xref: /freebsd/sys/kern/kern_sig.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/condvar.h>
51 #include <sys/event.h>
52 #include <sys/fcntl.h>
53 #include <sys/imgact.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/proc.h>
62 #include <sys/posix4.h>
63 #include <sys/pioctl.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sdt.h>
67 #include <sys/sbuf.h>
68 #include <sys/sleepqueue.h>
69 #include <sys/smp.h>
70 #include <sys/stat.h>
71 #include <sys/sx.h>
72 #include <sys/syscallsubr.h>
73 #include <sys/sysctl.h>
74 #include <sys/sysent.h>
75 #include <sys/syslog.h>
76 #include <sys/sysproto.h>
77 #include <sys/timers.h>
78 #include <sys/unistd.h>
79 #include <sys/wait.h>
80 #include <vm/vm.h>
81 #include <vm/vm_extern.h>
82 #include <vm/uma.h>
83 
84 #include <sys/jail.h>
85 
86 #include <machine/cpu.h>
87 
88 #include <security/audit/audit.h>
89 
90 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
91 
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
94 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
95 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
96 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
97 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
103 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
104 
105 static int	coredump(struct thread *);
106 static char	*expand_name(const char *, uid_t, pid_t, struct thread *, int);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td, int stop_allowed);
110 static int	sigprop(int sig);
111 static void	tdsigwakeup(struct thread *, int, sig_t, int);
112 static void	sig_suspend_threads(struct thread *, struct proc *, int);
113 static int	filt_sigattach(struct knote *kn);
114 static void	filt_sigdetach(struct knote *kn);
115 static int	filt_signal(struct knote *kn, long hint);
116 static struct thread *sigtd(struct proc *p, int sig, int prop);
117 static void	sigqueue_start(void);
118 
119 static uma_zone_t	ksiginfo_zone = NULL;
120 struct filterops sig_filtops = {
121 	.f_isfd = 0,
122 	.f_attach = filt_sigattach,
123 	.f_detach = filt_sigdetach,
124 	.f_event = filt_signal,
125 };
126 
127 static int	kern_logsigexit = 1;
128 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129     &kern_logsigexit, 0,
130     "Log processes quitting on abnormal signals to syslog(3)");
131 
132 static int	kern_forcesigexit = 1;
133 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134     &kern_forcesigexit, 0, "Force trap signal to be handled");
135 
136 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
145     &preallocate_siginfo, 0, "Preallocated signal memory size");
146 
147 static int	signal_overflow = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
149     &signal_overflow, 0, "Number of signals overflew");
150 
151 static int	signal_alloc_fail = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
153     &signal_alloc_fail, 0, "signals failed to be allocated");
154 
155 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
156 
157 /*
158  * Policy -- Can ucred cr1 send SIGIO to process cr2?
159  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
160  * in the right situations.
161  */
162 #define CANSIGIO(cr1, cr2) \
163 	((cr1)->cr_uid == 0 || \
164 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
165 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
166 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
167 	    (cr1)->cr_uid == (cr2)->cr_uid)
168 
169 static int	sugid_coredump;
170 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
171     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
172 
173 static int	do_coredump = 1;
174 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
175 	&do_coredump, 0, "Enable/Disable coredumps");
176 
177 static int	set_core_nodump_flag = 0;
178 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
179 	0, "Enable setting the NODUMP flag on coredump files");
180 
181 /*
182  * Signal properties and actions.
183  * The array below categorizes the signals and their default actions
184  * according to the following properties:
185  */
186 #define	SA_KILL		0x01		/* terminates process by default */
187 #define	SA_CORE		0x02		/* ditto and coredumps */
188 #define	SA_STOP		0x04		/* suspend process */
189 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
190 #define	SA_IGNORE	0x10		/* ignore by default */
191 #define	SA_CONT		0x20		/* continue if suspended */
192 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
193 #define	SA_PROC		0x80		/* deliverable to any thread */
194 
195 static int sigproptbl[NSIG] = {
196         SA_KILL|SA_PROC,		/* SIGHUP */
197         SA_KILL|SA_PROC,		/* SIGINT */
198         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
199         SA_KILL|SA_CORE,		/* SIGILL */
200         SA_KILL|SA_CORE,		/* SIGTRAP */
201         SA_KILL|SA_CORE,		/* SIGABRT */
202         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
203         SA_KILL|SA_CORE,		/* SIGFPE */
204         SA_KILL|SA_PROC,		/* SIGKILL */
205         SA_KILL|SA_CORE,		/* SIGBUS */
206         SA_KILL|SA_CORE,		/* SIGSEGV */
207         SA_KILL|SA_CORE,		/* SIGSYS */
208         SA_KILL|SA_PROC,		/* SIGPIPE */
209         SA_KILL|SA_PROC,		/* SIGALRM */
210         SA_KILL|SA_PROC,		/* SIGTERM */
211         SA_IGNORE|SA_PROC,		/* SIGURG */
212         SA_STOP|SA_PROC,		/* SIGSTOP */
213         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
214         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
215         SA_IGNORE|SA_PROC,		/* SIGCHLD */
216         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
217         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
218         SA_IGNORE|SA_PROC,		/* SIGIO */
219         SA_KILL,			/* SIGXCPU */
220         SA_KILL,			/* SIGXFSZ */
221         SA_KILL|SA_PROC,		/* SIGVTALRM */
222         SA_KILL|SA_PROC,		/* SIGPROF */
223         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
224         SA_IGNORE|SA_PROC,		/* SIGINFO */
225         SA_KILL|SA_PROC,		/* SIGUSR1 */
226         SA_KILL|SA_PROC,		/* SIGUSR2 */
227 };
228 
229 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
230 
231 static void
232 sigqueue_start(void)
233 {
234 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
235 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
236 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
237 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
238 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
239 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
240 }
241 
242 ksiginfo_t *
243 ksiginfo_alloc(int wait)
244 {
245 	int flags;
246 
247 	flags = M_ZERO;
248 	if (! wait)
249 		flags |= M_NOWAIT;
250 	if (ksiginfo_zone != NULL)
251 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
252 	return (NULL);
253 }
254 
255 void
256 ksiginfo_free(ksiginfo_t *ksi)
257 {
258 	uma_zfree(ksiginfo_zone, ksi);
259 }
260 
261 static __inline int
262 ksiginfo_tryfree(ksiginfo_t *ksi)
263 {
264 	if (!(ksi->ksi_flags & KSI_EXT)) {
265 		uma_zfree(ksiginfo_zone, ksi);
266 		return (1);
267 	}
268 	return (0);
269 }
270 
271 void
272 sigqueue_init(sigqueue_t *list, struct proc *p)
273 {
274 	SIGEMPTYSET(list->sq_signals);
275 	SIGEMPTYSET(list->sq_kill);
276 	TAILQ_INIT(&list->sq_list);
277 	list->sq_proc = p;
278 	list->sq_flags = SQ_INIT;
279 }
280 
281 /*
282  * Get a signal's ksiginfo.
283  * Return:
284  * 	0	-	signal not found
285  *	others	-	signal number
286  */
287 static int
288 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
289 {
290 	struct proc *p = sq->sq_proc;
291 	struct ksiginfo *ksi, *next;
292 	int count = 0;
293 
294 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
295 
296 	if (!SIGISMEMBER(sq->sq_signals, signo))
297 		return (0);
298 
299 	if (SIGISMEMBER(sq->sq_kill, signo)) {
300 		count++;
301 		SIGDELSET(sq->sq_kill, signo);
302 	}
303 
304 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
305 		if (ksi->ksi_signo == signo) {
306 			if (count == 0) {
307 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
308 				ksi->ksi_sigq = NULL;
309 				ksiginfo_copy(ksi, si);
310 				if (ksiginfo_tryfree(ksi) && p != NULL)
311 					p->p_pendingcnt--;
312 			}
313 			if (++count > 1)
314 				break;
315 		}
316 	}
317 
318 	if (count <= 1)
319 		SIGDELSET(sq->sq_signals, signo);
320 	si->ksi_signo = signo;
321 	return (signo);
322 }
323 
324 void
325 sigqueue_take(ksiginfo_t *ksi)
326 {
327 	struct ksiginfo *kp;
328 	struct proc	*p;
329 	sigqueue_t	*sq;
330 
331 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
332 		return;
333 
334 	p = sq->sq_proc;
335 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
336 	ksi->ksi_sigq = NULL;
337 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
338 		p->p_pendingcnt--;
339 
340 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
341 	     kp = TAILQ_NEXT(kp, ksi_link)) {
342 		if (kp->ksi_signo == ksi->ksi_signo)
343 			break;
344 	}
345 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
346 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
347 }
348 
349 static int
350 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
351 {
352 	struct proc *p = sq->sq_proc;
353 	struct ksiginfo *ksi;
354 	int ret = 0;
355 
356 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
357 
358 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
359 		SIGADDSET(sq->sq_kill, signo);
360 		goto out_set_bit;
361 	}
362 
363 	/* directly insert the ksi, don't copy it */
364 	if (si->ksi_flags & KSI_INS) {
365 		if (si->ksi_flags & KSI_HEAD)
366 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
367 		else
368 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
369 		si->ksi_sigq = sq;
370 		goto out_set_bit;
371 	}
372 
373 	if (__predict_false(ksiginfo_zone == NULL)) {
374 		SIGADDSET(sq->sq_kill, signo);
375 		goto out_set_bit;
376 	}
377 
378 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
379 		signal_overflow++;
380 		ret = EAGAIN;
381 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
382 		signal_alloc_fail++;
383 		ret = EAGAIN;
384 	} else {
385 		if (p != NULL)
386 			p->p_pendingcnt++;
387 		ksiginfo_copy(si, ksi);
388 		ksi->ksi_signo = signo;
389 		if (si->ksi_flags & KSI_HEAD)
390 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
391 		else
392 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
393 		ksi->ksi_sigq = sq;
394 	}
395 
396 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
397 	    (si->ksi_flags & KSI_SIGQ) == 0) {
398 		if (ret != 0)
399 			SIGADDSET(sq->sq_kill, signo);
400 		ret = 0;
401 		goto out_set_bit;
402 	}
403 
404 	if (ret != 0)
405 		return (ret);
406 
407 out_set_bit:
408 	SIGADDSET(sq->sq_signals, signo);
409 	return (ret);
410 }
411 
412 void
413 sigqueue_flush(sigqueue_t *sq)
414 {
415 	struct proc *p = sq->sq_proc;
416 	ksiginfo_t *ksi;
417 
418 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
419 
420 	if (p != NULL)
421 		PROC_LOCK_ASSERT(p, MA_OWNED);
422 
423 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
424 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
425 		ksi->ksi_sigq = NULL;
426 		if (ksiginfo_tryfree(ksi) && p != NULL)
427 			p->p_pendingcnt--;
428 	}
429 
430 	SIGEMPTYSET(sq->sq_signals);
431 	SIGEMPTYSET(sq->sq_kill);
432 }
433 
434 static void
435 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
436 {
437 	sigset_t tmp;
438 	struct proc *p1, *p2;
439 	ksiginfo_t *ksi, *next;
440 
441 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
442 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
443 	p1 = src->sq_proc;
444 	p2 = dst->sq_proc;
445 	/* Move siginfo to target list */
446 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
447 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
448 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
449 			if (p1 != NULL)
450 				p1->p_pendingcnt--;
451 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
452 			ksi->ksi_sigq = dst;
453 			if (p2 != NULL)
454 				p2->p_pendingcnt++;
455 		}
456 	}
457 
458 	/* Move pending bits to target list */
459 	tmp = src->sq_kill;
460 	SIGSETAND(tmp, *set);
461 	SIGSETOR(dst->sq_kill, tmp);
462 	SIGSETNAND(src->sq_kill, tmp);
463 
464 	tmp = src->sq_signals;
465 	SIGSETAND(tmp, *set);
466 	SIGSETOR(dst->sq_signals, tmp);
467 	SIGSETNAND(src->sq_signals, tmp);
468 }
469 
470 #if 0
471 static void
472 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
473 {
474 	sigset_t set;
475 
476 	SIGEMPTYSET(set);
477 	SIGADDSET(set, signo);
478 	sigqueue_move_set(src, dst, &set);
479 }
480 #endif
481 
482 static void
483 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
484 {
485 	struct proc *p = sq->sq_proc;
486 	ksiginfo_t *ksi, *next;
487 
488 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
489 
490 	/* Remove siginfo queue */
491 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
492 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
493 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
494 			ksi->ksi_sigq = NULL;
495 			if (ksiginfo_tryfree(ksi) && p != NULL)
496 				p->p_pendingcnt--;
497 		}
498 	}
499 	SIGSETNAND(sq->sq_kill, *set);
500 	SIGSETNAND(sq->sq_signals, *set);
501 }
502 
503 void
504 sigqueue_delete(sigqueue_t *sq, int signo)
505 {
506 	sigset_t set;
507 
508 	SIGEMPTYSET(set);
509 	SIGADDSET(set, signo);
510 	sigqueue_delete_set(sq, &set);
511 }
512 
513 /* Remove a set of signals for a process */
514 static void
515 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
516 {
517 	sigqueue_t worklist;
518 	struct thread *td0;
519 
520 	PROC_LOCK_ASSERT(p, MA_OWNED);
521 
522 	sigqueue_init(&worklist, NULL);
523 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
524 
525 	FOREACH_THREAD_IN_PROC(p, td0)
526 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
527 
528 	sigqueue_flush(&worklist);
529 }
530 
531 void
532 sigqueue_delete_proc(struct proc *p, int signo)
533 {
534 	sigset_t set;
535 
536 	SIGEMPTYSET(set);
537 	SIGADDSET(set, signo);
538 	sigqueue_delete_set_proc(p, &set);
539 }
540 
541 static void
542 sigqueue_delete_stopmask_proc(struct proc *p)
543 {
544 	sigset_t set;
545 
546 	SIGEMPTYSET(set);
547 	SIGADDSET(set, SIGSTOP);
548 	SIGADDSET(set, SIGTSTP);
549 	SIGADDSET(set, SIGTTIN);
550 	SIGADDSET(set, SIGTTOU);
551 	sigqueue_delete_set_proc(p, &set);
552 }
553 
554 /*
555  * Determine signal that should be delivered to process p, the current
556  * process, 0 if none.  If there is a pending stop signal with default
557  * action, the process stops in issignal().
558  */
559 int
560 cursig(struct thread *td, int stop_allowed)
561 {
562 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
563 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
564 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
565 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
566 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
567 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
568 }
569 
570 /*
571  * Arrange for ast() to handle unmasked pending signals on return to user
572  * mode.  This must be called whenever a signal is added to td_sigqueue or
573  * unmasked in td_sigmask.
574  */
575 void
576 signotify(struct thread *td)
577 {
578 	struct proc *p;
579 
580 	p = td->td_proc;
581 
582 	PROC_LOCK_ASSERT(p, MA_OWNED);
583 
584 	if (SIGPENDING(td)) {
585 		thread_lock(td);
586 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
587 		thread_unlock(td);
588 	}
589 }
590 
591 int
592 sigonstack(size_t sp)
593 {
594 	struct thread *td = curthread;
595 
596 	return ((td->td_pflags & TDP_ALTSTACK) ?
597 #if defined(COMPAT_43)
598 	    ((td->td_sigstk.ss_size == 0) ?
599 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
600 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
601 #else
602 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
603 #endif
604 	    : 0);
605 }
606 
607 static __inline int
608 sigprop(int sig)
609 {
610 
611 	if (sig > 0 && sig < NSIG)
612 		return (sigproptbl[_SIG_IDX(sig)]);
613 	return (0);
614 }
615 
616 int
617 sig_ffs(sigset_t *set)
618 {
619 	int i;
620 
621 	for (i = 0; i < _SIG_WORDS; i++)
622 		if (set->__bits[i])
623 			return (ffs(set->__bits[i]) + (i * 32));
624 	return (0);
625 }
626 
627 /*
628  * kern_sigaction
629  * sigaction
630  * freebsd4_sigaction
631  * osigaction
632  */
633 int
634 kern_sigaction(td, sig, act, oact, flags)
635 	struct thread *td;
636 	register int sig;
637 	struct sigaction *act, *oact;
638 	int flags;
639 {
640 	struct sigacts *ps;
641 	struct proc *p = td->td_proc;
642 
643 	if (!_SIG_VALID(sig))
644 		return (EINVAL);
645 
646 	PROC_LOCK(p);
647 	ps = p->p_sigacts;
648 	mtx_lock(&ps->ps_mtx);
649 	if (oact) {
650 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
651 		oact->sa_flags = 0;
652 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
653 			oact->sa_flags |= SA_ONSTACK;
654 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
655 			oact->sa_flags |= SA_RESTART;
656 		if (SIGISMEMBER(ps->ps_sigreset, sig))
657 			oact->sa_flags |= SA_RESETHAND;
658 		if (SIGISMEMBER(ps->ps_signodefer, sig))
659 			oact->sa_flags |= SA_NODEFER;
660 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
661 			oact->sa_flags |= SA_SIGINFO;
662 			oact->sa_sigaction =
663 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
664 		} else
665 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
666 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
667 			oact->sa_flags |= SA_NOCLDSTOP;
668 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
669 			oact->sa_flags |= SA_NOCLDWAIT;
670 	}
671 	if (act) {
672 		if ((sig == SIGKILL || sig == SIGSTOP) &&
673 		    act->sa_handler != SIG_DFL) {
674 			mtx_unlock(&ps->ps_mtx);
675 			PROC_UNLOCK(p);
676 			return (EINVAL);
677 		}
678 
679 		/*
680 		 * Change setting atomically.
681 		 */
682 
683 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
684 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
685 		if (act->sa_flags & SA_SIGINFO) {
686 			ps->ps_sigact[_SIG_IDX(sig)] =
687 			    (__sighandler_t *)act->sa_sigaction;
688 			SIGADDSET(ps->ps_siginfo, sig);
689 		} else {
690 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
691 			SIGDELSET(ps->ps_siginfo, sig);
692 		}
693 		if (!(act->sa_flags & SA_RESTART))
694 			SIGADDSET(ps->ps_sigintr, sig);
695 		else
696 			SIGDELSET(ps->ps_sigintr, sig);
697 		if (act->sa_flags & SA_ONSTACK)
698 			SIGADDSET(ps->ps_sigonstack, sig);
699 		else
700 			SIGDELSET(ps->ps_sigonstack, sig);
701 		if (act->sa_flags & SA_RESETHAND)
702 			SIGADDSET(ps->ps_sigreset, sig);
703 		else
704 			SIGDELSET(ps->ps_sigreset, sig);
705 		if (act->sa_flags & SA_NODEFER)
706 			SIGADDSET(ps->ps_signodefer, sig);
707 		else
708 			SIGDELSET(ps->ps_signodefer, sig);
709 		if (sig == SIGCHLD) {
710 			if (act->sa_flags & SA_NOCLDSTOP)
711 				ps->ps_flag |= PS_NOCLDSTOP;
712 			else
713 				ps->ps_flag &= ~PS_NOCLDSTOP;
714 			if (act->sa_flags & SA_NOCLDWAIT) {
715 				/*
716 				 * Paranoia: since SA_NOCLDWAIT is implemented
717 				 * by reparenting the dying child to PID 1 (and
718 				 * trust it to reap the zombie), PID 1 itself
719 				 * is forbidden to set SA_NOCLDWAIT.
720 				 */
721 				if (p->p_pid == 1)
722 					ps->ps_flag &= ~PS_NOCLDWAIT;
723 				else
724 					ps->ps_flag |= PS_NOCLDWAIT;
725 			} else
726 				ps->ps_flag &= ~PS_NOCLDWAIT;
727 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
728 				ps->ps_flag |= PS_CLDSIGIGN;
729 			else
730 				ps->ps_flag &= ~PS_CLDSIGIGN;
731 		}
732 		/*
733 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
734 		 * and for signals set to SIG_DFL where the default is to
735 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
736 		 * have to restart the process.
737 		 */
738 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
739 		    (sigprop(sig) & SA_IGNORE &&
740 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
741 			/* never to be seen again */
742 			sigqueue_delete_proc(p, sig);
743 			if (sig != SIGCONT)
744 				/* easier in psignal */
745 				SIGADDSET(ps->ps_sigignore, sig);
746 			SIGDELSET(ps->ps_sigcatch, sig);
747 		} else {
748 			SIGDELSET(ps->ps_sigignore, sig);
749 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
750 				SIGDELSET(ps->ps_sigcatch, sig);
751 			else
752 				SIGADDSET(ps->ps_sigcatch, sig);
753 		}
754 #ifdef COMPAT_FREEBSD4
755 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
756 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
757 		    (flags & KSA_FREEBSD4) == 0)
758 			SIGDELSET(ps->ps_freebsd4, sig);
759 		else
760 			SIGADDSET(ps->ps_freebsd4, sig);
761 #endif
762 #ifdef COMPAT_43
763 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
764 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
765 		    (flags & KSA_OSIGSET) == 0)
766 			SIGDELSET(ps->ps_osigset, sig);
767 		else
768 			SIGADDSET(ps->ps_osigset, sig);
769 #endif
770 	}
771 	mtx_unlock(&ps->ps_mtx);
772 	PROC_UNLOCK(p);
773 	return (0);
774 }
775 
776 #ifndef _SYS_SYSPROTO_H_
777 struct sigaction_args {
778 	int	sig;
779 	struct	sigaction *act;
780 	struct	sigaction *oact;
781 };
782 #endif
783 int
784 sigaction(td, uap)
785 	struct thread *td;
786 	register struct sigaction_args *uap;
787 {
788 	struct sigaction act, oact;
789 	register struct sigaction *actp, *oactp;
790 	int error;
791 
792 	actp = (uap->act != NULL) ? &act : NULL;
793 	oactp = (uap->oact != NULL) ? &oact : NULL;
794 	if (actp) {
795 		error = copyin(uap->act, actp, sizeof(act));
796 		if (error)
797 			return (error);
798 	}
799 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
800 	if (oactp && !error)
801 		error = copyout(oactp, uap->oact, sizeof(oact));
802 	return (error);
803 }
804 
805 #ifdef COMPAT_FREEBSD4
806 #ifndef _SYS_SYSPROTO_H_
807 struct freebsd4_sigaction_args {
808 	int	sig;
809 	struct	sigaction *act;
810 	struct	sigaction *oact;
811 };
812 #endif
813 int
814 freebsd4_sigaction(td, uap)
815 	struct thread *td;
816 	register struct freebsd4_sigaction_args *uap;
817 {
818 	struct sigaction act, oact;
819 	register struct sigaction *actp, *oactp;
820 	int error;
821 
822 
823 	actp = (uap->act != NULL) ? &act : NULL;
824 	oactp = (uap->oact != NULL) ? &oact : NULL;
825 	if (actp) {
826 		error = copyin(uap->act, actp, sizeof(act));
827 		if (error)
828 			return (error);
829 	}
830 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
831 	if (oactp && !error)
832 		error = copyout(oactp, uap->oact, sizeof(oact));
833 	return (error);
834 }
835 #endif	/* COMAPT_FREEBSD4 */
836 
837 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
838 #ifndef _SYS_SYSPROTO_H_
839 struct osigaction_args {
840 	int	signum;
841 	struct	osigaction *nsa;
842 	struct	osigaction *osa;
843 };
844 #endif
845 int
846 osigaction(td, uap)
847 	struct thread *td;
848 	register struct osigaction_args *uap;
849 {
850 	struct osigaction sa;
851 	struct sigaction nsa, osa;
852 	register struct sigaction *nsap, *osap;
853 	int error;
854 
855 	if (uap->signum <= 0 || uap->signum >= ONSIG)
856 		return (EINVAL);
857 
858 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
859 	osap = (uap->osa != NULL) ? &osa : NULL;
860 
861 	if (nsap) {
862 		error = copyin(uap->nsa, &sa, sizeof(sa));
863 		if (error)
864 			return (error);
865 		nsap->sa_handler = sa.sa_handler;
866 		nsap->sa_flags = sa.sa_flags;
867 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
868 	}
869 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
870 	if (osap && !error) {
871 		sa.sa_handler = osap->sa_handler;
872 		sa.sa_flags = osap->sa_flags;
873 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
874 		error = copyout(&sa, uap->osa, sizeof(sa));
875 	}
876 	return (error);
877 }
878 
879 #if !defined(__i386__)
880 /* Avoid replicating the same stub everywhere */
881 int
882 osigreturn(td, uap)
883 	struct thread *td;
884 	struct osigreturn_args *uap;
885 {
886 
887 	return (nosys(td, (struct nosys_args *)uap));
888 }
889 #endif
890 #endif /* COMPAT_43 */
891 
892 /*
893  * Initialize signal state for process 0;
894  * set to ignore signals that are ignored by default.
895  */
896 void
897 siginit(p)
898 	struct proc *p;
899 {
900 	register int i;
901 	struct sigacts *ps;
902 
903 	PROC_LOCK(p);
904 	ps = p->p_sigacts;
905 	mtx_lock(&ps->ps_mtx);
906 	for (i = 1; i <= NSIG; i++)
907 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
908 			SIGADDSET(ps->ps_sigignore, i);
909 	mtx_unlock(&ps->ps_mtx);
910 	PROC_UNLOCK(p);
911 }
912 
913 /*
914  * Reset signals for an exec of the specified process.
915  */
916 void
917 execsigs(struct proc *p)
918 {
919 	struct sigacts *ps;
920 	int sig;
921 	struct thread *td;
922 
923 	/*
924 	 * Reset caught signals.  Held signals remain held
925 	 * through td_sigmask (unless they were caught,
926 	 * and are now ignored by default).
927 	 */
928 	PROC_LOCK_ASSERT(p, MA_OWNED);
929 	td = FIRST_THREAD_IN_PROC(p);
930 	ps = p->p_sigacts;
931 	mtx_lock(&ps->ps_mtx);
932 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
933 		sig = sig_ffs(&ps->ps_sigcatch);
934 		SIGDELSET(ps->ps_sigcatch, sig);
935 		if (sigprop(sig) & SA_IGNORE) {
936 			if (sig != SIGCONT)
937 				SIGADDSET(ps->ps_sigignore, sig);
938 			sigqueue_delete_proc(p, sig);
939 		}
940 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
941 	}
942 	/*
943 	 * Reset stack state to the user stack.
944 	 * Clear set of signals caught on the signal stack.
945 	 */
946 	td->td_sigstk.ss_flags = SS_DISABLE;
947 	td->td_sigstk.ss_size = 0;
948 	td->td_sigstk.ss_sp = 0;
949 	td->td_pflags &= ~TDP_ALTSTACK;
950 	/*
951 	 * Reset no zombies if child dies flag as Solaris does.
952 	 */
953 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
954 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
955 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
956 	mtx_unlock(&ps->ps_mtx);
957 }
958 
959 /*
960  * kern_sigprocmask()
961  *
962  *	Manipulate signal mask.
963  */
964 int
965 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
966     int flags)
967 {
968 	sigset_t new_block, oset1;
969 	struct proc *p;
970 	int error;
971 
972 	p = td->td_proc;
973 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
974 		PROC_LOCK(p);
975 	if (oset != NULL)
976 		*oset = td->td_sigmask;
977 
978 	error = 0;
979 	if (set != NULL) {
980 		switch (how) {
981 		case SIG_BLOCK:
982 			SIG_CANTMASK(*set);
983 			oset1 = td->td_sigmask;
984 			SIGSETOR(td->td_sigmask, *set);
985 			new_block = td->td_sigmask;
986 			SIGSETNAND(new_block, oset1);
987 			break;
988 		case SIG_UNBLOCK:
989 			SIGSETNAND(td->td_sigmask, *set);
990 			signotify(td);
991 			goto out;
992 		case SIG_SETMASK:
993 			SIG_CANTMASK(*set);
994 			oset1 = td->td_sigmask;
995 			if (flags & SIGPROCMASK_OLD)
996 				SIGSETLO(td->td_sigmask, *set);
997 			else
998 				td->td_sigmask = *set;
999 			new_block = td->td_sigmask;
1000 			SIGSETNAND(new_block, oset1);
1001 			signotify(td);
1002 			break;
1003 		default:
1004 			error = EINVAL;
1005 			goto out;
1006 		}
1007 
1008 		/*
1009 		 * The new_block set contains signals that were not previously
1010 		 * blocked, but are blocked now.
1011 		 *
1012 		 * In case we block any signal that was not previously blocked
1013 		 * for td, and process has the signal pending, try to schedule
1014 		 * signal delivery to some thread that does not block the
1015 		 * signal, possibly waking it up.
1016 		 */
1017 		if (p->p_numthreads != 1)
1018 			reschedule_signals(p, new_block, flags);
1019 	}
1020 
1021 out:
1022 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1023 		PROC_UNLOCK(p);
1024 	return (error);
1025 }
1026 
1027 #ifndef _SYS_SYSPROTO_H_
1028 struct sigprocmask_args {
1029 	int	how;
1030 	const sigset_t *set;
1031 	sigset_t *oset;
1032 };
1033 #endif
1034 int
1035 sigprocmask(td, uap)
1036 	register struct thread *td;
1037 	struct sigprocmask_args *uap;
1038 {
1039 	sigset_t set, oset;
1040 	sigset_t *setp, *osetp;
1041 	int error;
1042 
1043 	setp = (uap->set != NULL) ? &set : NULL;
1044 	osetp = (uap->oset != NULL) ? &oset : NULL;
1045 	if (setp) {
1046 		error = copyin(uap->set, setp, sizeof(set));
1047 		if (error)
1048 			return (error);
1049 	}
1050 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1051 	if (osetp && !error) {
1052 		error = copyout(osetp, uap->oset, sizeof(oset));
1053 	}
1054 	return (error);
1055 }
1056 
1057 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1058 #ifndef _SYS_SYSPROTO_H_
1059 struct osigprocmask_args {
1060 	int	how;
1061 	osigset_t mask;
1062 };
1063 #endif
1064 int
1065 osigprocmask(td, uap)
1066 	register struct thread *td;
1067 	struct osigprocmask_args *uap;
1068 {
1069 	sigset_t set, oset;
1070 	int error;
1071 
1072 	OSIG2SIG(uap->mask, set);
1073 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1074 	SIG2OSIG(oset, td->td_retval[0]);
1075 	return (error);
1076 }
1077 #endif /* COMPAT_43 */
1078 
1079 int
1080 sigwait(struct thread *td, struct sigwait_args *uap)
1081 {
1082 	ksiginfo_t ksi;
1083 	sigset_t set;
1084 	int error;
1085 
1086 	error = copyin(uap->set, &set, sizeof(set));
1087 	if (error) {
1088 		td->td_retval[0] = error;
1089 		return (0);
1090 	}
1091 
1092 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1093 	if (error) {
1094 		if (error == ERESTART)
1095 			return (error);
1096 		td->td_retval[0] = error;
1097 		return (0);
1098 	}
1099 
1100 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1101 	td->td_retval[0] = error;
1102 	return (0);
1103 }
1104 
1105 int
1106 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1107 {
1108 	struct timespec ts;
1109 	struct timespec *timeout;
1110 	sigset_t set;
1111 	ksiginfo_t ksi;
1112 	int error;
1113 
1114 	if (uap->timeout) {
1115 		error = copyin(uap->timeout, &ts, sizeof(ts));
1116 		if (error)
1117 			return (error);
1118 
1119 		timeout = &ts;
1120 	} else
1121 		timeout = NULL;
1122 
1123 	error = copyin(uap->set, &set, sizeof(set));
1124 	if (error)
1125 		return (error);
1126 
1127 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1128 	if (error)
1129 		return (error);
1130 
1131 	if (uap->info)
1132 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1133 
1134 	if (error == 0)
1135 		td->td_retval[0] = ksi.ksi_signo;
1136 	return (error);
1137 }
1138 
1139 int
1140 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1141 {
1142 	ksiginfo_t ksi;
1143 	sigset_t set;
1144 	int error;
1145 
1146 	error = copyin(uap->set, &set, sizeof(set));
1147 	if (error)
1148 		return (error);
1149 
1150 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1151 	if (error)
1152 		return (error);
1153 
1154 	if (uap->info)
1155 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1156 
1157 	if (error == 0)
1158 		td->td_retval[0] = ksi.ksi_signo;
1159 	return (error);
1160 }
1161 
1162 int
1163 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1164 	struct timespec *timeout)
1165 {
1166 	struct sigacts *ps;
1167 	sigset_t saved_mask, new_block;
1168 	struct proc *p;
1169 	int error, sig, timo, timevalid = 0;
1170 	struct timespec rts, ets, ts;
1171 	struct timeval tv;
1172 
1173 	p = td->td_proc;
1174 	error = 0;
1175 	ets.tv_sec = 0;
1176 	ets.tv_nsec = 0;
1177 
1178 	if (timeout != NULL) {
1179 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1180 			timevalid = 1;
1181 			getnanouptime(&rts);
1182 		 	ets = rts;
1183 			timespecadd(&ets, timeout);
1184 		}
1185 	}
1186 	ksiginfo_init(ksi);
1187 	/* Some signals can not be waited for. */
1188 	SIG_CANTMASK(waitset);
1189 	ps = p->p_sigacts;
1190 	PROC_LOCK(p);
1191 	saved_mask = td->td_sigmask;
1192 	SIGSETNAND(td->td_sigmask, waitset);
1193 	for (;;) {
1194 		mtx_lock(&ps->ps_mtx);
1195 		sig = cursig(td, SIG_STOP_ALLOWED);
1196 		mtx_unlock(&ps->ps_mtx);
1197 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1198 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1199 		    	    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1200 				error = 0;
1201 				break;
1202 			}
1203 		}
1204 
1205 		if (error != 0)
1206 			break;
1207 
1208 		/*
1209 		 * POSIX says this must be checked after looking for pending
1210 		 * signals.
1211 		 */
1212 		if (timeout != NULL) {
1213 			if (!timevalid) {
1214 				error = EINVAL;
1215 				break;
1216 			}
1217 			getnanouptime(&rts);
1218 			if (timespeccmp(&rts, &ets, >=)) {
1219 				error = EAGAIN;
1220 				break;
1221 			}
1222 			ts = ets;
1223 			timespecsub(&ts, &rts);
1224 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1225 			timo = tvtohz(&tv);
1226 		} else {
1227 			timo = 0;
1228 		}
1229 
1230 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1231 
1232 		if (timeout != NULL) {
1233 			if (error == ERESTART) {
1234 				/* Timeout can not be restarted. */
1235 				error = EINTR;
1236 			} else if (error == EAGAIN) {
1237 				/* We will calculate timeout by ourself. */
1238 				error = 0;
1239 			}
1240 		}
1241 	}
1242 
1243 	new_block = saved_mask;
1244 	SIGSETNAND(new_block, td->td_sigmask);
1245 	td->td_sigmask = saved_mask;
1246 	/*
1247 	 * Fewer signals can be delivered to us, reschedule signal
1248 	 * notification.
1249 	 */
1250 	if (p->p_numthreads != 1)
1251 		reschedule_signals(p, new_block, 0);
1252 
1253 	if (error == 0) {
1254 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1255 
1256 		if (ksi->ksi_code == SI_TIMER)
1257 			itimer_accept(p, ksi->ksi_timerid, ksi);
1258 
1259 #ifdef KTRACE
1260 		if (KTRPOINT(td, KTR_PSIG)) {
1261 			sig_t action;
1262 
1263 			mtx_lock(&ps->ps_mtx);
1264 			action = ps->ps_sigact[_SIG_IDX(sig)];
1265 			mtx_unlock(&ps->ps_mtx);
1266 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1267 		}
1268 #endif
1269 		if (sig == SIGKILL)
1270 			sigexit(td, sig);
1271 	}
1272 	PROC_UNLOCK(p);
1273 	return (error);
1274 }
1275 
1276 #ifndef _SYS_SYSPROTO_H_
1277 struct sigpending_args {
1278 	sigset_t	*set;
1279 };
1280 #endif
1281 int
1282 sigpending(td, uap)
1283 	struct thread *td;
1284 	struct sigpending_args *uap;
1285 {
1286 	struct proc *p = td->td_proc;
1287 	sigset_t pending;
1288 
1289 	PROC_LOCK(p);
1290 	pending = p->p_sigqueue.sq_signals;
1291 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1292 	PROC_UNLOCK(p);
1293 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1294 }
1295 
1296 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1297 #ifndef _SYS_SYSPROTO_H_
1298 struct osigpending_args {
1299 	int	dummy;
1300 };
1301 #endif
1302 int
1303 osigpending(td, uap)
1304 	struct thread *td;
1305 	struct osigpending_args *uap;
1306 {
1307 	struct proc *p = td->td_proc;
1308 	sigset_t pending;
1309 
1310 	PROC_LOCK(p);
1311 	pending = p->p_sigqueue.sq_signals;
1312 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1313 	PROC_UNLOCK(p);
1314 	SIG2OSIG(pending, td->td_retval[0]);
1315 	return (0);
1316 }
1317 #endif /* COMPAT_43 */
1318 
1319 #if defined(COMPAT_43)
1320 /*
1321  * Generalized interface signal handler, 4.3-compatible.
1322  */
1323 #ifndef _SYS_SYSPROTO_H_
1324 struct osigvec_args {
1325 	int	signum;
1326 	struct	sigvec *nsv;
1327 	struct	sigvec *osv;
1328 };
1329 #endif
1330 /* ARGSUSED */
1331 int
1332 osigvec(td, uap)
1333 	struct thread *td;
1334 	register struct osigvec_args *uap;
1335 {
1336 	struct sigvec vec;
1337 	struct sigaction nsa, osa;
1338 	register struct sigaction *nsap, *osap;
1339 	int error;
1340 
1341 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1342 		return (EINVAL);
1343 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1344 	osap = (uap->osv != NULL) ? &osa : NULL;
1345 	if (nsap) {
1346 		error = copyin(uap->nsv, &vec, sizeof(vec));
1347 		if (error)
1348 			return (error);
1349 		nsap->sa_handler = vec.sv_handler;
1350 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1351 		nsap->sa_flags = vec.sv_flags;
1352 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1353 	}
1354 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1355 	if (osap && !error) {
1356 		vec.sv_handler = osap->sa_handler;
1357 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1358 		vec.sv_flags = osap->sa_flags;
1359 		vec.sv_flags &= ~SA_NOCLDWAIT;
1360 		vec.sv_flags ^= SA_RESTART;
1361 		error = copyout(&vec, uap->osv, sizeof(vec));
1362 	}
1363 	return (error);
1364 }
1365 
1366 #ifndef _SYS_SYSPROTO_H_
1367 struct osigblock_args {
1368 	int	mask;
1369 };
1370 #endif
1371 int
1372 osigblock(td, uap)
1373 	register struct thread *td;
1374 	struct osigblock_args *uap;
1375 {
1376 	sigset_t set, oset;
1377 
1378 	OSIG2SIG(uap->mask, set);
1379 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1380 	SIG2OSIG(oset, td->td_retval[0]);
1381 	return (0);
1382 }
1383 
1384 #ifndef _SYS_SYSPROTO_H_
1385 struct osigsetmask_args {
1386 	int	mask;
1387 };
1388 #endif
1389 int
1390 osigsetmask(td, uap)
1391 	struct thread *td;
1392 	struct osigsetmask_args *uap;
1393 {
1394 	sigset_t set, oset;
1395 
1396 	OSIG2SIG(uap->mask, set);
1397 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1398 	SIG2OSIG(oset, td->td_retval[0]);
1399 	return (0);
1400 }
1401 #endif /* COMPAT_43 */
1402 
1403 /*
1404  * Suspend calling thread until signal, providing mask to be set in the
1405  * meantime.
1406  */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct sigsuspend_args {
1409 	const sigset_t *sigmask;
1410 };
1411 #endif
1412 /* ARGSUSED */
1413 int
1414 sigsuspend(td, uap)
1415 	struct thread *td;
1416 	struct sigsuspend_args *uap;
1417 {
1418 	sigset_t mask;
1419 	int error;
1420 
1421 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1422 	if (error)
1423 		return (error);
1424 	return (kern_sigsuspend(td, mask));
1425 }
1426 
1427 int
1428 kern_sigsuspend(struct thread *td, sigset_t mask)
1429 {
1430 	struct proc *p = td->td_proc;
1431 	int has_sig, sig;
1432 
1433 	/*
1434 	 * When returning from sigsuspend, we want
1435 	 * the old mask to be restored after the
1436 	 * signal handler has finished.  Thus, we
1437 	 * save it here and mark the sigacts structure
1438 	 * to indicate this.
1439 	 */
1440 	PROC_LOCK(p);
1441 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1442 	    SIGPROCMASK_PROC_LOCKED);
1443 	td->td_pflags |= TDP_OLDMASK;
1444 
1445 	/*
1446 	 * Process signals now. Otherwise, we can get spurious wakeup
1447 	 * due to signal entered process queue, but delivered to other
1448 	 * thread. But sigsuspend should return only on signal
1449 	 * delivery.
1450 	 */
1451 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1452 	for (has_sig = 0; !has_sig;) {
1453 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1454 			0) == 0)
1455 			/* void */;
1456 		thread_suspend_check(0);
1457 		mtx_lock(&p->p_sigacts->ps_mtx);
1458 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1459 			has_sig += postsig(sig);
1460 		mtx_unlock(&p->p_sigacts->ps_mtx);
1461 	}
1462 	PROC_UNLOCK(p);
1463 	return (EJUSTRETURN);
1464 }
1465 
1466 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1467 /*
1468  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1469  * convention: libc stub passes mask, not pointer, to save a copyin.
1470  */
1471 #ifndef _SYS_SYSPROTO_H_
1472 struct osigsuspend_args {
1473 	osigset_t mask;
1474 };
1475 #endif
1476 /* ARGSUSED */
1477 int
1478 osigsuspend(td, uap)
1479 	struct thread *td;
1480 	struct osigsuspend_args *uap;
1481 {
1482 	sigset_t mask;
1483 
1484 	OSIG2SIG(uap->mask, mask);
1485 	return (kern_sigsuspend(td, mask));
1486 }
1487 #endif /* COMPAT_43 */
1488 
1489 #if defined(COMPAT_43)
1490 #ifndef _SYS_SYSPROTO_H_
1491 struct osigstack_args {
1492 	struct	sigstack *nss;
1493 	struct	sigstack *oss;
1494 };
1495 #endif
1496 /* ARGSUSED */
1497 int
1498 osigstack(td, uap)
1499 	struct thread *td;
1500 	register struct osigstack_args *uap;
1501 {
1502 	struct sigstack nss, oss;
1503 	int error = 0;
1504 
1505 	if (uap->nss != NULL) {
1506 		error = copyin(uap->nss, &nss, sizeof(nss));
1507 		if (error)
1508 			return (error);
1509 	}
1510 	oss.ss_sp = td->td_sigstk.ss_sp;
1511 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1512 	if (uap->nss != NULL) {
1513 		td->td_sigstk.ss_sp = nss.ss_sp;
1514 		td->td_sigstk.ss_size = 0;
1515 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1516 		td->td_pflags |= TDP_ALTSTACK;
1517 	}
1518 	if (uap->oss != NULL)
1519 		error = copyout(&oss, uap->oss, sizeof(oss));
1520 
1521 	return (error);
1522 }
1523 #endif /* COMPAT_43 */
1524 
1525 #ifndef _SYS_SYSPROTO_H_
1526 struct sigaltstack_args {
1527 	stack_t	*ss;
1528 	stack_t	*oss;
1529 };
1530 #endif
1531 /* ARGSUSED */
1532 int
1533 sigaltstack(td, uap)
1534 	struct thread *td;
1535 	register struct sigaltstack_args *uap;
1536 {
1537 	stack_t ss, oss;
1538 	int error;
1539 
1540 	if (uap->ss != NULL) {
1541 		error = copyin(uap->ss, &ss, sizeof(ss));
1542 		if (error)
1543 			return (error);
1544 	}
1545 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1546 	    (uap->oss != NULL) ? &oss : NULL);
1547 	if (error)
1548 		return (error);
1549 	if (uap->oss != NULL)
1550 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1551 	return (error);
1552 }
1553 
1554 int
1555 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1556 {
1557 	struct proc *p = td->td_proc;
1558 	int oonstack;
1559 
1560 	oonstack = sigonstack(cpu_getstack(td));
1561 
1562 	if (oss != NULL) {
1563 		*oss = td->td_sigstk;
1564 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1565 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1566 	}
1567 
1568 	if (ss != NULL) {
1569 		if (oonstack)
1570 			return (EPERM);
1571 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1572 			return (EINVAL);
1573 		if (!(ss->ss_flags & SS_DISABLE)) {
1574 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1575 				return (ENOMEM);
1576 
1577 			td->td_sigstk = *ss;
1578 			td->td_pflags |= TDP_ALTSTACK;
1579 		} else {
1580 			td->td_pflags &= ~TDP_ALTSTACK;
1581 		}
1582 	}
1583 	return (0);
1584 }
1585 
1586 /*
1587  * Common code for kill process group/broadcast kill.
1588  * cp is calling process.
1589  */
1590 static int
1591 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1592 {
1593 	struct proc *p;
1594 	struct pgrp *pgrp;
1595 	int nfound = 0;
1596 
1597 	if (all) {
1598 		/*
1599 		 * broadcast
1600 		 */
1601 		sx_slock(&allproc_lock);
1602 		FOREACH_PROC_IN_SYSTEM(p) {
1603 			PROC_LOCK(p);
1604 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1605 			    p == td->td_proc || p->p_state == PRS_NEW) {
1606 				PROC_UNLOCK(p);
1607 				continue;
1608 			}
1609 			if (p_cansignal(td, p, sig) == 0) {
1610 				nfound++;
1611 				if (sig)
1612 					pksignal(p, sig, ksi);
1613 			}
1614 			PROC_UNLOCK(p);
1615 		}
1616 		sx_sunlock(&allproc_lock);
1617 	} else {
1618 		sx_slock(&proctree_lock);
1619 		if (pgid == 0) {
1620 			/*
1621 			 * zero pgid means send to my process group.
1622 			 */
1623 			pgrp = td->td_proc->p_pgrp;
1624 			PGRP_LOCK(pgrp);
1625 		} else {
1626 			pgrp = pgfind(pgid);
1627 			if (pgrp == NULL) {
1628 				sx_sunlock(&proctree_lock);
1629 				return (ESRCH);
1630 			}
1631 		}
1632 		sx_sunlock(&proctree_lock);
1633 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1634 			PROC_LOCK(p);
1635 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1636 			    p->p_state == PRS_NEW) {
1637 				PROC_UNLOCK(p);
1638 				continue;
1639 			}
1640 			if (p_cansignal(td, p, sig) == 0) {
1641 				nfound++;
1642 				if (sig)
1643 					pksignal(p, sig, ksi);
1644 			}
1645 			PROC_UNLOCK(p);
1646 		}
1647 		PGRP_UNLOCK(pgrp);
1648 	}
1649 	return (nfound ? 0 : ESRCH);
1650 }
1651 
1652 #ifndef _SYS_SYSPROTO_H_
1653 struct kill_args {
1654 	int	pid;
1655 	int	signum;
1656 };
1657 #endif
1658 /* ARGSUSED */
1659 int
1660 kill(struct thread *td, struct kill_args *uap)
1661 {
1662 	ksiginfo_t ksi;
1663 	struct proc *p;
1664 	int error;
1665 
1666 	AUDIT_ARG_SIGNUM(uap->signum);
1667 	AUDIT_ARG_PID(uap->pid);
1668 	if ((u_int)uap->signum > _SIG_MAXSIG)
1669 		return (EINVAL);
1670 
1671 	ksiginfo_init(&ksi);
1672 	ksi.ksi_signo = uap->signum;
1673 	ksi.ksi_code = SI_USER;
1674 	ksi.ksi_pid = td->td_proc->p_pid;
1675 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1676 
1677 	if (uap->pid > 0) {
1678 		/* kill single process */
1679 		if ((p = pfind(uap->pid)) == NULL) {
1680 			if ((p = zpfind(uap->pid)) == NULL)
1681 				return (ESRCH);
1682 		}
1683 		AUDIT_ARG_PROCESS(p);
1684 		error = p_cansignal(td, p, uap->signum);
1685 		if (error == 0 && uap->signum)
1686 			pksignal(p, uap->signum, &ksi);
1687 		PROC_UNLOCK(p);
1688 		return (error);
1689 	}
1690 	switch (uap->pid) {
1691 	case -1:		/* broadcast signal */
1692 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1693 	case 0:			/* signal own process group */
1694 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1695 	default:		/* negative explicit process group */
1696 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1697 	}
1698 	/* NOTREACHED */
1699 }
1700 
1701 #if defined(COMPAT_43)
1702 #ifndef _SYS_SYSPROTO_H_
1703 struct okillpg_args {
1704 	int	pgid;
1705 	int	signum;
1706 };
1707 #endif
1708 /* ARGSUSED */
1709 int
1710 okillpg(struct thread *td, struct okillpg_args *uap)
1711 {
1712 	ksiginfo_t ksi;
1713 
1714 	AUDIT_ARG_SIGNUM(uap->signum);
1715 	AUDIT_ARG_PID(uap->pgid);
1716 	if ((u_int)uap->signum > _SIG_MAXSIG)
1717 		return (EINVAL);
1718 
1719 	ksiginfo_init(&ksi);
1720 	ksi.ksi_signo = uap->signum;
1721 	ksi.ksi_code = SI_USER;
1722 	ksi.ksi_pid = td->td_proc->p_pid;
1723 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1724 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1725 }
1726 #endif /* COMPAT_43 */
1727 
1728 #ifndef _SYS_SYSPROTO_H_
1729 struct sigqueue_args {
1730 	pid_t pid;
1731 	int signum;
1732 	/* union sigval */ void *value;
1733 };
1734 #endif
1735 int
1736 sigqueue(struct thread *td, struct sigqueue_args *uap)
1737 {
1738 	ksiginfo_t ksi;
1739 	struct proc *p;
1740 	int error;
1741 
1742 	if ((u_int)uap->signum > _SIG_MAXSIG)
1743 		return (EINVAL);
1744 
1745 	/*
1746 	 * Specification says sigqueue can only send signal to
1747 	 * single process.
1748 	 */
1749 	if (uap->pid <= 0)
1750 		return (EINVAL);
1751 
1752 	if ((p = pfind(uap->pid)) == NULL) {
1753 		if ((p = zpfind(uap->pid)) == NULL)
1754 			return (ESRCH);
1755 	}
1756 	error = p_cansignal(td, p, uap->signum);
1757 	if (error == 0 && uap->signum != 0) {
1758 		ksiginfo_init(&ksi);
1759 		ksi.ksi_flags = KSI_SIGQ;
1760 		ksi.ksi_signo = uap->signum;
1761 		ksi.ksi_code = SI_QUEUE;
1762 		ksi.ksi_pid = td->td_proc->p_pid;
1763 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1764 		ksi.ksi_value.sival_ptr = uap->value;
1765 		error = pksignal(p, ksi.ksi_signo, &ksi);
1766 	}
1767 	PROC_UNLOCK(p);
1768 	return (error);
1769 }
1770 
1771 /*
1772  * Send a signal to a process group.
1773  */
1774 void
1775 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1776 {
1777 	struct pgrp *pgrp;
1778 
1779 	if (pgid != 0) {
1780 		sx_slock(&proctree_lock);
1781 		pgrp = pgfind(pgid);
1782 		sx_sunlock(&proctree_lock);
1783 		if (pgrp != NULL) {
1784 			pgsignal(pgrp, sig, 0, ksi);
1785 			PGRP_UNLOCK(pgrp);
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * Send a signal to a process group.  If checktty is 1,
1792  * limit to members which have a controlling terminal.
1793  */
1794 void
1795 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1796 {
1797 	struct proc *p;
1798 
1799 	if (pgrp) {
1800 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1801 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1802 			PROC_LOCK(p);
1803 			if (p->p_state == PRS_NORMAL &&
1804 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1805 				pksignal(p, sig, ksi);
1806 			PROC_UNLOCK(p);
1807 		}
1808 	}
1809 }
1810 
1811 /*
1812  * Send a signal caused by a trap to the current thread.  If it will be
1813  * caught immediately, deliver it with correct code.  Otherwise, post it
1814  * normally.
1815  */
1816 void
1817 trapsignal(struct thread *td, ksiginfo_t *ksi)
1818 {
1819 	struct sigacts *ps;
1820 	sigset_t mask;
1821 	struct proc *p;
1822 	int sig;
1823 	int code;
1824 
1825 	p = td->td_proc;
1826 	sig = ksi->ksi_signo;
1827 	code = ksi->ksi_code;
1828 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1829 
1830 	PROC_LOCK(p);
1831 	ps = p->p_sigacts;
1832 	mtx_lock(&ps->ps_mtx);
1833 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1834 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1835 		td->td_ru.ru_nsignals++;
1836 #ifdef KTRACE
1837 		if (KTRPOINT(curthread, KTR_PSIG))
1838 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1839 			    &td->td_sigmask, code);
1840 #endif
1841 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1842 				ksi, &td->td_sigmask);
1843 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1844 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1845 			SIGADDSET(mask, sig);
1846 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1847 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1848 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1849 			/*
1850 			 * See kern_sigaction() for origin of this code.
1851 			 */
1852 			SIGDELSET(ps->ps_sigcatch, sig);
1853 			if (sig != SIGCONT &&
1854 			    sigprop(sig) & SA_IGNORE)
1855 				SIGADDSET(ps->ps_sigignore, sig);
1856 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1857 		}
1858 		mtx_unlock(&ps->ps_mtx);
1859 	} else {
1860 		/*
1861 		 * Avoid a possible infinite loop if the thread
1862 		 * masking the signal or process is ignoring the
1863 		 * signal.
1864 		 */
1865 		if (kern_forcesigexit &&
1866 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1867 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1868 			SIGDELSET(td->td_sigmask, sig);
1869 			SIGDELSET(ps->ps_sigcatch, sig);
1870 			SIGDELSET(ps->ps_sigignore, sig);
1871 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1872 		}
1873 		mtx_unlock(&ps->ps_mtx);
1874 		p->p_code = code;	/* XXX for core dump/debugger */
1875 		p->p_sig = sig;		/* XXX to verify code */
1876 		tdsendsignal(p, td, sig, ksi);
1877 	}
1878 	PROC_UNLOCK(p);
1879 }
1880 
1881 static struct thread *
1882 sigtd(struct proc *p, int sig, int prop)
1883 {
1884 	struct thread *td, *signal_td;
1885 
1886 	PROC_LOCK_ASSERT(p, MA_OWNED);
1887 
1888 	/*
1889 	 * Check if current thread can handle the signal without
1890 	 * switching context to another thread.
1891 	 */
1892 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1893 		return (curthread);
1894 	signal_td = NULL;
1895 	FOREACH_THREAD_IN_PROC(p, td) {
1896 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1897 			signal_td = td;
1898 			break;
1899 		}
1900 	}
1901 	if (signal_td == NULL)
1902 		signal_td = FIRST_THREAD_IN_PROC(p);
1903 	return (signal_td);
1904 }
1905 
1906 /*
1907  * Send the signal to the process.  If the signal has an action, the action
1908  * is usually performed by the target process rather than the caller; we add
1909  * the signal to the set of pending signals for the process.
1910  *
1911  * Exceptions:
1912  *   o When a stop signal is sent to a sleeping process that takes the
1913  *     default action, the process is stopped without awakening it.
1914  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1915  *     regardless of the signal action (eg, blocked or ignored).
1916  *
1917  * Other ignored signals are discarded immediately.
1918  *
1919  * NB: This function may be entered from the debugger via the "kill" DDB
1920  * command.  There is little that can be done to mitigate the possibly messy
1921  * side effects of this unwise possibility.
1922  */
1923 void
1924 psignal(struct proc *p, int sig)
1925 {
1926 	ksiginfo_t ksi;
1927 
1928 	ksiginfo_init(&ksi);
1929 	ksi.ksi_signo = sig;
1930 	ksi.ksi_code = SI_KERNEL;
1931 	(void) tdsendsignal(p, NULL, sig, &ksi);
1932 }
1933 
1934 int
1935 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1936 {
1937 
1938 	return (tdsendsignal(p, NULL, sig, ksi));
1939 }
1940 
1941 /* Utility function for finding a thread to send signal event to. */
1942 int
1943 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1944 {
1945 	struct thread *td;
1946 
1947 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1948 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1949 		if (td == NULL)
1950 			return (ESRCH);
1951 		*ttd = td;
1952 	} else {
1953 		*ttd = NULL;
1954 		PROC_LOCK(p);
1955 	}
1956 	return (0);
1957 }
1958 
1959 void
1960 tdsignal(struct thread *td, int sig)
1961 {
1962 	ksiginfo_t ksi;
1963 
1964 	ksiginfo_init(&ksi);
1965 	ksi.ksi_signo = sig;
1966 	ksi.ksi_code = SI_KERNEL;
1967 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
1968 }
1969 
1970 void
1971 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
1972 {
1973 
1974 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
1975 }
1976 
1977 int
1978 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
1979 {
1980 	sig_t action;
1981 	sigqueue_t *sigqueue;
1982 	int prop;
1983 	struct sigacts *ps;
1984 	int intrval;
1985 	int ret = 0;
1986 	int wakeup_swapper;
1987 
1988 	MPASS(td == NULL || p == td->td_proc);
1989 	PROC_LOCK_ASSERT(p, MA_OWNED);
1990 
1991 	if (!_SIG_VALID(sig))
1992 		panic("%s(): invalid signal %d", __func__, sig);
1993 
1994 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
1995 
1996 	/*
1997 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1998 	 */
1999 	if (p->p_state == PRS_ZOMBIE) {
2000 		if (ksi && (ksi->ksi_flags & KSI_INS))
2001 			ksiginfo_tryfree(ksi);
2002 		return (ret);
2003 	}
2004 
2005 	ps = p->p_sigacts;
2006 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2007 	prop = sigprop(sig);
2008 
2009 	if (td == NULL) {
2010 		td = sigtd(p, sig, prop);
2011 		sigqueue = &p->p_sigqueue;
2012 	} else {
2013 		KASSERT(td->td_proc == p, ("invalid thread"));
2014 		sigqueue = &td->td_sigqueue;
2015 	}
2016 
2017 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2018 
2019 	/*
2020 	 * If the signal is being ignored,
2021 	 * then we forget about it immediately.
2022 	 * (Note: we don't set SIGCONT in ps_sigignore,
2023 	 * and if it is set to SIG_IGN,
2024 	 * action will be SIG_DFL here.)
2025 	 */
2026 	mtx_lock(&ps->ps_mtx);
2027 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2028 		SDT_PROBE(proc, kernel, , signal_discard, ps, td, sig, 0, 0 );
2029 
2030 		mtx_unlock(&ps->ps_mtx);
2031 		if (ksi && (ksi->ksi_flags & KSI_INS))
2032 			ksiginfo_tryfree(ksi);
2033 		return (ret);
2034 	}
2035 	if (SIGISMEMBER(td->td_sigmask, sig))
2036 		action = SIG_HOLD;
2037 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2038 		action = SIG_CATCH;
2039 	else
2040 		action = SIG_DFL;
2041 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2042 		intrval = EINTR;
2043 	else
2044 		intrval = ERESTART;
2045 	mtx_unlock(&ps->ps_mtx);
2046 
2047 	if (prop & SA_CONT)
2048 		sigqueue_delete_stopmask_proc(p);
2049 	else if (prop & SA_STOP) {
2050 		/*
2051 		 * If sending a tty stop signal to a member of an orphaned
2052 		 * process group, discard the signal here if the action
2053 		 * is default; don't stop the process below if sleeping,
2054 		 * and don't clear any pending SIGCONT.
2055 		 */
2056 		if ((prop & SA_TTYSTOP) &&
2057 		    (p->p_pgrp->pg_jobc == 0) &&
2058 		    (action == SIG_DFL)) {
2059 			if (ksi && (ksi->ksi_flags & KSI_INS))
2060 				ksiginfo_tryfree(ksi);
2061 			return (ret);
2062 		}
2063 		sigqueue_delete_proc(p, SIGCONT);
2064 		if (p->p_flag & P_CONTINUED) {
2065 			p->p_flag &= ~P_CONTINUED;
2066 			PROC_LOCK(p->p_pptr);
2067 			sigqueue_take(p->p_ksi);
2068 			PROC_UNLOCK(p->p_pptr);
2069 		}
2070 	}
2071 
2072 	ret = sigqueue_add(sigqueue, sig, ksi);
2073 	if (ret != 0)
2074 		return (ret);
2075 	signotify(td);
2076 	/*
2077 	 * Defer further processing for signals which are held,
2078 	 * except that stopped processes must be continued by SIGCONT.
2079 	 */
2080 	if (action == SIG_HOLD &&
2081 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2082 		return (ret);
2083 	/*
2084 	 * SIGKILL: Remove procfs STOPEVENTs.
2085 	 */
2086 	if (sig == SIGKILL) {
2087 		/* from procfs_ioctl.c: PIOCBIC */
2088 		p->p_stops = 0;
2089 		/* from procfs_ioctl.c: PIOCCONT */
2090 		p->p_step = 0;
2091 		wakeup(&p->p_step);
2092 	}
2093 	/*
2094 	 * Some signals have a process-wide effect and a per-thread
2095 	 * component.  Most processing occurs when the process next
2096 	 * tries to cross the user boundary, however there are some
2097 	 * times when processing needs to be done immediatly, such as
2098 	 * waking up threads so that they can cross the user boundary.
2099 	 * We try do the per-process part here.
2100 	 */
2101 	if (P_SHOULDSTOP(p)) {
2102 		if (sig == SIGKILL) {
2103 			/*
2104 			 * If traced process is already stopped,
2105 			 * then no further action is necessary.
2106 			 */
2107 			if (p->p_flag & P_TRACED)
2108 				goto out;
2109 			/*
2110 			 * SIGKILL sets process running.
2111 			 * It will die elsewhere.
2112 			 * All threads must be restarted.
2113 			 */
2114 			p->p_flag &= ~P_STOPPED_SIG;
2115 			goto runfast;
2116 		}
2117 
2118 		if (prop & SA_CONT) {
2119 			/*
2120 			 * If traced process is already stopped,
2121 			 * then no further action is necessary.
2122 			 */
2123 			if (p->p_flag & P_TRACED)
2124 				goto out;
2125 			/*
2126 			 * If SIGCONT is default (or ignored), we continue the
2127 			 * process but don't leave the signal in sigqueue as
2128 			 * it has no further action.  If SIGCONT is held, we
2129 			 * continue the process and leave the signal in
2130 			 * sigqueue.  If the process catches SIGCONT, let it
2131 			 * handle the signal itself.  If it isn't waiting on
2132 			 * an event, it goes back to run state.
2133 			 * Otherwise, process goes back to sleep state.
2134 			 */
2135 			p->p_flag &= ~P_STOPPED_SIG;
2136 			PROC_SLOCK(p);
2137 			if (p->p_numthreads == p->p_suspcount) {
2138 				PROC_SUNLOCK(p);
2139 				p->p_flag |= P_CONTINUED;
2140 				p->p_xstat = SIGCONT;
2141 				PROC_LOCK(p->p_pptr);
2142 				childproc_continued(p);
2143 				PROC_UNLOCK(p->p_pptr);
2144 				PROC_SLOCK(p);
2145 			}
2146 			if (action == SIG_DFL) {
2147 				thread_unsuspend(p);
2148 				PROC_SUNLOCK(p);
2149 				sigqueue_delete(sigqueue, sig);
2150 				goto out;
2151 			}
2152 			if (action == SIG_CATCH) {
2153 				/*
2154 				 * The process wants to catch it so it needs
2155 				 * to run at least one thread, but which one?
2156 				 */
2157 				PROC_SUNLOCK(p);
2158 				goto runfast;
2159 			}
2160 			/*
2161 			 * The signal is not ignored or caught.
2162 			 */
2163 			thread_unsuspend(p);
2164 			PROC_SUNLOCK(p);
2165 			goto out;
2166 		}
2167 
2168 		if (prop & SA_STOP) {
2169 			/*
2170 			 * If traced process is already stopped,
2171 			 * then no further action is necessary.
2172 			 */
2173 			if (p->p_flag & P_TRACED)
2174 				goto out;
2175 			/*
2176 			 * Already stopped, don't need to stop again
2177 			 * (If we did the shell could get confused).
2178 			 * Just make sure the signal STOP bit set.
2179 			 */
2180 			p->p_flag |= P_STOPPED_SIG;
2181 			sigqueue_delete(sigqueue, sig);
2182 			goto out;
2183 		}
2184 
2185 		/*
2186 		 * All other kinds of signals:
2187 		 * If a thread is sleeping interruptibly, simulate a
2188 		 * wakeup so that when it is continued it will be made
2189 		 * runnable and can look at the signal.  However, don't make
2190 		 * the PROCESS runnable, leave it stopped.
2191 		 * It may run a bit until it hits a thread_suspend_check().
2192 		 */
2193 		wakeup_swapper = 0;
2194 		PROC_SLOCK(p);
2195 		thread_lock(td);
2196 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2197 			wakeup_swapper = sleepq_abort(td, intrval);
2198 		thread_unlock(td);
2199 		PROC_SUNLOCK(p);
2200 		if (wakeup_swapper)
2201 			kick_proc0();
2202 		goto out;
2203 		/*
2204 		 * Mutexes are short lived. Threads waiting on them will
2205 		 * hit thread_suspend_check() soon.
2206 		 */
2207 	} else if (p->p_state == PRS_NORMAL) {
2208 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2209 			tdsigwakeup(td, sig, action, intrval);
2210 			goto out;
2211 		}
2212 
2213 		MPASS(action == SIG_DFL);
2214 
2215 		if (prop & SA_STOP) {
2216 			if (p->p_flag & P_PPWAIT)
2217 				goto out;
2218 			p->p_flag |= P_STOPPED_SIG;
2219 			p->p_xstat = sig;
2220 			PROC_SLOCK(p);
2221 			sig_suspend_threads(td, p, 1);
2222 			if (p->p_numthreads == p->p_suspcount) {
2223 				/*
2224 				 * only thread sending signal to another
2225 				 * process can reach here, if thread is sending
2226 				 * signal to its process, because thread does
2227 				 * not suspend itself here, p_numthreads
2228 				 * should never be equal to p_suspcount.
2229 				 */
2230 				thread_stopped(p);
2231 				PROC_SUNLOCK(p);
2232 				sigqueue_delete_proc(p, p->p_xstat);
2233 			} else
2234 				PROC_SUNLOCK(p);
2235 			goto out;
2236 		}
2237 	} else {
2238 		/* Not in "NORMAL" state. discard the signal. */
2239 		sigqueue_delete(sigqueue, sig);
2240 		goto out;
2241 	}
2242 
2243 	/*
2244 	 * The process is not stopped so we need to apply the signal to all the
2245 	 * running threads.
2246 	 */
2247 runfast:
2248 	tdsigwakeup(td, sig, action, intrval);
2249 	PROC_SLOCK(p);
2250 	thread_unsuspend(p);
2251 	PROC_SUNLOCK(p);
2252 out:
2253 	/* If we jump here, proc slock should not be owned. */
2254 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2255 	return (ret);
2256 }
2257 
2258 /*
2259  * The force of a signal has been directed against a single
2260  * thread.  We need to see what we can do about knocking it
2261  * out of any sleep it may be in etc.
2262  */
2263 static void
2264 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2265 {
2266 	struct proc *p = td->td_proc;
2267 	register int prop;
2268 	int wakeup_swapper;
2269 
2270 	wakeup_swapper = 0;
2271 	PROC_LOCK_ASSERT(p, MA_OWNED);
2272 	prop = sigprop(sig);
2273 
2274 	PROC_SLOCK(p);
2275 	thread_lock(td);
2276 	/*
2277 	 * Bring the priority of a thread up if we want it to get
2278 	 * killed in this lifetime.
2279 	 */
2280 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2281 		sched_prio(td, PUSER);
2282 	if (TD_ON_SLEEPQ(td)) {
2283 		/*
2284 		 * If thread is sleeping uninterruptibly
2285 		 * we can't interrupt the sleep... the signal will
2286 		 * be noticed when the process returns through
2287 		 * trap() or syscall().
2288 		 */
2289 		if ((td->td_flags & TDF_SINTR) == 0)
2290 			goto out;
2291 		/*
2292 		 * If SIGCONT is default (or ignored) and process is
2293 		 * asleep, we are finished; the process should not
2294 		 * be awakened.
2295 		 */
2296 		if ((prop & SA_CONT) && action == SIG_DFL) {
2297 			thread_unlock(td);
2298 			PROC_SUNLOCK(p);
2299 			sigqueue_delete(&p->p_sigqueue, sig);
2300 			/*
2301 			 * It may be on either list in this state.
2302 			 * Remove from both for now.
2303 			 */
2304 			sigqueue_delete(&td->td_sigqueue, sig);
2305 			return;
2306 		}
2307 
2308 		/*
2309 		 * Give low priority threads a better chance to run.
2310 		 */
2311 		if (td->td_priority > PUSER)
2312 			sched_prio(td, PUSER);
2313 
2314 		wakeup_swapper = sleepq_abort(td, intrval);
2315 	} else {
2316 		/*
2317 		 * Other states do nothing with the signal immediately,
2318 		 * other than kicking ourselves if we are running.
2319 		 * It will either never be noticed, or noticed very soon.
2320 		 */
2321 #ifdef SMP
2322 		if (TD_IS_RUNNING(td) && td != curthread)
2323 			forward_signal(td);
2324 #endif
2325 	}
2326 out:
2327 	PROC_SUNLOCK(p);
2328 	thread_unlock(td);
2329 	if (wakeup_swapper)
2330 		kick_proc0();
2331 }
2332 
2333 static void
2334 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2335 {
2336 	struct thread *td2;
2337 	int wakeup_swapper;
2338 
2339 	PROC_LOCK_ASSERT(p, MA_OWNED);
2340 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2341 
2342 	wakeup_swapper = 0;
2343 	FOREACH_THREAD_IN_PROC(p, td2) {
2344 		thread_lock(td2);
2345 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2346 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2347 		    (td2->td_flags & TDF_SINTR)) {
2348 			if (td2->td_flags & TDF_SBDRY) {
2349 				if (TD_IS_SUSPENDED(td2))
2350 					wakeup_swapper |=
2351 					    thread_unsuspend_one(td2);
2352 				if (TD_ON_SLEEPQ(td2))
2353 					wakeup_swapper |=
2354 					    sleepq_abort(td2, ERESTART);
2355 			} else if (!TD_IS_SUSPENDED(td2)) {
2356 				thread_suspend_one(td2);
2357 			}
2358 		} else if (!TD_IS_SUSPENDED(td2)) {
2359 			if (sending || td != td2)
2360 				td2->td_flags |= TDF_ASTPENDING;
2361 #ifdef SMP
2362 			if (TD_IS_RUNNING(td2) && td2 != td)
2363 				forward_signal(td2);
2364 #endif
2365 		}
2366 		thread_unlock(td2);
2367 	}
2368 	if (wakeup_swapper)
2369 		kick_proc0();
2370 }
2371 
2372 int
2373 ptracestop(struct thread *td, int sig)
2374 {
2375 	struct proc *p = td->td_proc;
2376 
2377 	PROC_LOCK_ASSERT(p, MA_OWNED);
2378 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2379 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2380 
2381 	td->td_dbgflags |= TDB_XSIG;
2382 	td->td_xsig = sig;
2383 	PROC_SLOCK(p);
2384 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2385 		if (p->p_flag & P_SINGLE_EXIT) {
2386 			td->td_dbgflags &= ~TDB_XSIG;
2387 			PROC_SUNLOCK(p);
2388 			return (sig);
2389 		}
2390 		/*
2391 		 * Just make wait() to work, the last stopped thread
2392 		 * will win.
2393 		 */
2394 		p->p_xstat = sig;
2395 		p->p_xthread = td;
2396 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2397 		sig_suspend_threads(td, p, 0);
2398 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2399 			td->td_dbgflags &= ~TDB_STOPATFORK;
2400 			cv_broadcast(&p->p_dbgwait);
2401 		}
2402 stopme:
2403 		thread_suspend_switch(td);
2404 		if (!(p->p_flag & P_TRACED)) {
2405 			break;
2406 		}
2407 		if (td->td_dbgflags & TDB_SUSPEND) {
2408 			if (p->p_flag & P_SINGLE_EXIT)
2409 				break;
2410 			goto stopme;
2411 		}
2412 	}
2413 	PROC_SUNLOCK(p);
2414 	return (td->td_xsig);
2415 }
2416 
2417 static void
2418 reschedule_signals(struct proc *p, sigset_t block, int flags)
2419 {
2420 	struct sigacts *ps;
2421 	struct thread *td;
2422 	int sig;
2423 
2424 	PROC_LOCK_ASSERT(p, MA_OWNED);
2425 	if (SIGISEMPTY(p->p_siglist))
2426 		return;
2427 	ps = p->p_sigacts;
2428 	SIGSETAND(block, p->p_siglist);
2429 	while ((sig = sig_ffs(&block)) != 0) {
2430 		SIGDELSET(block, sig);
2431 		td = sigtd(p, sig, 0);
2432 		signotify(td);
2433 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2434 			mtx_lock(&ps->ps_mtx);
2435 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2436 			tdsigwakeup(td, sig, SIG_CATCH,
2437 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2438 			     ERESTART));
2439 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2440 			mtx_unlock(&ps->ps_mtx);
2441 	}
2442 }
2443 
2444 void
2445 tdsigcleanup(struct thread *td)
2446 {
2447 	struct proc *p;
2448 	sigset_t unblocked;
2449 
2450 	p = td->td_proc;
2451 	PROC_LOCK_ASSERT(p, MA_OWNED);
2452 
2453 	sigqueue_flush(&td->td_sigqueue);
2454 	if (p->p_numthreads == 1)
2455 		return;
2456 
2457 	/*
2458 	 * Since we cannot handle signals, notify signal post code
2459 	 * about this by filling the sigmask.
2460 	 *
2461 	 * Also, if needed, wake up thread(s) that do not block the
2462 	 * same signals as the exiting thread, since the thread might
2463 	 * have been selected for delivery and woken up.
2464 	 */
2465 	SIGFILLSET(unblocked);
2466 	SIGSETNAND(unblocked, td->td_sigmask);
2467 	SIGFILLSET(td->td_sigmask);
2468 	reschedule_signals(p, unblocked, 0);
2469 
2470 }
2471 
2472 /*
2473  * If the current process has received a signal (should be caught or cause
2474  * termination, should interrupt current syscall), return the signal number.
2475  * Stop signals with default action are processed immediately, then cleared;
2476  * they aren't returned.  This is checked after each entry to the system for
2477  * a syscall or trap (though this can usually be done without calling issignal
2478  * by checking the pending signal masks in cursig.) The normal call
2479  * sequence is
2480  *
2481  *	while (sig = cursig(curthread))
2482  *		postsig(sig);
2483  */
2484 static int
2485 issignal(struct thread *td, int stop_allowed)
2486 {
2487 	struct proc *p;
2488 	struct sigacts *ps;
2489 	struct sigqueue *queue;
2490 	sigset_t sigpending;
2491 	int sig, prop, newsig;
2492 
2493 	p = td->td_proc;
2494 	ps = p->p_sigacts;
2495 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2496 	PROC_LOCK_ASSERT(p, MA_OWNED);
2497 	for (;;) {
2498 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2499 
2500 		sigpending = td->td_sigqueue.sq_signals;
2501 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2502 		SIGSETNAND(sigpending, td->td_sigmask);
2503 
2504 		if (p->p_flag & P_PPWAIT)
2505 			SIG_STOPSIGMASK(sigpending);
2506 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2507 			return (0);
2508 		sig = sig_ffs(&sigpending);
2509 
2510 		if (p->p_stops & S_SIG) {
2511 			mtx_unlock(&ps->ps_mtx);
2512 			stopevent(p, S_SIG, sig);
2513 			mtx_lock(&ps->ps_mtx);
2514 		}
2515 
2516 		/*
2517 		 * We should see pending but ignored signals
2518 		 * only if P_TRACED was on when they were posted.
2519 		 */
2520 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2521 			sigqueue_delete(&td->td_sigqueue, sig);
2522 			sigqueue_delete(&p->p_sigqueue, sig);
2523 			continue;
2524 		}
2525 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2526 			/*
2527 			 * If traced, always stop.
2528 			 * Remove old signal from queue before the stop.
2529 			 * XXX shrug off debugger, it causes siginfo to
2530 			 * be thrown away.
2531 			 */
2532 			queue = &td->td_sigqueue;
2533 			td->td_dbgksi.ksi_signo = 0;
2534 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2535 				queue = &p->p_sigqueue;
2536 				sigqueue_get(queue, sig, &td->td_dbgksi);
2537 			}
2538 
2539 			mtx_unlock(&ps->ps_mtx);
2540 			newsig = ptracestop(td, sig);
2541 			mtx_lock(&ps->ps_mtx);
2542 
2543 			if (sig != newsig) {
2544 
2545 				/*
2546 				 * If parent wants us to take the signal,
2547 				 * then it will leave it in p->p_xstat;
2548 				 * otherwise we just look for signals again.
2549 			 	*/
2550 				if (newsig == 0)
2551 					continue;
2552 				sig = newsig;
2553 
2554 				/*
2555 				 * Put the new signal into td_sigqueue. If the
2556 				 * signal is being masked, look for other signals.
2557 				 */
2558 				sigqueue_add(queue, sig, NULL);
2559 				if (SIGISMEMBER(td->td_sigmask, sig))
2560 					continue;
2561 				signotify(td);
2562 			} else {
2563 				if (td->td_dbgksi.ksi_signo != 0) {
2564 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2565 					if (sigqueue_add(&td->td_sigqueue, sig,
2566 					    &td->td_dbgksi) != 0)
2567 						td->td_dbgksi.ksi_signo = 0;
2568 				}
2569 				if (td->td_dbgksi.ksi_signo == 0)
2570 					sigqueue_add(&td->td_sigqueue, sig,
2571 					    NULL);
2572 			}
2573 
2574 			/*
2575 			 * If the traced bit got turned off, go back up
2576 			 * to the top to rescan signals.  This ensures
2577 			 * that p_sig* and p_sigact are consistent.
2578 			 */
2579 			if ((p->p_flag & P_TRACED) == 0)
2580 				continue;
2581 		}
2582 
2583 		prop = sigprop(sig);
2584 
2585 		/*
2586 		 * Decide whether the signal should be returned.
2587 		 * Return the signal's number, or fall through
2588 		 * to clear it from the pending mask.
2589 		 */
2590 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2591 
2592 		case (intptr_t)SIG_DFL:
2593 			/*
2594 			 * Don't take default actions on system processes.
2595 			 */
2596 			if (p->p_pid <= 1) {
2597 #ifdef DIAGNOSTIC
2598 				/*
2599 				 * Are you sure you want to ignore SIGSEGV
2600 				 * in init? XXX
2601 				 */
2602 				printf("Process (pid %lu) got signal %d\n",
2603 					(u_long)p->p_pid, sig);
2604 #endif
2605 				break;		/* == ignore */
2606 			}
2607 			/*
2608 			 * If there is a pending stop signal to process
2609 			 * with default action, stop here,
2610 			 * then clear the signal.  However,
2611 			 * if process is member of an orphaned
2612 			 * process group, ignore tty stop signals.
2613 			 */
2614 			if (prop & SA_STOP) {
2615 				if (p->p_flag & P_TRACED ||
2616 		    		    (p->p_pgrp->pg_jobc == 0 &&
2617 				     prop & SA_TTYSTOP))
2618 					break;	/* == ignore */
2619 
2620 				/* Ignore, but do not drop the stop signal. */
2621 				if (stop_allowed != SIG_STOP_ALLOWED)
2622 					return (sig);
2623 				mtx_unlock(&ps->ps_mtx);
2624 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2625 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2626 				p->p_flag |= P_STOPPED_SIG;
2627 				p->p_xstat = sig;
2628 				PROC_SLOCK(p);
2629 				sig_suspend_threads(td, p, 0);
2630 				thread_suspend_switch(td);
2631 				PROC_SUNLOCK(p);
2632 				mtx_lock(&ps->ps_mtx);
2633 				break;
2634 			} else if (prop & SA_IGNORE) {
2635 				/*
2636 				 * Except for SIGCONT, shouldn't get here.
2637 				 * Default action is to ignore; drop it.
2638 				 */
2639 				break;		/* == ignore */
2640 			} else
2641 				return (sig);
2642 			/*NOTREACHED*/
2643 
2644 		case (intptr_t)SIG_IGN:
2645 			/*
2646 			 * Masking above should prevent us ever trying
2647 			 * to take action on an ignored signal other
2648 			 * than SIGCONT, unless process is traced.
2649 			 */
2650 			if ((prop & SA_CONT) == 0 &&
2651 			    (p->p_flag & P_TRACED) == 0)
2652 				printf("issignal\n");
2653 			break;		/* == ignore */
2654 
2655 		default:
2656 			/*
2657 			 * This signal has an action, let
2658 			 * postsig() process it.
2659 			 */
2660 			return (sig);
2661 		}
2662 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2663 		sigqueue_delete(&p->p_sigqueue, sig);
2664 	}
2665 	/* NOTREACHED */
2666 }
2667 
2668 void
2669 thread_stopped(struct proc *p)
2670 {
2671 	int n;
2672 
2673 	PROC_LOCK_ASSERT(p, MA_OWNED);
2674 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2675 	n = p->p_suspcount;
2676 	if (p == curproc)
2677 		n++;
2678 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2679 		PROC_SUNLOCK(p);
2680 		p->p_flag &= ~P_WAITED;
2681 		PROC_LOCK(p->p_pptr);
2682 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2683 			CLD_TRAPPED : CLD_STOPPED);
2684 		PROC_UNLOCK(p->p_pptr);
2685 		PROC_SLOCK(p);
2686 	}
2687 }
2688 
2689 /*
2690  * Take the action for the specified signal
2691  * from the current set of pending signals.
2692  */
2693 int
2694 postsig(sig)
2695 	register int sig;
2696 {
2697 	struct thread *td = curthread;
2698 	register struct proc *p = td->td_proc;
2699 	struct sigacts *ps;
2700 	sig_t action;
2701 	ksiginfo_t ksi;
2702 	sigset_t returnmask, mask;
2703 
2704 	KASSERT(sig != 0, ("postsig"));
2705 
2706 	PROC_LOCK_ASSERT(p, MA_OWNED);
2707 	ps = p->p_sigacts;
2708 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2709 	ksiginfo_init(&ksi);
2710 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2711 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2712 		return (0);
2713 	ksi.ksi_signo = sig;
2714 	if (ksi.ksi_code == SI_TIMER)
2715 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2716 	action = ps->ps_sigact[_SIG_IDX(sig)];
2717 #ifdef KTRACE
2718 	if (KTRPOINT(td, KTR_PSIG))
2719 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2720 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2721 #endif
2722 	if (p->p_stops & S_SIG) {
2723 		mtx_unlock(&ps->ps_mtx);
2724 		stopevent(p, S_SIG, sig);
2725 		mtx_lock(&ps->ps_mtx);
2726 	}
2727 
2728 	if (action == SIG_DFL) {
2729 		/*
2730 		 * Default action, where the default is to kill
2731 		 * the process.  (Other cases were ignored above.)
2732 		 */
2733 		mtx_unlock(&ps->ps_mtx);
2734 		sigexit(td, sig);
2735 		/* NOTREACHED */
2736 	} else {
2737 		/*
2738 		 * If we get here, the signal must be caught.
2739 		 */
2740 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2741 		    ("postsig action"));
2742 		/*
2743 		 * Set the new mask value and also defer further
2744 		 * occurrences of this signal.
2745 		 *
2746 		 * Special case: user has done a sigsuspend.  Here the
2747 		 * current mask is not of interest, but rather the
2748 		 * mask from before the sigsuspend is what we want
2749 		 * restored after the signal processing is completed.
2750 		 */
2751 		if (td->td_pflags & TDP_OLDMASK) {
2752 			returnmask = td->td_oldsigmask;
2753 			td->td_pflags &= ~TDP_OLDMASK;
2754 		} else
2755 			returnmask = td->td_sigmask;
2756 
2757 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2758 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2759 			SIGADDSET(mask, sig);
2760 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2761 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2762 
2763 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2764 			/*
2765 			 * See kern_sigaction() for origin of this code.
2766 			 */
2767 			SIGDELSET(ps->ps_sigcatch, sig);
2768 			if (sig != SIGCONT &&
2769 			    sigprop(sig) & SA_IGNORE)
2770 				SIGADDSET(ps->ps_sigignore, sig);
2771 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2772 		}
2773 		td->td_ru.ru_nsignals++;
2774 		if (p->p_sig == sig) {
2775 			p->p_code = 0;
2776 			p->p_sig = 0;
2777 		}
2778 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2779 	}
2780 	return (1);
2781 }
2782 
2783 /*
2784  * Kill the current process for stated reason.
2785  */
2786 void
2787 killproc(p, why)
2788 	struct proc *p;
2789 	char *why;
2790 {
2791 
2792 	PROC_LOCK_ASSERT(p, MA_OWNED);
2793 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2794 		p, p->p_pid, p->p_comm);
2795 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2796 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2797 	p->p_flag |= P_WKILLED;
2798 	psignal(p, SIGKILL);
2799 }
2800 
2801 /*
2802  * Force the current process to exit with the specified signal, dumping core
2803  * if appropriate.  We bypass the normal tests for masked and caught signals,
2804  * allowing unrecoverable failures to terminate the process without changing
2805  * signal state.  Mark the accounting record with the signal termination.
2806  * If dumping core, save the signal number for the debugger.  Calls exit and
2807  * does not return.
2808  */
2809 void
2810 sigexit(td, sig)
2811 	struct thread *td;
2812 	int sig;
2813 {
2814 	struct proc *p = td->td_proc;
2815 
2816 	PROC_LOCK_ASSERT(p, MA_OWNED);
2817 	p->p_acflag |= AXSIG;
2818 	/*
2819 	 * We must be single-threading to generate a core dump.  This
2820 	 * ensures that the registers in the core file are up-to-date.
2821 	 * Also, the ELF dump handler assumes that the thread list doesn't
2822 	 * change out from under it.
2823 	 *
2824 	 * XXX If another thread attempts to single-thread before us
2825 	 *     (e.g. via fork()), we won't get a dump at all.
2826 	 */
2827 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2828 		p->p_sig = sig;
2829 		/*
2830 		 * Log signals which would cause core dumps
2831 		 * (Log as LOG_INFO to appease those who don't want
2832 		 * these messages.)
2833 		 * XXX : Todo, as well as euid, write out ruid too
2834 		 * Note that coredump() drops proc lock.
2835 		 */
2836 		if (coredump(td) == 0)
2837 			sig |= WCOREFLAG;
2838 		if (kern_logsigexit)
2839 			log(LOG_INFO,
2840 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2841 			    p->p_pid, p->p_comm,
2842 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2843 			    sig &~ WCOREFLAG,
2844 			    sig & WCOREFLAG ? " (core dumped)" : "");
2845 	} else
2846 		PROC_UNLOCK(p);
2847 	exit1(td, W_EXITCODE(0, sig));
2848 	/* NOTREACHED */
2849 }
2850 
2851 /*
2852  * Send queued SIGCHLD to parent when child process's state
2853  * is changed.
2854  */
2855 static void
2856 sigparent(struct proc *p, int reason, int status)
2857 {
2858 	PROC_LOCK_ASSERT(p, MA_OWNED);
2859 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2860 
2861 	if (p->p_ksi != NULL) {
2862 		p->p_ksi->ksi_signo  = SIGCHLD;
2863 		p->p_ksi->ksi_code   = reason;
2864 		p->p_ksi->ksi_status = status;
2865 		p->p_ksi->ksi_pid    = p->p_pid;
2866 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2867 		if (KSI_ONQ(p->p_ksi))
2868 			return;
2869 	}
2870 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2871 }
2872 
2873 static void
2874 childproc_jobstate(struct proc *p, int reason, int status)
2875 {
2876 	struct sigacts *ps;
2877 
2878 	PROC_LOCK_ASSERT(p, MA_OWNED);
2879 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2880 
2881 	/*
2882 	 * Wake up parent sleeping in kern_wait(), also send
2883 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2884 	 * that parent will awake, because parent may masked
2885 	 * the signal.
2886 	 */
2887 	p->p_pptr->p_flag |= P_STATCHILD;
2888 	wakeup(p->p_pptr);
2889 
2890 	ps = p->p_pptr->p_sigacts;
2891 	mtx_lock(&ps->ps_mtx);
2892 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2893 		mtx_unlock(&ps->ps_mtx);
2894 		sigparent(p, reason, status);
2895 	} else
2896 		mtx_unlock(&ps->ps_mtx);
2897 }
2898 
2899 void
2900 childproc_stopped(struct proc *p, int reason)
2901 {
2902 	childproc_jobstate(p, reason, p->p_xstat);
2903 }
2904 
2905 void
2906 childproc_continued(struct proc *p)
2907 {
2908 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2909 }
2910 
2911 void
2912 childproc_exited(struct proc *p)
2913 {
2914 	int reason;
2915 	int status = p->p_xstat; /* convert to int */
2916 
2917 	reason = CLD_EXITED;
2918 	if (WCOREDUMP(status))
2919 		reason = CLD_DUMPED;
2920 	else if (WIFSIGNALED(status))
2921 		reason = CLD_KILLED;
2922 	/*
2923 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2924 	 * done in exit1().
2925 	 */
2926 	sigparent(p, reason, status);
2927 }
2928 
2929 /*
2930  * We only have 1 character for the core count in the format
2931  * string, so the range will be 0-9
2932  */
2933 #define MAX_NUM_CORES 10
2934 static int num_cores = 5;
2935 
2936 static int
2937 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2938 {
2939 	int error;
2940 	int new_val;
2941 
2942 	new_val = num_cores;
2943 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2944 	if (error != 0 || req->newptr == NULL)
2945 		return (error);
2946 	if (new_val > MAX_NUM_CORES)
2947 		new_val = MAX_NUM_CORES;
2948 	if (new_val < 0)
2949 		new_val = 0;
2950 	num_cores = new_val;
2951 	return (0);
2952 }
2953 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
2954 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
2955 
2956 #if defined(COMPRESS_USER_CORES)
2957 int compress_user_cores = 1;
2958 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
2959         &compress_user_cores, 0, "");
2960 
2961 int compress_user_cores_gzlevel = -1; /* default level */
2962 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
2963     &compress_user_cores_gzlevel, -1, "user core gz compression level");
2964 
2965 #define GZ_SUFFIX	".gz"
2966 #define GZ_SUFFIX_LEN	3
2967 #endif
2968 
2969 static char corefilename[MAXPATHLEN] = {"%N.core"};
2970 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2971 	      sizeof(corefilename), "process corefile name format string");
2972 
2973 /*
2974  * expand_name(name, uid, pid, td, compress)
2975  * Expand the name described in corefilename, using name, uid, and pid.
2976  * corefilename is a printf-like string, with three format specifiers:
2977  *	%N	name of process ("name")
2978  *	%P	process id (pid)
2979  *	%U	user id (uid)
2980  * For example, "%N.core" is the default; they can be disabled completely
2981  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2982  * This is controlled by the sysctl variable kern.corefile (see above).
2983  */
2984 static char *
2985 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
2986     int compress)
2987 {
2988 	struct sbuf sb;
2989 	const char *format;
2990 	char *temp;
2991 	size_t i;
2992 	int indexpos;
2993 	char *hostname;
2994 
2995 	hostname = NULL;
2996 	format = corefilename;
2997 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2998 	if (temp == NULL)
2999 		return (NULL);
3000 	indexpos = -1;
3001 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
3002 	for (i = 0; format[i]; i++) {
3003 		switch (format[i]) {
3004 		case '%':	/* Format character */
3005 			i++;
3006 			switch (format[i]) {
3007 			case '%':
3008 				sbuf_putc(&sb, '%');
3009 				break;
3010 			case 'H':	/* hostname */
3011 				if (hostname == NULL) {
3012 					hostname = malloc(MAXHOSTNAMELEN,
3013 					    M_TEMP, M_NOWAIT);
3014 					if (hostname == NULL) {
3015 						log(LOG_ERR,
3016 						    "pid %ld (%s), uid (%lu): "
3017 						    "unable to alloc memory "
3018 						    "for corefile hostname\n",
3019 						    (long)pid, name,
3020 						    (u_long)uid);
3021                                                 goto nomem;
3022                                         }
3023                                 }
3024 				getcredhostname(td->td_ucred, hostname,
3025 				    MAXHOSTNAMELEN);
3026 				sbuf_printf(&sb, "%s", hostname);
3027 				break;
3028 			case 'I':       /* autoincrementing index */
3029 				sbuf_printf(&sb, "0");
3030 				indexpos = sbuf_len(&sb) - 1;
3031 				break;
3032 			case 'N':	/* process name */
3033 				sbuf_printf(&sb, "%s", name);
3034 				break;
3035 			case 'P':	/* process id */
3036 				sbuf_printf(&sb, "%u", pid);
3037 				break;
3038 			case 'U':	/* user id */
3039 				sbuf_printf(&sb, "%u", uid);
3040 				break;
3041 			default:
3042 			  	log(LOG_ERR,
3043 				    "Unknown format character %c in "
3044 				    "corename `%s'\n", format[i], format);
3045 			}
3046 			break;
3047 		default:
3048 			sbuf_putc(&sb, format[i]);
3049 		}
3050 	}
3051 	free(hostname, M_TEMP);
3052 #ifdef COMPRESS_USER_CORES
3053 	if (compress) {
3054 		sbuf_printf(&sb, GZ_SUFFIX);
3055 	}
3056 #endif
3057 	if (sbuf_error(&sb) != 0) {
3058 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3059 		    "long\n", (long)pid, name, (u_long)uid);
3060 nomem:
3061 		sbuf_delete(&sb);
3062 		free(temp, M_TEMP);
3063 		return (NULL);
3064 	}
3065 	sbuf_finish(&sb);
3066 	sbuf_delete(&sb);
3067 
3068 	/*
3069 	 * If the core format has a %I in it, then we need to check
3070 	 * for existing corefiles before returning a name.
3071 	 * To do this we iterate over 0..num_cores to find a
3072 	 * non-existing core file name to use.
3073 	 */
3074 	if (indexpos != -1) {
3075 		struct nameidata nd;
3076 		int error, n;
3077 		int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3078 		int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
3079 		int vfslocked;
3080 
3081 		for (n = 0; n < num_cores; n++) {
3082 			temp[indexpos] = '0' + n;
3083 			NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE,
3084 			    temp, td);
3085 			error = vn_open(&nd, &flags, cmode, NULL);
3086 			if (error) {
3087 				if (error == EEXIST) {
3088 					continue;
3089 				}
3090 				log(LOG_ERR,
3091 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3092                                     "on initial open test, error = %d\n",
3093 				    pid, name, uid, temp, error);
3094 				free(temp, M_TEMP);
3095 				return (NULL);
3096 			}
3097 			vfslocked = NDHASGIANT(&nd);
3098 			NDFREE(&nd, NDF_ONLY_PNBUF);
3099 			VOP_UNLOCK(nd.ni_vp, 0);
3100 			error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
3101 			VFS_UNLOCK_GIANT(vfslocked);
3102 			if (error) {
3103 				log(LOG_ERR,
3104 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3105                                     "on close after initial open test, "
3106                                     "error = %d\n",
3107 				    pid, name, uid, temp, error);
3108 				free(temp, M_TEMP);
3109 				return (NULL);
3110 			}
3111 			break;
3112 		}
3113 	}
3114 	return (temp);
3115 }
3116 
3117 /*
3118  * Dump a process' core.  The main routine does some
3119  * policy checking, and creates the name of the coredump;
3120  * then it passes on a vnode and a size limit to the process-specific
3121  * coredump routine if there is one; if there _is not_ one, it returns
3122  * ENOSYS; otherwise it returns the error from the process-specific routine.
3123  */
3124 
3125 static int
3126 coredump(struct thread *td)
3127 {
3128 	struct proc *p = td->td_proc;
3129 	register struct vnode *vp;
3130 	register struct ucred *cred = td->td_ucred;
3131 	struct flock lf;
3132 	struct nameidata nd;
3133 	struct vattr vattr;
3134 	int error, error1, flags, locked;
3135 	struct mount *mp;
3136 	char *name;			/* name of corefile */
3137 	off_t limit;
3138 	int vfslocked;
3139 	int compress;
3140 
3141 #ifdef COMPRESS_USER_CORES
3142 	compress = compress_user_cores;
3143 #else
3144 	compress = 0;
3145 #endif
3146 	PROC_LOCK_ASSERT(p, MA_OWNED);
3147 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3148 	_STOPEVENT(p, S_CORE, 0);
3149 
3150 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
3151 	    compress);
3152 	if (name == NULL) {
3153 		PROC_UNLOCK(p);
3154 #ifdef AUDIT
3155 		audit_proc_coredump(td, NULL, EINVAL);
3156 #endif
3157 		return (EINVAL);
3158 	}
3159 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3160 		PROC_UNLOCK(p);
3161 #ifdef AUDIT
3162 		audit_proc_coredump(td, name, EFAULT);
3163 #endif
3164 		free(name, M_TEMP);
3165 		return (EFAULT);
3166 	}
3167 
3168 	/*
3169 	 * Note that the bulk of limit checking is done after
3170 	 * the corefile is created.  The exception is if the limit
3171 	 * for corefiles is 0, in which case we don't bother
3172 	 * creating the corefile at all.  This layout means that
3173 	 * a corefile is truncated instead of not being created,
3174 	 * if it is larger than the limit.
3175 	 */
3176 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3177 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3178 		PROC_UNLOCK(p);
3179 #ifdef AUDIT
3180 		audit_proc_coredump(td, name, EFBIG);
3181 #endif
3182 		free(name, M_TEMP);
3183 		return (EFBIG);
3184 	}
3185 	PROC_UNLOCK(p);
3186 
3187 restart:
3188 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3189 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3190 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
3191 	    cred, NULL);
3192 	if (error) {
3193 #ifdef AUDIT
3194 		audit_proc_coredump(td, name, error);
3195 #endif
3196 		free(name, M_TEMP);
3197 		return (error);
3198 	}
3199 	vfslocked = NDHASGIANT(&nd);
3200 	NDFREE(&nd, NDF_ONLY_PNBUF);
3201 	vp = nd.ni_vp;
3202 
3203 	/* Don't dump to non-regular files or files with links. */
3204 	if (vp->v_type != VREG ||
3205 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
3206 		VOP_UNLOCK(vp, 0);
3207 		error = EFAULT;
3208 		goto close;
3209 	}
3210 
3211 	VOP_UNLOCK(vp, 0);
3212 	lf.l_whence = SEEK_SET;
3213 	lf.l_start = 0;
3214 	lf.l_len = 0;
3215 	lf.l_type = F_WRLCK;
3216 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3217 
3218 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3219 		lf.l_type = F_UNLCK;
3220 		if (locked)
3221 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3222 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3223 			goto out;
3224 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3225 			goto out;
3226 		VFS_UNLOCK_GIANT(vfslocked);
3227 		goto restart;
3228 	}
3229 
3230 	VATTR_NULL(&vattr);
3231 	vattr.va_size = 0;
3232 	if (set_core_nodump_flag)
3233 		vattr.va_flags = UF_NODUMP;
3234 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3235 	VOP_SETATTR(vp, &vattr, cred);
3236 	VOP_UNLOCK(vp, 0);
3237 	vn_finished_write(mp);
3238 	PROC_LOCK(p);
3239 	p->p_acflag |= ACORE;
3240 	PROC_UNLOCK(p);
3241 
3242 	error = p->p_sysent->sv_coredump ?
3243 	  p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
3244 	  ENOSYS;
3245 
3246 	if (locked) {
3247 		lf.l_type = F_UNLCK;
3248 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3249 	}
3250 close:
3251 	error1 = vn_close(vp, FWRITE, cred, td);
3252 	if (error == 0)
3253 		error = error1;
3254 out:
3255 #ifdef AUDIT
3256 	audit_proc_coredump(td, name, error);
3257 #endif
3258 	free(name, M_TEMP);
3259 	VFS_UNLOCK_GIANT(vfslocked);
3260 	return (error);
3261 }
3262 
3263 /*
3264  * Nonexistent system call-- signal process (may want to handle it).  Flag
3265  * error in case process won't see signal immediately (blocked or ignored).
3266  */
3267 #ifndef _SYS_SYSPROTO_H_
3268 struct nosys_args {
3269 	int	dummy;
3270 };
3271 #endif
3272 /* ARGSUSED */
3273 int
3274 nosys(td, args)
3275 	struct thread *td;
3276 	struct nosys_args *args;
3277 {
3278 	struct proc *p = td->td_proc;
3279 
3280 	PROC_LOCK(p);
3281 	psignal(p, SIGSYS);
3282 	PROC_UNLOCK(p);
3283 	return (ENOSYS);
3284 }
3285 
3286 /*
3287  * Send a SIGIO or SIGURG signal to a process or process group using stored
3288  * credentials rather than those of the current process.
3289  */
3290 void
3291 pgsigio(sigiop, sig, checkctty)
3292 	struct sigio **sigiop;
3293 	int sig, checkctty;
3294 {
3295 	ksiginfo_t ksi;
3296 	struct sigio *sigio;
3297 
3298 	ksiginfo_init(&ksi);
3299 	ksi.ksi_signo = sig;
3300 	ksi.ksi_code = SI_KERNEL;
3301 
3302 	SIGIO_LOCK();
3303 	sigio = *sigiop;
3304 	if (sigio == NULL) {
3305 		SIGIO_UNLOCK();
3306 		return;
3307 	}
3308 	if (sigio->sio_pgid > 0) {
3309 		PROC_LOCK(sigio->sio_proc);
3310 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3311 			psignal(sigio->sio_proc, sig);
3312 		PROC_UNLOCK(sigio->sio_proc);
3313 	} else if (sigio->sio_pgid < 0) {
3314 		struct proc *p;
3315 
3316 		PGRP_LOCK(sigio->sio_pgrp);
3317 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3318 			PROC_LOCK(p);
3319 			if (p->p_state == PRS_NORMAL &&
3320 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3321 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3322 				psignal(p, sig);
3323 			PROC_UNLOCK(p);
3324 		}
3325 		PGRP_UNLOCK(sigio->sio_pgrp);
3326 	}
3327 	SIGIO_UNLOCK();
3328 }
3329 
3330 static int
3331 filt_sigattach(struct knote *kn)
3332 {
3333 	struct proc *p = curproc;
3334 
3335 	kn->kn_ptr.p_proc = p;
3336 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3337 
3338 	knlist_add(&p->p_klist, kn, 0);
3339 
3340 	return (0);
3341 }
3342 
3343 static void
3344 filt_sigdetach(struct knote *kn)
3345 {
3346 	struct proc *p = kn->kn_ptr.p_proc;
3347 
3348 	knlist_remove(&p->p_klist, kn, 0);
3349 }
3350 
3351 /*
3352  * signal knotes are shared with proc knotes, so we apply a mask to
3353  * the hint in order to differentiate them from process hints.  This
3354  * could be avoided by using a signal-specific knote list, but probably
3355  * isn't worth the trouble.
3356  */
3357 static int
3358 filt_signal(struct knote *kn, long hint)
3359 {
3360 
3361 	if (hint & NOTE_SIGNAL) {
3362 		hint &= ~NOTE_SIGNAL;
3363 
3364 		if (kn->kn_id == hint)
3365 			kn->kn_data++;
3366 	}
3367 	return (kn->kn_data != 0);
3368 }
3369 
3370 struct sigacts *
3371 sigacts_alloc(void)
3372 {
3373 	struct sigacts *ps;
3374 
3375 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3376 	ps->ps_refcnt = 1;
3377 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3378 	return (ps);
3379 }
3380 
3381 void
3382 sigacts_free(struct sigacts *ps)
3383 {
3384 
3385 	mtx_lock(&ps->ps_mtx);
3386 	ps->ps_refcnt--;
3387 	if (ps->ps_refcnt == 0) {
3388 		mtx_destroy(&ps->ps_mtx);
3389 		free(ps, M_SUBPROC);
3390 	} else
3391 		mtx_unlock(&ps->ps_mtx);
3392 }
3393 
3394 struct sigacts *
3395 sigacts_hold(struct sigacts *ps)
3396 {
3397 	mtx_lock(&ps->ps_mtx);
3398 	ps->ps_refcnt++;
3399 	mtx_unlock(&ps->ps_mtx);
3400 	return (ps);
3401 }
3402 
3403 void
3404 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3405 {
3406 
3407 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3408 	mtx_lock(&src->ps_mtx);
3409 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3410 	mtx_unlock(&src->ps_mtx);
3411 }
3412 
3413 int
3414 sigacts_shared(struct sigacts *ps)
3415 {
3416 	int shared;
3417 
3418 	mtx_lock(&ps->ps_mtx);
3419 	shared = ps->ps_refcnt > 1;
3420 	mtx_unlock(&ps->ps_mtx);
3421 	return (shared);
3422 }
3423