xref: /freebsd/sys/kern/kern_sig.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_gzio.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/refcount.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procdesc.h>
66 #include <sys/posix4.h>
67 #include <sys/pioctl.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/sdt.h>
71 #include <sys/sbuf.h>
72 #include <sys/sleepqueue.h>
73 #include <sys/smp.h>
74 #include <sys/stat.h>
75 #include <sys/sx.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/sysctl.h>
78 #include <sys/sysent.h>
79 #include <sys/syslog.h>
80 #include <sys/sysproto.h>
81 #include <sys/timers.h>
82 #include <sys/unistd.h>
83 #include <sys/wait.h>
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #include <sys/jail.h>
89 
90 #include <machine/cpu.h>
91 
92 #include <security/audit/audit.h>
93 
94 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95 
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE3(proc, , , signal__send,
98     "struct thread *", "struct proc *", "int");
99 SDT_PROBE_DEFINE2(proc, , , signal__clear,
100     "int", "ksiginfo_t *");
101 SDT_PROBE_DEFINE3(proc, , , signal__discard,
102     "struct thread *", "struct proc *", "int");
103 
104 static int	coredump(struct thread *);
105 static int	killpg1(struct thread *td, int sig, int pgid, int all,
106 		    ksiginfo_t *ksi);
107 static int	issignal(struct thread *td);
108 static int	sigprop(int sig);
109 static void	tdsigwakeup(struct thread *, int, sig_t, int);
110 static int	sig_suspend_threads(struct thread *, struct proc *, int);
111 static int	filt_sigattach(struct knote *kn);
112 static void	filt_sigdetach(struct knote *kn);
113 static int	filt_signal(struct knote *kn, long hint);
114 static struct thread *sigtd(struct proc *p, int sig, int prop);
115 static void	sigqueue_start(void);
116 
117 static uma_zone_t	ksiginfo_zone = NULL;
118 struct filterops sig_filtops = {
119 	.f_isfd = 0,
120 	.f_attach = filt_sigattach,
121 	.f_detach = filt_sigdetach,
122 	.f_event = filt_signal,
123 };
124 
125 static int	kern_logsigexit = 1;
126 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
127     &kern_logsigexit, 0,
128     "Log processes quitting on abnormal signals to syslog(3)");
129 
130 static int	kern_forcesigexit = 1;
131 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
132     &kern_forcesigexit, 0, "Force trap signal to be handled");
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
135     "POSIX real time signal");
136 
137 static int	max_pending_per_proc = 128;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139     &max_pending_per_proc, 0, "Max pending signals per proc");
140 
141 static int	preallocate_siginfo = 1024;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
143     &preallocate_siginfo, 0, "Preallocated signal memory size");
144 
145 static int	signal_overflow = 0;
146 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
147     &signal_overflow, 0, "Number of signals overflew");
148 
149 static int	signal_alloc_fail = 0;
150 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
151     &signal_alloc_fail, 0, "signals failed to be allocated");
152 
153 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
154 
155 /*
156  * Policy -- Can ucred cr1 send SIGIO to process cr2?
157  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
158  * in the right situations.
159  */
160 #define CANSIGIO(cr1, cr2) \
161 	((cr1)->cr_uid == 0 || \
162 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
163 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
164 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
165 	    (cr1)->cr_uid == (cr2)->cr_uid)
166 
167 static int	sugid_coredump;
168 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
169     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
170 
171 static int	capmode_coredump;
172 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
173     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
174 
175 static int	do_coredump = 1;
176 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
177 	&do_coredump, 0, "Enable/Disable coredumps");
178 
179 static int	set_core_nodump_flag = 0;
180 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
181 	0, "Enable setting the NODUMP flag on coredump files");
182 
183 static int	coredump_devctl = 0;
184 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
185 	0, "Generate a devctl notification when processes coredump");
186 
187 /*
188  * Signal properties and actions.
189  * The array below categorizes the signals and their default actions
190  * according to the following properties:
191  */
192 #define	SIGPROP_KILL		0x01	/* terminates process by default */
193 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
194 #define	SIGPROP_STOP		0x04	/* suspend process */
195 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
196 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
197 #define	SIGPROP_CONT		0x20	/* continue if suspended */
198 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
199 
200 static int sigproptbl[NSIG] = {
201 	[SIGHUP] =	SIGPROP_KILL,
202 	[SIGINT] =	SIGPROP_KILL,
203 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
204 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
205 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
206 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
207 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
208 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGKILL] =	SIGPROP_KILL,
210 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGPIPE] =	SIGPROP_KILL,
214 	[SIGALRM] =	SIGPROP_KILL,
215 	[SIGTERM] =	SIGPROP_KILL,
216 	[SIGURG] =	SIGPROP_IGNORE,
217 	[SIGSTOP] =	SIGPROP_STOP,
218 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
219 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
220 	[SIGCHLD] =	SIGPROP_IGNORE,
221 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
222 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
223 	[SIGIO] =	SIGPROP_IGNORE,
224 	[SIGXCPU] =	SIGPROP_KILL,
225 	[SIGXFSZ] =	SIGPROP_KILL,
226 	[SIGVTALRM] =	SIGPROP_KILL,
227 	[SIGPROF] =	SIGPROP_KILL,
228 	[SIGWINCH] =	SIGPROP_IGNORE,
229 	[SIGINFO] =	SIGPROP_IGNORE,
230 	[SIGUSR1] =	SIGPROP_KILL,
231 	[SIGUSR2] =	SIGPROP_KILL,
232 };
233 
234 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
235 
236 static void
237 sigqueue_start(void)
238 {
239 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
240 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
241 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
242 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
243 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
244 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
245 }
246 
247 ksiginfo_t *
248 ksiginfo_alloc(int wait)
249 {
250 	int flags;
251 
252 	flags = M_ZERO;
253 	if (! wait)
254 		flags |= M_NOWAIT;
255 	if (ksiginfo_zone != NULL)
256 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
257 	return (NULL);
258 }
259 
260 void
261 ksiginfo_free(ksiginfo_t *ksi)
262 {
263 	uma_zfree(ksiginfo_zone, ksi);
264 }
265 
266 static __inline int
267 ksiginfo_tryfree(ksiginfo_t *ksi)
268 {
269 	if (!(ksi->ksi_flags & KSI_EXT)) {
270 		uma_zfree(ksiginfo_zone, ksi);
271 		return (1);
272 	}
273 	return (0);
274 }
275 
276 void
277 sigqueue_init(sigqueue_t *list, struct proc *p)
278 {
279 	SIGEMPTYSET(list->sq_signals);
280 	SIGEMPTYSET(list->sq_kill);
281 	SIGEMPTYSET(list->sq_ptrace);
282 	TAILQ_INIT(&list->sq_list);
283 	list->sq_proc = p;
284 	list->sq_flags = SQ_INIT;
285 }
286 
287 /*
288  * Get a signal's ksiginfo.
289  * Return:
290  *	0	-	signal not found
291  *	others	-	signal number
292  */
293 static int
294 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
295 {
296 	struct proc *p = sq->sq_proc;
297 	struct ksiginfo *ksi, *next;
298 	int count = 0;
299 
300 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
301 
302 	if (!SIGISMEMBER(sq->sq_signals, signo))
303 		return (0);
304 
305 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
306 		count++;
307 		SIGDELSET(sq->sq_ptrace, signo);
308 		si->ksi_flags |= KSI_PTRACE;
309 	}
310 	if (SIGISMEMBER(sq->sq_kill, signo)) {
311 		count++;
312 		if (count == 1)
313 			SIGDELSET(sq->sq_kill, signo);
314 	}
315 
316 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
317 		if (ksi->ksi_signo == signo) {
318 			if (count == 0) {
319 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
320 				ksi->ksi_sigq = NULL;
321 				ksiginfo_copy(ksi, si);
322 				if (ksiginfo_tryfree(ksi) && p != NULL)
323 					p->p_pendingcnt--;
324 			}
325 			if (++count > 1)
326 				break;
327 		}
328 	}
329 
330 	if (count <= 1)
331 		SIGDELSET(sq->sq_signals, signo);
332 	si->ksi_signo = signo;
333 	return (signo);
334 }
335 
336 void
337 sigqueue_take(ksiginfo_t *ksi)
338 {
339 	struct ksiginfo *kp;
340 	struct proc	*p;
341 	sigqueue_t	*sq;
342 
343 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
344 		return;
345 
346 	p = sq->sq_proc;
347 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
348 	ksi->ksi_sigq = NULL;
349 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
350 		p->p_pendingcnt--;
351 
352 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
353 	     kp = TAILQ_NEXT(kp, ksi_link)) {
354 		if (kp->ksi_signo == ksi->ksi_signo)
355 			break;
356 	}
357 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
358 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
359 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
360 }
361 
362 static int
363 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
364 {
365 	struct proc *p = sq->sq_proc;
366 	struct ksiginfo *ksi;
367 	int ret = 0;
368 
369 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
370 
371 	/*
372 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
373 	 * for these signals.
374 	 */
375 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
376 		SIGADDSET(sq->sq_kill, signo);
377 		goto out_set_bit;
378 	}
379 
380 	/* directly insert the ksi, don't copy it */
381 	if (si->ksi_flags & KSI_INS) {
382 		if (si->ksi_flags & KSI_HEAD)
383 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
384 		else
385 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
386 		si->ksi_sigq = sq;
387 		goto out_set_bit;
388 	}
389 
390 	if (__predict_false(ksiginfo_zone == NULL)) {
391 		SIGADDSET(sq->sq_kill, signo);
392 		goto out_set_bit;
393 	}
394 
395 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
396 		signal_overflow++;
397 		ret = EAGAIN;
398 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
399 		signal_alloc_fail++;
400 		ret = EAGAIN;
401 	} else {
402 		if (p != NULL)
403 			p->p_pendingcnt++;
404 		ksiginfo_copy(si, ksi);
405 		ksi->ksi_signo = signo;
406 		if (si->ksi_flags & KSI_HEAD)
407 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
408 		else
409 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
410 		ksi->ksi_sigq = sq;
411 	}
412 
413 	if (ret != 0) {
414 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
415 			SIGADDSET(sq->sq_ptrace, signo);
416 			ret = 0;
417 			goto out_set_bit;
418 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
419 		    (si->ksi_flags & KSI_SIGQ) == 0) {
420 			SIGADDSET(sq->sq_kill, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		}
424 		return (ret);
425 	}
426 
427 out_set_bit:
428 	SIGADDSET(sq->sq_signals, signo);
429 	return (ret);
430 }
431 
432 void
433 sigqueue_flush(sigqueue_t *sq)
434 {
435 	struct proc *p = sq->sq_proc;
436 	ksiginfo_t *ksi;
437 
438 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
439 
440 	if (p != NULL)
441 		PROC_LOCK_ASSERT(p, MA_OWNED);
442 
443 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
444 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
445 		ksi->ksi_sigq = NULL;
446 		if (ksiginfo_tryfree(ksi) && p != NULL)
447 			p->p_pendingcnt--;
448 	}
449 
450 	SIGEMPTYSET(sq->sq_signals);
451 	SIGEMPTYSET(sq->sq_kill);
452 	SIGEMPTYSET(sq->sq_ptrace);
453 }
454 
455 static void
456 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
457 {
458 	sigset_t tmp;
459 	struct proc *p1, *p2;
460 	ksiginfo_t *ksi, *next;
461 
462 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
463 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
464 	p1 = src->sq_proc;
465 	p2 = dst->sq_proc;
466 	/* Move siginfo to target list */
467 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
468 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
469 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
470 			if (p1 != NULL)
471 				p1->p_pendingcnt--;
472 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
473 			ksi->ksi_sigq = dst;
474 			if (p2 != NULL)
475 				p2->p_pendingcnt++;
476 		}
477 	}
478 
479 	/* Move pending bits to target list */
480 	tmp = src->sq_kill;
481 	SIGSETAND(tmp, *set);
482 	SIGSETOR(dst->sq_kill, tmp);
483 	SIGSETNAND(src->sq_kill, tmp);
484 
485 	tmp = src->sq_ptrace;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_ptrace, tmp);
488 	SIGSETNAND(src->sq_ptrace, tmp);
489 
490 	tmp = src->sq_signals;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_signals, tmp);
493 	SIGSETNAND(src->sq_signals, tmp);
494 }
495 
496 #if 0
497 static void
498 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
499 {
500 	sigset_t set;
501 
502 	SIGEMPTYSET(set);
503 	SIGADDSET(set, signo);
504 	sigqueue_move_set(src, dst, &set);
505 }
506 #endif
507 
508 static void
509 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
510 {
511 	struct proc *p = sq->sq_proc;
512 	ksiginfo_t *ksi, *next;
513 
514 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
515 
516 	/* Remove siginfo queue */
517 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
518 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
519 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
520 			ksi->ksi_sigq = NULL;
521 			if (ksiginfo_tryfree(ksi) && p != NULL)
522 				p->p_pendingcnt--;
523 		}
524 	}
525 	SIGSETNAND(sq->sq_kill, *set);
526 	SIGSETNAND(sq->sq_ptrace, *set);
527 	SIGSETNAND(sq->sq_signals, *set);
528 }
529 
530 void
531 sigqueue_delete(sigqueue_t *sq, int signo)
532 {
533 	sigset_t set;
534 
535 	SIGEMPTYSET(set);
536 	SIGADDSET(set, signo);
537 	sigqueue_delete_set(sq, &set);
538 }
539 
540 /* Remove a set of signals for a process */
541 static void
542 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
543 {
544 	sigqueue_t worklist;
545 	struct thread *td0;
546 
547 	PROC_LOCK_ASSERT(p, MA_OWNED);
548 
549 	sigqueue_init(&worklist, NULL);
550 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
551 
552 	FOREACH_THREAD_IN_PROC(p, td0)
553 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
554 
555 	sigqueue_flush(&worklist);
556 }
557 
558 void
559 sigqueue_delete_proc(struct proc *p, int signo)
560 {
561 	sigset_t set;
562 
563 	SIGEMPTYSET(set);
564 	SIGADDSET(set, signo);
565 	sigqueue_delete_set_proc(p, &set);
566 }
567 
568 static void
569 sigqueue_delete_stopmask_proc(struct proc *p)
570 {
571 	sigset_t set;
572 
573 	SIGEMPTYSET(set);
574 	SIGADDSET(set, SIGSTOP);
575 	SIGADDSET(set, SIGTSTP);
576 	SIGADDSET(set, SIGTTIN);
577 	SIGADDSET(set, SIGTTOU);
578 	sigqueue_delete_set_proc(p, &set);
579 }
580 
581 /*
582  * Determine signal that should be delivered to thread td, the current
583  * thread, 0 if none.  If there is a pending stop signal with default
584  * action, the process stops in issignal().
585  */
586 int
587 cursig(struct thread *td)
588 {
589 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
590 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
591 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
592 	return (SIGPENDING(td) ? issignal(td) : 0);
593 }
594 
595 /*
596  * Arrange for ast() to handle unmasked pending signals on return to user
597  * mode.  This must be called whenever a signal is added to td_sigqueue or
598  * unmasked in td_sigmask.
599  */
600 void
601 signotify(struct thread *td)
602 {
603 	struct proc *p;
604 
605 	p = td->td_proc;
606 
607 	PROC_LOCK_ASSERT(p, MA_OWNED);
608 
609 	if (SIGPENDING(td)) {
610 		thread_lock(td);
611 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
612 		thread_unlock(td);
613 	}
614 }
615 
616 int
617 sigonstack(size_t sp)
618 {
619 	struct thread *td = curthread;
620 
621 	return ((td->td_pflags & TDP_ALTSTACK) ?
622 #if defined(COMPAT_43)
623 	    ((td->td_sigstk.ss_size == 0) ?
624 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
625 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
626 #else
627 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
628 #endif
629 	    : 0);
630 }
631 
632 static __inline int
633 sigprop(int sig)
634 {
635 
636 	if (sig > 0 && sig < nitems(sigproptbl))
637 		return (sigproptbl[sig]);
638 	return (0);
639 }
640 
641 int
642 sig_ffs(sigset_t *set)
643 {
644 	int i;
645 
646 	for (i = 0; i < _SIG_WORDS; i++)
647 		if (set->__bits[i])
648 			return (ffs(set->__bits[i]) + (i * 32));
649 	return (0);
650 }
651 
652 static bool
653 sigact_flag_test(const struct sigaction *act, int flag)
654 {
655 
656 	/*
657 	 * SA_SIGINFO is reset when signal disposition is set to
658 	 * ignore or default.  Other flags are kept according to user
659 	 * settings.
660 	 */
661 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
662 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
663 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
664 }
665 
666 /*
667  * kern_sigaction
668  * sigaction
669  * freebsd4_sigaction
670  * osigaction
671  */
672 int
673 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
674     struct sigaction *oact, int flags)
675 {
676 	struct sigacts *ps;
677 	struct proc *p = td->td_proc;
678 
679 	if (!_SIG_VALID(sig))
680 		return (EINVAL);
681 	if (act != NULL && act->sa_handler != SIG_DFL &&
682 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
683 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
684 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
685 		return (EINVAL);
686 
687 	PROC_LOCK(p);
688 	ps = p->p_sigacts;
689 	mtx_lock(&ps->ps_mtx);
690 	if (oact) {
691 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
692 		oact->sa_flags = 0;
693 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
694 			oact->sa_flags |= SA_ONSTACK;
695 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
696 			oact->sa_flags |= SA_RESTART;
697 		if (SIGISMEMBER(ps->ps_sigreset, sig))
698 			oact->sa_flags |= SA_RESETHAND;
699 		if (SIGISMEMBER(ps->ps_signodefer, sig))
700 			oact->sa_flags |= SA_NODEFER;
701 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
702 			oact->sa_flags |= SA_SIGINFO;
703 			oact->sa_sigaction =
704 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
705 		} else
706 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
707 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
708 			oact->sa_flags |= SA_NOCLDSTOP;
709 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
710 			oact->sa_flags |= SA_NOCLDWAIT;
711 	}
712 	if (act) {
713 		if ((sig == SIGKILL || sig == SIGSTOP) &&
714 		    act->sa_handler != SIG_DFL) {
715 			mtx_unlock(&ps->ps_mtx);
716 			PROC_UNLOCK(p);
717 			return (EINVAL);
718 		}
719 
720 		/*
721 		 * Change setting atomically.
722 		 */
723 
724 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
725 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
726 		if (sigact_flag_test(act, SA_SIGINFO)) {
727 			ps->ps_sigact[_SIG_IDX(sig)] =
728 			    (__sighandler_t *)act->sa_sigaction;
729 			SIGADDSET(ps->ps_siginfo, sig);
730 		} else {
731 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
732 			SIGDELSET(ps->ps_siginfo, sig);
733 		}
734 		if (!sigact_flag_test(act, SA_RESTART))
735 			SIGADDSET(ps->ps_sigintr, sig);
736 		else
737 			SIGDELSET(ps->ps_sigintr, sig);
738 		if (sigact_flag_test(act, SA_ONSTACK))
739 			SIGADDSET(ps->ps_sigonstack, sig);
740 		else
741 			SIGDELSET(ps->ps_sigonstack, sig);
742 		if (sigact_flag_test(act, SA_RESETHAND))
743 			SIGADDSET(ps->ps_sigreset, sig);
744 		else
745 			SIGDELSET(ps->ps_sigreset, sig);
746 		if (sigact_flag_test(act, SA_NODEFER))
747 			SIGADDSET(ps->ps_signodefer, sig);
748 		else
749 			SIGDELSET(ps->ps_signodefer, sig);
750 		if (sig == SIGCHLD) {
751 			if (act->sa_flags & SA_NOCLDSTOP)
752 				ps->ps_flag |= PS_NOCLDSTOP;
753 			else
754 				ps->ps_flag &= ~PS_NOCLDSTOP;
755 			if (act->sa_flags & SA_NOCLDWAIT) {
756 				/*
757 				 * Paranoia: since SA_NOCLDWAIT is implemented
758 				 * by reparenting the dying child to PID 1 (and
759 				 * trust it to reap the zombie), PID 1 itself
760 				 * is forbidden to set SA_NOCLDWAIT.
761 				 */
762 				if (p->p_pid == 1)
763 					ps->ps_flag &= ~PS_NOCLDWAIT;
764 				else
765 					ps->ps_flag |= PS_NOCLDWAIT;
766 			} else
767 				ps->ps_flag &= ~PS_NOCLDWAIT;
768 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
769 				ps->ps_flag |= PS_CLDSIGIGN;
770 			else
771 				ps->ps_flag &= ~PS_CLDSIGIGN;
772 		}
773 		/*
774 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
775 		 * and for signals set to SIG_DFL where the default is to
776 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
777 		 * have to restart the process.
778 		 */
779 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
780 		    (sigprop(sig) & SIGPROP_IGNORE &&
781 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
782 			/* never to be seen again */
783 			sigqueue_delete_proc(p, sig);
784 			if (sig != SIGCONT)
785 				/* easier in psignal */
786 				SIGADDSET(ps->ps_sigignore, sig);
787 			SIGDELSET(ps->ps_sigcatch, sig);
788 		} else {
789 			SIGDELSET(ps->ps_sigignore, sig);
790 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
791 				SIGDELSET(ps->ps_sigcatch, sig);
792 			else
793 				SIGADDSET(ps->ps_sigcatch, sig);
794 		}
795 #ifdef COMPAT_FREEBSD4
796 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
797 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
798 		    (flags & KSA_FREEBSD4) == 0)
799 			SIGDELSET(ps->ps_freebsd4, sig);
800 		else
801 			SIGADDSET(ps->ps_freebsd4, sig);
802 #endif
803 #ifdef COMPAT_43
804 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
805 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
806 		    (flags & KSA_OSIGSET) == 0)
807 			SIGDELSET(ps->ps_osigset, sig);
808 		else
809 			SIGADDSET(ps->ps_osigset, sig);
810 #endif
811 	}
812 	mtx_unlock(&ps->ps_mtx);
813 	PROC_UNLOCK(p);
814 	return (0);
815 }
816 
817 #ifndef _SYS_SYSPROTO_H_
818 struct sigaction_args {
819 	int	sig;
820 	struct	sigaction *act;
821 	struct	sigaction *oact;
822 };
823 #endif
824 int
825 sys_sigaction(struct thread *td, struct sigaction_args *uap)
826 {
827 	struct sigaction act, oact;
828 	struct sigaction *actp, *oactp;
829 	int error;
830 
831 	actp = (uap->act != NULL) ? &act : NULL;
832 	oactp = (uap->oact != NULL) ? &oact : NULL;
833 	if (actp) {
834 		error = copyin(uap->act, actp, sizeof(act));
835 		if (error)
836 			return (error);
837 	}
838 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
839 	if (oactp && !error)
840 		error = copyout(oactp, uap->oact, sizeof(oact));
841 	return (error);
842 }
843 
844 #ifdef COMPAT_FREEBSD4
845 #ifndef _SYS_SYSPROTO_H_
846 struct freebsd4_sigaction_args {
847 	int	sig;
848 	struct	sigaction *act;
849 	struct	sigaction *oact;
850 };
851 #endif
852 int
853 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
854 {
855 	struct sigaction act, oact;
856 	struct sigaction *actp, *oactp;
857 	int error;
858 
859 
860 	actp = (uap->act != NULL) ? &act : NULL;
861 	oactp = (uap->oact != NULL) ? &oact : NULL;
862 	if (actp) {
863 		error = copyin(uap->act, actp, sizeof(act));
864 		if (error)
865 			return (error);
866 	}
867 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
868 	if (oactp && !error)
869 		error = copyout(oactp, uap->oact, sizeof(oact));
870 	return (error);
871 }
872 #endif	/* COMAPT_FREEBSD4 */
873 
874 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
875 #ifndef _SYS_SYSPROTO_H_
876 struct osigaction_args {
877 	int	signum;
878 	struct	osigaction *nsa;
879 	struct	osigaction *osa;
880 };
881 #endif
882 int
883 osigaction(struct thread *td, struct osigaction_args *uap)
884 {
885 	struct osigaction sa;
886 	struct sigaction nsa, osa;
887 	struct sigaction *nsap, *osap;
888 	int error;
889 
890 	if (uap->signum <= 0 || uap->signum >= ONSIG)
891 		return (EINVAL);
892 
893 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
894 	osap = (uap->osa != NULL) ? &osa : NULL;
895 
896 	if (nsap) {
897 		error = copyin(uap->nsa, &sa, sizeof(sa));
898 		if (error)
899 			return (error);
900 		nsap->sa_handler = sa.sa_handler;
901 		nsap->sa_flags = sa.sa_flags;
902 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
903 	}
904 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
905 	if (osap && !error) {
906 		sa.sa_handler = osap->sa_handler;
907 		sa.sa_flags = osap->sa_flags;
908 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
909 		error = copyout(&sa, uap->osa, sizeof(sa));
910 	}
911 	return (error);
912 }
913 
914 #if !defined(__i386__)
915 /* Avoid replicating the same stub everywhere */
916 int
917 osigreturn(struct thread *td, struct osigreturn_args *uap)
918 {
919 
920 	return (nosys(td, (struct nosys_args *)uap));
921 }
922 #endif
923 #endif /* COMPAT_43 */
924 
925 /*
926  * Initialize signal state for process 0;
927  * set to ignore signals that are ignored by default.
928  */
929 void
930 siginit(struct proc *p)
931 {
932 	register int i;
933 	struct sigacts *ps;
934 
935 	PROC_LOCK(p);
936 	ps = p->p_sigacts;
937 	mtx_lock(&ps->ps_mtx);
938 	for (i = 1; i <= NSIG; i++) {
939 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
940 			SIGADDSET(ps->ps_sigignore, i);
941 		}
942 	}
943 	mtx_unlock(&ps->ps_mtx);
944 	PROC_UNLOCK(p);
945 }
946 
947 /*
948  * Reset specified signal to the default disposition.
949  */
950 static void
951 sigdflt(struct sigacts *ps, int sig)
952 {
953 
954 	mtx_assert(&ps->ps_mtx, MA_OWNED);
955 	SIGDELSET(ps->ps_sigcatch, sig);
956 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
957 		SIGADDSET(ps->ps_sigignore, sig);
958 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
959 	SIGDELSET(ps->ps_siginfo, sig);
960 }
961 
962 /*
963  * Reset signals for an exec of the specified process.
964  */
965 void
966 execsigs(struct proc *p)
967 {
968 	sigset_t osigignore;
969 	struct sigacts *ps;
970 	int sig;
971 	struct thread *td;
972 
973 	/*
974 	 * Reset caught signals.  Held signals remain held
975 	 * through td_sigmask (unless they were caught,
976 	 * and are now ignored by default).
977 	 */
978 	PROC_LOCK_ASSERT(p, MA_OWNED);
979 	td = FIRST_THREAD_IN_PROC(p);
980 	ps = p->p_sigacts;
981 	mtx_lock(&ps->ps_mtx);
982 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
983 		sig = sig_ffs(&ps->ps_sigcatch);
984 		sigdflt(ps, sig);
985 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
986 			sigqueue_delete_proc(p, sig);
987 	}
988 
989 	/*
990 	 * As CloudABI processes cannot modify signal handlers, fully
991 	 * reset all signals to their default behavior. Do ignore
992 	 * SIGPIPE, as it would otherwise be impossible to recover from
993 	 * writes to broken pipes and sockets.
994 	 */
995 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
996 		osigignore = ps->ps_sigignore;
997 		while (SIGNOTEMPTY(osigignore)) {
998 			sig = sig_ffs(&osigignore);
999 			SIGDELSET(osigignore, sig);
1000 			if (sig != SIGPIPE)
1001 				sigdflt(ps, sig);
1002 		}
1003 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1004 	}
1005 
1006 	/*
1007 	 * Reset stack state to the user stack.
1008 	 * Clear set of signals caught on the signal stack.
1009 	 */
1010 	td->td_sigstk.ss_flags = SS_DISABLE;
1011 	td->td_sigstk.ss_size = 0;
1012 	td->td_sigstk.ss_sp = 0;
1013 	td->td_pflags &= ~TDP_ALTSTACK;
1014 	/*
1015 	 * Reset no zombies if child dies flag as Solaris does.
1016 	 */
1017 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1018 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1019 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1020 	mtx_unlock(&ps->ps_mtx);
1021 }
1022 
1023 /*
1024  * kern_sigprocmask()
1025  *
1026  *	Manipulate signal mask.
1027  */
1028 int
1029 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1030     int flags)
1031 {
1032 	sigset_t new_block, oset1;
1033 	struct proc *p;
1034 	int error;
1035 
1036 	p = td->td_proc;
1037 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1038 		PROC_LOCK_ASSERT(p, MA_OWNED);
1039 	else
1040 		PROC_LOCK(p);
1041 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1042 	    ? MA_OWNED : MA_NOTOWNED);
1043 	if (oset != NULL)
1044 		*oset = td->td_sigmask;
1045 
1046 	error = 0;
1047 	if (set != NULL) {
1048 		switch (how) {
1049 		case SIG_BLOCK:
1050 			SIG_CANTMASK(*set);
1051 			oset1 = td->td_sigmask;
1052 			SIGSETOR(td->td_sigmask, *set);
1053 			new_block = td->td_sigmask;
1054 			SIGSETNAND(new_block, oset1);
1055 			break;
1056 		case SIG_UNBLOCK:
1057 			SIGSETNAND(td->td_sigmask, *set);
1058 			signotify(td);
1059 			goto out;
1060 		case SIG_SETMASK:
1061 			SIG_CANTMASK(*set);
1062 			oset1 = td->td_sigmask;
1063 			if (flags & SIGPROCMASK_OLD)
1064 				SIGSETLO(td->td_sigmask, *set);
1065 			else
1066 				td->td_sigmask = *set;
1067 			new_block = td->td_sigmask;
1068 			SIGSETNAND(new_block, oset1);
1069 			signotify(td);
1070 			break;
1071 		default:
1072 			error = EINVAL;
1073 			goto out;
1074 		}
1075 
1076 		/*
1077 		 * The new_block set contains signals that were not previously
1078 		 * blocked, but are blocked now.
1079 		 *
1080 		 * In case we block any signal that was not previously blocked
1081 		 * for td, and process has the signal pending, try to schedule
1082 		 * signal delivery to some thread that does not block the
1083 		 * signal, possibly waking it up.
1084 		 */
1085 		if (p->p_numthreads != 1)
1086 			reschedule_signals(p, new_block, flags);
1087 	}
1088 
1089 out:
1090 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1091 		PROC_UNLOCK(p);
1092 	return (error);
1093 }
1094 
1095 #ifndef _SYS_SYSPROTO_H_
1096 struct sigprocmask_args {
1097 	int	how;
1098 	const sigset_t *set;
1099 	sigset_t *oset;
1100 };
1101 #endif
1102 int
1103 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1104 {
1105 	sigset_t set, oset;
1106 	sigset_t *setp, *osetp;
1107 	int error;
1108 
1109 	setp = (uap->set != NULL) ? &set : NULL;
1110 	osetp = (uap->oset != NULL) ? &oset : NULL;
1111 	if (setp) {
1112 		error = copyin(uap->set, setp, sizeof(set));
1113 		if (error)
1114 			return (error);
1115 	}
1116 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1117 	if (osetp && !error) {
1118 		error = copyout(osetp, uap->oset, sizeof(oset));
1119 	}
1120 	return (error);
1121 }
1122 
1123 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1124 #ifndef _SYS_SYSPROTO_H_
1125 struct osigprocmask_args {
1126 	int	how;
1127 	osigset_t mask;
1128 };
1129 #endif
1130 int
1131 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1132 {
1133 	sigset_t set, oset;
1134 	int error;
1135 
1136 	OSIG2SIG(uap->mask, set);
1137 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1138 	SIG2OSIG(oset, td->td_retval[0]);
1139 	return (error);
1140 }
1141 #endif /* COMPAT_43 */
1142 
1143 int
1144 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1145 {
1146 	ksiginfo_t ksi;
1147 	sigset_t set;
1148 	int error;
1149 
1150 	error = copyin(uap->set, &set, sizeof(set));
1151 	if (error) {
1152 		td->td_retval[0] = error;
1153 		return (0);
1154 	}
1155 
1156 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1157 	if (error) {
1158 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1159 			error = ERESTART;
1160 		if (error == ERESTART)
1161 			return (error);
1162 		td->td_retval[0] = error;
1163 		return (0);
1164 	}
1165 
1166 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1167 	td->td_retval[0] = error;
1168 	return (0);
1169 }
1170 
1171 int
1172 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1173 {
1174 	struct timespec ts;
1175 	struct timespec *timeout;
1176 	sigset_t set;
1177 	ksiginfo_t ksi;
1178 	int error;
1179 
1180 	if (uap->timeout) {
1181 		error = copyin(uap->timeout, &ts, sizeof(ts));
1182 		if (error)
1183 			return (error);
1184 
1185 		timeout = &ts;
1186 	} else
1187 		timeout = NULL;
1188 
1189 	error = copyin(uap->set, &set, sizeof(set));
1190 	if (error)
1191 		return (error);
1192 
1193 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1194 	if (error)
1195 		return (error);
1196 
1197 	if (uap->info)
1198 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1199 
1200 	if (error == 0)
1201 		td->td_retval[0] = ksi.ksi_signo;
1202 	return (error);
1203 }
1204 
1205 int
1206 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1207 {
1208 	ksiginfo_t ksi;
1209 	sigset_t set;
1210 	int error;
1211 
1212 	error = copyin(uap->set, &set, sizeof(set));
1213 	if (error)
1214 		return (error);
1215 
1216 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1217 	if (error)
1218 		return (error);
1219 
1220 	if (uap->info)
1221 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1222 
1223 	if (error == 0)
1224 		td->td_retval[0] = ksi.ksi_signo;
1225 	return (error);
1226 }
1227 
1228 int
1229 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1230 	struct timespec *timeout)
1231 {
1232 	struct sigacts *ps;
1233 	sigset_t saved_mask, new_block;
1234 	struct proc *p;
1235 	int error, sig, timo, timevalid = 0;
1236 	struct timespec rts, ets, ts;
1237 	struct timeval tv;
1238 
1239 	p = td->td_proc;
1240 	error = 0;
1241 	ets.tv_sec = 0;
1242 	ets.tv_nsec = 0;
1243 
1244 	if (timeout != NULL) {
1245 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1246 			timevalid = 1;
1247 			getnanouptime(&rts);
1248 			ets = rts;
1249 			timespecadd(&ets, timeout);
1250 		}
1251 	}
1252 	ksiginfo_init(ksi);
1253 	/* Some signals can not be waited for. */
1254 	SIG_CANTMASK(waitset);
1255 	ps = p->p_sigacts;
1256 	PROC_LOCK(p);
1257 	saved_mask = td->td_sigmask;
1258 	SIGSETNAND(td->td_sigmask, waitset);
1259 	for (;;) {
1260 		mtx_lock(&ps->ps_mtx);
1261 		sig = cursig(td);
1262 		mtx_unlock(&ps->ps_mtx);
1263 		KASSERT(sig >= 0, ("sig %d", sig));
1264 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1265 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1266 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1267 				error = 0;
1268 				break;
1269 			}
1270 		}
1271 
1272 		if (error != 0)
1273 			break;
1274 
1275 		/*
1276 		 * POSIX says this must be checked after looking for pending
1277 		 * signals.
1278 		 */
1279 		if (timeout != NULL) {
1280 			if (!timevalid) {
1281 				error = EINVAL;
1282 				break;
1283 			}
1284 			getnanouptime(&rts);
1285 			if (timespeccmp(&rts, &ets, >=)) {
1286 				error = EAGAIN;
1287 				break;
1288 			}
1289 			ts = ets;
1290 			timespecsub(&ts, &rts);
1291 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1292 			timo = tvtohz(&tv);
1293 		} else {
1294 			timo = 0;
1295 		}
1296 
1297 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1298 
1299 		if (timeout != NULL) {
1300 			if (error == ERESTART) {
1301 				/* Timeout can not be restarted. */
1302 				error = EINTR;
1303 			} else if (error == EAGAIN) {
1304 				/* We will calculate timeout by ourself. */
1305 				error = 0;
1306 			}
1307 		}
1308 	}
1309 
1310 	new_block = saved_mask;
1311 	SIGSETNAND(new_block, td->td_sigmask);
1312 	td->td_sigmask = saved_mask;
1313 	/*
1314 	 * Fewer signals can be delivered to us, reschedule signal
1315 	 * notification.
1316 	 */
1317 	if (p->p_numthreads != 1)
1318 		reschedule_signals(p, new_block, 0);
1319 
1320 	if (error == 0) {
1321 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1322 
1323 		if (ksi->ksi_code == SI_TIMER)
1324 			itimer_accept(p, ksi->ksi_timerid, ksi);
1325 
1326 #ifdef KTRACE
1327 		if (KTRPOINT(td, KTR_PSIG)) {
1328 			sig_t action;
1329 
1330 			mtx_lock(&ps->ps_mtx);
1331 			action = ps->ps_sigact[_SIG_IDX(sig)];
1332 			mtx_unlock(&ps->ps_mtx);
1333 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1334 		}
1335 #endif
1336 		if (sig == SIGKILL)
1337 			sigexit(td, sig);
1338 	}
1339 	PROC_UNLOCK(p);
1340 	return (error);
1341 }
1342 
1343 #ifndef _SYS_SYSPROTO_H_
1344 struct sigpending_args {
1345 	sigset_t	*set;
1346 };
1347 #endif
1348 int
1349 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1350 {
1351 	struct proc *p = td->td_proc;
1352 	sigset_t pending;
1353 
1354 	PROC_LOCK(p);
1355 	pending = p->p_sigqueue.sq_signals;
1356 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1357 	PROC_UNLOCK(p);
1358 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1359 }
1360 
1361 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1362 #ifndef _SYS_SYSPROTO_H_
1363 struct osigpending_args {
1364 	int	dummy;
1365 };
1366 #endif
1367 int
1368 osigpending(struct thread *td, struct osigpending_args *uap)
1369 {
1370 	struct proc *p = td->td_proc;
1371 	sigset_t pending;
1372 
1373 	PROC_LOCK(p);
1374 	pending = p->p_sigqueue.sq_signals;
1375 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1376 	PROC_UNLOCK(p);
1377 	SIG2OSIG(pending, td->td_retval[0]);
1378 	return (0);
1379 }
1380 #endif /* COMPAT_43 */
1381 
1382 #if defined(COMPAT_43)
1383 /*
1384  * Generalized interface signal handler, 4.3-compatible.
1385  */
1386 #ifndef _SYS_SYSPROTO_H_
1387 struct osigvec_args {
1388 	int	signum;
1389 	struct	sigvec *nsv;
1390 	struct	sigvec *osv;
1391 };
1392 #endif
1393 /* ARGSUSED */
1394 int
1395 osigvec(struct thread *td, struct osigvec_args *uap)
1396 {
1397 	struct sigvec vec;
1398 	struct sigaction nsa, osa;
1399 	struct sigaction *nsap, *osap;
1400 	int error;
1401 
1402 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1403 		return (EINVAL);
1404 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1405 	osap = (uap->osv != NULL) ? &osa : NULL;
1406 	if (nsap) {
1407 		error = copyin(uap->nsv, &vec, sizeof(vec));
1408 		if (error)
1409 			return (error);
1410 		nsap->sa_handler = vec.sv_handler;
1411 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1412 		nsap->sa_flags = vec.sv_flags;
1413 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1414 	}
1415 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1416 	if (osap && !error) {
1417 		vec.sv_handler = osap->sa_handler;
1418 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1419 		vec.sv_flags = osap->sa_flags;
1420 		vec.sv_flags &= ~SA_NOCLDWAIT;
1421 		vec.sv_flags ^= SA_RESTART;
1422 		error = copyout(&vec, uap->osv, sizeof(vec));
1423 	}
1424 	return (error);
1425 }
1426 
1427 #ifndef _SYS_SYSPROTO_H_
1428 struct osigblock_args {
1429 	int	mask;
1430 };
1431 #endif
1432 int
1433 osigblock(struct thread *td, struct osigblock_args *uap)
1434 {
1435 	sigset_t set, oset;
1436 
1437 	OSIG2SIG(uap->mask, set);
1438 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1439 	SIG2OSIG(oset, td->td_retval[0]);
1440 	return (0);
1441 }
1442 
1443 #ifndef _SYS_SYSPROTO_H_
1444 struct osigsetmask_args {
1445 	int	mask;
1446 };
1447 #endif
1448 int
1449 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1450 {
1451 	sigset_t set, oset;
1452 
1453 	OSIG2SIG(uap->mask, set);
1454 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1455 	SIG2OSIG(oset, td->td_retval[0]);
1456 	return (0);
1457 }
1458 #endif /* COMPAT_43 */
1459 
1460 /*
1461  * Suspend calling thread until signal, providing mask to be set in the
1462  * meantime.
1463  */
1464 #ifndef _SYS_SYSPROTO_H_
1465 struct sigsuspend_args {
1466 	const sigset_t *sigmask;
1467 };
1468 #endif
1469 /* ARGSUSED */
1470 int
1471 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1472 {
1473 	sigset_t mask;
1474 	int error;
1475 
1476 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1477 	if (error)
1478 		return (error);
1479 	return (kern_sigsuspend(td, mask));
1480 }
1481 
1482 int
1483 kern_sigsuspend(struct thread *td, sigset_t mask)
1484 {
1485 	struct proc *p = td->td_proc;
1486 	int has_sig, sig;
1487 
1488 	/*
1489 	 * When returning from sigsuspend, we want
1490 	 * the old mask to be restored after the
1491 	 * signal handler has finished.  Thus, we
1492 	 * save it here and mark the sigacts structure
1493 	 * to indicate this.
1494 	 */
1495 	PROC_LOCK(p);
1496 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1497 	    SIGPROCMASK_PROC_LOCKED);
1498 	td->td_pflags |= TDP_OLDMASK;
1499 
1500 	/*
1501 	 * Process signals now. Otherwise, we can get spurious wakeup
1502 	 * due to signal entered process queue, but delivered to other
1503 	 * thread. But sigsuspend should return only on signal
1504 	 * delivery.
1505 	 */
1506 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1507 	for (has_sig = 0; !has_sig;) {
1508 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1509 			0) == 0)
1510 			/* void */;
1511 		thread_suspend_check(0);
1512 		mtx_lock(&p->p_sigacts->ps_mtx);
1513 		while ((sig = cursig(td)) != 0) {
1514 			KASSERT(sig >= 0, ("sig %d", sig));
1515 			has_sig += postsig(sig);
1516 		}
1517 		mtx_unlock(&p->p_sigacts->ps_mtx);
1518 	}
1519 	PROC_UNLOCK(p);
1520 	td->td_errno = EINTR;
1521 	td->td_pflags |= TDP_NERRNO;
1522 	return (EJUSTRETURN);
1523 }
1524 
1525 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1526 /*
1527  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1528  * convention: libc stub passes mask, not pointer, to save a copyin.
1529  */
1530 #ifndef _SYS_SYSPROTO_H_
1531 struct osigsuspend_args {
1532 	osigset_t mask;
1533 };
1534 #endif
1535 /* ARGSUSED */
1536 int
1537 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1538 {
1539 	sigset_t mask;
1540 
1541 	OSIG2SIG(uap->mask, mask);
1542 	return (kern_sigsuspend(td, mask));
1543 }
1544 #endif /* COMPAT_43 */
1545 
1546 #if defined(COMPAT_43)
1547 #ifndef _SYS_SYSPROTO_H_
1548 struct osigstack_args {
1549 	struct	sigstack *nss;
1550 	struct	sigstack *oss;
1551 };
1552 #endif
1553 /* ARGSUSED */
1554 int
1555 osigstack(struct thread *td, struct osigstack_args *uap)
1556 {
1557 	struct sigstack nss, oss;
1558 	int error = 0;
1559 
1560 	if (uap->nss != NULL) {
1561 		error = copyin(uap->nss, &nss, sizeof(nss));
1562 		if (error)
1563 			return (error);
1564 	}
1565 	oss.ss_sp = td->td_sigstk.ss_sp;
1566 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1567 	if (uap->nss != NULL) {
1568 		td->td_sigstk.ss_sp = nss.ss_sp;
1569 		td->td_sigstk.ss_size = 0;
1570 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1571 		td->td_pflags |= TDP_ALTSTACK;
1572 	}
1573 	if (uap->oss != NULL)
1574 		error = copyout(&oss, uap->oss, sizeof(oss));
1575 
1576 	return (error);
1577 }
1578 #endif /* COMPAT_43 */
1579 
1580 #ifndef _SYS_SYSPROTO_H_
1581 struct sigaltstack_args {
1582 	stack_t	*ss;
1583 	stack_t	*oss;
1584 };
1585 #endif
1586 /* ARGSUSED */
1587 int
1588 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1589 {
1590 	stack_t ss, oss;
1591 	int error;
1592 
1593 	if (uap->ss != NULL) {
1594 		error = copyin(uap->ss, &ss, sizeof(ss));
1595 		if (error)
1596 			return (error);
1597 	}
1598 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1599 	    (uap->oss != NULL) ? &oss : NULL);
1600 	if (error)
1601 		return (error);
1602 	if (uap->oss != NULL)
1603 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1604 	return (error);
1605 }
1606 
1607 int
1608 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1609 {
1610 	struct proc *p = td->td_proc;
1611 	int oonstack;
1612 
1613 	oonstack = sigonstack(cpu_getstack(td));
1614 
1615 	if (oss != NULL) {
1616 		*oss = td->td_sigstk;
1617 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1618 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1619 	}
1620 
1621 	if (ss != NULL) {
1622 		if (oonstack)
1623 			return (EPERM);
1624 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1625 			return (EINVAL);
1626 		if (!(ss->ss_flags & SS_DISABLE)) {
1627 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1628 				return (ENOMEM);
1629 
1630 			td->td_sigstk = *ss;
1631 			td->td_pflags |= TDP_ALTSTACK;
1632 		} else {
1633 			td->td_pflags &= ~TDP_ALTSTACK;
1634 		}
1635 	}
1636 	return (0);
1637 }
1638 
1639 /*
1640  * Common code for kill process group/broadcast kill.
1641  * cp is calling process.
1642  */
1643 static int
1644 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1645 {
1646 	struct proc *p;
1647 	struct pgrp *pgrp;
1648 	int err;
1649 	int ret;
1650 
1651 	ret = ESRCH;
1652 	if (all) {
1653 		/*
1654 		 * broadcast
1655 		 */
1656 		sx_slock(&allproc_lock);
1657 		FOREACH_PROC_IN_SYSTEM(p) {
1658 			PROC_LOCK(p);
1659 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1660 			    p == td->td_proc || p->p_state == PRS_NEW) {
1661 				PROC_UNLOCK(p);
1662 				continue;
1663 			}
1664 			err = p_cansignal(td, p, sig);
1665 			if (err == 0) {
1666 				if (sig)
1667 					pksignal(p, sig, ksi);
1668 				ret = err;
1669 			}
1670 			else if (ret == ESRCH)
1671 				ret = err;
1672 			PROC_UNLOCK(p);
1673 		}
1674 		sx_sunlock(&allproc_lock);
1675 	} else {
1676 		sx_slock(&proctree_lock);
1677 		if (pgid == 0) {
1678 			/*
1679 			 * zero pgid means send to my process group.
1680 			 */
1681 			pgrp = td->td_proc->p_pgrp;
1682 			PGRP_LOCK(pgrp);
1683 		} else {
1684 			pgrp = pgfind(pgid);
1685 			if (pgrp == NULL) {
1686 				sx_sunlock(&proctree_lock);
1687 				return (ESRCH);
1688 			}
1689 		}
1690 		sx_sunlock(&proctree_lock);
1691 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1692 			PROC_LOCK(p);
1693 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1694 			    p->p_state == PRS_NEW) {
1695 				PROC_UNLOCK(p);
1696 				continue;
1697 			}
1698 			err = p_cansignal(td, p, sig);
1699 			if (err == 0) {
1700 				if (sig)
1701 					pksignal(p, sig, ksi);
1702 				ret = err;
1703 			}
1704 			else if (ret == ESRCH)
1705 				ret = err;
1706 			PROC_UNLOCK(p);
1707 		}
1708 		PGRP_UNLOCK(pgrp);
1709 	}
1710 	return (ret);
1711 }
1712 
1713 #ifndef _SYS_SYSPROTO_H_
1714 struct kill_args {
1715 	int	pid;
1716 	int	signum;
1717 };
1718 #endif
1719 /* ARGSUSED */
1720 int
1721 sys_kill(struct thread *td, struct kill_args *uap)
1722 {
1723 	ksiginfo_t ksi;
1724 	struct proc *p;
1725 	int error;
1726 
1727 	/*
1728 	 * A process in capability mode can send signals only to himself.
1729 	 * The main rationale behind this is that abort(3) is implemented as
1730 	 * kill(getpid(), SIGABRT).
1731 	 */
1732 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1733 		return (ECAPMODE);
1734 
1735 	AUDIT_ARG_SIGNUM(uap->signum);
1736 	AUDIT_ARG_PID(uap->pid);
1737 	if ((u_int)uap->signum > _SIG_MAXSIG)
1738 		return (EINVAL);
1739 
1740 	ksiginfo_init(&ksi);
1741 	ksi.ksi_signo = uap->signum;
1742 	ksi.ksi_code = SI_USER;
1743 	ksi.ksi_pid = td->td_proc->p_pid;
1744 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1745 
1746 	if (uap->pid > 0) {
1747 		/* kill single process */
1748 		if ((p = pfind(uap->pid)) == NULL) {
1749 			if ((p = zpfind(uap->pid)) == NULL)
1750 				return (ESRCH);
1751 		}
1752 		AUDIT_ARG_PROCESS(p);
1753 		error = p_cansignal(td, p, uap->signum);
1754 		if (error == 0 && uap->signum)
1755 			pksignal(p, uap->signum, &ksi);
1756 		PROC_UNLOCK(p);
1757 		return (error);
1758 	}
1759 	switch (uap->pid) {
1760 	case -1:		/* broadcast signal */
1761 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1762 	case 0:			/* signal own process group */
1763 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1764 	default:		/* negative explicit process group */
1765 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1766 	}
1767 	/* NOTREACHED */
1768 }
1769 
1770 int
1771 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1772 {
1773 	struct proc *p;
1774 	cap_rights_t rights;
1775 	int error;
1776 
1777 	AUDIT_ARG_SIGNUM(uap->signum);
1778 	AUDIT_ARG_FD(uap->fd);
1779 	if ((u_int)uap->signum > _SIG_MAXSIG)
1780 		return (EINVAL);
1781 
1782 	error = procdesc_find(td, uap->fd,
1783 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1784 	if (error)
1785 		return (error);
1786 	AUDIT_ARG_PROCESS(p);
1787 	error = p_cansignal(td, p, uap->signum);
1788 	if (error == 0 && uap->signum)
1789 		kern_psignal(p, uap->signum);
1790 	PROC_UNLOCK(p);
1791 	return (error);
1792 }
1793 
1794 #if defined(COMPAT_43)
1795 #ifndef _SYS_SYSPROTO_H_
1796 struct okillpg_args {
1797 	int	pgid;
1798 	int	signum;
1799 };
1800 #endif
1801 /* ARGSUSED */
1802 int
1803 okillpg(struct thread *td, struct okillpg_args *uap)
1804 {
1805 	ksiginfo_t ksi;
1806 
1807 	AUDIT_ARG_SIGNUM(uap->signum);
1808 	AUDIT_ARG_PID(uap->pgid);
1809 	if ((u_int)uap->signum > _SIG_MAXSIG)
1810 		return (EINVAL);
1811 
1812 	ksiginfo_init(&ksi);
1813 	ksi.ksi_signo = uap->signum;
1814 	ksi.ksi_code = SI_USER;
1815 	ksi.ksi_pid = td->td_proc->p_pid;
1816 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1817 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1818 }
1819 #endif /* COMPAT_43 */
1820 
1821 #ifndef _SYS_SYSPROTO_H_
1822 struct sigqueue_args {
1823 	pid_t pid;
1824 	int signum;
1825 	/* union sigval */ void *value;
1826 };
1827 #endif
1828 int
1829 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1830 {
1831 	ksiginfo_t ksi;
1832 	struct proc *p;
1833 	int error;
1834 
1835 	if ((u_int)uap->signum > _SIG_MAXSIG)
1836 		return (EINVAL);
1837 
1838 	/*
1839 	 * Specification says sigqueue can only send signal to
1840 	 * single process.
1841 	 */
1842 	if (uap->pid <= 0)
1843 		return (EINVAL);
1844 
1845 	if ((p = pfind(uap->pid)) == NULL) {
1846 		if ((p = zpfind(uap->pid)) == NULL)
1847 			return (ESRCH);
1848 	}
1849 	error = p_cansignal(td, p, uap->signum);
1850 	if (error == 0 && uap->signum != 0) {
1851 		ksiginfo_init(&ksi);
1852 		ksi.ksi_flags = KSI_SIGQ;
1853 		ksi.ksi_signo = uap->signum;
1854 		ksi.ksi_code = SI_QUEUE;
1855 		ksi.ksi_pid = td->td_proc->p_pid;
1856 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1857 		ksi.ksi_value.sival_ptr = uap->value;
1858 		error = pksignal(p, ksi.ksi_signo, &ksi);
1859 	}
1860 	PROC_UNLOCK(p);
1861 	return (error);
1862 }
1863 
1864 /*
1865  * Send a signal to a process group.
1866  */
1867 void
1868 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1869 {
1870 	struct pgrp *pgrp;
1871 
1872 	if (pgid != 0) {
1873 		sx_slock(&proctree_lock);
1874 		pgrp = pgfind(pgid);
1875 		sx_sunlock(&proctree_lock);
1876 		if (pgrp != NULL) {
1877 			pgsignal(pgrp, sig, 0, ksi);
1878 			PGRP_UNLOCK(pgrp);
1879 		}
1880 	}
1881 }
1882 
1883 /*
1884  * Send a signal to a process group.  If checktty is 1,
1885  * limit to members which have a controlling terminal.
1886  */
1887 void
1888 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1889 {
1890 	struct proc *p;
1891 
1892 	if (pgrp) {
1893 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1894 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1895 			PROC_LOCK(p);
1896 			if (p->p_state == PRS_NORMAL &&
1897 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1898 				pksignal(p, sig, ksi);
1899 			PROC_UNLOCK(p);
1900 		}
1901 	}
1902 }
1903 
1904 
1905 /*
1906  * Recalculate the signal mask and reset the signal disposition after
1907  * usermode frame for delivery is formed.  Should be called after
1908  * mach-specific routine, because sysent->sv_sendsig() needs correct
1909  * ps_siginfo and signal mask.
1910  */
1911 static void
1912 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1913 {
1914 	sigset_t mask;
1915 
1916 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1917 	td->td_ru.ru_nsignals++;
1918 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1919 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1920 		SIGADDSET(mask, sig);
1921 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1922 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1923 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1924 		sigdflt(ps, sig);
1925 }
1926 
1927 
1928 /*
1929  * Send a signal caused by a trap to the current thread.  If it will be
1930  * caught immediately, deliver it with correct code.  Otherwise, post it
1931  * normally.
1932  */
1933 void
1934 trapsignal(struct thread *td, ksiginfo_t *ksi)
1935 {
1936 	struct sigacts *ps;
1937 	struct proc *p;
1938 	int sig;
1939 	int code;
1940 
1941 	p = td->td_proc;
1942 	sig = ksi->ksi_signo;
1943 	code = ksi->ksi_code;
1944 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1945 
1946 	PROC_LOCK(p);
1947 	ps = p->p_sigacts;
1948 	mtx_lock(&ps->ps_mtx);
1949 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1950 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1951 #ifdef KTRACE
1952 		if (KTRPOINT(curthread, KTR_PSIG))
1953 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1954 			    &td->td_sigmask, code);
1955 #endif
1956 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1957 				ksi, &td->td_sigmask);
1958 		postsig_done(sig, td, ps);
1959 		mtx_unlock(&ps->ps_mtx);
1960 	} else {
1961 		/*
1962 		 * Avoid a possible infinite loop if the thread
1963 		 * masking the signal or process is ignoring the
1964 		 * signal.
1965 		 */
1966 		if (kern_forcesigexit &&
1967 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1968 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1969 			SIGDELSET(td->td_sigmask, sig);
1970 			SIGDELSET(ps->ps_sigcatch, sig);
1971 			SIGDELSET(ps->ps_sigignore, sig);
1972 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1973 		}
1974 		mtx_unlock(&ps->ps_mtx);
1975 		p->p_code = code;	/* XXX for core dump/debugger */
1976 		p->p_sig = sig;		/* XXX to verify code */
1977 		tdsendsignal(p, td, sig, ksi);
1978 	}
1979 	PROC_UNLOCK(p);
1980 }
1981 
1982 static struct thread *
1983 sigtd(struct proc *p, int sig, int prop)
1984 {
1985 	struct thread *td, *signal_td;
1986 
1987 	PROC_LOCK_ASSERT(p, MA_OWNED);
1988 
1989 	/*
1990 	 * Check if current thread can handle the signal without
1991 	 * switching context to another thread.
1992 	 */
1993 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1994 		return (curthread);
1995 	signal_td = NULL;
1996 	FOREACH_THREAD_IN_PROC(p, td) {
1997 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1998 			signal_td = td;
1999 			break;
2000 		}
2001 	}
2002 	if (signal_td == NULL)
2003 		signal_td = FIRST_THREAD_IN_PROC(p);
2004 	return (signal_td);
2005 }
2006 
2007 /*
2008  * Send the signal to the process.  If the signal has an action, the action
2009  * is usually performed by the target process rather than the caller; we add
2010  * the signal to the set of pending signals for the process.
2011  *
2012  * Exceptions:
2013  *   o When a stop signal is sent to a sleeping process that takes the
2014  *     default action, the process is stopped without awakening it.
2015  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2016  *     regardless of the signal action (eg, blocked or ignored).
2017  *
2018  * Other ignored signals are discarded immediately.
2019  *
2020  * NB: This function may be entered from the debugger via the "kill" DDB
2021  * command.  There is little that can be done to mitigate the possibly messy
2022  * side effects of this unwise possibility.
2023  */
2024 void
2025 kern_psignal(struct proc *p, int sig)
2026 {
2027 	ksiginfo_t ksi;
2028 
2029 	ksiginfo_init(&ksi);
2030 	ksi.ksi_signo = sig;
2031 	ksi.ksi_code = SI_KERNEL;
2032 	(void) tdsendsignal(p, NULL, sig, &ksi);
2033 }
2034 
2035 int
2036 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2037 {
2038 
2039 	return (tdsendsignal(p, NULL, sig, ksi));
2040 }
2041 
2042 /* Utility function for finding a thread to send signal event to. */
2043 int
2044 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2045 {
2046 	struct thread *td;
2047 
2048 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2049 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2050 		if (td == NULL)
2051 			return (ESRCH);
2052 		*ttd = td;
2053 	} else {
2054 		*ttd = NULL;
2055 		PROC_LOCK(p);
2056 	}
2057 	return (0);
2058 }
2059 
2060 void
2061 tdsignal(struct thread *td, int sig)
2062 {
2063 	ksiginfo_t ksi;
2064 
2065 	ksiginfo_init(&ksi);
2066 	ksi.ksi_signo = sig;
2067 	ksi.ksi_code = SI_KERNEL;
2068 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2069 }
2070 
2071 void
2072 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2073 {
2074 
2075 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2076 }
2077 
2078 int
2079 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2080 {
2081 	sig_t action;
2082 	sigqueue_t *sigqueue;
2083 	int prop;
2084 	struct sigacts *ps;
2085 	int intrval;
2086 	int ret = 0;
2087 	int wakeup_swapper;
2088 
2089 	MPASS(td == NULL || p == td->td_proc);
2090 	PROC_LOCK_ASSERT(p, MA_OWNED);
2091 
2092 	if (!_SIG_VALID(sig))
2093 		panic("%s(): invalid signal %d", __func__, sig);
2094 
2095 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2096 
2097 	/*
2098 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2099 	 */
2100 	if (p->p_state == PRS_ZOMBIE) {
2101 		if (ksi && (ksi->ksi_flags & KSI_INS))
2102 			ksiginfo_tryfree(ksi);
2103 		return (ret);
2104 	}
2105 
2106 	ps = p->p_sigacts;
2107 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2108 	prop = sigprop(sig);
2109 
2110 	if (td == NULL) {
2111 		td = sigtd(p, sig, prop);
2112 		sigqueue = &p->p_sigqueue;
2113 	} else
2114 		sigqueue = &td->td_sigqueue;
2115 
2116 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2117 
2118 	/*
2119 	 * If the signal is being ignored,
2120 	 * then we forget about it immediately.
2121 	 * (Note: we don't set SIGCONT in ps_sigignore,
2122 	 * and if it is set to SIG_IGN,
2123 	 * action will be SIG_DFL here.)
2124 	 */
2125 	mtx_lock(&ps->ps_mtx);
2126 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2127 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2128 
2129 		mtx_unlock(&ps->ps_mtx);
2130 		if (ksi && (ksi->ksi_flags & KSI_INS))
2131 			ksiginfo_tryfree(ksi);
2132 		return (ret);
2133 	}
2134 	if (SIGISMEMBER(td->td_sigmask, sig))
2135 		action = SIG_HOLD;
2136 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2137 		action = SIG_CATCH;
2138 	else
2139 		action = SIG_DFL;
2140 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2141 		intrval = EINTR;
2142 	else
2143 		intrval = ERESTART;
2144 	mtx_unlock(&ps->ps_mtx);
2145 
2146 	if (prop & SIGPROP_CONT)
2147 		sigqueue_delete_stopmask_proc(p);
2148 	else if (prop & SIGPROP_STOP) {
2149 		/*
2150 		 * If sending a tty stop signal to a member of an orphaned
2151 		 * process group, discard the signal here if the action
2152 		 * is default; don't stop the process below if sleeping,
2153 		 * and don't clear any pending SIGCONT.
2154 		 */
2155 		if ((prop & SIGPROP_TTYSTOP) &&
2156 		    (p->p_pgrp->pg_jobc == 0) &&
2157 		    (action == SIG_DFL)) {
2158 			if (ksi && (ksi->ksi_flags & KSI_INS))
2159 				ksiginfo_tryfree(ksi);
2160 			return (ret);
2161 		}
2162 		sigqueue_delete_proc(p, SIGCONT);
2163 		if (p->p_flag & P_CONTINUED) {
2164 			p->p_flag &= ~P_CONTINUED;
2165 			PROC_LOCK(p->p_pptr);
2166 			sigqueue_take(p->p_ksi);
2167 			PROC_UNLOCK(p->p_pptr);
2168 		}
2169 	}
2170 
2171 	ret = sigqueue_add(sigqueue, sig, ksi);
2172 	if (ret != 0)
2173 		return (ret);
2174 	signotify(td);
2175 	/*
2176 	 * Defer further processing for signals which are held,
2177 	 * except that stopped processes must be continued by SIGCONT.
2178 	 */
2179 	if (action == SIG_HOLD &&
2180 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2181 		return (ret);
2182 	/*
2183 	 * SIGKILL: Remove procfs STOPEVENTs and ptrace events.
2184 	 */
2185 	if (sig == SIGKILL) {
2186 		p->p_ptevents = 0;
2187 		/* from procfs_ioctl.c: PIOCBIC */
2188 		p->p_stops = 0;
2189 		/* from procfs_ioctl.c: PIOCCONT */
2190 		p->p_step = 0;
2191 		wakeup(&p->p_step);
2192 	}
2193 	/*
2194 	 * Some signals have a process-wide effect and a per-thread
2195 	 * component.  Most processing occurs when the process next
2196 	 * tries to cross the user boundary, however there are some
2197 	 * times when processing needs to be done immediately, such as
2198 	 * waking up threads so that they can cross the user boundary.
2199 	 * We try to do the per-process part here.
2200 	 */
2201 	if (P_SHOULDSTOP(p)) {
2202 		KASSERT(!(p->p_flag & P_WEXIT),
2203 		    ("signal to stopped but exiting process"));
2204 		if (sig == SIGKILL) {
2205 			/*
2206 			 * If traced process is already stopped,
2207 			 * then no further action is necessary.
2208 			 */
2209 			if (p->p_flag & P_TRACED)
2210 				goto out;
2211 			/*
2212 			 * SIGKILL sets process running.
2213 			 * It will die elsewhere.
2214 			 * All threads must be restarted.
2215 			 */
2216 			p->p_flag &= ~P_STOPPED_SIG;
2217 			goto runfast;
2218 		}
2219 
2220 		if (prop & SIGPROP_CONT) {
2221 			/*
2222 			 * If traced process is already stopped,
2223 			 * then no further action is necessary.
2224 			 */
2225 			if (p->p_flag & P_TRACED)
2226 				goto out;
2227 			/*
2228 			 * If SIGCONT is default (or ignored), we continue the
2229 			 * process but don't leave the signal in sigqueue as
2230 			 * it has no further action.  If SIGCONT is held, we
2231 			 * continue the process and leave the signal in
2232 			 * sigqueue.  If the process catches SIGCONT, let it
2233 			 * handle the signal itself.  If it isn't waiting on
2234 			 * an event, it goes back to run state.
2235 			 * Otherwise, process goes back to sleep state.
2236 			 */
2237 			p->p_flag &= ~P_STOPPED_SIG;
2238 			PROC_SLOCK(p);
2239 			if (p->p_numthreads == p->p_suspcount) {
2240 				PROC_SUNLOCK(p);
2241 				p->p_flag |= P_CONTINUED;
2242 				p->p_xsig = SIGCONT;
2243 				PROC_LOCK(p->p_pptr);
2244 				childproc_continued(p);
2245 				PROC_UNLOCK(p->p_pptr);
2246 				PROC_SLOCK(p);
2247 			}
2248 			if (action == SIG_DFL) {
2249 				thread_unsuspend(p);
2250 				PROC_SUNLOCK(p);
2251 				sigqueue_delete(sigqueue, sig);
2252 				goto out;
2253 			}
2254 			if (action == SIG_CATCH) {
2255 				/*
2256 				 * The process wants to catch it so it needs
2257 				 * to run at least one thread, but which one?
2258 				 */
2259 				PROC_SUNLOCK(p);
2260 				goto runfast;
2261 			}
2262 			/*
2263 			 * The signal is not ignored or caught.
2264 			 */
2265 			thread_unsuspend(p);
2266 			PROC_SUNLOCK(p);
2267 			goto out;
2268 		}
2269 
2270 		if (prop & SIGPROP_STOP) {
2271 			/*
2272 			 * If traced process is already stopped,
2273 			 * then no further action is necessary.
2274 			 */
2275 			if (p->p_flag & P_TRACED)
2276 				goto out;
2277 			/*
2278 			 * Already stopped, don't need to stop again
2279 			 * (If we did the shell could get confused).
2280 			 * Just make sure the signal STOP bit set.
2281 			 */
2282 			p->p_flag |= P_STOPPED_SIG;
2283 			sigqueue_delete(sigqueue, sig);
2284 			goto out;
2285 		}
2286 
2287 		/*
2288 		 * All other kinds of signals:
2289 		 * If a thread is sleeping interruptibly, simulate a
2290 		 * wakeup so that when it is continued it will be made
2291 		 * runnable and can look at the signal.  However, don't make
2292 		 * the PROCESS runnable, leave it stopped.
2293 		 * It may run a bit until it hits a thread_suspend_check().
2294 		 */
2295 		wakeup_swapper = 0;
2296 		PROC_SLOCK(p);
2297 		thread_lock(td);
2298 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2299 			wakeup_swapper = sleepq_abort(td, intrval);
2300 		thread_unlock(td);
2301 		PROC_SUNLOCK(p);
2302 		if (wakeup_swapper)
2303 			kick_proc0();
2304 		goto out;
2305 		/*
2306 		 * Mutexes are short lived. Threads waiting on them will
2307 		 * hit thread_suspend_check() soon.
2308 		 */
2309 	} else if (p->p_state == PRS_NORMAL) {
2310 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2311 			tdsigwakeup(td, sig, action, intrval);
2312 			goto out;
2313 		}
2314 
2315 		MPASS(action == SIG_DFL);
2316 
2317 		if (prop & SIGPROP_STOP) {
2318 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2319 				goto out;
2320 			p->p_flag |= P_STOPPED_SIG;
2321 			p->p_xsig = sig;
2322 			PROC_SLOCK(p);
2323 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2324 			if (p->p_numthreads == p->p_suspcount) {
2325 				/*
2326 				 * only thread sending signal to another
2327 				 * process can reach here, if thread is sending
2328 				 * signal to its process, because thread does
2329 				 * not suspend itself here, p_numthreads
2330 				 * should never be equal to p_suspcount.
2331 				 */
2332 				thread_stopped(p);
2333 				PROC_SUNLOCK(p);
2334 				sigqueue_delete_proc(p, p->p_xsig);
2335 			} else
2336 				PROC_SUNLOCK(p);
2337 			if (wakeup_swapper)
2338 				kick_proc0();
2339 			goto out;
2340 		}
2341 	} else {
2342 		/* Not in "NORMAL" state. discard the signal. */
2343 		sigqueue_delete(sigqueue, sig);
2344 		goto out;
2345 	}
2346 
2347 	/*
2348 	 * The process is not stopped so we need to apply the signal to all the
2349 	 * running threads.
2350 	 */
2351 runfast:
2352 	tdsigwakeup(td, sig, action, intrval);
2353 	PROC_SLOCK(p);
2354 	thread_unsuspend(p);
2355 	PROC_SUNLOCK(p);
2356 out:
2357 	/* If we jump here, proc slock should not be owned. */
2358 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2359 	return (ret);
2360 }
2361 
2362 /*
2363  * The force of a signal has been directed against a single
2364  * thread.  We need to see what we can do about knocking it
2365  * out of any sleep it may be in etc.
2366  */
2367 static void
2368 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2369 {
2370 	struct proc *p = td->td_proc;
2371 	register int prop;
2372 	int wakeup_swapper;
2373 
2374 	wakeup_swapper = 0;
2375 	PROC_LOCK_ASSERT(p, MA_OWNED);
2376 	prop = sigprop(sig);
2377 
2378 	PROC_SLOCK(p);
2379 	thread_lock(td);
2380 	/*
2381 	 * Bring the priority of a thread up if we want it to get
2382 	 * killed in this lifetime.  Be careful to avoid bumping the
2383 	 * priority of the idle thread, since we still allow to signal
2384 	 * kernel processes.
2385 	 */
2386 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2387 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2388 		sched_prio(td, PUSER);
2389 	if (TD_ON_SLEEPQ(td)) {
2390 		/*
2391 		 * If thread is sleeping uninterruptibly
2392 		 * we can't interrupt the sleep... the signal will
2393 		 * be noticed when the process returns through
2394 		 * trap() or syscall().
2395 		 */
2396 		if ((td->td_flags & TDF_SINTR) == 0)
2397 			goto out;
2398 		/*
2399 		 * If SIGCONT is default (or ignored) and process is
2400 		 * asleep, we are finished; the process should not
2401 		 * be awakened.
2402 		 */
2403 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2404 			thread_unlock(td);
2405 			PROC_SUNLOCK(p);
2406 			sigqueue_delete(&p->p_sigqueue, sig);
2407 			/*
2408 			 * It may be on either list in this state.
2409 			 * Remove from both for now.
2410 			 */
2411 			sigqueue_delete(&td->td_sigqueue, sig);
2412 			return;
2413 		}
2414 
2415 		/*
2416 		 * Don't awaken a sleeping thread for SIGSTOP if the
2417 		 * STOP signal is deferred.
2418 		 */
2419 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2420 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2421 			goto out;
2422 
2423 		/*
2424 		 * Give low priority threads a better chance to run.
2425 		 */
2426 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2427 			sched_prio(td, PUSER);
2428 
2429 		wakeup_swapper = sleepq_abort(td, intrval);
2430 	} else {
2431 		/*
2432 		 * Other states do nothing with the signal immediately,
2433 		 * other than kicking ourselves if we are running.
2434 		 * It will either never be noticed, or noticed very soon.
2435 		 */
2436 #ifdef SMP
2437 		if (TD_IS_RUNNING(td) && td != curthread)
2438 			forward_signal(td);
2439 #endif
2440 	}
2441 out:
2442 	PROC_SUNLOCK(p);
2443 	thread_unlock(td);
2444 	if (wakeup_swapper)
2445 		kick_proc0();
2446 }
2447 
2448 static int
2449 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2450 {
2451 	struct thread *td2;
2452 	int wakeup_swapper;
2453 
2454 	PROC_LOCK_ASSERT(p, MA_OWNED);
2455 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2456 
2457 	wakeup_swapper = 0;
2458 	FOREACH_THREAD_IN_PROC(p, td2) {
2459 		thread_lock(td2);
2460 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2461 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2462 		    (td2->td_flags & TDF_SINTR)) {
2463 			if (td2->td_flags & TDF_SBDRY) {
2464 				/*
2465 				 * Once a thread is asleep with
2466 				 * TDF_SBDRY and without TDF_SERESTART
2467 				 * or TDF_SEINTR set, it should never
2468 				 * become suspended due to this check.
2469 				 */
2470 				KASSERT(!TD_IS_SUSPENDED(td2),
2471 				    ("thread with deferred stops suspended"));
2472 				if (TD_SBDRY_INTR(td2) && sending) {
2473 					wakeup_swapper |= sleepq_abort(td2,
2474 					    TD_SBDRY_ERRNO(td2));
2475 				}
2476 			} else if (!TD_IS_SUSPENDED(td2)) {
2477 				thread_suspend_one(td2);
2478 			}
2479 		} else if (!TD_IS_SUSPENDED(td2)) {
2480 			if (sending || td != td2)
2481 				td2->td_flags |= TDF_ASTPENDING;
2482 #ifdef SMP
2483 			if (TD_IS_RUNNING(td2) && td2 != td)
2484 				forward_signal(td2);
2485 #endif
2486 		}
2487 		thread_unlock(td2);
2488 	}
2489 	return (wakeup_swapper);
2490 }
2491 
2492 /*
2493  * Stop the process for an event deemed interesting to the debugger. If si is
2494  * non-NULL, this is a signal exchange; the new signal requested by the
2495  * debugger will be returned for handling. If si is NULL, this is some other
2496  * type of interesting event. The debugger may request a signal be delivered in
2497  * that case as well, however it will be deferred until it can be handled.
2498  */
2499 int
2500 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2501 {
2502 	struct proc *p = td->td_proc;
2503 	struct thread *td2;
2504 	ksiginfo_t ksi;
2505 	int prop;
2506 
2507 	PROC_LOCK_ASSERT(p, MA_OWNED);
2508 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2509 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2510 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2511 
2512 	td->td_xsig = sig;
2513 
2514 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2515 		td->td_dbgflags |= TDB_XSIG;
2516 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2517 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2518 		PROC_SLOCK(p);
2519 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2520 			if (P_KILLED(p)) {
2521 				/*
2522 				 * Ensure that, if we've been PT_KILLed, the
2523 				 * exit status reflects that. Another thread
2524 				 * may also be in ptracestop(), having just
2525 				 * received the SIGKILL, but this thread was
2526 				 * unsuspended first.
2527 				 */
2528 				td->td_dbgflags &= ~TDB_XSIG;
2529 				td->td_xsig = SIGKILL;
2530 				p->p_ptevents = 0;
2531 				break;
2532 			}
2533 			if (p->p_flag & P_SINGLE_EXIT &&
2534 			    !(td->td_dbgflags & TDB_EXIT)) {
2535 				/*
2536 				 * Ignore ptrace stops except for thread exit
2537 				 * events when the process exits.
2538 				 */
2539 				td->td_dbgflags &= ~TDB_XSIG;
2540 				PROC_SUNLOCK(p);
2541 				return (0);
2542 			}
2543 
2544 			/*
2545 			 * Make wait(2) work.  Ensure that right after the
2546 			 * attach, the thread which was decided to become the
2547 			 * leader of attach gets reported to the waiter.
2548 			 * Otherwise, just avoid overwriting another thread's
2549 			 * assignment to p_xthread.  If another thread has
2550 			 * already set p_xthread, the current thread will get
2551 			 * a chance to report itself upon the next iteration.
2552 			 */
2553 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2554 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2555 			    p->p_xthread == NULL)) {
2556 				p->p_xsig = sig;
2557 				p->p_xthread = td;
2558 				td->td_dbgflags &= ~TDB_FSTP;
2559 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2560 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2561 				sig_suspend_threads(td, p, 0);
2562 			}
2563 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2564 				td->td_dbgflags &= ~TDB_STOPATFORK;
2565 				cv_broadcast(&p->p_dbgwait);
2566 			}
2567 stopme:
2568 			thread_suspend_switch(td, p);
2569 			if (p->p_xthread == td)
2570 				p->p_xthread = NULL;
2571 			if (!(p->p_flag & P_TRACED))
2572 				break;
2573 			if (td->td_dbgflags & TDB_SUSPEND) {
2574 				if (p->p_flag & P_SINGLE_EXIT)
2575 					break;
2576 				goto stopme;
2577 			}
2578 		}
2579 		PROC_SUNLOCK(p);
2580 	}
2581 
2582 	if (si != NULL && sig == td->td_xsig) {
2583 		/* Parent wants us to take the original signal unchanged. */
2584 		si->ksi_flags |= KSI_HEAD;
2585 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2586 			si->ksi_signo = 0;
2587 	} else if (td->td_xsig != 0) {
2588 		/*
2589 		 * If parent wants us to take a new signal, then it will leave
2590 		 * it in td->td_xsig; otherwise we just look for signals again.
2591 		 */
2592 		ksiginfo_init(&ksi);
2593 		ksi.ksi_signo = td->td_xsig;
2594 		ksi.ksi_flags |= KSI_PTRACE;
2595 		prop = sigprop(td->td_xsig);
2596 		td2 = sigtd(p, td->td_xsig, prop);
2597 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2598 		if (td != td2)
2599 			return (0);
2600 	}
2601 
2602 	return (td->td_xsig);
2603 }
2604 
2605 static void
2606 reschedule_signals(struct proc *p, sigset_t block, int flags)
2607 {
2608 	struct sigacts *ps;
2609 	struct thread *td;
2610 	int sig;
2611 
2612 	PROC_LOCK_ASSERT(p, MA_OWNED);
2613 	ps = p->p_sigacts;
2614 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2615 	    MA_OWNED : MA_NOTOWNED);
2616 	if (SIGISEMPTY(p->p_siglist))
2617 		return;
2618 	SIGSETAND(block, p->p_siglist);
2619 	while ((sig = sig_ffs(&block)) != 0) {
2620 		SIGDELSET(block, sig);
2621 		td = sigtd(p, sig, 0);
2622 		signotify(td);
2623 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2624 			mtx_lock(&ps->ps_mtx);
2625 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2626 			tdsigwakeup(td, sig, SIG_CATCH,
2627 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2628 			     ERESTART));
2629 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2630 			mtx_unlock(&ps->ps_mtx);
2631 	}
2632 }
2633 
2634 void
2635 tdsigcleanup(struct thread *td)
2636 {
2637 	struct proc *p;
2638 	sigset_t unblocked;
2639 
2640 	p = td->td_proc;
2641 	PROC_LOCK_ASSERT(p, MA_OWNED);
2642 
2643 	sigqueue_flush(&td->td_sigqueue);
2644 	if (p->p_numthreads == 1)
2645 		return;
2646 
2647 	/*
2648 	 * Since we cannot handle signals, notify signal post code
2649 	 * about this by filling the sigmask.
2650 	 *
2651 	 * Also, if needed, wake up thread(s) that do not block the
2652 	 * same signals as the exiting thread, since the thread might
2653 	 * have been selected for delivery and woken up.
2654 	 */
2655 	SIGFILLSET(unblocked);
2656 	SIGSETNAND(unblocked, td->td_sigmask);
2657 	SIGFILLSET(td->td_sigmask);
2658 	reschedule_signals(p, unblocked, 0);
2659 
2660 }
2661 
2662 static int
2663 sigdeferstop_curr_flags(int cflags)
2664 {
2665 
2666 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2667 	    (cflags & TDF_SBDRY) != 0);
2668 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2669 }
2670 
2671 /*
2672  * Defer the delivery of SIGSTOP for the current thread, according to
2673  * the requested mode.  Returns previous flags, which must be restored
2674  * by sigallowstop().
2675  *
2676  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2677  * cleared by the current thread, which allow the lock-less read-only
2678  * accesses below.
2679  */
2680 int
2681 sigdeferstop_impl(int mode)
2682 {
2683 	struct thread *td;
2684 	int cflags, nflags;
2685 
2686 	td = curthread;
2687 	cflags = sigdeferstop_curr_flags(td->td_flags);
2688 	switch (mode) {
2689 	case SIGDEFERSTOP_NOP:
2690 		nflags = cflags;
2691 		break;
2692 	case SIGDEFERSTOP_OFF:
2693 		nflags = 0;
2694 		break;
2695 	case SIGDEFERSTOP_SILENT:
2696 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2697 		break;
2698 	case SIGDEFERSTOP_EINTR:
2699 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2700 		break;
2701 	case SIGDEFERSTOP_ERESTART:
2702 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2703 		break;
2704 	default:
2705 		panic("sigdeferstop: invalid mode %x", mode);
2706 		break;
2707 	}
2708 	if (cflags == nflags)
2709 		return (SIGDEFERSTOP_VAL_NCHG);
2710 	thread_lock(td);
2711 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2712 	thread_unlock(td);
2713 	return (cflags);
2714 }
2715 
2716 /*
2717  * Restores the STOP handling mode, typically permitting the delivery
2718  * of SIGSTOP for the current thread.  This does not immediately
2719  * suspend if a stop was posted.  Instead, the thread will suspend
2720  * either via ast() or a subsequent interruptible sleep.
2721  */
2722 void
2723 sigallowstop_impl(int prev)
2724 {
2725 	struct thread *td;
2726 	int cflags;
2727 
2728 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2729 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2730 	    ("sigallowstop: incorrect previous mode %x", prev));
2731 	td = curthread;
2732 	cflags = sigdeferstop_curr_flags(td->td_flags);
2733 	if (cflags != prev) {
2734 		thread_lock(td);
2735 		td->td_flags = (td->td_flags & ~cflags) | prev;
2736 		thread_unlock(td);
2737 	}
2738 }
2739 
2740 /*
2741  * If the current process has received a signal (should be caught or cause
2742  * termination, should interrupt current syscall), return the signal number.
2743  * Stop signals with default action are processed immediately, then cleared;
2744  * they aren't returned.  This is checked after each entry to the system for
2745  * a syscall or trap (though this can usually be done without calling issignal
2746  * by checking the pending signal masks in cursig.) The normal call
2747  * sequence is
2748  *
2749  *	while (sig = cursig(curthread))
2750  *		postsig(sig);
2751  */
2752 static int
2753 issignal(struct thread *td)
2754 {
2755 	struct proc *p;
2756 	struct sigacts *ps;
2757 	struct sigqueue *queue;
2758 	sigset_t sigpending;
2759 	int sig, prop;
2760 
2761 	p = td->td_proc;
2762 	ps = p->p_sigacts;
2763 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2764 	PROC_LOCK_ASSERT(p, MA_OWNED);
2765 	for (;;) {
2766 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2767 
2768 		sigpending = td->td_sigqueue.sq_signals;
2769 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2770 		SIGSETNAND(sigpending, td->td_sigmask);
2771 
2772 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2773 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2774 			SIG_STOPSIGMASK(sigpending);
2775 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2776 			return (0);
2777 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2778 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2779 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2780 			/*
2781 			 * If debugger just attached, always consume
2782 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2783 			 * execute the debugger attach ritual in
2784 			 * order.
2785 			 */
2786 			sig = SIGSTOP;
2787 			td->td_dbgflags |= TDB_FSTP;
2788 		} else {
2789 			sig = sig_ffs(&sigpending);
2790 		}
2791 
2792 		if (p->p_stops & S_SIG) {
2793 			mtx_unlock(&ps->ps_mtx);
2794 			stopevent(p, S_SIG, sig);
2795 			mtx_lock(&ps->ps_mtx);
2796 		}
2797 
2798 		/*
2799 		 * We should see pending but ignored signals
2800 		 * only if P_TRACED was on when they were posted.
2801 		 */
2802 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2803 			sigqueue_delete(&td->td_sigqueue, sig);
2804 			sigqueue_delete(&p->p_sigqueue, sig);
2805 			continue;
2806 		}
2807 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2808 			/*
2809 			 * If traced, always stop.
2810 			 * Remove old signal from queue before the stop.
2811 			 * XXX shrug off debugger, it causes siginfo to
2812 			 * be thrown away.
2813 			 */
2814 			queue = &td->td_sigqueue;
2815 			td->td_dbgksi.ksi_signo = 0;
2816 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2817 				queue = &p->p_sigqueue;
2818 				sigqueue_get(queue, sig, &td->td_dbgksi);
2819 			}
2820 
2821 			mtx_unlock(&ps->ps_mtx);
2822 			sig = ptracestop(td, sig, &td->td_dbgksi);
2823 			mtx_lock(&ps->ps_mtx);
2824 
2825 			/*
2826 			 * Keep looking if the debugger discarded the signal
2827 			 * or replaced it with a masked signal.
2828 			 *
2829 			 * If the traced bit got turned off, go back up
2830 			 * to the top to rescan signals.  This ensures
2831 			 * that p_sig* and p_sigact are consistent.
2832 			 */
2833 			if (sig == 0 || (p->p_flag & P_TRACED) == 0)
2834 				continue;
2835 		}
2836 
2837 		prop = sigprop(sig);
2838 
2839 		/*
2840 		 * Decide whether the signal should be returned.
2841 		 * Return the signal's number, or fall through
2842 		 * to clear it from the pending mask.
2843 		 */
2844 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2845 
2846 		case (intptr_t)SIG_DFL:
2847 			/*
2848 			 * Don't take default actions on system processes.
2849 			 */
2850 			if (p->p_pid <= 1) {
2851 #ifdef DIAGNOSTIC
2852 				/*
2853 				 * Are you sure you want to ignore SIGSEGV
2854 				 * in init? XXX
2855 				 */
2856 				printf("Process (pid %lu) got signal %d\n",
2857 					(u_long)p->p_pid, sig);
2858 #endif
2859 				break;		/* == ignore */
2860 			}
2861 			/*
2862 			 * If there is a pending stop signal to process with
2863 			 * default action, stop here, then clear the signal.
2864 			 * Traced or exiting processes should ignore stops.
2865 			 * Additionally, a member of an orphaned process group
2866 			 * should ignore tty stops.
2867 			 */
2868 			if (prop & SIGPROP_STOP) {
2869 				if (p->p_flag &
2870 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2871 				    (p->p_pgrp->pg_jobc == 0 &&
2872 				     prop & SIGPROP_TTYSTOP))
2873 					break;	/* == ignore */
2874 				if (TD_SBDRY_INTR(td)) {
2875 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2876 					    ("lost TDF_SBDRY"));
2877 					return (-1);
2878 				}
2879 				mtx_unlock(&ps->ps_mtx);
2880 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2881 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2882 				sigqueue_delete(&td->td_sigqueue, sig);
2883 				sigqueue_delete(&p->p_sigqueue, sig);
2884 				p->p_flag |= P_STOPPED_SIG;
2885 				p->p_xsig = sig;
2886 				PROC_SLOCK(p);
2887 				sig_suspend_threads(td, p, 0);
2888 				thread_suspend_switch(td, p);
2889 				PROC_SUNLOCK(p);
2890 				mtx_lock(&ps->ps_mtx);
2891 				goto next;
2892 			} else if (prop & SIGPROP_IGNORE) {
2893 				/*
2894 				 * Except for SIGCONT, shouldn't get here.
2895 				 * Default action is to ignore; drop it.
2896 				 */
2897 				break;		/* == ignore */
2898 			} else
2899 				return (sig);
2900 			/*NOTREACHED*/
2901 
2902 		case (intptr_t)SIG_IGN:
2903 			/*
2904 			 * Masking above should prevent us ever trying
2905 			 * to take action on an ignored signal other
2906 			 * than SIGCONT, unless process is traced.
2907 			 */
2908 			if ((prop & SIGPROP_CONT) == 0 &&
2909 			    (p->p_flag & P_TRACED) == 0)
2910 				printf("issignal\n");
2911 			break;		/* == ignore */
2912 
2913 		default:
2914 			/*
2915 			 * This signal has an action, let
2916 			 * postsig() process it.
2917 			 */
2918 			return (sig);
2919 		}
2920 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2921 		sigqueue_delete(&p->p_sigqueue, sig);
2922 next:;
2923 	}
2924 	/* NOTREACHED */
2925 }
2926 
2927 void
2928 thread_stopped(struct proc *p)
2929 {
2930 	int n;
2931 
2932 	PROC_LOCK_ASSERT(p, MA_OWNED);
2933 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2934 	n = p->p_suspcount;
2935 	if (p == curproc)
2936 		n++;
2937 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2938 		PROC_SUNLOCK(p);
2939 		p->p_flag &= ~P_WAITED;
2940 		PROC_LOCK(p->p_pptr);
2941 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2942 			CLD_TRAPPED : CLD_STOPPED);
2943 		PROC_UNLOCK(p->p_pptr);
2944 		PROC_SLOCK(p);
2945 	}
2946 }
2947 
2948 /*
2949  * Take the action for the specified signal
2950  * from the current set of pending signals.
2951  */
2952 int
2953 postsig(sig)
2954 	register int sig;
2955 {
2956 	struct thread *td = curthread;
2957 	struct proc *p = td->td_proc;
2958 	struct sigacts *ps;
2959 	sig_t action;
2960 	ksiginfo_t ksi;
2961 	sigset_t returnmask;
2962 
2963 	KASSERT(sig != 0, ("postsig"));
2964 
2965 	PROC_LOCK_ASSERT(p, MA_OWNED);
2966 	ps = p->p_sigacts;
2967 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2968 	ksiginfo_init(&ksi);
2969 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2970 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2971 		return (0);
2972 	ksi.ksi_signo = sig;
2973 	if (ksi.ksi_code == SI_TIMER)
2974 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2975 	action = ps->ps_sigact[_SIG_IDX(sig)];
2976 #ifdef KTRACE
2977 	if (KTRPOINT(td, KTR_PSIG))
2978 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2979 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2980 #endif
2981 	if (p->p_stops & S_SIG) {
2982 		mtx_unlock(&ps->ps_mtx);
2983 		stopevent(p, S_SIG, sig);
2984 		mtx_lock(&ps->ps_mtx);
2985 	}
2986 
2987 	if (action == SIG_DFL) {
2988 		/*
2989 		 * Default action, where the default is to kill
2990 		 * the process.  (Other cases were ignored above.)
2991 		 */
2992 		mtx_unlock(&ps->ps_mtx);
2993 		sigexit(td, sig);
2994 		/* NOTREACHED */
2995 	} else {
2996 		/*
2997 		 * If we get here, the signal must be caught.
2998 		 */
2999 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
3000 		    ("postsig action"));
3001 		/*
3002 		 * Set the new mask value and also defer further
3003 		 * occurrences of this signal.
3004 		 *
3005 		 * Special case: user has done a sigsuspend.  Here the
3006 		 * current mask is not of interest, but rather the
3007 		 * mask from before the sigsuspend is what we want
3008 		 * restored after the signal processing is completed.
3009 		 */
3010 		if (td->td_pflags & TDP_OLDMASK) {
3011 			returnmask = td->td_oldsigmask;
3012 			td->td_pflags &= ~TDP_OLDMASK;
3013 		} else
3014 			returnmask = td->td_sigmask;
3015 
3016 		if (p->p_sig == sig) {
3017 			p->p_code = 0;
3018 			p->p_sig = 0;
3019 		}
3020 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3021 		postsig_done(sig, td, ps);
3022 	}
3023 	return (1);
3024 }
3025 
3026 /*
3027  * Kill the current process for stated reason.
3028  */
3029 void
3030 killproc(struct proc *p, char *why)
3031 {
3032 
3033 	PROC_LOCK_ASSERT(p, MA_OWNED);
3034 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3035 	    p->p_comm);
3036 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3037 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3038 	p->p_flag |= P_WKILLED;
3039 	kern_psignal(p, SIGKILL);
3040 }
3041 
3042 /*
3043  * Force the current process to exit with the specified signal, dumping core
3044  * if appropriate.  We bypass the normal tests for masked and caught signals,
3045  * allowing unrecoverable failures to terminate the process without changing
3046  * signal state.  Mark the accounting record with the signal termination.
3047  * If dumping core, save the signal number for the debugger.  Calls exit and
3048  * does not return.
3049  */
3050 void
3051 sigexit(struct thread *td, int sig)
3052 {
3053 	struct proc *p = td->td_proc;
3054 
3055 	PROC_LOCK_ASSERT(p, MA_OWNED);
3056 	p->p_acflag |= AXSIG;
3057 	/*
3058 	 * We must be single-threading to generate a core dump.  This
3059 	 * ensures that the registers in the core file are up-to-date.
3060 	 * Also, the ELF dump handler assumes that the thread list doesn't
3061 	 * change out from under it.
3062 	 *
3063 	 * XXX If another thread attempts to single-thread before us
3064 	 *     (e.g. via fork()), we won't get a dump at all.
3065 	 */
3066 	if ((sigprop(sig) & SIGPROP_CORE) &&
3067 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3068 		p->p_sig = sig;
3069 		/*
3070 		 * Log signals which would cause core dumps
3071 		 * (Log as LOG_INFO to appease those who don't want
3072 		 * these messages.)
3073 		 * XXX : Todo, as well as euid, write out ruid too
3074 		 * Note that coredump() drops proc lock.
3075 		 */
3076 		if (coredump(td) == 0)
3077 			sig |= WCOREFLAG;
3078 		if (kern_logsigexit)
3079 			log(LOG_INFO,
3080 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3081 			    p->p_pid, p->p_comm,
3082 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3083 			    sig &~ WCOREFLAG,
3084 			    sig & WCOREFLAG ? " (core dumped)" : "");
3085 	} else
3086 		PROC_UNLOCK(p);
3087 	exit1(td, 0, sig);
3088 	/* NOTREACHED */
3089 }
3090 
3091 /*
3092  * Send queued SIGCHLD to parent when child process's state
3093  * is changed.
3094  */
3095 static void
3096 sigparent(struct proc *p, int reason, int status)
3097 {
3098 	PROC_LOCK_ASSERT(p, MA_OWNED);
3099 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3100 
3101 	if (p->p_ksi != NULL) {
3102 		p->p_ksi->ksi_signo  = SIGCHLD;
3103 		p->p_ksi->ksi_code   = reason;
3104 		p->p_ksi->ksi_status = status;
3105 		p->p_ksi->ksi_pid    = p->p_pid;
3106 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3107 		if (KSI_ONQ(p->p_ksi))
3108 			return;
3109 	}
3110 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3111 }
3112 
3113 static void
3114 childproc_jobstate(struct proc *p, int reason, int sig)
3115 {
3116 	struct sigacts *ps;
3117 
3118 	PROC_LOCK_ASSERT(p, MA_OWNED);
3119 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3120 
3121 	/*
3122 	 * Wake up parent sleeping in kern_wait(), also send
3123 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3124 	 * that parent will awake, because parent may masked
3125 	 * the signal.
3126 	 */
3127 	p->p_pptr->p_flag |= P_STATCHILD;
3128 	wakeup(p->p_pptr);
3129 
3130 	ps = p->p_pptr->p_sigacts;
3131 	mtx_lock(&ps->ps_mtx);
3132 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3133 		mtx_unlock(&ps->ps_mtx);
3134 		sigparent(p, reason, sig);
3135 	} else
3136 		mtx_unlock(&ps->ps_mtx);
3137 }
3138 
3139 void
3140 childproc_stopped(struct proc *p, int reason)
3141 {
3142 
3143 	childproc_jobstate(p, reason, p->p_xsig);
3144 }
3145 
3146 void
3147 childproc_continued(struct proc *p)
3148 {
3149 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3150 }
3151 
3152 void
3153 childproc_exited(struct proc *p)
3154 {
3155 	int reason, status;
3156 
3157 	if (WCOREDUMP(p->p_xsig)) {
3158 		reason = CLD_DUMPED;
3159 		status = WTERMSIG(p->p_xsig);
3160 	} else if (WIFSIGNALED(p->p_xsig)) {
3161 		reason = CLD_KILLED;
3162 		status = WTERMSIG(p->p_xsig);
3163 	} else {
3164 		reason = CLD_EXITED;
3165 		status = p->p_xexit;
3166 	}
3167 	/*
3168 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3169 	 * done in exit1().
3170 	 */
3171 	sigparent(p, reason, status);
3172 }
3173 
3174 /*
3175  * We only have 1 character for the core count in the format
3176  * string, so the range will be 0-9
3177  */
3178 #define	MAX_NUM_CORE_FILES 10
3179 #ifndef NUM_CORE_FILES
3180 #define	NUM_CORE_FILES 5
3181 #endif
3182 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3183 static int num_cores = NUM_CORE_FILES;
3184 
3185 static int
3186 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3187 {
3188 	int error;
3189 	int new_val;
3190 
3191 	new_val = num_cores;
3192 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3193 	if (error != 0 || req->newptr == NULL)
3194 		return (error);
3195 	if (new_val > MAX_NUM_CORE_FILES)
3196 		new_val = MAX_NUM_CORE_FILES;
3197 	if (new_val < 0)
3198 		new_val = 0;
3199 	num_cores = new_val;
3200 	return (0);
3201 }
3202 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3203 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3204 
3205 #define	GZ_SUFFIX	".gz"
3206 
3207 #ifdef GZIO
3208 static int compress_user_cores = 1;
3209 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN,
3210     &compress_user_cores, 0, "Compression of user corefiles");
3211 
3212 int compress_user_cores_gzlevel = 6;
3213 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN,
3214     &compress_user_cores_gzlevel, 0, "Corefile gzip compression level");
3215 #else
3216 static int compress_user_cores = 0;
3217 #endif
3218 
3219 /*
3220  * Protect the access to corefilename[] by allproc_lock.
3221  */
3222 #define	corefilename_lock	allproc_lock
3223 
3224 static char corefilename[MAXPATHLEN] = {"%N.core"};
3225 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3226 
3227 static int
3228 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3229 {
3230 	int error;
3231 
3232 	sx_xlock(&corefilename_lock);
3233 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3234 	    req);
3235 	sx_xunlock(&corefilename_lock);
3236 
3237 	return (error);
3238 }
3239 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3240     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3241     "Process corefile name format string");
3242 
3243 /*
3244  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3245  * Expand the name described in corefilename, using name, uid, and pid
3246  * and open/create core file.
3247  * corefilename is a printf-like string, with three format specifiers:
3248  *	%N	name of process ("name")
3249  *	%P	process id (pid)
3250  *	%U	user id (uid)
3251  * For example, "%N.core" is the default; they can be disabled completely
3252  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3253  * This is controlled by the sysctl variable kern.corefile (see above).
3254  */
3255 static int
3256 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3257     int compress, struct vnode **vpp, char **namep)
3258 {
3259 	struct nameidata nd;
3260 	struct sbuf sb;
3261 	const char *format;
3262 	char *hostname, *name;
3263 	int indexpos, i, error, cmode, flags, oflags;
3264 
3265 	hostname = NULL;
3266 	format = corefilename;
3267 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3268 	indexpos = -1;
3269 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3270 	sx_slock(&corefilename_lock);
3271 	for (i = 0; format[i] != '\0'; i++) {
3272 		switch (format[i]) {
3273 		case '%':	/* Format character */
3274 			i++;
3275 			switch (format[i]) {
3276 			case '%':
3277 				sbuf_putc(&sb, '%');
3278 				break;
3279 			case 'H':	/* hostname */
3280 				if (hostname == NULL) {
3281 					hostname = malloc(MAXHOSTNAMELEN,
3282 					    M_TEMP, M_WAITOK);
3283 				}
3284 				getcredhostname(td->td_ucred, hostname,
3285 				    MAXHOSTNAMELEN);
3286 				sbuf_printf(&sb, "%s", hostname);
3287 				break;
3288 			case 'I':	/* autoincrementing index */
3289 				sbuf_printf(&sb, "0");
3290 				indexpos = sbuf_len(&sb) - 1;
3291 				break;
3292 			case 'N':	/* process name */
3293 				sbuf_printf(&sb, "%s", comm);
3294 				break;
3295 			case 'P':	/* process id */
3296 				sbuf_printf(&sb, "%u", pid);
3297 				break;
3298 			case 'U':	/* user id */
3299 				sbuf_printf(&sb, "%u", uid);
3300 				break;
3301 			default:
3302 				log(LOG_ERR,
3303 				    "Unknown format character %c in "
3304 				    "corename `%s'\n", format[i], format);
3305 				break;
3306 			}
3307 			break;
3308 		default:
3309 			sbuf_putc(&sb, format[i]);
3310 			break;
3311 		}
3312 	}
3313 	sx_sunlock(&corefilename_lock);
3314 	free(hostname, M_TEMP);
3315 	if (compress)
3316 		sbuf_printf(&sb, GZ_SUFFIX);
3317 	if (sbuf_error(&sb) != 0) {
3318 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3319 		    "long\n", (long)pid, comm, (u_long)uid);
3320 		sbuf_delete(&sb);
3321 		free(name, M_TEMP);
3322 		return (ENOMEM);
3323 	}
3324 	sbuf_finish(&sb);
3325 	sbuf_delete(&sb);
3326 
3327 	cmode = S_IRUSR | S_IWUSR;
3328 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3329 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3330 
3331 	/*
3332 	 * If the core format has a %I in it, then we need to check
3333 	 * for existing corefiles before returning a name.
3334 	 * To do this we iterate over 0..num_cores to find a
3335 	 * non-existing core file name to use.
3336 	 */
3337 	if (indexpos != -1) {
3338 		for (i = 0; i < num_cores; i++) {
3339 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3340 			name[indexpos] = '0' + i;
3341 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3342 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3343 			    td->td_ucred, NULL);
3344 			if (error) {
3345 				if (error == EEXIST)
3346 					continue;
3347 				log(LOG_ERR,
3348 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3349 				    "on initial open test, error = %d\n",
3350 				    pid, comm, uid, name, error);
3351 			}
3352 			goto out;
3353 		}
3354 	}
3355 
3356 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3357 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3358 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3359 out:
3360 	if (error) {
3361 #ifdef AUDIT
3362 		audit_proc_coredump(td, name, error);
3363 #endif
3364 		free(name, M_TEMP);
3365 		return (error);
3366 	}
3367 	NDFREE(&nd, NDF_ONLY_PNBUF);
3368 	*vpp = nd.ni_vp;
3369 	*namep = name;
3370 	return (0);
3371 }
3372 
3373 static int
3374 coredump_sanitise_path(const char *path)
3375 {
3376 	size_t i;
3377 
3378 	/*
3379 	 * Only send a subset of ASCII to devd(8) because it
3380 	 * might pass these strings to sh -c.
3381 	 */
3382 	for (i = 0; path[i]; i++)
3383 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3384 		    path[i] != '/' && path[i] != '.' &&
3385 		    path[i] != '-')
3386 			return (0);
3387 
3388 	return (1);
3389 }
3390 
3391 /*
3392  * Dump a process' core.  The main routine does some
3393  * policy checking, and creates the name of the coredump;
3394  * then it passes on a vnode and a size limit to the process-specific
3395  * coredump routine if there is one; if there _is not_ one, it returns
3396  * ENOSYS; otherwise it returns the error from the process-specific routine.
3397  */
3398 
3399 static int
3400 coredump(struct thread *td)
3401 {
3402 	struct proc *p = td->td_proc;
3403 	struct ucred *cred = td->td_ucred;
3404 	struct vnode *vp;
3405 	struct flock lf;
3406 	struct vattr vattr;
3407 	int error, error1, locked;
3408 	char *name;			/* name of corefile */
3409 	void *rl_cookie;
3410 	off_t limit;
3411 	char *data = NULL;
3412 	char *fullpath, *freepath = NULL;
3413 	size_t len;
3414 	static const char comm_name[] = "comm=";
3415 	static const char core_name[] = "core=";
3416 
3417 	PROC_LOCK_ASSERT(p, MA_OWNED);
3418 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3419 	_STOPEVENT(p, S_CORE, 0);
3420 
3421 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3422 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3423 		PROC_UNLOCK(p);
3424 		return (EFAULT);
3425 	}
3426 
3427 	/*
3428 	 * Note that the bulk of limit checking is done after
3429 	 * the corefile is created.  The exception is if the limit
3430 	 * for corefiles is 0, in which case we don't bother
3431 	 * creating the corefile at all.  This layout means that
3432 	 * a corefile is truncated instead of not being created,
3433 	 * if it is larger than the limit.
3434 	 */
3435 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3436 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3437 		PROC_UNLOCK(p);
3438 		return (EFBIG);
3439 	}
3440 	PROC_UNLOCK(p);
3441 
3442 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3443 	    compress_user_cores, &vp, &name);
3444 	if (error != 0)
3445 		return (error);
3446 
3447 	/*
3448 	 * Don't dump to non-regular files or files with links.
3449 	 * Do not dump into system files.
3450 	 */
3451 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3452 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3453 		VOP_UNLOCK(vp, 0);
3454 		error = EFAULT;
3455 		goto out;
3456 	}
3457 
3458 	VOP_UNLOCK(vp, 0);
3459 
3460 	/* Postpone other writers, including core dumps of other processes. */
3461 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3462 
3463 	lf.l_whence = SEEK_SET;
3464 	lf.l_start = 0;
3465 	lf.l_len = 0;
3466 	lf.l_type = F_WRLCK;
3467 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3468 
3469 	VATTR_NULL(&vattr);
3470 	vattr.va_size = 0;
3471 	if (set_core_nodump_flag)
3472 		vattr.va_flags = UF_NODUMP;
3473 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3474 	VOP_SETATTR(vp, &vattr, cred);
3475 	VOP_UNLOCK(vp, 0);
3476 	PROC_LOCK(p);
3477 	p->p_acflag |= ACORE;
3478 	PROC_UNLOCK(p);
3479 
3480 	if (p->p_sysent->sv_coredump != NULL) {
3481 		error = p->p_sysent->sv_coredump(td, vp, limit,
3482 		    compress_user_cores ? IMGACT_CORE_COMPRESS : 0);
3483 	} else {
3484 		error = ENOSYS;
3485 	}
3486 
3487 	if (locked) {
3488 		lf.l_type = F_UNLCK;
3489 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3490 	}
3491 	vn_rangelock_unlock(vp, rl_cookie);
3492 
3493 	/*
3494 	 * Notify the userland helper that a process triggered a core dump.
3495 	 * This allows the helper to run an automated debugging session.
3496 	 */
3497 	if (error != 0 || coredump_devctl == 0)
3498 		goto out;
3499 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3500 	    sizeof(' ') + sizeof(core_name) - 1;
3501 	data = malloc(len, M_TEMP, M_WAITOK);
3502 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3503 		goto out;
3504 	if (!coredump_sanitise_path(fullpath))
3505 		goto out;
3506 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3507 	free(freepath, M_TEMP);
3508 	freepath = NULL;
3509 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3510 		goto out;
3511 	if (!coredump_sanitise_path(fullpath))
3512 		goto out;
3513 	strlcat(data, core_name, len);
3514 	strlcat(data, fullpath, len);
3515 	devctl_notify("kernel", "signal", "coredump", data);
3516 out:
3517 	error1 = vn_close(vp, FWRITE, cred, td);
3518 	if (error == 0)
3519 		error = error1;
3520 #ifdef AUDIT
3521 	audit_proc_coredump(td, name, error);
3522 #endif
3523 	free(freepath, M_TEMP);
3524 	free(data, M_TEMP);
3525 	free(name, M_TEMP);
3526 	return (error);
3527 }
3528 
3529 /*
3530  * Nonexistent system call-- signal process (may want to handle it).  Flag
3531  * error in case process won't see signal immediately (blocked or ignored).
3532  */
3533 #ifndef _SYS_SYSPROTO_H_
3534 struct nosys_args {
3535 	int	dummy;
3536 };
3537 #endif
3538 /* ARGSUSED */
3539 int
3540 nosys(struct thread *td, struct nosys_args *args)
3541 {
3542 	struct proc *p = td->td_proc;
3543 
3544 	PROC_LOCK(p);
3545 	tdsignal(td, SIGSYS);
3546 	PROC_UNLOCK(p);
3547 	return (ENOSYS);
3548 }
3549 
3550 /*
3551  * Send a SIGIO or SIGURG signal to a process or process group using stored
3552  * credentials rather than those of the current process.
3553  */
3554 void
3555 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3556 {
3557 	ksiginfo_t ksi;
3558 	struct sigio *sigio;
3559 
3560 	ksiginfo_init(&ksi);
3561 	ksi.ksi_signo = sig;
3562 	ksi.ksi_code = SI_KERNEL;
3563 
3564 	SIGIO_LOCK();
3565 	sigio = *sigiop;
3566 	if (sigio == NULL) {
3567 		SIGIO_UNLOCK();
3568 		return;
3569 	}
3570 	if (sigio->sio_pgid > 0) {
3571 		PROC_LOCK(sigio->sio_proc);
3572 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3573 			kern_psignal(sigio->sio_proc, sig);
3574 		PROC_UNLOCK(sigio->sio_proc);
3575 	} else if (sigio->sio_pgid < 0) {
3576 		struct proc *p;
3577 
3578 		PGRP_LOCK(sigio->sio_pgrp);
3579 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3580 			PROC_LOCK(p);
3581 			if (p->p_state == PRS_NORMAL &&
3582 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3583 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3584 				kern_psignal(p, sig);
3585 			PROC_UNLOCK(p);
3586 		}
3587 		PGRP_UNLOCK(sigio->sio_pgrp);
3588 	}
3589 	SIGIO_UNLOCK();
3590 }
3591 
3592 static int
3593 filt_sigattach(struct knote *kn)
3594 {
3595 	struct proc *p = curproc;
3596 
3597 	kn->kn_ptr.p_proc = p;
3598 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3599 
3600 	knlist_add(p->p_klist, kn, 0);
3601 
3602 	return (0);
3603 }
3604 
3605 static void
3606 filt_sigdetach(struct knote *kn)
3607 {
3608 	struct proc *p = kn->kn_ptr.p_proc;
3609 
3610 	knlist_remove(p->p_klist, kn, 0);
3611 }
3612 
3613 /*
3614  * signal knotes are shared with proc knotes, so we apply a mask to
3615  * the hint in order to differentiate them from process hints.  This
3616  * could be avoided by using a signal-specific knote list, but probably
3617  * isn't worth the trouble.
3618  */
3619 static int
3620 filt_signal(struct knote *kn, long hint)
3621 {
3622 
3623 	if (hint & NOTE_SIGNAL) {
3624 		hint &= ~NOTE_SIGNAL;
3625 
3626 		if (kn->kn_id == hint)
3627 			kn->kn_data++;
3628 	}
3629 	return (kn->kn_data != 0);
3630 }
3631 
3632 struct sigacts *
3633 sigacts_alloc(void)
3634 {
3635 	struct sigacts *ps;
3636 
3637 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3638 	refcount_init(&ps->ps_refcnt, 1);
3639 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3640 	return (ps);
3641 }
3642 
3643 void
3644 sigacts_free(struct sigacts *ps)
3645 {
3646 
3647 	if (refcount_release(&ps->ps_refcnt) == 0)
3648 		return;
3649 	mtx_destroy(&ps->ps_mtx);
3650 	free(ps, M_SUBPROC);
3651 }
3652 
3653 struct sigacts *
3654 sigacts_hold(struct sigacts *ps)
3655 {
3656 
3657 	refcount_acquire(&ps->ps_refcnt);
3658 	return (ps);
3659 }
3660 
3661 void
3662 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3663 {
3664 
3665 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3666 	mtx_lock(&src->ps_mtx);
3667 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3668 	mtx_unlock(&src->ps_mtx);
3669 }
3670 
3671 int
3672 sigacts_shared(struct sigacts *ps)
3673 {
3674 
3675 	return (ps->ps_refcnt > 1);
3676 }
3677