);
2695 		}
2696 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2697 		sigqueue_delete(&p->p_sigqueue, sig);
2698 	}
2699 	/* NOTREACHED */
2700 }
2701 
2702 void
2703 thread_stopped(struct proc *p)
2704 {
2705 	int n;
2706 
2707 	PROC_LOCK_ASSERT(p, MA_OWNED);
2708 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2709 	n = p->p_suspcount;
2710 	if (p == curproc)
2711 		n++;
2712 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2713 		PROC_SUNLOCK(p);
2714 		p->p_flag &= ~P_WAITED;
2715 		PROC_LOCK(p->p_pptr);
2716 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2717 			CLD_TRAPPED : CLD_STOPPED);
2718 		PROC_UNLOCK(p->p_pptr);
2719 		PROC_SLOCK(p);
2720 	}
2721 }
2722 
2723 /*
2724  * Take the action for the specified signal
2725  * from the current set of pending signals.
2726  */
2727 int
2728 postsig(sig)
2729 	register int sig;
2730 {
2731 	struct thread *td = curthread;
2732 	register struct proc *p = td->td_proc;
2733 	struct sigacts *ps;
2734 	sig_t action;
2735 	ksiginfo_t ksi;
2736 	sigset_t returnmask, mask;
2737 
2738 	KASSERT(sig != 0, ("postsig"));
2739 
2740 	PROC_LOCK_ASSERT(p, MA_OWNED);
2741 	ps = p->p_sigacts;
2742 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2743 	ksiginfo_init(&ksi);
2744 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2745 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2746 		return (0);
2747 	ksi.ksi_signo = sig;
2748 	if (ksi.ksi_code == SI_TIMER)
2749 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2750 	action = ps->ps_sigact[_SIG_IDX(sig)];
2751 #ifdef KTRACE
2752 	if (KTRPOINT(td, KTR_PSIG))
2753 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2754 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2755 #endif
2756 	if (p->p_stops & S_SIG) {
2757 		mtx_unlock(&ps->ps_mtx);
2758 		stopevent(p, S_SIG, sig);
2759 		mtx_lock(&ps->ps_mtx);
2760 	}
2761 
2762 	if (action == SIG_DFL) {
2763 		/*
2764 		 * Default action, where the default is to kill
2765 		 * the process.  (Other cases were ignored above.)
2766 		 */
2767 		mtx_unlock(&ps->ps_mtx);
2768 		sigexit(td, sig);
2769 		/* NOTREACHED */
2770 	} else {
2771 		/*
2772 		 * If we get here, the signal must be caught.
2773 		 */
2774 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2775 		    ("postsig action"));
2776 		/*
2777 		 * Set the new mask value and also defer further
2778 		 * occurrences of this signal.
2779 		 *
2780 		 * Special case: user has done a sigsuspend.  Here the
2781 		 * current mask is not of interest, but rather the
2782 		 * mask from before the sigsuspend is what we want
2783 		 * restored after the signal processing is completed.
2784 		 */
2785 		if (td->td_pflags & TDP_OLDMASK) {
2786 			returnmask = td->td_oldsigmask;
2787 			td->td_pflags &= ~TDP_OLDMASK;
2788 		} else
2789 			returnmask = td->td_sigmask;
2790 
2791 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2792 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2793 			SIGADDSET(mask, sig);
2794 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2795 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2796 
2797 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2798 			/*
2799 			 * See kern_sigaction() for origin of this code.
2800 			 */
2801 			SIGDELSET(ps->ps_sigcatch, sig);
2802 			if (sig != SIGCONT &&
2803 			    sigprop(sig) & SA_IGNORE)
2804 				SIGADDSET(ps->ps_sigignore, sig);
2805 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2806 		}
2807 		td->td_ru.ru_nsignals++;
2808 		if (p->p_sig == sig) {
2809 			p->p_code = 0;
2810 			p->p_sig = 0;
2811 		}
2812 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2813 	}
2814 	return (1);
2815 }
2816 
2817 /*
2818  * Kill the current process for stated reason.
2819  */
2820 void
2821 killproc(p, why)
2822 	struct proc *p;
2823 	char *why;
2824 {
2825 
2826 	PROC_LOCK_ASSERT(p, MA_OWNED);
2827 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2828 		p, p->p_pid, p->p_comm);
2829 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2830 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2831 	p->p_flag |= P_WKILLED;
2832 	kern_psignal(p, SIGKILL);
2833 }
2834 
2835 /*
2836  * Force the current process to exit with the specified signal, dumping core
2837  * if appropriate.  We bypass the normal tests for masked and caught signals,
2838  * allowing unrecoverable failures to terminate the process without changing
2839  * signal state.  Mark the accounting record with the signal termination.
2840  * If dumping core, save the signal number for the debugger.  Calls exit and
2841  * does not return.
2842  */
2843 void
2844 sigexit(td, sig)
2845 	struct thread *td;
2846 	int sig;
2847 {
2848 	struct proc *p = td->td_proc;
2849 
2850 	PROC_LOCK_ASSERT(p, MA_OWNED);
2851 	p->p_acflag |= AXSIG;
2852 	/*
2853 	 * We must be single-threading to generate a core dump.  This
2854 	 * ensures that the registers in the core file are up-to-date.
2855 	 * Also, the ELF dump handler assumes that the thread list doesn't
2856 	 * change out from under it.
2857 	 *
2858 	 * XXX If another thread attempts to single-thread before us
2859 	 *     (e.g. via fork()), we won't get a dump at all.
2860 	 */
2861 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2862 		p->p_sig = sig;
2863 		/*
2864 		 * Log signals which would cause core dumps
2865 		 * (Log as LOG_INFO to appease those who don't want
2866 		 * these messages.)
2867 		 * XXX : Todo, as well as euid, write out ruid too
2868 		 * Note that coredump() drops proc lock.
2869 		 */
2870 		if (coredump(td) == 0)
2871 			sig |= WCOREFLAG;
2872 		if (kern_logsigexit)
2873 			log(LOG_INFO,
2874 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2875 			    p->p_pid, p->p_comm,
2876 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2877 			    sig &~ WCOREFLAG,
2878 			    sig & WCOREFLAG ? " (core dumped)" : "");
2879 	} else
2880 		PROC_UNLOCK(p);
2881 	exit1(td, W_EXITCODE(0, sig));
2882 	/* NOTREACHED */
2883 }
2884 
2885 /*
2886  * Send queued SIGCHLD to parent when child process's state
2887  * is changed.
2888  */
2889 static void
2890 sigparent(struct proc *p, int reason, int status)
2891 {
2892 	PROC_LOCK_ASSERT(p, MA_OWNED);
2893 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2894 
2895 	if (p->p_ksi != NULL) {
2896 		p->p_ksi->ksi_signo  = SIGCHLD;
2897 		p->p_ksi->ksi_code   = reason;
2898 		p->p_ksi->ksi_status = status;
2899 		p->p_ksi->ksi_pid    = p->p_pid;
2900 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2901 		if (KSI_ONQ(p->p_ksi))
2902 			return;
2903 	}
2904 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2905 }
2906 
2907 static void
2908 childproc_jobstate(struct proc *p, int reason, int status)
2909 {
2910 	struct sigacts *ps;
2911 
2912 	PROC_LOCK_ASSERT(p, MA_OWNED);
2913 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2914 
2915 	/*
2916 	 * Wake up parent sleeping in kern_wait(), also send
2917 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2918 	 * that parent will awake, because parent may masked
2919 	 * the signal.
2920 	 */
2921 	p->p_pptr->p_flag |= P_STATCHILD;
2922 	wakeup(p->p_pptr);
2923 
2924 	ps = p->p_pptr->p_sigacts;
2925 	mtx_lock(&ps->ps_mtx);
2926 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2927 		mtx_unlock(&ps->ps_mtx);
2928 		sigparent(p, reason, status);
2929 	} else
2930 		mtx_unlock(&ps->ps_mtx);
2931 }
2932 
2933 void
2934 childproc_stopped(struct proc *p, int reason)
2935 {
2936 	childproc_jobstate(p, reason, p->p_xstat);
2937 }
2938 
2939 void
2940 childproc_continued(struct proc *p)
2941 {
2942 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2943 }
2944 
2945 void
2946 childproc_exited(struct proc *p)
2947 {
2948 	int reason;
2949 	int status = p->p_xstat; /* convert to int */
2950 
2951 	reason = CLD_EXITED;
2952 	if (WCOREDUMP(status))
2953 		reason = CLD_DUMPED;
2954 	else if (WIFSIGNALED(status))
2955 		reason = CLD_KILLED;
2956 	/*
2957 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2958 	 * done in exit1().
2959 	 */
2960 	sigparent(p, reason, status);
2961 }
2962 
2963 /*
2964  * We only have 1 character for the core count in the format
2965  * string, so the range will be 0-9
2966  */
2967 #define MAX_NUM_CORES 10
2968 static int num_cores = 5;
2969 
2970 static int
2971 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2972 {
2973 	int error;
2974 	int new_val;
2975 
2976 	new_val = num_cores;
2977 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2978 	if (error != 0 || req->newptr == NULL)
2979 		return (error);
2980 	if (new_val > MAX_NUM_CORES)
2981 		new_val = MAX_NUM_CORES;
2982 	if (new_val < 0)
2983 		new_val = 0;
2984 	num_cores = new_val;
2985 	return (0);
2986 }
2987 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
2988 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
2989 
2990 #if defined(COMPRESS_USER_CORES)
2991 int compress_user_cores = 1;
2992 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
2993         &compress_user_cores, 0, "");
2994 
2995 int compress_user_cores_gzlevel = -1; /* default level */
2996 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
2997     &compress_user_cores_gzlevel, -1, "user core gz compression level");
2998 
2999 #define GZ_SUFFIX	".gz"
3000 #define GZ_SUFFIX_LEN	3
3001 #endif
3002 
3003 static char corefilename[MAXPATHLEN] = {"%N.core"};
3004 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3005 	      sizeof(corefilename), "process corefile name format string");
3006 
3007 /*
3008  * expand_name(name, uid, pid, td, compress)
3009  * Expand the name described in corefilename, using name, uid, and pid.
3010  * corefilename is a printf-like string, with three format specifiers:
3011  *	%N	name of process ("name")
3012  *	%P	process id (pid)
3013  *	%U	user id (uid)
3014  * For example, "%N.core" is the default; they can be disabled completely
3015  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3016  * This is controlled by the sysctl variable kern.corefile (see above).
3017  */
3018 static char *
3019 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
3020     int compress)
3021 {
3022 	struct sbuf sb;
3023 	const char *format;
3024 	char *temp;
3025 	size_t i;
3026 	int indexpos;
3027 	char *hostname;
3028 
3029 	hostname = NULL;
3030 	format = corefilename;
3031 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
3032 	if (temp == NULL)
3033 		return (NULL);
3034 	indexpos = -1;
3035 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
3036 	for (i = 0; format[i]; i++) {
3037 		switch (format[i]) {
3038 		case '%':	/* Format character */
3039 			i++;
3040 			switch (format[i]) {
3041 			case '%':
3042 				sbuf_putc(&sb, '%');
3043 				break;
3044 			case 'H':	/* hostname */
3045 				if (hostname == NULL) {
3046 					hostname = malloc(MAXHOSTNAMELEN,
3047 					    M_TEMP, M_NOWAIT);
3048 					if (hostname == NULL) {
3049 						log(LOG_ERR,
3050 						    "pid %ld (%s), uid (%lu): "
3051 						    "unable to alloc memory "
3052 						    "for corefile hostname\n",
3053 						    (long)pid, name,
3054 						    (u_long)uid);
3055                                                 goto nomem;
3056                                         }
3057                                 }
3058 				getcredhostname(td->td_ucred, hostname,
3059 				    MAXHOSTNAMELEN);
3060 				sbuf_printf(&sb, "%s", hostname);
3061 				break;
3062 			case 'I':       /* autoincrementing index */
3063 				sbuf_printf(&sb, "0");
3064 				indexpos = sbuf_len(&sb) - 1;
3065 				break;
3066 			case 'N':	/* process name */
3067 				sbuf_printf(&sb, "%s", name);
3068 				break;
3069 			case 'P':	/* process id */
3070 				sbuf_printf(&sb, "%u", pid);
3071 				break;
3072 			case 'U':	/* user id */
3073 				sbuf_printf(&sb, "%u", uid);
3074 				break;
3075 			default:
3076 			  	log(LOG_ERR,
3077 				    "Unknown format character %c in "
3078 				    "corename `%s'\n", format[i], format);
3079 			}
3080 			break;
3081 		default:
3082 			sbuf_putc(&sb, format[i]);
3083 		}
3084 	}
3085 	free(hostname, M_TEMP);
3086 #ifdef COMPRESS_USER_CORES
3087 	if (compress) {
3088 		sbuf_printf(&sb, GZ_SUFFIX);
3089 	}
3090 #endif
3091 	if (sbuf_error(&sb) != 0) {
3092 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3093 		    "long\n", (long)pid, name, (u_long)uid);
3094 nomem:
3095 		sbuf_delete(&sb);
3096 		free(temp, M_TEMP);
3097 		return (NULL);
3098 	}
3099 	sbuf_finish(&sb);
3100 	sbuf_delete(&sb);
3101 
3102 	/*
3103 	 * If the core format has a %I in it, then we need to check
3104 	 * for existing corefiles before returning a name.
3105 	 * To do this we iterate over 0..num_cores to find a
3106 	 * non-existing core file name to use.
3107 	 */
3108 	if (indexpos != -1) {
3109 		struct nameidata nd;
3110 		int error, n;
3111 		int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3112 		int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
3113 		int vfslocked;
3114 
3115 		for (n = 0; n < num_cores; n++) {
3116 			temp[indexpos] = '0' + n;
3117 			NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
3118 			    temp, td);
3119 			error = vn_open(&nd, &flags, cmode, NULL);
3120 			if (error) {
3121 				if (error == EEXIST) {
3122 					continue;
3123 				}
3124 				log(LOG_ERR,
3125 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3126                                     "on initial open test, error = %d\n",
3127 				    pid, name, uid, temp, error);
3128 				free(temp, M_TEMP);
3129 				return (NULL);
3130 			}
3131 			vfslocked = NDHASGIANT(&nd);
3132 			NDFREE(&nd, NDF_ONLY_PNBUF);
3133 			VOP_UNLOCK(nd.ni_vp, 0);
3134 			error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
3135 			VFS_UNLOCK_GIANT(vfslocked);
3136 			if (error) {
3137 				log(LOG_ERR,
3138 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3139                                     "on close after initial open test, "
3140                                     "error = %d\n",
3141 				    pid, name, uid, temp, error);
3142 				free(temp, M_TEMP);
3143 				return (NULL);
3144 			}
3145 			break;
3146 		}
3147 	}
3148 	return (temp);
3149 }
3150 
3151 /*
3152  * Dump a process' core.  The main routine does some
3153  * policy checking, and creates the name of the coredump;
3154  * then it passes on a vnode and a size limit to the process-specific
3155  * coredump routine if there is one; if there _is not_ one, it returns
3156  * ENOSYS; otherwise it returns the error from the process-specific routine.
3157  */
3158 
3159 static int
3160 coredump(struct thread *td)
3161 {
3162 	struct proc *p = td->td_proc;
3163 	register struct vnode *vp;
3164 	register struct ucred *cred = td->td_ucred;
3165 	struct flock lf;
3166 	struct nameidata nd;
3167 	struct vattr vattr;
3168 	int error, error1, flags, locked;
3169 	struct mount *mp;
3170 	char *name;			/* name of corefile */
3171 	off_t limit;
3172 	int vfslocked;
3173 	int compress;
3174 
3175 #ifdef COMPRESS_USER_CORES
3176 	compress = compress_user_cores;
3177 #else
3178 	compress = 0;
3179 #endif
3180 	PROC_LOCK_ASSERT(p, MA_OWNED);
3181 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3182 	_STOPEVENT(p, S_CORE, 0);
3183 
3184 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
3185 	    compress);
3186 	if (name == NULL) {
3187 		PROC_UNLOCK(p);
3188 #ifdef AUDIT
3189 		audit_proc_coredump(td, NULL, EINVAL);
3190 #endif
3191 		return (EINVAL);
3192 	}
3193 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3194 		PROC_UNLOCK(p);
3195 #ifdef AUDIT
3196 		audit_proc_coredump(td, name, EFAULT);
3197 #endif
3198 		free(name, M_TEMP);
3199 		return (EFAULT);
3200 	}
3201 
3202 	/*
3203 	 * Note that the bulk of limit checking is done after
3204 	 * the corefile is created.  The exception is if the limit
3205 	 * for corefiles is 0, in which case we don't bother
3206 	 * creating the corefile at all.  This layout means that
3207 	 * a corefile is truncated instead of not being created,
3208 	 * if it is larger than the limit.
3209 	 */
3210 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3211 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3212 		PROC_UNLOCK(p);
3213 #ifdef AUDIT
3214 		audit_proc_coredump(td, name, EFBIG);
3215 #endif
3216 		free(name, M_TEMP);
3217 		return (EFBIG);
3218 	}
3219 	PROC_UNLOCK(p);
3220 
3221 restart:
3222 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3223 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3224 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
3225 	    cred, NULL);
3226 	if (error) {
3227 #ifdef AUDIT
3228 		audit_proc_coredump(td, name, error);
3229 #endif
3230 		free(name, M_TEMP);
3231 		return (error);
3232 	}
3233 	vfslocked = NDHASGIANT(&nd);
3234 	NDFREE(&nd, NDF_ONLY_PNBUF);
3235 	vp = nd.ni_vp;
3236 
3237 	/* Don't dump to non-regular files or files with links. */
3238 	if (vp->v_type != VREG ||
3239 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
3240 		VOP_UNLOCK(vp, 0);
3241 		error = EFAULT;
3242 		goto close;
3243 	}
3244 
3245 	VOP_UNLOCK(vp, 0);
3246 	lf.l_whence = SEEK_SET;
3247 	lf.l_start = 0;
3248 	lf.l_len = 0;
3249 	lf.l_type = F_WRLCK;
3250 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3251 
3252 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3253 		lf.l_type = F_UNLCK;
3254 		if (locked)
3255 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3256 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3257 			goto out;
3258 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3259 			goto out;
3260 		VFS_UNLOCK_GIANT(vfslocked);
3261 		goto restart;
3262 	}
3263 
3264 	VATTR_NULL(&vattr);
3265 	vattr.va_size = 0;
3266 	if (set_core_nodump_flag)
3267 		vattr.va_flags = UF_NODUMP;
3268 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3269 	VOP_SETATTR(vp, &vattr, cred);
3270 	VOP_UNLOCK(vp, 0);
3271 	vn_finished_write(mp);
3272 	PROC_LOCK(p);
3273 	p->p_acflag |= ACORE;
3274 	PROC_UNLOCK(p);
3275 
3276 	error = p->p_sysent->sv_coredump ?
3277 	  p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
3278 	  ENOSYS;
3279 
3280 	if (locked) {
3281 		lf.l_type = F_UNLCK;
3282 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3283 	}
3284 close:
3285 	error1 = vn_close(vp, FWRITE, cred, td);
3286 	if (error == 0)
3287 		error = error1;
3288 out:
3289 #ifdef AUDIT
3290 	audit_proc_coredump(td, name, error);
3291 #endif
3292 	free(name, M_TEMP);
3293 	VFS_UNLOCK_GIANT(vfslocked);
3294 	return (error);
3295 }
3296 
3297 /*
3298  * Nonexistent system call-- signal process (may want to handle it).  Flag
3299  * error in case process won't see signal immediately (blocked or ignored).
3300  */
3301 #ifndef _SYS_SYSPROTO_H_
3302 struct nosys_args {
3303 	int	dummy;
3304 };
3305 #endif
3306 /* ARGSUSED */
3307 int
3308 nosys(td, args)
3309 	struct thread *td;
3310 	struct nosys_args *args;
3311 {
3312 	struct proc *p = td->td_proc;
3313 
3314 	PROC_LOCK(p);
3315 	kern_psignal(p, SIGSYS);
3316 	PROC_UNLOCK(p);
3317 	return (ENOSYS);
3318 }
3319 
3320 /*
3321  * Send a SIGIO or SIGURG signal to a process or process group using stored
3322  * credentials rather than those of the current process.
3323  */
3324 void
3325 pgsigio(sigiop, sig, checkctty)
3326 	struct sigio **sigiop;
3327 	int sig, checkctty;
3328 {
3329 	ksiginfo_t ksi;
3330 	struct sigio *sigio;
3331 
3332 	ksiginfo_init(&ksi);
3333 	ksi.ksi_signo = sig;
3334 	ksi.ksi_code = SI_KERNEL;
3335 
3336 	SIGIO_LOCK();
3337 	sigio = *sigiop;
3338 	if (sigio == NULL) {
3339 		SIGIO_UNLOCK();
3340 		return;
3341 	}
3342 	if (sigio->sio_pgid > 0) {
3343 		PROC_LOCK(sigio->sio_proc);
3344 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3345 			kern_psignal(sigio->sio_proc, sig);
3346 		PROC_UNLOCK(sigio->sio_proc);
3347 	} else if (sigio->sio_pgid < 0) {
3348 		struct proc *p;
3349 
3350 		PGRP_LOCK(sigio->sio_pgrp);
3351 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3352 			PROC_LOCK(p);
3353 			if (p->p_state == PRS_NORMAL &&
3354 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3355 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3356 				kern_psignal(p, sig);
3357 			PROC_UNLOCK(p);
3358 		}
3359 		PGRP_UNLOCK(sigio->sio_pgrp);
3360 	}
3361 	SIGIO_UNLOCK();
3362 }
3363 
3364 static int
3365 filt_sigattach(struct knote *kn)
3366 {
3367 	struct proc *p = curproc;
3368 
3369 	kn->kn_ptr.p_proc = p;
3370 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3371 
3372 	knlist_add(&p->p_klist, kn, 0);
3373 
3374 	return (0);
3375 }
3376 
3377 static void
3378 filt_sigdetach(struct knote *kn)
3379 {
3380 	struct proc *p = kn->kn_ptr.p_proc;
3381 
3382 	knlist_remove(&p->p_klist, kn, 0);
3383 }
3384 
3385 /*
3386  * signal knotes are shared with proc knotes, so we apply a mask to
3387  * the hint in order to differentiate them from process hints.  This
3388  * could be avoided by using a signal-specific knote list, but probably
3389  * isn't worth the trouble.
3390  */
3391 static int
3392 filt_signal(struct knote *kn, long hint)
3393 {
3394 
3395 	if (hint & NOTE_SIGNAL) {
3396 		hint &= ~NOTE_SIGNAL;
3397 
3398 		if (kn->kn_id == hint)
3399 			kn->kn_data++;
3400 	}
3401 	return (kn->kn_data != 0);
3402 }
3403 
3404 struct sigacts *
3405 sigacts_alloc(void)
3406 {
3407 	struct sigacts *ps;
3408 
3409 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3410 	ps->ps_refcnt = 1;
3411 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3412 	return (ps);
3413 }
3414 
3415 void
3416 sigacts_free(struct sigacts *ps)
3417 {
3418 
3419 	mtx_lock(&ps->ps_mtx);
3420 	ps->ps_refcnt--;
3421 	if (ps->ps_refcnt == 0) {
3422 		mtx_destroy(&ps->ps_mtx);
3423 		free(ps, M_SUBPROC);
3424 	} else
3425 		mtx_unlock(&ps->ps_mtx);
3426 }
3427 
3428 struct sigacts *
3429 sigacts_hold(struct sigacts *ps)
3430 {
3431 	mtx_lock(&ps->ps_mtx);
3432 	ps->ps_refcnt++;
3433 	mtx_unlock(&ps->ps_mtx);
3434 	return (ps);
3435 }
3436 
3437 void
3438 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3439 {
3440 
3441 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3442 	mtx_lock(&src->ps_mtx);
3443 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3444 	mtx_unlock(&src->ps_mtx);
3445 }
3446 
3447 int
3448 sigacts_shared(struct sigacts *ps)
3449 {
3450 	int shared;
3451 
3452 	mtx_lock(&ps->ps_mtx);
3453 	shared = ps->ps_refcnt > 1;
3454 	mtx_unlock(&ps->ps_mtx);
3455 	return (shared);
3456 }
3457