xref: /freebsd/sys/kern/kern_sig.c (revision 9af6c78cd43b18e169f10802142c61638bd62bed)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/posix4.h>
69 #include <sys/pioctl.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static int	sigprop(int sig);
111 static void	tdsigwakeup(struct thread *, int, sig_t, int);
112 static int	sig_suspend_threads(struct thread *, struct proc *, int);
113 static int	filt_sigattach(struct knote *kn);
114 static void	filt_sigdetach(struct knote *kn);
115 static int	filt_signal(struct knote *kn, long hint);
116 static struct thread *sigtd(struct proc *p, int sig, int prop);
117 static void	sigqueue_start(void);
118 
119 static uma_zone_t	ksiginfo_zone = NULL;
120 struct filterops sig_filtops = {
121 	.f_isfd = 0,
122 	.f_attach = filt_sigattach,
123 	.f_detach = filt_sigdetach,
124 	.f_event = filt_signal,
125 };
126 
127 static int	kern_logsigexit = 1;
128 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129     &kern_logsigexit, 0,
130     "Log processes quitting on abnormal signals to syslog(3)");
131 
132 static int	kern_forcesigexit = 1;
133 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134     &kern_forcesigexit, 0, "Force trap signal to be handled");
135 
136 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
137     "POSIX real time signal");
138 
139 static int	max_pending_per_proc = 128;
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
141     &max_pending_per_proc, 0, "Max pending signals per proc");
142 
143 static int	preallocate_siginfo = 1024;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
145     &preallocate_siginfo, 0, "Preallocated signal memory size");
146 
147 static int	signal_overflow = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
149     &signal_overflow, 0, "Number of signals overflew");
150 
151 static int	signal_alloc_fail = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
153     &signal_alloc_fail, 0, "signals failed to be allocated");
154 
155 static int	kern_lognosys = 0;
156 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
157     "Log invalid syscalls");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	capmode_coredump;
178 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
179     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
180 
181 static int	do_coredump = 1;
182 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
183 	&do_coredump, 0, "Enable/Disable coredumps");
184 
185 static int	set_core_nodump_flag = 0;
186 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
187 	0, "Enable setting the NODUMP flag on coredump files");
188 
189 static int	coredump_devctl = 0;
190 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
191 	0, "Generate a devctl notification when processes coredump");
192 
193 /*
194  * Signal properties and actions.
195  * The array below categorizes the signals and their default actions
196  * according to the following properties:
197  */
198 #define	SIGPROP_KILL		0x01	/* terminates process by default */
199 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
200 #define	SIGPROP_STOP		0x04	/* suspend process */
201 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
202 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
203 #define	SIGPROP_CONT		0x20	/* continue if suspended */
204 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
205 
206 static int sigproptbl[NSIG] = {
207 	[SIGHUP] =	SIGPROP_KILL,
208 	[SIGINT] =	SIGPROP_KILL,
209 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGKILL] =	SIGPROP_KILL,
216 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
219 	[SIGPIPE] =	SIGPROP_KILL,
220 	[SIGALRM] =	SIGPROP_KILL,
221 	[SIGTERM] =	SIGPROP_KILL,
222 	[SIGURG] =	SIGPROP_IGNORE,
223 	[SIGSTOP] =	SIGPROP_STOP,
224 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
225 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
226 	[SIGCHLD] =	SIGPROP_IGNORE,
227 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
229 	[SIGIO] =	SIGPROP_IGNORE,
230 	[SIGXCPU] =	SIGPROP_KILL,
231 	[SIGXFSZ] =	SIGPROP_KILL,
232 	[SIGVTALRM] =	SIGPROP_KILL,
233 	[SIGPROF] =	SIGPROP_KILL,
234 	[SIGWINCH] =	SIGPROP_IGNORE,
235 	[SIGINFO] =	SIGPROP_IGNORE,
236 	[SIGUSR1] =	SIGPROP_KILL,
237 	[SIGUSR2] =	SIGPROP_KILL,
238 };
239 
240 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
241 
242 static void
243 sigqueue_start(void)
244 {
245 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
246 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
247 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
248 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
249 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
250 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
251 }
252 
253 ksiginfo_t *
254 ksiginfo_alloc(int wait)
255 {
256 	int flags;
257 
258 	flags = M_ZERO;
259 	if (! wait)
260 		flags |= M_NOWAIT;
261 	if (ksiginfo_zone != NULL)
262 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
263 	return (NULL);
264 }
265 
266 void
267 ksiginfo_free(ksiginfo_t *ksi)
268 {
269 	uma_zfree(ksiginfo_zone, ksi);
270 }
271 
272 static __inline int
273 ksiginfo_tryfree(ksiginfo_t *ksi)
274 {
275 	if (!(ksi->ksi_flags & KSI_EXT)) {
276 		uma_zfree(ksiginfo_zone, ksi);
277 		return (1);
278 	}
279 	return (0);
280 }
281 
282 void
283 sigqueue_init(sigqueue_t *list, struct proc *p)
284 {
285 	SIGEMPTYSET(list->sq_signals);
286 	SIGEMPTYSET(list->sq_kill);
287 	SIGEMPTYSET(list->sq_ptrace);
288 	TAILQ_INIT(&list->sq_list);
289 	list->sq_proc = p;
290 	list->sq_flags = SQ_INIT;
291 }
292 
293 /*
294  * Get a signal's ksiginfo.
295  * Return:
296  *	0	-	signal not found
297  *	others	-	signal number
298  */
299 static int
300 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
301 {
302 	struct proc *p = sq->sq_proc;
303 	struct ksiginfo *ksi, *next;
304 	int count = 0;
305 
306 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
307 
308 	if (!SIGISMEMBER(sq->sq_signals, signo))
309 		return (0);
310 
311 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
312 		count++;
313 		SIGDELSET(sq->sq_ptrace, signo);
314 		si->ksi_flags |= KSI_PTRACE;
315 	}
316 	if (SIGISMEMBER(sq->sq_kill, signo)) {
317 		count++;
318 		if (count == 1)
319 			SIGDELSET(sq->sq_kill, signo);
320 	}
321 
322 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
323 		if (ksi->ksi_signo == signo) {
324 			if (count == 0) {
325 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
326 				ksi->ksi_sigq = NULL;
327 				ksiginfo_copy(ksi, si);
328 				if (ksiginfo_tryfree(ksi) && p != NULL)
329 					p->p_pendingcnt--;
330 			}
331 			if (++count > 1)
332 				break;
333 		}
334 	}
335 
336 	if (count <= 1)
337 		SIGDELSET(sq->sq_signals, signo);
338 	si->ksi_signo = signo;
339 	return (signo);
340 }
341 
342 void
343 sigqueue_take(ksiginfo_t *ksi)
344 {
345 	struct ksiginfo *kp;
346 	struct proc	*p;
347 	sigqueue_t	*sq;
348 
349 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
350 		return;
351 
352 	p = sq->sq_proc;
353 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
354 	ksi->ksi_sigq = NULL;
355 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
356 		p->p_pendingcnt--;
357 
358 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
359 	     kp = TAILQ_NEXT(kp, ksi_link)) {
360 		if (kp->ksi_signo == ksi->ksi_signo)
361 			break;
362 	}
363 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
364 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
365 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
366 }
367 
368 static int
369 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
370 {
371 	struct proc *p = sq->sq_proc;
372 	struct ksiginfo *ksi;
373 	int ret = 0;
374 
375 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
376 
377 	/*
378 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
379 	 * for these signals.
380 	 */
381 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
382 		SIGADDSET(sq->sq_kill, signo);
383 		goto out_set_bit;
384 	}
385 
386 	/* directly insert the ksi, don't copy it */
387 	if (si->ksi_flags & KSI_INS) {
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
392 		si->ksi_sigq = sq;
393 		goto out_set_bit;
394 	}
395 
396 	if (__predict_false(ksiginfo_zone == NULL)) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
402 		signal_overflow++;
403 		ret = EAGAIN;
404 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
405 		signal_alloc_fail++;
406 		ret = EAGAIN;
407 	} else {
408 		if (p != NULL)
409 			p->p_pendingcnt++;
410 		ksiginfo_copy(si, ksi);
411 		ksi->ksi_signo = signo;
412 		if (si->ksi_flags & KSI_HEAD)
413 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
414 		else
415 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
416 		ksi->ksi_sigq = sq;
417 	}
418 
419 	if (ret != 0) {
420 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
421 			SIGADDSET(sq->sq_ptrace, signo);
422 			ret = 0;
423 			goto out_set_bit;
424 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
425 		    (si->ksi_flags & KSI_SIGQ) == 0) {
426 			SIGADDSET(sq->sq_kill, signo);
427 			ret = 0;
428 			goto out_set_bit;
429 		}
430 		return (ret);
431 	}
432 
433 out_set_bit:
434 	SIGADDSET(sq->sq_signals, signo);
435 	return (ret);
436 }
437 
438 void
439 sigqueue_flush(sigqueue_t *sq)
440 {
441 	struct proc *p = sq->sq_proc;
442 	ksiginfo_t *ksi;
443 
444 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
445 
446 	if (p != NULL)
447 		PROC_LOCK_ASSERT(p, MA_OWNED);
448 
449 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
450 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
451 		ksi->ksi_sigq = NULL;
452 		if (ksiginfo_tryfree(ksi) && p != NULL)
453 			p->p_pendingcnt--;
454 	}
455 
456 	SIGEMPTYSET(sq->sq_signals);
457 	SIGEMPTYSET(sq->sq_kill);
458 	SIGEMPTYSET(sq->sq_ptrace);
459 }
460 
461 static void
462 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
463 {
464 	sigset_t tmp;
465 	struct proc *p1, *p2;
466 	ksiginfo_t *ksi, *next;
467 
468 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
469 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
470 	p1 = src->sq_proc;
471 	p2 = dst->sq_proc;
472 	/* Move siginfo to target list */
473 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
474 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
475 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
476 			if (p1 != NULL)
477 				p1->p_pendingcnt--;
478 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
479 			ksi->ksi_sigq = dst;
480 			if (p2 != NULL)
481 				p2->p_pendingcnt++;
482 		}
483 	}
484 
485 	/* Move pending bits to target list */
486 	tmp = src->sq_kill;
487 	SIGSETAND(tmp, *set);
488 	SIGSETOR(dst->sq_kill, tmp);
489 	SIGSETNAND(src->sq_kill, tmp);
490 
491 	tmp = src->sq_ptrace;
492 	SIGSETAND(tmp, *set);
493 	SIGSETOR(dst->sq_ptrace, tmp);
494 	SIGSETNAND(src->sq_ptrace, tmp);
495 
496 	tmp = src->sq_signals;
497 	SIGSETAND(tmp, *set);
498 	SIGSETOR(dst->sq_signals, tmp);
499 	SIGSETNAND(src->sq_signals, tmp);
500 }
501 
502 #if 0
503 static void
504 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
505 {
506 	sigset_t set;
507 
508 	SIGEMPTYSET(set);
509 	SIGADDSET(set, signo);
510 	sigqueue_move_set(src, dst, &set);
511 }
512 #endif
513 
514 static void
515 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
516 {
517 	struct proc *p = sq->sq_proc;
518 	ksiginfo_t *ksi, *next;
519 
520 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
521 
522 	/* Remove siginfo queue */
523 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
524 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
525 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
526 			ksi->ksi_sigq = NULL;
527 			if (ksiginfo_tryfree(ksi) && p != NULL)
528 				p->p_pendingcnt--;
529 		}
530 	}
531 	SIGSETNAND(sq->sq_kill, *set);
532 	SIGSETNAND(sq->sq_ptrace, *set);
533 	SIGSETNAND(sq->sq_signals, *set);
534 }
535 
536 void
537 sigqueue_delete(sigqueue_t *sq, int signo)
538 {
539 	sigset_t set;
540 
541 	SIGEMPTYSET(set);
542 	SIGADDSET(set, signo);
543 	sigqueue_delete_set(sq, &set);
544 }
545 
546 /* Remove a set of signals for a process */
547 static void
548 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
549 {
550 	sigqueue_t worklist;
551 	struct thread *td0;
552 
553 	PROC_LOCK_ASSERT(p, MA_OWNED);
554 
555 	sigqueue_init(&worklist, NULL);
556 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
557 
558 	FOREACH_THREAD_IN_PROC(p, td0)
559 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
560 
561 	sigqueue_flush(&worklist);
562 }
563 
564 void
565 sigqueue_delete_proc(struct proc *p, int signo)
566 {
567 	sigset_t set;
568 
569 	SIGEMPTYSET(set);
570 	SIGADDSET(set, signo);
571 	sigqueue_delete_set_proc(p, &set);
572 }
573 
574 static void
575 sigqueue_delete_stopmask_proc(struct proc *p)
576 {
577 	sigset_t set;
578 
579 	SIGEMPTYSET(set);
580 	SIGADDSET(set, SIGSTOP);
581 	SIGADDSET(set, SIGTSTP);
582 	SIGADDSET(set, SIGTTIN);
583 	SIGADDSET(set, SIGTTOU);
584 	sigqueue_delete_set_proc(p, &set);
585 }
586 
587 /*
588  * Determine signal that should be delivered to thread td, the current
589  * thread, 0 if none.  If there is a pending stop signal with default
590  * action, the process stops in issignal().
591  */
592 int
593 cursig(struct thread *td)
594 {
595 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
596 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
597 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
598 	return (SIGPENDING(td) ? issignal(td) : 0);
599 }
600 
601 /*
602  * Arrange for ast() to handle unmasked pending signals on return to user
603  * mode.  This must be called whenever a signal is added to td_sigqueue or
604  * unmasked in td_sigmask.
605  */
606 void
607 signotify(struct thread *td)
608 {
609 
610 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
611 
612 	if (SIGPENDING(td)) {
613 		thread_lock(td);
614 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
615 		thread_unlock(td);
616 	}
617 }
618 
619 /*
620  * Returns 1 (true) if altstack is configured for the thread, and the
621  * passed stack bottom address falls into the altstack range.  Handles
622  * the 43 compat special case where the alt stack size is zero.
623  */
624 int
625 sigonstack(size_t sp)
626 {
627 	struct thread *td;
628 
629 	td = curthread;
630 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
631 		return (0);
632 #if defined(COMPAT_43)
633 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
634 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
635 #endif
636 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
637 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
638 }
639 
640 static __inline int
641 sigprop(int sig)
642 {
643 
644 	if (sig > 0 && sig < nitems(sigproptbl))
645 		return (sigproptbl[sig]);
646 	return (0);
647 }
648 
649 int
650 sig_ffs(sigset_t *set)
651 {
652 	int i;
653 
654 	for (i = 0; i < _SIG_WORDS; i++)
655 		if (set->__bits[i])
656 			return (ffs(set->__bits[i]) + (i * 32));
657 	return (0);
658 }
659 
660 static bool
661 sigact_flag_test(const struct sigaction *act, int flag)
662 {
663 
664 	/*
665 	 * SA_SIGINFO is reset when signal disposition is set to
666 	 * ignore or default.  Other flags are kept according to user
667 	 * settings.
668 	 */
669 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
670 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
671 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
672 }
673 
674 /*
675  * kern_sigaction
676  * sigaction
677  * freebsd4_sigaction
678  * osigaction
679  */
680 int
681 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
682     struct sigaction *oact, int flags)
683 {
684 	struct sigacts *ps;
685 	struct proc *p = td->td_proc;
686 
687 	if (!_SIG_VALID(sig))
688 		return (EINVAL);
689 	if (act != NULL && act->sa_handler != SIG_DFL &&
690 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
691 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
692 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
693 		return (EINVAL);
694 
695 	PROC_LOCK(p);
696 	ps = p->p_sigacts;
697 	mtx_lock(&ps->ps_mtx);
698 	if (oact) {
699 		memset(oact, 0, sizeof(*oact));
700 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
701 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
702 			oact->sa_flags |= SA_ONSTACK;
703 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
704 			oact->sa_flags |= SA_RESTART;
705 		if (SIGISMEMBER(ps->ps_sigreset, sig))
706 			oact->sa_flags |= SA_RESETHAND;
707 		if (SIGISMEMBER(ps->ps_signodefer, sig))
708 			oact->sa_flags |= SA_NODEFER;
709 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
710 			oact->sa_flags |= SA_SIGINFO;
711 			oact->sa_sigaction =
712 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
713 		} else
714 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
715 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
716 			oact->sa_flags |= SA_NOCLDSTOP;
717 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
718 			oact->sa_flags |= SA_NOCLDWAIT;
719 	}
720 	if (act) {
721 		if ((sig == SIGKILL || sig == SIGSTOP) &&
722 		    act->sa_handler != SIG_DFL) {
723 			mtx_unlock(&ps->ps_mtx);
724 			PROC_UNLOCK(p);
725 			return (EINVAL);
726 		}
727 
728 		/*
729 		 * Change setting atomically.
730 		 */
731 
732 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
733 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
734 		if (sigact_flag_test(act, SA_SIGINFO)) {
735 			ps->ps_sigact[_SIG_IDX(sig)] =
736 			    (__sighandler_t *)act->sa_sigaction;
737 			SIGADDSET(ps->ps_siginfo, sig);
738 		} else {
739 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
740 			SIGDELSET(ps->ps_siginfo, sig);
741 		}
742 		if (!sigact_flag_test(act, SA_RESTART))
743 			SIGADDSET(ps->ps_sigintr, sig);
744 		else
745 			SIGDELSET(ps->ps_sigintr, sig);
746 		if (sigact_flag_test(act, SA_ONSTACK))
747 			SIGADDSET(ps->ps_sigonstack, sig);
748 		else
749 			SIGDELSET(ps->ps_sigonstack, sig);
750 		if (sigact_flag_test(act, SA_RESETHAND))
751 			SIGADDSET(ps->ps_sigreset, sig);
752 		else
753 			SIGDELSET(ps->ps_sigreset, sig);
754 		if (sigact_flag_test(act, SA_NODEFER))
755 			SIGADDSET(ps->ps_signodefer, sig);
756 		else
757 			SIGDELSET(ps->ps_signodefer, sig);
758 		if (sig == SIGCHLD) {
759 			if (act->sa_flags & SA_NOCLDSTOP)
760 				ps->ps_flag |= PS_NOCLDSTOP;
761 			else
762 				ps->ps_flag &= ~PS_NOCLDSTOP;
763 			if (act->sa_flags & SA_NOCLDWAIT) {
764 				/*
765 				 * Paranoia: since SA_NOCLDWAIT is implemented
766 				 * by reparenting the dying child to PID 1 (and
767 				 * trust it to reap the zombie), PID 1 itself
768 				 * is forbidden to set SA_NOCLDWAIT.
769 				 */
770 				if (p->p_pid == 1)
771 					ps->ps_flag &= ~PS_NOCLDWAIT;
772 				else
773 					ps->ps_flag |= PS_NOCLDWAIT;
774 			} else
775 				ps->ps_flag &= ~PS_NOCLDWAIT;
776 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
777 				ps->ps_flag |= PS_CLDSIGIGN;
778 			else
779 				ps->ps_flag &= ~PS_CLDSIGIGN;
780 		}
781 		/*
782 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
783 		 * and for signals set to SIG_DFL where the default is to
784 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
785 		 * have to restart the process.
786 		 */
787 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
788 		    (sigprop(sig) & SIGPROP_IGNORE &&
789 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
790 			/* never to be seen again */
791 			sigqueue_delete_proc(p, sig);
792 			if (sig != SIGCONT)
793 				/* easier in psignal */
794 				SIGADDSET(ps->ps_sigignore, sig);
795 			SIGDELSET(ps->ps_sigcatch, sig);
796 		} else {
797 			SIGDELSET(ps->ps_sigignore, sig);
798 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
799 				SIGDELSET(ps->ps_sigcatch, sig);
800 			else
801 				SIGADDSET(ps->ps_sigcatch, sig);
802 		}
803 #ifdef COMPAT_FREEBSD4
804 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
805 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
806 		    (flags & KSA_FREEBSD4) == 0)
807 			SIGDELSET(ps->ps_freebsd4, sig);
808 		else
809 			SIGADDSET(ps->ps_freebsd4, sig);
810 #endif
811 #ifdef COMPAT_43
812 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
813 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
814 		    (flags & KSA_OSIGSET) == 0)
815 			SIGDELSET(ps->ps_osigset, sig);
816 		else
817 			SIGADDSET(ps->ps_osigset, sig);
818 #endif
819 	}
820 	mtx_unlock(&ps->ps_mtx);
821 	PROC_UNLOCK(p);
822 	return (0);
823 }
824 
825 #ifndef _SYS_SYSPROTO_H_
826 struct sigaction_args {
827 	int	sig;
828 	struct	sigaction *act;
829 	struct	sigaction *oact;
830 };
831 #endif
832 int
833 sys_sigaction(struct thread *td, struct sigaction_args *uap)
834 {
835 	struct sigaction act, oact;
836 	struct sigaction *actp, *oactp;
837 	int error;
838 
839 	actp = (uap->act != NULL) ? &act : NULL;
840 	oactp = (uap->oact != NULL) ? &oact : NULL;
841 	if (actp) {
842 		error = copyin(uap->act, actp, sizeof(act));
843 		if (error)
844 			return (error);
845 	}
846 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
847 	if (oactp && !error)
848 		error = copyout(oactp, uap->oact, sizeof(oact));
849 	return (error);
850 }
851 
852 #ifdef COMPAT_FREEBSD4
853 #ifndef _SYS_SYSPROTO_H_
854 struct freebsd4_sigaction_args {
855 	int	sig;
856 	struct	sigaction *act;
857 	struct	sigaction *oact;
858 };
859 #endif
860 int
861 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
862 {
863 	struct sigaction act, oact;
864 	struct sigaction *actp, *oactp;
865 	int error;
866 
867 
868 	actp = (uap->act != NULL) ? &act : NULL;
869 	oactp = (uap->oact != NULL) ? &oact : NULL;
870 	if (actp) {
871 		error = copyin(uap->act, actp, sizeof(act));
872 		if (error)
873 			return (error);
874 	}
875 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
876 	if (oactp && !error)
877 		error = copyout(oactp, uap->oact, sizeof(oact));
878 	return (error);
879 }
880 #endif	/* COMAPT_FREEBSD4 */
881 
882 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
883 #ifndef _SYS_SYSPROTO_H_
884 struct osigaction_args {
885 	int	signum;
886 	struct	osigaction *nsa;
887 	struct	osigaction *osa;
888 };
889 #endif
890 int
891 osigaction(struct thread *td, struct osigaction_args *uap)
892 {
893 	struct osigaction sa;
894 	struct sigaction nsa, osa;
895 	struct sigaction *nsap, *osap;
896 	int error;
897 
898 	if (uap->signum <= 0 || uap->signum >= ONSIG)
899 		return (EINVAL);
900 
901 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
902 	osap = (uap->osa != NULL) ? &osa : NULL;
903 
904 	if (nsap) {
905 		error = copyin(uap->nsa, &sa, sizeof(sa));
906 		if (error)
907 			return (error);
908 		nsap->sa_handler = sa.sa_handler;
909 		nsap->sa_flags = sa.sa_flags;
910 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
911 	}
912 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
913 	if (osap && !error) {
914 		sa.sa_handler = osap->sa_handler;
915 		sa.sa_flags = osap->sa_flags;
916 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
917 		error = copyout(&sa, uap->osa, sizeof(sa));
918 	}
919 	return (error);
920 }
921 
922 #if !defined(__i386__)
923 /* Avoid replicating the same stub everywhere */
924 int
925 osigreturn(struct thread *td, struct osigreturn_args *uap)
926 {
927 
928 	return (nosys(td, (struct nosys_args *)uap));
929 }
930 #endif
931 #endif /* COMPAT_43 */
932 
933 /*
934  * Initialize signal state for process 0;
935  * set to ignore signals that are ignored by default.
936  */
937 void
938 siginit(struct proc *p)
939 {
940 	int i;
941 	struct sigacts *ps;
942 
943 	PROC_LOCK(p);
944 	ps = p->p_sigacts;
945 	mtx_lock(&ps->ps_mtx);
946 	for (i = 1; i <= NSIG; i++) {
947 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
948 			SIGADDSET(ps->ps_sigignore, i);
949 		}
950 	}
951 	mtx_unlock(&ps->ps_mtx);
952 	PROC_UNLOCK(p);
953 }
954 
955 /*
956  * Reset specified signal to the default disposition.
957  */
958 static void
959 sigdflt(struct sigacts *ps, int sig)
960 {
961 
962 	mtx_assert(&ps->ps_mtx, MA_OWNED);
963 	SIGDELSET(ps->ps_sigcatch, sig);
964 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
965 		SIGADDSET(ps->ps_sigignore, sig);
966 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
967 	SIGDELSET(ps->ps_siginfo, sig);
968 }
969 
970 /*
971  * Reset signals for an exec of the specified process.
972  */
973 void
974 execsigs(struct proc *p)
975 {
976 	sigset_t osigignore;
977 	struct sigacts *ps;
978 	int sig;
979 	struct thread *td;
980 
981 	/*
982 	 * Reset caught signals.  Held signals remain held
983 	 * through td_sigmask (unless they were caught,
984 	 * and are now ignored by default).
985 	 */
986 	PROC_LOCK_ASSERT(p, MA_OWNED);
987 	ps = p->p_sigacts;
988 	mtx_lock(&ps->ps_mtx);
989 	sig_drop_caught(p);
990 
991 	/*
992 	 * As CloudABI processes cannot modify signal handlers, fully
993 	 * reset all signals to their default behavior. Do ignore
994 	 * SIGPIPE, as it would otherwise be impossible to recover from
995 	 * writes to broken pipes and sockets.
996 	 */
997 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
998 		osigignore = ps->ps_sigignore;
999 		while (SIGNOTEMPTY(osigignore)) {
1000 			sig = sig_ffs(&osigignore);
1001 			SIGDELSET(osigignore, sig);
1002 			if (sig != SIGPIPE)
1003 				sigdflt(ps, sig);
1004 		}
1005 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1006 	}
1007 
1008 	/*
1009 	 * Reset stack state to the user stack.
1010 	 * Clear set of signals caught on the signal stack.
1011 	 */
1012 	td = curthread;
1013 	MPASS(td->td_proc == p);
1014 	td->td_sigstk.ss_flags = SS_DISABLE;
1015 	td->td_sigstk.ss_size = 0;
1016 	td->td_sigstk.ss_sp = 0;
1017 	td->td_pflags &= ~TDP_ALTSTACK;
1018 	/*
1019 	 * Reset no zombies if child dies flag as Solaris does.
1020 	 */
1021 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1022 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1023 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1024 	mtx_unlock(&ps->ps_mtx);
1025 }
1026 
1027 /*
1028  * kern_sigprocmask()
1029  *
1030  *	Manipulate signal mask.
1031  */
1032 int
1033 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1034     int flags)
1035 {
1036 	sigset_t new_block, oset1;
1037 	struct proc *p;
1038 	int error;
1039 
1040 	p = td->td_proc;
1041 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1042 		PROC_LOCK_ASSERT(p, MA_OWNED);
1043 	else
1044 		PROC_LOCK(p);
1045 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1046 	    ? MA_OWNED : MA_NOTOWNED);
1047 	if (oset != NULL)
1048 		*oset = td->td_sigmask;
1049 
1050 	error = 0;
1051 	if (set != NULL) {
1052 		switch (how) {
1053 		case SIG_BLOCK:
1054 			SIG_CANTMASK(*set);
1055 			oset1 = td->td_sigmask;
1056 			SIGSETOR(td->td_sigmask, *set);
1057 			new_block = td->td_sigmask;
1058 			SIGSETNAND(new_block, oset1);
1059 			break;
1060 		case SIG_UNBLOCK:
1061 			SIGSETNAND(td->td_sigmask, *set);
1062 			signotify(td);
1063 			goto out;
1064 		case SIG_SETMASK:
1065 			SIG_CANTMASK(*set);
1066 			oset1 = td->td_sigmask;
1067 			if (flags & SIGPROCMASK_OLD)
1068 				SIGSETLO(td->td_sigmask, *set);
1069 			else
1070 				td->td_sigmask = *set;
1071 			new_block = td->td_sigmask;
1072 			SIGSETNAND(new_block, oset1);
1073 			signotify(td);
1074 			break;
1075 		default:
1076 			error = EINVAL;
1077 			goto out;
1078 		}
1079 
1080 		/*
1081 		 * The new_block set contains signals that were not previously
1082 		 * blocked, but are blocked now.
1083 		 *
1084 		 * In case we block any signal that was not previously blocked
1085 		 * for td, and process has the signal pending, try to schedule
1086 		 * signal delivery to some thread that does not block the
1087 		 * signal, possibly waking it up.
1088 		 */
1089 		if (p->p_numthreads != 1)
1090 			reschedule_signals(p, new_block, flags);
1091 	}
1092 
1093 out:
1094 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1095 		PROC_UNLOCK(p);
1096 	return (error);
1097 }
1098 
1099 #ifndef _SYS_SYSPROTO_H_
1100 struct sigprocmask_args {
1101 	int	how;
1102 	const sigset_t *set;
1103 	sigset_t *oset;
1104 };
1105 #endif
1106 int
1107 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1108 {
1109 	sigset_t set, oset;
1110 	sigset_t *setp, *osetp;
1111 	int error;
1112 
1113 	setp = (uap->set != NULL) ? &set : NULL;
1114 	osetp = (uap->oset != NULL) ? &oset : NULL;
1115 	if (setp) {
1116 		error = copyin(uap->set, setp, sizeof(set));
1117 		if (error)
1118 			return (error);
1119 	}
1120 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1121 	if (osetp && !error) {
1122 		error = copyout(osetp, uap->oset, sizeof(oset));
1123 	}
1124 	return (error);
1125 }
1126 
1127 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1128 #ifndef _SYS_SYSPROTO_H_
1129 struct osigprocmask_args {
1130 	int	how;
1131 	osigset_t mask;
1132 };
1133 #endif
1134 int
1135 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1136 {
1137 	sigset_t set, oset;
1138 	int error;
1139 
1140 	OSIG2SIG(uap->mask, set);
1141 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1142 	SIG2OSIG(oset, td->td_retval[0]);
1143 	return (error);
1144 }
1145 #endif /* COMPAT_43 */
1146 
1147 int
1148 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1149 {
1150 	ksiginfo_t ksi;
1151 	sigset_t set;
1152 	int error;
1153 
1154 	error = copyin(uap->set, &set, sizeof(set));
1155 	if (error) {
1156 		td->td_retval[0] = error;
1157 		return (0);
1158 	}
1159 
1160 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1161 	if (error) {
1162 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1163 			error = ERESTART;
1164 		if (error == ERESTART)
1165 			return (error);
1166 		td->td_retval[0] = error;
1167 		return (0);
1168 	}
1169 
1170 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1171 	td->td_retval[0] = error;
1172 	return (0);
1173 }
1174 
1175 int
1176 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1177 {
1178 	struct timespec ts;
1179 	struct timespec *timeout;
1180 	sigset_t set;
1181 	ksiginfo_t ksi;
1182 	int error;
1183 
1184 	if (uap->timeout) {
1185 		error = copyin(uap->timeout, &ts, sizeof(ts));
1186 		if (error)
1187 			return (error);
1188 
1189 		timeout = &ts;
1190 	} else
1191 		timeout = NULL;
1192 
1193 	error = copyin(uap->set, &set, sizeof(set));
1194 	if (error)
1195 		return (error);
1196 
1197 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1198 	if (error)
1199 		return (error);
1200 
1201 	if (uap->info)
1202 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1203 
1204 	if (error == 0)
1205 		td->td_retval[0] = ksi.ksi_signo;
1206 	return (error);
1207 }
1208 
1209 int
1210 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1211 {
1212 	ksiginfo_t ksi;
1213 	sigset_t set;
1214 	int error;
1215 
1216 	error = copyin(uap->set, &set, sizeof(set));
1217 	if (error)
1218 		return (error);
1219 
1220 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1221 	if (error)
1222 		return (error);
1223 
1224 	if (uap->info)
1225 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1226 
1227 	if (error == 0)
1228 		td->td_retval[0] = ksi.ksi_signo;
1229 	return (error);
1230 }
1231 
1232 static void
1233 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1234 {
1235 	struct thread *thr;
1236 
1237 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1238 		if (thr == td)
1239 			thr->td_si = *si;
1240 		else
1241 			thr->td_si.si_signo = 0;
1242 	}
1243 }
1244 
1245 int
1246 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1247 	struct timespec *timeout)
1248 {
1249 	struct sigacts *ps;
1250 	sigset_t saved_mask, new_block;
1251 	struct proc *p;
1252 	int error, sig, timo, timevalid = 0;
1253 	struct timespec rts, ets, ts;
1254 	struct timeval tv;
1255 
1256 	p = td->td_proc;
1257 	error = 0;
1258 	ets.tv_sec = 0;
1259 	ets.tv_nsec = 0;
1260 
1261 	if (timeout != NULL) {
1262 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1263 			timevalid = 1;
1264 			getnanouptime(&rts);
1265 			timespecadd(&rts, timeout, &ets);
1266 		}
1267 	}
1268 	ksiginfo_init(ksi);
1269 	/* Some signals can not be waited for. */
1270 	SIG_CANTMASK(waitset);
1271 	ps = p->p_sigacts;
1272 	PROC_LOCK(p);
1273 	saved_mask = td->td_sigmask;
1274 	SIGSETNAND(td->td_sigmask, waitset);
1275 	for (;;) {
1276 		mtx_lock(&ps->ps_mtx);
1277 		sig = cursig(td);
1278 		mtx_unlock(&ps->ps_mtx);
1279 		KASSERT(sig >= 0, ("sig %d", sig));
1280 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1281 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1282 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1283 				error = 0;
1284 				break;
1285 			}
1286 		}
1287 
1288 		if (error != 0)
1289 			break;
1290 
1291 		/*
1292 		 * POSIX says this must be checked after looking for pending
1293 		 * signals.
1294 		 */
1295 		if (timeout != NULL) {
1296 			if (!timevalid) {
1297 				error = EINVAL;
1298 				break;
1299 			}
1300 			getnanouptime(&rts);
1301 			if (timespeccmp(&rts, &ets, >=)) {
1302 				error = EAGAIN;
1303 				break;
1304 			}
1305 			timespecsub(&ets, &rts, &ts);
1306 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1307 			timo = tvtohz(&tv);
1308 		} else {
1309 			timo = 0;
1310 		}
1311 
1312 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1313 
1314 		if (timeout != NULL) {
1315 			if (error == ERESTART) {
1316 				/* Timeout can not be restarted. */
1317 				error = EINTR;
1318 			} else if (error == EAGAIN) {
1319 				/* We will calculate timeout by ourself. */
1320 				error = 0;
1321 			}
1322 		}
1323 	}
1324 
1325 	new_block = saved_mask;
1326 	SIGSETNAND(new_block, td->td_sigmask);
1327 	td->td_sigmask = saved_mask;
1328 	/*
1329 	 * Fewer signals can be delivered to us, reschedule signal
1330 	 * notification.
1331 	 */
1332 	if (p->p_numthreads != 1)
1333 		reschedule_signals(p, new_block, 0);
1334 
1335 	if (error == 0) {
1336 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1337 
1338 		if (ksi->ksi_code == SI_TIMER)
1339 			itimer_accept(p, ksi->ksi_timerid, ksi);
1340 
1341 #ifdef KTRACE
1342 		if (KTRPOINT(td, KTR_PSIG)) {
1343 			sig_t action;
1344 
1345 			mtx_lock(&ps->ps_mtx);
1346 			action = ps->ps_sigact[_SIG_IDX(sig)];
1347 			mtx_unlock(&ps->ps_mtx);
1348 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1349 		}
1350 #endif
1351 		if (sig == SIGKILL) {
1352 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1353 			sigexit(td, sig);
1354 		}
1355 	}
1356 	PROC_UNLOCK(p);
1357 	return (error);
1358 }
1359 
1360 #ifndef _SYS_SYSPROTO_H_
1361 struct sigpending_args {
1362 	sigset_t	*set;
1363 };
1364 #endif
1365 int
1366 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1367 {
1368 	struct proc *p = td->td_proc;
1369 	sigset_t pending;
1370 
1371 	PROC_LOCK(p);
1372 	pending = p->p_sigqueue.sq_signals;
1373 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1374 	PROC_UNLOCK(p);
1375 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1376 }
1377 
1378 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1379 #ifndef _SYS_SYSPROTO_H_
1380 struct osigpending_args {
1381 	int	dummy;
1382 };
1383 #endif
1384 int
1385 osigpending(struct thread *td, struct osigpending_args *uap)
1386 {
1387 	struct proc *p = td->td_proc;
1388 	sigset_t pending;
1389 
1390 	PROC_LOCK(p);
1391 	pending = p->p_sigqueue.sq_signals;
1392 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1393 	PROC_UNLOCK(p);
1394 	SIG2OSIG(pending, td->td_retval[0]);
1395 	return (0);
1396 }
1397 #endif /* COMPAT_43 */
1398 
1399 #if defined(COMPAT_43)
1400 /*
1401  * Generalized interface signal handler, 4.3-compatible.
1402  */
1403 #ifndef _SYS_SYSPROTO_H_
1404 struct osigvec_args {
1405 	int	signum;
1406 	struct	sigvec *nsv;
1407 	struct	sigvec *osv;
1408 };
1409 #endif
1410 /* ARGSUSED */
1411 int
1412 osigvec(struct thread *td, struct osigvec_args *uap)
1413 {
1414 	struct sigvec vec;
1415 	struct sigaction nsa, osa;
1416 	struct sigaction *nsap, *osap;
1417 	int error;
1418 
1419 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1420 		return (EINVAL);
1421 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1422 	osap = (uap->osv != NULL) ? &osa : NULL;
1423 	if (nsap) {
1424 		error = copyin(uap->nsv, &vec, sizeof(vec));
1425 		if (error)
1426 			return (error);
1427 		nsap->sa_handler = vec.sv_handler;
1428 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1429 		nsap->sa_flags = vec.sv_flags;
1430 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1431 	}
1432 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1433 	if (osap && !error) {
1434 		vec.sv_handler = osap->sa_handler;
1435 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1436 		vec.sv_flags = osap->sa_flags;
1437 		vec.sv_flags &= ~SA_NOCLDWAIT;
1438 		vec.sv_flags ^= SA_RESTART;
1439 		error = copyout(&vec, uap->osv, sizeof(vec));
1440 	}
1441 	return (error);
1442 }
1443 
1444 #ifndef _SYS_SYSPROTO_H_
1445 struct osigblock_args {
1446 	int	mask;
1447 };
1448 #endif
1449 int
1450 osigblock(struct thread *td, struct osigblock_args *uap)
1451 {
1452 	sigset_t set, oset;
1453 
1454 	OSIG2SIG(uap->mask, set);
1455 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1456 	SIG2OSIG(oset, td->td_retval[0]);
1457 	return (0);
1458 }
1459 
1460 #ifndef _SYS_SYSPROTO_H_
1461 struct osigsetmask_args {
1462 	int	mask;
1463 };
1464 #endif
1465 int
1466 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1467 {
1468 	sigset_t set, oset;
1469 
1470 	OSIG2SIG(uap->mask, set);
1471 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1472 	SIG2OSIG(oset, td->td_retval[0]);
1473 	return (0);
1474 }
1475 #endif /* COMPAT_43 */
1476 
1477 /*
1478  * Suspend calling thread until signal, providing mask to be set in the
1479  * meantime.
1480  */
1481 #ifndef _SYS_SYSPROTO_H_
1482 struct sigsuspend_args {
1483 	const sigset_t *sigmask;
1484 };
1485 #endif
1486 /* ARGSUSED */
1487 int
1488 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1489 {
1490 	sigset_t mask;
1491 	int error;
1492 
1493 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1494 	if (error)
1495 		return (error);
1496 	return (kern_sigsuspend(td, mask));
1497 }
1498 
1499 int
1500 kern_sigsuspend(struct thread *td, sigset_t mask)
1501 {
1502 	struct proc *p = td->td_proc;
1503 	int has_sig, sig;
1504 
1505 	/*
1506 	 * When returning from sigsuspend, we want
1507 	 * the old mask to be restored after the
1508 	 * signal handler has finished.  Thus, we
1509 	 * save it here and mark the sigacts structure
1510 	 * to indicate this.
1511 	 */
1512 	PROC_LOCK(p);
1513 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1514 	    SIGPROCMASK_PROC_LOCKED);
1515 	td->td_pflags |= TDP_OLDMASK;
1516 
1517 	/*
1518 	 * Process signals now. Otherwise, we can get spurious wakeup
1519 	 * due to signal entered process queue, but delivered to other
1520 	 * thread. But sigsuspend should return only on signal
1521 	 * delivery.
1522 	 */
1523 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1524 	for (has_sig = 0; !has_sig;) {
1525 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1526 			0) == 0)
1527 			/* void */;
1528 		thread_suspend_check(0);
1529 		mtx_lock(&p->p_sigacts->ps_mtx);
1530 		while ((sig = cursig(td)) != 0) {
1531 			KASSERT(sig >= 0, ("sig %d", sig));
1532 			has_sig += postsig(sig);
1533 		}
1534 		mtx_unlock(&p->p_sigacts->ps_mtx);
1535 	}
1536 	PROC_UNLOCK(p);
1537 	td->td_errno = EINTR;
1538 	td->td_pflags |= TDP_NERRNO;
1539 	return (EJUSTRETURN);
1540 }
1541 
1542 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1543 /*
1544  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1545  * convention: libc stub passes mask, not pointer, to save a copyin.
1546  */
1547 #ifndef _SYS_SYSPROTO_H_
1548 struct osigsuspend_args {
1549 	osigset_t mask;
1550 };
1551 #endif
1552 /* ARGSUSED */
1553 int
1554 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1555 {
1556 	sigset_t mask;
1557 
1558 	OSIG2SIG(uap->mask, mask);
1559 	return (kern_sigsuspend(td, mask));
1560 }
1561 #endif /* COMPAT_43 */
1562 
1563 #if defined(COMPAT_43)
1564 #ifndef _SYS_SYSPROTO_H_
1565 struct osigstack_args {
1566 	struct	sigstack *nss;
1567 	struct	sigstack *oss;
1568 };
1569 #endif
1570 /* ARGSUSED */
1571 int
1572 osigstack(struct thread *td, struct osigstack_args *uap)
1573 {
1574 	struct sigstack nss, oss;
1575 	int error = 0;
1576 
1577 	if (uap->nss != NULL) {
1578 		error = copyin(uap->nss, &nss, sizeof(nss));
1579 		if (error)
1580 			return (error);
1581 	}
1582 	oss.ss_sp = td->td_sigstk.ss_sp;
1583 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1584 	if (uap->nss != NULL) {
1585 		td->td_sigstk.ss_sp = nss.ss_sp;
1586 		td->td_sigstk.ss_size = 0;
1587 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1588 		td->td_pflags |= TDP_ALTSTACK;
1589 	}
1590 	if (uap->oss != NULL)
1591 		error = copyout(&oss, uap->oss, sizeof(oss));
1592 
1593 	return (error);
1594 }
1595 #endif /* COMPAT_43 */
1596 
1597 #ifndef _SYS_SYSPROTO_H_
1598 struct sigaltstack_args {
1599 	stack_t	*ss;
1600 	stack_t	*oss;
1601 };
1602 #endif
1603 /* ARGSUSED */
1604 int
1605 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1606 {
1607 	stack_t ss, oss;
1608 	int error;
1609 
1610 	if (uap->ss != NULL) {
1611 		error = copyin(uap->ss, &ss, sizeof(ss));
1612 		if (error)
1613 			return (error);
1614 	}
1615 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1616 	    (uap->oss != NULL) ? &oss : NULL);
1617 	if (error)
1618 		return (error);
1619 	if (uap->oss != NULL)
1620 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1621 	return (error);
1622 }
1623 
1624 int
1625 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1626 {
1627 	struct proc *p = td->td_proc;
1628 	int oonstack;
1629 
1630 	oonstack = sigonstack(cpu_getstack(td));
1631 
1632 	if (oss != NULL) {
1633 		*oss = td->td_sigstk;
1634 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1635 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1636 	}
1637 
1638 	if (ss != NULL) {
1639 		if (oonstack)
1640 			return (EPERM);
1641 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1642 			return (EINVAL);
1643 		if (!(ss->ss_flags & SS_DISABLE)) {
1644 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1645 				return (ENOMEM);
1646 
1647 			td->td_sigstk = *ss;
1648 			td->td_pflags |= TDP_ALTSTACK;
1649 		} else {
1650 			td->td_pflags &= ~TDP_ALTSTACK;
1651 		}
1652 	}
1653 	return (0);
1654 }
1655 
1656 /*
1657  * Common code for kill process group/broadcast kill.
1658  * cp is calling process.
1659  */
1660 static int
1661 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1662 {
1663 	struct proc *p;
1664 	struct pgrp *pgrp;
1665 	int err;
1666 	int ret;
1667 
1668 	ret = ESRCH;
1669 	if (all) {
1670 		/*
1671 		 * broadcast
1672 		 */
1673 		sx_slock(&allproc_lock);
1674 		FOREACH_PROC_IN_SYSTEM(p) {
1675 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1676 			    p == td->td_proc || p->p_state == PRS_NEW) {
1677 				continue;
1678 			}
1679 			PROC_LOCK(p);
1680 			err = p_cansignal(td, p, sig);
1681 			if (err == 0) {
1682 				if (sig)
1683 					pksignal(p, sig, ksi);
1684 				ret = err;
1685 			}
1686 			else if (ret == ESRCH)
1687 				ret = err;
1688 			PROC_UNLOCK(p);
1689 		}
1690 		sx_sunlock(&allproc_lock);
1691 	} else {
1692 		sx_slock(&proctree_lock);
1693 		if (pgid == 0) {
1694 			/*
1695 			 * zero pgid means send to my process group.
1696 			 */
1697 			pgrp = td->td_proc->p_pgrp;
1698 			PGRP_LOCK(pgrp);
1699 		} else {
1700 			pgrp = pgfind(pgid);
1701 			if (pgrp == NULL) {
1702 				sx_sunlock(&proctree_lock);
1703 				return (ESRCH);
1704 			}
1705 		}
1706 		sx_sunlock(&proctree_lock);
1707 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1708 			PROC_LOCK(p);
1709 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1710 			    p->p_state == PRS_NEW) {
1711 				PROC_UNLOCK(p);
1712 				continue;
1713 			}
1714 			err = p_cansignal(td, p, sig);
1715 			if (err == 0) {
1716 				if (sig)
1717 					pksignal(p, sig, ksi);
1718 				ret = err;
1719 			}
1720 			else if (ret == ESRCH)
1721 				ret = err;
1722 			PROC_UNLOCK(p);
1723 		}
1724 		PGRP_UNLOCK(pgrp);
1725 	}
1726 	return (ret);
1727 }
1728 
1729 #ifndef _SYS_SYSPROTO_H_
1730 struct kill_args {
1731 	int	pid;
1732 	int	signum;
1733 };
1734 #endif
1735 /* ARGSUSED */
1736 int
1737 sys_kill(struct thread *td, struct kill_args *uap)
1738 {
1739 	ksiginfo_t ksi;
1740 	struct proc *p;
1741 	int error;
1742 
1743 	/*
1744 	 * A process in capability mode can send signals only to himself.
1745 	 * The main rationale behind this is that abort(3) is implemented as
1746 	 * kill(getpid(), SIGABRT).
1747 	 */
1748 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1749 		return (ECAPMODE);
1750 
1751 	AUDIT_ARG_SIGNUM(uap->signum);
1752 	AUDIT_ARG_PID(uap->pid);
1753 	if ((u_int)uap->signum > _SIG_MAXSIG)
1754 		return (EINVAL);
1755 
1756 	ksiginfo_init(&ksi);
1757 	ksi.ksi_signo = uap->signum;
1758 	ksi.ksi_code = SI_USER;
1759 	ksi.ksi_pid = td->td_proc->p_pid;
1760 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1761 
1762 	if (uap->pid > 0) {
1763 		/* kill single process */
1764 		if ((p = pfind_any(uap->pid)) == NULL)
1765 			return (ESRCH);
1766 		AUDIT_ARG_PROCESS(p);
1767 		error = p_cansignal(td, p, uap->signum);
1768 		if (error == 0 && uap->signum)
1769 			pksignal(p, uap->signum, &ksi);
1770 		PROC_UNLOCK(p);
1771 		return (error);
1772 	}
1773 	switch (uap->pid) {
1774 	case -1:		/* broadcast signal */
1775 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1776 	case 0:			/* signal own process group */
1777 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1778 	default:		/* negative explicit process group */
1779 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1780 	}
1781 	/* NOTREACHED */
1782 }
1783 
1784 int
1785 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1786 {
1787 	struct proc *p;
1788 	int error;
1789 
1790 	AUDIT_ARG_SIGNUM(uap->signum);
1791 	AUDIT_ARG_FD(uap->fd);
1792 	if ((u_int)uap->signum > _SIG_MAXSIG)
1793 		return (EINVAL);
1794 
1795 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1796 	if (error)
1797 		return (error);
1798 	AUDIT_ARG_PROCESS(p);
1799 	error = p_cansignal(td, p, uap->signum);
1800 	if (error == 0 && uap->signum)
1801 		kern_psignal(p, uap->signum);
1802 	PROC_UNLOCK(p);
1803 	return (error);
1804 }
1805 
1806 #if defined(COMPAT_43)
1807 #ifndef _SYS_SYSPROTO_H_
1808 struct okillpg_args {
1809 	int	pgid;
1810 	int	signum;
1811 };
1812 #endif
1813 /* ARGSUSED */
1814 int
1815 okillpg(struct thread *td, struct okillpg_args *uap)
1816 {
1817 	ksiginfo_t ksi;
1818 
1819 	AUDIT_ARG_SIGNUM(uap->signum);
1820 	AUDIT_ARG_PID(uap->pgid);
1821 	if ((u_int)uap->signum > _SIG_MAXSIG)
1822 		return (EINVAL);
1823 
1824 	ksiginfo_init(&ksi);
1825 	ksi.ksi_signo = uap->signum;
1826 	ksi.ksi_code = SI_USER;
1827 	ksi.ksi_pid = td->td_proc->p_pid;
1828 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1829 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1830 }
1831 #endif /* COMPAT_43 */
1832 
1833 #ifndef _SYS_SYSPROTO_H_
1834 struct sigqueue_args {
1835 	pid_t pid;
1836 	int signum;
1837 	/* union sigval */ void *value;
1838 };
1839 #endif
1840 int
1841 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1842 {
1843 	union sigval sv;
1844 
1845 	sv.sival_ptr = uap->value;
1846 
1847 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1848 }
1849 
1850 int
1851 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1852 {
1853 	ksiginfo_t ksi;
1854 	struct proc *p;
1855 	int error;
1856 
1857 	if ((u_int)signum > _SIG_MAXSIG)
1858 		return (EINVAL);
1859 
1860 	/*
1861 	 * Specification says sigqueue can only send signal to
1862 	 * single process.
1863 	 */
1864 	if (pid <= 0)
1865 		return (EINVAL);
1866 
1867 	if ((p = pfind_any(pid)) == NULL)
1868 		return (ESRCH);
1869 	error = p_cansignal(td, p, signum);
1870 	if (error == 0 && signum != 0) {
1871 		ksiginfo_init(&ksi);
1872 		ksi.ksi_flags = KSI_SIGQ;
1873 		ksi.ksi_signo = signum;
1874 		ksi.ksi_code = SI_QUEUE;
1875 		ksi.ksi_pid = td->td_proc->p_pid;
1876 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1877 		ksi.ksi_value = *value;
1878 		error = pksignal(p, ksi.ksi_signo, &ksi);
1879 	}
1880 	PROC_UNLOCK(p);
1881 	return (error);
1882 }
1883 
1884 /*
1885  * Send a signal to a process group.
1886  */
1887 void
1888 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1889 {
1890 	struct pgrp *pgrp;
1891 
1892 	if (pgid != 0) {
1893 		sx_slock(&proctree_lock);
1894 		pgrp = pgfind(pgid);
1895 		sx_sunlock(&proctree_lock);
1896 		if (pgrp != NULL) {
1897 			pgsignal(pgrp, sig, 0, ksi);
1898 			PGRP_UNLOCK(pgrp);
1899 		}
1900 	}
1901 }
1902 
1903 /*
1904  * Send a signal to a process group.  If checktty is 1,
1905  * limit to members which have a controlling terminal.
1906  */
1907 void
1908 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1909 {
1910 	struct proc *p;
1911 
1912 	if (pgrp) {
1913 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1914 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1915 			PROC_LOCK(p);
1916 			if (p->p_state == PRS_NORMAL &&
1917 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1918 				pksignal(p, sig, ksi);
1919 			PROC_UNLOCK(p);
1920 		}
1921 	}
1922 }
1923 
1924 
1925 /*
1926  * Recalculate the signal mask and reset the signal disposition after
1927  * usermode frame for delivery is formed.  Should be called after
1928  * mach-specific routine, because sysent->sv_sendsig() needs correct
1929  * ps_siginfo and signal mask.
1930  */
1931 static void
1932 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1933 {
1934 	sigset_t mask;
1935 
1936 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1937 	td->td_ru.ru_nsignals++;
1938 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1939 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1940 		SIGADDSET(mask, sig);
1941 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1942 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1943 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1944 		sigdflt(ps, sig);
1945 }
1946 
1947 
1948 /*
1949  * Send a signal caused by a trap to the current thread.  If it will be
1950  * caught immediately, deliver it with correct code.  Otherwise, post it
1951  * normally.
1952  */
1953 void
1954 trapsignal(struct thread *td, ksiginfo_t *ksi)
1955 {
1956 	struct sigacts *ps;
1957 	struct proc *p;
1958 	int sig;
1959 	int code;
1960 
1961 	p = td->td_proc;
1962 	sig = ksi->ksi_signo;
1963 	code = ksi->ksi_code;
1964 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1965 
1966 	PROC_LOCK(p);
1967 	ps = p->p_sigacts;
1968 	mtx_lock(&ps->ps_mtx);
1969 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1970 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1971 #ifdef KTRACE
1972 		if (KTRPOINT(curthread, KTR_PSIG))
1973 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1974 			    &td->td_sigmask, code);
1975 #endif
1976 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1977 				ksi, &td->td_sigmask);
1978 		postsig_done(sig, td, ps);
1979 		mtx_unlock(&ps->ps_mtx);
1980 	} else {
1981 		/*
1982 		 * Avoid a possible infinite loop if the thread
1983 		 * masking the signal or process is ignoring the
1984 		 * signal.
1985 		 */
1986 		if (kern_forcesigexit &&
1987 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1988 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1989 			SIGDELSET(td->td_sigmask, sig);
1990 			SIGDELSET(ps->ps_sigcatch, sig);
1991 			SIGDELSET(ps->ps_sigignore, sig);
1992 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1993 		}
1994 		mtx_unlock(&ps->ps_mtx);
1995 		p->p_sig = sig;		/* XXX to verify code */
1996 		tdsendsignal(p, td, sig, ksi);
1997 	}
1998 	PROC_UNLOCK(p);
1999 }
2000 
2001 static struct thread *
2002 sigtd(struct proc *p, int sig, int prop)
2003 {
2004 	struct thread *td, *signal_td;
2005 
2006 	PROC_LOCK_ASSERT(p, MA_OWNED);
2007 
2008 	/*
2009 	 * Check if current thread can handle the signal without
2010 	 * switching context to another thread.
2011 	 */
2012 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2013 		return (curthread);
2014 	signal_td = NULL;
2015 	FOREACH_THREAD_IN_PROC(p, td) {
2016 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2017 			signal_td = td;
2018 			break;
2019 		}
2020 	}
2021 	if (signal_td == NULL)
2022 		signal_td = FIRST_THREAD_IN_PROC(p);
2023 	return (signal_td);
2024 }
2025 
2026 /*
2027  * Send the signal to the process.  If the signal has an action, the action
2028  * is usually performed by the target process rather than the caller; we add
2029  * the signal to the set of pending signals for the process.
2030  *
2031  * Exceptions:
2032  *   o When a stop signal is sent to a sleeping process that takes the
2033  *     default action, the process is stopped without awakening it.
2034  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2035  *     regardless of the signal action (eg, blocked or ignored).
2036  *
2037  * Other ignored signals are discarded immediately.
2038  *
2039  * NB: This function may be entered from the debugger via the "kill" DDB
2040  * command.  There is little that can be done to mitigate the possibly messy
2041  * side effects of this unwise possibility.
2042  */
2043 void
2044 kern_psignal(struct proc *p, int sig)
2045 {
2046 	ksiginfo_t ksi;
2047 
2048 	ksiginfo_init(&ksi);
2049 	ksi.ksi_signo = sig;
2050 	ksi.ksi_code = SI_KERNEL;
2051 	(void) tdsendsignal(p, NULL, sig, &ksi);
2052 }
2053 
2054 int
2055 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2056 {
2057 
2058 	return (tdsendsignal(p, NULL, sig, ksi));
2059 }
2060 
2061 /* Utility function for finding a thread to send signal event to. */
2062 int
2063 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2064 {
2065 	struct thread *td;
2066 
2067 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2068 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2069 		if (td == NULL)
2070 			return (ESRCH);
2071 		*ttd = td;
2072 	} else {
2073 		*ttd = NULL;
2074 		PROC_LOCK(p);
2075 	}
2076 	return (0);
2077 }
2078 
2079 void
2080 tdsignal(struct thread *td, int sig)
2081 {
2082 	ksiginfo_t ksi;
2083 
2084 	ksiginfo_init(&ksi);
2085 	ksi.ksi_signo = sig;
2086 	ksi.ksi_code = SI_KERNEL;
2087 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2088 }
2089 
2090 void
2091 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2092 {
2093 
2094 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2095 }
2096 
2097 int
2098 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2099 {
2100 	sig_t action;
2101 	sigqueue_t *sigqueue;
2102 	int prop;
2103 	struct sigacts *ps;
2104 	int intrval;
2105 	int ret = 0;
2106 	int wakeup_swapper;
2107 
2108 	MPASS(td == NULL || p == td->td_proc);
2109 	PROC_LOCK_ASSERT(p, MA_OWNED);
2110 
2111 	if (!_SIG_VALID(sig))
2112 		panic("%s(): invalid signal %d", __func__, sig);
2113 
2114 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2115 
2116 	/*
2117 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2118 	 */
2119 	if (p->p_state == PRS_ZOMBIE) {
2120 		if (ksi && (ksi->ksi_flags & KSI_INS))
2121 			ksiginfo_tryfree(ksi);
2122 		return (ret);
2123 	}
2124 
2125 	ps = p->p_sigacts;
2126 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2127 	prop = sigprop(sig);
2128 
2129 	if (td == NULL) {
2130 		td = sigtd(p, sig, prop);
2131 		sigqueue = &p->p_sigqueue;
2132 	} else
2133 		sigqueue = &td->td_sigqueue;
2134 
2135 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2136 
2137 	/*
2138 	 * If the signal is being ignored,
2139 	 * then we forget about it immediately.
2140 	 * (Note: we don't set SIGCONT in ps_sigignore,
2141 	 * and if it is set to SIG_IGN,
2142 	 * action will be SIG_DFL here.)
2143 	 */
2144 	mtx_lock(&ps->ps_mtx);
2145 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2146 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2147 
2148 		mtx_unlock(&ps->ps_mtx);
2149 		if (ksi && (ksi->ksi_flags & KSI_INS))
2150 			ksiginfo_tryfree(ksi);
2151 		return (ret);
2152 	}
2153 	if (SIGISMEMBER(td->td_sigmask, sig))
2154 		action = SIG_HOLD;
2155 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2156 		action = SIG_CATCH;
2157 	else
2158 		action = SIG_DFL;
2159 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2160 		intrval = EINTR;
2161 	else
2162 		intrval = ERESTART;
2163 	mtx_unlock(&ps->ps_mtx);
2164 
2165 	if (prop & SIGPROP_CONT)
2166 		sigqueue_delete_stopmask_proc(p);
2167 	else if (prop & SIGPROP_STOP) {
2168 		/*
2169 		 * If sending a tty stop signal to a member of an orphaned
2170 		 * process group, discard the signal here if the action
2171 		 * is default; don't stop the process below if sleeping,
2172 		 * and don't clear any pending SIGCONT.
2173 		 */
2174 		if ((prop & SIGPROP_TTYSTOP) &&
2175 		    (p->p_pgrp->pg_jobc == 0) &&
2176 		    (action == SIG_DFL)) {
2177 			if (ksi && (ksi->ksi_flags & KSI_INS))
2178 				ksiginfo_tryfree(ksi);
2179 			return (ret);
2180 		}
2181 		sigqueue_delete_proc(p, SIGCONT);
2182 		if (p->p_flag & P_CONTINUED) {
2183 			p->p_flag &= ~P_CONTINUED;
2184 			PROC_LOCK(p->p_pptr);
2185 			sigqueue_take(p->p_ksi);
2186 			PROC_UNLOCK(p->p_pptr);
2187 		}
2188 	}
2189 
2190 	ret = sigqueue_add(sigqueue, sig, ksi);
2191 	if (ret != 0)
2192 		return (ret);
2193 	signotify(td);
2194 	/*
2195 	 * Defer further processing for signals which are held,
2196 	 * except that stopped processes must be continued by SIGCONT.
2197 	 */
2198 	if (action == SIG_HOLD &&
2199 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2200 		return (ret);
2201 
2202 	/* SIGKILL: Remove procfs STOPEVENTs. */
2203 	if (sig == SIGKILL) {
2204 		/* from procfs_ioctl.c: PIOCBIC */
2205 		p->p_stops = 0;
2206 		/* from procfs_ioctl.c: PIOCCONT */
2207 		p->p_step = 0;
2208 		wakeup(&p->p_step);
2209 	}
2210 	/*
2211 	 * Some signals have a process-wide effect and a per-thread
2212 	 * component.  Most processing occurs when the process next
2213 	 * tries to cross the user boundary, however there are some
2214 	 * times when processing needs to be done immediately, such as
2215 	 * waking up threads so that they can cross the user boundary.
2216 	 * We try to do the per-process part here.
2217 	 */
2218 	if (P_SHOULDSTOP(p)) {
2219 		KASSERT(!(p->p_flag & P_WEXIT),
2220 		    ("signal to stopped but exiting process"));
2221 		if (sig == SIGKILL) {
2222 			/*
2223 			 * If traced process is already stopped,
2224 			 * then no further action is necessary.
2225 			 */
2226 			if (p->p_flag & P_TRACED)
2227 				goto out;
2228 			/*
2229 			 * SIGKILL sets process running.
2230 			 * It will die elsewhere.
2231 			 * All threads must be restarted.
2232 			 */
2233 			p->p_flag &= ~P_STOPPED_SIG;
2234 			goto runfast;
2235 		}
2236 
2237 		if (prop & SIGPROP_CONT) {
2238 			/*
2239 			 * If traced process is already stopped,
2240 			 * then no further action is necessary.
2241 			 */
2242 			if (p->p_flag & P_TRACED)
2243 				goto out;
2244 			/*
2245 			 * If SIGCONT is default (or ignored), we continue the
2246 			 * process but don't leave the signal in sigqueue as
2247 			 * it has no further action.  If SIGCONT is held, we
2248 			 * continue the process and leave the signal in
2249 			 * sigqueue.  If the process catches SIGCONT, let it
2250 			 * handle the signal itself.  If it isn't waiting on
2251 			 * an event, it goes back to run state.
2252 			 * Otherwise, process goes back to sleep state.
2253 			 */
2254 			p->p_flag &= ~P_STOPPED_SIG;
2255 			PROC_SLOCK(p);
2256 			if (p->p_numthreads == p->p_suspcount) {
2257 				PROC_SUNLOCK(p);
2258 				p->p_flag |= P_CONTINUED;
2259 				p->p_xsig = SIGCONT;
2260 				PROC_LOCK(p->p_pptr);
2261 				childproc_continued(p);
2262 				PROC_UNLOCK(p->p_pptr);
2263 				PROC_SLOCK(p);
2264 			}
2265 			if (action == SIG_DFL) {
2266 				thread_unsuspend(p);
2267 				PROC_SUNLOCK(p);
2268 				sigqueue_delete(sigqueue, sig);
2269 				goto out;
2270 			}
2271 			if (action == SIG_CATCH) {
2272 				/*
2273 				 * The process wants to catch it so it needs
2274 				 * to run at least one thread, but which one?
2275 				 */
2276 				PROC_SUNLOCK(p);
2277 				goto runfast;
2278 			}
2279 			/*
2280 			 * The signal is not ignored or caught.
2281 			 */
2282 			thread_unsuspend(p);
2283 			PROC_SUNLOCK(p);
2284 			goto out;
2285 		}
2286 
2287 		if (prop & SIGPROP_STOP) {
2288 			/*
2289 			 * If traced process is already stopped,
2290 			 * then no further action is necessary.
2291 			 */
2292 			if (p->p_flag & P_TRACED)
2293 				goto out;
2294 			/*
2295 			 * Already stopped, don't need to stop again
2296 			 * (If we did the shell could get confused).
2297 			 * Just make sure the signal STOP bit set.
2298 			 */
2299 			p->p_flag |= P_STOPPED_SIG;
2300 			sigqueue_delete(sigqueue, sig);
2301 			goto out;
2302 		}
2303 
2304 		/*
2305 		 * All other kinds of signals:
2306 		 * If a thread is sleeping interruptibly, simulate a
2307 		 * wakeup so that when it is continued it will be made
2308 		 * runnable and can look at the signal.  However, don't make
2309 		 * the PROCESS runnable, leave it stopped.
2310 		 * It may run a bit until it hits a thread_suspend_check().
2311 		 */
2312 		wakeup_swapper = 0;
2313 		PROC_SLOCK(p);
2314 		thread_lock(td);
2315 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2316 			wakeup_swapper = sleepq_abort(td, intrval);
2317 		thread_unlock(td);
2318 		PROC_SUNLOCK(p);
2319 		if (wakeup_swapper)
2320 			kick_proc0();
2321 		goto out;
2322 		/*
2323 		 * Mutexes are short lived. Threads waiting on them will
2324 		 * hit thread_suspend_check() soon.
2325 		 */
2326 	} else if (p->p_state == PRS_NORMAL) {
2327 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2328 			tdsigwakeup(td, sig, action, intrval);
2329 			goto out;
2330 		}
2331 
2332 		MPASS(action == SIG_DFL);
2333 
2334 		if (prop & SIGPROP_STOP) {
2335 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2336 				goto out;
2337 			p->p_flag |= P_STOPPED_SIG;
2338 			p->p_xsig = sig;
2339 			PROC_SLOCK(p);
2340 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2341 			if (p->p_numthreads == p->p_suspcount) {
2342 				/*
2343 				 * only thread sending signal to another
2344 				 * process can reach here, if thread is sending
2345 				 * signal to its process, because thread does
2346 				 * not suspend itself here, p_numthreads
2347 				 * should never be equal to p_suspcount.
2348 				 */
2349 				thread_stopped(p);
2350 				PROC_SUNLOCK(p);
2351 				sigqueue_delete_proc(p, p->p_xsig);
2352 			} else
2353 				PROC_SUNLOCK(p);
2354 			if (wakeup_swapper)
2355 				kick_proc0();
2356 			goto out;
2357 		}
2358 	} else {
2359 		/* Not in "NORMAL" state. discard the signal. */
2360 		sigqueue_delete(sigqueue, sig);
2361 		goto out;
2362 	}
2363 
2364 	/*
2365 	 * The process is not stopped so we need to apply the signal to all the
2366 	 * running threads.
2367 	 */
2368 runfast:
2369 	tdsigwakeup(td, sig, action, intrval);
2370 	PROC_SLOCK(p);
2371 	thread_unsuspend(p);
2372 	PROC_SUNLOCK(p);
2373 out:
2374 	/* If we jump here, proc slock should not be owned. */
2375 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2376 	return (ret);
2377 }
2378 
2379 /*
2380  * The force of a signal has been directed against a single
2381  * thread.  We need to see what we can do about knocking it
2382  * out of any sleep it may be in etc.
2383  */
2384 static void
2385 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2386 {
2387 	struct proc *p = td->td_proc;
2388 	int prop;
2389 	int wakeup_swapper;
2390 
2391 	wakeup_swapper = 0;
2392 	PROC_LOCK_ASSERT(p, MA_OWNED);
2393 	prop = sigprop(sig);
2394 
2395 	PROC_SLOCK(p);
2396 	thread_lock(td);
2397 	/*
2398 	 * Bring the priority of a thread up if we want it to get
2399 	 * killed in this lifetime.  Be careful to avoid bumping the
2400 	 * priority of the idle thread, since we still allow to signal
2401 	 * kernel processes.
2402 	 */
2403 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2404 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2405 		sched_prio(td, PUSER);
2406 	if (TD_ON_SLEEPQ(td)) {
2407 		/*
2408 		 * If thread is sleeping uninterruptibly
2409 		 * we can't interrupt the sleep... the signal will
2410 		 * be noticed when the process returns through
2411 		 * trap() or syscall().
2412 		 */
2413 		if ((td->td_flags & TDF_SINTR) == 0)
2414 			goto out;
2415 		/*
2416 		 * If SIGCONT is default (or ignored) and process is
2417 		 * asleep, we are finished; the process should not
2418 		 * be awakened.
2419 		 */
2420 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2421 			thread_unlock(td);
2422 			PROC_SUNLOCK(p);
2423 			sigqueue_delete(&p->p_sigqueue, sig);
2424 			/*
2425 			 * It may be on either list in this state.
2426 			 * Remove from both for now.
2427 			 */
2428 			sigqueue_delete(&td->td_sigqueue, sig);
2429 			return;
2430 		}
2431 
2432 		/*
2433 		 * Don't awaken a sleeping thread for SIGSTOP if the
2434 		 * STOP signal is deferred.
2435 		 */
2436 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2437 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2438 			goto out;
2439 
2440 		/*
2441 		 * Give low priority threads a better chance to run.
2442 		 */
2443 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2444 			sched_prio(td, PUSER);
2445 
2446 		wakeup_swapper = sleepq_abort(td, intrval);
2447 	} else {
2448 		/*
2449 		 * Other states do nothing with the signal immediately,
2450 		 * other than kicking ourselves if we are running.
2451 		 * It will either never be noticed, or noticed very soon.
2452 		 */
2453 #ifdef SMP
2454 		if (TD_IS_RUNNING(td) && td != curthread)
2455 			forward_signal(td);
2456 #endif
2457 	}
2458 out:
2459 	PROC_SUNLOCK(p);
2460 	thread_unlock(td);
2461 	if (wakeup_swapper)
2462 		kick_proc0();
2463 }
2464 
2465 static int
2466 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2467 {
2468 	struct thread *td2;
2469 	int wakeup_swapper;
2470 
2471 	PROC_LOCK_ASSERT(p, MA_OWNED);
2472 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2473 	MPASS(sending || td == curthread);
2474 
2475 	wakeup_swapper = 0;
2476 	FOREACH_THREAD_IN_PROC(p, td2) {
2477 		thread_lock(td2);
2478 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2479 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2480 		    (td2->td_flags & TDF_SINTR)) {
2481 			if (td2->td_flags & TDF_SBDRY) {
2482 				/*
2483 				 * Once a thread is asleep with
2484 				 * TDF_SBDRY and without TDF_SERESTART
2485 				 * or TDF_SEINTR set, it should never
2486 				 * become suspended due to this check.
2487 				 */
2488 				KASSERT(!TD_IS_SUSPENDED(td2),
2489 				    ("thread with deferred stops suspended"));
2490 				if (TD_SBDRY_INTR(td2))
2491 					wakeup_swapper |= sleepq_abort(td2,
2492 					    TD_SBDRY_ERRNO(td2));
2493 			} else if (!TD_IS_SUSPENDED(td2)) {
2494 				thread_suspend_one(td2);
2495 			}
2496 		} else if (!TD_IS_SUSPENDED(td2)) {
2497 			if (sending || td != td2)
2498 				td2->td_flags |= TDF_ASTPENDING;
2499 #ifdef SMP
2500 			if (TD_IS_RUNNING(td2) && td2 != td)
2501 				forward_signal(td2);
2502 #endif
2503 		}
2504 		thread_unlock(td2);
2505 	}
2506 	return (wakeup_swapper);
2507 }
2508 
2509 /*
2510  * Stop the process for an event deemed interesting to the debugger. If si is
2511  * non-NULL, this is a signal exchange; the new signal requested by the
2512  * debugger will be returned for handling. If si is NULL, this is some other
2513  * type of interesting event. The debugger may request a signal be delivered in
2514  * that case as well, however it will be deferred until it can be handled.
2515  */
2516 int
2517 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2518 {
2519 	struct proc *p = td->td_proc;
2520 	struct thread *td2;
2521 	ksiginfo_t ksi;
2522 	int prop;
2523 
2524 	PROC_LOCK_ASSERT(p, MA_OWNED);
2525 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2526 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2527 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2528 
2529 	td->td_xsig = sig;
2530 
2531 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2532 		td->td_dbgflags |= TDB_XSIG;
2533 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2534 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2535 		PROC_SLOCK(p);
2536 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2537 			if (P_KILLED(p)) {
2538 				/*
2539 				 * Ensure that, if we've been PT_KILLed, the
2540 				 * exit status reflects that. Another thread
2541 				 * may also be in ptracestop(), having just
2542 				 * received the SIGKILL, but this thread was
2543 				 * unsuspended first.
2544 				 */
2545 				td->td_dbgflags &= ~TDB_XSIG;
2546 				td->td_xsig = SIGKILL;
2547 				p->p_ptevents = 0;
2548 				break;
2549 			}
2550 			if (p->p_flag & P_SINGLE_EXIT &&
2551 			    !(td->td_dbgflags & TDB_EXIT)) {
2552 				/*
2553 				 * Ignore ptrace stops except for thread exit
2554 				 * events when the process exits.
2555 				 */
2556 				td->td_dbgflags &= ~TDB_XSIG;
2557 				PROC_SUNLOCK(p);
2558 				return (0);
2559 			}
2560 
2561 			/*
2562 			 * Make wait(2) work.  Ensure that right after the
2563 			 * attach, the thread which was decided to become the
2564 			 * leader of attach gets reported to the waiter.
2565 			 * Otherwise, just avoid overwriting another thread's
2566 			 * assignment to p_xthread.  If another thread has
2567 			 * already set p_xthread, the current thread will get
2568 			 * a chance to report itself upon the next iteration.
2569 			 */
2570 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2571 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2572 			    p->p_xthread == NULL)) {
2573 				p->p_xsig = sig;
2574 				p->p_xthread = td;
2575 
2576 				/*
2577 				 * If we are on sleepqueue already,
2578 				 * let sleepqueue code decide if it
2579 				 * needs to go sleep after attach.
2580 				 */
2581 				if (td->td_wchan == NULL)
2582 					td->td_dbgflags &= ~TDB_FSTP;
2583 
2584 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2585 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2586 				sig_suspend_threads(td, p, 0);
2587 			}
2588 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2589 				td->td_dbgflags &= ~TDB_STOPATFORK;
2590 			}
2591 stopme:
2592 			thread_suspend_switch(td, p);
2593 			if (p->p_xthread == td)
2594 				p->p_xthread = NULL;
2595 			if (!(p->p_flag & P_TRACED))
2596 				break;
2597 			if (td->td_dbgflags & TDB_SUSPEND) {
2598 				if (p->p_flag & P_SINGLE_EXIT)
2599 					break;
2600 				goto stopme;
2601 			}
2602 		}
2603 		PROC_SUNLOCK(p);
2604 	}
2605 
2606 	if (si != NULL && sig == td->td_xsig) {
2607 		/* Parent wants us to take the original signal unchanged. */
2608 		si->ksi_flags |= KSI_HEAD;
2609 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2610 			si->ksi_signo = 0;
2611 	} else if (td->td_xsig != 0) {
2612 		/*
2613 		 * If parent wants us to take a new signal, then it will leave
2614 		 * it in td->td_xsig; otherwise we just look for signals again.
2615 		 */
2616 		ksiginfo_init(&ksi);
2617 		ksi.ksi_signo = td->td_xsig;
2618 		ksi.ksi_flags |= KSI_PTRACE;
2619 		prop = sigprop(td->td_xsig);
2620 		td2 = sigtd(p, td->td_xsig, prop);
2621 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2622 		if (td != td2)
2623 			return (0);
2624 	}
2625 
2626 	return (td->td_xsig);
2627 }
2628 
2629 static void
2630 reschedule_signals(struct proc *p, sigset_t block, int flags)
2631 {
2632 	struct sigacts *ps;
2633 	struct thread *td;
2634 	int sig;
2635 
2636 	PROC_LOCK_ASSERT(p, MA_OWNED);
2637 	ps = p->p_sigacts;
2638 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2639 	    MA_OWNED : MA_NOTOWNED);
2640 	if (SIGISEMPTY(p->p_siglist))
2641 		return;
2642 	SIGSETAND(block, p->p_siglist);
2643 	while ((sig = sig_ffs(&block)) != 0) {
2644 		SIGDELSET(block, sig);
2645 		td = sigtd(p, sig, 0);
2646 		signotify(td);
2647 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2648 			mtx_lock(&ps->ps_mtx);
2649 		if (p->p_flag & P_TRACED ||
2650 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2651 		    !SIGISMEMBER(td->td_sigmask, sig)))
2652 			tdsigwakeup(td, sig, SIG_CATCH,
2653 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2654 			     ERESTART));
2655 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2656 			mtx_unlock(&ps->ps_mtx);
2657 	}
2658 }
2659 
2660 void
2661 tdsigcleanup(struct thread *td)
2662 {
2663 	struct proc *p;
2664 	sigset_t unblocked;
2665 
2666 	p = td->td_proc;
2667 	PROC_LOCK_ASSERT(p, MA_OWNED);
2668 
2669 	sigqueue_flush(&td->td_sigqueue);
2670 	if (p->p_numthreads == 1)
2671 		return;
2672 
2673 	/*
2674 	 * Since we cannot handle signals, notify signal post code
2675 	 * about this by filling the sigmask.
2676 	 *
2677 	 * Also, if needed, wake up thread(s) that do not block the
2678 	 * same signals as the exiting thread, since the thread might
2679 	 * have been selected for delivery and woken up.
2680 	 */
2681 	SIGFILLSET(unblocked);
2682 	SIGSETNAND(unblocked, td->td_sigmask);
2683 	SIGFILLSET(td->td_sigmask);
2684 	reschedule_signals(p, unblocked, 0);
2685 
2686 }
2687 
2688 static int
2689 sigdeferstop_curr_flags(int cflags)
2690 {
2691 
2692 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2693 	    (cflags & TDF_SBDRY) != 0);
2694 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2695 }
2696 
2697 /*
2698  * Defer the delivery of SIGSTOP for the current thread, according to
2699  * the requested mode.  Returns previous flags, which must be restored
2700  * by sigallowstop().
2701  *
2702  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2703  * cleared by the current thread, which allow the lock-less read-only
2704  * accesses below.
2705  */
2706 int
2707 sigdeferstop_impl(int mode)
2708 {
2709 	struct thread *td;
2710 	int cflags, nflags;
2711 
2712 	td = curthread;
2713 	cflags = sigdeferstop_curr_flags(td->td_flags);
2714 	switch (mode) {
2715 	case SIGDEFERSTOP_NOP:
2716 		nflags = cflags;
2717 		break;
2718 	case SIGDEFERSTOP_OFF:
2719 		nflags = 0;
2720 		break;
2721 	case SIGDEFERSTOP_SILENT:
2722 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2723 		break;
2724 	case SIGDEFERSTOP_EINTR:
2725 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2726 		break;
2727 	case SIGDEFERSTOP_ERESTART:
2728 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2729 		break;
2730 	default:
2731 		panic("sigdeferstop: invalid mode %x", mode);
2732 		break;
2733 	}
2734 	if (cflags == nflags)
2735 		return (SIGDEFERSTOP_VAL_NCHG);
2736 	thread_lock(td);
2737 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2738 	thread_unlock(td);
2739 	return (cflags);
2740 }
2741 
2742 /*
2743  * Restores the STOP handling mode, typically permitting the delivery
2744  * of SIGSTOP for the current thread.  This does not immediately
2745  * suspend if a stop was posted.  Instead, the thread will suspend
2746  * either via ast() or a subsequent interruptible sleep.
2747  */
2748 void
2749 sigallowstop_impl(int prev)
2750 {
2751 	struct thread *td;
2752 	int cflags;
2753 
2754 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2755 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2756 	    ("sigallowstop: incorrect previous mode %x", prev));
2757 	td = curthread;
2758 	cflags = sigdeferstop_curr_flags(td->td_flags);
2759 	if (cflags != prev) {
2760 		thread_lock(td);
2761 		td->td_flags = (td->td_flags & ~cflags) | prev;
2762 		thread_unlock(td);
2763 	}
2764 }
2765 
2766 /*
2767  * If the current process has received a signal (should be caught or cause
2768  * termination, should interrupt current syscall), return the signal number.
2769  * Stop signals with default action are processed immediately, then cleared;
2770  * they aren't returned.  This is checked after each entry to the system for
2771  * a syscall or trap (though this can usually be done without calling issignal
2772  * by checking the pending signal masks in cursig.) The normal call
2773  * sequence is
2774  *
2775  *	while (sig = cursig(curthread))
2776  *		postsig(sig);
2777  */
2778 static int
2779 issignal(struct thread *td)
2780 {
2781 	struct proc *p;
2782 	struct sigacts *ps;
2783 	struct sigqueue *queue;
2784 	sigset_t sigpending;
2785 	ksiginfo_t ksi;
2786 	int prop, sig, traced;
2787 
2788 	p = td->td_proc;
2789 	ps = p->p_sigacts;
2790 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2791 	PROC_LOCK_ASSERT(p, MA_OWNED);
2792 	for (;;) {
2793 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2794 
2795 		sigpending = td->td_sigqueue.sq_signals;
2796 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2797 		SIGSETNAND(sigpending, td->td_sigmask);
2798 
2799 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2800 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2801 			SIG_STOPSIGMASK(sigpending);
2802 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2803 			return (0);
2804 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2805 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2806 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2807 			/*
2808 			 * If debugger just attached, always consume
2809 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2810 			 * execute the debugger attach ritual in
2811 			 * order.
2812 			 */
2813 			sig = SIGSTOP;
2814 			td->td_dbgflags |= TDB_FSTP;
2815 		} else {
2816 			sig = sig_ffs(&sigpending);
2817 		}
2818 
2819 		if (p->p_stops & S_SIG) {
2820 			mtx_unlock(&ps->ps_mtx);
2821 			stopevent(p, S_SIG, sig);
2822 			mtx_lock(&ps->ps_mtx);
2823 		}
2824 
2825 		/*
2826 		 * We should see pending but ignored signals
2827 		 * only if P_TRACED was on when they were posted.
2828 		 */
2829 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2830 			sigqueue_delete(&td->td_sigqueue, sig);
2831 			sigqueue_delete(&p->p_sigqueue, sig);
2832 			continue;
2833 		}
2834 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2835 			/*
2836 			 * If traced, always stop.
2837 			 * Remove old signal from queue before the stop.
2838 			 * XXX shrug off debugger, it causes siginfo to
2839 			 * be thrown away.
2840 			 */
2841 			queue = &td->td_sigqueue;
2842 			ksiginfo_init(&ksi);
2843 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2844 				queue = &p->p_sigqueue;
2845 				sigqueue_get(queue, sig, &ksi);
2846 			}
2847 			td->td_si = ksi.ksi_info;
2848 
2849 			mtx_unlock(&ps->ps_mtx);
2850 			sig = ptracestop(td, sig, &ksi);
2851 			mtx_lock(&ps->ps_mtx);
2852 
2853 			td->td_si.si_signo = 0;
2854 
2855 			/*
2856 			 * Keep looking if the debugger discarded or
2857 			 * replaced the signal.
2858 			 */
2859 			if (sig == 0)
2860 				continue;
2861 
2862 			/*
2863 			 * If the signal became masked, re-queue it.
2864 			 */
2865 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2866 				ksi.ksi_flags |= KSI_HEAD;
2867 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2868 				continue;
2869 			}
2870 
2871 			/*
2872 			 * If the traced bit got turned off, requeue
2873 			 * the signal and go back up to the top to
2874 			 * rescan signals.  This ensures that p_sig*
2875 			 * and p_sigact are consistent.
2876 			 */
2877 			if ((p->p_flag & P_TRACED) == 0) {
2878 				ksi.ksi_flags |= KSI_HEAD;
2879 				sigqueue_add(queue, sig, &ksi);
2880 				continue;
2881 			}
2882 		}
2883 
2884 		prop = sigprop(sig);
2885 
2886 		/*
2887 		 * Decide whether the signal should be returned.
2888 		 * Return the signal's number, or fall through
2889 		 * to clear it from the pending mask.
2890 		 */
2891 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2892 
2893 		case (intptr_t)SIG_DFL:
2894 			/*
2895 			 * Don't take default actions on system processes.
2896 			 */
2897 			if (p->p_pid <= 1) {
2898 #ifdef DIAGNOSTIC
2899 				/*
2900 				 * Are you sure you want to ignore SIGSEGV
2901 				 * in init? XXX
2902 				 */
2903 				printf("Process (pid %lu) got signal %d\n",
2904 					(u_long)p->p_pid, sig);
2905 #endif
2906 				break;		/* == ignore */
2907 			}
2908 			/*
2909 			 * If there is a pending stop signal to process with
2910 			 * default action, stop here, then clear the signal.
2911 			 * Traced or exiting processes should ignore stops.
2912 			 * Additionally, a member of an orphaned process group
2913 			 * should ignore tty stops.
2914 			 */
2915 			if (prop & SIGPROP_STOP) {
2916 				if (p->p_flag &
2917 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2918 				    (p->p_pgrp->pg_jobc == 0 &&
2919 				     prop & SIGPROP_TTYSTOP))
2920 					break;	/* == ignore */
2921 				if (TD_SBDRY_INTR(td)) {
2922 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2923 					    ("lost TDF_SBDRY"));
2924 					return (-1);
2925 				}
2926 				mtx_unlock(&ps->ps_mtx);
2927 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2928 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2929 				sigqueue_delete(&td->td_sigqueue, sig);
2930 				sigqueue_delete(&p->p_sigqueue, sig);
2931 				p->p_flag |= P_STOPPED_SIG;
2932 				p->p_xsig = sig;
2933 				PROC_SLOCK(p);
2934 				sig_suspend_threads(td, p, 0);
2935 				thread_suspend_switch(td, p);
2936 				PROC_SUNLOCK(p);
2937 				mtx_lock(&ps->ps_mtx);
2938 				goto next;
2939 			} else if (prop & SIGPROP_IGNORE) {
2940 				/*
2941 				 * Except for SIGCONT, shouldn't get here.
2942 				 * Default action is to ignore; drop it.
2943 				 */
2944 				break;		/* == ignore */
2945 			} else
2946 				return (sig);
2947 			/*NOTREACHED*/
2948 
2949 		case (intptr_t)SIG_IGN:
2950 			/*
2951 			 * Masking above should prevent us ever trying
2952 			 * to take action on an ignored signal other
2953 			 * than SIGCONT, unless process is traced.
2954 			 */
2955 			if ((prop & SIGPROP_CONT) == 0 &&
2956 			    (p->p_flag & P_TRACED) == 0)
2957 				printf("issignal\n");
2958 			break;		/* == ignore */
2959 
2960 		default:
2961 			/*
2962 			 * This signal has an action, let
2963 			 * postsig() process it.
2964 			 */
2965 			return (sig);
2966 		}
2967 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2968 		sigqueue_delete(&p->p_sigqueue, sig);
2969 next:;
2970 	}
2971 	/* NOTREACHED */
2972 }
2973 
2974 void
2975 thread_stopped(struct proc *p)
2976 {
2977 	int n;
2978 
2979 	PROC_LOCK_ASSERT(p, MA_OWNED);
2980 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2981 	n = p->p_suspcount;
2982 	if (p == curproc)
2983 		n++;
2984 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2985 		PROC_SUNLOCK(p);
2986 		p->p_flag &= ~P_WAITED;
2987 		PROC_LOCK(p->p_pptr);
2988 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2989 			CLD_TRAPPED : CLD_STOPPED);
2990 		PROC_UNLOCK(p->p_pptr);
2991 		PROC_SLOCK(p);
2992 	}
2993 }
2994 
2995 /*
2996  * Take the action for the specified signal
2997  * from the current set of pending signals.
2998  */
2999 int
3000 postsig(int sig)
3001 {
3002 	struct thread *td;
3003 	struct proc *p;
3004 	struct sigacts *ps;
3005 	sig_t action;
3006 	ksiginfo_t ksi;
3007 	sigset_t returnmask;
3008 
3009 	KASSERT(sig != 0, ("postsig"));
3010 
3011 	td = curthread;
3012 	p = td->td_proc;
3013 	PROC_LOCK_ASSERT(p, MA_OWNED);
3014 	ps = p->p_sigacts;
3015 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3016 	ksiginfo_init(&ksi);
3017 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3018 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3019 		return (0);
3020 	ksi.ksi_signo = sig;
3021 	if (ksi.ksi_code == SI_TIMER)
3022 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3023 	action = ps->ps_sigact[_SIG_IDX(sig)];
3024 #ifdef KTRACE
3025 	if (KTRPOINT(td, KTR_PSIG))
3026 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3027 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3028 #endif
3029 	if ((p->p_stops & S_SIG) != 0) {
3030 		mtx_unlock(&ps->ps_mtx);
3031 		stopevent(p, S_SIG, sig);
3032 		mtx_lock(&ps->ps_mtx);
3033 	}
3034 
3035 	if (action == SIG_DFL) {
3036 		/*
3037 		 * Default action, where the default is to kill
3038 		 * the process.  (Other cases were ignored above.)
3039 		 */
3040 		mtx_unlock(&ps->ps_mtx);
3041 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3042 		sigexit(td, sig);
3043 		/* NOTREACHED */
3044 	} else {
3045 		/*
3046 		 * If we get here, the signal must be caught.
3047 		 */
3048 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3049 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3050 		    ("postsig action: blocked sig %d", sig));
3051 
3052 		/*
3053 		 * Set the new mask value and also defer further
3054 		 * occurrences of this signal.
3055 		 *
3056 		 * Special case: user has done a sigsuspend.  Here the
3057 		 * current mask is not of interest, but rather the
3058 		 * mask from before the sigsuspend is what we want
3059 		 * restored after the signal processing is completed.
3060 		 */
3061 		if (td->td_pflags & TDP_OLDMASK) {
3062 			returnmask = td->td_oldsigmask;
3063 			td->td_pflags &= ~TDP_OLDMASK;
3064 		} else
3065 			returnmask = td->td_sigmask;
3066 
3067 		if (p->p_sig == sig) {
3068 			p->p_sig = 0;
3069 		}
3070 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3071 		postsig_done(sig, td, ps);
3072 	}
3073 	return (1);
3074 }
3075 
3076 void
3077 proc_wkilled(struct proc *p)
3078 {
3079 
3080 	PROC_LOCK_ASSERT(p, MA_OWNED);
3081 	if ((p->p_flag & P_WKILLED) == 0) {
3082 		p->p_flag |= P_WKILLED;
3083 		/*
3084 		 * Notify swapper that there is a process to swap in.
3085 		 * The notification is racy, at worst it would take 10
3086 		 * seconds for the swapper process to notice.
3087 		 */
3088 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3089 			wakeup(&proc0);
3090 	}
3091 }
3092 
3093 /*
3094  * Kill the current process for stated reason.
3095  */
3096 void
3097 killproc(struct proc *p, char *why)
3098 {
3099 
3100 	PROC_LOCK_ASSERT(p, MA_OWNED);
3101 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3102 	    p->p_comm);
3103 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3104 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3105 	    p->p_ucred->cr_uid, why);
3106 	proc_wkilled(p);
3107 	kern_psignal(p, SIGKILL);
3108 }
3109 
3110 /*
3111  * Force the current process to exit with the specified signal, dumping core
3112  * if appropriate.  We bypass the normal tests for masked and caught signals,
3113  * allowing unrecoverable failures to terminate the process without changing
3114  * signal state.  Mark the accounting record with the signal termination.
3115  * If dumping core, save the signal number for the debugger.  Calls exit and
3116  * does not return.
3117  */
3118 void
3119 sigexit(struct thread *td, int sig)
3120 {
3121 	struct proc *p = td->td_proc;
3122 
3123 	PROC_LOCK_ASSERT(p, MA_OWNED);
3124 	p->p_acflag |= AXSIG;
3125 	/*
3126 	 * We must be single-threading to generate a core dump.  This
3127 	 * ensures that the registers in the core file are up-to-date.
3128 	 * Also, the ELF dump handler assumes that the thread list doesn't
3129 	 * change out from under it.
3130 	 *
3131 	 * XXX If another thread attempts to single-thread before us
3132 	 *     (e.g. via fork()), we won't get a dump at all.
3133 	 */
3134 	if ((sigprop(sig) & SIGPROP_CORE) &&
3135 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3136 		p->p_sig = sig;
3137 		/*
3138 		 * Log signals which would cause core dumps
3139 		 * (Log as LOG_INFO to appease those who don't want
3140 		 * these messages.)
3141 		 * XXX : Todo, as well as euid, write out ruid too
3142 		 * Note that coredump() drops proc lock.
3143 		 */
3144 		if (coredump(td) == 0)
3145 			sig |= WCOREFLAG;
3146 		if (kern_logsigexit)
3147 			log(LOG_INFO,
3148 			    "pid %d (%s), jid %d, uid %d: exited on "
3149 			    "signal %d%s\n", p->p_pid, p->p_comm,
3150 			    p->p_ucred->cr_prison->pr_id,
3151 			    td->td_ucred->cr_uid,
3152 			    sig &~ WCOREFLAG,
3153 			    sig & WCOREFLAG ? " (core dumped)" : "");
3154 	} else
3155 		PROC_UNLOCK(p);
3156 	exit1(td, 0, sig);
3157 	/* NOTREACHED */
3158 }
3159 
3160 /*
3161  * Send queued SIGCHLD to parent when child process's state
3162  * is changed.
3163  */
3164 static void
3165 sigparent(struct proc *p, int reason, int status)
3166 {
3167 	PROC_LOCK_ASSERT(p, MA_OWNED);
3168 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3169 
3170 	if (p->p_ksi != NULL) {
3171 		p->p_ksi->ksi_signo  = SIGCHLD;
3172 		p->p_ksi->ksi_code   = reason;
3173 		p->p_ksi->ksi_status = status;
3174 		p->p_ksi->ksi_pid    = p->p_pid;
3175 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3176 		if (KSI_ONQ(p->p_ksi))
3177 			return;
3178 	}
3179 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3180 }
3181 
3182 static void
3183 childproc_jobstate(struct proc *p, int reason, int sig)
3184 {
3185 	struct sigacts *ps;
3186 
3187 	PROC_LOCK_ASSERT(p, MA_OWNED);
3188 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3189 
3190 	/*
3191 	 * Wake up parent sleeping in kern_wait(), also send
3192 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3193 	 * that parent will awake, because parent may masked
3194 	 * the signal.
3195 	 */
3196 	p->p_pptr->p_flag |= P_STATCHILD;
3197 	wakeup(p->p_pptr);
3198 
3199 	ps = p->p_pptr->p_sigacts;
3200 	mtx_lock(&ps->ps_mtx);
3201 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3202 		mtx_unlock(&ps->ps_mtx);
3203 		sigparent(p, reason, sig);
3204 	} else
3205 		mtx_unlock(&ps->ps_mtx);
3206 }
3207 
3208 void
3209 childproc_stopped(struct proc *p, int reason)
3210 {
3211 
3212 	childproc_jobstate(p, reason, p->p_xsig);
3213 }
3214 
3215 void
3216 childproc_continued(struct proc *p)
3217 {
3218 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3219 }
3220 
3221 void
3222 childproc_exited(struct proc *p)
3223 {
3224 	int reason, status;
3225 
3226 	if (WCOREDUMP(p->p_xsig)) {
3227 		reason = CLD_DUMPED;
3228 		status = WTERMSIG(p->p_xsig);
3229 	} else if (WIFSIGNALED(p->p_xsig)) {
3230 		reason = CLD_KILLED;
3231 		status = WTERMSIG(p->p_xsig);
3232 	} else {
3233 		reason = CLD_EXITED;
3234 		status = p->p_xexit;
3235 	}
3236 	/*
3237 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3238 	 * done in exit1().
3239 	 */
3240 	sigparent(p, reason, status);
3241 }
3242 
3243 #define	MAX_NUM_CORE_FILES 100000
3244 #ifndef NUM_CORE_FILES
3245 #define	NUM_CORE_FILES 5
3246 #endif
3247 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3248 static int num_cores = NUM_CORE_FILES;
3249 
3250 static int
3251 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3252 {
3253 	int error;
3254 	int new_val;
3255 
3256 	new_val = num_cores;
3257 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3258 	if (error != 0 || req->newptr == NULL)
3259 		return (error);
3260 	if (new_val > MAX_NUM_CORE_FILES)
3261 		new_val = MAX_NUM_CORE_FILES;
3262 	if (new_val < 0)
3263 		new_val = 0;
3264 	num_cores = new_val;
3265 	return (0);
3266 }
3267 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3268 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3269 	    "Maximum number of generated process corefiles while using index format");
3270 
3271 #define	GZIP_SUFFIX	".gz"
3272 #define	ZSTD_SUFFIX	".zst"
3273 
3274 int compress_user_cores = 0;
3275 
3276 static int
3277 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3278 {
3279 	int error, val;
3280 
3281 	val = compress_user_cores;
3282 	error = sysctl_handle_int(oidp, &val, 0, req);
3283 	if (error != 0 || req->newptr == NULL)
3284 		return (error);
3285 	if (val != 0 && !compressor_avail(val))
3286 		return (EINVAL);
3287 	compress_user_cores = val;
3288 	return (error);
3289 }
3290 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3291     0, sizeof(int), sysctl_compress_user_cores, "I",
3292     "Enable compression of user corefiles ("
3293     __XSTRING(COMPRESS_GZIP) " = gzip, "
3294     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3295 
3296 int compress_user_cores_level = 6;
3297 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3298     &compress_user_cores_level, 0,
3299     "Corefile compression level");
3300 
3301 /*
3302  * Protect the access to corefilename[] by allproc_lock.
3303  */
3304 #define	corefilename_lock	allproc_lock
3305 
3306 static char corefilename[MAXPATHLEN] = {"%N.core"};
3307 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3308 
3309 static int
3310 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3311 {
3312 	int error;
3313 
3314 	sx_xlock(&corefilename_lock);
3315 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3316 	    req);
3317 	sx_xunlock(&corefilename_lock);
3318 
3319 	return (error);
3320 }
3321 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3322     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3323     "Process corefile name format string");
3324 
3325 static void
3326 vnode_close_locked(struct thread *td, struct vnode *vp)
3327 {
3328 
3329 	VOP_UNLOCK(vp, 0);
3330 	vn_close(vp, FWRITE, td->td_ucred, td);
3331 }
3332 
3333 /*
3334  * If the core format has a %I in it, then we need to check
3335  * for existing corefiles before defining a name.
3336  * To do this we iterate over 0..ncores to find a
3337  * non-existing core file name to use. If all core files are
3338  * already used we choose the oldest one.
3339  */
3340 static int
3341 corefile_open_last(struct thread *td, char *name, int indexpos,
3342     int indexlen, int ncores, struct vnode **vpp)
3343 {
3344 	struct vnode *oldvp, *nextvp, *vp;
3345 	struct vattr vattr;
3346 	struct nameidata nd;
3347 	int error, i, flags, oflags, cmode;
3348 	char ch;
3349 	struct timespec lasttime;
3350 
3351 	nextvp = oldvp = NULL;
3352 	cmode = S_IRUSR | S_IWUSR;
3353 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3354 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3355 
3356 	for (i = 0; i < ncores; i++) {
3357 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3358 
3359 		ch = name[indexpos + indexlen];
3360 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3361 		    i);
3362 		name[indexpos + indexlen] = ch;
3363 
3364 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3365 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3366 		    NULL);
3367 		if (error != 0)
3368 			break;
3369 
3370 		vp = nd.ni_vp;
3371 		NDFREE(&nd, NDF_ONLY_PNBUF);
3372 		if ((flags & O_CREAT) == O_CREAT) {
3373 			nextvp = vp;
3374 			break;
3375 		}
3376 
3377 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3378 		if (error != 0) {
3379 			vnode_close_locked(td, vp);
3380 			break;
3381 		}
3382 
3383 		if (oldvp == NULL ||
3384 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3385 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3386 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3387 			if (oldvp != NULL)
3388 				vnode_close_locked(td, oldvp);
3389 			oldvp = vp;
3390 			lasttime = vattr.va_mtime;
3391 		} else {
3392 			vnode_close_locked(td, vp);
3393 		}
3394 	}
3395 
3396 	if (oldvp != NULL) {
3397 		if (nextvp == NULL) {
3398 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3399 				error = EFAULT;
3400 				vnode_close_locked(td, oldvp);
3401 			} else {
3402 				nextvp = oldvp;
3403 			}
3404 		} else {
3405 			vnode_close_locked(td, oldvp);
3406 		}
3407 	}
3408 	if (error != 0) {
3409 		if (nextvp != NULL)
3410 			vnode_close_locked(td, oldvp);
3411 	} else {
3412 		*vpp = nextvp;
3413 	}
3414 
3415 	return (error);
3416 }
3417 
3418 /*
3419  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3420  * Expand the name described in corefilename, using name, uid, and pid
3421  * and open/create core file.
3422  * corefilename is a printf-like string, with three format specifiers:
3423  *	%N	name of process ("name")
3424  *	%P	process id (pid)
3425  *	%U	user id (uid)
3426  * For example, "%N.core" is the default; they can be disabled completely
3427  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3428  * This is controlled by the sysctl variable kern.corefile (see above).
3429  */
3430 static int
3431 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3432     int compress, int signum, struct vnode **vpp, char **namep)
3433 {
3434 	struct sbuf sb;
3435 	struct nameidata nd;
3436 	const char *format;
3437 	char *hostname, *name;
3438 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3439 
3440 	hostname = NULL;
3441 	format = corefilename;
3442 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3443 	indexlen = 0;
3444 	indexpos = -1;
3445 	ncores = num_cores;
3446 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3447 	sx_slock(&corefilename_lock);
3448 	for (i = 0; format[i] != '\0'; i++) {
3449 		switch (format[i]) {
3450 		case '%':	/* Format character */
3451 			i++;
3452 			switch (format[i]) {
3453 			case '%':
3454 				sbuf_putc(&sb, '%');
3455 				break;
3456 			case 'H':	/* hostname */
3457 				if (hostname == NULL) {
3458 					hostname = malloc(MAXHOSTNAMELEN,
3459 					    M_TEMP, M_WAITOK);
3460 				}
3461 				getcredhostname(td->td_ucred, hostname,
3462 				    MAXHOSTNAMELEN);
3463 				sbuf_printf(&sb, "%s", hostname);
3464 				break;
3465 			case 'I':	/* autoincrementing index */
3466 				if (indexpos != -1) {
3467 					sbuf_printf(&sb, "%%I");
3468 					break;
3469 				}
3470 
3471 				indexpos = sbuf_len(&sb);
3472 				sbuf_printf(&sb, "%u", ncores - 1);
3473 				indexlen = sbuf_len(&sb) - indexpos;
3474 				break;
3475 			case 'N':	/* process name */
3476 				sbuf_printf(&sb, "%s", comm);
3477 				break;
3478 			case 'P':	/* process id */
3479 				sbuf_printf(&sb, "%u", pid);
3480 				break;
3481 			case 'S':	/* signal number */
3482 				sbuf_printf(&sb, "%i", signum);
3483 				break;
3484 			case 'U':	/* user id */
3485 				sbuf_printf(&sb, "%u", uid);
3486 				break;
3487 			default:
3488 				log(LOG_ERR,
3489 				    "Unknown format character %c in "
3490 				    "corename `%s'\n", format[i], format);
3491 				break;
3492 			}
3493 			break;
3494 		default:
3495 			sbuf_putc(&sb, format[i]);
3496 			break;
3497 		}
3498 	}
3499 	sx_sunlock(&corefilename_lock);
3500 	free(hostname, M_TEMP);
3501 	if (compress == COMPRESS_GZIP)
3502 		sbuf_printf(&sb, GZIP_SUFFIX);
3503 	else if (compress == COMPRESS_ZSTD)
3504 		sbuf_printf(&sb, ZSTD_SUFFIX);
3505 	if (sbuf_error(&sb) != 0) {
3506 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3507 		    "long\n", (long)pid, comm, (u_long)uid);
3508 		sbuf_delete(&sb);
3509 		free(name, M_TEMP);
3510 		return (ENOMEM);
3511 	}
3512 	sbuf_finish(&sb);
3513 	sbuf_delete(&sb);
3514 
3515 	if (indexpos != -1) {
3516 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3517 		    vpp);
3518 		if (error != 0) {
3519 			log(LOG_ERR,
3520 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3521 			    "on initial open test, error = %d\n",
3522 			    pid, comm, uid, name, error);
3523 		}
3524 	} else {
3525 		cmode = S_IRUSR | S_IWUSR;
3526 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3527 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3528 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3529 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3530 			flags |= O_EXCL;
3531 
3532 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3533 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3534 		    NULL);
3535 		if (error == 0) {
3536 			*vpp = nd.ni_vp;
3537 			NDFREE(&nd, NDF_ONLY_PNBUF);
3538 		}
3539 	}
3540 
3541 	if (error != 0) {
3542 #ifdef AUDIT
3543 		audit_proc_coredump(td, name, error);
3544 #endif
3545 		free(name, M_TEMP);
3546 		return (error);
3547 	}
3548 	*namep = name;
3549 	return (0);
3550 }
3551 
3552 /*
3553  * Dump a process' core.  The main routine does some
3554  * policy checking, and creates the name of the coredump;
3555  * then it passes on a vnode and a size limit to the process-specific
3556  * coredump routine if there is one; if there _is not_ one, it returns
3557  * ENOSYS; otherwise it returns the error from the process-specific routine.
3558  */
3559 
3560 static int
3561 coredump(struct thread *td)
3562 {
3563 	struct proc *p = td->td_proc;
3564 	struct ucred *cred = td->td_ucred;
3565 	struct vnode *vp;
3566 	struct flock lf;
3567 	struct vattr vattr;
3568 	int error, error1, locked;
3569 	char *name;			/* name of corefile */
3570 	void *rl_cookie;
3571 	off_t limit;
3572 	char *fullpath, *freepath = NULL;
3573 	struct sbuf *sb;
3574 
3575 	PROC_LOCK_ASSERT(p, MA_OWNED);
3576 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3577 	_STOPEVENT(p, S_CORE, 0);
3578 
3579 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3580 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3581 		PROC_UNLOCK(p);
3582 		return (EFAULT);
3583 	}
3584 
3585 	/*
3586 	 * Note that the bulk of limit checking is done after
3587 	 * the corefile is created.  The exception is if the limit
3588 	 * for corefiles is 0, in which case we don't bother
3589 	 * creating the corefile at all.  This layout means that
3590 	 * a corefile is truncated instead of not being created,
3591 	 * if it is larger than the limit.
3592 	 */
3593 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3594 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3595 		PROC_UNLOCK(p);
3596 		return (EFBIG);
3597 	}
3598 	PROC_UNLOCK(p);
3599 
3600 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3601 	    compress_user_cores, p->p_sig, &vp, &name);
3602 	if (error != 0)
3603 		return (error);
3604 
3605 	/*
3606 	 * Don't dump to non-regular files or files with links.
3607 	 * Do not dump into system files. Effective user must own the corefile.
3608 	 */
3609 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3610 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3611 	    vattr.va_uid != cred->cr_uid) {
3612 		VOP_UNLOCK(vp, 0);
3613 		error = EFAULT;
3614 		goto out;
3615 	}
3616 
3617 	VOP_UNLOCK(vp, 0);
3618 
3619 	/* Postpone other writers, including core dumps of other processes. */
3620 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3621 
3622 	lf.l_whence = SEEK_SET;
3623 	lf.l_start = 0;
3624 	lf.l_len = 0;
3625 	lf.l_type = F_WRLCK;
3626 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3627 
3628 	VATTR_NULL(&vattr);
3629 	vattr.va_size = 0;
3630 	if (set_core_nodump_flag)
3631 		vattr.va_flags = UF_NODUMP;
3632 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3633 	VOP_SETATTR(vp, &vattr, cred);
3634 	VOP_UNLOCK(vp, 0);
3635 	PROC_LOCK(p);
3636 	p->p_acflag |= ACORE;
3637 	PROC_UNLOCK(p);
3638 
3639 	if (p->p_sysent->sv_coredump != NULL) {
3640 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3641 	} else {
3642 		error = ENOSYS;
3643 	}
3644 
3645 	if (locked) {
3646 		lf.l_type = F_UNLCK;
3647 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3648 	}
3649 	vn_rangelock_unlock(vp, rl_cookie);
3650 
3651 	/*
3652 	 * Notify the userland helper that a process triggered a core dump.
3653 	 * This allows the helper to run an automated debugging session.
3654 	 */
3655 	if (error != 0 || coredump_devctl == 0)
3656 		goto out;
3657 	sb = sbuf_new_auto();
3658 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3659 		goto out2;
3660 	sbuf_printf(sb, "comm=\"");
3661 	devctl_safe_quote_sb(sb, fullpath);
3662 	free(freepath, M_TEMP);
3663 	sbuf_printf(sb, "\" core=\"");
3664 
3665 	/*
3666 	 * We can't lookup core file vp directly. When we're replacing a core, and
3667 	 * other random times, we flush the name cache, so it will fail. Instead,
3668 	 * if the path of the core is relative, add the current dir in front if it.
3669 	 */
3670 	if (name[0] != '/') {
3671 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3672 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3673 			free(fullpath, M_TEMP);
3674 			goto out2;
3675 		}
3676 		devctl_safe_quote_sb(sb, fullpath);
3677 		free(fullpath, M_TEMP);
3678 		sbuf_putc(sb, '/');
3679 	}
3680 	devctl_safe_quote_sb(sb, name);
3681 	sbuf_printf(sb, "\"");
3682 	if (sbuf_finish(sb) == 0)
3683 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3684 out2:
3685 	sbuf_delete(sb);
3686 out:
3687 	error1 = vn_close(vp, FWRITE, cred, td);
3688 	if (error == 0)
3689 		error = error1;
3690 #ifdef AUDIT
3691 	audit_proc_coredump(td, name, error);
3692 #endif
3693 	free(name, M_TEMP);
3694 	return (error);
3695 }
3696 
3697 /*
3698  * Nonexistent system call-- signal process (may want to handle it).  Flag
3699  * error in case process won't see signal immediately (blocked or ignored).
3700  */
3701 #ifndef _SYS_SYSPROTO_H_
3702 struct nosys_args {
3703 	int	dummy;
3704 };
3705 #endif
3706 /* ARGSUSED */
3707 int
3708 nosys(struct thread *td, struct nosys_args *args)
3709 {
3710 	struct proc *p;
3711 
3712 	p = td->td_proc;
3713 
3714 	PROC_LOCK(p);
3715 	tdsignal(td, SIGSYS);
3716 	PROC_UNLOCK(p);
3717 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3718 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3719 		    td->td_sa.code);
3720 	}
3721 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3722 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3723 		    td->td_sa.code);
3724 	}
3725 	return (ENOSYS);
3726 }
3727 
3728 /*
3729  * Send a SIGIO or SIGURG signal to a process or process group using stored
3730  * credentials rather than those of the current process.
3731  */
3732 void
3733 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3734 {
3735 	ksiginfo_t ksi;
3736 	struct sigio *sigio;
3737 
3738 	ksiginfo_init(&ksi);
3739 	ksi.ksi_signo = sig;
3740 	ksi.ksi_code = SI_KERNEL;
3741 
3742 	SIGIO_LOCK();
3743 	sigio = *sigiop;
3744 	if (sigio == NULL) {
3745 		SIGIO_UNLOCK();
3746 		return;
3747 	}
3748 	if (sigio->sio_pgid > 0) {
3749 		PROC_LOCK(sigio->sio_proc);
3750 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3751 			kern_psignal(sigio->sio_proc, sig);
3752 		PROC_UNLOCK(sigio->sio_proc);
3753 	} else if (sigio->sio_pgid < 0) {
3754 		struct proc *p;
3755 
3756 		PGRP_LOCK(sigio->sio_pgrp);
3757 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3758 			PROC_LOCK(p);
3759 			if (p->p_state == PRS_NORMAL &&
3760 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3761 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3762 				kern_psignal(p, sig);
3763 			PROC_UNLOCK(p);
3764 		}
3765 		PGRP_UNLOCK(sigio->sio_pgrp);
3766 	}
3767 	SIGIO_UNLOCK();
3768 }
3769 
3770 static int
3771 filt_sigattach(struct knote *kn)
3772 {
3773 	struct proc *p = curproc;
3774 
3775 	kn->kn_ptr.p_proc = p;
3776 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3777 
3778 	knlist_add(p->p_klist, kn, 0);
3779 
3780 	return (0);
3781 }
3782 
3783 static void
3784 filt_sigdetach(struct knote *kn)
3785 {
3786 	struct proc *p = kn->kn_ptr.p_proc;
3787 
3788 	knlist_remove(p->p_klist, kn, 0);
3789 }
3790 
3791 /*
3792  * signal knotes are shared with proc knotes, so we apply a mask to
3793  * the hint in order to differentiate them from process hints.  This
3794  * could be avoided by using a signal-specific knote list, but probably
3795  * isn't worth the trouble.
3796  */
3797 static int
3798 filt_signal(struct knote *kn, long hint)
3799 {
3800 
3801 	if (hint & NOTE_SIGNAL) {
3802 		hint &= ~NOTE_SIGNAL;
3803 
3804 		if (kn->kn_id == hint)
3805 			kn->kn_data++;
3806 	}
3807 	return (kn->kn_data != 0);
3808 }
3809 
3810 struct sigacts *
3811 sigacts_alloc(void)
3812 {
3813 	struct sigacts *ps;
3814 
3815 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3816 	refcount_init(&ps->ps_refcnt, 1);
3817 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3818 	return (ps);
3819 }
3820 
3821 void
3822 sigacts_free(struct sigacts *ps)
3823 {
3824 
3825 	if (refcount_release(&ps->ps_refcnt) == 0)
3826 		return;
3827 	mtx_destroy(&ps->ps_mtx);
3828 	free(ps, M_SUBPROC);
3829 }
3830 
3831 struct sigacts *
3832 sigacts_hold(struct sigacts *ps)
3833 {
3834 
3835 	refcount_acquire(&ps->ps_refcnt);
3836 	return (ps);
3837 }
3838 
3839 void
3840 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3841 {
3842 
3843 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3844 	mtx_lock(&src->ps_mtx);
3845 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3846 	mtx_unlock(&src->ps_mtx);
3847 }
3848 
3849 int
3850 sigacts_shared(struct sigacts *ps)
3851 {
3852 
3853 	return (ps->ps_refcnt > 1);
3854 }
3855 
3856 void
3857 sig_drop_caught(struct proc *p)
3858 {
3859 	int sig;
3860 	struct sigacts *ps;
3861 
3862 	ps = p->p_sigacts;
3863 	PROC_LOCK_ASSERT(p, MA_OWNED);
3864 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3865 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
3866 		sig = sig_ffs(&ps->ps_sigcatch);
3867 		sigdflt(ps, sig);
3868 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
3869 			sigqueue_delete_proc(p, sig);
3870 	}
3871 }
3872