xref: /freebsd/sys/kern/kern_sig.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 #include "opt_procdesc.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/capability.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/procdesc.h>
65 #include <sys/posix4.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/sdt.h>
70 #include <sys/sbuf.h>
71 #include <sys/sleepqueue.h>
72 #include <sys/smp.h>
73 #include <sys/stat.h>
74 #include <sys/sx.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/sysctl.h>
77 #include <sys/sysent.h>
78 #include <sys/syslog.h>
79 #include <sys/sysproto.h>
80 #include <sys/timers.h>
81 #include <sys/unistd.h>
82 #include <sys/wait.h>
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #include <sys/jail.h>
88 
89 #include <machine/cpu.h>
90 
91 #include <security/audit/audit.h>
92 
93 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
94 
95 SDT_PROVIDER_DECLARE(proc);
96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
107 
108 static int	coredump(struct thread *);
109 static char	*expand_name(const char *, uid_t, pid_t, struct thread *, int);
110 static int	killpg1(struct thread *td, int sig, int pgid, int all,
111 		    ksiginfo_t *ksi);
112 static int	issignal(struct thread *td, int stop_allowed);
113 static int	sigprop(int sig);
114 static void	tdsigwakeup(struct thread *, int, sig_t, int);
115 static void	sig_suspend_threads(struct thread *, struct proc *, int);
116 static int	filt_sigattach(struct knote *kn);
117 static void	filt_sigdetach(struct knote *kn);
118 static int	filt_signal(struct knote *kn, long hint);
119 static struct thread *sigtd(struct proc *p, int sig, int prop);
120 static void	sigqueue_start(void);
121 
122 static uma_zone_t	ksiginfo_zone = NULL;
123 struct filterops sig_filtops = {
124 	.f_isfd = 0,
125 	.f_attach = filt_sigattach,
126 	.f_detach = filt_sigdetach,
127 	.f_event = filt_signal,
128 };
129 
130 static int	kern_logsigexit = 1;
131 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
132     &kern_logsigexit, 0,
133     "Log processes quitting on abnormal signals to syslog(3)");
134 
135 static int	kern_forcesigexit = 1;
136 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
137     &kern_forcesigexit, 0, "Force trap signal to be handled");
138 
139 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
140     "POSIX real time signal");
141 
142 static int	max_pending_per_proc = 128;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
144     &max_pending_per_proc, 0, "Max pending signals per proc");
145 
146 static int	preallocate_siginfo = 1024;
147 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
149     &preallocate_siginfo, 0, "Preallocated signal memory size");
150 
151 static int	signal_overflow = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
153     &signal_overflow, 0, "Number of signals overflew");
154 
155 static int	signal_alloc_fail = 0;
156 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
157     &signal_alloc_fail, 0, "signals failed to be allocated");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	do_coredump = 1;
178 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
179 	&do_coredump, 0, "Enable/Disable coredumps");
180 
181 static int	set_core_nodump_flag = 0;
182 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
183 	0, "Enable setting the NODUMP flag on coredump files");
184 
185 /*
186  * Signal properties and actions.
187  * The array below categorizes the signals and their default actions
188  * according to the following properties:
189  */
190 #define	SA_KILL		0x01		/* terminates process by default */
191 #define	SA_CORE		0x02		/* ditto and coredumps */
192 #define	SA_STOP		0x04		/* suspend process */
193 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
194 #define	SA_IGNORE	0x10		/* ignore by default */
195 #define	SA_CONT		0x20		/* continue if suspended */
196 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
197 
198 static int sigproptbl[NSIG] = {
199         SA_KILL,			/* SIGHUP */
200         SA_KILL,			/* SIGINT */
201         SA_KILL|SA_CORE,		/* SIGQUIT */
202         SA_KILL|SA_CORE,		/* SIGILL */
203         SA_KILL|SA_CORE,		/* SIGTRAP */
204         SA_KILL|SA_CORE,		/* SIGABRT */
205         SA_KILL|SA_CORE,		/* SIGEMT */
206         SA_KILL|SA_CORE,		/* SIGFPE */
207         SA_KILL,			/* SIGKILL */
208         SA_KILL|SA_CORE,		/* SIGBUS */
209         SA_KILL|SA_CORE,		/* SIGSEGV */
210         SA_KILL|SA_CORE,		/* SIGSYS */
211         SA_KILL,			/* SIGPIPE */
212         SA_KILL,			/* SIGALRM */
213         SA_KILL,			/* SIGTERM */
214         SA_IGNORE,			/* SIGURG */
215         SA_STOP,			/* SIGSTOP */
216         SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
217         SA_IGNORE|SA_CONT,		/* SIGCONT */
218         SA_IGNORE,			/* SIGCHLD */
219         SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
220         SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
221         SA_IGNORE,			/* SIGIO */
222         SA_KILL,			/* SIGXCPU */
223         SA_KILL,			/* SIGXFSZ */
224         SA_KILL,			/* SIGVTALRM */
225         SA_KILL,			/* SIGPROF */
226         SA_IGNORE,			/* SIGWINCH  */
227         SA_IGNORE,			/* SIGINFO */
228         SA_KILL,			/* SIGUSR1 */
229         SA_KILL,			/* SIGUSR2 */
230 };
231 
232 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
233 
234 static void
235 sigqueue_start(void)
236 {
237 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
238 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
239 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
240 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
241 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
242 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
243 }
244 
245 ksiginfo_t *
246 ksiginfo_alloc(int wait)
247 {
248 	int flags;
249 
250 	flags = M_ZERO;
251 	if (! wait)
252 		flags |= M_NOWAIT;
253 	if (ksiginfo_zone != NULL)
254 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
255 	return (NULL);
256 }
257 
258 void
259 ksiginfo_free(ksiginfo_t *ksi)
260 {
261 	uma_zfree(ksiginfo_zone, ksi);
262 }
263 
264 static __inline int
265 ksiginfo_tryfree(ksiginfo_t *ksi)
266 {
267 	if (!(ksi->ksi_flags & KSI_EXT)) {
268 		uma_zfree(ksiginfo_zone, ksi);
269 		return (1);
270 	}
271 	return (0);
272 }
273 
274 void
275 sigqueue_init(sigqueue_t *list, struct proc *p)
276 {
277 	SIGEMPTYSET(list->sq_signals);
278 	SIGEMPTYSET(list->sq_kill);
279 	TAILQ_INIT(&list->sq_list);
280 	list->sq_proc = p;
281 	list->sq_flags = SQ_INIT;
282 }
283 
284 /*
285  * Get a signal's ksiginfo.
286  * Return:
287  * 	0	-	signal not found
288  *	others	-	signal number
289  */
290 static int
291 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
292 {
293 	struct proc *p = sq->sq_proc;
294 	struct ksiginfo *ksi, *next;
295 	int count = 0;
296 
297 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
298 
299 	if (!SIGISMEMBER(sq->sq_signals, signo))
300 		return (0);
301 
302 	if (SIGISMEMBER(sq->sq_kill, signo)) {
303 		count++;
304 		SIGDELSET(sq->sq_kill, signo);
305 	}
306 
307 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
308 		if (ksi->ksi_signo == signo) {
309 			if (count == 0) {
310 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
311 				ksi->ksi_sigq = NULL;
312 				ksiginfo_copy(ksi, si);
313 				if (ksiginfo_tryfree(ksi) && p != NULL)
314 					p->p_pendingcnt--;
315 			}
316 			if (++count > 1)
317 				break;
318 		}
319 	}
320 
321 	if (count <= 1)
322 		SIGDELSET(sq->sq_signals, signo);
323 	si->ksi_signo = signo;
324 	return (signo);
325 }
326 
327 void
328 sigqueue_take(ksiginfo_t *ksi)
329 {
330 	struct ksiginfo *kp;
331 	struct proc	*p;
332 	sigqueue_t	*sq;
333 
334 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
335 		return;
336 
337 	p = sq->sq_proc;
338 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
339 	ksi->ksi_sigq = NULL;
340 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
341 		p->p_pendingcnt--;
342 
343 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
344 	     kp = TAILQ_NEXT(kp, ksi_link)) {
345 		if (kp->ksi_signo == ksi->ksi_signo)
346 			break;
347 	}
348 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
349 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
350 }
351 
352 static int
353 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
354 {
355 	struct proc *p = sq->sq_proc;
356 	struct ksiginfo *ksi;
357 	int ret = 0;
358 
359 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
360 
361 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
362 		SIGADDSET(sq->sq_kill, signo);
363 		goto out_set_bit;
364 	}
365 
366 	/* directly insert the ksi, don't copy it */
367 	if (si->ksi_flags & KSI_INS) {
368 		if (si->ksi_flags & KSI_HEAD)
369 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
370 		else
371 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
372 		si->ksi_sigq = sq;
373 		goto out_set_bit;
374 	}
375 
376 	if (__predict_false(ksiginfo_zone == NULL)) {
377 		SIGADDSET(sq->sq_kill, signo);
378 		goto out_set_bit;
379 	}
380 
381 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
382 		signal_overflow++;
383 		ret = EAGAIN;
384 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
385 		signal_alloc_fail++;
386 		ret = EAGAIN;
387 	} else {
388 		if (p != NULL)
389 			p->p_pendingcnt++;
390 		ksiginfo_copy(si, ksi);
391 		ksi->ksi_signo = signo;
392 		if (si->ksi_flags & KSI_HEAD)
393 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
394 		else
395 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
396 		ksi->ksi_sigq = sq;
397 	}
398 
399 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
400 	    (si->ksi_flags & KSI_SIGQ) == 0) {
401 		if (ret != 0)
402 			SIGADDSET(sq->sq_kill, signo);
403 		ret = 0;
404 		goto out_set_bit;
405 	}
406 
407 	if (ret != 0)
408 		return (ret);
409 
410 out_set_bit:
411 	SIGADDSET(sq->sq_signals, signo);
412 	return (ret);
413 }
414 
415 void
416 sigqueue_flush(sigqueue_t *sq)
417 {
418 	struct proc *p = sq->sq_proc;
419 	ksiginfo_t *ksi;
420 
421 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
422 
423 	if (p != NULL)
424 		PROC_LOCK_ASSERT(p, MA_OWNED);
425 
426 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
427 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
428 		ksi->ksi_sigq = NULL;
429 		if (ksiginfo_tryfree(ksi) && p != NULL)
430 			p->p_pendingcnt--;
431 	}
432 
433 	SIGEMPTYSET(sq->sq_signals);
434 	SIGEMPTYSET(sq->sq_kill);
435 }
436 
437 static void
438 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
439 {
440 	sigset_t tmp;
441 	struct proc *p1, *p2;
442 	ksiginfo_t *ksi, *next;
443 
444 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
445 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
446 	p1 = src->sq_proc;
447 	p2 = dst->sq_proc;
448 	/* Move siginfo to target list */
449 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
450 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
451 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
452 			if (p1 != NULL)
453 				p1->p_pendingcnt--;
454 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
455 			ksi->ksi_sigq = dst;
456 			if (p2 != NULL)
457 				p2->p_pendingcnt++;
458 		}
459 	}
460 
461 	/* Move pending bits to target list */
462 	tmp = src->sq_kill;
463 	SIGSETAND(tmp, *set);
464 	SIGSETOR(dst->sq_kill, tmp);
465 	SIGSETNAND(src->sq_kill, tmp);
466 
467 	tmp = src->sq_signals;
468 	SIGSETAND(tmp, *set);
469 	SIGSETOR(dst->sq_signals, tmp);
470 	SIGSETNAND(src->sq_signals, tmp);
471 }
472 
473 #if 0
474 static void
475 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
476 {
477 	sigset_t set;
478 
479 	SIGEMPTYSET(set);
480 	SIGADDSET(set, signo);
481 	sigqueue_move_set(src, dst, &set);
482 }
483 #endif
484 
485 static void
486 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
487 {
488 	struct proc *p = sq->sq_proc;
489 	ksiginfo_t *ksi, *next;
490 
491 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
492 
493 	/* Remove siginfo queue */
494 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
495 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
496 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
497 			ksi->ksi_sigq = NULL;
498 			if (ksiginfo_tryfree(ksi) && p != NULL)
499 				p->p_pendingcnt--;
500 		}
501 	}
502 	SIGSETNAND(sq->sq_kill, *set);
503 	SIGSETNAND(sq->sq_signals, *set);
504 }
505 
506 void
507 sigqueue_delete(sigqueue_t *sq, int signo)
508 {
509 	sigset_t set;
510 
511 	SIGEMPTYSET(set);
512 	SIGADDSET(set, signo);
513 	sigqueue_delete_set(sq, &set);
514 }
515 
516 /* Remove a set of signals for a process */
517 static void
518 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
519 {
520 	sigqueue_t worklist;
521 	struct thread *td0;
522 
523 	PROC_LOCK_ASSERT(p, MA_OWNED);
524 
525 	sigqueue_init(&worklist, NULL);
526 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
527 
528 	FOREACH_THREAD_IN_PROC(p, td0)
529 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
530 
531 	sigqueue_flush(&worklist);
532 }
533 
534 void
535 sigqueue_delete_proc(struct proc *p, int signo)
536 {
537 	sigset_t set;
538 
539 	SIGEMPTYSET(set);
540 	SIGADDSET(set, signo);
541 	sigqueue_delete_set_proc(p, &set);
542 }
543 
544 static void
545 sigqueue_delete_stopmask_proc(struct proc *p)
546 {
547 	sigset_t set;
548 
549 	SIGEMPTYSET(set);
550 	SIGADDSET(set, SIGSTOP);
551 	SIGADDSET(set, SIGTSTP);
552 	SIGADDSET(set, SIGTTIN);
553 	SIGADDSET(set, SIGTTOU);
554 	sigqueue_delete_set_proc(p, &set);
555 }
556 
557 /*
558  * Determine signal that should be delivered to process p, the current
559  * process, 0 if none.  If there is a pending stop signal with default
560  * action, the process stops in issignal().
561  */
562 int
563 cursig(struct thread *td, int stop_allowed)
564 {
565 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
566 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
567 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
568 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
569 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
570 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
571 }
572 
573 /*
574  * Arrange for ast() to handle unmasked pending signals on return to user
575  * mode.  This must be called whenever a signal is added to td_sigqueue or
576  * unmasked in td_sigmask.
577  */
578 void
579 signotify(struct thread *td)
580 {
581 	struct proc *p;
582 
583 	p = td->td_proc;
584 
585 	PROC_LOCK_ASSERT(p, MA_OWNED);
586 
587 	if (SIGPENDING(td)) {
588 		thread_lock(td);
589 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
590 		thread_unlock(td);
591 	}
592 }
593 
594 int
595 sigonstack(size_t sp)
596 {
597 	struct thread *td = curthread;
598 
599 	return ((td->td_pflags & TDP_ALTSTACK) ?
600 #if defined(COMPAT_43)
601 	    ((td->td_sigstk.ss_size == 0) ?
602 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
603 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
604 #else
605 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
606 #endif
607 	    : 0);
608 }
609 
610 static __inline int
611 sigprop(int sig)
612 {
613 
614 	if (sig > 0 && sig < NSIG)
615 		return (sigproptbl[_SIG_IDX(sig)]);
616 	return (0);
617 }
618 
619 int
620 sig_ffs(sigset_t *set)
621 {
622 	int i;
623 
624 	for (i = 0; i < _SIG_WORDS; i++)
625 		if (set->__bits[i])
626 			return (ffs(set->__bits[i]) + (i * 32));
627 	return (0);
628 }
629 
630 /*
631  * kern_sigaction
632  * sigaction
633  * freebsd4_sigaction
634  * osigaction
635  */
636 int
637 kern_sigaction(td, sig, act, oact, flags)
638 	struct thread *td;
639 	register int sig;
640 	struct sigaction *act, *oact;
641 	int flags;
642 {
643 	struct sigacts *ps;
644 	struct proc *p = td->td_proc;
645 
646 	if (!_SIG_VALID(sig))
647 		return (EINVAL);
648 
649 	PROC_LOCK(p);
650 	ps = p->p_sigacts;
651 	mtx_lock(&ps->ps_mtx);
652 	if (oact) {
653 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
654 		oact->sa_flags = 0;
655 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
656 			oact->sa_flags |= SA_ONSTACK;
657 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
658 			oact->sa_flags |= SA_RESTART;
659 		if (SIGISMEMBER(ps->ps_sigreset, sig))
660 			oact->sa_flags |= SA_RESETHAND;
661 		if (SIGISMEMBER(ps->ps_signodefer, sig))
662 			oact->sa_flags |= SA_NODEFER;
663 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
664 			oact->sa_flags |= SA_SIGINFO;
665 			oact->sa_sigaction =
666 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
667 		} else
668 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
669 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
670 			oact->sa_flags |= SA_NOCLDSTOP;
671 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
672 			oact->sa_flags |= SA_NOCLDWAIT;
673 	}
674 	if (act) {
675 		if ((sig == SIGKILL || sig == SIGSTOP) &&
676 		    act->sa_handler != SIG_DFL) {
677 			mtx_unlock(&ps->ps_mtx);
678 			PROC_UNLOCK(p);
679 			return (EINVAL);
680 		}
681 
682 		/*
683 		 * Change setting atomically.
684 		 */
685 
686 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
687 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
688 		if (act->sa_flags & SA_SIGINFO) {
689 			ps->ps_sigact[_SIG_IDX(sig)] =
690 			    (__sighandler_t *)act->sa_sigaction;
691 			SIGADDSET(ps->ps_siginfo, sig);
692 		} else {
693 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
694 			SIGDELSET(ps->ps_siginfo, sig);
695 		}
696 		if (!(act->sa_flags & SA_RESTART))
697 			SIGADDSET(ps->ps_sigintr, sig);
698 		else
699 			SIGDELSET(ps->ps_sigintr, sig);
700 		if (act->sa_flags & SA_ONSTACK)
701 			SIGADDSET(ps->ps_sigonstack, sig);
702 		else
703 			SIGDELSET(ps->ps_sigonstack, sig);
704 		if (act->sa_flags & SA_RESETHAND)
705 			SIGADDSET(ps->ps_sigreset, sig);
706 		else
707 			SIGDELSET(ps->ps_sigreset, sig);
708 		if (act->sa_flags & SA_NODEFER)
709 			SIGADDSET(ps->ps_signodefer, sig);
710 		else
711 			SIGDELSET(ps->ps_signodefer, sig);
712 		if (sig == SIGCHLD) {
713 			if (act->sa_flags & SA_NOCLDSTOP)
714 				ps->ps_flag |= PS_NOCLDSTOP;
715 			else
716 				ps->ps_flag &= ~PS_NOCLDSTOP;
717 			if (act->sa_flags & SA_NOCLDWAIT) {
718 				/*
719 				 * Paranoia: since SA_NOCLDWAIT is implemented
720 				 * by reparenting the dying child to PID 1 (and
721 				 * trust it to reap the zombie), PID 1 itself
722 				 * is forbidden to set SA_NOCLDWAIT.
723 				 */
724 				if (p->p_pid == 1)
725 					ps->ps_flag &= ~PS_NOCLDWAIT;
726 				else
727 					ps->ps_flag |= PS_NOCLDWAIT;
728 			} else
729 				ps->ps_flag &= ~PS_NOCLDWAIT;
730 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
731 				ps->ps_flag |= PS_CLDSIGIGN;
732 			else
733 				ps->ps_flag &= ~PS_CLDSIGIGN;
734 		}
735 		/*
736 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
737 		 * and for signals set to SIG_DFL where the default is to
738 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
739 		 * have to restart the process.
740 		 */
741 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
742 		    (sigprop(sig) & SA_IGNORE &&
743 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
744 			/* never to be seen again */
745 			sigqueue_delete_proc(p, sig);
746 			if (sig != SIGCONT)
747 				/* easier in psignal */
748 				SIGADDSET(ps->ps_sigignore, sig);
749 			SIGDELSET(ps->ps_sigcatch, sig);
750 		} else {
751 			SIGDELSET(ps->ps_sigignore, sig);
752 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
753 				SIGDELSET(ps->ps_sigcatch, sig);
754 			else
755 				SIGADDSET(ps->ps_sigcatch, sig);
756 		}
757 #ifdef COMPAT_FREEBSD4
758 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
759 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
760 		    (flags & KSA_FREEBSD4) == 0)
761 			SIGDELSET(ps->ps_freebsd4, sig);
762 		else
763 			SIGADDSET(ps->ps_freebsd4, sig);
764 #endif
765 #ifdef COMPAT_43
766 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
767 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
768 		    (flags & KSA_OSIGSET) == 0)
769 			SIGDELSET(ps->ps_osigset, sig);
770 		else
771 			SIGADDSET(ps->ps_osigset, sig);
772 #endif
773 	}
774 	mtx_unlock(&ps->ps_mtx);
775 	PROC_UNLOCK(p);
776 	return (0);
777 }
778 
779 #ifndef _SYS_SYSPROTO_H_
780 struct sigaction_args {
781 	int	sig;
782 	struct	sigaction *act;
783 	struct	sigaction *oact;
784 };
785 #endif
786 int
787 sys_sigaction(td, uap)
788 	struct thread *td;
789 	register struct sigaction_args *uap;
790 {
791 	struct sigaction act, oact;
792 	register struct sigaction *actp, *oactp;
793 	int error;
794 
795 	actp = (uap->act != NULL) ? &act : NULL;
796 	oactp = (uap->oact != NULL) ? &oact : NULL;
797 	if (actp) {
798 		error = copyin(uap->act, actp, sizeof(act));
799 		if (error)
800 			return (error);
801 	}
802 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
803 	if (oactp && !error)
804 		error = copyout(oactp, uap->oact, sizeof(oact));
805 	return (error);
806 }
807 
808 #ifdef COMPAT_FREEBSD4
809 #ifndef _SYS_SYSPROTO_H_
810 struct freebsd4_sigaction_args {
811 	int	sig;
812 	struct	sigaction *act;
813 	struct	sigaction *oact;
814 };
815 #endif
816 int
817 freebsd4_sigaction(td, uap)
818 	struct thread *td;
819 	register struct freebsd4_sigaction_args *uap;
820 {
821 	struct sigaction act, oact;
822 	register struct sigaction *actp, *oactp;
823 	int error;
824 
825 
826 	actp = (uap->act != NULL) ? &act : NULL;
827 	oactp = (uap->oact != NULL) ? &oact : NULL;
828 	if (actp) {
829 		error = copyin(uap->act, actp, sizeof(act));
830 		if (error)
831 			return (error);
832 	}
833 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
834 	if (oactp && !error)
835 		error = copyout(oactp, uap->oact, sizeof(oact));
836 	return (error);
837 }
838 #endif	/* COMAPT_FREEBSD4 */
839 
840 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
841 #ifndef _SYS_SYSPROTO_H_
842 struct osigaction_args {
843 	int	signum;
844 	struct	osigaction *nsa;
845 	struct	osigaction *osa;
846 };
847 #endif
848 int
849 osigaction(td, uap)
850 	struct thread *td;
851 	register struct osigaction_args *uap;
852 {
853 	struct osigaction sa;
854 	struct sigaction nsa, osa;
855 	register struct sigaction *nsap, *osap;
856 	int error;
857 
858 	if (uap->signum <= 0 || uap->signum >= ONSIG)
859 		return (EINVAL);
860 
861 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
862 	osap = (uap->osa != NULL) ? &osa : NULL;
863 
864 	if (nsap) {
865 		error = copyin(uap->nsa, &sa, sizeof(sa));
866 		if (error)
867 			return (error);
868 		nsap->sa_handler = sa.sa_handler;
869 		nsap->sa_flags = sa.sa_flags;
870 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
871 	}
872 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
873 	if (osap && !error) {
874 		sa.sa_handler = osap->sa_handler;
875 		sa.sa_flags = osap->sa_flags;
876 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
877 		error = copyout(&sa, uap->osa, sizeof(sa));
878 	}
879 	return (error);
880 }
881 
882 #if !defined(__i386__)
883 /* Avoid replicating the same stub everywhere */
884 int
885 osigreturn(td, uap)
886 	struct thread *td;
887 	struct osigreturn_args *uap;
888 {
889 
890 	return (nosys(td, (struct nosys_args *)uap));
891 }
892 #endif
893 #endif /* COMPAT_43 */
894 
895 /*
896  * Initialize signal state for process 0;
897  * set to ignore signals that are ignored by default.
898  */
899 void
900 siginit(p)
901 	struct proc *p;
902 {
903 	register int i;
904 	struct sigacts *ps;
905 
906 	PROC_LOCK(p);
907 	ps = p->p_sigacts;
908 	mtx_lock(&ps->ps_mtx);
909 	for (i = 1; i <= NSIG; i++)
910 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
911 			SIGADDSET(ps->ps_sigignore, i);
912 	mtx_unlock(&ps->ps_mtx);
913 	PROC_UNLOCK(p);
914 }
915 
916 /*
917  * Reset signals for an exec of the specified process.
918  */
919 void
920 execsigs(struct proc *p)
921 {
922 	struct sigacts *ps;
923 	int sig;
924 	struct thread *td;
925 
926 	/*
927 	 * Reset caught signals.  Held signals remain held
928 	 * through td_sigmask (unless they were caught,
929 	 * and are now ignored by default).
930 	 */
931 	PROC_LOCK_ASSERT(p, MA_OWNED);
932 	td = FIRST_THREAD_IN_PROC(p);
933 	ps = p->p_sigacts;
934 	mtx_lock(&ps->ps_mtx);
935 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
936 		sig = sig_ffs(&ps->ps_sigcatch);
937 		SIGDELSET(ps->ps_sigcatch, sig);
938 		if (sigprop(sig) & SA_IGNORE) {
939 			if (sig != SIGCONT)
940 				SIGADDSET(ps->ps_sigignore, sig);
941 			sigqueue_delete_proc(p, sig);
942 		}
943 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
944 	}
945 	/*
946 	 * Reset stack state to the user stack.
947 	 * Clear set of signals caught on the signal stack.
948 	 */
949 	td->td_sigstk.ss_flags = SS_DISABLE;
950 	td->td_sigstk.ss_size = 0;
951 	td->td_sigstk.ss_sp = 0;
952 	td->td_pflags &= ~TDP_ALTSTACK;
953 	/*
954 	 * Reset no zombies if child dies flag as Solaris does.
955 	 */
956 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
957 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
958 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
959 	mtx_unlock(&ps->ps_mtx);
960 }
961 
962 /*
963  * kern_sigprocmask()
964  *
965  *	Manipulate signal mask.
966  */
967 int
968 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
969     int flags)
970 {
971 	sigset_t new_block, oset1;
972 	struct proc *p;
973 	int error;
974 
975 	p = td->td_proc;
976 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
977 		PROC_LOCK(p);
978 	if (oset != NULL)
979 		*oset = td->td_sigmask;
980 
981 	error = 0;
982 	if (set != NULL) {
983 		switch (how) {
984 		case SIG_BLOCK:
985 			SIG_CANTMASK(*set);
986 			oset1 = td->td_sigmask;
987 			SIGSETOR(td->td_sigmask, *set);
988 			new_block = td->td_sigmask;
989 			SIGSETNAND(new_block, oset1);
990 			break;
991 		case SIG_UNBLOCK:
992 			SIGSETNAND(td->td_sigmask, *set);
993 			signotify(td);
994 			goto out;
995 		case SIG_SETMASK:
996 			SIG_CANTMASK(*set);
997 			oset1 = td->td_sigmask;
998 			if (flags & SIGPROCMASK_OLD)
999 				SIGSETLO(td->td_sigmask, *set);
1000 			else
1001 				td->td_sigmask = *set;
1002 			new_block = td->td_sigmask;
1003 			SIGSETNAND(new_block, oset1);
1004 			signotify(td);
1005 			break;
1006 		default:
1007 			error = EINVAL;
1008 			goto out;
1009 		}
1010 
1011 		/*
1012 		 * The new_block set contains signals that were not previously
1013 		 * blocked, but are blocked now.
1014 		 *
1015 		 * In case we block any signal that was not previously blocked
1016 		 * for td, and process has the signal pending, try to schedule
1017 		 * signal delivery to some thread that does not block the
1018 		 * signal, possibly waking it up.
1019 		 */
1020 		if (p->p_numthreads != 1)
1021 			reschedule_signals(p, new_block, flags);
1022 	}
1023 
1024 out:
1025 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1026 		PROC_UNLOCK(p);
1027 	return (error);
1028 }
1029 
1030 #ifndef _SYS_SYSPROTO_H_
1031 struct sigprocmask_args {
1032 	int	how;
1033 	const sigset_t *set;
1034 	sigset_t *oset;
1035 };
1036 #endif
1037 int
1038 sys_sigprocmask(td, uap)
1039 	register struct thread *td;
1040 	struct sigprocmask_args *uap;
1041 {
1042 	sigset_t set, oset;
1043 	sigset_t *setp, *osetp;
1044 	int error;
1045 
1046 	setp = (uap->set != NULL) ? &set : NULL;
1047 	osetp = (uap->oset != NULL) ? &oset : NULL;
1048 	if (setp) {
1049 		error = copyin(uap->set, setp, sizeof(set));
1050 		if (error)
1051 			return (error);
1052 	}
1053 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1054 	if (osetp && !error) {
1055 		error = copyout(osetp, uap->oset, sizeof(oset));
1056 	}
1057 	return (error);
1058 }
1059 
1060 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1061 #ifndef _SYS_SYSPROTO_H_
1062 struct osigprocmask_args {
1063 	int	how;
1064 	osigset_t mask;
1065 };
1066 #endif
1067 int
1068 osigprocmask(td, uap)
1069 	register struct thread *td;
1070 	struct osigprocmask_args *uap;
1071 {
1072 	sigset_t set, oset;
1073 	int error;
1074 
1075 	OSIG2SIG(uap->mask, set);
1076 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1077 	SIG2OSIG(oset, td->td_retval[0]);
1078 	return (error);
1079 }
1080 #endif /* COMPAT_43 */
1081 
1082 int
1083 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1084 {
1085 	ksiginfo_t ksi;
1086 	sigset_t set;
1087 	int error;
1088 
1089 	error = copyin(uap->set, &set, sizeof(set));
1090 	if (error) {
1091 		td->td_retval[0] = error;
1092 		return (0);
1093 	}
1094 
1095 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1096 	if (error) {
1097 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1098 			error = ERESTART;
1099 		if (error == ERESTART)
1100 			return (error);
1101 		td->td_retval[0] = error;
1102 		return (0);
1103 	}
1104 
1105 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1106 	td->td_retval[0] = error;
1107 	return (0);
1108 }
1109 
1110 int
1111 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1112 {
1113 	struct timespec ts;
1114 	struct timespec *timeout;
1115 	sigset_t set;
1116 	ksiginfo_t ksi;
1117 	int error;
1118 
1119 	if (uap->timeout) {
1120 		error = copyin(uap->timeout, &ts, sizeof(ts));
1121 		if (error)
1122 			return (error);
1123 
1124 		timeout = &ts;
1125 	} else
1126 		timeout = NULL;
1127 
1128 	error = copyin(uap->set, &set, sizeof(set));
1129 	if (error)
1130 		return (error);
1131 
1132 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1133 	if (error)
1134 		return (error);
1135 
1136 	if (uap->info)
1137 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1138 
1139 	if (error == 0)
1140 		td->td_retval[0] = ksi.ksi_signo;
1141 	return (error);
1142 }
1143 
1144 int
1145 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1146 {
1147 	ksiginfo_t ksi;
1148 	sigset_t set;
1149 	int error;
1150 
1151 	error = copyin(uap->set, &set, sizeof(set));
1152 	if (error)
1153 		return (error);
1154 
1155 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1156 	if (error)
1157 		return (error);
1158 
1159 	if (uap->info)
1160 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1161 
1162 	if (error == 0)
1163 		td->td_retval[0] = ksi.ksi_signo;
1164 	return (error);
1165 }
1166 
1167 int
1168 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1169 	struct timespec *timeout)
1170 {
1171 	struct sigacts *ps;
1172 	sigset_t saved_mask, new_block;
1173 	struct proc *p;
1174 	int error, sig, timo, timevalid = 0;
1175 	struct timespec rts, ets, ts;
1176 	struct timeval tv;
1177 
1178 	p = td->td_proc;
1179 	error = 0;
1180 	ets.tv_sec = 0;
1181 	ets.tv_nsec = 0;
1182 
1183 	if (timeout != NULL) {
1184 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1185 			timevalid = 1;
1186 			getnanouptime(&rts);
1187 		 	ets = rts;
1188 			timespecadd(&ets, timeout);
1189 		}
1190 	}
1191 	ksiginfo_init(ksi);
1192 	/* Some signals can not be waited for. */
1193 	SIG_CANTMASK(waitset);
1194 	ps = p->p_sigacts;
1195 	PROC_LOCK(p);
1196 	saved_mask = td->td_sigmask;
1197 	SIGSETNAND(td->td_sigmask, waitset);
1198 	for (;;) {
1199 		mtx_lock(&ps->ps_mtx);
1200 		sig = cursig(td, SIG_STOP_ALLOWED);
1201 		mtx_unlock(&ps->ps_mtx);
1202 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1203 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1204 		    	    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1205 				error = 0;
1206 				break;
1207 			}
1208 		}
1209 
1210 		if (error != 0)
1211 			break;
1212 
1213 		/*
1214 		 * POSIX says this must be checked after looking for pending
1215 		 * signals.
1216 		 */
1217 		if (timeout != NULL) {
1218 			if (!timevalid) {
1219 				error = EINVAL;
1220 				break;
1221 			}
1222 			getnanouptime(&rts);
1223 			if (timespeccmp(&rts, &ets, >=)) {
1224 				error = EAGAIN;
1225 				break;
1226 			}
1227 			ts = ets;
1228 			timespecsub(&ts, &rts);
1229 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1230 			timo = tvtohz(&tv);
1231 		} else {
1232 			timo = 0;
1233 		}
1234 
1235 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1236 
1237 		if (timeout != NULL) {
1238 			if (error == ERESTART) {
1239 				/* Timeout can not be restarted. */
1240 				error = EINTR;
1241 			} else if (error == EAGAIN) {
1242 				/* We will calculate timeout by ourself. */
1243 				error = 0;
1244 			}
1245 		}
1246 	}
1247 
1248 	new_block = saved_mask;
1249 	SIGSETNAND(new_block, td->td_sigmask);
1250 	td->td_sigmask = saved_mask;
1251 	/*
1252 	 * Fewer signals can be delivered to us, reschedule signal
1253 	 * notification.
1254 	 */
1255 	if (p->p_numthreads != 1)
1256 		reschedule_signals(p, new_block, 0);
1257 
1258 	if (error == 0) {
1259 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1260 
1261 		if (ksi->ksi_code == SI_TIMER)
1262 			itimer_accept(p, ksi->ksi_timerid, ksi);
1263 
1264 #ifdef KTRACE
1265 		if (KTRPOINT(td, KTR_PSIG)) {
1266 			sig_t action;
1267 
1268 			mtx_lock(&ps->ps_mtx);
1269 			action = ps->ps_sigact[_SIG_IDX(sig)];
1270 			mtx_unlock(&ps->ps_mtx);
1271 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1272 		}
1273 #endif
1274 		if (sig == SIGKILL)
1275 			sigexit(td, sig);
1276 	}
1277 	PROC_UNLOCK(p);
1278 	return (error);
1279 }
1280 
1281 #ifndef _SYS_SYSPROTO_H_
1282 struct sigpending_args {
1283 	sigset_t	*set;
1284 };
1285 #endif
1286 int
1287 sys_sigpending(td, uap)
1288 	struct thread *td;
1289 	struct sigpending_args *uap;
1290 {
1291 	struct proc *p = td->td_proc;
1292 	sigset_t pending;
1293 
1294 	PROC_LOCK(p);
1295 	pending = p->p_sigqueue.sq_signals;
1296 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1297 	PROC_UNLOCK(p);
1298 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1299 }
1300 
1301 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1302 #ifndef _SYS_SYSPROTO_H_
1303 struct osigpending_args {
1304 	int	dummy;
1305 };
1306 #endif
1307 int
1308 osigpending(td, uap)
1309 	struct thread *td;
1310 	struct osigpending_args *uap;
1311 {
1312 	struct proc *p = td->td_proc;
1313 	sigset_t pending;
1314 
1315 	PROC_LOCK(p);
1316 	pending = p->p_sigqueue.sq_signals;
1317 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1318 	PROC_UNLOCK(p);
1319 	SIG2OSIG(pending, td->td_retval[0]);
1320 	return (0);
1321 }
1322 #endif /* COMPAT_43 */
1323 
1324 #if defined(COMPAT_43)
1325 /*
1326  * Generalized interface signal handler, 4.3-compatible.
1327  */
1328 #ifndef _SYS_SYSPROTO_H_
1329 struct osigvec_args {
1330 	int	signum;
1331 	struct	sigvec *nsv;
1332 	struct	sigvec *osv;
1333 };
1334 #endif
1335 /* ARGSUSED */
1336 int
1337 osigvec(td, uap)
1338 	struct thread *td;
1339 	register struct osigvec_args *uap;
1340 {
1341 	struct sigvec vec;
1342 	struct sigaction nsa, osa;
1343 	register struct sigaction *nsap, *osap;
1344 	int error;
1345 
1346 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1347 		return (EINVAL);
1348 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1349 	osap = (uap->osv != NULL) ? &osa : NULL;
1350 	if (nsap) {
1351 		error = copyin(uap->nsv, &vec, sizeof(vec));
1352 		if (error)
1353 			return (error);
1354 		nsap->sa_handler = vec.sv_handler;
1355 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1356 		nsap->sa_flags = vec.sv_flags;
1357 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1358 	}
1359 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1360 	if (osap && !error) {
1361 		vec.sv_handler = osap->sa_handler;
1362 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1363 		vec.sv_flags = osap->sa_flags;
1364 		vec.sv_flags &= ~SA_NOCLDWAIT;
1365 		vec.sv_flags ^= SA_RESTART;
1366 		error = copyout(&vec, uap->osv, sizeof(vec));
1367 	}
1368 	return (error);
1369 }
1370 
1371 #ifndef _SYS_SYSPROTO_H_
1372 struct osigblock_args {
1373 	int	mask;
1374 };
1375 #endif
1376 int
1377 osigblock(td, uap)
1378 	register struct thread *td;
1379 	struct osigblock_args *uap;
1380 {
1381 	sigset_t set, oset;
1382 
1383 	OSIG2SIG(uap->mask, set);
1384 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1385 	SIG2OSIG(oset, td->td_retval[0]);
1386 	return (0);
1387 }
1388 
1389 #ifndef _SYS_SYSPROTO_H_
1390 struct osigsetmask_args {
1391 	int	mask;
1392 };
1393 #endif
1394 int
1395 osigsetmask(td, uap)
1396 	struct thread *td;
1397 	struct osigsetmask_args *uap;
1398 {
1399 	sigset_t set, oset;
1400 
1401 	OSIG2SIG(uap->mask, set);
1402 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1403 	SIG2OSIG(oset, td->td_retval[0]);
1404 	return (0);
1405 }
1406 #endif /* COMPAT_43 */
1407 
1408 /*
1409  * Suspend calling thread until signal, providing mask to be set in the
1410  * meantime.
1411  */
1412 #ifndef _SYS_SYSPROTO_H_
1413 struct sigsuspend_args {
1414 	const sigset_t *sigmask;
1415 };
1416 #endif
1417 /* ARGSUSED */
1418 int
1419 sys_sigsuspend(td, uap)
1420 	struct thread *td;
1421 	struct sigsuspend_args *uap;
1422 {
1423 	sigset_t mask;
1424 	int error;
1425 
1426 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1427 	if (error)
1428 		return (error);
1429 	return (kern_sigsuspend(td, mask));
1430 }
1431 
1432 int
1433 kern_sigsuspend(struct thread *td, sigset_t mask)
1434 {
1435 	struct proc *p = td->td_proc;
1436 	int has_sig, sig;
1437 
1438 	/*
1439 	 * When returning from sigsuspend, we want
1440 	 * the old mask to be restored after the
1441 	 * signal handler has finished.  Thus, we
1442 	 * save it here and mark the sigacts structure
1443 	 * to indicate this.
1444 	 */
1445 	PROC_LOCK(p);
1446 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1447 	    SIGPROCMASK_PROC_LOCKED);
1448 	td->td_pflags |= TDP_OLDMASK;
1449 
1450 	/*
1451 	 * Process signals now. Otherwise, we can get spurious wakeup
1452 	 * due to signal entered process queue, but delivered to other
1453 	 * thread. But sigsuspend should return only on signal
1454 	 * delivery.
1455 	 */
1456 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1457 	for (has_sig = 0; !has_sig;) {
1458 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1459 			0) == 0)
1460 			/* void */;
1461 		thread_suspend_check(0);
1462 		mtx_lock(&p->p_sigacts->ps_mtx);
1463 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1464 			has_sig += postsig(sig);
1465 		mtx_unlock(&p->p_sigacts->ps_mtx);
1466 	}
1467 	PROC_UNLOCK(p);
1468 	td->td_errno = EINTR;
1469 	td->td_pflags |= TDP_NERRNO;
1470 	return (EJUSTRETURN);
1471 }
1472 
1473 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1474 /*
1475  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1476  * convention: libc stub passes mask, not pointer, to save a copyin.
1477  */
1478 #ifndef _SYS_SYSPROTO_H_
1479 struct osigsuspend_args {
1480 	osigset_t mask;
1481 };
1482 #endif
1483 /* ARGSUSED */
1484 int
1485 osigsuspend(td, uap)
1486 	struct thread *td;
1487 	struct osigsuspend_args *uap;
1488 {
1489 	sigset_t mask;
1490 
1491 	OSIG2SIG(uap->mask, mask);
1492 	return (kern_sigsuspend(td, mask));
1493 }
1494 #endif /* COMPAT_43 */
1495 
1496 #if defined(COMPAT_43)
1497 #ifndef _SYS_SYSPROTO_H_
1498 struct osigstack_args {
1499 	struct	sigstack *nss;
1500 	struct	sigstack *oss;
1501 };
1502 #endif
1503 /* ARGSUSED */
1504 int
1505 osigstack(td, uap)
1506 	struct thread *td;
1507 	register struct osigstack_args *uap;
1508 {
1509 	struct sigstack nss, oss;
1510 	int error = 0;
1511 
1512 	if (uap->nss != NULL) {
1513 		error = copyin(uap->nss, &nss, sizeof(nss));
1514 		if (error)
1515 			return (error);
1516 	}
1517 	oss.ss_sp = td->td_sigstk.ss_sp;
1518 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1519 	if (uap->nss != NULL) {
1520 		td->td_sigstk.ss_sp = nss.ss_sp;
1521 		td->td_sigstk.ss_size = 0;
1522 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1523 		td->td_pflags |= TDP_ALTSTACK;
1524 	}
1525 	if (uap->oss != NULL)
1526 		error = copyout(&oss, uap->oss, sizeof(oss));
1527 
1528 	return (error);
1529 }
1530 #endif /* COMPAT_43 */
1531 
1532 #ifndef _SYS_SYSPROTO_H_
1533 struct sigaltstack_args {
1534 	stack_t	*ss;
1535 	stack_t	*oss;
1536 };
1537 #endif
1538 /* ARGSUSED */
1539 int
1540 sys_sigaltstack(td, uap)
1541 	struct thread *td;
1542 	register struct sigaltstack_args *uap;
1543 {
1544 	stack_t ss, oss;
1545 	int error;
1546 
1547 	if (uap->ss != NULL) {
1548 		error = copyin(uap->ss, &ss, sizeof(ss));
1549 		if (error)
1550 			return (error);
1551 	}
1552 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1553 	    (uap->oss != NULL) ? &oss : NULL);
1554 	if (error)
1555 		return (error);
1556 	if (uap->oss != NULL)
1557 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1558 	return (error);
1559 }
1560 
1561 int
1562 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1563 {
1564 	struct proc *p = td->td_proc;
1565 	int oonstack;
1566 
1567 	oonstack = sigonstack(cpu_getstack(td));
1568 
1569 	if (oss != NULL) {
1570 		*oss = td->td_sigstk;
1571 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1572 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1573 	}
1574 
1575 	if (ss != NULL) {
1576 		if (oonstack)
1577 			return (EPERM);
1578 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1579 			return (EINVAL);
1580 		if (!(ss->ss_flags & SS_DISABLE)) {
1581 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1582 				return (ENOMEM);
1583 
1584 			td->td_sigstk = *ss;
1585 			td->td_pflags |= TDP_ALTSTACK;
1586 		} else {
1587 			td->td_pflags &= ~TDP_ALTSTACK;
1588 		}
1589 	}
1590 	return (0);
1591 }
1592 
1593 /*
1594  * Common code for kill process group/broadcast kill.
1595  * cp is calling process.
1596  */
1597 static int
1598 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1599 {
1600 	struct proc *p;
1601 	struct pgrp *pgrp;
1602 	int nfound = 0;
1603 
1604 	if (all) {
1605 		/*
1606 		 * broadcast
1607 		 */
1608 		sx_slock(&allproc_lock);
1609 		FOREACH_PROC_IN_SYSTEM(p) {
1610 			PROC_LOCK(p);
1611 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1612 			    p == td->td_proc || p->p_state == PRS_NEW) {
1613 				PROC_UNLOCK(p);
1614 				continue;
1615 			}
1616 			if (p_cansignal(td, p, sig) == 0) {
1617 				nfound++;
1618 				if (sig)
1619 					pksignal(p, sig, ksi);
1620 			}
1621 			PROC_UNLOCK(p);
1622 		}
1623 		sx_sunlock(&allproc_lock);
1624 	} else {
1625 		sx_slock(&proctree_lock);
1626 		if (pgid == 0) {
1627 			/*
1628 			 * zero pgid means send to my process group.
1629 			 */
1630 			pgrp = td->td_proc->p_pgrp;
1631 			PGRP_LOCK(pgrp);
1632 		} else {
1633 			pgrp = pgfind(pgid);
1634 			if (pgrp == NULL) {
1635 				sx_sunlock(&proctree_lock);
1636 				return (ESRCH);
1637 			}
1638 		}
1639 		sx_sunlock(&proctree_lock);
1640 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1641 			PROC_LOCK(p);
1642 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1643 			    p->p_state == PRS_NEW) {
1644 				PROC_UNLOCK(p);
1645 				continue;
1646 			}
1647 			if (p_cansignal(td, p, sig) == 0) {
1648 				nfound++;
1649 				if (sig)
1650 					pksignal(p, sig, ksi);
1651 			}
1652 			PROC_UNLOCK(p);
1653 		}
1654 		PGRP_UNLOCK(pgrp);
1655 	}
1656 	return (nfound ? 0 : ESRCH);
1657 }
1658 
1659 #ifndef _SYS_SYSPROTO_H_
1660 struct kill_args {
1661 	int	pid;
1662 	int	signum;
1663 };
1664 #endif
1665 /* ARGSUSED */
1666 int
1667 sys_kill(struct thread *td, struct kill_args *uap)
1668 {
1669 	ksiginfo_t ksi;
1670 	struct proc *p;
1671 	int error;
1672 
1673 	AUDIT_ARG_SIGNUM(uap->signum);
1674 	AUDIT_ARG_PID(uap->pid);
1675 	if ((u_int)uap->signum > _SIG_MAXSIG)
1676 		return (EINVAL);
1677 
1678 	ksiginfo_init(&ksi);
1679 	ksi.ksi_signo = uap->signum;
1680 	ksi.ksi_code = SI_USER;
1681 	ksi.ksi_pid = td->td_proc->p_pid;
1682 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1683 
1684 	if (uap->pid > 0) {
1685 		/* kill single process */
1686 		if ((p = pfind(uap->pid)) == NULL) {
1687 			if ((p = zpfind(uap->pid)) == NULL)
1688 				return (ESRCH);
1689 		}
1690 		AUDIT_ARG_PROCESS(p);
1691 		error = p_cansignal(td, p, uap->signum);
1692 		if (error == 0 && uap->signum)
1693 			pksignal(p, uap->signum, &ksi);
1694 		PROC_UNLOCK(p);
1695 		return (error);
1696 	}
1697 	switch (uap->pid) {
1698 	case -1:		/* broadcast signal */
1699 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1700 	case 0:			/* signal own process group */
1701 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1702 	default:		/* negative explicit process group */
1703 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1704 	}
1705 	/* NOTREACHED */
1706 }
1707 
1708 int
1709 sys_pdkill(td, uap)
1710 	struct thread *td;
1711 	struct pdkill_args *uap;
1712 {
1713 #ifdef PROCDESC
1714 	struct proc *p;
1715 	int error;
1716 
1717 	AUDIT_ARG_SIGNUM(uap->signum);
1718 	AUDIT_ARG_FD(uap->fd);
1719 	if ((u_int)uap->signum > _SIG_MAXSIG)
1720 		return (EINVAL);
1721 
1722 	error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
1723 	if (error)
1724 		return (error);
1725 	AUDIT_ARG_PROCESS(p);
1726 	error = p_cansignal(td, p, uap->signum);
1727 	if (error == 0 && uap->signum)
1728 		kern_psignal(p, uap->signum);
1729 	PROC_UNLOCK(p);
1730 	return (error);
1731 #else
1732 	return (ENOSYS);
1733 #endif
1734 }
1735 
1736 #if defined(COMPAT_43)
1737 #ifndef _SYS_SYSPROTO_H_
1738 struct okillpg_args {
1739 	int	pgid;
1740 	int	signum;
1741 };
1742 #endif
1743 /* ARGSUSED */
1744 int
1745 okillpg(struct thread *td, struct okillpg_args *uap)
1746 {
1747 	ksiginfo_t ksi;
1748 
1749 	AUDIT_ARG_SIGNUM(uap->signum);
1750 	AUDIT_ARG_PID(uap->pgid);
1751 	if ((u_int)uap->signum > _SIG_MAXSIG)
1752 		return (EINVAL);
1753 
1754 	ksiginfo_init(&ksi);
1755 	ksi.ksi_signo = uap->signum;
1756 	ksi.ksi_code = SI_USER;
1757 	ksi.ksi_pid = td->td_proc->p_pid;
1758 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1759 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1760 }
1761 #endif /* COMPAT_43 */
1762 
1763 #ifndef _SYS_SYSPROTO_H_
1764 struct sigqueue_args {
1765 	pid_t pid;
1766 	int signum;
1767 	/* union sigval */ void *value;
1768 };
1769 #endif
1770 int
1771 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1772 {
1773 	ksiginfo_t ksi;
1774 	struct proc *p;
1775 	int error;
1776 
1777 	if ((u_int)uap->signum > _SIG_MAXSIG)
1778 		return (EINVAL);
1779 
1780 	/*
1781 	 * Specification says sigqueue can only send signal to
1782 	 * single process.
1783 	 */
1784 	if (uap->pid <= 0)
1785 		return (EINVAL);
1786 
1787 	if ((p = pfind(uap->pid)) == NULL) {
1788 		if ((p = zpfind(uap->pid)) == NULL)
1789 			return (ESRCH);
1790 	}
1791 	error = p_cansignal(td, p, uap->signum);
1792 	if (error == 0 && uap->signum != 0) {
1793 		ksiginfo_init(&ksi);
1794 		ksi.ksi_flags = KSI_SIGQ;
1795 		ksi.ksi_signo = uap->signum;
1796 		ksi.ksi_code = SI_QUEUE;
1797 		ksi.ksi_pid = td->td_proc->p_pid;
1798 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1799 		ksi.ksi_value.sival_ptr = uap->value;
1800 		error = pksignal(p, ksi.ksi_signo, &ksi);
1801 	}
1802 	PROC_UNLOCK(p);
1803 	return (error);
1804 }
1805 
1806 /*
1807  * Send a signal to a process group.
1808  */
1809 void
1810 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1811 {
1812 	struct pgrp *pgrp;
1813 
1814 	if (pgid != 0) {
1815 		sx_slock(&proctree_lock);
1816 		pgrp = pgfind(pgid);
1817 		sx_sunlock(&proctree_lock);
1818 		if (pgrp != NULL) {
1819 			pgsignal(pgrp, sig, 0, ksi);
1820 			PGRP_UNLOCK(pgrp);
1821 		}
1822 	}
1823 }
1824 
1825 /*
1826  * Send a signal to a process group.  If checktty is 1,
1827  * limit to members which have a controlling terminal.
1828  */
1829 void
1830 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1831 {
1832 	struct proc *p;
1833 
1834 	if (pgrp) {
1835 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1836 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1837 			PROC_LOCK(p);
1838 			if (p->p_state == PRS_NORMAL &&
1839 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1840 				pksignal(p, sig, ksi);
1841 			PROC_UNLOCK(p);
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  * Send a signal caused by a trap to the current thread.  If it will be
1848  * caught immediately, deliver it with correct code.  Otherwise, post it
1849  * normally.
1850  */
1851 void
1852 trapsignal(struct thread *td, ksiginfo_t *ksi)
1853 {
1854 	struct sigacts *ps;
1855 	sigset_t mask;
1856 	struct proc *p;
1857 	int sig;
1858 	int code;
1859 
1860 	p = td->td_proc;
1861 	sig = ksi->ksi_signo;
1862 	code = ksi->ksi_code;
1863 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1864 
1865 	PROC_LOCK(p);
1866 	ps = p->p_sigacts;
1867 	mtx_lock(&ps->ps_mtx);
1868 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1869 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1870 		td->td_ru.ru_nsignals++;
1871 #ifdef KTRACE
1872 		if (KTRPOINT(curthread, KTR_PSIG))
1873 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1874 			    &td->td_sigmask, code);
1875 #endif
1876 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1877 				ksi, &td->td_sigmask);
1878 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1879 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1880 			SIGADDSET(mask, sig);
1881 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1882 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1883 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1884 			/*
1885 			 * See kern_sigaction() for origin of this code.
1886 			 */
1887 			SIGDELSET(ps->ps_sigcatch, sig);
1888 			if (sig != SIGCONT &&
1889 			    sigprop(sig) & SA_IGNORE)
1890 				SIGADDSET(ps->ps_sigignore, sig);
1891 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1892 		}
1893 		mtx_unlock(&ps->ps_mtx);
1894 	} else {
1895 		/*
1896 		 * Avoid a possible infinite loop if the thread
1897 		 * masking the signal or process is ignoring the
1898 		 * signal.
1899 		 */
1900 		if (kern_forcesigexit &&
1901 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1902 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1903 			SIGDELSET(td->td_sigmask, sig);
1904 			SIGDELSET(ps->ps_sigcatch, sig);
1905 			SIGDELSET(ps->ps_sigignore, sig);
1906 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1907 		}
1908 		mtx_unlock(&ps->ps_mtx);
1909 		p->p_code = code;	/* XXX for core dump/debugger */
1910 		p->p_sig = sig;		/* XXX to verify code */
1911 		tdsendsignal(p, td, sig, ksi);
1912 	}
1913 	PROC_UNLOCK(p);
1914 }
1915 
1916 static struct thread *
1917 sigtd(struct proc *p, int sig, int prop)
1918 {
1919 	struct thread *td, *signal_td;
1920 
1921 	PROC_LOCK_ASSERT(p, MA_OWNED);
1922 
1923 	/*
1924 	 * Check if current thread can handle the signal without
1925 	 * switching context to another thread.
1926 	 */
1927 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1928 		return (curthread);
1929 	signal_td = NULL;
1930 	FOREACH_THREAD_IN_PROC(p, td) {
1931 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1932 			signal_td = td;
1933 			break;
1934 		}
1935 	}
1936 	if (signal_td == NULL)
1937 		signal_td = FIRST_THREAD_IN_PROC(p);
1938 	return (signal_td);
1939 }
1940 
1941 /*
1942  * Send the signal to the process.  If the signal has an action, the action
1943  * is usually performed by the target process rather than the caller; we add
1944  * the signal to the set of pending signals for the process.
1945  *
1946  * Exceptions:
1947  *   o When a stop signal is sent to a sleeping process that takes the
1948  *     default action, the process is stopped without awakening it.
1949  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1950  *     regardless of the signal action (eg, blocked or ignored).
1951  *
1952  * Other ignored signals are discarded immediately.
1953  *
1954  * NB: This function may be entered from the debugger via the "kill" DDB
1955  * command.  There is little that can be done to mitigate the possibly messy
1956  * side effects of this unwise possibility.
1957  */
1958 void
1959 kern_psignal(struct proc *p, int sig)
1960 {
1961 	ksiginfo_t ksi;
1962 
1963 	ksiginfo_init(&ksi);
1964 	ksi.ksi_signo = sig;
1965 	ksi.ksi_code = SI_KERNEL;
1966 	(void) tdsendsignal(p, NULL, sig, &ksi);
1967 }
1968 
1969 int
1970 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1971 {
1972 
1973 	return (tdsendsignal(p, NULL, sig, ksi));
1974 }
1975 
1976 /* Utility function for finding a thread to send signal event to. */
1977 int
1978 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1979 {
1980 	struct thread *td;
1981 
1982 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1983 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1984 		if (td == NULL)
1985 			return (ESRCH);
1986 		*ttd = td;
1987 	} else {
1988 		*ttd = NULL;
1989 		PROC_LOCK(p);
1990 	}
1991 	return (0);
1992 }
1993 
1994 void
1995 tdsignal(struct thread *td, int sig)
1996 {
1997 	ksiginfo_t ksi;
1998 
1999 	ksiginfo_init(&ksi);
2000 	ksi.ksi_signo = sig;
2001 	ksi.ksi_code = SI_KERNEL;
2002 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2003 }
2004 
2005 void
2006 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2007 {
2008 
2009 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2010 }
2011 
2012 int
2013 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2014 {
2015 	sig_t action;
2016 	sigqueue_t *sigqueue;
2017 	int prop;
2018 	struct sigacts *ps;
2019 	int intrval;
2020 	int ret = 0;
2021 	int wakeup_swapper;
2022 
2023 	MPASS(td == NULL || p == td->td_proc);
2024 	PROC_LOCK_ASSERT(p, MA_OWNED);
2025 
2026 	if (!_SIG_VALID(sig))
2027 		panic("%s(): invalid signal %d", __func__, sig);
2028 
2029 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2030 
2031 	/*
2032 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2033 	 */
2034 	if (p->p_state == PRS_ZOMBIE) {
2035 		if (ksi && (ksi->ksi_flags & KSI_INS))
2036 			ksiginfo_tryfree(ksi);
2037 		return (ret);
2038 	}
2039 
2040 	ps = p->p_sigacts;
2041 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2042 	prop = sigprop(sig);
2043 
2044 	if (td == NULL) {
2045 		td = sigtd(p, sig, prop);
2046 		sigqueue = &p->p_sigqueue;
2047 	} else {
2048 		KASSERT(td->td_proc == p, ("invalid thread"));
2049 		sigqueue = &td->td_sigqueue;
2050 	}
2051 
2052 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2053 
2054 	/*
2055 	 * If the signal is being ignored,
2056 	 * then we forget about it immediately.
2057 	 * (Note: we don't set SIGCONT in ps_sigignore,
2058 	 * and if it is set to SIG_IGN,
2059 	 * action will be SIG_DFL here.)
2060 	 */
2061 	mtx_lock(&ps->ps_mtx);
2062 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2063 		SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
2064 
2065 		mtx_unlock(&ps->ps_mtx);
2066 		if (ksi && (ksi->ksi_flags & KSI_INS))
2067 			ksiginfo_tryfree(ksi);
2068 		return (ret);
2069 	}
2070 	if (SIGISMEMBER(td->td_sigmask, sig))
2071 		action = SIG_HOLD;
2072 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2073 		action = SIG_CATCH;
2074 	else
2075 		action = SIG_DFL;
2076 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2077 		intrval = EINTR;
2078 	else
2079 		intrval = ERESTART;
2080 	mtx_unlock(&ps->ps_mtx);
2081 
2082 	if (prop & SA_CONT)
2083 		sigqueue_delete_stopmask_proc(p);
2084 	else if (prop & SA_STOP) {
2085 		/*
2086 		 * If sending a tty stop signal to a member of an orphaned
2087 		 * process group, discard the signal here if the action
2088 		 * is default; don't stop the process below if sleeping,
2089 		 * and don't clear any pending SIGCONT.
2090 		 */
2091 		if ((prop & SA_TTYSTOP) &&
2092 		    (p->p_pgrp->pg_jobc == 0) &&
2093 		    (action == SIG_DFL)) {
2094 			if (ksi && (ksi->ksi_flags & KSI_INS))
2095 				ksiginfo_tryfree(ksi);
2096 			return (ret);
2097 		}
2098 		sigqueue_delete_proc(p, SIGCONT);
2099 		if (p->p_flag & P_CONTINUED) {
2100 			p->p_flag &= ~P_CONTINUED;
2101 			PROC_LOCK(p->p_pptr);
2102 			sigqueue_take(p->p_ksi);
2103 			PROC_UNLOCK(p->p_pptr);
2104 		}
2105 	}
2106 
2107 	ret = sigqueue_add(sigqueue, sig, ksi);
2108 	if (ret != 0)
2109 		return (ret);
2110 	signotify(td);
2111 	/*
2112 	 * Defer further processing for signals which are held,
2113 	 * except that stopped processes must be continued by SIGCONT.
2114 	 */
2115 	if (action == SIG_HOLD &&
2116 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2117 		return (ret);
2118 	/*
2119 	 * SIGKILL: Remove procfs STOPEVENTs.
2120 	 */
2121 	if (sig == SIGKILL) {
2122 		/* from procfs_ioctl.c: PIOCBIC */
2123 		p->p_stops = 0;
2124 		/* from procfs_ioctl.c: PIOCCONT */
2125 		p->p_step = 0;
2126 		wakeup(&p->p_step);
2127 	}
2128 	/*
2129 	 * Some signals have a process-wide effect and a per-thread
2130 	 * component.  Most processing occurs when the process next
2131 	 * tries to cross the user boundary, however there are some
2132 	 * times when processing needs to be done immediatly, such as
2133 	 * waking up threads so that they can cross the user boundary.
2134 	 * We try do the per-process part here.
2135 	 */
2136 	if (P_SHOULDSTOP(p)) {
2137 		KASSERT(!(p->p_flag & P_WEXIT),
2138 		    ("signal to stopped but exiting process"));
2139 		if (sig == SIGKILL) {
2140 			/*
2141 			 * If traced process is already stopped,
2142 			 * then no further action is necessary.
2143 			 */
2144 			if (p->p_flag & P_TRACED)
2145 				goto out;
2146 			/*
2147 			 * SIGKILL sets process running.
2148 			 * It will die elsewhere.
2149 			 * All threads must be restarted.
2150 			 */
2151 			p->p_flag &= ~P_STOPPED_SIG;
2152 			goto runfast;
2153 		}
2154 
2155 		if (prop & SA_CONT) {
2156 			/*
2157 			 * If traced process is already stopped,
2158 			 * then no further action is necessary.
2159 			 */
2160 			if (p->p_flag & P_TRACED)
2161 				goto out;
2162 			/*
2163 			 * If SIGCONT is default (or ignored), we continue the
2164 			 * process but don't leave the signal in sigqueue as
2165 			 * it has no further action.  If SIGCONT is held, we
2166 			 * continue the process and leave the signal in
2167 			 * sigqueue.  If the process catches SIGCONT, let it
2168 			 * handle the signal itself.  If it isn't waiting on
2169 			 * an event, it goes back to run state.
2170 			 * Otherwise, process goes back to sleep state.
2171 			 */
2172 			p->p_flag &= ~P_STOPPED_SIG;
2173 			PROC_SLOCK(p);
2174 			if (p->p_numthreads == p->p_suspcount) {
2175 				PROC_SUNLOCK(p);
2176 				p->p_flag |= P_CONTINUED;
2177 				p->p_xstat = SIGCONT;
2178 				PROC_LOCK(p->p_pptr);
2179 				childproc_continued(p);
2180 				PROC_UNLOCK(p->p_pptr);
2181 				PROC_SLOCK(p);
2182 			}
2183 			if (action == SIG_DFL) {
2184 				thread_unsuspend(p);
2185 				PROC_SUNLOCK(p);
2186 				sigqueue_delete(sigqueue, sig);
2187 				goto out;
2188 			}
2189 			if (action == SIG_CATCH) {
2190 				/*
2191 				 * The process wants to catch it so it needs
2192 				 * to run at least one thread, but which one?
2193 				 */
2194 				PROC_SUNLOCK(p);
2195 				goto runfast;
2196 			}
2197 			/*
2198 			 * The signal is not ignored or caught.
2199 			 */
2200 			thread_unsuspend(p);
2201 			PROC_SUNLOCK(p);
2202 			goto out;
2203 		}
2204 
2205 		if (prop & SA_STOP) {
2206 			/*
2207 			 * If traced process is already stopped,
2208 			 * then no further action is necessary.
2209 			 */
2210 			if (p->p_flag & P_TRACED)
2211 				goto out;
2212 			/*
2213 			 * Already stopped, don't need to stop again
2214 			 * (If we did the shell could get confused).
2215 			 * Just make sure the signal STOP bit set.
2216 			 */
2217 			p->p_flag |= P_STOPPED_SIG;
2218 			sigqueue_delete(sigqueue, sig);
2219 			goto out;
2220 		}
2221 
2222 		/*
2223 		 * All other kinds of signals:
2224 		 * If a thread is sleeping interruptibly, simulate a
2225 		 * wakeup so that when it is continued it will be made
2226 		 * runnable and can look at the signal.  However, don't make
2227 		 * the PROCESS runnable, leave it stopped.
2228 		 * It may run a bit until it hits a thread_suspend_check().
2229 		 */
2230 		wakeup_swapper = 0;
2231 		PROC_SLOCK(p);
2232 		thread_lock(td);
2233 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2234 			wakeup_swapper = sleepq_abort(td, intrval);
2235 		thread_unlock(td);
2236 		PROC_SUNLOCK(p);
2237 		if (wakeup_swapper)
2238 			kick_proc0();
2239 		goto out;
2240 		/*
2241 		 * Mutexes are short lived. Threads waiting on them will
2242 		 * hit thread_suspend_check() soon.
2243 		 */
2244 	} else if (p->p_state == PRS_NORMAL) {
2245 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2246 			tdsigwakeup(td, sig, action, intrval);
2247 			goto out;
2248 		}
2249 
2250 		MPASS(action == SIG_DFL);
2251 
2252 		if (prop & SA_STOP) {
2253 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2254 				goto out;
2255 			p->p_flag |= P_STOPPED_SIG;
2256 			p->p_xstat = sig;
2257 			PROC_SLOCK(p);
2258 			sig_suspend_threads(td, p, 1);
2259 			if (p->p_numthreads == p->p_suspcount) {
2260 				/*
2261 				 * only thread sending signal to another
2262 				 * process can reach here, if thread is sending
2263 				 * signal to its process, because thread does
2264 				 * not suspend itself here, p_numthreads
2265 				 * should never be equal to p_suspcount.
2266 				 */
2267 				thread_stopped(p);
2268 				PROC_SUNLOCK(p);
2269 				sigqueue_delete_proc(p, p->p_xstat);
2270 			} else
2271 				PROC_SUNLOCK(p);
2272 			goto out;
2273 		}
2274 	} else {
2275 		/* Not in "NORMAL" state. discard the signal. */
2276 		sigqueue_delete(sigqueue, sig);
2277 		goto out;
2278 	}
2279 
2280 	/*
2281 	 * The process is not stopped so we need to apply the signal to all the
2282 	 * running threads.
2283 	 */
2284 runfast:
2285 	tdsigwakeup(td, sig, action, intrval);
2286 	PROC_SLOCK(p);
2287 	thread_unsuspend(p);
2288 	PROC_SUNLOCK(p);
2289 out:
2290 	/* If we jump here, proc slock should not be owned. */
2291 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2292 	return (ret);
2293 }
2294 
2295 /*
2296  * The force of a signal has been directed against a single
2297  * thread.  We need to see what we can do about knocking it
2298  * out of any sleep it may be in etc.
2299  */
2300 static void
2301 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2302 {
2303 	struct proc *p = td->td_proc;
2304 	register int prop;
2305 	int wakeup_swapper;
2306 
2307 	wakeup_swapper = 0;
2308 	PROC_LOCK_ASSERT(p, MA_OWNED);
2309 	prop = sigprop(sig);
2310 
2311 	PROC_SLOCK(p);
2312 	thread_lock(td);
2313 	/*
2314 	 * Bring the priority of a thread up if we want it to get
2315 	 * killed in this lifetime.
2316 	 */
2317 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2318 		sched_prio(td, PUSER);
2319 	if (TD_ON_SLEEPQ(td)) {
2320 		/*
2321 		 * If thread is sleeping uninterruptibly
2322 		 * we can't interrupt the sleep... the signal will
2323 		 * be noticed when the process returns through
2324 		 * trap() or syscall().
2325 		 */
2326 		if ((td->td_flags & TDF_SINTR) == 0)
2327 			goto out;
2328 		/*
2329 		 * If SIGCONT is default (or ignored) and process is
2330 		 * asleep, we are finished; the process should not
2331 		 * be awakened.
2332 		 */
2333 		if ((prop & SA_CONT) && action == SIG_DFL) {
2334 			thread_unlock(td);
2335 			PROC_SUNLOCK(p);
2336 			sigqueue_delete(&p->p_sigqueue, sig);
2337 			/*
2338 			 * It may be on either list in this state.
2339 			 * Remove from both for now.
2340 			 */
2341 			sigqueue_delete(&td->td_sigqueue, sig);
2342 			return;
2343 		}
2344 
2345 		/*
2346 		 * Give low priority threads a better chance to run.
2347 		 */
2348 		if (td->td_priority > PUSER)
2349 			sched_prio(td, PUSER);
2350 
2351 		wakeup_swapper = sleepq_abort(td, intrval);
2352 	} else {
2353 		/*
2354 		 * Other states do nothing with the signal immediately,
2355 		 * other than kicking ourselves if we are running.
2356 		 * It will either never be noticed, or noticed very soon.
2357 		 */
2358 #ifdef SMP
2359 		if (TD_IS_RUNNING(td) && td != curthread)
2360 			forward_signal(td);
2361 #endif
2362 	}
2363 out:
2364 	PROC_SUNLOCK(p);
2365 	thread_unlock(td);
2366 	if (wakeup_swapper)
2367 		kick_proc0();
2368 }
2369 
2370 static void
2371 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2372 {
2373 	struct thread *td2;
2374 	int wakeup_swapper;
2375 
2376 	PROC_LOCK_ASSERT(p, MA_OWNED);
2377 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2378 
2379 	wakeup_swapper = 0;
2380 	FOREACH_THREAD_IN_PROC(p, td2) {
2381 		thread_lock(td2);
2382 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2383 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2384 		    (td2->td_flags & TDF_SINTR)) {
2385 			if (td2->td_flags & TDF_SBDRY) {
2386 				if (TD_IS_SUSPENDED(td2))
2387 					wakeup_swapper |=
2388 					    thread_unsuspend_one(td2);
2389 				if (TD_ON_SLEEPQ(td2))
2390 					wakeup_swapper |=
2391 					    sleepq_abort(td2, ERESTART);
2392 			} else if (!TD_IS_SUSPENDED(td2)) {
2393 				thread_suspend_one(td2);
2394 			}
2395 		} else if (!TD_IS_SUSPENDED(td2)) {
2396 			if (sending || td != td2)
2397 				td2->td_flags |= TDF_ASTPENDING;
2398 #ifdef SMP
2399 			if (TD_IS_RUNNING(td2) && td2 != td)
2400 				forward_signal(td2);
2401 #endif
2402 		}
2403 		thread_unlock(td2);
2404 	}
2405 	if (wakeup_swapper)
2406 		kick_proc0();
2407 }
2408 
2409 int
2410 ptracestop(struct thread *td, int sig)
2411 {
2412 	struct proc *p = td->td_proc;
2413 
2414 	PROC_LOCK_ASSERT(p, MA_OWNED);
2415 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2416 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2417 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2418 
2419 	td->td_dbgflags |= TDB_XSIG;
2420 	td->td_xsig = sig;
2421 	PROC_SLOCK(p);
2422 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2423 		if (p->p_flag & P_SINGLE_EXIT) {
2424 			td->td_dbgflags &= ~TDB_XSIG;
2425 			PROC_SUNLOCK(p);
2426 			return (sig);
2427 		}
2428 		/*
2429 		 * Just make wait() to work, the last stopped thread
2430 		 * will win.
2431 		 */
2432 		p->p_xstat = sig;
2433 		p->p_xthread = td;
2434 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2435 		sig_suspend_threads(td, p, 0);
2436 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2437 			td->td_dbgflags &= ~TDB_STOPATFORK;
2438 			cv_broadcast(&p->p_dbgwait);
2439 		}
2440 stopme:
2441 		thread_suspend_switch(td);
2442 		if (p->p_xthread == td)
2443 			p->p_xthread = NULL;
2444 		if (!(p->p_flag & P_TRACED))
2445 			break;
2446 		if (td->td_dbgflags & TDB_SUSPEND) {
2447 			if (p->p_flag & P_SINGLE_EXIT)
2448 				break;
2449 			goto stopme;
2450 		}
2451 	}
2452 	PROC_SUNLOCK(p);
2453 	return (td->td_xsig);
2454 }
2455 
2456 static void
2457 reschedule_signals(struct proc *p, sigset_t block, int flags)
2458 {
2459 	struct sigacts *ps;
2460 	struct thread *td;
2461 	int sig;
2462 
2463 	PROC_LOCK_ASSERT(p, MA_OWNED);
2464 	if (SIGISEMPTY(p->p_siglist))
2465 		return;
2466 	ps = p->p_sigacts;
2467 	SIGSETAND(block, p->p_siglist);
2468 	while ((sig = sig_ffs(&block)) != 0) {
2469 		SIGDELSET(block, sig);
2470 		td = sigtd(p, sig, 0);
2471 		signotify(td);
2472 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2473 			mtx_lock(&ps->ps_mtx);
2474 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2475 			tdsigwakeup(td, sig, SIG_CATCH,
2476 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2477 			     ERESTART));
2478 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2479 			mtx_unlock(&ps->ps_mtx);
2480 	}
2481 }
2482 
2483 void
2484 tdsigcleanup(struct thread *td)
2485 {
2486 	struct proc *p;
2487 	sigset_t unblocked;
2488 
2489 	p = td->td_proc;
2490 	PROC_LOCK_ASSERT(p, MA_OWNED);
2491 
2492 	sigqueue_flush(&td->td_sigqueue);
2493 	if (p->p_numthreads == 1)
2494 		return;
2495 
2496 	/*
2497 	 * Since we cannot handle signals, notify signal post code
2498 	 * about this by filling the sigmask.
2499 	 *
2500 	 * Also, if needed, wake up thread(s) that do not block the
2501 	 * same signals as the exiting thread, since the thread might
2502 	 * have been selected for delivery and woken up.
2503 	 */
2504 	SIGFILLSET(unblocked);
2505 	SIGSETNAND(unblocked, td->td_sigmask);
2506 	SIGFILLSET(td->td_sigmask);
2507 	reschedule_signals(p, unblocked, 0);
2508 
2509 }
2510 
2511 /*
2512  * If the current process has received a signal (should be caught or cause
2513  * termination, should interrupt current syscall), return the signal number.
2514  * Stop signals with default action are processed immediately, then cleared;
2515  * they aren't returned.  This is checked after each entry to the system for
2516  * a syscall or trap (though this can usually be done without calling issignal
2517  * by checking the pending signal masks in cursig.) The normal call
2518  * sequence is
2519  *
2520  *	while (sig = cursig(curthread))
2521  *		postsig(sig);
2522  */
2523 static int
2524 issignal(struct thread *td, int stop_allowed)
2525 {
2526 	struct proc *p;
2527 	struct sigacts *ps;
2528 	struct sigqueue *queue;
2529 	sigset_t sigpending;
2530 	int sig, prop, newsig;
2531 
2532 	p = td->td_proc;
2533 	ps = p->p_sigacts;
2534 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2535 	PROC_LOCK_ASSERT(p, MA_OWNED);
2536 	for (;;) {
2537 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2538 
2539 		sigpending = td->td_sigqueue.sq_signals;
2540 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2541 		SIGSETNAND(sigpending, td->td_sigmask);
2542 
2543 		if (p->p_flag & P_PPWAIT)
2544 			SIG_STOPSIGMASK(sigpending);
2545 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2546 			return (0);
2547 		sig = sig_ffs(&sigpending);
2548 
2549 		if (p->p_stops & S_SIG) {
2550 			mtx_unlock(&ps->ps_mtx);
2551 			stopevent(p, S_SIG, sig);
2552 			mtx_lock(&ps->ps_mtx);
2553 		}
2554 
2555 		/*
2556 		 * We should see pending but ignored signals
2557 		 * only if P_TRACED was on when they were posted.
2558 		 */
2559 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2560 			sigqueue_delete(&td->td_sigqueue, sig);
2561 			sigqueue_delete(&p->p_sigqueue, sig);
2562 			continue;
2563 		}
2564 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2565 			/*
2566 			 * If traced, always stop.
2567 			 * Remove old signal from queue before the stop.
2568 			 * XXX shrug off debugger, it causes siginfo to
2569 			 * be thrown away.
2570 			 */
2571 			queue = &td->td_sigqueue;
2572 			td->td_dbgksi.ksi_signo = 0;
2573 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2574 				queue = &p->p_sigqueue;
2575 				sigqueue_get(queue, sig, &td->td_dbgksi);
2576 			}
2577 
2578 			mtx_unlock(&ps->ps_mtx);
2579 			newsig = ptracestop(td, sig);
2580 			mtx_lock(&ps->ps_mtx);
2581 
2582 			if (sig != newsig) {
2583 
2584 				/*
2585 				 * If parent wants us to take the signal,
2586 				 * then it will leave it in p->p_xstat;
2587 				 * otherwise we just look for signals again.
2588 			 	*/
2589 				if (newsig == 0)
2590 					continue;
2591 				sig = newsig;
2592 
2593 				/*
2594 				 * Put the new signal into td_sigqueue. If the
2595 				 * signal is being masked, look for other signals.
2596 				 */
2597 				sigqueue_add(queue, sig, NULL);
2598 				if (SIGISMEMBER(td->td_sigmask, sig))
2599 					continue;
2600 				signotify(td);
2601 			} else {
2602 				if (td->td_dbgksi.ksi_signo != 0) {
2603 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2604 					if (sigqueue_add(&td->td_sigqueue, sig,
2605 					    &td->td_dbgksi) != 0)
2606 						td->td_dbgksi.ksi_signo = 0;
2607 				}
2608 				if (td->td_dbgksi.ksi_signo == 0)
2609 					sigqueue_add(&td->td_sigqueue, sig,
2610 					    NULL);
2611 			}
2612 
2613 			/*
2614 			 * If the traced bit got turned off, go back up
2615 			 * to the top to rescan signals.  This ensures
2616 			 * that p_sig* and p_sigact are consistent.
2617 			 */
2618 			if ((p->p_flag & P_TRACED) == 0)
2619 				continue;
2620 		}
2621 
2622 		prop = sigprop(sig);
2623 
2624 		/*
2625 		 * Decide whether the signal should be returned.
2626 		 * Return the signal's number, or fall through
2627 		 * to clear it from the pending mask.
2628 		 */
2629 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2630 
2631 		case (intptr_t)SIG_DFL:
2632 			/*
2633 			 * Don't take default actions on system processes.
2634 			 */
2635 			if (p->p_pid <= 1) {
2636 #ifdef DIAGNOSTIC
2637 				/*
2638 				 * Are you sure you want to ignore SIGSEGV
2639 				 * in init? XXX
2640 				 */
2641 				printf("Process (pid %lu) got signal %d\n",
2642 					(u_long)p->p_pid, sig);
2643 #endif
2644 				break;		/* == ignore */
2645 			}
2646 			/*
2647 			 * If there is a pending stop signal to process
2648 			 * with default action, stop here,
2649 			 * then clear the signal.  However,
2650 			 * if process is member of an orphaned
2651 			 * process group, ignore tty stop signals.
2652 			 */
2653 			if (prop & SA_STOP) {
2654 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2655 		    		    (p->p_pgrp->pg_jobc == 0 &&
2656 				     prop & SA_TTYSTOP))
2657 					break;	/* == ignore */
2658 
2659 				/* Ignore, but do not drop the stop signal. */
2660 				if (stop_allowed != SIG_STOP_ALLOWED)
2661 					return (sig);
2662 				mtx_unlock(&ps->ps_mtx);
2663 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2664 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2665 				p->p_flag |= P_STOPPED_SIG;
2666 				p->p_xstat = sig;
2667 				PROC_SLOCK(p);
2668 				sig_suspend_threads(td, p, 0);
2669 				thread_suspend_switch(td);
2670 				PROC_SUNLOCK(p);
2671 				mtx_lock(&ps->ps_mtx);
2672 				break;
2673 			} else if (prop & SA_IGNORE) {
2674 				/*
2675 				 * Except for SIGCONT, shouldn't get here.
2676 				 * Default action is to ignore; drop it.
2677 				 */
2678 				break;		/* == ignore */
2679 			} else
2680 				return (sig);
2681 			/*NOTREACHED*/
2682 
2683 		case (intptr_t)SIG_IGN:
2684 			/*
2685 			 * Masking above should prevent us ever trying
2686 			 * to take action on an ignored signal other
2687 			 * than SIGCONT, unless process is traced.
2688 			 */
2689 			if ((prop & SA_CONT) == 0 &&
2690 			    (p->p_flag & P_TRACED) == 0)
2691 				printf("issignal\n");
2692 			break;		/* == ignore */
2693 
2694 		default:
2695 			/*
2696 			 * This signal has an action, let
2697 			 * postsig() process it.
2698 			 */
2699 			return (sig);
2700 		}
2701 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2702 		sigqueue_delete(&p->p_sigqueue, sig);
2703 	}
2704 	/* NOTREACHED */
2705 }
2706 
2707 void
2708 thread_stopped(struct proc *p)
2709 {
2710 	int n;
2711 
2712 	PROC_LOCK_ASSERT(p, MA_OWNED);
2713 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2714 	n = p->p_suspcount;
2715 	if (p == curproc)
2716 		n++;
2717 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2718 		PROC_SUNLOCK(p);
2719 		p->p_flag &= ~P_WAITED;
2720 		PROC_LOCK(p->p_pptr);
2721 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2722 			CLD_TRAPPED : CLD_STOPPED);
2723 		PROC_UNLOCK(p->p_pptr);
2724 		PROC_SLOCK(p);
2725 	}
2726 }
2727 
2728 /*
2729  * Take the action for the specified signal
2730  * from the current set of pending signals.
2731  */
2732 int
2733 postsig(sig)
2734 	register int sig;
2735 {
2736 	struct thread *td = curthread;
2737 	register struct proc *p = td->td_proc;
2738 	struct sigacts *ps;
2739 	sig_t action;
2740 	ksiginfo_t ksi;
2741 	sigset_t returnmask, mask;
2742 
2743 	KASSERT(sig != 0, ("postsig"));
2744 
2745 	PROC_LOCK_ASSERT(p, MA_OWNED);
2746 	ps = p->p_sigacts;
2747 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2748 	ksiginfo_init(&ksi);
2749 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2750 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2751 		return (0);
2752 	ksi.ksi_signo = sig;
2753 	if (ksi.ksi_code == SI_TIMER)
2754 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2755 	action = ps->ps_sigact[_SIG_IDX(sig)];
2756 #ifdef KTRACE
2757 	if (KTRPOINT(td, KTR_PSIG))
2758 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2759 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2760 #endif
2761 	if (p->p_stops & S_SIG) {
2762 		mtx_unlock(&ps->ps_mtx);
2763 		stopevent(p, S_SIG, sig);
2764 		mtx_lock(&ps->ps_mtx);
2765 	}
2766 
2767 	if (action == SIG_DFL) {
2768 		/*
2769 		 * Default action, where the default is to kill
2770 		 * the process.  (Other cases were ignored above.)
2771 		 */
2772 		mtx_unlock(&ps->ps_mtx);
2773 		sigexit(td, sig);
2774 		/* NOTREACHED */
2775 	} else {
2776 		/*
2777 		 * If we get here, the signal must be caught.
2778 		 */
2779 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2780 		    ("postsig action"));
2781 		/*
2782 		 * Set the new mask value and also defer further
2783 		 * occurrences of this signal.
2784 		 *
2785 		 * Special case: user has done a sigsuspend.  Here the
2786 		 * current mask is not of interest, but rather the
2787 		 * mask from before the sigsuspend is what we want
2788 		 * restored after the signal processing is completed.
2789 		 */
2790 		if (td->td_pflags & TDP_OLDMASK) {
2791 			returnmask = td->td_oldsigmask;
2792 			td->td_pflags &= ~TDP_OLDMASK;
2793 		} else
2794 			returnmask = td->td_sigmask;
2795 
2796 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2797 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2798 			SIGADDSET(mask, sig);
2799 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2800 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2801 
2802 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2803 			/*
2804 			 * See kern_sigaction() for origin of this code.
2805 			 */
2806 			SIGDELSET(ps->ps_sigcatch, sig);
2807 			if (sig != SIGCONT &&
2808 			    sigprop(sig) & SA_IGNORE)
2809 				SIGADDSET(ps->ps_sigignore, sig);
2810 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2811 		}
2812 		td->td_ru.ru_nsignals++;
2813 		if (p->p_sig == sig) {
2814 			p->p_code = 0;
2815 			p->p_sig = 0;
2816 		}
2817 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2818 	}
2819 	return (1);
2820 }
2821 
2822 /*
2823  * Kill the current process for stated reason.
2824  */
2825 void
2826 killproc(p, why)
2827 	struct proc *p;
2828 	char *why;
2829 {
2830 
2831 	PROC_LOCK_ASSERT(p, MA_OWNED);
2832 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2833 		p, p->p_pid, p->p_comm);
2834 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2835 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2836 	p->p_flag |= P_WKILLED;
2837 	kern_psignal(p, SIGKILL);
2838 }
2839 
2840 /*
2841  * Force the current process to exit with the specified signal, dumping core
2842  * if appropriate.  We bypass the normal tests for masked and caught signals,
2843  * allowing unrecoverable failures to terminate the process without changing
2844  * signal state.  Mark the accounting record with the signal termination.
2845  * If dumping core, save the signal number for the debugger.  Calls exit and
2846  * does not return.
2847  */
2848 void
2849 sigexit(td, sig)
2850 	struct thread *td;
2851 	int sig;
2852 {
2853 	struct proc *p = td->td_proc;
2854 
2855 	PROC_LOCK_ASSERT(p, MA_OWNED);
2856 	p->p_acflag |= AXSIG;
2857 	/*
2858 	 * We must be single-threading to generate a core dump.  This
2859 	 * ensures that the registers in the core file are up-to-date.
2860 	 * Also, the ELF dump handler assumes that the thread list doesn't
2861 	 * change out from under it.
2862 	 *
2863 	 * XXX If another thread attempts to single-thread before us
2864 	 *     (e.g. via fork()), we won't get a dump at all.
2865 	 */
2866 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2867 		p->p_sig = sig;
2868 		/*
2869 		 * Log signals which would cause core dumps
2870 		 * (Log as LOG_INFO to appease those who don't want
2871 		 * these messages.)
2872 		 * XXX : Todo, as well as euid, write out ruid too
2873 		 * Note that coredump() drops proc lock.
2874 		 */
2875 		if (coredump(td) == 0)
2876 			sig |= WCOREFLAG;
2877 		if (kern_logsigexit)
2878 			log(LOG_INFO,
2879 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2880 			    p->p_pid, p->p_comm,
2881 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2882 			    sig &~ WCOREFLAG,
2883 			    sig & WCOREFLAG ? " (core dumped)" : "");
2884 	} else
2885 		PROC_UNLOCK(p);
2886 	exit1(td, W_EXITCODE(0, sig));
2887 	/* NOTREACHED */
2888 }
2889 
2890 /*
2891  * Send queued SIGCHLD to parent when child process's state
2892  * is changed.
2893  */
2894 static void
2895 sigparent(struct proc *p, int reason, int status)
2896 {
2897 	PROC_LOCK_ASSERT(p, MA_OWNED);
2898 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2899 
2900 	if (p->p_ksi != NULL) {
2901 		p->p_ksi->ksi_signo  = SIGCHLD;
2902 		p->p_ksi->ksi_code   = reason;
2903 		p->p_ksi->ksi_status = status;
2904 		p->p_ksi->ksi_pid    = p->p_pid;
2905 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2906 		if (KSI_ONQ(p->p_ksi))
2907 			return;
2908 	}
2909 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2910 }
2911 
2912 static void
2913 childproc_jobstate(struct proc *p, int reason, int status)
2914 {
2915 	struct sigacts *ps;
2916 
2917 	PROC_LOCK_ASSERT(p, MA_OWNED);
2918 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2919 
2920 	/*
2921 	 * Wake up parent sleeping in kern_wait(), also send
2922 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2923 	 * that parent will awake, because parent may masked
2924 	 * the signal.
2925 	 */
2926 	p->p_pptr->p_flag |= P_STATCHILD;
2927 	wakeup(p->p_pptr);
2928 
2929 	ps = p->p_pptr->p_sigacts;
2930 	mtx_lock(&ps->ps_mtx);
2931 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2932 		mtx_unlock(&ps->ps_mtx);
2933 		sigparent(p, reason, status);
2934 	} else
2935 		mtx_unlock(&ps->ps_mtx);
2936 }
2937 
2938 void
2939 childproc_stopped(struct proc *p, int reason)
2940 {
2941 	childproc_jobstate(p, reason, p->p_xstat);
2942 }
2943 
2944 void
2945 childproc_continued(struct proc *p)
2946 {
2947 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2948 }
2949 
2950 void
2951 childproc_exited(struct proc *p)
2952 {
2953 	int reason;
2954 	int status = p->p_xstat; /* convert to int */
2955 
2956 	reason = CLD_EXITED;
2957 	if (WCOREDUMP(status))
2958 		reason = CLD_DUMPED;
2959 	else if (WIFSIGNALED(status))
2960 		reason = CLD_KILLED;
2961 	/*
2962 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2963 	 * done in exit1().
2964 	 */
2965 	sigparent(p, reason, status);
2966 }
2967 
2968 /*
2969  * We only have 1 character for the core count in the format
2970  * string, so the range will be 0-9
2971  */
2972 #define MAX_NUM_CORES 10
2973 static int num_cores = 5;
2974 
2975 static int
2976 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2977 {
2978 	int error;
2979 	int new_val;
2980 
2981 	new_val = num_cores;
2982 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2983 	if (error != 0 || req->newptr == NULL)
2984 		return (error);
2985 	if (new_val > MAX_NUM_CORES)
2986 		new_val = MAX_NUM_CORES;
2987 	if (new_val < 0)
2988 		new_val = 0;
2989 	num_cores = new_val;
2990 	return (0);
2991 }
2992 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
2993 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
2994 
2995 #if defined(COMPRESS_USER_CORES)
2996 int compress_user_cores = 1;
2997 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
2998         &compress_user_cores, 0, "");
2999 
3000 int compress_user_cores_gzlevel = -1; /* default level */
3001 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3002     &compress_user_cores_gzlevel, -1, "user core gz compression level");
3003 
3004 #define GZ_SUFFIX	".gz"
3005 #define GZ_SUFFIX_LEN	3
3006 #endif
3007 
3008 static char corefilename[MAXPATHLEN] = {"%N.core"};
3009 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3010 	      sizeof(corefilename), "process corefile name format string");
3011 
3012 /*
3013  * expand_name(name, uid, pid, td, compress)
3014  * Expand the name described in corefilename, using name, uid, and pid.
3015  * corefilename is a printf-like string, with three format specifiers:
3016  *	%N	name of process ("name")
3017  *	%P	process id (pid)
3018  *	%U	user id (uid)
3019  * For example, "%N.core" is the default; they can be disabled completely
3020  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3021  * This is controlled by the sysctl variable kern.corefile (see above).
3022  */
3023 static char *
3024 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
3025     int compress)
3026 {
3027 	struct sbuf sb;
3028 	const char *format;
3029 	char *temp;
3030 	size_t i;
3031 	int indexpos;
3032 	char *hostname;
3033 
3034 	hostname = NULL;
3035 	format = corefilename;
3036 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
3037 	if (temp == NULL)
3038 		return (NULL);
3039 	indexpos = -1;
3040 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
3041 	for (i = 0; format[i]; i++) {
3042 		switch (format[i]) {
3043 		case '%':	/* Format character */
3044 			i++;
3045 			switch (format[i]) {
3046 			case '%':
3047 				sbuf_putc(&sb, '%');
3048 				break;
3049 			case 'H':	/* hostname */
3050 				if (hostname == NULL) {
3051 					hostname = malloc(MAXHOSTNAMELEN,
3052 					    M_TEMP, M_NOWAIT);
3053 					if (hostname == NULL) {
3054 						log(LOG_ERR,
3055 						    "pid %ld (%s), uid (%lu): "
3056 						    "unable to alloc memory "
3057 						    "for corefile hostname\n",
3058 						    (long)pid, name,
3059 						    (u_long)uid);
3060                                                 goto nomem;
3061                                         }
3062                                 }
3063 				getcredhostname(td->td_ucred, hostname,
3064 				    MAXHOSTNAMELEN);
3065 				sbuf_printf(&sb, "%s", hostname);
3066 				break;
3067 			case 'I':       /* autoincrementing index */
3068 				sbuf_printf(&sb, "0");
3069 				indexpos = sbuf_len(&sb) - 1;
3070 				break;
3071 			case 'N':	/* process name */
3072 				sbuf_printf(&sb, "%s", name);
3073 				break;
3074 			case 'P':	/* process id */
3075 				sbuf_printf(&sb, "%u", pid);
3076 				break;
3077 			case 'U':	/* user id */
3078 				sbuf_printf(&sb, "%u", uid);
3079 				break;
3080 			default:
3081 			  	log(LOG_ERR,
3082 				    "Unknown format character %c in "
3083 				    "corename `%s'\n", format[i], format);
3084 			}
3085 			break;
3086 		default:
3087 			sbuf_putc(&sb, format[i]);
3088 		}
3089 	}
3090 	free(hostname, M_TEMP);
3091 #ifdef COMPRESS_USER_CORES
3092 	if (compress) {
3093 		sbuf_printf(&sb, GZ_SUFFIX);
3094 	}
3095 #endif
3096 	if (sbuf_error(&sb) != 0) {
3097 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3098 		    "long\n", (long)pid, name, (u_long)uid);
3099 nomem:
3100 		sbuf_delete(&sb);
3101 		free(temp, M_TEMP);
3102 		return (NULL);
3103 	}
3104 	sbuf_finish(&sb);
3105 	sbuf_delete(&sb);
3106 
3107 	/*
3108 	 * If the core format has a %I in it, then we need to check
3109 	 * for existing corefiles before returning a name.
3110 	 * To do this we iterate over 0..num_cores to find a
3111 	 * non-existing core file name to use.
3112 	 */
3113 	if (indexpos != -1) {
3114 		struct nameidata nd;
3115 		int error, n;
3116 		int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3117 		int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
3118 		int vfslocked;
3119 
3120 		for (n = 0; n < num_cores; n++) {
3121 			temp[indexpos] = '0' + n;
3122 			NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
3123 			    temp, td);
3124 			error = vn_open(&nd, &flags, cmode, NULL);
3125 			if (error) {
3126 				if (error == EEXIST) {
3127 					continue;
3128 				}
3129 				log(LOG_ERR,
3130 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3131                                     "on initial open test, error = %d\n",
3132 				    pid, name, uid, temp, error);
3133 				free(temp, M_TEMP);
3134 				return (NULL);
3135 			}
3136 			vfslocked = NDHASGIANT(&nd);
3137 			NDFREE(&nd, NDF_ONLY_PNBUF);
3138 			VOP_UNLOCK(nd.ni_vp, 0);
3139 			error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
3140 			VFS_UNLOCK_GIANT(vfslocked);
3141 			if (error) {
3142 				log(LOG_ERR,
3143 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3144                                     "on close after initial open test, "
3145                                     "error = %d\n",
3146 				    pid, name, uid, temp, error);
3147 				free(temp, M_TEMP);
3148 				return (NULL);
3149 			}
3150 			break;
3151 		}
3152 	}
3153 	return (temp);
3154 }
3155 
3156 /*
3157  * Dump a process' core.  The main routine does some
3158  * policy checking, and creates the name of the coredump;
3159  * then it passes on a vnode and a size limit to the process-specific
3160  * coredump routine if there is one; if there _is not_ one, it returns
3161  * ENOSYS; otherwise it returns the error from the process-specific routine.
3162  */
3163 
3164 static int
3165 coredump(struct thread *td)
3166 {
3167 	struct proc *p = td->td_proc;
3168 	register struct vnode *vp;
3169 	register struct ucred *cred = td->td_ucred;
3170 	struct flock lf;
3171 	struct nameidata nd;
3172 	struct vattr vattr;
3173 	int error, error1, flags, locked;
3174 	struct mount *mp;
3175 	char *name;			/* name of corefile */
3176 	off_t limit;
3177 	int vfslocked;
3178 	int compress;
3179 
3180 #ifdef COMPRESS_USER_CORES
3181 	compress = compress_user_cores;
3182 #else
3183 	compress = 0;
3184 #endif
3185 	PROC_LOCK_ASSERT(p, MA_OWNED);
3186 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3187 	_STOPEVENT(p, S_CORE, 0);
3188 
3189 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
3190 	    compress);
3191 	if (name == NULL) {
3192 		PROC_UNLOCK(p);
3193 #ifdef AUDIT
3194 		audit_proc_coredump(td, NULL, EINVAL);
3195 #endif
3196 		return (EINVAL);
3197 	}
3198 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3199 		PROC_UNLOCK(p);
3200 #ifdef AUDIT
3201 		audit_proc_coredump(td, name, EFAULT);
3202 #endif
3203 		free(name, M_TEMP);
3204 		return (EFAULT);
3205 	}
3206 
3207 	/*
3208 	 * Note that the bulk of limit checking is done after
3209 	 * the corefile is created.  The exception is if the limit
3210 	 * for corefiles is 0, in which case we don't bother
3211 	 * creating the corefile at all.  This layout means that
3212 	 * a corefile is truncated instead of not being created,
3213 	 * if it is larger than the limit.
3214 	 */
3215 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3216 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3217 		PROC_UNLOCK(p);
3218 #ifdef AUDIT
3219 		audit_proc_coredump(td, name, EFBIG);
3220 #endif
3221 		free(name, M_TEMP);
3222 		return (EFBIG);
3223 	}
3224 	PROC_UNLOCK(p);
3225 
3226 restart:
3227 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3228 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3229 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
3230 	    cred, NULL);
3231 	if (error) {
3232 #ifdef AUDIT
3233 		audit_proc_coredump(td, name, error);
3234 #endif
3235 		free(name, M_TEMP);
3236 		return (error);
3237 	}
3238 	vfslocked = NDHASGIANT(&nd);
3239 	NDFREE(&nd, NDF_ONLY_PNBUF);
3240 	vp = nd.ni_vp;
3241 
3242 	/* Don't dump to non-regular files or files with links. */
3243 	if (vp->v_type != VREG ||
3244 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
3245 		VOP_UNLOCK(vp, 0);
3246 		error = EFAULT;
3247 		goto close;
3248 	}
3249 
3250 	VOP_UNLOCK(vp, 0);
3251 	lf.l_whence = SEEK_SET;
3252 	lf.l_start = 0;
3253 	lf.l_len = 0;
3254 	lf.l_type = F_WRLCK;
3255 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3256 
3257 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3258 		lf.l_type = F_UNLCK;
3259 		if (locked)
3260 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3261 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3262 			goto out;
3263 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3264 			goto out;
3265 		VFS_UNLOCK_GIANT(vfslocked);
3266 		goto restart;
3267 	}
3268 
3269 	VATTR_NULL(&vattr);
3270 	vattr.va_size = 0;
3271 	if (set_core_nodump_flag)
3272 		vattr.va_flags = UF_NODUMP;
3273 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3274 	VOP_SETATTR(vp, &vattr, cred);
3275 	VOP_UNLOCK(vp, 0);
3276 	vn_finished_write(mp);
3277 	PROC_LOCK(p);
3278 	p->p_acflag |= ACORE;
3279 	PROC_UNLOCK(p);
3280 
3281 	error = p->p_sysent->sv_coredump ?
3282 	  p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
3283 	  ENOSYS;
3284 
3285 	if (locked) {
3286 		lf.l_type = F_UNLCK;
3287 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3288 	}
3289 close:
3290 	error1 = vn_close(vp, FWRITE, cred, td);
3291 	if (error == 0)
3292 		error = error1;
3293 out:
3294 #ifdef AUDIT
3295 	audit_proc_coredump(td, name, error);
3296 #endif
3297 	free(name, M_TEMP);
3298 	VFS_UNLOCK_GIANT(vfslocked);
3299 	return (error);
3300 }
3301 
3302 /*
3303  * Nonexistent system call-- signal process (may want to handle it).  Flag
3304  * error in case process won't see signal immediately (blocked or ignored).
3305  */
3306 #ifndef _SYS_SYSPROTO_H_
3307 struct nosys_args {
3308 	int	dummy;
3309 };
3310 #endif
3311 /* ARGSUSED */
3312 int
3313 nosys(td, args)
3314 	struct thread *td;
3315 	struct nosys_args *args;
3316 {
3317 	struct proc *p = td->td_proc;
3318 
3319 	PROC_LOCK(p);
3320 	tdsignal(td, SIGSYS);
3321 	PROC_UNLOCK(p);
3322 	return (ENOSYS);
3323 }
3324 
3325 /*
3326  * Send a SIGIO or SIGURG signal to a process or process group using stored
3327  * credentials rather than those of the current process.
3328  */
3329 void
3330 pgsigio(sigiop, sig, checkctty)
3331 	struct sigio **sigiop;
3332 	int sig, checkctty;
3333 {
3334 	ksiginfo_t ksi;
3335 	struct sigio *sigio;
3336 
3337 	ksiginfo_init(&ksi);
3338 	ksi.ksi_signo = sig;
3339 	ksi.ksi_code = SI_KERNEL;
3340 
3341 	SIGIO_LOCK();
3342 	sigio = *sigiop;
3343 	if (sigio == NULL) {
3344 		SIGIO_UNLOCK();
3345 		return;
3346 	}
3347 	if (sigio->sio_pgid > 0) {
3348 		PROC_LOCK(sigio->sio_proc);
3349 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3350 			kern_psignal(sigio->sio_proc, sig);
3351 		PROC_UNLOCK(sigio->sio_proc);
3352 	} else if (sigio->sio_pgid < 0) {
3353 		struct proc *p;
3354 
3355 		PGRP_LOCK(sigio->sio_pgrp);
3356 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3357 			PROC_LOCK(p);
3358 			if (p->p_state == PRS_NORMAL &&
3359 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3360 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3361 				kern_psignal(p, sig);
3362 			PROC_UNLOCK(p);
3363 		}
3364 		PGRP_UNLOCK(sigio->sio_pgrp);
3365 	}
3366 	SIGIO_UNLOCK();
3367 }
3368 
3369 static int
3370 filt_sigattach(struct knote *kn)
3371 {
3372 	struct proc *p = curproc;
3373 
3374 	kn->kn_ptr.p_proc = p;
3375 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3376 
3377 	knlist_add(&p->p_klist, kn, 0);
3378 
3379 	return (0);
3380 }
3381 
3382 static void
3383 filt_sigdetach(struct knote *kn)
3384 {
3385 	struct proc *p = kn->kn_ptr.p_proc;
3386 
3387 	knlist_remove(&p->p_klist, kn, 0);
3388 }
3389 
3390 /*
3391  * signal knotes are shared with proc knotes, so we apply a mask to
3392  * the hint in order to differentiate them from process hints.  This
3393  * could be avoided by using a signal-specific knote list, but probably
3394  * isn't worth the trouble.
3395  */
3396 static int
3397 filt_signal(struct knote *kn, long hint)
3398 {
3399 
3400 	if (hint & NOTE_SIGNAL) {
3401 		hint &= ~NOTE_SIGNAL;
3402 
3403 		if (kn->kn_id == hint)
3404 			kn->kn_data++;
3405 	}
3406 	return (kn->kn_data != 0);
3407 }
3408 
3409 struct sigacts *
3410 sigacts_alloc(void)
3411 {
3412 	struct sigacts *ps;
3413 
3414 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3415 	ps->ps_refcnt = 1;
3416 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3417 	return (ps);
3418 }
3419 
3420 void
3421 sigacts_free(struct sigacts *ps)
3422 {
3423 
3424 	mtx_lock(&ps->ps_mtx);
3425 	ps->ps_refcnt--;
3426 	if (ps->ps_refcnt == 0) {
3427 		mtx_destroy(&ps->ps_mtx);
3428 		free(ps, M_SUBPROC);
3429 	} else
3430 		mtx_unlock(&ps->ps_mtx);
3431 }
3432 
3433 struct sigacts *
3434 sigacts_hold(struct sigacts *ps)
3435 {
3436 	mtx_lock(&ps->ps_mtx);
3437 	ps->ps_refcnt++;
3438 	mtx_unlock(&ps->ps_mtx);
3439 	return (ps);
3440 }
3441 
3442 void
3443 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3444 {
3445 
3446 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3447 	mtx_lock(&src->ps_mtx);
3448 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3449 	mtx_unlock(&src->ps_mtx);
3450 }
3451 
3452 int
3453 sigacts_shared(struct sigacts *ps)
3454 {
3455 	int shared;
3456 
3457 	mtx_lock(&ps->ps_mtx);
3458 	shared = ps->ps_refcnt > 1;
3459 	mtx_unlock(&ps->ps_mtx);
3460 	return (shared);
3461 }
3462