xref: /freebsd/sys/kern/kern_sig.c (revision ab0b9f6b3073e6c4d1dfbf07444d7db67a189a96)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 #include "opt_core.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/signalvar.h>
47 #include <sys/vnode.h>
48 #include <sys/acct.h>
49 #include <sys/capability.h>
50 #include <sys/condvar.h>
51 #include <sys/event.h>
52 #include <sys/fcntl.h>
53 #include <sys/imgact.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/proc.h>
62 #include <sys/procdesc.h>
63 #include <sys/posix4.h>
64 #include <sys/pioctl.h>
65 #include <sys/racct.h>
66 #include <sys/resourcevar.h>
67 #include <sys/sdt.h>
68 #include <sys/sbuf.h>
69 #include <sys/sleepqueue.h>
70 #include <sys/smp.h>
71 #include <sys/stat.h>
72 #include <sys/sx.h>
73 #include <sys/syscallsubr.h>
74 #include <sys/sysctl.h>
75 #include <sys/sysent.h>
76 #include <sys/syslog.h>
77 #include <sys/sysproto.h>
78 #include <sys/timers.h>
79 #include <sys/unistd.h>
80 #include <sys/wait.h>
81 #include <vm/vm.h>
82 #include <vm/vm_extern.h>
83 #include <vm/uma.h>
84 
85 #include <sys/jail.h>
86 
87 #include <machine/cpu.h>
88 
89 #include <security/audit/audit.h>
90 
91 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, "struct thread *",
95     "struct proc *", "int");
96 SDT_PROBE_DEFINE2(proc, kernel, , signal__clear, "int",
97     "ksiginfo_t *");
98 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
99     "struct thread *", "struct proc *", "int");
100 
101 static int	coredump(struct thread *);
102 static int	killpg1(struct thread *td, int sig, int pgid, int all,
103 		    ksiginfo_t *ksi);
104 static int	issignal(struct thread *td);
105 static int	sigprop(int sig);
106 static void	tdsigwakeup(struct thread *, int, sig_t, int);
107 static void	sig_suspend_threads(struct thread *, struct proc *, int);
108 static int	filt_sigattach(struct knote *kn);
109 static void	filt_sigdetach(struct knote *kn);
110 static int	filt_signal(struct knote *kn, long hint);
111 static struct thread *sigtd(struct proc *p, int sig, int prop);
112 static void	sigqueue_start(void);
113 
114 static uma_zone_t	ksiginfo_zone = NULL;
115 struct filterops sig_filtops = {
116 	.f_isfd = 0,
117 	.f_attach = filt_sigattach,
118 	.f_detach = filt_sigdetach,
119 	.f_event = filt_signal,
120 };
121 
122 static int	kern_logsigexit = 1;
123 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
124     &kern_logsigexit, 0,
125     "Log processes quitting on abnormal signals to syslog(3)");
126 
127 static int	kern_forcesigexit = 1;
128 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
129     &kern_forcesigexit, 0, "Force trap signal to be handled");
130 
131 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
132     "POSIX real time signal");
133 
134 static int	max_pending_per_proc = 128;
135 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
136     &max_pending_per_proc, 0, "Max pending signals per proc");
137 
138 static int	preallocate_siginfo = 1024;
139 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
141     &preallocate_siginfo, 0, "Preallocated signal memory size");
142 
143 static int	signal_overflow = 0;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
145     &signal_overflow, 0, "Number of signals overflew");
146 
147 static int	signal_alloc_fail = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
149     &signal_alloc_fail, 0, "signals failed to be allocated");
150 
151 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
152 
153 /*
154  * Policy -- Can ucred cr1 send SIGIO to process cr2?
155  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
156  * in the right situations.
157  */
158 #define CANSIGIO(cr1, cr2) \
159 	((cr1)->cr_uid == 0 || \
160 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
161 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
162 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
163 	    (cr1)->cr_uid == (cr2)->cr_uid)
164 
165 static int	sugid_coredump;
166 TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
167 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
168     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
169 
170 static int	capmode_coredump;
171 TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
172 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
173     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
174 
175 static int	do_coredump = 1;
176 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
177 	&do_coredump, 0, "Enable/Disable coredumps");
178 
179 static int	set_core_nodump_flag = 0;
180 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
181 	0, "Enable setting the NODUMP flag on coredump files");
182 
183 /*
184  * Signal properties and actions.
185  * The array below categorizes the signals and their default actions
186  * according to the following properties:
187  */
188 #define	SA_KILL		0x01		/* terminates process by default */
189 #define	SA_CORE		0x02		/* ditto and coredumps */
190 #define	SA_STOP		0x04		/* suspend process */
191 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
192 #define	SA_IGNORE	0x10		/* ignore by default */
193 #define	SA_CONT		0x20		/* continue if suspended */
194 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
195 
196 static int sigproptbl[NSIG] = {
197 	SA_KILL,			/* SIGHUP */
198 	SA_KILL,			/* SIGINT */
199 	SA_KILL|SA_CORE,		/* SIGQUIT */
200 	SA_KILL|SA_CORE,		/* SIGILL */
201 	SA_KILL|SA_CORE,		/* SIGTRAP */
202 	SA_KILL|SA_CORE,		/* SIGABRT */
203 	SA_KILL|SA_CORE,		/* SIGEMT */
204 	SA_KILL|SA_CORE,		/* SIGFPE */
205 	SA_KILL,			/* SIGKILL */
206 	SA_KILL|SA_CORE,		/* SIGBUS */
207 	SA_KILL|SA_CORE,		/* SIGSEGV */
208 	SA_KILL|SA_CORE,		/* SIGSYS */
209 	SA_KILL,			/* SIGPIPE */
210 	SA_KILL,			/* SIGALRM */
211 	SA_KILL,			/* SIGTERM */
212 	SA_IGNORE,			/* SIGURG */
213 	SA_STOP,			/* SIGSTOP */
214 	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
215 	SA_IGNORE|SA_CONT,		/* SIGCONT */
216 	SA_IGNORE,			/* SIGCHLD */
217 	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
218 	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
219 	SA_IGNORE,			/* SIGIO */
220 	SA_KILL,			/* SIGXCPU */
221 	SA_KILL,			/* SIGXFSZ */
222 	SA_KILL,			/* SIGVTALRM */
223 	SA_KILL,			/* SIGPROF */
224 	SA_IGNORE,			/* SIGWINCH  */
225 	SA_IGNORE,			/* SIGINFO */
226 	SA_KILL,			/* SIGUSR1 */
227 	SA_KILL,			/* SIGUSR2 */
228 };
229 
230 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
231 
232 static void
233 sigqueue_start(void)
234 {
235 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
236 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
237 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
238 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
239 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
240 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
241 }
242 
243 ksiginfo_t *
244 ksiginfo_alloc(int wait)
245 {
246 	int flags;
247 
248 	flags = M_ZERO;
249 	if (! wait)
250 		flags |= M_NOWAIT;
251 	if (ksiginfo_zone != NULL)
252 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
253 	return (NULL);
254 }
255 
256 void
257 ksiginfo_free(ksiginfo_t *ksi)
258 {
259 	uma_zfree(ksiginfo_zone, ksi);
260 }
261 
262 static __inline int
263 ksiginfo_tryfree(ksiginfo_t *ksi)
264 {
265 	if (!(ksi->ksi_flags & KSI_EXT)) {
266 		uma_zfree(ksiginfo_zone, ksi);
267 		return (1);
268 	}
269 	return (0);
270 }
271 
272 void
273 sigqueue_init(sigqueue_t *list, struct proc *p)
274 {
275 	SIGEMPTYSET(list->sq_signals);
276 	SIGEMPTYSET(list->sq_kill);
277 	TAILQ_INIT(&list->sq_list);
278 	list->sq_proc = p;
279 	list->sq_flags = SQ_INIT;
280 }
281 
282 /*
283  * Get a signal's ksiginfo.
284  * Return:
285  *	0	-	signal not found
286  *	others	-	signal number
287  */
288 static int
289 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
290 {
291 	struct proc *p = sq->sq_proc;
292 	struct ksiginfo *ksi, *next;
293 	int count = 0;
294 
295 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
296 
297 	if (!SIGISMEMBER(sq->sq_signals, signo))
298 		return (0);
299 
300 	if (SIGISMEMBER(sq->sq_kill, signo)) {
301 		count++;
302 		SIGDELSET(sq->sq_kill, signo);
303 	}
304 
305 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
306 		if (ksi->ksi_signo == signo) {
307 			if (count == 0) {
308 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
309 				ksi->ksi_sigq = NULL;
310 				ksiginfo_copy(ksi, si);
311 				if (ksiginfo_tryfree(ksi) && p != NULL)
312 					p->p_pendingcnt--;
313 			}
314 			if (++count > 1)
315 				break;
316 		}
317 	}
318 
319 	if (count <= 1)
320 		SIGDELSET(sq->sq_signals, signo);
321 	si->ksi_signo = signo;
322 	return (signo);
323 }
324 
325 void
326 sigqueue_take(ksiginfo_t *ksi)
327 {
328 	struct ksiginfo *kp;
329 	struct proc	*p;
330 	sigqueue_t	*sq;
331 
332 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
333 		return;
334 
335 	p = sq->sq_proc;
336 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
337 	ksi->ksi_sigq = NULL;
338 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
339 		p->p_pendingcnt--;
340 
341 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
342 	     kp = TAILQ_NEXT(kp, ksi_link)) {
343 		if (kp->ksi_signo == ksi->ksi_signo)
344 			break;
345 	}
346 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
347 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
348 }
349 
350 static int
351 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
352 {
353 	struct proc *p = sq->sq_proc;
354 	struct ksiginfo *ksi;
355 	int ret = 0;
356 
357 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
358 
359 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
360 		SIGADDSET(sq->sq_kill, signo);
361 		goto out_set_bit;
362 	}
363 
364 	/* directly insert the ksi, don't copy it */
365 	if (si->ksi_flags & KSI_INS) {
366 		if (si->ksi_flags & KSI_HEAD)
367 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
368 		else
369 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
370 		si->ksi_sigq = sq;
371 		goto out_set_bit;
372 	}
373 
374 	if (__predict_false(ksiginfo_zone == NULL)) {
375 		SIGADDSET(sq->sq_kill, signo);
376 		goto out_set_bit;
377 	}
378 
379 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
380 		signal_overflow++;
381 		ret = EAGAIN;
382 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
383 		signal_alloc_fail++;
384 		ret = EAGAIN;
385 	} else {
386 		if (p != NULL)
387 			p->p_pendingcnt++;
388 		ksiginfo_copy(si, ksi);
389 		ksi->ksi_signo = signo;
390 		if (si->ksi_flags & KSI_HEAD)
391 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
392 		else
393 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
394 		ksi->ksi_sigq = sq;
395 	}
396 
397 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
398 	    (si->ksi_flags & KSI_SIGQ) == 0) {
399 		if (ret != 0)
400 			SIGADDSET(sq->sq_kill, signo);
401 		ret = 0;
402 		goto out_set_bit;
403 	}
404 
405 	if (ret != 0)
406 		return (ret);
407 
408 out_set_bit:
409 	SIGADDSET(sq->sq_signals, signo);
410 	return (ret);
411 }
412 
413 void
414 sigqueue_flush(sigqueue_t *sq)
415 {
416 	struct proc *p = sq->sq_proc;
417 	ksiginfo_t *ksi;
418 
419 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
420 
421 	if (p != NULL)
422 		PROC_LOCK_ASSERT(p, MA_OWNED);
423 
424 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
425 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
426 		ksi->ksi_sigq = NULL;
427 		if (ksiginfo_tryfree(ksi) && p != NULL)
428 			p->p_pendingcnt--;
429 	}
430 
431 	SIGEMPTYSET(sq->sq_signals);
432 	SIGEMPTYSET(sq->sq_kill);
433 }
434 
435 static void
436 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
437 {
438 	sigset_t tmp;
439 	struct proc *p1, *p2;
440 	ksiginfo_t *ksi, *next;
441 
442 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
443 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
444 	p1 = src->sq_proc;
445 	p2 = dst->sq_proc;
446 	/* Move siginfo to target list */
447 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
448 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
449 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
450 			if (p1 != NULL)
451 				p1->p_pendingcnt--;
452 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
453 			ksi->ksi_sigq = dst;
454 			if (p2 != NULL)
455 				p2->p_pendingcnt++;
456 		}
457 	}
458 
459 	/* Move pending bits to target list */
460 	tmp = src->sq_kill;
461 	SIGSETAND(tmp, *set);
462 	SIGSETOR(dst->sq_kill, tmp);
463 	SIGSETNAND(src->sq_kill, tmp);
464 
465 	tmp = src->sq_signals;
466 	SIGSETAND(tmp, *set);
467 	SIGSETOR(dst->sq_signals, tmp);
468 	SIGSETNAND(src->sq_signals, tmp);
469 }
470 
471 #if 0
472 static void
473 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
474 {
475 	sigset_t set;
476 
477 	SIGEMPTYSET(set);
478 	SIGADDSET(set, signo);
479 	sigqueue_move_set(src, dst, &set);
480 }
481 #endif
482 
483 static void
484 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
485 {
486 	struct proc *p = sq->sq_proc;
487 	ksiginfo_t *ksi, *next;
488 
489 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
490 
491 	/* Remove siginfo queue */
492 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
493 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
494 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
495 			ksi->ksi_sigq = NULL;
496 			if (ksiginfo_tryfree(ksi) && p != NULL)
497 				p->p_pendingcnt--;
498 		}
499 	}
500 	SIGSETNAND(sq->sq_kill, *set);
501 	SIGSETNAND(sq->sq_signals, *set);
502 }
503 
504 void
505 sigqueue_delete(sigqueue_t *sq, int signo)
506 {
507 	sigset_t set;
508 
509 	SIGEMPTYSET(set);
510 	SIGADDSET(set, signo);
511 	sigqueue_delete_set(sq, &set);
512 }
513 
514 /* Remove a set of signals for a process */
515 static void
516 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
517 {
518 	sigqueue_t worklist;
519 	struct thread *td0;
520 
521 	PROC_LOCK_ASSERT(p, MA_OWNED);
522 
523 	sigqueue_init(&worklist, NULL);
524 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
525 
526 	FOREACH_THREAD_IN_PROC(p, td0)
527 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
528 
529 	sigqueue_flush(&worklist);
530 }
531 
532 void
533 sigqueue_delete_proc(struct proc *p, int signo)
534 {
535 	sigset_t set;
536 
537 	SIGEMPTYSET(set);
538 	SIGADDSET(set, signo);
539 	sigqueue_delete_set_proc(p, &set);
540 }
541 
542 static void
543 sigqueue_delete_stopmask_proc(struct proc *p)
544 {
545 	sigset_t set;
546 
547 	SIGEMPTYSET(set);
548 	SIGADDSET(set, SIGSTOP);
549 	SIGADDSET(set, SIGTSTP);
550 	SIGADDSET(set, SIGTTIN);
551 	SIGADDSET(set, SIGTTOU);
552 	sigqueue_delete_set_proc(p, &set);
553 }
554 
555 /*
556  * Determine signal that should be delivered to thread td, the current
557  * thread, 0 if none.  If there is a pending stop signal with default
558  * action, the process stops in issignal().
559  */
560 int
561 cursig(struct thread *td)
562 {
563 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
564 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
565 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
566 	return (SIGPENDING(td) ? issignal(td) : 0);
567 }
568 
569 /*
570  * Arrange for ast() to handle unmasked pending signals on return to user
571  * mode.  This must be called whenever a signal is added to td_sigqueue or
572  * unmasked in td_sigmask.
573  */
574 void
575 signotify(struct thread *td)
576 {
577 	struct proc *p;
578 
579 	p = td->td_proc;
580 
581 	PROC_LOCK_ASSERT(p, MA_OWNED);
582 
583 	if (SIGPENDING(td)) {
584 		thread_lock(td);
585 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
586 		thread_unlock(td);
587 	}
588 }
589 
590 int
591 sigonstack(size_t sp)
592 {
593 	struct thread *td = curthread;
594 
595 	return ((td->td_pflags & TDP_ALTSTACK) ?
596 #if defined(COMPAT_43)
597 	    ((td->td_sigstk.ss_size == 0) ?
598 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
599 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
600 #else
601 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
602 #endif
603 	    : 0);
604 }
605 
606 static __inline int
607 sigprop(int sig)
608 {
609 
610 	if (sig > 0 && sig < NSIG)
611 		return (sigproptbl[_SIG_IDX(sig)]);
612 	return (0);
613 }
614 
615 int
616 sig_ffs(sigset_t *set)
617 {
618 	int i;
619 
620 	for (i = 0; i < _SIG_WORDS; i++)
621 		if (set->__bits[i])
622 			return (ffs(set->__bits[i]) + (i * 32));
623 	return (0);
624 }
625 
626 /*
627  * kern_sigaction
628  * sigaction
629  * freebsd4_sigaction
630  * osigaction
631  */
632 int
633 kern_sigaction(td, sig, act, oact, flags)
634 	struct thread *td;
635 	register int sig;
636 	struct sigaction *act, *oact;
637 	int flags;
638 {
639 	struct sigacts *ps;
640 	struct proc *p = td->td_proc;
641 
642 	if (!_SIG_VALID(sig))
643 		return (EINVAL);
644 
645 	PROC_LOCK(p);
646 	ps = p->p_sigacts;
647 	mtx_lock(&ps->ps_mtx);
648 	if (oact) {
649 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
650 		oact->sa_flags = 0;
651 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
652 			oact->sa_flags |= SA_ONSTACK;
653 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
654 			oact->sa_flags |= SA_RESTART;
655 		if (SIGISMEMBER(ps->ps_sigreset, sig))
656 			oact->sa_flags |= SA_RESETHAND;
657 		if (SIGISMEMBER(ps->ps_signodefer, sig))
658 			oact->sa_flags |= SA_NODEFER;
659 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
660 			oact->sa_flags |= SA_SIGINFO;
661 			oact->sa_sigaction =
662 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
663 		} else
664 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
665 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
666 			oact->sa_flags |= SA_NOCLDSTOP;
667 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
668 			oact->sa_flags |= SA_NOCLDWAIT;
669 	}
670 	if (act) {
671 		if ((sig == SIGKILL || sig == SIGSTOP) &&
672 		    act->sa_handler != SIG_DFL) {
673 			mtx_unlock(&ps->ps_mtx);
674 			PROC_UNLOCK(p);
675 			return (EINVAL);
676 		}
677 
678 		/*
679 		 * Change setting atomically.
680 		 */
681 
682 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
683 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
684 		if (act->sa_flags & SA_SIGINFO) {
685 			ps->ps_sigact[_SIG_IDX(sig)] =
686 			    (__sighandler_t *)act->sa_sigaction;
687 			SIGADDSET(ps->ps_siginfo, sig);
688 		} else {
689 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
690 			SIGDELSET(ps->ps_siginfo, sig);
691 		}
692 		if (!(act->sa_flags & SA_RESTART))
693 			SIGADDSET(ps->ps_sigintr, sig);
694 		else
695 			SIGDELSET(ps->ps_sigintr, sig);
696 		if (act->sa_flags & SA_ONSTACK)
697 			SIGADDSET(ps->ps_sigonstack, sig);
698 		else
699 			SIGDELSET(ps->ps_sigonstack, sig);
700 		if (act->sa_flags & SA_RESETHAND)
701 			SIGADDSET(ps->ps_sigreset, sig);
702 		else
703 			SIGDELSET(ps->ps_sigreset, sig);
704 		if (act->sa_flags & SA_NODEFER)
705 			SIGADDSET(ps->ps_signodefer, sig);
706 		else
707 			SIGDELSET(ps->ps_signodefer, sig);
708 		if (sig == SIGCHLD) {
709 			if (act->sa_flags & SA_NOCLDSTOP)
710 				ps->ps_flag |= PS_NOCLDSTOP;
711 			else
712 				ps->ps_flag &= ~PS_NOCLDSTOP;
713 			if (act->sa_flags & SA_NOCLDWAIT) {
714 				/*
715 				 * Paranoia: since SA_NOCLDWAIT is implemented
716 				 * by reparenting the dying child to PID 1 (and
717 				 * trust it to reap the zombie), PID 1 itself
718 				 * is forbidden to set SA_NOCLDWAIT.
719 				 */
720 				if (p->p_pid == 1)
721 					ps->ps_flag &= ~PS_NOCLDWAIT;
722 				else
723 					ps->ps_flag |= PS_NOCLDWAIT;
724 			} else
725 				ps->ps_flag &= ~PS_NOCLDWAIT;
726 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
727 				ps->ps_flag |= PS_CLDSIGIGN;
728 			else
729 				ps->ps_flag &= ~PS_CLDSIGIGN;
730 		}
731 		/*
732 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
733 		 * and for signals set to SIG_DFL where the default is to
734 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
735 		 * have to restart the process.
736 		 */
737 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
738 		    (sigprop(sig) & SA_IGNORE &&
739 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
740 			/* never to be seen again */
741 			sigqueue_delete_proc(p, sig);
742 			if (sig != SIGCONT)
743 				/* easier in psignal */
744 				SIGADDSET(ps->ps_sigignore, sig);
745 			SIGDELSET(ps->ps_sigcatch, sig);
746 		} else {
747 			SIGDELSET(ps->ps_sigignore, sig);
748 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
749 				SIGDELSET(ps->ps_sigcatch, sig);
750 			else
751 				SIGADDSET(ps->ps_sigcatch, sig);
752 		}
753 #ifdef COMPAT_FREEBSD4
754 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
755 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
756 		    (flags & KSA_FREEBSD4) == 0)
757 			SIGDELSET(ps->ps_freebsd4, sig);
758 		else
759 			SIGADDSET(ps->ps_freebsd4, sig);
760 #endif
761 #ifdef COMPAT_43
762 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
763 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
764 		    (flags & KSA_OSIGSET) == 0)
765 			SIGDELSET(ps->ps_osigset, sig);
766 		else
767 			SIGADDSET(ps->ps_osigset, sig);
768 #endif
769 	}
770 	mtx_unlock(&ps->ps_mtx);
771 	PROC_UNLOCK(p);
772 	return (0);
773 }
774 
775 #ifndef _SYS_SYSPROTO_H_
776 struct sigaction_args {
777 	int	sig;
778 	struct	sigaction *act;
779 	struct	sigaction *oact;
780 };
781 #endif
782 int
783 sys_sigaction(td, uap)
784 	struct thread *td;
785 	register struct sigaction_args *uap;
786 {
787 	struct sigaction act, oact;
788 	register struct sigaction *actp, *oactp;
789 	int error;
790 
791 	actp = (uap->act != NULL) ? &act : NULL;
792 	oactp = (uap->oact != NULL) ? &oact : NULL;
793 	if (actp) {
794 		error = copyin(uap->act, actp, sizeof(act));
795 		if (error)
796 			return (error);
797 	}
798 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
799 	if (oactp && !error)
800 		error = copyout(oactp, uap->oact, sizeof(oact));
801 	return (error);
802 }
803 
804 #ifdef COMPAT_FREEBSD4
805 #ifndef _SYS_SYSPROTO_H_
806 struct freebsd4_sigaction_args {
807 	int	sig;
808 	struct	sigaction *act;
809 	struct	sigaction *oact;
810 };
811 #endif
812 int
813 freebsd4_sigaction(td, uap)
814 	struct thread *td;
815 	register struct freebsd4_sigaction_args *uap;
816 {
817 	struct sigaction act, oact;
818 	register struct sigaction *actp, *oactp;
819 	int error;
820 
821 
822 	actp = (uap->act != NULL) ? &act : NULL;
823 	oactp = (uap->oact != NULL) ? &oact : NULL;
824 	if (actp) {
825 		error = copyin(uap->act, actp, sizeof(act));
826 		if (error)
827 			return (error);
828 	}
829 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
830 	if (oactp && !error)
831 		error = copyout(oactp, uap->oact, sizeof(oact));
832 	return (error);
833 }
834 #endif	/* COMAPT_FREEBSD4 */
835 
836 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
837 #ifndef _SYS_SYSPROTO_H_
838 struct osigaction_args {
839 	int	signum;
840 	struct	osigaction *nsa;
841 	struct	osigaction *osa;
842 };
843 #endif
844 int
845 osigaction(td, uap)
846 	struct thread *td;
847 	register struct osigaction_args *uap;
848 {
849 	struct osigaction sa;
850 	struct sigaction nsa, osa;
851 	register struct sigaction *nsap, *osap;
852 	int error;
853 
854 	if (uap->signum <= 0 || uap->signum >= ONSIG)
855 		return (EINVAL);
856 
857 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
858 	osap = (uap->osa != NULL) ? &osa : NULL;
859 
860 	if (nsap) {
861 		error = copyin(uap->nsa, &sa, sizeof(sa));
862 		if (error)
863 			return (error);
864 		nsap->sa_handler = sa.sa_handler;
865 		nsap->sa_flags = sa.sa_flags;
866 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
867 	}
868 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
869 	if (osap && !error) {
870 		sa.sa_handler = osap->sa_handler;
871 		sa.sa_flags = osap->sa_flags;
872 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
873 		error = copyout(&sa, uap->osa, sizeof(sa));
874 	}
875 	return (error);
876 }
877 
878 #if !defined(__i386__)
879 /* Avoid replicating the same stub everywhere */
880 int
881 osigreturn(td, uap)
882 	struct thread *td;
883 	struct osigreturn_args *uap;
884 {
885 
886 	return (nosys(td, (struct nosys_args *)uap));
887 }
888 #endif
889 #endif /* COMPAT_43 */
890 
891 /*
892  * Initialize signal state for process 0;
893  * set to ignore signals that are ignored by default.
894  */
895 void
896 siginit(p)
897 	struct proc *p;
898 {
899 	register int i;
900 	struct sigacts *ps;
901 
902 	PROC_LOCK(p);
903 	ps = p->p_sigacts;
904 	mtx_lock(&ps->ps_mtx);
905 	for (i = 1; i <= NSIG; i++)
906 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
907 			SIGADDSET(ps->ps_sigignore, i);
908 	mtx_unlock(&ps->ps_mtx);
909 	PROC_UNLOCK(p);
910 }
911 
912 /*
913  * Reset signals for an exec of the specified process.
914  */
915 void
916 execsigs(struct proc *p)
917 {
918 	struct sigacts *ps;
919 	int sig;
920 	struct thread *td;
921 
922 	/*
923 	 * Reset caught signals.  Held signals remain held
924 	 * through td_sigmask (unless they were caught,
925 	 * and are now ignored by default).
926 	 */
927 	PROC_LOCK_ASSERT(p, MA_OWNED);
928 	td = FIRST_THREAD_IN_PROC(p);
929 	ps = p->p_sigacts;
930 	mtx_lock(&ps->ps_mtx);
931 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
932 		sig = sig_ffs(&ps->ps_sigcatch);
933 		SIGDELSET(ps->ps_sigcatch, sig);
934 		if (sigprop(sig) & SA_IGNORE) {
935 			if (sig != SIGCONT)
936 				SIGADDSET(ps->ps_sigignore, sig);
937 			sigqueue_delete_proc(p, sig);
938 		}
939 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
940 	}
941 	/*
942 	 * Reset stack state to the user stack.
943 	 * Clear set of signals caught on the signal stack.
944 	 */
945 	td->td_sigstk.ss_flags = SS_DISABLE;
946 	td->td_sigstk.ss_size = 0;
947 	td->td_sigstk.ss_sp = 0;
948 	td->td_pflags &= ~TDP_ALTSTACK;
949 	/*
950 	 * Reset no zombies if child dies flag as Solaris does.
951 	 */
952 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
953 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
954 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
955 	mtx_unlock(&ps->ps_mtx);
956 }
957 
958 /*
959  * kern_sigprocmask()
960  *
961  *	Manipulate signal mask.
962  */
963 int
964 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
965     int flags)
966 {
967 	sigset_t new_block, oset1;
968 	struct proc *p;
969 	int error;
970 
971 	p = td->td_proc;
972 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
973 		PROC_LOCK(p);
974 	if (oset != NULL)
975 		*oset = td->td_sigmask;
976 
977 	error = 0;
978 	if (set != NULL) {
979 		switch (how) {
980 		case SIG_BLOCK:
981 			SIG_CANTMASK(*set);
982 			oset1 = td->td_sigmask;
983 			SIGSETOR(td->td_sigmask, *set);
984 			new_block = td->td_sigmask;
985 			SIGSETNAND(new_block, oset1);
986 			break;
987 		case SIG_UNBLOCK:
988 			SIGSETNAND(td->td_sigmask, *set);
989 			signotify(td);
990 			goto out;
991 		case SIG_SETMASK:
992 			SIG_CANTMASK(*set);
993 			oset1 = td->td_sigmask;
994 			if (flags & SIGPROCMASK_OLD)
995 				SIGSETLO(td->td_sigmask, *set);
996 			else
997 				td->td_sigmask = *set;
998 			new_block = td->td_sigmask;
999 			SIGSETNAND(new_block, oset1);
1000 			signotify(td);
1001 			break;
1002 		default:
1003 			error = EINVAL;
1004 			goto out;
1005 		}
1006 
1007 		/*
1008 		 * The new_block set contains signals that were not previously
1009 		 * blocked, but are blocked now.
1010 		 *
1011 		 * In case we block any signal that was not previously blocked
1012 		 * for td, and process has the signal pending, try to schedule
1013 		 * signal delivery to some thread that does not block the
1014 		 * signal, possibly waking it up.
1015 		 */
1016 		if (p->p_numthreads != 1)
1017 			reschedule_signals(p, new_block, flags);
1018 	}
1019 
1020 out:
1021 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1022 		PROC_UNLOCK(p);
1023 	return (error);
1024 }
1025 
1026 #ifndef _SYS_SYSPROTO_H_
1027 struct sigprocmask_args {
1028 	int	how;
1029 	const sigset_t *set;
1030 	sigset_t *oset;
1031 };
1032 #endif
1033 int
1034 sys_sigprocmask(td, uap)
1035 	register struct thread *td;
1036 	struct sigprocmask_args *uap;
1037 {
1038 	sigset_t set, oset;
1039 	sigset_t *setp, *osetp;
1040 	int error;
1041 
1042 	setp = (uap->set != NULL) ? &set : NULL;
1043 	osetp = (uap->oset != NULL) ? &oset : NULL;
1044 	if (setp) {
1045 		error = copyin(uap->set, setp, sizeof(set));
1046 		if (error)
1047 			return (error);
1048 	}
1049 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1050 	if (osetp && !error) {
1051 		error = copyout(osetp, uap->oset, sizeof(oset));
1052 	}
1053 	return (error);
1054 }
1055 
1056 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1057 #ifndef _SYS_SYSPROTO_H_
1058 struct osigprocmask_args {
1059 	int	how;
1060 	osigset_t mask;
1061 };
1062 #endif
1063 int
1064 osigprocmask(td, uap)
1065 	register struct thread *td;
1066 	struct osigprocmask_args *uap;
1067 {
1068 	sigset_t set, oset;
1069 	int error;
1070 
1071 	OSIG2SIG(uap->mask, set);
1072 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1073 	SIG2OSIG(oset, td->td_retval[0]);
1074 	return (error);
1075 }
1076 #endif /* COMPAT_43 */
1077 
1078 int
1079 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1080 {
1081 	ksiginfo_t ksi;
1082 	sigset_t set;
1083 	int error;
1084 
1085 	error = copyin(uap->set, &set, sizeof(set));
1086 	if (error) {
1087 		td->td_retval[0] = error;
1088 		return (0);
1089 	}
1090 
1091 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1092 	if (error) {
1093 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1094 			error = ERESTART;
1095 		if (error == ERESTART)
1096 			return (error);
1097 		td->td_retval[0] = error;
1098 		return (0);
1099 	}
1100 
1101 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1102 	td->td_retval[0] = error;
1103 	return (0);
1104 }
1105 
1106 int
1107 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1108 {
1109 	struct timespec ts;
1110 	struct timespec *timeout;
1111 	sigset_t set;
1112 	ksiginfo_t ksi;
1113 	int error;
1114 
1115 	if (uap->timeout) {
1116 		error = copyin(uap->timeout, &ts, sizeof(ts));
1117 		if (error)
1118 			return (error);
1119 
1120 		timeout = &ts;
1121 	} else
1122 		timeout = NULL;
1123 
1124 	error = copyin(uap->set, &set, sizeof(set));
1125 	if (error)
1126 		return (error);
1127 
1128 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1129 	if (error)
1130 		return (error);
1131 
1132 	if (uap->info)
1133 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1134 
1135 	if (error == 0)
1136 		td->td_retval[0] = ksi.ksi_signo;
1137 	return (error);
1138 }
1139 
1140 int
1141 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1142 {
1143 	ksiginfo_t ksi;
1144 	sigset_t set;
1145 	int error;
1146 
1147 	error = copyin(uap->set, &set, sizeof(set));
1148 	if (error)
1149 		return (error);
1150 
1151 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1152 	if (error)
1153 		return (error);
1154 
1155 	if (uap->info)
1156 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1157 
1158 	if (error == 0)
1159 		td->td_retval[0] = ksi.ksi_signo;
1160 	return (error);
1161 }
1162 
1163 int
1164 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1165 	struct timespec *timeout)
1166 {
1167 	struct sigacts *ps;
1168 	sigset_t saved_mask, new_block;
1169 	struct proc *p;
1170 	int error, sig, timo, timevalid = 0;
1171 	struct timespec rts, ets, ts;
1172 	struct timeval tv;
1173 
1174 	p = td->td_proc;
1175 	error = 0;
1176 	ets.tv_sec = 0;
1177 	ets.tv_nsec = 0;
1178 
1179 	if (timeout != NULL) {
1180 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1181 			timevalid = 1;
1182 			getnanouptime(&rts);
1183 			ets = rts;
1184 			timespecadd(&ets, timeout);
1185 		}
1186 	}
1187 	ksiginfo_init(ksi);
1188 	/* Some signals can not be waited for. */
1189 	SIG_CANTMASK(waitset);
1190 	ps = p->p_sigacts;
1191 	PROC_LOCK(p);
1192 	saved_mask = td->td_sigmask;
1193 	SIGSETNAND(td->td_sigmask, waitset);
1194 	for (;;) {
1195 		mtx_lock(&ps->ps_mtx);
1196 		sig = cursig(td);
1197 		mtx_unlock(&ps->ps_mtx);
1198 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1199 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1200 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1201 				error = 0;
1202 				break;
1203 			}
1204 		}
1205 
1206 		if (error != 0)
1207 			break;
1208 
1209 		/*
1210 		 * POSIX says this must be checked after looking for pending
1211 		 * signals.
1212 		 */
1213 		if (timeout != NULL) {
1214 			if (!timevalid) {
1215 				error = EINVAL;
1216 				break;
1217 			}
1218 			getnanouptime(&rts);
1219 			if (timespeccmp(&rts, &ets, >=)) {
1220 				error = EAGAIN;
1221 				break;
1222 			}
1223 			ts = ets;
1224 			timespecsub(&ts, &rts);
1225 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1226 			timo = tvtohz(&tv);
1227 		} else {
1228 			timo = 0;
1229 		}
1230 
1231 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1232 
1233 		if (timeout != NULL) {
1234 			if (error == ERESTART) {
1235 				/* Timeout can not be restarted. */
1236 				error = EINTR;
1237 			} else if (error == EAGAIN) {
1238 				/* We will calculate timeout by ourself. */
1239 				error = 0;
1240 			}
1241 		}
1242 	}
1243 
1244 	new_block = saved_mask;
1245 	SIGSETNAND(new_block, td->td_sigmask);
1246 	td->td_sigmask = saved_mask;
1247 	/*
1248 	 * Fewer signals can be delivered to us, reschedule signal
1249 	 * notification.
1250 	 */
1251 	if (p->p_numthreads != 1)
1252 		reschedule_signals(p, new_block, 0);
1253 
1254 	if (error == 0) {
1255 		SDT_PROBE(proc, kernel, , signal__clear, sig, ksi, 0, 0, 0);
1256 
1257 		if (ksi->ksi_code == SI_TIMER)
1258 			itimer_accept(p, ksi->ksi_timerid, ksi);
1259 
1260 #ifdef KTRACE
1261 		if (KTRPOINT(td, KTR_PSIG)) {
1262 			sig_t action;
1263 
1264 			mtx_lock(&ps->ps_mtx);
1265 			action = ps->ps_sigact[_SIG_IDX(sig)];
1266 			mtx_unlock(&ps->ps_mtx);
1267 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1268 		}
1269 #endif
1270 		if (sig == SIGKILL)
1271 			sigexit(td, sig);
1272 	}
1273 	PROC_UNLOCK(p);
1274 	return (error);
1275 }
1276 
1277 #ifndef _SYS_SYSPROTO_H_
1278 struct sigpending_args {
1279 	sigset_t	*set;
1280 };
1281 #endif
1282 int
1283 sys_sigpending(td, uap)
1284 	struct thread *td;
1285 	struct sigpending_args *uap;
1286 {
1287 	struct proc *p = td->td_proc;
1288 	sigset_t pending;
1289 
1290 	PROC_LOCK(p);
1291 	pending = p->p_sigqueue.sq_signals;
1292 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1293 	PROC_UNLOCK(p);
1294 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1295 }
1296 
1297 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1298 #ifndef _SYS_SYSPROTO_H_
1299 struct osigpending_args {
1300 	int	dummy;
1301 };
1302 #endif
1303 int
1304 osigpending(td, uap)
1305 	struct thread *td;
1306 	struct osigpending_args *uap;
1307 {
1308 	struct proc *p = td->td_proc;
1309 	sigset_t pending;
1310 
1311 	PROC_LOCK(p);
1312 	pending = p->p_sigqueue.sq_signals;
1313 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1314 	PROC_UNLOCK(p);
1315 	SIG2OSIG(pending, td->td_retval[0]);
1316 	return (0);
1317 }
1318 #endif /* COMPAT_43 */
1319 
1320 #if defined(COMPAT_43)
1321 /*
1322  * Generalized interface signal handler, 4.3-compatible.
1323  */
1324 #ifndef _SYS_SYSPROTO_H_
1325 struct osigvec_args {
1326 	int	signum;
1327 	struct	sigvec *nsv;
1328 	struct	sigvec *osv;
1329 };
1330 #endif
1331 /* ARGSUSED */
1332 int
1333 osigvec(td, uap)
1334 	struct thread *td;
1335 	register struct osigvec_args *uap;
1336 {
1337 	struct sigvec vec;
1338 	struct sigaction nsa, osa;
1339 	register struct sigaction *nsap, *osap;
1340 	int error;
1341 
1342 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1343 		return (EINVAL);
1344 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1345 	osap = (uap->osv != NULL) ? &osa : NULL;
1346 	if (nsap) {
1347 		error = copyin(uap->nsv, &vec, sizeof(vec));
1348 		if (error)
1349 			return (error);
1350 		nsap->sa_handler = vec.sv_handler;
1351 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1352 		nsap->sa_flags = vec.sv_flags;
1353 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1354 	}
1355 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1356 	if (osap && !error) {
1357 		vec.sv_handler = osap->sa_handler;
1358 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1359 		vec.sv_flags = osap->sa_flags;
1360 		vec.sv_flags &= ~SA_NOCLDWAIT;
1361 		vec.sv_flags ^= SA_RESTART;
1362 		error = copyout(&vec, uap->osv, sizeof(vec));
1363 	}
1364 	return (error);
1365 }
1366 
1367 #ifndef _SYS_SYSPROTO_H_
1368 struct osigblock_args {
1369 	int	mask;
1370 };
1371 #endif
1372 int
1373 osigblock(td, uap)
1374 	register struct thread *td;
1375 	struct osigblock_args *uap;
1376 {
1377 	sigset_t set, oset;
1378 
1379 	OSIG2SIG(uap->mask, set);
1380 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1381 	SIG2OSIG(oset, td->td_retval[0]);
1382 	return (0);
1383 }
1384 
1385 #ifndef _SYS_SYSPROTO_H_
1386 struct osigsetmask_args {
1387 	int	mask;
1388 };
1389 #endif
1390 int
1391 osigsetmask(td, uap)
1392 	struct thread *td;
1393 	struct osigsetmask_args *uap;
1394 {
1395 	sigset_t set, oset;
1396 
1397 	OSIG2SIG(uap->mask, set);
1398 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1399 	SIG2OSIG(oset, td->td_retval[0]);
1400 	return (0);
1401 }
1402 #endif /* COMPAT_43 */
1403 
1404 /*
1405  * Suspend calling thread until signal, providing mask to be set in the
1406  * meantime.
1407  */
1408 #ifndef _SYS_SYSPROTO_H_
1409 struct sigsuspend_args {
1410 	const sigset_t *sigmask;
1411 };
1412 #endif
1413 /* ARGSUSED */
1414 int
1415 sys_sigsuspend(td, uap)
1416 	struct thread *td;
1417 	struct sigsuspend_args *uap;
1418 {
1419 	sigset_t mask;
1420 	int error;
1421 
1422 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1423 	if (error)
1424 		return (error);
1425 	return (kern_sigsuspend(td, mask));
1426 }
1427 
1428 int
1429 kern_sigsuspend(struct thread *td, sigset_t mask)
1430 {
1431 	struct proc *p = td->td_proc;
1432 	int has_sig, sig;
1433 
1434 	/*
1435 	 * When returning from sigsuspend, we want
1436 	 * the old mask to be restored after the
1437 	 * signal handler has finished.  Thus, we
1438 	 * save it here and mark the sigacts structure
1439 	 * to indicate this.
1440 	 */
1441 	PROC_LOCK(p);
1442 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1443 	    SIGPROCMASK_PROC_LOCKED);
1444 	td->td_pflags |= TDP_OLDMASK;
1445 
1446 	/*
1447 	 * Process signals now. Otherwise, we can get spurious wakeup
1448 	 * due to signal entered process queue, but delivered to other
1449 	 * thread. But sigsuspend should return only on signal
1450 	 * delivery.
1451 	 */
1452 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1453 	for (has_sig = 0; !has_sig;) {
1454 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1455 			0) == 0)
1456 			/* void */;
1457 		thread_suspend_check(0);
1458 		mtx_lock(&p->p_sigacts->ps_mtx);
1459 		while ((sig = cursig(td)) != 0)
1460 			has_sig += postsig(sig);
1461 		mtx_unlock(&p->p_sigacts->ps_mtx);
1462 	}
1463 	PROC_UNLOCK(p);
1464 	td->td_errno = EINTR;
1465 	td->td_pflags |= TDP_NERRNO;
1466 	return (EJUSTRETURN);
1467 }
1468 
1469 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1470 /*
1471  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1472  * convention: libc stub passes mask, not pointer, to save a copyin.
1473  */
1474 #ifndef _SYS_SYSPROTO_H_
1475 struct osigsuspend_args {
1476 	osigset_t mask;
1477 };
1478 #endif
1479 /* ARGSUSED */
1480 int
1481 osigsuspend(td, uap)
1482 	struct thread *td;
1483 	struct osigsuspend_args *uap;
1484 {
1485 	sigset_t mask;
1486 
1487 	OSIG2SIG(uap->mask, mask);
1488 	return (kern_sigsuspend(td, mask));
1489 }
1490 #endif /* COMPAT_43 */
1491 
1492 #if defined(COMPAT_43)
1493 #ifndef _SYS_SYSPROTO_H_
1494 struct osigstack_args {
1495 	struct	sigstack *nss;
1496 	struct	sigstack *oss;
1497 };
1498 #endif
1499 /* ARGSUSED */
1500 int
1501 osigstack(td, uap)
1502 	struct thread *td;
1503 	register struct osigstack_args *uap;
1504 {
1505 	struct sigstack nss, oss;
1506 	int error = 0;
1507 
1508 	if (uap->nss != NULL) {
1509 		error = copyin(uap->nss, &nss, sizeof(nss));
1510 		if (error)
1511 			return (error);
1512 	}
1513 	oss.ss_sp = td->td_sigstk.ss_sp;
1514 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1515 	if (uap->nss != NULL) {
1516 		td->td_sigstk.ss_sp = nss.ss_sp;
1517 		td->td_sigstk.ss_size = 0;
1518 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1519 		td->td_pflags |= TDP_ALTSTACK;
1520 	}
1521 	if (uap->oss != NULL)
1522 		error = copyout(&oss, uap->oss, sizeof(oss));
1523 
1524 	return (error);
1525 }
1526 #endif /* COMPAT_43 */
1527 
1528 #ifndef _SYS_SYSPROTO_H_
1529 struct sigaltstack_args {
1530 	stack_t	*ss;
1531 	stack_t	*oss;
1532 };
1533 #endif
1534 /* ARGSUSED */
1535 int
1536 sys_sigaltstack(td, uap)
1537 	struct thread *td;
1538 	register struct sigaltstack_args *uap;
1539 {
1540 	stack_t ss, oss;
1541 	int error;
1542 
1543 	if (uap->ss != NULL) {
1544 		error = copyin(uap->ss, &ss, sizeof(ss));
1545 		if (error)
1546 			return (error);
1547 	}
1548 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1549 	    (uap->oss != NULL) ? &oss : NULL);
1550 	if (error)
1551 		return (error);
1552 	if (uap->oss != NULL)
1553 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1554 	return (error);
1555 }
1556 
1557 int
1558 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1559 {
1560 	struct proc *p = td->td_proc;
1561 	int oonstack;
1562 
1563 	oonstack = sigonstack(cpu_getstack(td));
1564 
1565 	if (oss != NULL) {
1566 		*oss = td->td_sigstk;
1567 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1568 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1569 	}
1570 
1571 	if (ss != NULL) {
1572 		if (oonstack)
1573 			return (EPERM);
1574 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1575 			return (EINVAL);
1576 		if (!(ss->ss_flags & SS_DISABLE)) {
1577 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1578 				return (ENOMEM);
1579 
1580 			td->td_sigstk = *ss;
1581 			td->td_pflags |= TDP_ALTSTACK;
1582 		} else {
1583 			td->td_pflags &= ~TDP_ALTSTACK;
1584 		}
1585 	}
1586 	return (0);
1587 }
1588 
1589 /*
1590  * Common code for kill process group/broadcast kill.
1591  * cp is calling process.
1592  */
1593 static int
1594 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1595 {
1596 	struct proc *p;
1597 	struct pgrp *pgrp;
1598 	int err;
1599 	int ret;
1600 
1601 	ret = ESRCH;
1602 	if (all) {
1603 		/*
1604 		 * broadcast
1605 		 */
1606 		sx_slock(&allproc_lock);
1607 		FOREACH_PROC_IN_SYSTEM(p) {
1608 			PROC_LOCK(p);
1609 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1610 			    p == td->td_proc || p->p_state == PRS_NEW) {
1611 				PROC_UNLOCK(p);
1612 				continue;
1613 			}
1614 			err = p_cansignal(td, p, sig);
1615 			if (err == 0) {
1616 				if (sig)
1617 					pksignal(p, sig, ksi);
1618 				ret = err;
1619 			}
1620 			else if (ret == ESRCH)
1621 				ret = err;
1622 			PROC_UNLOCK(p);
1623 		}
1624 		sx_sunlock(&allproc_lock);
1625 	} else {
1626 		sx_slock(&proctree_lock);
1627 		if (pgid == 0) {
1628 			/*
1629 			 * zero pgid means send to my process group.
1630 			 */
1631 			pgrp = td->td_proc->p_pgrp;
1632 			PGRP_LOCK(pgrp);
1633 		} else {
1634 			pgrp = pgfind(pgid);
1635 			if (pgrp == NULL) {
1636 				sx_sunlock(&proctree_lock);
1637 				return (ESRCH);
1638 			}
1639 		}
1640 		sx_sunlock(&proctree_lock);
1641 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1642 			PROC_LOCK(p);
1643 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1644 			    p->p_state == PRS_NEW) {
1645 				PROC_UNLOCK(p);
1646 				continue;
1647 			}
1648 			err = p_cansignal(td, p, sig);
1649 			if (err == 0) {
1650 				if (sig)
1651 					pksignal(p, sig, ksi);
1652 				ret = err;
1653 			}
1654 			else if (ret == ESRCH)
1655 				ret = err;
1656 			PROC_UNLOCK(p);
1657 		}
1658 		PGRP_UNLOCK(pgrp);
1659 	}
1660 	return (ret);
1661 }
1662 
1663 #ifndef _SYS_SYSPROTO_H_
1664 struct kill_args {
1665 	int	pid;
1666 	int	signum;
1667 };
1668 #endif
1669 /* ARGSUSED */
1670 int
1671 sys_kill(struct thread *td, struct kill_args *uap)
1672 {
1673 	ksiginfo_t ksi;
1674 	struct proc *p;
1675 	int error;
1676 
1677 	/*
1678 	 * A process in capability mode can send signals only to himself.
1679 	 * The main rationale behind this is that abort(3) is implemented as
1680 	 * kill(getpid(), SIGABRT).
1681 	 */
1682 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1683 		return (ECAPMODE);
1684 
1685 	AUDIT_ARG_SIGNUM(uap->signum);
1686 	AUDIT_ARG_PID(uap->pid);
1687 	if ((u_int)uap->signum > _SIG_MAXSIG)
1688 		return (EINVAL);
1689 
1690 	ksiginfo_init(&ksi);
1691 	ksi.ksi_signo = uap->signum;
1692 	ksi.ksi_code = SI_USER;
1693 	ksi.ksi_pid = td->td_proc->p_pid;
1694 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1695 
1696 	if (uap->pid > 0) {
1697 		/* kill single process */
1698 		if ((p = pfind(uap->pid)) == NULL) {
1699 			if ((p = zpfind(uap->pid)) == NULL)
1700 				return (ESRCH);
1701 		}
1702 		AUDIT_ARG_PROCESS(p);
1703 		error = p_cansignal(td, p, uap->signum);
1704 		if (error == 0 && uap->signum)
1705 			pksignal(p, uap->signum, &ksi);
1706 		PROC_UNLOCK(p);
1707 		return (error);
1708 	}
1709 	switch (uap->pid) {
1710 	case -1:		/* broadcast signal */
1711 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1712 	case 0:			/* signal own process group */
1713 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1714 	default:		/* negative explicit process group */
1715 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1716 	}
1717 	/* NOTREACHED */
1718 }
1719 
1720 int
1721 sys_pdkill(td, uap)
1722 	struct thread *td;
1723 	struct pdkill_args *uap;
1724 {
1725 	struct proc *p;
1726 	cap_rights_t rights;
1727 	int error;
1728 
1729 	AUDIT_ARG_SIGNUM(uap->signum);
1730 	AUDIT_ARG_FD(uap->fd);
1731 	if ((u_int)uap->signum > _SIG_MAXSIG)
1732 		return (EINVAL);
1733 
1734 	error = procdesc_find(td, uap->fd,
1735 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1736 	if (error)
1737 		return (error);
1738 	AUDIT_ARG_PROCESS(p);
1739 	error = p_cansignal(td, p, uap->signum);
1740 	if (error == 0 && uap->signum)
1741 		kern_psignal(p, uap->signum);
1742 	PROC_UNLOCK(p);
1743 	return (error);
1744 }
1745 
1746 #if defined(COMPAT_43)
1747 #ifndef _SYS_SYSPROTO_H_
1748 struct okillpg_args {
1749 	int	pgid;
1750 	int	signum;
1751 };
1752 #endif
1753 /* ARGSUSED */
1754 int
1755 okillpg(struct thread *td, struct okillpg_args *uap)
1756 {
1757 	ksiginfo_t ksi;
1758 
1759 	AUDIT_ARG_SIGNUM(uap->signum);
1760 	AUDIT_ARG_PID(uap->pgid);
1761 	if ((u_int)uap->signum > _SIG_MAXSIG)
1762 		return (EINVAL);
1763 
1764 	ksiginfo_init(&ksi);
1765 	ksi.ksi_signo = uap->signum;
1766 	ksi.ksi_code = SI_USER;
1767 	ksi.ksi_pid = td->td_proc->p_pid;
1768 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1769 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1770 }
1771 #endif /* COMPAT_43 */
1772 
1773 #ifndef _SYS_SYSPROTO_H_
1774 struct sigqueue_args {
1775 	pid_t pid;
1776 	int signum;
1777 	/* union sigval */ void *value;
1778 };
1779 #endif
1780 int
1781 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1782 {
1783 	ksiginfo_t ksi;
1784 	struct proc *p;
1785 	int error;
1786 
1787 	if ((u_int)uap->signum > _SIG_MAXSIG)
1788 		return (EINVAL);
1789 
1790 	/*
1791 	 * Specification says sigqueue can only send signal to
1792 	 * single process.
1793 	 */
1794 	if (uap->pid <= 0)
1795 		return (EINVAL);
1796 
1797 	if ((p = pfind(uap->pid)) == NULL) {
1798 		if ((p = zpfind(uap->pid)) == NULL)
1799 			return (ESRCH);
1800 	}
1801 	error = p_cansignal(td, p, uap->signum);
1802 	if (error == 0 && uap->signum != 0) {
1803 		ksiginfo_init(&ksi);
1804 		ksi.ksi_flags = KSI_SIGQ;
1805 		ksi.ksi_signo = uap->signum;
1806 		ksi.ksi_code = SI_QUEUE;
1807 		ksi.ksi_pid = td->td_proc->p_pid;
1808 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1809 		ksi.ksi_value.sival_ptr = uap->value;
1810 		error = pksignal(p, ksi.ksi_signo, &ksi);
1811 	}
1812 	PROC_UNLOCK(p);
1813 	return (error);
1814 }
1815 
1816 /*
1817  * Send a signal to a process group.
1818  */
1819 void
1820 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1821 {
1822 	struct pgrp *pgrp;
1823 
1824 	if (pgid != 0) {
1825 		sx_slock(&proctree_lock);
1826 		pgrp = pgfind(pgid);
1827 		sx_sunlock(&proctree_lock);
1828 		if (pgrp != NULL) {
1829 			pgsignal(pgrp, sig, 0, ksi);
1830 			PGRP_UNLOCK(pgrp);
1831 		}
1832 	}
1833 }
1834 
1835 /*
1836  * Send a signal to a process group.  If checktty is 1,
1837  * limit to members which have a controlling terminal.
1838  */
1839 void
1840 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1841 {
1842 	struct proc *p;
1843 
1844 	if (pgrp) {
1845 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1846 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1847 			PROC_LOCK(p);
1848 			if (p->p_state == PRS_NORMAL &&
1849 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1850 				pksignal(p, sig, ksi);
1851 			PROC_UNLOCK(p);
1852 		}
1853 	}
1854 }
1855 
1856 /*
1857  * Send a signal caused by a trap to the current thread.  If it will be
1858  * caught immediately, deliver it with correct code.  Otherwise, post it
1859  * normally.
1860  */
1861 void
1862 trapsignal(struct thread *td, ksiginfo_t *ksi)
1863 {
1864 	struct sigacts *ps;
1865 	sigset_t mask;
1866 	struct proc *p;
1867 	int sig;
1868 	int code;
1869 
1870 	p = td->td_proc;
1871 	sig = ksi->ksi_signo;
1872 	code = ksi->ksi_code;
1873 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1874 
1875 	PROC_LOCK(p);
1876 	ps = p->p_sigacts;
1877 	mtx_lock(&ps->ps_mtx);
1878 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1879 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1880 		td->td_ru.ru_nsignals++;
1881 #ifdef KTRACE
1882 		if (KTRPOINT(curthread, KTR_PSIG))
1883 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1884 			    &td->td_sigmask, code);
1885 #endif
1886 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1887 				ksi, &td->td_sigmask);
1888 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1889 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1890 			SIGADDSET(mask, sig);
1891 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1892 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1893 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1894 			/*
1895 			 * See kern_sigaction() for origin of this code.
1896 			 */
1897 			SIGDELSET(ps->ps_sigcatch, sig);
1898 			if (sig != SIGCONT &&
1899 			    sigprop(sig) & SA_IGNORE)
1900 				SIGADDSET(ps->ps_sigignore, sig);
1901 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1902 		}
1903 		mtx_unlock(&ps->ps_mtx);
1904 	} else {
1905 		/*
1906 		 * Avoid a possible infinite loop if the thread
1907 		 * masking the signal or process is ignoring the
1908 		 * signal.
1909 		 */
1910 		if (kern_forcesigexit &&
1911 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1912 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1913 			SIGDELSET(td->td_sigmask, sig);
1914 			SIGDELSET(ps->ps_sigcatch, sig);
1915 			SIGDELSET(ps->ps_sigignore, sig);
1916 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1917 		}
1918 		mtx_unlock(&ps->ps_mtx);
1919 		p->p_code = code;	/* XXX for core dump/debugger */
1920 		p->p_sig = sig;		/* XXX to verify code */
1921 		tdsendsignal(p, td, sig, ksi);
1922 	}
1923 	PROC_UNLOCK(p);
1924 }
1925 
1926 static struct thread *
1927 sigtd(struct proc *p, int sig, int prop)
1928 {
1929 	struct thread *td, *signal_td;
1930 
1931 	PROC_LOCK_ASSERT(p, MA_OWNED);
1932 
1933 	/*
1934 	 * Check if current thread can handle the signal without
1935 	 * switching context to another thread.
1936 	 */
1937 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1938 		return (curthread);
1939 	signal_td = NULL;
1940 	FOREACH_THREAD_IN_PROC(p, td) {
1941 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1942 			signal_td = td;
1943 			break;
1944 		}
1945 	}
1946 	if (signal_td == NULL)
1947 		signal_td = FIRST_THREAD_IN_PROC(p);
1948 	return (signal_td);
1949 }
1950 
1951 /*
1952  * Send the signal to the process.  If the signal has an action, the action
1953  * is usually performed by the target process rather than the caller; we add
1954  * the signal to the set of pending signals for the process.
1955  *
1956  * Exceptions:
1957  *   o When a stop signal is sent to a sleeping process that takes the
1958  *     default action, the process is stopped without awakening it.
1959  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1960  *     regardless of the signal action (eg, blocked or ignored).
1961  *
1962  * Other ignored signals are discarded immediately.
1963  *
1964  * NB: This function may be entered from the debugger via the "kill" DDB
1965  * command.  There is little that can be done to mitigate the possibly messy
1966  * side effects of this unwise possibility.
1967  */
1968 void
1969 kern_psignal(struct proc *p, int sig)
1970 {
1971 	ksiginfo_t ksi;
1972 
1973 	ksiginfo_init(&ksi);
1974 	ksi.ksi_signo = sig;
1975 	ksi.ksi_code = SI_KERNEL;
1976 	(void) tdsendsignal(p, NULL, sig, &ksi);
1977 }
1978 
1979 int
1980 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1981 {
1982 
1983 	return (tdsendsignal(p, NULL, sig, ksi));
1984 }
1985 
1986 /* Utility function for finding a thread to send signal event to. */
1987 int
1988 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1989 {
1990 	struct thread *td;
1991 
1992 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1993 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1994 		if (td == NULL)
1995 			return (ESRCH);
1996 		*ttd = td;
1997 	} else {
1998 		*ttd = NULL;
1999 		PROC_LOCK(p);
2000 	}
2001 	return (0);
2002 }
2003 
2004 void
2005 tdsignal(struct thread *td, int sig)
2006 {
2007 	ksiginfo_t ksi;
2008 
2009 	ksiginfo_init(&ksi);
2010 	ksi.ksi_signo = sig;
2011 	ksi.ksi_code = SI_KERNEL;
2012 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2013 }
2014 
2015 void
2016 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2017 {
2018 
2019 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2020 }
2021 
2022 int
2023 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2024 {
2025 	sig_t action;
2026 	sigqueue_t *sigqueue;
2027 	int prop;
2028 	struct sigacts *ps;
2029 	int intrval;
2030 	int ret = 0;
2031 	int wakeup_swapper;
2032 
2033 	MPASS(td == NULL || p == td->td_proc);
2034 	PROC_LOCK_ASSERT(p, MA_OWNED);
2035 
2036 	if (!_SIG_VALID(sig))
2037 		panic("%s(): invalid signal %d", __func__, sig);
2038 
2039 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2040 
2041 	/*
2042 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2043 	 */
2044 	if (p->p_state == PRS_ZOMBIE) {
2045 		if (ksi && (ksi->ksi_flags & KSI_INS))
2046 			ksiginfo_tryfree(ksi);
2047 		return (ret);
2048 	}
2049 
2050 	ps = p->p_sigacts;
2051 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2052 	prop = sigprop(sig);
2053 
2054 	if (td == NULL) {
2055 		td = sigtd(p, sig, prop);
2056 		sigqueue = &p->p_sigqueue;
2057 	} else
2058 		sigqueue = &td->td_sigqueue;
2059 
2060 	SDT_PROBE(proc, kernel, , signal__send, td, p, sig, 0, 0 );
2061 
2062 	/*
2063 	 * If the signal is being ignored,
2064 	 * then we forget about it immediately.
2065 	 * (Note: we don't set SIGCONT in ps_sigignore,
2066 	 * and if it is set to SIG_IGN,
2067 	 * action will be SIG_DFL here.)
2068 	 */
2069 	mtx_lock(&ps->ps_mtx);
2070 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2071 		SDT_PROBE(proc, kernel, , signal__discard, td, p, sig, 0, 0 );
2072 
2073 		mtx_unlock(&ps->ps_mtx);
2074 		if (ksi && (ksi->ksi_flags & KSI_INS))
2075 			ksiginfo_tryfree(ksi);
2076 		return (ret);
2077 	}
2078 	if (SIGISMEMBER(td->td_sigmask, sig))
2079 		action = SIG_HOLD;
2080 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2081 		action = SIG_CATCH;
2082 	else
2083 		action = SIG_DFL;
2084 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2085 		intrval = EINTR;
2086 	else
2087 		intrval = ERESTART;
2088 	mtx_unlock(&ps->ps_mtx);
2089 
2090 	if (prop & SA_CONT)
2091 		sigqueue_delete_stopmask_proc(p);
2092 	else if (prop & SA_STOP) {
2093 		/*
2094 		 * If sending a tty stop signal to a member of an orphaned
2095 		 * process group, discard the signal here if the action
2096 		 * is default; don't stop the process below if sleeping,
2097 		 * and don't clear any pending SIGCONT.
2098 		 */
2099 		if ((prop & SA_TTYSTOP) &&
2100 		    (p->p_pgrp->pg_jobc == 0) &&
2101 		    (action == SIG_DFL)) {
2102 			if (ksi && (ksi->ksi_flags & KSI_INS))
2103 				ksiginfo_tryfree(ksi);
2104 			return (ret);
2105 		}
2106 		sigqueue_delete_proc(p, SIGCONT);
2107 		if (p->p_flag & P_CONTINUED) {
2108 			p->p_flag &= ~P_CONTINUED;
2109 			PROC_LOCK(p->p_pptr);
2110 			sigqueue_take(p->p_ksi);
2111 			PROC_UNLOCK(p->p_pptr);
2112 		}
2113 	}
2114 
2115 	ret = sigqueue_add(sigqueue, sig, ksi);
2116 	if (ret != 0)
2117 		return (ret);
2118 	signotify(td);
2119 	/*
2120 	 * Defer further processing for signals which are held,
2121 	 * except that stopped processes must be continued by SIGCONT.
2122 	 */
2123 	if (action == SIG_HOLD &&
2124 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2125 		return (ret);
2126 	/*
2127 	 * SIGKILL: Remove procfs STOPEVENTs.
2128 	 */
2129 	if (sig == SIGKILL) {
2130 		/* from procfs_ioctl.c: PIOCBIC */
2131 		p->p_stops = 0;
2132 		/* from procfs_ioctl.c: PIOCCONT */
2133 		p->p_step = 0;
2134 		wakeup(&p->p_step);
2135 	}
2136 	/*
2137 	 * Some signals have a process-wide effect and a per-thread
2138 	 * component.  Most processing occurs when the process next
2139 	 * tries to cross the user boundary, however there are some
2140 	 * times when processing needs to be done immediately, such as
2141 	 * waking up threads so that they can cross the user boundary.
2142 	 * We try to do the per-process part here.
2143 	 */
2144 	if (P_SHOULDSTOP(p)) {
2145 		KASSERT(!(p->p_flag & P_WEXIT),
2146 		    ("signal to stopped but exiting process"));
2147 		if (sig == SIGKILL) {
2148 			/*
2149 			 * If traced process is already stopped,
2150 			 * then no further action is necessary.
2151 			 */
2152 			if (p->p_flag & P_TRACED)
2153 				goto out;
2154 			/*
2155 			 * SIGKILL sets process running.
2156 			 * It will die elsewhere.
2157 			 * All threads must be restarted.
2158 			 */
2159 			p->p_flag &= ~P_STOPPED_SIG;
2160 			goto runfast;
2161 		}
2162 
2163 		if (prop & SA_CONT) {
2164 			/*
2165 			 * If traced process is already stopped,
2166 			 * then no further action is necessary.
2167 			 */
2168 			if (p->p_flag & P_TRACED)
2169 				goto out;
2170 			/*
2171 			 * If SIGCONT is default (or ignored), we continue the
2172 			 * process but don't leave the signal in sigqueue as
2173 			 * it has no further action.  If SIGCONT is held, we
2174 			 * continue the process and leave the signal in
2175 			 * sigqueue.  If the process catches SIGCONT, let it
2176 			 * handle the signal itself.  If it isn't waiting on
2177 			 * an event, it goes back to run state.
2178 			 * Otherwise, process goes back to sleep state.
2179 			 */
2180 			p->p_flag &= ~P_STOPPED_SIG;
2181 			PROC_SLOCK(p);
2182 			if (p->p_numthreads == p->p_suspcount) {
2183 				PROC_SUNLOCK(p);
2184 				p->p_flag |= P_CONTINUED;
2185 				p->p_xstat = SIGCONT;
2186 				PROC_LOCK(p->p_pptr);
2187 				childproc_continued(p);
2188 				PROC_UNLOCK(p->p_pptr);
2189 				PROC_SLOCK(p);
2190 			}
2191 			if (action == SIG_DFL) {
2192 				thread_unsuspend(p);
2193 				PROC_SUNLOCK(p);
2194 				sigqueue_delete(sigqueue, sig);
2195 				goto out;
2196 			}
2197 			if (action == SIG_CATCH) {
2198 				/*
2199 				 * The process wants to catch it so it needs
2200 				 * to run at least one thread, but which one?
2201 				 */
2202 				PROC_SUNLOCK(p);
2203 				goto runfast;
2204 			}
2205 			/*
2206 			 * The signal is not ignored or caught.
2207 			 */
2208 			thread_unsuspend(p);
2209 			PROC_SUNLOCK(p);
2210 			goto out;
2211 		}
2212 
2213 		if (prop & SA_STOP) {
2214 			/*
2215 			 * If traced process is already stopped,
2216 			 * then no further action is necessary.
2217 			 */
2218 			if (p->p_flag & P_TRACED)
2219 				goto out;
2220 			/*
2221 			 * Already stopped, don't need to stop again
2222 			 * (If we did the shell could get confused).
2223 			 * Just make sure the signal STOP bit set.
2224 			 */
2225 			p->p_flag |= P_STOPPED_SIG;
2226 			sigqueue_delete(sigqueue, sig);
2227 			goto out;
2228 		}
2229 
2230 		/*
2231 		 * All other kinds of signals:
2232 		 * If a thread is sleeping interruptibly, simulate a
2233 		 * wakeup so that when it is continued it will be made
2234 		 * runnable and can look at the signal.  However, don't make
2235 		 * the PROCESS runnable, leave it stopped.
2236 		 * It may run a bit until it hits a thread_suspend_check().
2237 		 */
2238 		wakeup_swapper = 0;
2239 		PROC_SLOCK(p);
2240 		thread_lock(td);
2241 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2242 			wakeup_swapper = sleepq_abort(td, intrval);
2243 		thread_unlock(td);
2244 		PROC_SUNLOCK(p);
2245 		if (wakeup_swapper)
2246 			kick_proc0();
2247 		goto out;
2248 		/*
2249 		 * Mutexes are short lived. Threads waiting on them will
2250 		 * hit thread_suspend_check() soon.
2251 		 */
2252 	} else if (p->p_state == PRS_NORMAL) {
2253 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2254 			tdsigwakeup(td, sig, action, intrval);
2255 			goto out;
2256 		}
2257 
2258 		MPASS(action == SIG_DFL);
2259 
2260 		if (prop & SA_STOP) {
2261 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2262 				goto out;
2263 			p->p_flag |= P_STOPPED_SIG;
2264 			p->p_xstat = sig;
2265 			PROC_SLOCK(p);
2266 			sig_suspend_threads(td, p, 1);
2267 			if (p->p_numthreads == p->p_suspcount) {
2268 				/*
2269 				 * only thread sending signal to another
2270 				 * process can reach here, if thread is sending
2271 				 * signal to its process, because thread does
2272 				 * not suspend itself here, p_numthreads
2273 				 * should never be equal to p_suspcount.
2274 				 */
2275 				thread_stopped(p);
2276 				PROC_SUNLOCK(p);
2277 				sigqueue_delete_proc(p, p->p_xstat);
2278 			} else
2279 				PROC_SUNLOCK(p);
2280 			goto out;
2281 		}
2282 	} else {
2283 		/* Not in "NORMAL" state. discard the signal. */
2284 		sigqueue_delete(sigqueue, sig);
2285 		goto out;
2286 	}
2287 
2288 	/*
2289 	 * The process is not stopped so we need to apply the signal to all the
2290 	 * running threads.
2291 	 */
2292 runfast:
2293 	tdsigwakeup(td, sig, action, intrval);
2294 	PROC_SLOCK(p);
2295 	thread_unsuspend(p);
2296 	PROC_SUNLOCK(p);
2297 out:
2298 	/* If we jump here, proc slock should not be owned. */
2299 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2300 	return (ret);
2301 }
2302 
2303 /*
2304  * The force of a signal has been directed against a single
2305  * thread.  We need to see what we can do about knocking it
2306  * out of any sleep it may be in etc.
2307  */
2308 static void
2309 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2310 {
2311 	struct proc *p = td->td_proc;
2312 	register int prop;
2313 	int wakeup_swapper;
2314 
2315 	wakeup_swapper = 0;
2316 	PROC_LOCK_ASSERT(p, MA_OWNED);
2317 	prop = sigprop(sig);
2318 
2319 	PROC_SLOCK(p);
2320 	thread_lock(td);
2321 	/*
2322 	 * Bring the priority of a thread up if we want it to get
2323 	 * killed in this lifetime.
2324 	 */
2325 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2326 		sched_prio(td, PUSER);
2327 	if (TD_ON_SLEEPQ(td)) {
2328 		/*
2329 		 * If thread is sleeping uninterruptibly
2330 		 * we can't interrupt the sleep... the signal will
2331 		 * be noticed when the process returns through
2332 		 * trap() or syscall().
2333 		 */
2334 		if ((td->td_flags & TDF_SINTR) == 0)
2335 			goto out;
2336 		/*
2337 		 * If SIGCONT is default (or ignored) and process is
2338 		 * asleep, we are finished; the process should not
2339 		 * be awakened.
2340 		 */
2341 		if ((prop & SA_CONT) && action == SIG_DFL) {
2342 			thread_unlock(td);
2343 			PROC_SUNLOCK(p);
2344 			sigqueue_delete(&p->p_sigqueue, sig);
2345 			/*
2346 			 * It may be on either list in this state.
2347 			 * Remove from both for now.
2348 			 */
2349 			sigqueue_delete(&td->td_sigqueue, sig);
2350 			return;
2351 		}
2352 
2353 		/*
2354 		 * Don't awaken a sleeping thread for SIGSTOP if the
2355 		 * STOP signal is deferred.
2356 		 */
2357 		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2358 			goto out;
2359 
2360 		/*
2361 		 * Give low priority threads a better chance to run.
2362 		 */
2363 		if (td->td_priority > PUSER)
2364 			sched_prio(td, PUSER);
2365 
2366 		wakeup_swapper = sleepq_abort(td, intrval);
2367 	} else {
2368 		/*
2369 		 * Other states do nothing with the signal immediately,
2370 		 * other than kicking ourselves if we are running.
2371 		 * It will either never be noticed, or noticed very soon.
2372 		 */
2373 #ifdef SMP
2374 		if (TD_IS_RUNNING(td) && td != curthread)
2375 			forward_signal(td);
2376 #endif
2377 	}
2378 out:
2379 	PROC_SUNLOCK(p);
2380 	thread_unlock(td);
2381 	if (wakeup_swapper)
2382 		kick_proc0();
2383 }
2384 
2385 static void
2386 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2387 {
2388 	struct thread *td2;
2389 
2390 	PROC_LOCK_ASSERT(p, MA_OWNED);
2391 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2392 
2393 	FOREACH_THREAD_IN_PROC(p, td2) {
2394 		thread_lock(td2);
2395 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2396 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2397 		    (td2->td_flags & TDF_SINTR)) {
2398 			if (td2->td_flags & TDF_SBDRY) {
2399 				/*
2400 				 * Once a thread is asleep with
2401 				 * TDF_SBDRY set, it should never
2402 				 * become suspended due to this check.
2403 				 */
2404 				KASSERT(!TD_IS_SUSPENDED(td2),
2405 				    ("thread with deferred stops suspended"));
2406 			} else if (!TD_IS_SUSPENDED(td2)) {
2407 				thread_suspend_one(td2);
2408 			}
2409 		} else if (!TD_IS_SUSPENDED(td2)) {
2410 			if (sending || td != td2)
2411 				td2->td_flags |= TDF_ASTPENDING;
2412 #ifdef SMP
2413 			if (TD_IS_RUNNING(td2) && td2 != td)
2414 				forward_signal(td2);
2415 #endif
2416 		}
2417 		thread_unlock(td2);
2418 	}
2419 }
2420 
2421 int
2422 ptracestop(struct thread *td, int sig)
2423 {
2424 	struct proc *p = td->td_proc;
2425 
2426 	PROC_LOCK_ASSERT(p, MA_OWNED);
2427 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2428 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2429 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2430 
2431 	td->td_dbgflags |= TDB_XSIG;
2432 	td->td_xsig = sig;
2433 	PROC_SLOCK(p);
2434 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2435 		if (p->p_flag & P_SINGLE_EXIT) {
2436 			td->td_dbgflags &= ~TDB_XSIG;
2437 			PROC_SUNLOCK(p);
2438 			return (sig);
2439 		}
2440 		/*
2441 		 * Just make wait() to work, the last stopped thread
2442 		 * will win.
2443 		 */
2444 		p->p_xstat = sig;
2445 		p->p_xthread = td;
2446 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2447 		sig_suspend_threads(td, p, 0);
2448 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2449 			td->td_dbgflags &= ~TDB_STOPATFORK;
2450 			cv_broadcast(&p->p_dbgwait);
2451 		}
2452 stopme:
2453 		thread_suspend_switch(td);
2454 		if (p->p_xthread == td)
2455 			p->p_xthread = NULL;
2456 		if (!(p->p_flag & P_TRACED))
2457 			break;
2458 		if (td->td_dbgflags & TDB_SUSPEND) {
2459 			if (p->p_flag & P_SINGLE_EXIT)
2460 				break;
2461 			goto stopme;
2462 		}
2463 	}
2464 	PROC_SUNLOCK(p);
2465 	return (td->td_xsig);
2466 }
2467 
2468 static void
2469 reschedule_signals(struct proc *p, sigset_t block, int flags)
2470 {
2471 	struct sigacts *ps;
2472 	struct thread *td;
2473 	int sig;
2474 
2475 	PROC_LOCK_ASSERT(p, MA_OWNED);
2476 	if (SIGISEMPTY(p->p_siglist))
2477 		return;
2478 	ps = p->p_sigacts;
2479 	SIGSETAND(block, p->p_siglist);
2480 	while ((sig = sig_ffs(&block)) != 0) {
2481 		SIGDELSET(block, sig);
2482 		td = sigtd(p, sig, 0);
2483 		signotify(td);
2484 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2485 			mtx_lock(&ps->ps_mtx);
2486 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2487 			tdsigwakeup(td, sig, SIG_CATCH,
2488 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2489 			     ERESTART));
2490 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2491 			mtx_unlock(&ps->ps_mtx);
2492 	}
2493 }
2494 
2495 void
2496 tdsigcleanup(struct thread *td)
2497 {
2498 	struct proc *p;
2499 	sigset_t unblocked;
2500 
2501 	p = td->td_proc;
2502 	PROC_LOCK_ASSERT(p, MA_OWNED);
2503 
2504 	sigqueue_flush(&td->td_sigqueue);
2505 	if (p->p_numthreads == 1)
2506 		return;
2507 
2508 	/*
2509 	 * Since we cannot handle signals, notify signal post code
2510 	 * about this by filling the sigmask.
2511 	 *
2512 	 * Also, if needed, wake up thread(s) that do not block the
2513 	 * same signals as the exiting thread, since the thread might
2514 	 * have been selected for delivery and woken up.
2515 	 */
2516 	SIGFILLSET(unblocked);
2517 	SIGSETNAND(unblocked, td->td_sigmask);
2518 	SIGFILLSET(td->td_sigmask);
2519 	reschedule_signals(p, unblocked, 0);
2520 
2521 }
2522 
2523 /*
2524  * Defer the delivery of SIGSTOP for the current thread.  Returns true
2525  * if stops were deferred and false if they were already deferred.
2526  */
2527 int
2528 sigdeferstop(void)
2529 {
2530 	struct thread *td;
2531 
2532 	td = curthread;
2533 	if (td->td_flags & TDF_SBDRY)
2534 		return (0);
2535 	thread_lock(td);
2536 	td->td_flags |= TDF_SBDRY;
2537 	thread_unlock(td);
2538 	return (1);
2539 }
2540 
2541 /*
2542  * Permit the delivery of SIGSTOP for the current thread.  This does
2543  * not immediately suspend if a stop was posted.  Instead, the thread
2544  * will suspend either via ast() or a subsequent interruptible sleep.
2545  */
2546 void
2547 sigallowstop()
2548 {
2549 	struct thread *td;
2550 
2551 	td = curthread;
2552 	thread_lock(td);
2553 	td->td_flags &= ~TDF_SBDRY;
2554 	thread_unlock(td);
2555 }
2556 
2557 /*
2558  * If the current process has received a signal (should be caught or cause
2559  * termination, should interrupt current syscall), return the signal number.
2560  * Stop signals with default action are processed immediately, then cleared;
2561  * they aren't returned.  This is checked after each entry to the system for
2562  * a syscall or trap (though this can usually be done without calling issignal
2563  * by checking the pending signal masks in cursig.) The normal call
2564  * sequence is
2565  *
2566  *	while (sig = cursig(curthread))
2567  *		postsig(sig);
2568  */
2569 static int
2570 issignal(struct thread *td)
2571 {
2572 	struct proc *p;
2573 	struct sigacts *ps;
2574 	struct sigqueue *queue;
2575 	sigset_t sigpending;
2576 	int sig, prop, newsig;
2577 
2578 	p = td->td_proc;
2579 	ps = p->p_sigacts;
2580 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2581 	PROC_LOCK_ASSERT(p, MA_OWNED);
2582 	for (;;) {
2583 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2584 
2585 		sigpending = td->td_sigqueue.sq_signals;
2586 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2587 		SIGSETNAND(sigpending, td->td_sigmask);
2588 
2589 		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2590 			SIG_STOPSIGMASK(sigpending);
2591 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2592 			return (0);
2593 		sig = sig_ffs(&sigpending);
2594 
2595 		if (p->p_stops & S_SIG) {
2596 			mtx_unlock(&ps->ps_mtx);
2597 			stopevent(p, S_SIG, sig);
2598 			mtx_lock(&ps->ps_mtx);
2599 		}
2600 
2601 		/*
2602 		 * We should see pending but ignored signals
2603 		 * only if P_TRACED was on when they were posted.
2604 		 */
2605 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2606 			sigqueue_delete(&td->td_sigqueue, sig);
2607 			sigqueue_delete(&p->p_sigqueue, sig);
2608 			continue;
2609 		}
2610 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
2611 			/*
2612 			 * If traced, always stop.
2613 			 * Remove old signal from queue before the stop.
2614 			 * XXX shrug off debugger, it causes siginfo to
2615 			 * be thrown away.
2616 			 */
2617 			queue = &td->td_sigqueue;
2618 			td->td_dbgksi.ksi_signo = 0;
2619 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2620 				queue = &p->p_sigqueue;
2621 				sigqueue_get(queue, sig, &td->td_dbgksi);
2622 			}
2623 
2624 			mtx_unlock(&ps->ps_mtx);
2625 			newsig = ptracestop(td, sig);
2626 			mtx_lock(&ps->ps_mtx);
2627 
2628 			if (sig != newsig) {
2629 
2630 				/*
2631 				 * If parent wants us to take the signal,
2632 				 * then it will leave it in p->p_xstat;
2633 				 * otherwise we just look for signals again.
2634 				*/
2635 				if (newsig == 0)
2636 					continue;
2637 				sig = newsig;
2638 
2639 				/*
2640 				 * Put the new signal into td_sigqueue. If the
2641 				 * signal is being masked, look for other
2642 				 * signals.
2643 				 */
2644 				sigqueue_add(queue, sig, NULL);
2645 				if (SIGISMEMBER(td->td_sigmask, sig))
2646 					continue;
2647 				signotify(td);
2648 			} else {
2649 				if (td->td_dbgksi.ksi_signo != 0) {
2650 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2651 					if (sigqueue_add(&td->td_sigqueue, sig,
2652 					    &td->td_dbgksi) != 0)
2653 						td->td_dbgksi.ksi_signo = 0;
2654 				}
2655 				if (td->td_dbgksi.ksi_signo == 0)
2656 					sigqueue_add(&td->td_sigqueue, sig,
2657 					    NULL);
2658 			}
2659 
2660 			/*
2661 			 * If the traced bit got turned off, go back up
2662 			 * to the top to rescan signals.  This ensures
2663 			 * that p_sig* and p_sigact are consistent.
2664 			 */
2665 			if ((p->p_flag & P_TRACED) == 0)
2666 				continue;
2667 		}
2668 
2669 		prop = sigprop(sig);
2670 
2671 		/*
2672 		 * Decide whether the signal should be returned.
2673 		 * Return the signal's number, or fall through
2674 		 * to clear it from the pending mask.
2675 		 */
2676 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2677 
2678 		case (intptr_t)SIG_DFL:
2679 			/*
2680 			 * Don't take default actions on system processes.
2681 			 */
2682 			if (p->p_pid <= 1) {
2683 #ifdef DIAGNOSTIC
2684 				/*
2685 				 * Are you sure you want to ignore SIGSEGV
2686 				 * in init? XXX
2687 				 */
2688 				printf("Process (pid %lu) got signal %d\n",
2689 					(u_long)p->p_pid, sig);
2690 #endif
2691 				break;		/* == ignore */
2692 			}
2693 			/*
2694 			 * If there is a pending stop signal to process
2695 			 * with default action, stop here,
2696 			 * then clear the signal.  However,
2697 			 * if process is member of an orphaned
2698 			 * process group, ignore tty stop signals.
2699 			 */
2700 			if (prop & SA_STOP) {
2701 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2702 				    (p->p_pgrp->pg_jobc == 0 &&
2703 				     prop & SA_TTYSTOP))
2704 					break;	/* == ignore */
2705 				mtx_unlock(&ps->ps_mtx);
2706 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2707 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2708 				p->p_flag |= P_STOPPED_SIG;
2709 				p->p_xstat = sig;
2710 				PROC_SLOCK(p);
2711 				sig_suspend_threads(td, p, 0);
2712 				thread_suspend_switch(td);
2713 				PROC_SUNLOCK(p);
2714 				mtx_lock(&ps->ps_mtx);
2715 				break;
2716 			} else if (prop & SA_IGNORE) {
2717 				/*
2718 				 * Except for SIGCONT, shouldn't get here.
2719 				 * Default action is to ignore; drop it.
2720 				 */
2721 				break;		/* == ignore */
2722 			} else
2723 				return (sig);
2724 			/*NOTREACHED*/
2725 
2726 		case (intptr_t)SIG_IGN:
2727 			/*
2728 			 * Masking above should prevent us ever trying
2729 			 * to take action on an ignored signal other
2730 			 * than SIGCONT, unless process is traced.
2731 			 */
2732 			if ((prop & SA_CONT) == 0 &&
2733 			    (p->p_flag & P_TRACED) == 0)
2734 				printf("issignal\n");
2735 			break;		/* == ignore */
2736 
2737 		default:
2738 			/*
2739 			 * This signal has an action, let
2740 			 * postsig() process it.
2741 			 */
2742 			return (sig);
2743 		}
2744 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2745 		sigqueue_delete(&p->p_sigqueue, sig);
2746 	}
2747 	/* NOTREACHED */
2748 }
2749 
2750 void
2751 thread_stopped(struct proc *p)
2752 {
2753 	int n;
2754 
2755 	PROC_LOCK_ASSERT(p, MA_OWNED);
2756 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2757 	n = p->p_suspcount;
2758 	if (p == curproc)
2759 		n++;
2760 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2761 		PROC_SUNLOCK(p);
2762 		p->p_flag &= ~P_WAITED;
2763 		PROC_LOCK(p->p_pptr);
2764 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2765 			CLD_TRAPPED : CLD_STOPPED);
2766 		PROC_UNLOCK(p->p_pptr);
2767 		PROC_SLOCK(p);
2768 	}
2769 }
2770 
2771 /*
2772  * Take the action for the specified signal
2773  * from the current set of pending signals.
2774  */
2775 int
2776 postsig(sig)
2777 	register int sig;
2778 {
2779 	struct thread *td = curthread;
2780 	register struct proc *p = td->td_proc;
2781 	struct sigacts *ps;
2782 	sig_t action;
2783 	ksiginfo_t ksi;
2784 	sigset_t returnmask, mask;
2785 
2786 	KASSERT(sig != 0, ("postsig"));
2787 
2788 	PROC_LOCK_ASSERT(p, MA_OWNED);
2789 	ps = p->p_sigacts;
2790 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2791 	ksiginfo_init(&ksi);
2792 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2793 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2794 		return (0);
2795 	ksi.ksi_signo = sig;
2796 	if (ksi.ksi_code == SI_TIMER)
2797 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2798 	action = ps->ps_sigact[_SIG_IDX(sig)];
2799 #ifdef KTRACE
2800 	if (KTRPOINT(td, KTR_PSIG))
2801 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2802 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2803 #endif
2804 	if (p->p_stops & S_SIG) {
2805 		mtx_unlock(&ps->ps_mtx);
2806 		stopevent(p, S_SIG, sig);
2807 		mtx_lock(&ps->ps_mtx);
2808 	}
2809 
2810 	if (action == SIG_DFL) {
2811 		/*
2812 		 * Default action, where the default is to kill
2813 		 * the process.  (Other cases were ignored above.)
2814 		 */
2815 		mtx_unlock(&ps->ps_mtx);
2816 		sigexit(td, sig);
2817 		/* NOTREACHED */
2818 	} else {
2819 		/*
2820 		 * If we get here, the signal must be caught.
2821 		 */
2822 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2823 		    ("postsig action"));
2824 		/*
2825 		 * Set the new mask value and also defer further
2826 		 * occurrences of this signal.
2827 		 *
2828 		 * Special case: user has done a sigsuspend.  Here the
2829 		 * current mask is not of interest, but rather the
2830 		 * mask from before the sigsuspend is what we want
2831 		 * restored after the signal processing is completed.
2832 		 */
2833 		if (td->td_pflags & TDP_OLDMASK) {
2834 			returnmask = td->td_oldsigmask;
2835 			td->td_pflags &= ~TDP_OLDMASK;
2836 		} else
2837 			returnmask = td->td_sigmask;
2838 
2839 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2840 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2841 			SIGADDSET(mask, sig);
2842 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2843 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2844 
2845 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2846 			/*
2847 			 * See kern_sigaction() for origin of this code.
2848 			 */
2849 			SIGDELSET(ps->ps_sigcatch, sig);
2850 			if (sig != SIGCONT &&
2851 			    sigprop(sig) & SA_IGNORE)
2852 				SIGADDSET(ps->ps_sigignore, sig);
2853 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2854 		}
2855 		td->td_ru.ru_nsignals++;
2856 		if (p->p_sig == sig) {
2857 			p->p_code = 0;
2858 			p->p_sig = 0;
2859 		}
2860 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2861 	}
2862 	return (1);
2863 }
2864 
2865 /*
2866  * Kill the current process for stated reason.
2867  */
2868 void
2869 killproc(p, why)
2870 	struct proc *p;
2871 	char *why;
2872 {
2873 
2874 	PROC_LOCK_ASSERT(p, MA_OWNED);
2875 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2876 	    p->p_comm);
2877 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2878 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2879 	p->p_flag |= P_WKILLED;
2880 	kern_psignal(p, SIGKILL);
2881 }
2882 
2883 /*
2884  * Force the current process to exit with the specified signal, dumping core
2885  * if appropriate.  We bypass the normal tests for masked and caught signals,
2886  * allowing unrecoverable failures to terminate the process without changing
2887  * signal state.  Mark the accounting record with the signal termination.
2888  * If dumping core, save the signal number for the debugger.  Calls exit and
2889  * does not return.
2890  */
2891 void
2892 sigexit(td, sig)
2893 	struct thread *td;
2894 	int sig;
2895 {
2896 	struct proc *p = td->td_proc;
2897 
2898 	PROC_LOCK_ASSERT(p, MA_OWNED);
2899 	p->p_acflag |= AXSIG;
2900 	/*
2901 	 * We must be single-threading to generate a core dump.  This
2902 	 * ensures that the registers in the core file are up-to-date.
2903 	 * Also, the ELF dump handler assumes that the thread list doesn't
2904 	 * change out from under it.
2905 	 *
2906 	 * XXX If another thread attempts to single-thread before us
2907 	 *     (e.g. via fork()), we won't get a dump at all.
2908 	 */
2909 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2910 		p->p_sig = sig;
2911 		/*
2912 		 * Log signals which would cause core dumps
2913 		 * (Log as LOG_INFO to appease those who don't want
2914 		 * these messages.)
2915 		 * XXX : Todo, as well as euid, write out ruid too
2916 		 * Note that coredump() drops proc lock.
2917 		 */
2918 		if (coredump(td) == 0)
2919 			sig |= WCOREFLAG;
2920 		if (kern_logsigexit)
2921 			log(LOG_INFO,
2922 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2923 			    p->p_pid, p->p_comm,
2924 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2925 			    sig &~ WCOREFLAG,
2926 			    sig & WCOREFLAG ? " (core dumped)" : "");
2927 	} else
2928 		PROC_UNLOCK(p);
2929 	exit1(td, W_EXITCODE(0, sig));
2930 	/* NOTREACHED */
2931 }
2932 
2933 /*
2934  * Send queued SIGCHLD to parent when child process's state
2935  * is changed.
2936  */
2937 static void
2938 sigparent(struct proc *p, int reason, int status)
2939 {
2940 	PROC_LOCK_ASSERT(p, MA_OWNED);
2941 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2942 
2943 	if (p->p_ksi != NULL) {
2944 		p->p_ksi->ksi_signo  = SIGCHLD;
2945 		p->p_ksi->ksi_code   = reason;
2946 		p->p_ksi->ksi_status = status;
2947 		p->p_ksi->ksi_pid    = p->p_pid;
2948 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2949 		if (KSI_ONQ(p->p_ksi))
2950 			return;
2951 	}
2952 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2953 }
2954 
2955 static void
2956 childproc_jobstate(struct proc *p, int reason, int sig)
2957 {
2958 	struct sigacts *ps;
2959 
2960 	PROC_LOCK_ASSERT(p, MA_OWNED);
2961 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2962 
2963 	/*
2964 	 * Wake up parent sleeping in kern_wait(), also send
2965 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2966 	 * that parent will awake, because parent may masked
2967 	 * the signal.
2968 	 */
2969 	p->p_pptr->p_flag |= P_STATCHILD;
2970 	wakeup(p->p_pptr);
2971 
2972 	ps = p->p_pptr->p_sigacts;
2973 	mtx_lock(&ps->ps_mtx);
2974 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2975 		mtx_unlock(&ps->ps_mtx);
2976 		sigparent(p, reason, sig);
2977 	} else
2978 		mtx_unlock(&ps->ps_mtx);
2979 }
2980 
2981 void
2982 childproc_stopped(struct proc *p, int reason)
2983 {
2984 	/* p_xstat is a plain signal number, not a full wait() status here. */
2985 	childproc_jobstate(p, reason, p->p_xstat);
2986 }
2987 
2988 void
2989 childproc_continued(struct proc *p)
2990 {
2991 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2992 }
2993 
2994 void
2995 childproc_exited(struct proc *p)
2996 {
2997 	int reason;
2998 	int xstat = p->p_xstat; /* convert to int */
2999 	int status;
3000 
3001 	if (WCOREDUMP(xstat))
3002 		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3003 	else if (WIFSIGNALED(xstat))
3004 		reason = CLD_KILLED, status = WTERMSIG(xstat);
3005 	else
3006 		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3007 	/*
3008 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3009 	 * done in exit1().
3010 	 */
3011 	sigparent(p, reason, status);
3012 }
3013 
3014 /*
3015  * We only have 1 character for the core count in the format
3016  * string, so the range will be 0-9
3017  */
3018 #define MAX_NUM_CORES 10
3019 static int num_cores = 5;
3020 
3021 static int
3022 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3023 {
3024 	int error;
3025 	int new_val;
3026 
3027 	new_val = num_cores;
3028 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3029 	if (error != 0 || req->newptr == NULL)
3030 		return (error);
3031 	if (new_val > MAX_NUM_CORES)
3032 		new_val = MAX_NUM_CORES;
3033 	if (new_val < 0)
3034 		new_val = 0;
3035 	num_cores = new_val;
3036 	return (0);
3037 }
3038 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3039 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3040 
3041 #if defined(COMPRESS_USER_CORES)
3042 int compress_user_cores = 1;
3043 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3044     &compress_user_cores, 0, "Compression of user corefiles");
3045 
3046 int compress_user_cores_gzlevel = -1; /* default level */
3047 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3048     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3049 
3050 #define GZ_SUFFIX	".gz"
3051 #define GZ_SUFFIX_LEN	3
3052 #endif
3053 
3054 static char corefilename[MAXPATHLEN] = {"%N.core"};
3055 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3056 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3057     sizeof(corefilename), "Process corefile name format string");
3058 
3059 /*
3060  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3061  * Expand the name described in corefilename, using name, uid, and pid
3062  * and open/create core file.
3063  * corefilename is a printf-like string, with three format specifiers:
3064  *	%N	name of process ("name")
3065  *	%P	process id (pid)
3066  *	%U	user id (uid)
3067  * For example, "%N.core" is the default; they can be disabled completely
3068  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3069  * This is controlled by the sysctl variable kern.corefile (see above).
3070  */
3071 static int
3072 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3073     int compress, struct vnode **vpp, char **namep)
3074 {
3075 	struct nameidata nd;
3076 	struct sbuf sb;
3077 	const char *format;
3078 	char *hostname, *name;
3079 	int indexpos, i, error, cmode, flags, oflags;
3080 
3081 	hostname = NULL;
3082 	format = corefilename;
3083 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3084 	indexpos = -1;
3085 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3086 	for (i = 0; format[i] != '\0'; i++) {
3087 		switch (format[i]) {
3088 		case '%':	/* Format character */
3089 			i++;
3090 			switch (format[i]) {
3091 			case '%':
3092 				sbuf_putc(&sb, '%');
3093 				break;
3094 			case 'H':	/* hostname */
3095 				if (hostname == NULL) {
3096 					hostname = malloc(MAXHOSTNAMELEN,
3097 					    M_TEMP, M_WAITOK);
3098 				}
3099 				getcredhostname(td->td_ucred, hostname,
3100 				    MAXHOSTNAMELEN);
3101 				sbuf_printf(&sb, "%s", hostname);
3102 				break;
3103 			case 'I':	/* autoincrementing index */
3104 				sbuf_printf(&sb, "0");
3105 				indexpos = sbuf_len(&sb) - 1;
3106 				break;
3107 			case 'N':	/* process name */
3108 				sbuf_printf(&sb, "%s", comm);
3109 				break;
3110 			case 'P':	/* process id */
3111 				sbuf_printf(&sb, "%u", pid);
3112 				break;
3113 			case 'U':	/* user id */
3114 				sbuf_printf(&sb, "%u", uid);
3115 				break;
3116 			default:
3117 				log(LOG_ERR,
3118 				    "Unknown format character %c in "
3119 				    "corename `%s'\n", format[i], format);
3120 				break;
3121 			}
3122 			break;
3123 		default:
3124 			sbuf_putc(&sb, format[i]);
3125 			break;
3126 		}
3127 	}
3128 	free(hostname, M_TEMP);
3129 #ifdef COMPRESS_USER_CORES
3130 	if (compress)
3131 		sbuf_printf(&sb, GZ_SUFFIX);
3132 #endif
3133 	if (sbuf_error(&sb) != 0) {
3134 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3135 		    "long\n", (long)pid, comm, (u_long)uid);
3136 		sbuf_delete(&sb);
3137 		free(name, M_TEMP);
3138 		return (ENOMEM);
3139 	}
3140 	sbuf_finish(&sb);
3141 	sbuf_delete(&sb);
3142 
3143 	cmode = S_IRUSR | S_IWUSR;
3144 	oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3145 
3146 	/*
3147 	 * If the core format has a %I in it, then we need to check
3148 	 * for existing corefiles before returning a name.
3149 	 * To do this we iterate over 0..num_cores to find a
3150 	 * non-existing core file name to use.
3151 	 */
3152 	if (indexpos != -1) {
3153 		for (i = 0; i < num_cores; i++) {
3154 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3155 			name[indexpos] = '0' + i;
3156 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3157 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3158 			    td->td_ucred, NULL);
3159 			if (error) {
3160 				if (error == EEXIST)
3161 					continue;
3162 				log(LOG_ERR,
3163 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3164 				    "on initial open test, error = %d\n",
3165 				    pid, comm, uid, name, error);
3166 			}
3167 			goto out;
3168 		}
3169 	}
3170 
3171 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3172 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3173 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3174 out:
3175 	if (error) {
3176 #ifdef AUDIT
3177 		audit_proc_coredump(td, name, error);
3178 #endif
3179 		free(name, M_TEMP);
3180 		return (error);
3181 	}
3182 	NDFREE(&nd, NDF_ONLY_PNBUF);
3183 	*vpp = nd.ni_vp;
3184 	*namep = name;
3185 	return (0);
3186 }
3187 
3188 /*
3189  * Dump a process' core.  The main routine does some
3190  * policy checking, and creates the name of the coredump;
3191  * then it passes on a vnode and a size limit to the process-specific
3192  * coredump routine if there is one; if there _is not_ one, it returns
3193  * ENOSYS; otherwise it returns the error from the process-specific routine.
3194  */
3195 
3196 static int
3197 coredump(struct thread *td)
3198 {
3199 	struct proc *p = td->td_proc;
3200 	struct ucred *cred = td->td_ucred;
3201 	struct vnode *vp;
3202 	struct flock lf;
3203 	struct vattr vattr;
3204 	int error, error1, locked;
3205 	struct mount *mp;
3206 	char *name;			/* name of corefile */
3207 	off_t limit;
3208 	int compress;
3209 
3210 #ifdef COMPRESS_USER_CORES
3211 	compress = compress_user_cores;
3212 #else
3213 	compress = 0;
3214 #endif
3215 	PROC_LOCK_ASSERT(p, MA_OWNED);
3216 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3217 	_STOPEVENT(p, S_CORE, 0);
3218 
3219 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
3220 		PROC_UNLOCK(p);
3221 		return (EFAULT);
3222 	}
3223 
3224 	/*
3225 	 * Note that the bulk of limit checking is done after
3226 	 * the corefile is created.  The exception is if the limit
3227 	 * for corefiles is 0, in which case we don't bother
3228 	 * creating the corefile at all.  This layout means that
3229 	 * a corefile is truncated instead of not being created,
3230 	 * if it is larger than the limit.
3231 	 */
3232 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3233 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3234 		PROC_UNLOCK(p);
3235 		return (EFBIG);
3236 	}
3237 	PROC_UNLOCK(p);
3238 
3239 restart:
3240 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3241 	    &vp, &name);
3242 	if (error != 0)
3243 		return (error);
3244 
3245 	/* Don't dump to non-regular files or files with links. */
3246 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3247 	    vattr.va_nlink != 1) {
3248 		VOP_UNLOCK(vp, 0);
3249 		error = EFAULT;
3250 		goto close;
3251 	}
3252 
3253 	VOP_UNLOCK(vp, 0);
3254 	lf.l_whence = SEEK_SET;
3255 	lf.l_start = 0;
3256 	lf.l_len = 0;
3257 	lf.l_type = F_WRLCK;
3258 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3259 
3260 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3261 		lf.l_type = F_UNLCK;
3262 		if (locked)
3263 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3264 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3265 			goto out;
3266 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3267 			goto out;
3268 		free(name, M_TEMP);
3269 		goto restart;
3270 	}
3271 
3272 	VATTR_NULL(&vattr);
3273 	vattr.va_size = 0;
3274 	if (set_core_nodump_flag)
3275 		vattr.va_flags = UF_NODUMP;
3276 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3277 	VOP_SETATTR(vp, &vattr, cred);
3278 	VOP_UNLOCK(vp, 0);
3279 	vn_finished_write(mp);
3280 	PROC_LOCK(p);
3281 	p->p_acflag |= ACORE;
3282 	PROC_UNLOCK(p);
3283 
3284 	if (p->p_sysent->sv_coredump != NULL) {
3285 		error = p->p_sysent->sv_coredump(td, vp, limit,
3286 		    compress ? IMGACT_CORE_COMPRESS : 0);
3287 	} else {
3288 		error = ENOSYS;
3289 	}
3290 
3291 	if (locked) {
3292 		lf.l_type = F_UNLCK;
3293 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3294 	}
3295 close:
3296 	error1 = vn_close(vp, FWRITE, cred, td);
3297 	if (error == 0)
3298 		error = error1;
3299 out:
3300 #ifdef AUDIT
3301 	audit_proc_coredump(td, name, error);
3302 #endif
3303 	free(name, M_TEMP);
3304 	return (error);
3305 }
3306 
3307 /*
3308  * Nonexistent system call-- signal process (may want to handle it).  Flag
3309  * error in case process won't see signal immediately (blocked or ignored).
3310  */
3311 #ifndef _SYS_SYSPROTO_H_
3312 struct nosys_args {
3313 	int	dummy;
3314 };
3315 #endif
3316 /* ARGSUSED */
3317 int
3318 nosys(td, args)
3319 	struct thread *td;
3320 	struct nosys_args *args;
3321 {
3322 	struct proc *p = td->td_proc;
3323 
3324 	PROC_LOCK(p);
3325 	tdsignal(td, SIGSYS);
3326 	PROC_UNLOCK(p);
3327 	return (ENOSYS);
3328 }
3329 
3330 /*
3331  * Send a SIGIO or SIGURG signal to a process or process group using stored
3332  * credentials rather than those of the current process.
3333  */
3334 void
3335 pgsigio(sigiop, sig, checkctty)
3336 	struct sigio **sigiop;
3337 	int sig, checkctty;
3338 {
3339 	ksiginfo_t ksi;
3340 	struct sigio *sigio;
3341 
3342 	ksiginfo_init(&ksi);
3343 	ksi.ksi_signo = sig;
3344 	ksi.ksi_code = SI_KERNEL;
3345 
3346 	SIGIO_LOCK();
3347 	sigio = *sigiop;
3348 	if (sigio == NULL) {
3349 		SIGIO_UNLOCK();
3350 		return;
3351 	}
3352 	if (sigio->sio_pgid > 0) {
3353 		PROC_LOCK(sigio->sio_proc);
3354 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3355 			kern_psignal(sigio->sio_proc, sig);
3356 		PROC_UNLOCK(sigio->sio_proc);
3357 	} else if (sigio->sio_pgid < 0) {
3358 		struct proc *p;
3359 
3360 		PGRP_LOCK(sigio->sio_pgrp);
3361 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3362 			PROC_LOCK(p);
3363 			if (p->p_state == PRS_NORMAL &&
3364 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3365 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3366 				kern_psignal(p, sig);
3367 			PROC_UNLOCK(p);
3368 		}
3369 		PGRP_UNLOCK(sigio->sio_pgrp);
3370 	}
3371 	SIGIO_UNLOCK();
3372 }
3373 
3374 static int
3375 filt_sigattach(struct knote *kn)
3376 {
3377 	struct proc *p = curproc;
3378 
3379 	kn->kn_ptr.p_proc = p;
3380 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3381 
3382 	knlist_add(&p->p_klist, kn, 0);
3383 
3384 	return (0);
3385 }
3386 
3387 static void
3388 filt_sigdetach(struct knote *kn)
3389 {
3390 	struct proc *p = kn->kn_ptr.p_proc;
3391 
3392 	knlist_remove(&p->p_klist, kn, 0);
3393 }
3394 
3395 /*
3396  * signal knotes are shared with proc knotes, so we apply a mask to
3397  * the hint in order to differentiate them from process hints.  This
3398  * could be avoided by using a signal-specific knote list, but probably
3399  * isn't worth the trouble.
3400  */
3401 static int
3402 filt_signal(struct knote *kn, long hint)
3403 {
3404 
3405 	if (hint & NOTE_SIGNAL) {
3406 		hint &= ~NOTE_SIGNAL;
3407 
3408 		if (kn->kn_id == hint)
3409 			kn->kn_data++;
3410 	}
3411 	return (kn->kn_data != 0);
3412 }
3413 
3414 struct sigacts *
3415 sigacts_alloc(void)
3416 {
3417 	struct sigacts *ps;
3418 
3419 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3420 	ps->ps_refcnt = 1;
3421 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3422 	return (ps);
3423 }
3424 
3425 void
3426 sigacts_free(struct sigacts *ps)
3427 {
3428 
3429 	mtx_lock(&ps->ps_mtx);
3430 	ps->ps_refcnt--;
3431 	if (ps->ps_refcnt == 0) {
3432 		mtx_destroy(&ps->ps_mtx);
3433 		free(ps, M_SUBPROC);
3434 	} else
3435 		mtx_unlock(&ps->ps_mtx);
3436 }
3437 
3438 struct sigacts *
3439 sigacts_hold(struct sigacts *ps)
3440 {
3441 	mtx_lock(&ps->ps_mtx);
3442 	ps->ps_refcnt++;
3443 	mtx_unlock(&ps->ps_mtx);
3444 	return (ps);
3445 }
3446 
3447 void
3448 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3449 {
3450 
3451 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3452 	mtx_lock(&src->ps_mtx);
3453 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3454 	mtx_unlock(&src->ps_mtx);
3455 }
3456 
3457 int
3458 sigacts_shared(struct sigacts *ps)
3459 {
3460 	int shared;
3461 
3462 	mtx_lock(&ps->ps_mtx);
3463 	shared = ps->ps_refcnt > 1;
3464 	mtx_unlock(&ps->ps_mtx);
3465 	return (shared);
3466 }
3467