xref: /freebsd/sys/kern/kern_sig.c (revision a30efc5ca7272e446abb71f0d72c76539f267bb6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
218 
219 static int sigproptbl[NSIG] = {
220 	[SIGHUP] =	SIGPROP_KILL,
221 	[SIGINT] =	SIGPROP_KILL,
222 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
228 	[SIGKILL] =	SIGPROP_KILL,
229 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
232 	[SIGPIPE] =	SIGPROP_KILL,
233 	[SIGALRM] =	SIGPROP_KILL,
234 	[SIGTERM] =	SIGPROP_KILL,
235 	[SIGURG] =	SIGPROP_IGNORE,
236 	[SIGSTOP] =	SIGPROP_STOP,
237 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
238 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
239 	[SIGCHLD] =	SIGPROP_IGNORE,
240 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
242 	[SIGIO] =	SIGPROP_IGNORE,
243 	[SIGXCPU] =	SIGPROP_KILL,
244 	[SIGXFSZ] =	SIGPROP_KILL,
245 	[SIGVTALRM] =	SIGPROP_KILL,
246 	[SIGPROF] =	SIGPROP_KILL,
247 	[SIGWINCH] =	SIGPROP_IGNORE,
248 	[SIGINFO] =	SIGPROP_IGNORE,
249 	[SIGUSR1] =	SIGPROP_KILL,
250 	[SIGUSR2] =	SIGPROP_KILL,
251 };
252 
253 sigset_t fastblock_mask;
254 
255 static void
256 sigqueue_start(void)
257 {
258 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
259 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
260 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
261 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
262 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
263 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
264 	SIGFILLSET(fastblock_mask);
265 	SIG_CANTMASK(fastblock_mask);
266 }
267 
268 ksiginfo_t *
269 ksiginfo_alloc(int wait)
270 {
271 	int flags;
272 
273 	flags = M_ZERO;
274 	if (! wait)
275 		flags |= M_NOWAIT;
276 	if (ksiginfo_zone != NULL)
277 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
278 	return (NULL);
279 }
280 
281 void
282 ksiginfo_free(ksiginfo_t *ksi)
283 {
284 	uma_zfree(ksiginfo_zone, ksi);
285 }
286 
287 static __inline int
288 ksiginfo_tryfree(ksiginfo_t *ksi)
289 {
290 	if (!(ksi->ksi_flags & KSI_EXT)) {
291 		uma_zfree(ksiginfo_zone, ksi);
292 		return (1);
293 	}
294 	return (0);
295 }
296 
297 void
298 sigqueue_init(sigqueue_t *list, struct proc *p)
299 {
300 	SIGEMPTYSET(list->sq_signals);
301 	SIGEMPTYSET(list->sq_kill);
302 	SIGEMPTYSET(list->sq_ptrace);
303 	TAILQ_INIT(&list->sq_list);
304 	list->sq_proc = p;
305 	list->sq_flags = SQ_INIT;
306 }
307 
308 /*
309  * Get a signal's ksiginfo.
310  * Return:
311  *	0	-	signal not found
312  *	others	-	signal number
313  */
314 static int
315 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
316 {
317 	struct proc *p = sq->sq_proc;
318 	struct ksiginfo *ksi, *next;
319 	int count = 0;
320 
321 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
322 
323 	if (!SIGISMEMBER(sq->sq_signals, signo))
324 		return (0);
325 
326 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
327 		count++;
328 		SIGDELSET(sq->sq_ptrace, signo);
329 		si->ksi_flags |= KSI_PTRACE;
330 	}
331 	if (SIGISMEMBER(sq->sq_kill, signo)) {
332 		count++;
333 		if (count == 1)
334 			SIGDELSET(sq->sq_kill, signo);
335 	}
336 
337 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
338 		if (ksi->ksi_signo == signo) {
339 			if (count == 0) {
340 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
341 				ksi->ksi_sigq = NULL;
342 				ksiginfo_copy(ksi, si);
343 				if (ksiginfo_tryfree(ksi) && p != NULL)
344 					p->p_pendingcnt--;
345 			}
346 			if (++count > 1)
347 				break;
348 		}
349 	}
350 
351 	if (count <= 1)
352 		SIGDELSET(sq->sq_signals, signo);
353 	si->ksi_signo = signo;
354 	return (signo);
355 }
356 
357 void
358 sigqueue_take(ksiginfo_t *ksi)
359 {
360 	struct ksiginfo *kp;
361 	struct proc	*p;
362 	sigqueue_t	*sq;
363 
364 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
365 		return;
366 
367 	p = sq->sq_proc;
368 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
369 	ksi->ksi_sigq = NULL;
370 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
371 		p->p_pendingcnt--;
372 
373 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
374 	     kp = TAILQ_NEXT(kp, ksi_link)) {
375 		if (kp->ksi_signo == ksi->ksi_signo)
376 			break;
377 	}
378 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
379 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
380 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
381 }
382 
383 static int
384 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
385 {
386 	struct proc *p = sq->sq_proc;
387 	struct ksiginfo *ksi;
388 	int ret = 0;
389 
390 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
391 
392 	/*
393 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
394 	 * for these signals.
395 	 */
396 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	/* directly insert the ksi, don't copy it */
402 	if (si->ksi_flags & KSI_INS) {
403 		if (si->ksi_flags & KSI_HEAD)
404 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
405 		else
406 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
407 		si->ksi_sigq = sq;
408 		goto out_set_bit;
409 	}
410 
411 	if (__predict_false(ksiginfo_zone == NULL)) {
412 		SIGADDSET(sq->sq_kill, signo);
413 		goto out_set_bit;
414 	}
415 
416 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
417 		signal_overflow++;
418 		ret = EAGAIN;
419 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
420 		signal_alloc_fail++;
421 		ret = EAGAIN;
422 	} else {
423 		if (p != NULL)
424 			p->p_pendingcnt++;
425 		ksiginfo_copy(si, ksi);
426 		ksi->ksi_signo = signo;
427 		if (si->ksi_flags & KSI_HEAD)
428 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
429 		else
430 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
431 		ksi->ksi_sigq = sq;
432 	}
433 
434 	if (ret != 0) {
435 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
436 			SIGADDSET(sq->sq_ptrace, signo);
437 			ret = 0;
438 			goto out_set_bit;
439 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
440 		    (si->ksi_flags & KSI_SIGQ) == 0) {
441 			SIGADDSET(sq->sq_kill, signo);
442 			ret = 0;
443 			goto out_set_bit;
444 		}
445 		return (ret);
446 	}
447 
448 out_set_bit:
449 	SIGADDSET(sq->sq_signals, signo);
450 	return (ret);
451 }
452 
453 void
454 sigqueue_flush(sigqueue_t *sq)
455 {
456 	struct proc *p = sq->sq_proc;
457 	ksiginfo_t *ksi;
458 
459 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
460 
461 	if (p != NULL)
462 		PROC_LOCK_ASSERT(p, MA_OWNED);
463 
464 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
465 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
466 		ksi->ksi_sigq = NULL;
467 		if (ksiginfo_tryfree(ksi) && p != NULL)
468 			p->p_pendingcnt--;
469 	}
470 
471 	SIGEMPTYSET(sq->sq_signals);
472 	SIGEMPTYSET(sq->sq_kill);
473 	SIGEMPTYSET(sq->sq_ptrace);
474 }
475 
476 static void
477 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
478 {
479 	sigset_t tmp;
480 	struct proc *p1, *p2;
481 	ksiginfo_t *ksi, *next;
482 
483 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
484 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
485 	p1 = src->sq_proc;
486 	p2 = dst->sq_proc;
487 	/* Move siginfo to target list */
488 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
489 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
490 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
491 			if (p1 != NULL)
492 				p1->p_pendingcnt--;
493 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
494 			ksi->ksi_sigq = dst;
495 			if (p2 != NULL)
496 				p2->p_pendingcnt++;
497 		}
498 	}
499 
500 	/* Move pending bits to target list */
501 	tmp = src->sq_kill;
502 	SIGSETAND(tmp, *set);
503 	SIGSETOR(dst->sq_kill, tmp);
504 	SIGSETNAND(src->sq_kill, tmp);
505 
506 	tmp = src->sq_ptrace;
507 	SIGSETAND(tmp, *set);
508 	SIGSETOR(dst->sq_ptrace, tmp);
509 	SIGSETNAND(src->sq_ptrace, tmp);
510 
511 	tmp = src->sq_signals;
512 	SIGSETAND(tmp, *set);
513 	SIGSETOR(dst->sq_signals, tmp);
514 	SIGSETNAND(src->sq_signals, tmp);
515 }
516 
517 #if 0
518 static void
519 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
520 {
521 	sigset_t set;
522 
523 	SIGEMPTYSET(set);
524 	SIGADDSET(set, signo);
525 	sigqueue_move_set(src, dst, &set);
526 }
527 #endif
528 
529 static void
530 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
531 {
532 	struct proc *p = sq->sq_proc;
533 	ksiginfo_t *ksi, *next;
534 
535 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
536 
537 	/* Remove siginfo queue */
538 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
539 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
540 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
541 			ksi->ksi_sigq = NULL;
542 			if (ksiginfo_tryfree(ksi) && p != NULL)
543 				p->p_pendingcnt--;
544 		}
545 	}
546 	SIGSETNAND(sq->sq_kill, *set);
547 	SIGSETNAND(sq->sq_ptrace, *set);
548 	SIGSETNAND(sq->sq_signals, *set);
549 }
550 
551 void
552 sigqueue_delete(sigqueue_t *sq, int signo)
553 {
554 	sigset_t set;
555 
556 	SIGEMPTYSET(set);
557 	SIGADDSET(set, signo);
558 	sigqueue_delete_set(sq, &set);
559 }
560 
561 /* Remove a set of signals for a process */
562 static void
563 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
564 {
565 	sigqueue_t worklist;
566 	struct thread *td0;
567 
568 	PROC_LOCK_ASSERT(p, MA_OWNED);
569 
570 	sigqueue_init(&worklist, NULL);
571 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
572 
573 	FOREACH_THREAD_IN_PROC(p, td0)
574 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
575 
576 	sigqueue_flush(&worklist);
577 }
578 
579 void
580 sigqueue_delete_proc(struct proc *p, int signo)
581 {
582 	sigset_t set;
583 
584 	SIGEMPTYSET(set);
585 	SIGADDSET(set, signo);
586 	sigqueue_delete_set_proc(p, &set);
587 }
588 
589 static void
590 sigqueue_delete_stopmask_proc(struct proc *p)
591 {
592 	sigset_t set;
593 
594 	SIGEMPTYSET(set);
595 	SIGADDSET(set, SIGSTOP);
596 	SIGADDSET(set, SIGTSTP);
597 	SIGADDSET(set, SIGTTIN);
598 	SIGADDSET(set, SIGTTOU);
599 	sigqueue_delete_set_proc(p, &set);
600 }
601 
602 /*
603  * Determine signal that should be delivered to thread td, the current
604  * thread, 0 if none.  If there is a pending stop signal with default
605  * action, the process stops in issignal().
606  */
607 int
608 cursig(struct thread *td)
609 {
610 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
611 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
612 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
613 	return (SIGPENDING(td) ? issignal(td) : 0);
614 }
615 
616 /*
617  * Arrange for ast() to handle unmasked pending signals on return to user
618  * mode.  This must be called whenever a signal is added to td_sigqueue or
619  * unmasked in td_sigmask.
620  */
621 void
622 signotify(struct thread *td)
623 {
624 
625 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
626 
627 	if (SIGPENDING(td)) {
628 		thread_lock(td);
629 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
630 		thread_unlock(td);
631 	}
632 }
633 
634 /*
635  * Returns 1 (true) if altstack is configured for the thread, and the
636  * passed stack bottom address falls into the altstack range.  Handles
637  * the 43 compat special case where the alt stack size is zero.
638  */
639 int
640 sigonstack(size_t sp)
641 {
642 	struct thread *td;
643 
644 	td = curthread;
645 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
646 		return (0);
647 #if defined(COMPAT_43)
648 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
649 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
650 #endif
651 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
652 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
653 }
654 
655 static __inline int
656 sigprop(int sig)
657 {
658 
659 	if (sig > 0 && sig < nitems(sigproptbl))
660 		return (sigproptbl[sig]);
661 	return (0);
662 }
663 
664 int
665 sig_ffs(sigset_t *set)
666 {
667 	int i;
668 
669 	for (i = 0; i < _SIG_WORDS; i++)
670 		if (set->__bits[i])
671 			return (ffs(set->__bits[i]) + (i * 32));
672 	return (0);
673 }
674 
675 static bool
676 sigact_flag_test(const struct sigaction *act, int flag)
677 {
678 
679 	/*
680 	 * SA_SIGINFO is reset when signal disposition is set to
681 	 * ignore or default.  Other flags are kept according to user
682 	 * settings.
683 	 */
684 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
685 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
686 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
687 }
688 
689 /*
690  * kern_sigaction
691  * sigaction
692  * freebsd4_sigaction
693  * osigaction
694  */
695 int
696 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
697     struct sigaction *oact, int flags)
698 {
699 	struct sigacts *ps;
700 	struct proc *p = td->td_proc;
701 
702 	if (!_SIG_VALID(sig))
703 		return (EINVAL);
704 	if (act != NULL && act->sa_handler != SIG_DFL &&
705 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
706 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
707 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
708 		return (EINVAL);
709 
710 	PROC_LOCK(p);
711 	ps = p->p_sigacts;
712 	mtx_lock(&ps->ps_mtx);
713 	if (oact) {
714 		memset(oact, 0, sizeof(*oact));
715 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
716 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
717 			oact->sa_flags |= SA_ONSTACK;
718 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
719 			oact->sa_flags |= SA_RESTART;
720 		if (SIGISMEMBER(ps->ps_sigreset, sig))
721 			oact->sa_flags |= SA_RESETHAND;
722 		if (SIGISMEMBER(ps->ps_signodefer, sig))
723 			oact->sa_flags |= SA_NODEFER;
724 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
725 			oact->sa_flags |= SA_SIGINFO;
726 			oact->sa_sigaction =
727 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
728 		} else
729 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
730 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
731 			oact->sa_flags |= SA_NOCLDSTOP;
732 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
733 			oact->sa_flags |= SA_NOCLDWAIT;
734 	}
735 	if (act) {
736 		if ((sig == SIGKILL || sig == SIGSTOP) &&
737 		    act->sa_handler != SIG_DFL) {
738 			mtx_unlock(&ps->ps_mtx);
739 			PROC_UNLOCK(p);
740 			return (EINVAL);
741 		}
742 
743 		/*
744 		 * Change setting atomically.
745 		 */
746 
747 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
748 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
749 		if (sigact_flag_test(act, SA_SIGINFO)) {
750 			ps->ps_sigact[_SIG_IDX(sig)] =
751 			    (__sighandler_t *)act->sa_sigaction;
752 			SIGADDSET(ps->ps_siginfo, sig);
753 		} else {
754 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
755 			SIGDELSET(ps->ps_siginfo, sig);
756 		}
757 		if (!sigact_flag_test(act, SA_RESTART))
758 			SIGADDSET(ps->ps_sigintr, sig);
759 		else
760 			SIGDELSET(ps->ps_sigintr, sig);
761 		if (sigact_flag_test(act, SA_ONSTACK))
762 			SIGADDSET(ps->ps_sigonstack, sig);
763 		else
764 			SIGDELSET(ps->ps_sigonstack, sig);
765 		if (sigact_flag_test(act, SA_RESETHAND))
766 			SIGADDSET(ps->ps_sigreset, sig);
767 		else
768 			SIGDELSET(ps->ps_sigreset, sig);
769 		if (sigact_flag_test(act, SA_NODEFER))
770 			SIGADDSET(ps->ps_signodefer, sig);
771 		else
772 			SIGDELSET(ps->ps_signodefer, sig);
773 		if (sig == SIGCHLD) {
774 			if (act->sa_flags & SA_NOCLDSTOP)
775 				ps->ps_flag |= PS_NOCLDSTOP;
776 			else
777 				ps->ps_flag &= ~PS_NOCLDSTOP;
778 			if (act->sa_flags & SA_NOCLDWAIT) {
779 				/*
780 				 * Paranoia: since SA_NOCLDWAIT is implemented
781 				 * by reparenting the dying child to PID 1 (and
782 				 * trust it to reap the zombie), PID 1 itself
783 				 * is forbidden to set SA_NOCLDWAIT.
784 				 */
785 				if (p->p_pid == 1)
786 					ps->ps_flag &= ~PS_NOCLDWAIT;
787 				else
788 					ps->ps_flag |= PS_NOCLDWAIT;
789 			} else
790 				ps->ps_flag &= ~PS_NOCLDWAIT;
791 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
792 				ps->ps_flag |= PS_CLDSIGIGN;
793 			else
794 				ps->ps_flag &= ~PS_CLDSIGIGN;
795 		}
796 		/*
797 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
798 		 * and for signals set to SIG_DFL where the default is to
799 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
800 		 * have to restart the process.
801 		 */
802 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
803 		    (sigprop(sig) & SIGPROP_IGNORE &&
804 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
805 			/* never to be seen again */
806 			sigqueue_delete_proc(p, sig);
807 			if (sig != SIGCONT)
808 				/* easier in psignal */
809 				SIGADDSET(ps->ps_sigignore, sig);
810 			SIGDELSET(ps->ps_sigcatch, sig);
811 		} else {
812 			SIGDELSET(ps->ps_sigignore, sig);
813 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
814 				SIGDELSET(ps->ps_sigcatch, sig);
815 			else
816 				SIGADDSET(ps->ps_sigcatch, sig);
817 		}
818 #ifdef COMPAT_FREEBSD4
819 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
820 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
821 		    (flags & KSA_FREEBSD4) == 0)
822 			SIGDELSET(ps->ps_freebsd4, sig);
823 		else
824 			SIGADDSET(ps->ps_freebsd4, sig);
825 #endif
826 #ifdef COMPAT_43
827 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
828 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
829 		    (flags & KSA_OSIGSET) == 0)
830 			SIGDELSET(ps->ps_osigset, sig);
831 		else
832 			SIGADDSET(ps->ps_osigset, sig);
833 #endif
834 	}
835 	mtx_unlock(&ps->ps_mtx);
836 	PROC_UNLOCK(p);
837 	return (0);
838 }
839 
840 #ifndef _SYS_SYSPROTO_H_
841 struct sigaction_args {
842 	int	sig;
843 	struct	sigaction *act;
844 	struct	sigaction *oact;
845 };
846 #endif
847 int
848 sys_sigaction(struct thread *td, struct sigaction_args *uap)
849 {
850 	struct sigaction act, oact;
851 	struct sigaction *actp, *oactp;
852 	int error;
853 
854 	actp = (uap->act != NULL) ? &act : NULL;
855 	oactp = (uap->oact != NULL) ? &oact : NULL;
856 	if (actp) {
857 		error = copyin(uap->act, actp, sizeof(act));
858 		if (error)
859 			return (error);
860 	}
861 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
862 	if (oactp && !error)
863 		error = copyout(oactp, uap->oact, sizeof(oact));
864 	return (error);
865 }
866 
867 #ifdef COMPAT_FREEBSD4
868 #ifndef _SYS_SYSPROTO_H_
869 struct freebsd4_sigaction_args {
870 	int	sig;
871 	struct	sigaction *act;
872 	struct	sigaction *oact;
873 };
874 #endif
875 int
876 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
877 {
878 	struct sigaction act, oact;
879 	struct sigaction *actp, *oactp;
880 	int error;
881 
882 	actp = (uap->act != NULL) ? &act : NULL;
883 	oactp = (uap->oact != NULL) ? &oact : NULL;
884 	if (actp) {
885 		error = copyin(uap->act, actp, sizeof(act));
886 		if (error)
887 			return (error);
888 	}
889 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
890 	if (oactp && !error)
891 		error = copyout(oactp, uap->oact, sizeof(oact));
892 	return (error);
893 }
894 #endif	/* COMAPT_FREEBSD4 */
895 
896 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
897 #ifndef _SYS_SYSPROTO_H_
898 struct osigaction_args {
899 	int	signum;
900 	struct	osigaction *nsa;
901 	struct	osigaction *osa;
902 };
903 #endif
904 int
905 osigaction(struct thread *td, struct osigaction_args *uap)
906 {
907 	struct osigaction sa;
908 	struct sigaction nsa, osa;
909 	struct sigaction *nsap, *osap;
910 	int error;
911 
912 	if (uap->signum <= 0 || uap->signum >= ONSIG)
913 		return (EINVAL);
914 
915 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
916 	osap = (uap->osa != NULL) ? &osa : NULL;
917 
918 	if (nsap) {
919 		error = copyin(uap->nsa, &sa, sizeof(sa));
920 		if (error)
921 			return (error);
922 		nsap->sa_handler = sa.sa_handler;
923 		nsap->sa_flags = sa.sa_flags;
924 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
925 	}
926 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
927 	if (osap && !error) {
928 		sa.sa_handler = osap->sa_handler;
929 		sa.sa_flags = osap->sa_flags;
930 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
931 		error = copyout(&sa, uap->osa, sizeof(sa));
932 	}
933 	return (error);
934 }
935 
936 #if !defined(__i386__)
937 /* Avoid replicating the same stub everywhere */
938 int
939 osigreturn(struct thread *td, struct osigreturn_args *uap)
940 {
941 
942 	return (nosys(td, (struct nosys_args *)uap));
943 }
944 #endif
945 #endif /* COMPAT_43 */
946 
947 /*
948  * Initialize signal state for process 0;
949  * set to ignore signals that are ignored by default.
950  */
951 void
952 siginit(struct proc *p)
953 {
954 	int i;
955 	struct sigacts *ps;
956 
957 	PROC_LOCK(p);
958 	ps = p->p_sigacts;
959 	mtx_lock(&ps->ps_mtx);
960 	for (i = 1; i <= NSIG; i++) {
961 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
962 			SIGADDSET(ps->ps_sigignore, i);
963 		}
964 	}
965 	mtx_unlock(&ps->ps_mtx);
966 	PROC_UNLOCK(p);
967 }
968 
969 /*
970  * Reset specified signal to the default disposition.
971  */
972 static void
973 sigdflt(struct sigacts *ps, int sig)
974 {
975 
976 	mtx_assert(&ps->ps_mtx, MA_OWNED);
977 	SIGDELSET(ps->ps_sigcatch, sig);
978 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
979 		SIGADDSET(ps->ps_sigignore, sig);
980 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
981 	SIGDELSET(ps->ps_siginfo, sig);
982 }
983 
984 /*
985  * Reset signals for an exec of the specified process.
986  */
987 void
988 execsigs(struct proc *p)
989 {
990 	struct sigacts *ps;
991 	struct thread *td;
992 
993 	/*
994 	 * Reset caught signals.  Held signals remain held
995 	 * through td_sigmask (unless they were caught,
996 	 * and are now ignored by default).
997 	 */
998 	PROC_LOCK_ASSERT(p, MA_OWNED);
999 	ps = p->p_sigacts;
1000 	mtx_lock(&ps->ps_mtx);
1001 	sig_drop_caught(p);
1002 
1003 	/*
1004 	 * Reset stack state to the user stack.
1005 	 * Clear set of signals caught on the signal stack.
1006 	 */
1007 	td = curthread;
1008 	MPASS(td->td_proc == p);
1009 	td->td_sigstk.ss_flags = SS_DISABLE;
1010 	td->td_sigstk.ss_size = 0;
1011 	td->td_sigstk.ss_sp = 0;
1012 	td->td_pflags &= ~TDP_ALTSTACK;
1013 	/*
1014 	 * Reset no zombies if child dies flag as Solaris does.
1015 	 */
1016 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1017 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1018 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1019 	mtx_unlock(&ps->ps_mtx);
1020 }
1021 
1022 /*
1023  * kern_sigprocmask()
1024  *
1025  *	Manipulate signal mask.
1026  */
1027 int
1028 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1029     int flags)
1030 {
1031 	sigset_t new_block, oset1;
1032 	struct proc *p;
1033 	int error;
1034 
1035 	p = td->td_proc;
1036 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1037 		PROC_LOCK_ASSERT(p, MA_OWNED);
1038 	else
1039 		PROC_LOCK(p);
1040 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1041 	    ? MA_OWNED : MA_NOTOWNED);
1042 	if (oset != NULL)
1043 		*oset = td->td_sigmask;
1044 
1045 	error = 0;
1046 	if (set != NULL) {
1047 		switch (how) {
1048 		case SIG_BLOCK:
1049 			SIG_CANTMASK(*set);
1050 			oset1 = td->td_sigmask;
1051 			SIGSETOR(td->td_sigmask, *set);
1052 			new_block = td->td_sigmask;
1053 			SIGSETNAND(new_block, oset1);
1054 			break;
1055 		case SIG_UNBLOCK:
1056 			SIGSETNAND(td->td_sigmask, *set);
1057 			signotify(td);
1058 			goto out;
1059 		case SIG_SETMASK:
1060 			SIG_CANTMASK(*set);
1061 			oset1 = td->td_sigmask;
1062 			if (flags & SIGPROCMASK_OLD)
1063 				SIGSETLO(td->td_sigmask, *set);
1064 			else
1065 				td->td_sigmask = *set;
1066 			new_block = td->td_sigmask;
1067 			SIGSETNAND(new_block, oset1);
1068 			signotify(td);
1069 			break;
1070 		default:
1071 			error = EINVAL;
1072 			goto out;
1073 		}
1074 
1075 		/*
1076 		 * The new_block set contains signals that were not previously
1077 		 * blocked, but are blocked now.
1078 		 *
1079 		 * In case we block any signal that was not previously blocked
1080 		 * for td, and process has the signal pending, try to schedule
1081 		 * signal delivery to some thread that does not block the
1082 		 * signal, possibly waking it up.
1083 		 */
1084 		if (p->p_numthreads != 1)
1085 			reschedule_signals(p, new_block, flags);
1086 	}
1087 
1088 out:
1089 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1090 		PROC_UNLOCK(p);
1091 	return (error);
1092 }
1093 
1094 #ifndef _SYS_SYSPROTO_H_
1095 struct sigprocmask_args {
1096 	int	how;
1097 	const sigset_t *set;
1098 	sigset_t *oset;
1099 };
1100 #endif
1101 int
1102 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1103 {
1104 	sigset_t set, oset;
1105 	sigset_t *setp, *osetp;
1106 	int error;
1107 
1108 	setp = (uap->set != NULL) ? &set : NULL;
1109 	osetp = (uap->oset != NULL) ? &oset : NULL;
1110 	if (setp) {
1111 		error = copyin(uap->set, setp, sizeof(set));
1112 		if (error)
1113 			return (error);
1114 	}
1115 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1116 	if (osetp && !error) {
1117 		error = copyout(osetp, uap->oset, sizeof(oset));
1118 	}
1119 	return (error);
1120 }
1121 
1122 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1123 #ifndef _SYS_SYSPROTO_H_
1124 struct osigprocmask_args {
1125 	int	how;
1126 	osigset_t mask;
1127 };
1128 #endif
1129 int
1130 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1131 {
1132 	sigset_t set, oset;
1133 	int error;
1134 
1135 	OSIG2SIG(uap->mask, set);
1136 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1137 	SIG2OSIG(oset, td->td_retval[0]);
1138 	return (error);
1139 }
1140 #endif /* COMPAT_43 */
1141 
1142 int
1143 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1144 {
1145 	ksiginfo_t ksi;
1146 	sigset_t set;
1147 	int error;
1148 
1149 	error = copyin(uap->set, &set, sizeof(set));
1150 	if (error) {
1151 		td->td_retval[0] = error;
1152 		return (0);
1153 	}
1154 
1155 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1156 	if (error) {
1157 		/*
1158 		 * sigwait() function shall not return EINTR, but
1159 		 * the syscall does.  Non-ancient libc provides the
1160 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1161 		 * is used by libthr to handle required cancellation
1162 		 * point in the sigwait().
1163 		 */
1164 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1165 			return (ERESTART);
1166 		td->td_retval[0] = error;
1167 		return (0);
1168 	}
1169 
1170 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1171 	td->td_retval[0] = error;
1172 	return (0);
1173 }
1174 
1175 int
1176 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1177 {
1178 	struct timespec ts;
1179 	struct timespec *timeout;
1180 	sigset_t set;
1181 	ksiginfo_t ksi;
1182 	int error;
1183 
1184 	if (uap->timeout) {
1185 		error = copyin(uap->timeout, &ts, sizeof(ts));
1186 		if (error)
1187 			return (error);
1188 
1189 		timeout = &ts;
1190 	} else
1191 		timeout = NULL;
1192 
1193 	error = copyin(uap->set, &set, sizeof(set));
1194 	if (error)
1195 		return (error);
1196 
1197 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1198 	if (error)
1199 		return (error);
1200 
1201 	if (uap->info)
1202 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1203 
1204 	if (error == 0)
1205 		td->td_retval[0] = ksi.ksi_signo;
1206 	return (error);
1207 }
1208 
1209 int
1210 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1211 {
1212 	ksiginfo_t ksi;
1213 	sigset_t set;
1214 	int error;
1215 
1216 	error = copyin(uap->set, &set, sizeof(set));
1217 	if (error)
1218 		return (error);
1219 
1220 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1221 	if (error)
1222 		return (error);
1223 
1224 	if (uap->info)
1225 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1226 
1227 	if (error == 0)
1228 		td->td_retval[0] = ksi.ksi_signo;
1229 	return (error);
1230 }
1231 
1232 static void
1233 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1234 {
1235 	struct thread *thr;
1236 
1237 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1238 		if (thr == td)
1239 			thr->td_si = *si;
1240 		else
1241 			thr->td_si.si_signo = 0;
1242 	}
1243 }
1244 
1245 int
1246 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1247 	struct timespec *timeout)
1248 {
1249 	struct sigacts *ps;
1250 	sigset_t saved_mask, new_block;
1251 	struct proc *p;
1252 	int error, sig, timo, timevalid = 0;
1253 	struct timespec rts, ets, ts;
1254 	struct timeval tv;
1255 	bool traced;
1256 
1257 	p = td->td_proc;
1258 	error = 0;
1259 	ets.tv_sec = 0;
1260 	ets.tv_nsec = 0;
1261 	traced = false;
1262 
1263 	/* Ensure the sigfastblock value is up to date. */
1264 	sigfastblock_fetch(td);
1265 
1266 	if (timeout != NULL) {
1267 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1268 			timevalid = 1;
1269 			getnanouptime(&rts);
1270 			timespecadd(&rts, timeout, &ets);
1271 		}
1272 	}
1273 	ksiginfo_init(ksi);
1274 	/* Some signals can not be waited for. */
1275 	SIG_CANTMASK(waitset);
1276 	ps = p->p_sigacts;
1277 	PROC_LOCK(p);
1278 	saved_mask = td->td_sigmask;
1279 	SIGSETNAND(td->td_sigmask, waitset);
1280 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1281 	    !kern_sig_discard_ign) {
1282 		thread_lock(td);
1283 		td->td_flags |= TDF_SIGWAIT;
1284 		thread_unlock(td);
1285 	}
1286 	for (;;) {
1287 		mtx_lock(&ps->ps_mtx);
1288 		sig = cursig(td);
1289 		mtx_unlock(&ps->ps_mtx);
1290 		KASSERT(sig >= 0, ("sig %d", sig));
1291 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1292 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1293 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1294 				error = 0;
1295 				break;
1296 			}
1297 		}
1298 
1299 		if (error != 0)
1300 			break;
1301 
1302 		/*
1303 		 * POSIX says this must be checked after looking for pending
1304 		 * signals.
1305 		 */
1306 		if (timeout != NULL) {
1307 			if (!timevalid) {
1308 				error = EINVAL;
1309 				break;
1310 			}
1311 			getnanouptime(&rts);
1312 			if (timespeccmp(&rts, &ets, >=)) {
1313 				error = EAGAIN;
1314 				break;
1315 			}
1316 			timespecsub(&ets, &rts, &ts);
1317 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1318 			timo = tvtohz(&tv);
1319 		} else {
1320 			timo = 0;
1321 		}
1322 
1323 		if (traced) {
1324 			error = EINTR;
1325 			break;
1326 		}
1327 
1328 		error = msleep(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1329 		    "sigwait", timo);
1330 
1331 		/* The syscalls can not be restarted. */
1332 		if (error == ERESTART)
1333 			error = EINTR;
1334 
1335 		/* We will calculate timeout by ourself. */
1336 		if (timeout != NULL && error == EAGAIN)
1337 			error = 0;
1338 
1339 		/*
1340 		 * If PTRACE_SCE or PTRACE_SCX were set after
1341 		 * userspace entered the syscall, return spurious
1342 		 * EINTR after wait was done.  Only do this as last
1343 		 * resort after rechecking for possible queued signals
1344 		 * and expired timeouts.
1345 		 */
1346 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1347 			traced = true;
1348 	}
1349 	thread_lock(td);
1350 	td->td_flags &= ~TDF_SIGWAIT;
1351 	thread_unlock(td);
1352 
1353 	new_block = saved_mask;
1354 	SIGSETNAND(new_block, td->td_sigmask);
1355 	td->td_sigmask = saved_mask;
1356 	/*
1357 	 * Fewer signals can be delivered to us, reschedule signal
1358 	 * notification.
1359 	 */
1360 	if (p->p_numthreads != 1)
1361 		reschedule_signals(p, new_block, 0);
1362 
1363 	if (error == 0) {
1364 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1365 
1366 		if (ksi->ksi_code == SI_TIMER)
1367 			itimer_accept(p, ksi->ksi_timerid, ksi);
1368 
1369 #ifdef KTRACE
1370 		if (KTRPOINT(td, KTR_PSIG)) {
1371 			sig_t action;
1372 
1373 			mtx_lock(&ps->ps_mtx);
1374 			action = ps->ps_sigact[_SIG_IDX(sig)];
1375 			mtx_unlock(&ps->ps_mtx);
1376 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1377 		}
1378 #endif
1379 		if (sig == SIGKILL) {
1380 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1381 			sigexit(td, sig);
1382 		}
1383 	}
1384 	PROC_UNLOCK(p);
1385 	return (error);
1386 }
1387 
1388 #ifndef _SYS_SYSPROTO_H_
1389 struct sigpending_args {
1390 	sigset_t	*set;
1391 };
1392 #endif
1393 int
1394 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1395 {
1396 	struct proc *p = td->td_proc;
1397 	sigset_t pending;
1398 
1399 	PROC_LOCK(p);
1400 	pending = p->p_sigqueue.sq_signals;
1401 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1402 	PROC_UNLOCK(p);
1403 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1404 }
1405 
1406 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigpending_args {
1409 	int	dummy;
1410 };
1411 #endif
1412 int
1413 osigpending(struct thread *td, struct osigpending_args *uap)
1414 {
1415 	struct proc *p = td->td_proc;
1416 	sigset_t pending;
1417 
1418 	PROC_LOCK(p);
1419 	pending = p->p_sigqueue.sq_signals;
1420 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1421 	PROC_UNLOCK(p);
1422 	SIG2OSIG(pending, td->td_retval[0]);
1423 	return (0);
1424 }
1425 #endif /* COMPAT_43 */
1426 
1427 #if defined(COMPAT_43)
1428 /*
1429  * Generalized interface signal handler, 4.3-compatible.
1430  */
1431 #ifndef _SYS_SYSPROTO_H_
1432 struct osigvec_args {
1433 	int	signum;
1434 	struct	sigvec *nsv;
1435 	struct	sigvec *osv;
1436 };
1437 #endif
1438 /* ARGSUSED */
1439 int
1440 osigvec(struct thread *td, struct osigvec_args *uap)
1441 {
1442 	struct sigvec vec;
1443 	struct sigaction nsa, osa;
1444 	struct sigaction *nsap, *osap;
1445 	int error;
1446 
1447 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1448 		return (EINVAL);
1449 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1450 	osap = (uap->osv != NULL) ? &osa : NULL;
1451 	if (nsap) {
1452 		error = copyin(uap->nsv, &vec, sizeof(vec));
1453 		if (error)
1454 			return (error);
1455 		nsap->sa_handler = vec.sv_handler;
1456 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1457 		nsap->sa_flags = vec.sv_flags;
1458 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1459 	}
1460 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1461 	if (osap && !error) {
1462 		vec.sv_handler = osap->sa_handler;
1463 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1464 		vec.sv_flags = osap->sa_flags;
1465 		vec.sv_flags &= ~SA_NOCLDWAIT;
1466 		vec.sv_flags ^= SA_RESTART;
1467 		error = copyout(&vec, uap->osv, sizeof(vec));
1468 	}
1469 	return (error);
1470 }
1471 
1472 #ifndef _SYS_SYSPROTO_H_
1473 struct osigblock_args {
1474 	int	mask;
1475 };
1476 #endif
1477 int
1478 osigblock(struct thread *td, struct osigblock_args *uap)
1479 {
1480 	sigset_t set, oset;
1481 
1482 	OSIG2SIG(uap->mask, set);
1483 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1484 	SIG2OSIG(oset, td->td_retval[0]);
1485 	return (0);
1486 }
1487 
1488 #ifndef _SYS_SYSPROTO_H_
1489 struct osigsetmask_args {
1490 	int	mask;
1491 };
1492 #endif
1493 int
1494 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1495 {
1496 	sigset_t set, oset;
1497 
1498 	OSIG2SIG(uap->mask, set);
1499 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1500 	SIG2OSIG(oset, td->td_retval[0]);
1501 	return (0);
1502 }
1503 #endif /* COMPAT_43 */
1504 
1505 /*
1506  * Suspend calling thread until signal, providing mask to be set in the
1507  * meantime.
1508  */
1509 #ifndef _SYS_SYSPROTO_H_
1510 struct sigsuspend_args {
1511 	const sigset_t *sigmask;
1512 };
1513 #endif
1514 /* ARGSUSED */
1515 int
1516 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1517 {
1518 	sigset_t mask;
1519 	int error;
1520 
1521 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1522 	if (error)
1523 		return (error);
1524 	return (kern_sigsuspend(td, mask));
1525 }
1526 
1527 int
1528 kern_sigsuspend(struct thread *td, sigset_t mask)
1529 {
1530 	struct proc *p = td->td_proc;
1531 	int has_sig, sig;
1532 
1533 	/* Ensure the sigfastblock value is up to date. */
1534 	sigfastblock_fetch(td);
1535 
1536 	/*
1537 	 * When returning from sigsuspend, we want
1538 	 * the old mask to be restored after the
1539 	 * signal handler has finished.  Thus, we
1540 	 * save it here and mark the sigacts structure
1541 	 * to indicate this.
1542 	 */
1543 	PROC_LOCK(p);
1544 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1545 	    SIGPROCMASK_PROC_LOCKED);
1546 	td->td_pflags |= TDP_OLDMASK;
1547 
1548 	/*
1549 	 * Process signals now. Otherwise, we can get spurious wakeup
1550 	 * due to signal entered process queue, but delivered to other
1551 	 * thread. But sigsuspend should return only on signal
1552 	 * delivery.
1553 	 */
1554 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1555 	for (has_sig = 0; !has_sig;) {
1556 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1557 			0) == 0)
1558 			/* void */;
1559 		thread_suspend_check(0);
1560 		mtx_lock(&p->p_sigacts->ps_mtx);
1561 		while ((sig = cursig(td)) != 0) {
1562 			KASSERT(sig >= 0, ("sig %d", sig));
1563 			has_sig += postsig(sig);
1564 		}
1565 		mtx_unlock(&p->p_sigacts->ps_mtx);
1566 
1567 		/*
1568 		 * If PTRACE_SCE or PTRACE_SCX were set after
1569 		 * userspace entered the syscall, return spurious
1570 		 * EINTR.
1571 		 */
1572 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1573 			has_sig += 1;
1574 	}
1575 	PROC_UNLOCK(p);
1576 	td->td_errno = EINTR;
1577 	td->td_pflags |= TDP_NERRNO;
1578 	return (EJUSTRETURN);
1579 }
1580 
1581 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1582 /*
1583  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1584  * convention: libc stub passes mask, not pointer, to save a copyin.
1585  */
1586 #ifndef _SYS_SYSPROTO_H_
1587 struct osigsuspend_args {
1588 	osigset_t mask;
1589 };
1590 #endif
1591 /* ARGSUSED */
1592 int
1593 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1594 {
1595 	sigset_t mask;
1596 
1597 	OSIG2SIG(uap->mask, mask);
1598 	return (kern_sigsuspend(td, mask));
1599 }
1600 #endif /* COMPAT_43 */
1601 
1602 #if defined(COMPAT_43)
1603 #ifndef _SYS_SYSPROTO_H_
1604 struct osigstack_args {
1605 	struct	sigstack *nss;
1606 	struct	sigstack *oss;
1607 };
1608 #endif
1609 /* ARGSUSED */
1610 int
1611 osigstack(struct thread *td, struct osigstack_args *uap)
1612 {
1613 	struct sigstack nss, oss;
1614 	int error = 0;
1615 
1616 	if (uap->nss != NULL) {
1617 		error = copyin(uap->nss, &nss, sizeof(nss));
1618 		if (error)
1619 			return (error);
1620 	}
1621 	oss.ss_sp = td->td_sigstk.ss_sp;
1622 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1623 	if (uap->nss != NULL) {
1624 		td->td_sigstk.ss_sp = nss.ss_sp;
1625 		td->td_sigstk.ss_size = 0;
1626 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1627 		td->td_pflags |= TDP_ALTSTACK;
1628 	}
1629 	if (uap->oss != NULL)
1630 		error = copyout(&oss, uap->oss, sizeof(oss));
1631 
1632 	return (error);
1633 }
1634 #endif /* COMPAT_43 */
1635 
1636 #ifndef _SYS_SYSPROTO_H_
1637 struct sigaltstack_args {
1638 	stack_t	*ss;
1639 	stack_t	*oss;
1640 };
1641 #endif
1642 /* ARGSUSED */
1643 int
1644 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1645 {
1646 	stack_t ss, oss;
1647 	int error;
1648 
1649 	if (uap->ss != NULL) {
1650 		error = copyin(uap->ss, &ss, sizeof(ss));
1651 		if (error)
1652 			return (error);
1653 	}
1654 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1655 	    (uap->oss != NULL) ? &oss : NULL);
1656 	if (error)
1657 		return (error);
1658 	if (uap->oss != NULL)
1659 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1660 	return (error);
1661 }
1662 
1663 int
1664 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1665 {
1666 	struct proc *p = td->td_proc;
1667 	int oonstack;
1668 
1669 	oonstack = sigonstack(cpu_getstack(td));
1670 
1671 	if (oss != NULL) {
1672 		*oss = td->td_sigstk;
1673 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1674 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1675 	}
1676 
1677 	if (ss != NULL) {
1678 		if (oonstack)
1679 			return (EPERM);
1680 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1681 			return (EINVAL);
1682 		if (!(ss->ss_flags & SS_DISABLE)) {
1683 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1684 				return (ENOMEM);
1685 
1686 			td->td_sigstk = *ss;
1687 			td->td_pflags |= TDP_ALTSTACK;
1688 		} else {
1689 			td->td_pflags &= ~TDP_ALTSTACK;
1690 		}
1691 	}
1692 	return (0);
1693 }
1694 
1695 struct killpg1_ctx {
1696 	struct thread *td;
1697 	ksiginfo_t *ksi;
1698 	int sig;
1699 	bool sent;
1700 	bool found;
1701 	int ret;
1702 };
1703 
1704 static void
1705 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1706 {
1707 	int err;
1708 
1709 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1710 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1711 		return;
1712 	PROC_LOCK(p);
1713 	err = p_cansignal(arg->td, p, arg->sig);
1714 	if (err == 0 && arg->sig != 0)
1715 		pksignal(p, arg->sig, arg->ksi);
1716 	PROC_UNLOCK(p);
1717 	if (err != ESRCH)
1718 		arg->found = true;
1719 	if (err == 0)
1720 		arg->sent = true;
1721 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1722 		arg->ret = err;
1723 }
1724 
1725 /*
1726  * Common code for kill process group/broadcast kill.
1727  * cp is calling process.
1728  */
1729 static int
1730 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1731 {
1732 	struct proc *p;
1733 	struct pgrp *pgrp;
1734 	struct killpg1_ctx arg;
1735 
1736 	arg.td = td;
1737 	arg.ksi = ksi;
1738 	arg.sig = sig;
1739 	arg.sent = false;
1740 	arg.found = false;
1741 	arg.ret = 0;
1742 	if (all) {
1743 		/*
1744 		 * broadcast
1745 		 */
1746 		sx_slock(&allproc_lock);
1747 		FOREACH_PROC_IN_SYSTEM(p) {
1748 			killpg1_sendsig(p, true, &arg);
1749 		}
1750 		sx_sunlock(&allproc_lock);
1751 	} else {
1752 		sx_slock(&proctree_lock);
1753 		if (pgid == 0) {
1754 			/*
1755 			 * zero pgid means send to my process group.
1756 			 */
1757 			pgrp = td->td_proc->p_pgrp;
1758 			PGRP_LOCK(pgrp);
1759 		} else {
1760 			pgrp = pgfind(pgid);
1761 			if (pgrp == NULL) {
1762 				sx_sunlock(&proctree_lock);
1763 				return (ESRCH);
1764 			}
1765 		}
1766 		sx_sunlock(&proctree_lock);
1767 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1768 			killpg1_sendsig(p, false, &arg);
1769 		}
1770 		PGRP_UNLOCK(pgrp);
1771 	}
1772 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1773 	if (arg.ret == 0 && !arg.sent)
1774 		arg.ret = arg.found ? EPERM : ESRCH;
1775 	return (arg.ret);
1776 }
1777 
1778 #ifndef _SYS_SYSPROTO_H_
1779 struct kill_args {
1780 	int	pid;
1781 	int	signum;
1782 };
1783 #endif
1784 /* ARGSUSED */
1785 int
1786 sys_kill(struct thread *td, struct kill_args *uap)
1787 {
1788 
1789 	return (kern_kill(td, uap->pid, uap->signum));
1790 }
1791 
1792 int
1793 kern_kill(struct thread *td, pid_t pid, int signum)
1794 {
1795 	ksiginfo_t ksi;
1796 	struct proc *p;
1797 	int error;
1798 
1799 	/*
1800 	 * A process in capability mode can send signals only to himself.
1801 	 * The main rationale behind this is that abort(3) is implemented as
1802 	 * kill(getpid(), SIGABRT).
1803 	 */
1804 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1805 		return (ECAPMODE);
1806 
1807 	AUDIT_ARG_SIGNUM(signum);
1808 	AUDIT_ARG_PID(pid);
1809 	if ((u_int)signum > _SIG_MAXSIG)
1810 		return (EINVAL);
1811 
1812 	ksiginfo_init(&ksi);
1813 	ksi.ksi_signo = signum;
1814 	ksi.ksi_code = SI_USER;
1815 	ksi.ksi_pid = td->td_proc->p_pid;
1816 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1817 
1818 	if (pid > 0) {
1819 		/* kill single process */
1820 		if ((p = pfind_any(pid)) == NULL)
1821 			return (ESRCH);
1822 		AUDIT_ARG_PROCESS(p);
1823 		error = p_cansignal(td, p, signum);
1824 		if (error == 0 && signum)
1825 			pksignal(p, signum, &ksi);
1826 		PROC_UNLOCK(p);
1827 		return (error);
1828 	}
1829 	switch (pid) {
1830 	case -1:		/* broadcast signal */
1831 		return (killpg1(td, signum, 0, 1, &ksi));
1832 	case 0:			/* signal own process group */
1833 		return (killpg1(td, signum, 0, 0, &ksi));
1834 	default:		/* negative explicit process group */
1835 		return (killpg1(td, signum, -pid, 0, &ksi));
1836 	}
1837 	/* NOTREACHED */
1838 }
1839 
1840 int
1841 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1842 {
1843 	struct proc *p;
1844 	int error;
1845 
1846 	AUDIT_ARG_SIGNUM(uap->signum);
1847 	AUDIT_ARG_FD(uap->fd);
1848 	if ((u_int)uap->signum > _SIG_MAXSIG)
1849 		return (EINVAL);
1850 
1851 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1852 	if (error)
1853 		return (error);
1854 	AUDIT_ARG_PROCESS(p);
1855 	error = p_cansignal(td, p, uap->signum);
1856 	if (error == 0 && uap->signum)
1857 		kern_psignal(p, uap->signum);
1858 	PROC_UNLOCK(p);
1859 	return (error);
1860 }
1861 
1862 #if defined(COMPAT_43)
1863 #ifndef _SYS_SYSPROTO_H_
1864 struct okillpg_args {
1865 	int	pgid;
1866 	int	signum;
1867 };
1868 #endif
1869 /* ARGSUSED */
1870 int
1871 okillpg(struct thread *td, struct okillpg_args *uap)
1872 {
1873 	ksiginfo_t ksi;
1874 
1875 	AUDIT_ARG_SIGNUM(uap->signum);
1876 	AUDIT_ARG_PID(uap->pgid);
1877 	if ((u_int)uap->signum > _SIG_MAXSIG)
1878 		return (EINVAL);
1879 
1880 	ksiginfo_init(&ksi);
1881 	ksi.ksi_signo = uap->signum;
1882 	ksi.ksi_code = SI_USER;
1883 	ksi.ksi_pid = td->td_proc->p_pid;
1884 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1885 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1886 }
1887 #endif /* COMPAT_43 */
1888 
1889 #ifndef _SYS_SYSPROTO_H_
1890 struct sigqueue_args {
1891 	pid_t pid;
1892 	int signum;
1893 	/* union sigval */ void *value;
1894 };
1895 #endif
1896 int
1897 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1898 {
1899 	union sigval sv;
1900 
1901 	sv.sival_ptr = uap->value;
1902 
1903 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1904 }
1905 
1906 int
1907 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1908 {
1909 	ksiginfo_t ksi;
1910 	struct proc *p;
1911 	int error;
1912 
1913 	if ((u_int)signum > _SIG_MAXSIG)
1914 		return (EINVAL);
1915 
1916 	/*
1917 	 * Specification says sigqueue can only send signal to
1918 	 * single process.
1919 	 */
1920 	if (pid <= 0)
1921 		return (EINVAL);
1922 
1923 	if ((p = pfind_any(pid)) == NULL)
1924 		return (ESRCH);
1925 	error = p_cansignal(td, p, signum);
1926 	if (error == 0 && signum != 0) {
1927 		ksiginfo_init(&ksi);
1928 		ksi.ksi_flags = KSI_SIGQ;
1929 		ksi.ksi_signo = signum;
1930 		ksi.ksi_code = SI_QUEUE;
1931 		ksi.ksi_pid = td->td_proc->p_pid;
1932 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1933 		ksi.ksi_value = *value;
1934 		error = pksignal(p, ksi.ksi_signo, &ksi);
1935 	}
1936 	PROC_UNLOCK(p);
1937 	return (error);
1938 }
1939 
1940 /*
1941  * Send a signal to a process group.
1942  */
1943 void
1944 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1945 {
1946 	struct pgrp *pgrp;
1947 
1948 	if (pgid != 0) {
1949 		sx_slock(&proctree_lock);
1950 		pgrp = pgfind(pgid);
1951 		sx_sunlock(&proctree_lock);
1952 		if (pgrp != NULL) {
1953 			pgsignal(pgrp, sig, 0, ksi);
1954 			PGRP_UNLOCK(pgrp);
1955 		}
1956 	}
1957 }
1958 
1959 /*
1960  * Send a signal to a process group.  If checktty is 1,
1961  * limit to members which have a controlling terminal.
1962  */
1963 void
1964 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1965 {
1966 	struct proc *p;
1967 
1968 	if (pgrp) {
1969 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1970 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1971 			PROC_LOCK(p);
1972 			if (p->p_state == PRS_NORMAL &&
1973 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1974 				pksignal(p, sig, ksi);
1975 			PROC_UNLOCK(p);
1976 		}
1977 	}
1978 }
1979 
1980 /*
1981  * Recalculate the signal mask and reset the signal disposition after
1982  * usermode frame for delivery is formed.  Should be called after
1983  * mach-specific routine, because sysent->sv_sendsig() needs correct
1984  * ps_siginfo and signal mask.
1985  */
1986 static void
1987 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1988 {
1989 	sigset_t mask;
1990 
1991 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1992 	td->td_ru.ru_nsignals++;
1993 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1994 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1995 		SIGADDSET(mask, sig);
1996 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1997 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1998 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1999 		sigdflt(ps, sig);
2000 }
2001 
2002 /*
2003  * Send a signal caused by a trap to the current thread.  If it will be
2004  * caught immediately, deliver it with correct code.  Otherwise, post it
2005  * normally.
2006  */
2007 void
2008 trapsignal(struct thread *td, ksiginfo_t *ksi)
2009 {
2010 	struct sigacts *ps;
2011 	struct proc *p;
2012 	sigset_t sigmask;
2013 	int code, sig;
2014 
2015 	p = td->td_proc;
2016 	sig = ksi->ksi_signo;
2017 	code = ksi->ksi_code;
2018 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2019 
2020 	sigfastblock_fetch(td);
2021 	PROC_LOCK(p);
2022 	ps = p->p_sigacts;
2023 	mtx_lock(&ps->ps_mtx);
2024 	sigmask = td->td_sigmask;
2025 	if (td->td_sigblock_val != 0)
2026 		SIGSETOR(sigmask, fastblock_mask);
2027 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2028 	    !SIGISMEMBER(sigmask, sig)) {
2029 #ifdef KTRACE
2030 		if (KTRPOINT(curthread, KTR_PSIG))
2031 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2032 			    &td->td_sigmask, code);
2033 #endif
2034 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2035 				ksi, &td->td_sigmask);
2036 		postsig_done(sig, td, ps);
2037 		mtx_unlock(&ps->ps_mtx);
2038 	} else {
2039 		/*
2040 		 * Avoid a possible infinite loop if the thread
2041 		 * masking the signal or process is ignoring the
2042 		 * signal.
2043 		 */
2044 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2045 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2046 			SIGDELSET(td->td_sigmask, sig);
2047 			SIGDELSET(ps->ps_sigcatch, sig);
2048 			SIGDELSET(ps->ps_sigignore, sig);
2049 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2050 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2051 			td->td_sigblock_val = 0;
2052 		}
2053 		mtx_unlock(&ps->ps_mtx);
2054 		p->p_sig = sig;		/* XXX to verify code */
2055 		tdsendsignal(p, td, sig, ksi);
2056 	}
2057 	PROC_UNLOCK(p);
2058 }
2059 
2060 static struct thread *
2061 sigtd(struct proc *p, int sig, bool fast_sigblock)
2062 {
2063 	struct thread *td, *signal_td;
2064 
2065 	PROC_LOCK_ASSERT(p, MA_OWNED);
2066 	MPASS(!fast_sigblock || p == curproc);
2067 
2068 	/*
2069 	 * Check if current thread can handle the signal without
2070 	 * switching context to another thread.
2071 	 */
2072 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2073 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2074 		return (curthread);
2075 	signal_td = NULL;
2076 	FOREACH_THREAD_IN_PROC(p, td) {
2077 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2078 		    td != curthread || td->td_sigblock_val == 0)) {
2079 			signal_td = td;
2080 			break;
2081 		}
2082 	}
2083 	if (signal_td == NULL)
2084 		signal_td = FIRST_THREAD_IN_PROC(p);
2085 	return (signal_td);
2086 }
2087 
2088 /*
2089  * Send the signal to the process.  If the signal has an action, the action
2090  * is usually performed by the target process rather than the caller; we add
2091  * the signal to the set of pending signals for the process.
2092  *
2093  * Exceptions:
2094  *   o When a stop signal is sent to a sleeping process that takes the
2095  *     default action, the process is stopped without awakening it.
2096  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2097  *     regardless of the signal action (eg, blocked or ignored).
2098  *
2099  * Other ignored signals are discarded immediately.
2100  *
2101  * NB: This function may be entered from the debugger via the "kill" DDB
2102  * command.  There is little that can be done to mitigate the possibly messy
2103  * side effects of this unwise possibility.
2104  */
2105 void
2106 kern_psignal(struct proc *p, int sig)
2107 {
2108 	ksiginfo_t ksi;
2109 
2110 	ksiginfo_init(&ksi);
2111 	ksi.ksi_signo = sig;
2112 	ksi.ksi_code = SI_KERNEL;
2113 	(void) tdsendsignal(p, NULL, sig, &ksi);
2114 }
2115 
2116 int
2117 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2118 {
2119 
2120 	return (tdsendsignal(p, NULL, sig, ksi));
2121 }
2122 
2123 /* Utility function for finding a thread to send signal event to. */
2124 int
2125 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2126 {
2127 	struct thread *td;
2128 
2129 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2130 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2131 		if (td == NULL)
2132 			return (ESRCH);
2133 		*ttd = td;
2134 	} else {
2135 		*ttd = NULL;
2136 		PROC_LOCK(p);
2137 	}
2138 	return (0);
2139 }
2140 
2141 void
2142 tdsignal(struct thread *td, int sig)
2143 {
2144 	ksiginfo_t ksi;
2145 
2146 	ksiginfo_init(&ksi);
2147 	ksi.ksi_signo = sig;
2148 	ksi.ksi_code = SI_KERNEL;
2149 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2150 }
2151 
2152 void
2153 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2154 {
2155 
2156 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2157 }
2158 
2159 static int
2160 sig_sleepq_abort(struct thread *td, int intrval)
2161 {
2162 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2163 
2164 	if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0) {
2165 		thread_unlock(td);
2166 		return (0);
2167 	}
2168 	return (sleepq_abort(td, intrval));
2169 }
2170 
2171 int
2172 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2173 {
2174 	sig_t action;
2175 	sigqueue_t *sigqueue;
2176 	int prop;
2177 	struct sigacts *ps;
2178 	int intrval;
2179 	int ret = 0;
2180 	int wakeup_swapper;
2181 
2182 	MPASS(td == NULL || p == td->td_proc);
2183 	PROC_LOCK_ASSERT(p, MA_OWNED);
2184 
2185 	if (!_SIG_VALID(sig))
2186 		panic("%s(): invalid signal %d", __func__, sig);
2187 
2188 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2189 
2190 	/*
2191 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2192 	 */
2193 	if (p->p_state == PRS_ZOMBIE) {
2194 		if (ksi && (ksi->ksi_flags & KSI_INS))
2195 			ksiginfo_tryfree(ksi);
2196 		return (ret);
2197 	}
2198 
2199 	ps = p->p_sigacts;
2200 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2201 	prop = sigprop(sig);
2202 
2203 	if (td == NULL) {
2204 		td = sigtd(p, sig, false);
2205 		sigqueue = &p->p_sigqueue;
2206 	} else
2207 		sigqueue = &td->td_sigqueue;
2208 
2209 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2210 
2211 	/*
2212 	 * If the signal is being ignored, then we forget about it
2213 	 * immediately, except when the target process executes
2214 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2215 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2216 	 */
2217 	mtx_lock(&ps->ps_mtx);
2218 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2219 		if (kern_sig_discard_ign &&
2220 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2221 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2222 
2223 			mtx_unlock(&ps->ps_mtx);
2224 			if (ksi && (ksi->ksi_flags & KSI_INS))
2225 				ksiginfo_tryfree(ksi);
2226 			return (ret);
2227 		} else {
2228 			action = SIG_CATCH;
2229 			intrval = 0;
2230 		}
2231 	} else {
2232 		if (SIGISMEMBER(td->td_sigmask, sig))
2233 			action = SIG_HOLD;
2234 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2235 			action = SIG_CATCH;
2236 		else
2237 			action = SIG_DFL;
2238 		if (SIGISMEMBER(ps->ps_sigintr, sig))
2239 			intrval = EINTR;
2240 		else
2241 			intrval = ERESTART;
2242 	}
2243 	mtx_unlock(&ps->ps_mtx);
2244 
2245 	if (prop & SIGPROP_CONT)
2246 		sigqueue_delete_stopmask_proc(p);
2247 	else if (prop & SIGPROP_STOP) {
2248 		/*
2249 		 * If sending a tty stop signal to a member of an orphaned
2250 		 * process group, discard the signal here if the action
2251 		 * is default; don't stop the process below if sleeping,
2252 		 * and don't clear any pending SIGCONT.
2253 		 */
2254 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2255 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2256 		    action == SIG_DFL) {
2257 			if (ksi && (ksi->ksi_flags & KSI_INS))
2258 				ksiginfo_tryfree(ksi);
2259 			return (ret);
2260 		}
2261 		sigqueue_delete_proc(p, SIGCONT);
2262 		if (p->p_flag & P_CONTINUED) {
2263 			p->p_flag &= ~P_CONTINUED;
2264 			PROC_LOCK(p->p_pptr);
2265 			sigqueue_take(p->p_ksi);
2266 			PROC_UNLOCK(p->p_pptr);
2267 		}
2268 	}
2269 
2270 	ret = sigqueue_add(sigqueue, sig, ksi);
2271 	if (ret != 0)
2272 		return (ret);
2273 	signotify(td);
2274 	/*
2275 	 * Defer further processing for signals which are held,
2276 	 * except that stopped processes must be continued by SIGCONT.
2277 	 */
2278 	if (action == SIG_HOLD &&
2279 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2280 		return (ret);
2281 
2282 	wakeup_swapper = 0;
2283 
2284 	/*
2285 	 * Some signals have a process-wide effect and a per-thread
2286 	 * component.  Most processing occurs when the process next
2287 	 * tries to cross the user boundary, however there are some
2288 	 * times when processing needs to be done immediately, such as
2289 	 * waking up threads so that they can cross the user boundary.
2290 	 * We try to do the per-process part here.
2291 	 */
2292 	if (P_SHOULDSTOP(p)) {
2293 		KASSERT(!(p->p_flag & P_WEXIT),
2294 		    ("signal to stopped but exiting process"));
2295 		if (sig == SIGKILL) {
2296 			/*
2297 			 * If traced process is already stopped,
2298 			 * then no further action is necessary.
2299 			 */
2300 			if (p->p_flag & P_TRACED)
2301 				goto out;
2302 			/*
2303 			 * SIGKILL sets process running.
2304 			 * It will die elsewhere.
2305 			 * All threads must be restarted.
2306 			 */
2307 			p->p_flag &= ~P_STOPPED_SIG;
2308 			goto runfast;
2309 		}
2310 
2311 		if (prop & SIGPROP_CONT) {
2312 			/*
2313 			 * If traced process is already stopped,
2314 			 * then no further action is necessary.
2315 			 */
2316 			if (p->p_flag & P_TRACED)
2317 				goto out;
2318 			/*
2319 			 * If SIGCONT is default (or ignored), we continue the
2320 			 * process but don't leave the signal in sigqueue as
2321 			 * it has no further action.  If SIGCONT is held, we
2322 			 * continue the process and leave the signal in
2323 			 * sigqueue.  If the process catches SIGCONT, let it
2324 			 * handle the signal itself.  If it isn't waiting on
2325 			 * an event, it goes back to run state.
2326 			 * Otherwise, process goes back to sleep state.
2327 			 */
2328 			p->p_flag &= ~P_STOPPED_SIG;
2329 			PROC_SLOCK(p);
2330 			if (p->p_numthreads == p->p_suspcount) {
2331 				PROC_SUNLOCK(p);
2332 				p->p_flag |= P_CONTINUED;
2333 				p->p_xsig = SIGCONT;
2334 				PROC_LOCK(p->p_pptr);
2335 				childproc_continued(p);
2336 				PROC_UNLOCK(p->p_pptr);
2337 				PROC_SLOCK(p);
2338 			}
2339 			if (action == SIG_DFL) {
2340 				thread_unsuspend(p);
2341 				PROC_SUNLOCK(p);
2342 				sigqueue_delete(sigqueue, sig);
2343 				goto out_cont;
2344 			}
2345 			if (action == SIG_CATCH) {
2346 				/*
2347 				 * The process wants to catch it so it needs
2348 				 * to run at least one thread, but which one?
2349 				 */
2350 				PROC_SUNLOCK(p);
2351 				goto runfast;
2352 			}
2353 			/*
2354 			 * The signal is not ignored or caught.
2355 			 */
2356 			thread_unsuspend(p);
2357 			PROC_SUNLOCK(p);
2358 			goto out_cont;
2359 		}
2360 
2361 		if (prop & SIGPROP_STOP) {
2362 			/*
2363 			 * If traced process is already stopped,
2364 			 * then no further action is necessary.
2365 			 */
2366 			if (p->p_flag & P_TRACED)
2367 				goto out;
2368 			/*
2369 			 * Already stopped, don't need to stop again
2370 			 * (If we did the shell could get confused).
2371 			 * Just make sure the signal STOP bit set.
2372 			 */
2373 			p->p_flag |= P_STOPPED_SIG;
2374 			sigqueue_delete(sigqueue, sig);
2375 			goto out;
2376 		}
2377 
2378 		/*
2379 		 * All other kinds of signals:
2380 		 * If a thread is sleeping interruptibly, simulate a
2381 		 * wakeup so that when it is continued it will be made
2382 		 * runnable and can look at the signal.  However, don't make
2383 		 * the PROCESS runnable, leave it stopped.
2384 		 * It may run a bit until it hits a thread_suspend_check().
2385 		 */
2386 		PROC_SLOCK(p);
2387 		thread_lock(td);
2388 		if (TD_CAN_ABORT(td))
2389 			wakeup_swapper = sig_sleepq_abort(td, intrval);
2390 		else
2391 			thread_unlock(td);
2392 		PROC_SUNLOCK(p);
2393 		goto out;
2394 		/*
2395 		 * Mutexes are short lived. Threads waiting on them will
2396 		 * hit thread_suspend_check() soon.
2397 		 */
2398 	} else if (p->p_state == PRS_NORMAL) {
2399 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2400 			tdsigwakeup(td, sig, action, intrval);
2401 			goto out;
2402 		}
2403 
2404 		MPASS(action == SIG_DFL);
2405 
2406 		if (prop & SIGPROP_STOP) {
2407 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2408 				goto out;
2409 			p->p_flag |= P_STOPPED_SIG;
2410 			p->p_xsig = sig;
2411 			PROC_SLOCK(p);
2412 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2413 			if (p->p_numthreads == p->p_suspcount) {
2414 				/*
2415 				 * only thread sending signal to another
2416 				 * process can reach here, if thread is sending
2417 				 * signal to its process, because thread does
2418 				 * not suspend itself here, p_numthreads
2419 				 * should never be equal to p_suspcount.
2420 				 */
2421 				thread_stopped(p);
2422 				PROC_SUNLOCK(p);
2423 				sigqueue_delete_proc(p, p->p_xsig);
2424 			} else
2425 				PROC_SUNLOCK(p);
2426 			goto out;
2427 		}
2428 	} else {
2429 		/* Not in "NORMAL" state. discard the signal. */
2430 		sigqueue_delete(sigqueue, sig);
2431 		goto out;
2432 	}
2433 
2434 	/*
2435 	 * The process is not stopped so we need to apply the signal to all the
2436 	 * running threads.
2437 	 */
2438 runfast:
2439 	tdsigwakeup(td, sig, action, intrval);
2440 	PROC_SLOCK(p);
2441 	thread_unsuspend(p);
2442 	PROC_SUNLOCK(p);
2443 out_cont:
2444 	itimer_proc_continue(p);
2445 	kqtimer_proc_continue(p);
2446 out:
2447 	/* If we jump here, proc slock should not be owned. */
2448 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2449 	if (wakeup_swapper)
2450 		kick_proc0();
2451 
2452 	return (ret);
2453 }
2454 
2455 /*
2456  * The force of a signal has been directed against a single
2457  * thread.  We need to see what we can do about knocking it
2458  * out of any sleep it may be in etc.
2459  */
2460 static void
2461 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2462 {
2463 	struct proc *p = td->td_proc;
2464 	int prop, wakeup_swapper;
2465 
2466 	PROC_LOCK_ASSERT(p, MA_OWNED);
2467 	prop = sigprop(sig);
2468 
2469 	PROC_SLOCK(p);
2470 	thread_lock(td);
2471 	/*
2472 	 * Bring the priority of a thread up if we want it to get
2473 	 * killed in this lifetime.  Be careful to avoid bumping the
2474 	 * priority of the idle thread, since we still allow to signal
2475 	 * kernel processes.
2476 	 */
2477 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2478 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2479 		sched_prio(td, PUSER);
2480 	if (TD_ON_SLEEPQ(td)) {
2481 		/*
2482 		 * If thread is sleeping uninterruptibly
2483 		 * we can't interrupt the sleep... the signal will
2484 		 * be noticed when the process returns through
2485 		 * trap() or syscall().
2486 		 */
2487 		if ((td->td_flags & TDF_SINTR) == 0)
2488 			goto out;
2489 		/*
2490 		 * If SIGCONT is default (or ignored) and process is
2491 		 * asleep, we are finished; the process should not
2492 		 * be awakened.
2493 		 */
2494 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2495 			thread_unlock(td);
2496 			PROC_SUNLOCK(p);
2497 			sigqueue_delete(&p->p_sigqueue, sig);
2498 			/*
2499 			 * It may be on either list in this state.
2500 			 * Remove from both for now.
2501 			 */
2502 			sigqueue_delete(&td->td_sigqueue, sig);
2503 			return;
2504 		}
2505 
2506 		/*
2507 		 * Don't awaken a sleeping thread for SIGSTOP if the
2508 		 * STOP signal is deferred.
2509 		 */
2510 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2511 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2512 			goto out;
2513 
2514 		/*
2515 		 * Give low priority threads a better chance to run.
2516 		 */
2517 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2518 			sched_prio(td, PUSER);
2519 
2520 		wakeup_swapper = sig_sleepq_abort(td, intrval);
2521 		PROC_SUNLOCK(p);
2522 		if (wakeup_swapper)
2523 			kick_proc0();
2524 		return;
2525 	}
2526 
2527 	/*
2528 	 * Other states do nothing with the signal immediately,
2529 	 * other than kicking ourselves if we are running.
2530 	 * It will either never be noticed, or noticed very soon.
2531 	 */
2532 #ifdef SMP
2533 	if (TD_IS_RUNNING(td) && td != curthread)
2534 		forward_signal(td);
2535 #endif
2536 
2537 out:
2538 	PROC_SUNLOCK(p);
2539 	thread_unlock(td);
2540 }
2541 
2542 static void
2543 ptrace_coredump(struct thread *td)
2544 {
2545 	struct proc *p;
2546 	struct thr_coredump_req *tcq;
2547 	void *rl_cookie;
2548 
2549 	MPASS(td == curthread);
2550 	p = td->td_proc;
2551 	PROC_LOCK_ASSERT(p, MA_OWNED);
2552 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2553 		return;
2554 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2555 
2556 	tcq = td->td_coredump;
2557 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2558 
2559 	if (p->p_sysent->sv_coredump == NULL) {
2560 		tcq->tc_error = ENOSYS;
2561 		goto wake;
2562 	}
2563 
2564 	PROC_UNLOCK(p);
2565 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2566 
2567 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2568 	    tcq->tc_limit, tcq->tc_flags);
2569 
2570 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2571 	PROC_LOCK(p);
2572 wake:
2573 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2574 	td->td_coredump = NULL;
2575 	wakeup(p);
2576 }
2577 
2578 static int
2579 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2580 {
2581 	struct thread *td2;
2582 	int wakeup_swapper;
2583 
2584 	PROC_LOCK_ASSERT(p, MA_OWNED);
2585 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2586 	MPASS(sending || td == curthread);
2587 
2588 	wakeup_swapper = 0;
2589 	FOREACH_THREAD_IN_PROC(p, td2) {
2590 		thread_lock(td2);
2591 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2592 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2593 		    (td2->td_flags & TDF_SINTR)) {
2594 			if (td2->td_flags & TDF_SBDRY) {
2595 				/*
2596 				 * Once a thread is asleep with
2597 				 * TDF_SBDRY and without TDF_SERESTART
2598 				 * or TDF_SEINTR set, it should never
2599 				 * become suspended due to this check.
2600 				 */
2601 				KASSERT(!TD_IS_SUSPENDED(td2),
2602 				    ("thread with deferred stops suspended"));
2603 				if (TD_SBDRY_INTR(td2)) {
2604 					wakeup_swapper |= sleepq_abort(td2,
2605 					    TD_SBDRY_ERRNO(td2));
2606 					continue;
2607 				}
2608 			} else if (!TD_IS_SUSPENDED(td2))
2609 				thread_suspend_one(td2);
2610 		} else if (!TD_IS_SUSPENDED(td2)) {
2611 			if (sending || td != td2)
2612 				td2->td_flags |= TDF_ASTPENDING;
2613 #ifdef SMP
2614 			if (TD_IS_RUNNING(td2) && td2 != td)
2615 				forward_signal(td2);
2616 #endif
2617 		}
2618 		thread_unlock(td2);
2619 	}
2620 	return (wakeup_swapper);
2621 }
2622 
2623 /*
2624  * Stop the process for an event deemed interesting to the debugger. If si is
2625  * non-NULL, this is a signal exchange; the new signal requested by the
2626  * debugger will be returned for handling. If si is NULL, this is some other
2627  * type of interesting event. The debugger may request a signal be delivered in
2628  * that case as well, however it will be deferred until it can be handled.
2629  */
2630 int
2631 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2632 {
2633 	struct proc *p = td->td_proc;
2634 	struct thread *td2;
2635 	ksiginfo_t ksi;
2636 
2637 	PROC_LOCK_ASSERT(p, MA_OWNED);
2638 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2639 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2640 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2641 
2642 	td->td_xsig = sig;
2643 
2644 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2645 		td->td_dbgflags |= TDB_XSIG;
2646 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2647 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2648 		PROC_SLOCK(p);
2649 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2650 			if (P_KILLED(p)) {
2651 				/*
2652 				 * Ensure that, if we've been PT_KILLed, the
2653 				 * exit status reflects that. Another thread
2654 				 * may also be in ptracestop(), having just
2655 				 * received the SIGKILL, but this thread was
2656 				 * unsuspended first.
2657 				 */
2658 				td->td_dbgflags &= ~TDB_XSIG;
2659 				td->td_xsig = SIGKILL;
2660 				p->p_ptevents = 0;
2661 				break;
2662 			}
2663 			if (p->p_flag & P_SINGLE_EXIT &&
2664 			    !(td->td_dbgflags & TDB_EXIT)) {
2665 				/*
2666 				 * Ignore ptrace stops except for thread exit
2667 				 * events when the process exits.
2668 				 */
2669 				td->td_dbgflags &= ~TDB_XSIG;
2670 				PROC_SUNLOCK(p);
2671 				return (0);
2672 			}
2673 
2674 			/*
2675 			 * Make wait(2) work.  Ensure that right after the
2676 			 * attach, the thread which was decided to become the
2677 			 * leader of attach gets reported to the waiter.
2678 			 * Otherwise, just avoid overwriting another thread's
2679 			 * assignment to p_xthread.  If another thread has
2680 			 * already set p_xthread, the current thread will get
2681 			 * a chance to report itself upon the next iteration.
2682 			 */
2683 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2684 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2685 			    p->p_xthread == NULL)) {
2686 				p->p_xsig = sig;
2687 				p->p_xthread = td;
2688 
2689 				/*
2690 				 * If we are on sleepqueue already,
2691 				 * let sleepqueue code decide if it
2692 				 * needs to go sleep after attach.
2693 				 */
2694 				if (td->td_wchan == NULL)
2695 					td->td_dbgflags &= ~TDB_FSTP;
2696 
2697 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2698 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2699 				sig_suspend_threads(td, p, 0);
2700 			}
2701 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2702 				td->td_dbgflags &= ~TDB_STOPATFORK;
2703 			}
2704 stopme:
2705 			td->td_dbgflags |= TDB_SSWITCH;
2706 			thread_suspend_switch(td, p);
2707 			td->td_dbgflags &= ~TDB_SSWITCH;
2708 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2709 				PROC_SUNLOCK(p);
2710 				ptrace_coredump(td);
2711 				PROC_SLOCK(p);
2712 				goto stopme;
2713 			}
2714 			if (p->p_xthread == td)
2715 				p->p_xthread = NULL;
2716 			if (!(p->p_flag & P_TRACED))
2717 				break;
2718 			if (td->td_dbgflags & TDB_SUSPEND) {
2719 				if (p->p_flag & P_SINGLE_EXIT)
2720 					break;
2721 				goto stopme;
2722 			}
2723 		}
2724 		PROC_SUNLOCK(p);
2725 	}
2726 
2727 	if (si != NULL && sig == td->td_xsig) {
2728 		/* Parent wants us to take the original signal unchanged. */
2729 		si->ksi_flags |= KSI_HEAD;
2730 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2731 			si->ksi_signo = 0;
2732 	} else if (td->td_xsig != 0) {
2733 		/*
2734 		 * If parent wants us to take a new signal, then it will leave
2735 		 * it in td->td_xsig; otherwise we just look for signals again.
2736 		 */
2737 		ksiginfo_init(&ksi);
2738 		ksi.ksi_signo = td->td_xsig;
2739 		ksi.ksi_flags |= KSI_PTRACE;
2740 		td2 = sigtd(p, td->td_xsig, false);
2741 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2742 		if (td != td2)
2743 			return (0);
2744 	}
2745 
2746 	return (td->td_xsig);
2747 }
2748 
2749 static void
2750 reschedule_signals(struct proc *p, sigset_t block, int flags)
2751 {
2752 	struct sigacts *ps;
2753 	struct thread *td;
2754 	int sig;
2755 	bool fastblk, pslocked;
2756 
2757 	PROC_LOCK_ASSERT(p, MA_OWNED);
2758 	ps = p->p_sigacts;
2759 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2760 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2761 	if (SIGISEMPTY(p->p_siglist))
2762 		return;
2763 	SIGSETAND(block, p->p_siglist);
2764 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2765 	while ((sig = sig_ffs(&block)) != 0) {
2766 		SIGDELSET(block, sig);
2767 		td = sigtd(p, sig, fastblk);
2768 
2769 		/*
2770 		 * If sigtd() selected us despite sigfastblock is
2771 		 * blocking, do not activate AST or wake us, to avoid
2772 		 * loop in AST handler.
2773 		 */
2774 		if (fastblk && td == curthread)
2775 			continue;
2776 
2777 		signotify(td);
2778 		if (!pslocked)
2779 			mtx_lock(&ps->ps_mtx);
2780 		if (p->p_flag & P_TRACED ||
2781 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2782 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2783 			tdsigwakeup(td, sig, SIG_CATCH,
2784 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2785 			    ERESTART));
2786 		}
2787 		if (!pslocked)
2788 			mtx_unlock(&ps->ps_mtx);
2789 	}
2790 }
2791 
2792 void
2793 tdsigcleanup(struct thread *td)
2794 {
2795 	struct proc *p;
2796 	sigset_t unblocked;
2797 
2798 	p = td->td_proc;
2799 	PROC_LOCK_ASSERT(p, MA_OWNED);
2800 
2801 	sigqueue_flush(&td->td_sigqueue);
2802 	if (p->p_numthreads == 1)
2803 		return;
2804 
2805 	/*
2806 	 * Since we cannot handle signals, notify signal post code
2807 	 * about this by filling the sigmask.
2808 	 *
2809 	 * Also, if needed, wake up thread(s) that do not block the
2810 	 * same signals as the exiting thread, since the thread might
2811 	 * have been selected for delivery and woken up.
2812 	 */
2813 	SIGFILLSET(unblocked);
2814 	SIGSETNAND(unblocked, td->td_sigmask);
2815 	SIGFILLSET(td->td_sigmask);
2816 	reschedule_signals(p, unblocked, 0);
2817 
2818 }
2819 
2820 static int
2821 sigdeferstop_curr_flags(int cflags)
2822 {
2823 
2824 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2825 	    (cflags & TDF_SBDRY) != 0);
2826 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2827 }
2828 
2829 /*
2830  * Defer the delivery of SIGSTOP for the current thread, according to
2831  * the requested mode.  Returns previous flags, which must be restored
2832  * by sigallowstop().
2833  *
2834  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2835  * cleared by the current thread, which allow the lock-less read-only
2836  * accesses below.
2837  */
2838 int
2839 sigdeferstop_impl(int mode)
2840 {
2841 	struct thread *td;
2842 	int cflags, nflags;
2843 
2844 	td = curthread;
2845 	cflags = sigdeferstop_curr_flags(td->td_flags);
2846 	switch (mode) {
2847 	case SIGDEFERSTOP_NOP:
2848 		nflags = cflags;
2849 		break;
2850 	case SIGDEFERSTOP_OFF:
2851 		nflags = 0;
2852 		break;
2853 	case SIGDEFERSTOP_SILENT:
2854 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2855 		break;
2856 	case SIGDEFERSTOP_EINTR:
2857 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2858 		break;
2859 	case SIGDEFERSTOP_ERESTART:
2860 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2861 		break;
2862 	default:
2863 		panic("sigdeferstop: invalid mode %x", mode);
2864 		break;
2865 	}
2866 	if (cflags == nflags)
2867 		return (SIGDEFERSTOP_VAL_NCHG);
2868 	thread_lock(td);
2869 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2870 	thread_unlock(td);
2871 	return (cflags);
2872 }
2873 
2874 /*
2875  * Restores the STOP handling mode, typically permitting the delivery
2876  * of SIGSTOP for the current thread.  This does not immediately
2877  * suspend if a stop was posted.  Instead, the thread will suspend
2878  * either via ast() or a subsequent interruptible sleep.
2879  */
2880 void
2881 sigallowstop_impl(int prev)
2882 {
2883 	struct thread *td;
2884 	int cflags;
2885 
2886 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2887 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2888 	    ("sigallowstop: incorrect previous mode %x", prev));
2889 	td = curthread;
2890 	cflags = sigdeferstop_curr_flags(td->td_flags);
2891 	if (cflags != prev) {
2892 		thread_lock(td);
2893 		td->td_flags = (td->td_flags & ~cflags) | prev;
2894 		thread_unlock(td);
2895 	}
2896 }
2897 
2898 /*
2899  * If the current process has received a signal (should be caught or cause
2900  * termination, should interrupt current syscall), return the signal number.
2901  * Stop signals with default action are processed immediately, then cleared;
2902  * they aren't returned.  This is checked after each entry to the system for
2903  * a syscall or trap (though this can usually be done without calling issignal
2904  * by checking the pending signal masks in cursig.) The normal call
2905  * sequence is
2906  *
2907  *	while (sig = cursig(curthread))
2908  *		postsig(sig);
2909  */
2910 static int
2911 issignal(struct thread *td)
2912 {
2913 	struct proc *p;
2914 	struct sigacts *ps;
2915 	struct sigqueue *queue;
2916 	sigset_t sigpending;
2917 	ksiginfo_t ksi;
2918 	int prop, sig;
2919 
2920 	p = td->td_proc;
2921 	ps = p->p_sigacts;
2922 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2923 	PROC_LOCK_ASSERT(p, MA_OWNED);
2924 	for (;;) {
2925 		sigpending = td->td_sigqueue.sq_signals;
2926 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2927 		SIGSETNAND(sigpending, td->td_sigmask);
2928 
2929 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2930 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2931 			SIG_STOPSIGMASK(sigpending);
2932 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2933 			return (0);
2934 
2935 		/*
2936 		 * Do fast sigblock if requested by usermode.  Since
2937 		 * we do know that there was a signal pending at this
2938 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
2939 		 * usermode to perform a dummy call to
2940 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
2941 		 * delivery of postponed pending signal.
2942 		 */
2943 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
2944 			if (td->td_sigblock_val != 0)
2945 				SIGSETNAND(sigpending, fastblock_mask);
2946 			if (SIGISEMPTY(sigpending)) {
2947 				td->td_pflags |= TDP_SIGFASTPENDING;
2948 				return (0);
2949 			}
2950 		}
2951 
2952 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2953 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2954 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2955 			/*
2956 			 * If debugger just attached, always consume
2957 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2958 			 * execute the debugger attach ritual in
2959 			 * order.
2960 			 */
2961 			sig = SIGSTOP;
2962 			td->td_dbgflags |= TDB_FSTP;
2963 		} else {
2964 			sig = sig_ffs(&sigpending);
2965 		}
2966 
2967 		/*
2968 		 * We should allow pending but ignored signals below
2969 		 * only if there is sigwait() active, or P_TRACED was
2970 		 * on when they were posted.
2971 		 */
2972 		if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2973 		    (p->p_flag & P_TRACED) == 0 &&
2974 		    (td->td_flags & TDF_SIGWAIT) == 0) {
2975 			sigqueue_delete(&td->td_sigqueue, sig);
2976 			sigqueue_delete(&p->p_sigqueue, sig);
2977 			continue;
2978 		}
2979 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2980 			/*
2981 			 * If traced, always stop.
2982 			 * Remove old signal from queue before the stop.
2983 			 * XXX shrug off debugger, it causes siginfo to
2984 			 * be thrown away.
2985 			 */
2986 			queue = &td->td_sigqueue;
2987 			ksiginfo_init(&ksi);
2988 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2989 				queue = &p->p_sigqueue;
2990 				sigqueue_get(queue, sig, &ksi);
2991 			}
2992 			td->td_si = ksi.ksi_info;
2993 
2994 			mtx_unlock(&ps->ps_mtx);
2995 			sig = ptracestop(td, sig, &ksi);
2996 			mtx_lock(&ps->ps_mtx);
2997 
2998 			td->td_si.si_signo = 0;
2999 
3000 			/*
3001 			 * Keep looking if the debugger discarded or
3002 			 * replaced the signal.
3003 			 */
3004 			if (sig == 0)
3005 				continue;
3006 
3007 			/*
3008 			 * If the signal became masked, re-queue it.
3009 			 */
3010 			if (SIGISMEMBER(td->td_sigmask, sig)) {
3011 				ksi.ksi_flags |= KSI_HEAD;
3012 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
3013 				continue;
3014 			}
3015 
3016 			/*
3017 			 * If the traced bit got turned off, requeue
3018 			 * the signal and go back up to the top to
3019 			 * rescan signals.  This ensures that p_sig*
3020 			 * and p_sigact are consistent.
3021 			 */
3022 			if ((p->p_flag & P_TRACED) == 0) {
3023 				ksi.ksi_flags |= KSI_HEAD;
3024 				sigqueue_add(queue, sig, &ksi);
3025 				continue;
3026 			}
3027 		}
3028 
3029 		prop = sigprop(sig);
3030 
3031 		/*
3032 		 * Decide whether the signal should be returned.
3033 		 * Return the signal's number, or fall through
3034 		 * to clear it from the pending mask.
3035 		 */
3036 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3037 		case (intptr_t)SIG_DFL:
3038 			/*
3039 			 * Don't take default actions on system processes.
3040 			 */
3041 			if (p->p_pid <= 1) {
3042 #ifdef DIAGNOSTIC
3043 				/*
3044 				 * Are you sure you want to ignore SIGSEGV
3045 				 * in init? XXX
3046 				 */
3047 				printf("Process (pid %lu) got signal %d\n",
3048 					(u_long)p->p_pid, sig);
3049 #endif
3050 				break;		/* == ignore */
3051 			}
3052 			/*
3053 			 * If there is a pending stop signal to process with
3054 			 * default action, stop here, then clear the signal.
3055 			 * Traced or exiting processes should ignore stops.
3056 			 * Additionally, a member of an orphaned process group
3057 			 * should ignore tty stops.
3058 			 */
3059 			if (prop & SIGPROP_STOP) {
3060 				mtx_unlock(&ps->ps_mtx);
3061 				if ((p->p_flag & (P_TRACED | P_WEXIT |
3062 				    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3063 				    pg_flags & PGRP_ORPHANED) != 0 &&
3064 				    (prop & SIGPROP_TTYSTOP) != 0)) {
3065 					mtx_lock(&ps->ps_mtx);
3066 					break;	/* == ignore */
3067 				}
3068 				if (TD_SBDRY_INTR(td)) {
3069 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
3070 					    ("lost TDF_SBDRY"));
3071 					mtx_lock(&ps->ps_mtx);
3072 					return (-1);
3073 				}
3074 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3075 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
3076 				sigqueue_delete(&td->td_sigqueue, sig);
3077 				sigqueue_delete(&p->p_sigqueue, sig);
3078 				p->p_flag |= P_STOPPED_SIG;
3079 				p->p_xsig = sig;
3080 				PROC_SLOCK(p);
3081 				sig_suspend_threads(td, p, 0);
3082 				thread_suspend_switch(td, p);
3083 				PROC_SUNLOCK(p);
3084 				mtx_lock(&ps->ps_mtx);
3085 				goto next;
3086 			} else if ((prop & SIGPROP_IGNORE) != 0 &&
3087 			    (td->td_flags & TDF_SIGWAIT) == 0) {
3088 				/*
3089 				 * Default action is to ignore; drop it if
3090 				 * not in kern_sigtimedwait().
3091 				 */
3092 				break;		/* == ignore */
3093 			} else
3094 				return (sig);
3095 			/*NOTREACHED*/
3096 
3097 		case (intptr_t)SIG_IGN:
3098 			if ((td->td_flags & TDF_SIGWAIT) == 0)
3099 				break;		/* == ignore */
3100 			else
3101 				return (sig);
3102 
3103 		default:
3104 			/*
3105 			 * This signal has an action, let
3106 			 * postsig() process it.
3107 			 */
3108 			return (sig);
3109 		}
3110 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3111 		sigqueue_delete(&p->p_sigqueue, sig);
3112 next:;
3113 	}
3114 	/* NOTREACHED */
3115 }
3116 
3117 void
3118 thread_stopped(struct proc *p)
3119 {
3120 	int n;
3121 
3122 	PROC_LOCK_ASSERT(p, MA_OWNED);
3123 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3124 	n = p->p_suspcount;
3125 	if (p == curproc)
3126 		n++;
3127 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3128 		PROC_SUNLOCK(p);
3129 		p->p_flag &= ~P_WAITED;
3130 		PROC_LOCK(p->p_pptr);
3131 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3132 			CLD_TRAPPED : CLD_STOPPED);
3133 		PROC_UNLOCK(p->p_pptr);
3134 		PROC_SLOCK(p);
3135 	}
3136 }
3137 
3138 /*
3139  * Take the action for the specified signal
3140  * from the current set of pending signals.
3141  */
3142 int
3143 postsig(int sig)
3144 {
3145 	struct thread *td;
3146 	struct proc *p;
3147 	struct sigacts *ps;
3148 	sig_t action;
3149 	ksiginfo_t ksi;
3150 	sigset_t returnmask;
3151 
3152 	KASSERT(sig != 0, ("postsig"));
3153 
3154 	td = curthread;
3155 	p = td->td_proc;
3156 	PROC_LOCK_ASSERT(p, MA_OWNED);
3157 	ps = p->p_sigacts;
3158 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3159 	ksiginfo_init(&ksi);
3160 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3161 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3162 		return (0);
3163 	ksi.ksi_signo = sig;
3164 	if (ksi.ksi_code == SI_TIMER)
3165 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3166 	action = ps->ps_sigact[_SIG_IDX(sig)];
3167 #ifdef KTRACE
3168 	if (KTRPOINT(td, KTR_PSIG))
3169 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3170 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3171 #endif
3172 
3173 	if (action == SIG_DFL) {
3174 		/*
3175 		 * Default action, where the default is to kill
3176 		 * the process.  (Other cases were ignored above.)
3177 		 */
3178 		mtx_unlock(&ps->ps_mtx);
3179 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3180 		sigexit(td, sig);
3181 		/* NOTREACHED */
3182 	} else {
3183 		/*
3184 		 * If we get here, the signal must be caught.
3185 		 */
3186 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3187 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3188 		    ("postsig action: blocked sig %d", sig));
3189 
3190 		/*
3191 		 * Set the new mask value and also defer further
3192 		 * occurrences of this signal.
3193 		 *
3194 		 * Special case: user has done a sigsuspend.  Here the
3195 		 * current mask is not of interest, but rather the
3196 		 * mask from before the sigsuspend is what we want
3197 		 * restored after the signal processing is completed.
3198 		 */
3199 		if (td->td_pflags & TDP_OLDMASK) {
3200 			returnmask = td->td_oldsigmask;
3201 			td->td_pflags &= ~TDP_OLDMASK;
3202 		} else
3203 			returnmask = td->td_sigmask;
3204 
3205 		if (p->p_sig == sig) {
3206 			p->p_sig = 0;
3207 		}
3208 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3209 		postsig_done(sig, td, ps);
3210 	}
3211 	return (1);
3212 }
3213 
3214 int
3215 sig_ast_checksusp(struct thread *td)
3216 {
3217 	struct proc *p;
3218 	int ret;
3219 
3220 	p = td->td_proc;
3221 	PROC_LOCK_ASSERT(p, MA_OWNED);
3222 
3223 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3224 		return (0);
3225 
3226 	ret = thread_suspend_check(1);
3227 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3228 	return (ret);
3229 }
3230 
3231 int
3232 sig_ast_needsigchk(struct thread *td)
3233 {
3234 	struct proc *p;
3235 	struct sigacts *ps;
3236 	int ret, sig;
3237 
3238 	p = td->td_proc;
3239 	PROC_LOCK_ASSERT(p, MA_OWNED);
3240 
3241 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3242 		return (0);
3243 
3244 	ps = p->p_sigacts;
3245 	mtx_lock(&ps->ps_mtx);
3246 	sig = cursig(td);
3247 	if (sig == -1) {
3248 		mtx_unlock(&ps->ps_mtx);
3249 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3250 		KASSERT(TD_SBDRY_INTR(td),
3251 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3252 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3253 		    (TDF_SEINTR | TDF_SERESTART),
3254 		    ("both TDF_SEINTR and TDF_SERESTART"));
3255 		ret = TD_SBDRY_ERRNO(td);
3256 	} else if (sig != 0) {
3257 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3258 		mtx_unlock(&ps->ps_mtx);
3259 	} else {
3260 		mtx_unlock(&ps->ps_mtx);
3261 		ret = 0;
3262 	}
3263 
3264 	/*
3265 	 * Do not go into sleep if this thread was the ptrace(2)
3266 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3267 	 * but we usually act on the signal by interrupting sleep, and
3268 	 * should do that here as well.
3269 	 */
3270 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3271 		if (ret == 0)
3272 			ret = EINTR;
3273 		td->td_dbgflags &= ~TDB_FSTP;
3274 	}
3275 
3276 	return (ret);
3277 }
3278 
3279 int
3280 sig_intr(void)
3281 {
3282 	struct thread *td;
3283 	struct proc *p;
3284 	int ret;
3285 
3286 	td = curthread;
3287 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3288 		return (0);
3289 
3290 	p = td->td_proc;
3291 
3292 	PROC_LOCK(p);
3293 	ret = sig_ast_checksusp(td);
3294 	if (ret == 0)
3295 		ret = sig_ast_needsigchk(td);
3296 	PROC_UNLOCK(p);
3297 	return (ret);
3298 }
3299 
3300 void
3301 proc_wkilled(struct proc *p)
3302 {
3303 
3304 	PROC_LOCK_ASSERT(p, MA_OWNED);
3305 	if ((p->p_flag & P_WKILLED) == 0) {
3306 		p->p_flag |= P_WKILLED;
3307 		/*
3308 		 * Notify swapper that there is a process to swap in.
3309 		 * The notification is racy, at worst it would take 10
3310 		 * seconds for the swapper process to notice.
3311 		 */
3312 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3313 			wakeup(&proc0);
3314 	}
3315 }
3316 
3317 /*
3318  * Kill the current process for stated reason.
3319  */
3320 void
3321 killproc(struct proc *p, const char *why)
3322 {
3323 
3324 	PROC_LOCK_ASSERT(p, MA_OWNED);
3325 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3326 	    p->p_comm);
3327 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3328 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3329 	    p->p_ucred->cr_uid, why);
3330 	proc_wkilled(p);
3331 	kern_psignal(p, SIGKILL);
3332 }
3333 
3334 /*
3335  * Force the current process to exit with the specified signal, dumping core
3336  * if appropriate.  We bypass the normal tests for masked and caught signals,
3337  * allowing unrecoverable failures to terminate the process without changing
3338  * signal state.  Mark the accounting record with the signal termination.
3339  * If dumping core, save the signal number for the debugger.  Calls exit and
3340  * does not return.
3341  */
3342 void
3343 sigexit(struct thread *td, int sig)
3344 {
3345 	struct proc *p = td->td_proc;
3346 
3347 	PROC_LOCK_ASSERT(p, MA_OWNED);
3348 	p->p_acflag |= AXSIG;
3349 	/*
3350 	 * We must be single-threading to generate a core dump.  This
3351 	 * ensures that the registers in the core file are up-to-date.
3352 	 * Also, the ELF dump handler assumes that the thread list doesn't
3353 	 * change out from under it.
3354 	 *
3355 	 * XXX If another thread attempts to single-thread before us
3356 	 *     (e.g. via fork()), we won't get a dump at all.
3357 	 */
3358 	if ((sigprop(sig) & SIGPROP_CORE) &&
3359 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3360 		p->p_sig = sig;
3361 		/*
3362 		 * Log signals which would cause core dumps
3363 		 * (Log as LOG_INFO to appease those who don't want
3364 		 * these messages.)
3365 		 * XXX : Todo, as well as euid, write out ruid too
3366 		 * Note that coredump() drops proc lock.
3367 		 */
3368 		if (coredump(td) == 0)
3369 			sig |= WCOREFLAG;
3370 		if (kern_logsigexit)
3371 			log(LOG_INFO,
3372 			    "pid %d (%s), jid %d, uid %d: exited on "
3373 			    "signal %d%s\n", p->p_pid, p->p_comm,
3374 			    p->p_ucred->cr_prison->pr_id,
3375 			    td->td_ucred->cr_uid,
3376 			    sig &~ WCOREFLAG,
3377 			    sig & WCOREFLAG ? " (core dumped)" : "");
3378 	} else
3379 		PROC_UNLOCK(p);
3380 	exit1(td, 0, sig);
3381 	/* NOTREACHED */
3382 }
3383 
3384 /*
3385  * Send queued SIGCHLD to parent when child process's state
3386  * is changed.
3387  */
3388 static void
3389 sigparent(struct proc *p, int reason, int status)
3390 {
3391 	PROC_LOCK_ASSERT(p, MA_OWNED);
3392 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3393 
3394 	if (p->p_ksi != NULL) {
3395 		p->p_ksi->ksi_signo  = SIGCHLD;
3396 		p->p_ksi->ksi_code   = reason;
3397 		p->p_ksi->ksi_status = status;
3398 		p->p_ksi->ksi_pid    = p->p_pid;
3399 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3400 		if (KSI_ONQ(p->p_ksi))
3401 			return;
3402 	}
3403 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3404 }
3405 
3406 static void
3407 childproc_jobstate(struct proc *p, int reason, int sig)
3408 {
3409 	struct sigacts *ps;
3410 
3411 	PROC_LOCK_ASSERT(p, MA_OWNED);
3412 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3413 
3414 	/*
3415 	 * Wake up parent sleeping in kern_wait(), also send
3416 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3417 	 * that parent will awake, because parent may masked
3418 	 * the signal.
3419 	 */
3420 	p->p_pptr->p_flag |= P_STATCHILD;
3421 	wakeup(p->p_pptr);
3422 
3423 	ps = p->p_pptr->p_sigacts;
3424 	mtx_lock(&ps->ps_mtx);
3425 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3426 		mtx_unlock(&ps->ps_mtx);
3427 		sigparent(p, reason, sig);
3428 	} else
3429 		mtx_unlock(&ps->ps_mtx);
3430 }
3431 
3432 void
3433 childproc_stopped(struct proc *p, int reason)
3434 {
3435 
3436 	childproc_jobstate(p, reason, p->p_xsig);
3437 }
3438 
3439 void
3440 childproc_continued(struct proc *p)
3441 {
3442 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3443 }
3444 
3445 void
3446 childproc_exited(struct proc *p)
3447 {
3448 	int reason, status;
3449 
3450 	if (WCOREDUMP(p->p_xsig)) {
3451 		reason = CLD_DUMPED;
3452 		status = WTERMSIG(p->p_xsig);
3453 	} else if (WIFSIGNALED(p->p_xsig)) {
3454 		reason = CLD_KILLED;
3455 		status = WTERMSIG(p->p_xsig);
3456 	} else {
3457 		reason = CLD_EXITED;
3458 		status = p->p_xexit;
3459 	}
3460 	/*
3461 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3462 	 * done in exit1().
3463 	 */
3464 	sigparent(p, reason, status);
3465 }
3466 
3467 #define	MAX_NUM_CORE_FILES 100000
3468 #ifndef NUM_CORE_FILES
3469 #define	NUM_CORE_FILES 5
3470 #endif
3471 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3472 static int num_cores = NUM_CORE_FILES;
3473 
3474 static int
3475 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3476 {
3477 	int error;
3478 	int new_val;
3479 
3480 	new_val = num_cores;
3481 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3482 	if (error != 0 || req->newptr == NULL)
3483 		return (error);
3484 	if (new_val > MAX_NUM_CORE_FILES)
3485 		new_val = MAX_NUM_CORE_FILES;
3486 	if (new_val < 0)
3487 		new_val = 0;
3488 	num_cores = new_val;
3489 	return (0);
3490 }
3491 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3492     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3493     sysctl_debug_num_cores_check, "I",
3494     "Maximum number of generated process corefiles while using index format");
3495 
3496 #define	GZIP_SUFFIX	".gz"
3497 #define	ZSTD_SUFFIX	".zst"
3498 
3499 int compress_user_cores = 0;
3500 
3501 static int
3502 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3503 {
3504 	int error, val;
3505 
3506 	val = compress_user_cores;
3507 	error = sysctl_handle_int(oidp, &val, 0, req);
3508 	if (error != 0 || req->newptr == NULL)
3509 		return (error);
3510 	if (val != 0 && !compressor_avail(val))
3511 		return (EINVAL);
3512 	compress_user_cores = val;
3513 	return (error);
3514 }
3515 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3516     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3517     sysctl_compress_user_cores, "I",
3518     "Enable compression of user corefiles ("
3519     __XSTRING(COMPRESS_GZIP) " = gzip, "
3520     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3521 
3522 int compress_user_cores_level = 6;
3523 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3524     &compress_user_cores_level, 0,
3525     "Corefile compression level");
3526 
3527 /*
3528  * Protect the access to corefilename[] by allproc_lock.
3529  */
3530 #define	corefilename_lock	allproc_lock
3531 
3532 static char corefilename[MAXPATHLEN] = {"%N.core"};
3533 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3534 
3535 static int
3536 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3537 {
3538 	int error;
3539 
3540 	sx_xlock(&corefilename_lock);
3541 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3542 	    req);
3543 	sx_xunlock(&corefilename_lock);
3544 
3545 	return (error);
3546 }
3547 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3548     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3549     "Process corefile name format string");
3550 
3551 static void
3552 vnode_close_locked(struct thread *td, struct vnode *vp)
3553 {
3554 
3555 	VOP_UNLOCK(vp);
3556 	vn_close(vp, FWRITE, td->td_ucred, td);
3557 }
3558 
3559 /*
3560  * If the core format has a %I in it, then we need to check
3561  * for existing corefiles before defining a name.
3562  * To do this we iterate over 0..ncores to find a
3563  * non-existing core file name to use. If all core files are
3564  * already used we choose the oldest one.
3565  */
3566 static int
3567 corefile_open_last(struct thread *td, char *name, int indexpos,
3568     int indexlen, int ncores, struct vnode **vpp)
3569 {
3570 	struct vnode *oldvp, *nextvp, *vp;
3571 	struct vattr vattr;
3572 	struct nameidata nd;
3573 	int error, i, flags, oflags, cmode;
3574 	char ch;
3575 	struct timespec lasttime;
3576 
3577 	nextvp = oldvp = NULL;
3578 	cmode = S_IRUSR | S_IWUSR;
3579 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3580 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3581 
3582 	for (i = 0; i < ncores; i++) {
3583 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3584 
3585 		ch = name[indexpos + indexlen];
3586 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3587 		    i);
3588 		name[indexpos + indexlen] = ch;
3589 
3590 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3591 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3592 		    NULL);
3593 		if (error != 0)
3594 			break;
3595 
3596 		vp = nd.ni_vp;
3597 		NDFREE(&nd, NDF_ONLY_PNBUF);
3598 		if ((flags & O_CREAT) == O_CREAT) {
3599 			nextvp = vp;
3600 			break;
3601 		}
3602 
3603 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3604 		if (error != 0) {
3605 			vnode_close_locked(td, vp);
3606 			break;
3607 		}
3608 
3609 		if (oldvp == NULL ||
3610 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3611 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3612 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3613 			if (oldvp != NULL)
3614 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3615 			oldvp = vp;
3616 			VOP_UNLOCK(oldvp);
3617 			lasttime = vattr.va_mtime;
3618 		} else {
3619 			vnode_close_locked(td, vp);
3620 		}
3621 	}
3622 
3623 	if (oldvp != NULL) {
3624 		if (nextvp == NULL) {
3625 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3626 				error = EFAULT;
3627 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3628 			} else {
3629 				nextvp = oldvp;
3630 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3631 				if (error != 0) {
3632 					vn_close(nextvp, FWRITE, td->td_ucred,
3633 					    td);
3634 					nextvp = NULL;
3635 				}
3636 			}
3637 		} else {
3638 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3639 		}
3640 	}
3641 	if (error != 0) {
3642 		if (nextvp != NULL)
3643 			vnode_close_locked(td, oldvp);
3644 	} else {
3645 		*vpp = nextvp;
3646 	}
3647 
3648 	return (error);
3649 }
3650 
3651 /*
3652  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3653  * Expand the name described in corefilename, using name, uid, and pid
3654  * and open/create core file.
3655  * corefilename is a printf-like string, with three format specifiers:
3656  *	%N	name of process ("name")
3657  *	%P	process id (pid)
3658  *	%U	user id (uid)
3659  * For example, "%N.core" is the default; they can be disabled completely
3660  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3661  * This is controlled by the sysctl variable kern.corefile (see above).
3662  */
3663 static int
3664 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3665     int compress, int signum, struct vnode **vpp, char **namep)
3666 {
3667 	struct sbuf sb;
3668 	struct nameidata nd;
3669 	const char *format;
3670 	char *hostname, *name;
3671 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3672 
3673 	hostname = NULL;
3674 	format = corefilename;
3675 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3676 	indexlen = 0;
3677 	indexpos = -1;
3678 	ncores = num_cores;
3679 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3680 	sx_slock(&corefilename_lock);
3681 	for (i = 0; format[i] != '\0'; i++) {
3682 		switch (format[i]) {
3683 		case '%':	/* Format character */
3684 			i++;
3685 			switch (format[i]) {
3686 			case '%':
3687 				sbuf_putc(&sb, '%');
3688 				break;
3689 			case 'H':	/* hostname */
3690 				if (hostname == NULL) {
3691 					hostname = malloc(MAXHOSTNAMELEN,
3692 					    M_TEMP, M_WAITOK);
3693 				}
3694 				getcredhostname(td->td_ucred, hostname,
3695 				    MAXHOSTNAMELEN);
3696 				sbuf_printf(&sb, "%s", hostname);
3697 				break;
3698 			case 'I':	/* autoincrementing index */
3699 				if (indexpos != -1) {
3700 					sbuf_printf(&sb, "%%I");
3701 					break;
3702 				}
3703 
3704 				indexpos = sbuf_len(&sb);
3705 				sbuf_printf(&sb, "%u", ncores - 1);
3706 				indexlen = sbuf_len(&sb) - indexpos;
3707 				break;
3708 			case 'N':	/* process name */
3709 				sbuf_printf(&sb, "%s", comm);
3710 				break;
3711 			case 'P':	/* process id */
3712 				sbuf_printf(&sb, "%u", pid);
3713 				break;
3714 			case 'S':	/* signal number */
3715 				sbuf_printf(&sb, "%i", signum);
3716 				break;
3717 			case 'U':	/* user id */
3718 				sbuf_printf(&sb, "%u", uid);
3719 				break;
3720 			default:
3721 				log(LOG_ERR,
3722 				    "Unknown format character %c in "
3723 				    "corename `%s'\n", format[i], format);
3724 				break;
3725 			}
3726 			break;
3727 		default:
3728 			sbuf_putc(&sb, format[i]);
3729 			break;
3730 		}
3731 	}
3732 	sx_sunlock(&corefilename_lock);
3733 	free(hostname, M_TEMP);
3734 	if (compress == COMPRESS_GZIP)
3735 		sbuf_printf(&sb, GZIP_SUFFIX);
3736 	else if (compress == COMPRESS_ZSTD)
3737 		sbuf_printf(&sb, ZSTD_SUFFIX);
3738 	if (sbuf_error(&sb) != 0) {
3739 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3740 		    "long\n", (long)pid, comm, (u_long)uid);
3741 		sbuf_delete(&sb);
3742 		free(name, M_TEMP);
3743 		return (ENOMEM);
3744 	}
3745 	sbuf_finish(&sb);
3746 	sbuf_delete(&sb);
3747 
3748 	if (indexpos != -1) {
3749 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3750 		    vpp);
3751 		if (error != 0) {
3752 			log(LOG_ERR,
3753 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3754 			    "on initial open test, error = %d\n",
3755 			    pid, comm, uid, name, error);
3756 		}
3757 	} else {
3758 		cmode = S_IRUSR | S_IWUSR;
3759 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3760 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3761 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3762 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3763 			flags |= O_EXCL;
3764 
3765 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3766 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3767 		    NULL);
3768 		if (error == 0) {
3769 			*vpp = nd.ni_vp;
3770 			NDFREE(&nd, NDF_ONLY_PNBUF);
3771 		}
3772 	}
3773 
3774 	if (error != 0) {
3775 #ifdef AUDIT
3776 		audit_proc_coredump(td, name, error);
3777 #endif
3778 		free(name, M_TEMP);
3779 		return (error);
3780 	}
3781 	*namep = name;
3782 	return (0);
3783 }
3784 
3785 /*
3786  * Dump a process' core.  The main routine does some
3787  * policy checking, and creates the name of the coredump;
3788  * then it passes on a vnode and a size limit to the process-specific
3789  * coredump routine if there is one; if there _is not_ one, it returns
3790  * ENOSYS; otherwise it returns the error from the process-specific routine.
3791  */
3792 
3793 static int
3794 coredump(struct thread *td)
3795 {
3796 	struct proc *p = td->td_proc;
3797 	struct ucred *cred = td->td_ucred;
3798 	struct vnode *vp;
3799 	struct flock lf;
3800 	struct vattr vattr;
3801 	size_t fullpathsize;
3802 	int error, error1, locked;
3803 	char *name;			/* name of corefile */
3804 	void *rl_cookie;
3805 	off_t limit;
3806 	char *fullpath, *freepath = NULL;
3807 	struct sbuf *sb;
3808 
3809 	PROC_LOCK_ASSERT(p, MA_OWNED);
3810 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3811 
3812 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3813 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3814 		PROC_UNLOCK(p);
3815 		return (EFAULT);
3816 	}
3817 
3818 	/*
3819 	 * Note that the bulk of limit checking is done after
3820 	 * the corefile is created.  The exception is if the limit
3821 	 * for corefiles is 0, in which case we don't bother
3822 	 * creating the corefile at all.  This layout means that
3823 	 * a corefile is truncated instead of not being created,
3824 	 * if it is larger than the limit.
3825 	 */
3826 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3827 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3828 		PROC_UNLOCK(p);
3829 		return (EFBIG);
3830 	}
3831 	PROC_UNLOCK(p);
3832 
3833 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3834 	    compress_user_cores, p->p_sig, &vp, &name);
3835 	if (error != 0)
3836 		return (error);
3837 
3838 	/*
3839 	 * Don't dump to non-regular files or files with links.
3840 	 * Do not dump into system files. Effective user must own the corefile.
3841 	 */
3842 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3843 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3844 	    vattr.va_uid != cred->cr_uid) {
3845 		VOP_UNLOCK(vp);
3846 		error = EFAULT;
3847 		goto out;
3848 	}
3849 
3850 	VOP_UNLOCK(vp);
3851 
3852 	/* Postpone other writers, including core dumps of other processes. */
3853 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3854 
3855 	lf.l_whence = SEEK_SET;
3856 	lf.l_start = 0;
3857 	lf.l_len = 0;
3858 	lf.l_type = F_WRLCK;
3859 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3860 
3861 	VATTR_NULL(&vattr);
3862 	vattr.va_size = 0;
3863 	if (set_core_nodump_flag)
3864 		vattr.va_flags = UF_NODUMP;
3865 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3866 	VOP_SETATTR(vp, &vattr, cred);
3867 	VOP_UNLOCK(vp);
3868 	PROC_LOCK(p);
3869 	p->p_acflag |= ACORE;
3870 	PROC_UNLOCK(p);
3871 
3872 	if (p->p_sysent->sv_coredump != NULL) {
3873 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3874 	} else {
3875 		error = ENOSYS;
3876 	}
3877 
3878 	if (locked) {
3879 		lf.l_type = F_UNLCK;
3880 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3881 	}
3882 	vn_rangelock_unlock(vp, rl_cookie);
3883 
3884 	/*
3885 	 * Notify the userland helper that a process triggered a core dump.
3886 	 * This allows the helper to run an automated debugging session.
3887 	 */
3888 	if (error != 0 || coredump_devctl == 0)
3889 		goto out;
3890 	sb = sbuf_new_auto();
3891 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3892 		goto out2;
3893 	sbuf_printf(sb, "comm=\"");
3894 	devctl_safe_quote_sb(sb, fullpath);
3895 	free(freepath, M_TEMP);
3896 	sbuf_printf(sb, "\" core=\"");
3897 
3898 	/*
3899 	 * We can't lookup core file vp directly. When we're replacing a core, and
3900 	 * other random times, we flush the name cache, so it will fail. Instead,
3901 	 * if the path of the core is relative, add the current dir in front if it.
3902 	 */
3903 	if (name[0] != '/') {
3904 		fullpathsize = MAXPATHLEN;
3905 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3906 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3907 			free(freepath, M_TEMP);
3908 			goto out2;
3909 		}
3910 		devctl_safe_quote_sb(sb, fullpath);
3911 		free(freepath, M_TEMP);
3912 		sbuf_putc(sb, '/');
3913 	}
3914 	devctl_safe_quote_sb(sb, name);
3915 	sbuf_printf(sb, "\"");
3916 	if (sbuf_finish(sb) == 0)
3917 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3918 out2:
3919 	sbuf_delete(sb);
3920 out:
3921 	error1 = vn_close(vp, FWRITE, cred, td);
3922 	if (error == 0)
3923 		error = error1;
3924 #ifdef AUDIT
3925 	audit_proc_coredump(td, name, error);
3926 #endif
3927 	free(name, M_TEMP);
3928 	return (error);
3929 }
3930 
3931 /*
3932  * Nonexistent system call-- signal process (may want to handle it).  Flag
3933  * error in case process won't see signal immediately (blocked or ignored).
3934  */
3935 #ifndef _SYS_SYSPROTO_H_
3936 struct nosys_args {
3937 	int	dummy;
3938 };
3939 #endif
3940 /* ARGSUSED */
3941 int
3942 nosys(struct thread *td, struct nosys_args *args)
3943 {
3944 	struct proc *p;
3945 
3946 	p = td->td_proc;
3947 
3948 	PROC_LOCK(p);
3949 	tdsignal(td, SIGSYS);
3950 	PROC_UNLOCK(p);
3951 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3952 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3953 		    td->td_sa.code);
3954 	}
3955 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
3956 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
3957 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3958 		    td->td_sa.code);
3959 	}
3960 	return (ENOSYS);
3961 }
3962 
3963 /*
3964  * Send a SIGIO or SIGURG signal to a process or process group using stored
3965  * credentials rather than those of the current process.
3966  */
3967 void
3968 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3969 {
3970 	ksiginfo_t ksi;
3971 	struct sigio *sigio;
3972 
3973 	ksiginfo_init(&ksi);
3974 	ksi.ksi_signo = sig;
3975 	ksi.ksi_code = SI_KERNEL;
3976 
3977 	SIGIO_LOCK();
3978 	sigio = *sigiop;
3979 	if (sigio == NULL) {
3980 		SIGIO_UNLOCK();
3981 		return;
3982 	}
3983 	if (sigio->sio_pgid > 0) {
3984 		PROC_LOCK(sigio->sio_proc);
3985 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3986 			kern_psignal(sigio->sio_proc, sig);
3987 		PROC_UNLOCK(sigio->sio_proc);
3988 	} else if (sigio->sio_pgid < 0) {
3989 		struct proc *p;
3990 
3991 		PGRP_LOCK(sigio->sio_pgrp);
3992 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3993 			PROC_LOCK(p);
3994 			if (p->p_state == PRS_NORMAL &&
3995 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3996 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3997 				kern_psignal(p, sig);
3998 			PROC_UNLOCK(p);
3999 		}
4000 		PGRP_UNLOCK(sigio->sio_pgrp);
4001 	}
4002 	SIGIO_UNLOCK();
4003 }
4004 
4005 static int
4006 filt_sigattach(struct knote *kn)
4007 {
4008 	struct proc *p = curproc;
4009 
4010 	kn->kn_ptr.p_proc = p;
4011 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4012 
4013 	knlist_add(p->p_klist, kn, 0);
4014 
4015 	return (0);
4016 }
4017 
4018 static void
4019 filt_sigdetach(struct knote *kn)
4020 {
4021 	struct proc *p = kn->kn_ptr.p_proc;
4022 
4023 	knlist_remove(p->p_klist, kn, 0);
4024 }
4025 
4026 /*
4027  * signal knotes are shared with proc knotes, so we apply a mask to
4028  * the hint in order to differentiate them from process hints.  This
4029  * could be avoided by using a signal-specific knote list, but probably
4030  * isn't worth the trouble.
4031  */
4032 static int
4033 filt_signal(struct knote *kn, long hint)
4034 {
4035 
4036 	if (hint & NOTE_SIGNAL) {
4037 		hint &= ~NOTE_SIGNAL;
4038 
4039 		if (kn->kn_id == hint)
4040 			kn->kn_data++;
4041 	}
4042 	return (kn->kn_data != 0);
4043 }
4044 
4045 struct sigacts *
4046 sigacts_alloc(void)
4047 {
4048 	struct sigacts *ps;
4049 
4050 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4051 	refcount_init(&ps->ps_refcnt, 1);
4052 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4053 	return (ps);
4054 }
4055 
4056 void
4057 sigacts_free(struct sigacts *ps)
4058 {
4059 
4060 	if (refcount_release(&ps->ps_refcnt) == 0)
4061 		return;
4062 	mtx_destroy(&ps->ps_mtx);
4063 	free(ps, M_SUBPROC);
4064 }
4065 
4066 struct sigacts *
4067 sigacts_hold(struct sigacts *ps)
4068 {
4069 
4070 	refcount_acquire(&ps->ps_refcnt);
4071 	return (ps);
4072 }
4073 
4074 void
4075 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4076 {
4077 
4078 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4079 	mtx_lock(&src->ps_mtx);
4080 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4081 	mtx_unlock(&src->ps_mtx);
4082 }
4083 
4084 int
4085 sigacts_shared(struct sigacts *ps)
4086 {
4087 
4088 	return (ps->ps_refcnt > 1);
4089 }
4090 
4091 void
4092 sig_drop_caught(struct proc *p)
4093 {
4094 	int sig;
4095 	struct sigacts *ps;
4096 
4097 	ps = p->p_sigacts;
4098 	PROC_LOCK_ASSERT(p, MA_OWNED);
4099 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4100 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
4101 		sig = sig_ffs(&ps->ps_sigcatch);
4102 		sigdflt(ps, sig);
4103 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4104 			sigqueue_delete_proc(p, sig);
4105 	}
4106 }
4107 
4108 static void
4109 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4110 {
4111 	ksiginfo_t ksi;
4112 
4113 	/*
4114 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4115 	 * issue syscalls despite corruption.
4116 	 */
4117 	sigfastblock_clear(td);
4118 
4119 	if (!sendsig)
4120 		return;
4121 	ksiginfo_init_trap(&ksi);
4122 	ksi.ksi_signo = SIGSEGV;
4123 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4124 	ksi.ksi_addr = td->td_sigblock_ptr;
4125 	trapsignal(td, &ksi);
4126 }
4127 
4128 static bool
4129 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4130 {
4131 	uint32_t res;
4132 
4133 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4134 		return (true);
4135 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4136 		sigfastblock_failed(td, sendsig, false);
4137 		return (false);
4138 	}
4139 	*valp = res;
4140 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4141 	return (true);
4142 }
4143 
4144 static void
4145 sigfastblock_resched(struct thread *td, bool resched)
4146 {
4147 	struct proc *p;
4148 
4149 	if (resched) {
4150 		p = td->td_proc;
4151 		PROC_LOCK(p);
4152 		reschedule_signals(p, td->td_sigmask, 0);
4153 		PROC_UNLOCK(p);
4154 	}
4155 	thread_lock(td);
4156 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4157 	thread_unlock(td);
4158 }
4159 
4160 int
4161 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4162 {
4163 	struct proc *p;
4164 	int error, res;
4165 	uint32_t oldval;
4166 
4167 	error = 0;
4168 	p = td->td_proc;
4169 	switch (uap->cmd) {
4170 	case SIGFASTBLOCK_SETPTR:
4171 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4172 			error = EBUSY;
4173 			break;
4174 		}
4175 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4176 			error = EINVAL;
4177 			break;
4178 		}
4179 		td->td_pflags |= TDP_SIGFASTBLOCK;
4180 		td->td_sigblock_ptr = uap->ptr;
4181 		break;
4182 
4183 	case SIGFASTBLOCK_UNBLOCK:
4184 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4185 			error = EINVAL;
4186 			break;
4187 		}
4188 
4189 		for (;;) {
4190 			res = casueword32(td->td_sigblock_ptr,
4191 			    SIGFASTBLOCK_PEND, &oldval, 0);
4192 			if (res == -1) {
4193 				error = EFAULT;
4194 				sigfastblock_failed(td, false, true);
4195 				break;
4196 			}
4197 			if (res == 0)
4198 				break;
4199 			MPASS(res == 1);
4200 			if (oldval != SIGFASTBLOCK_PEND) {
4201 				error = EBUSY;
4202 				break;
4203 			}
4204 			error = thread_check_susp(td, false);
4205 			if (error != 0)
4206 				break;
4207 		}
4208 		if (error != 0)
4209 			break;
4210 
4211 		/*
4212 		 * td_sigblock_val is cleared there, but not on a
4213 		 * syscall exit.  The end effect is that a single
4214 		 * interruptible sleep, while user sigblock word is
4215 		 * set, might return EINTR or ERESTART to usermode
4216 		 * without delivering signal.  All further sleeps,
4217 		 * until userspace clears the word and does
4218 		 * sigfastblock(UNBLOCK), observe current word and no
4219 		 * longer get interrupted.  It is slight
4220 		 * non-conformance, with alternative to have read the
4221 		 * sigblock word on each syscall entry.
4222 		 */
4223 		td->td_sigblock_val = 0;
4224 
4225 		/*
4226 		 * Rely on normal ast mechanism to deliver pending
4227 		 * signals to current thread.  But notify others about
4228 		 * fake unblock.
4229 		 */
4230 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4231 
4232 		break;
4233 
4234 	case SIGFASTBLOCK_UNSETPTR:
4235 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4236 			error = EINVAL;
4237 			break;
4238 		}
4239 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4240 			error = EFAULT;
4241 			break;
4242 		}
4243 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4244 			error = EBUSY;
4245 			break;
4246 		}
4247 		sigfastblock_clear(td);
4248 		break;
4249 
4250 	default:
4251 		error = EINVAL;
4252 		break;
4253 	}
4254 	return (error);
4255 }
4256 
4257 void
4258 sigfastblock_clear(struct thread *td)
4259 {
4260 	bool resched;
4261 
4262 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4263 		return;
4264 	td->td_sigblock_val = 0;
4265 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4266 	    SIGPENDING(td);
4267 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4268 	sigfastblock_resched(td, resched);
4269 }
4270 
4271 void
4272 sigfastblock_fetch(struct thread *td)
4273 {
4274 	uint32_t val;
4275 
4276 	(void)sigfastblock_fetch_sig(td, true, &val);
4277 }
4278 
4279 static void
4280 sigfastblock_setpend1(struct thread *td)
4281 {
4282 	int res;
4283 	uint32_t oldval;
4284 
4285 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4286 		return;
4287 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4288 	if (res == -1) {
4289 		sigfastblock_failed(td, true, false);
4290 		return;
4291 	}
4292 	for (;;) {
4293 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4294 		    oldval | SIGFASTBLOCK_PEND);
4295 		if (res == -1) {
4296 			sigfastblock_failed(td, true, true);
4297 			return;
4298 		}
4299 		if (res == 0) {
4300 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4301 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4302 			break;
4303 		}
4304 		MPASS(res == 1);
4305 		if (thread_check_susp(td, false) != 0)
4306 			break;
4307 	}
4308 }
4309 
4310 void
4311 sigfastblock_setpend(struct thread *td, bool resched)
4312 {
4313 	struct proc *p;
4314 
4315 	sigfastblock_setpend1(td);
4316 	if (resched) {
4317 		p = td->td_proc;
4318 		PROC_LOCK(p);
4319 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4320 		PROC_UNLOCK(p);
4321 	}
4322 }
4323