xref: /freebsd/sys/kern/kern_sig.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <posix4/posix4.h>
80 #include <machine/cpu.h>
81 
82 #include <security/audit/audit.h>
83 
84 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
85 
86 static int	coredump(struct thread *);
87 static char	*expand_name(const char *, uid_t, pid_t);
88 static int	killpg1(struct thread *td, int sig, int pgid, int all);
89 static int	issignal(struct thread *p);
90 static int	sigprop(int sig);
91 static void	tdsigwakeup(struct thread *, int, sig_t, int);
92 static void	sig_suspend_threads(struct thread *, struct proc *, int);
93 static int	filt_sigattach(struct knote *kn);
94 static void	filt_sigdetach(struct knote *kn);
95 static int	filt_signal(struct knote *kn, long hint);
96 static struct thread *sigtd(struct proc *p, int sig, int prop);
97 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
98 static void	sigqueue_start(void);
99 
100 static uma_zone_t	ksiginfo_zone = NULL;
101 struct filterops sig_filtops =
102 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
103 
104 static int	kern_logsigexit = 1;
105 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
106     &kern_logsigexit, 0,
107     "Log processes quitting on abnormal signals to syslog(3)");
108 
109 static int	kern_forcesigexit = 1;
110 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
111     &kern_forcesigexit, 0, "Force trap signal to be handled");
112 
113 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
114 
115 static int	max_pending_per_proc = 128;
116 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
117     &max_pending_per_proc, 0, "Max pending signals per proc");
118 
119 static int	preallocate_siginfo = 1024;
120 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
121 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
122     &preallocate_siginfo, 0, "Preallocated signal memory size");
123 
124 static int	signal_overflow = 0;
125 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
126     &signal_overflow, 0, "Number of signals overflew");
127 
128 static int	signal_alloc_fail = 0;
129 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
130     &signal_alloc_fail, 0, "signals failed to be allocated");
131 
132 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
133 
134 /*
135  * Policy -- Can ucred cr1 send SIGIO to process cr2?
136  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
137  * in the right situations.
138  */
139 #define CANSIGIO(cr1, cr2) \
140 	((cr1)->cr_uid == 0 || \
141 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
142 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
143 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
144 	    (cr1)->cr_uid == (cr2)->cr_uid)
145 
146 int sugid_coredump;
147 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
148     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
149 
150 static int	do_coredump = 1;
151 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
152 	&do_coredump, 0, "Enable/Disable coredumps");
153 
154 static int	set_core_nodump_flag = 0;
155 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
156 	0, "Enable setting the NODUMP flag on coredump files");
157 
158 /*
159  * Signal properties and actions.
160  * The array below categorizes the signals and their default actions
161  * according to the following properties:
162  */
163 #define	SA_KILL		0x01		/* terminates process by default */
164 #define	SA_CORE		0x02		/* ditto and coredumps */
165 #define	SA_STOP		0x04		/* suspend process */
166 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
167 #define	SA_IGNORE	0x10		/* ignore by default */
168 #define	SA_CONT		0x20		/* continue if suspended */
169 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
170 #define	SA_PROC		0x80		/* deliverable to any thread */
171 
172 static int sigproptbl[NSIG] = {
173         SA_KILL|SA_PROC,		/* SIGHUP */
174         SA_KILL|SA_PROC,		/* SIGINT */
175         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
176         SA_KILL|SA_CORE,		/* SIGILL */
177         SA_KILL|SA_CORE,		/* SIGTRAP */
178         SA_KILL|SA_CORE,		/* SIGABRT */
179         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
180         SA_KILL|SA_CORE,		/* SIGFPE */
181         SA_KILL|SA_PROC,		/* SIGKILL */
182         SA_KILL|SA_CORE,		/* SIGBUS */
183         SA_KILL|SA_CORE,		/* SIGSEGV */
184         SA_KILL|SA_CORE,		/* SIGSYS */
185         SA_KILL|SA_PROC,		/* SIGPIPE */
186         SA_KILL|SA_PROC,		/* SIGALRM */
187         SA_KILL|SA_PROC,		/* SIGTERM */
188         SA_IGNORE|SA_PROC,		/* SIGURG */
189         SA_STOP|SA_PROC,		/* SIGSTOP */
190         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
191         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
192         SA_IGNORE|SA_PROC,		/* SIGCHLD */
193         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
194         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
195         SA_IGNORE|SA_PROC,		/* SIGIO */
196         SA_KILL,			/* SIGXCPU */
197         SA_KILL,			/* SIGXFSZ */
198         SA_KILL|SA_PROC,		/* SIGVTALRM */
199         SA_KILL|SA_PROC,		/* SIGPROF */
200         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
201         SA_IGNORE|SA_PROC,		/* SIGINFO */
202         SA_KILL|SA_PROC,		/* SIGUSR1 */
203         SA_KILL|SA_PROC,		/* SIGUSR2 */
204 };
205 
206 static void
207 sigqueue_start(void)
208 {
209 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
210 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
211 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
212 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
213 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
214 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
215 }
216 
217 ksiginfo_t *
218 ksiginfo_alloc(int wait)
219 {
220 	int flags;
221 
222 	flags = M_ZERO;
223 	if (! wait)
224 		flags |= M_NOWAIT;
225 	if (ksiginfo_zone != NULL)
226 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
227 	return (NULL);
228 }
229 
230 void
231 ksiginfo_free(ksiginfo_t *ksi)
232 {
233 	uma_zfree(ksiginfo_zone, ksi);
234 }
235 
236 static __inline int
237 ksiginfo_tryfree(ksiginfo_t *ksi)
238 {
239 	if (!(ksi->ksi_flags & KSI_EXT)) {
240 		uma_zfree(ksiginfo_zone, ksi);
241 		return (1);
242 	}
243 	return (0);
244 }
245 
246 void
247 sigqueue_init(sigqueue_t *list, struct proc *p)
248 {
249 	SIGEMPTYSET(list->sq_signals);
250 	SIGEMPTYSET(list->sq_kill);
251 	TAILQ_INIT(&list->sq_list);
252 	list->sq_proc = p;
253 	list->sq_flags = SQ_INIT;
254 }
255 
256 /*
257  * Get a signal's ksiginfo.
258  * Return:
259  * 	0	-	signal not found
260  *	others	-	signal number
261  */
262 int
263 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
264 {
265 	struct proc *p = sq->sq_proc;
266 	struct ksiginfo *ksi, *next;
267 	int count = 0;
268 
269 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
270 
271 	if (!SIGISMEMBER(sq->sq_signals, signo))
272 		return (0);
273 
274 	if (SIGISMEMBER(sq->sq_kill, signo)) {
275 		count++;
276 		SIGDELSET(sq->sq_kill, signo);
277 	}
278 
279 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
280 		next = TAILQ_NEXT(ksi, ksi_link);
281 		if (ksi->ksi_signo == signo) {
282 			if (count == 0) {
283 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
284 				ksi->ksi_sigq = NULL;
285 				ksiginfo_copy(ksi, si);
286 				if (ksiginfo_tryfree(ksi) && p != NULL)
287 					p->p_pendingcnt--;
288 			}
289 			count++;
290 		}
291 	}
292 
293 	if (count <= 1)
294 		SIGDELSET(sq->sq_signals, signo);
295 	si->ksi_signo = signo;
296 	return (signo);
297 }
298 
299 void
300 sigqueue_take(ksiginfo_t *ksi)
301 {
302 	struct ksiginfo *kp;
303 	struct proc	*p;
304 	sigqueue_t	*sq;
305 
306 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
307 		return;
308 
309 	p = sq->sq_proc;
310 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
311 	ksi->ksi_sigq = NULL;
312 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
313 		p->p_pendingcnt--;
314 
315 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
316 	     kp = TAILQ_NEXT(kp, ksi_link)) {
317 		if (kp->ksi_signo == ksi->ksi_signo)
318 			break;
319 	}
320 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
321 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
322 }
323 
324 int
325 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
326 {
327 	struct proc *p = sq->sq_proc;
328 	struct ksiginfo *ksi;
329 	int ret = 0;
330 
331 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
332 
333 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
334 		SIGADDSET(sq->sq_kill, signo);
335 		goto out_set_bit;
336 	}
337 
338 	/* directly insert the ksi, don't copy it */
339 	if (si->ksi_flags & KSI_INS) {
340 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
341 		si->ksi_sigq = sq;
342 		goto out_set_bit;
343 	}
344 
345 	if (__predict_false(ksiginfo_zone == NULL)) {
346 		SIGADDSET(sq->sq_kill, signo);
347 		goto out_set_bit;
348 	}
349 
350 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
351 		signal_overflow++;
352 		ret = EAGAIN;
353 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
354 		signal_alloc_fail++;
355 		ret = EAGAIN;
356 	} else {
357 		if (p != NULL)
358 			p->p_pendingcnt++;
359 		ksiginfo_copy(si, ksi);
360 		ksi->ksi_signo = signo;
361 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
362 		ksi->ksi_sigq = sq;
363 	}
364 
365 	if ((si->ksi_flags & KSI_TRAP) != 0) {
366 		if (ret != 0)
367 			SIGADDSET(sq->sq_kill, signo);
368 		ret = 0;
369 		goto out_set_bit;
370 	}
371 
372 	if (ret != 0)
373 		return (ret);
374 
375 out_set_bit:
376 	SIGADDSET(sq->sq_signals, signo);
377 	return (ret);
378 }
379 
380 void
381 sigqueue_flush(sigqueue_t *sq)
382 {
383 	struct proc *p = sq->sq_proc;
384 	ksiginfo_t *ksi;
385 
386 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
387 
388 	if (p != NULL)
389 		PROC_LOCK_ASSERT(p, MA_OWNED);
390 
391 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
392 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
393 		ksi->ksi_sigq = NULL;
394 		if (ksiginfo_tryfree(ksi) && p != NULL)
395 			p->p_pendingcnt--;
396 	}
397 
398 	SIGEMPTYSET(sq->sq_signals);
399 	SIGEMPTYSET(sq->sq_kill);
400 }
401 
402 void
403 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
404 {
405 	ksiginfo_t *ksi;
406 
407 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
408 
409 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
410 		SIGADDSET(*set, ksi->ksi_signo);
411 	SIGSETOR(*set, sq->sq_kill);
412 }
413 
414 void
415 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
416 {
417 	sigset_t tmp, set;
418 	struct proc *p1, *p2;
419 	ksiginfo_t *ksi, *next;
420 
421 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
422 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
423 	/*
424 	 * make a copy, this allows setp to point to src or dst
425 	 * sq_signals without trouble.
426 	 */
427 	set = *setp;
428 	p1 = src->sq_proc;
429 	p2 = dst->sq_proc;
430 	/* Move siginfo to target list */
431 	for (ksi = TAILQ_FIRST(&src->sq_list); ksi != NULL; ksi = next) {
432 		next = TAILQ_NEXT(ksi, ksi_link);
433 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
434 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
435 			if (p1 != NULL)
436 				p1->p_pendingcnt--;
437 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
438 			ksi->ksi_sigq = dst;
439 			if (p2 != NULL)
440 				p2->p_pendingcnt++;
441 		}
442 	}
443 
444 	/* Move pending bits to target list */
445 	tmp = src->sq_kill;
446 	SIGSETAND(tmp, set);
447 	SIGSETOR(dst->sq_kill, tmp);
448 	SIGSETNAND(src->sq_kill, tmp);
449 
450 	tmp = src->sq_signals;
451 	SIGSETAND(tmp, set);
452 	SIGSETOR(dst->sq_signals, tmp);
453 	SIGSETNAND(src->sq_signals, tmp);
454 
455 	/* Finally, rescan src queue and set pending bits for it */
456 	sigqueue_collect_set(src, &src->sq_signals);
457 }
458 
459 void
460 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
461 {
462 	sigset_t set;
463 
464 	SIGEMPTYSET(set);
465 	SIGADDSET(set, signo);
466 	sigqueue_move_set(src, dst, &set);
467 }
468 
469 void
470 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
471 {
472 	struct proc *p = sq->sq_proc;
473 	ksiginfo_t *ksi, *next;
474 
475 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
476 
477 	/* Remove siginfo queue */
478 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
479 		next = TAILQ_NEXT(ksi, ksi_link);
480 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
481 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
482 			ksi->ksi_sigq = NULL;
483 			if (ksiginfo_tryfree(ksi) && p != NULL)
484 				p->p_pendingcnt--;
485 		}
486 	}
487 	SIGSETNAND(sq->sq_kill, *set);
488 	SIGSETNAND(sq->sq_signals, *set);
489 	/* Finally, rescan queue and set pending bits for it */
490 	sigqueue_collect_set(sq, &sq->sq_signals);
491 }
492 
493 void
494 sigqueue_delete(sigqueue_t *sq, int signo)
495 {
496 	sigset_t set;
497 
498 	SIGEMPTYSET(set);
499 	SIGADDSET(set, signo);
500 	sigqueue_delete_set(sq, &set);
501 }
502 
503 /* Remove a set of signals for a process */
504 void
505 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
506 {
507 	sigqueue_t worklist;
508 	struct thread *td0;
509 
510 	PROC_LOCK_ASSERT(p, MA_OWNED);
511 
512 	sigqueue_init(&worklist, NULL);
513 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
514 
515 	mtx_lock_spin(&sched_lock);
516 	FOREACH_THREAD_IN_PROC(p, td0)
517 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
518 	mtx_unlock_spin(&sched_lock);
519 
520 	sigqueue_flush(&worklist);
521 }
522 
523 void
524 sigqueue_delete_proc(struct proc *p, int signo)
525 {
526 	sigset_t set;
527 
528 	SIGEMPTYSET(set);
529 	SIGADDSET(set, signo);
530 	sigqueue_delete_set_proc(p, &set);
531 }
532 
533 void
534 sigqueue_delete_stopmask_proc(struct proc *p)
535 {
536 	sigset_t set;
537 
538 	SIGEMPTYSET(set);
539 	SIGADDSET(set, SIGSTOP);
540 	SIGADDSET(set, SIGTSTP);
541 	SIGADDSET(set, SIGTTIN);
542 	SIGADDSET(set, SIGTTOU);
543 	sigqueue_delete_set_proc(p, &set);
544 }
545 
546 /*
547  * Determine signal that should be delivered to process p, the current
548  * process, 0 if none.  If there is a pending stop signal with default
549  * action, the process stops in issignal().
550  *
551  * MP SAFE.
552  */
553 int
554 cursig(struct thread *td)
555 {
556 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
557 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
558 	mtx_assert(&sched_lock, MA_NOTOWNED);
559 	return (SIGPENDING(td) ? issignal(td) : 0);
560 }
561 
562 /*
563  * Arrange for ast() to handle unmasked pending signals on return to user
564  * mode.  This must be called whenever a signal is added to td_sigqueue or
565  * unmasked in td_sigmask.
566  */
567 void
568 signotify(struct thread *td)
569 {
570 	struct proc *p;
571 	sigset_t set, saved;
572 
573 	p = td->td_proc;
574 
575 	PROC_LOCK_ASSERT(p, MA_OWNED);
576 
577 	/*
578 	 * If our mask changed we may have to move signal that were
579 	 * previously masked by all threads to our sigqueue.
580 	 */
581 	set = p->p_sigqueue.sq_signals;
582 	if (p->p_flag & P_SA)
583 		saved = p->p_sigqueue.sq_signals;
584 	SIGSETNAND(set, td->td_sigmask);
585 	if (! SIGISEMPTY(set))
586 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
587 	if (SIGPENDING(td)) {
588 		mtx_lock_spin(&sched_lock);
589 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
590 		mtx_unlock_spin(&sched_lock);
591 	}
592 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
593 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
594 			/* pending set changed */
595 			p->p_flag |= P_SIGEVENT;
596 			wakeup(&p->p_siglist);
597 		}
598 	}
599 }
600 
601 int
602 sigonstack(size_t sp)
603 {
604 	struct thread *td = curthread;
605 
606 	return ((td->td_pflags & TDP_ALTSTACK) ?
607 #if defined(COMPAT_43)
608 	    ((td->td_sigstk.ss_size == 0) ?
609 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
610 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
611 #else
612 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
613 #endif
614 	    : 0);
615 }
616 
617 static __inline int
618 sigprop(int sig)
619 {
620 
621 	if (sig > 0 && sig < NSIG)
622 		return (sigproptbl[_SIG_IDX(sig)]);
623 	return (0);
624 }
625 
626 int
627 sig_ffs(sigset_t *set)
628 {
629 	int i;
630 
631 	for (i = 0; i < _SIG_WORDS; i++)
632 		if (set->__bits[i])
633 			return (ffs(set->__bits[i]) + (i * 32));
634 	return (0);
635 }
636 
637 /*
638  * kern_sigaction
639  * sigaction
640  * freebsd4_sigaction
641  * osigaction
642  *
643  * MPSAFE
644  */
645 int
646 kern_sigaction(td, sig, act, oact, flags)
647 	struct thread *td;
648 	register int sig;
649 	struct sigaction *act, *oact;
650 	int flags;
651 {
652 	struct sigacts *ps;
653 	struct proc *p = td->td_proc;
654 
655 	if (!_SIG_VALID(sig))
656 		return (EINVAL);
657 
658 	PROC_LOCK(p);
659 	ps = p->p_sigacts;
660 	mtx_lock(&ps->ps_mtx);
661 	if (oact) {
662 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
663 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
664 		oact->sa_flags = 0;
665 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
666 			oact->sa_flags |= SA_ONSTACK;
667 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
668 			oact->sa_flags |= SA_RESTART;
669 		if (SIGISMEMBER(ps->ps_sigreset, sig))
670 			oact->sa_flags |= SA_RESETHAND;
671 		if (SIGISMEMBER(ps->ps_signodefer, sig))
672 			oact->sa_flags |= SA_NODEFER;
673 		if (SIGISMEMBER(ps->ps_siginfo, sig))
674 			oact->sa_flags |= SA_SIGINFO;
675 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
676 			oact->sa_flags |= SA_NOCLDSTOP;
677 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
678 			oact->sa_flags |= SA_NOCLDWAIT;
679 	}
680 	if (act) {
681 		if ((sig == SIGKILL || sig == SIGSTOP) &&
682 		    act->sa_handler != SIG_DFL) {
683 			mtx_unlock(&ps->ps_mtx);
684 			PROC_UNLOCK(p);
685 			return (EINVAL);
686 		}
687 
688 		/*
689 		 * Change setting atomically.
690 		 */
691 
692 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
693 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
694 		if (act->sa_flags & SA_SIGINFO) {
695 			ps->ps_sigact[_SIG_IDX(sig)] =
696 			    (__sighandler_t *)act->sa_sigaction;
697 			SIGADDSET(ps->ps_siginfo, sig);
698 		} else {
699 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
700 			SIGDELSET(ps->ps_siginfo, sig);
701 		}
702 		if (!(act->sa_flags & SA_RESTART))
703 			SIGADDSET(ps->ps_sigintr, sig);
704 		else
705 			SIGDELSET(ps->ps_sigintr, sig);
706 		if (act->sa_flags & SA_ONSTACK)
707 			SIGADDSET(ps->ps_sigonstack, sig);
708 		else
709 			SIGDELSET(ps->ps_sigonstack, sig);
710 		if (act->sa_flags & SA_RESETHAND)
711 			SIGADDSET(ps->ps_sigreset, sig);
712 		else
713 			SIGDELSET(ps->ps_sigreset, sig);
714 		if (act->sa_flags & SA_NODEFER)
715 			SIGADDSET(ps->ps_signodefer, sig);
716 		else
717 			SIGDELSET(ps->ps_signodefer, sig);
718 		if (sig == SIGCHLD) {
719 			if (act->sa_flags & SA_NOCLDSTOP)
720 				ps->ps_flag |= PS_NOCLDSTOP;
721 			else
722 				ps->ps_flag &= ~PS_NOCLDSTOP;
723 			if (act->sa_flags & SA_NOCLDWAIT) {
724 				/*
725 				 * Paranoia: since SA_NOCLDWAIT is implemented
726 				 * by reparenting the dying child to PID 1 (and
727 				 * trust it to reap the zombie), PID 1 itself
728 				 * is forbidden to set SA_NOCLDWAIT.
729 				 */
730 				if (p->p_pid == 1)
731 					ps->ps_flag &= ~PS_NOCLDWAIT;
732 				else
733 					ps->ps_flag |= PS_NOCLDWAIT;
734 			} else
735 				ps->ps_flag &= ~PS_NOCLDWAIT;
736 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
737 				ps->ps_flag |= PS_CLDSIGIGN;
738 			else
739 				ps->ps_flag &= ~PS_CLDSIGIGN;
740 		}
741 		/*
742 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
743 		 * and for signals set to SIG_DFL where the default is to
744 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
745 		 * have to restart the process.
746 		 */
747 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
748 		    (sigprop(sig) & SA_IGNORE &&
749 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
750 			if ((p->p_flag & P_SA) &&
751 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
752 				p->p_flag |= P_SIGEVENT;
753 				wakeup(&p->p_siglist);
754 			}
755 			/* never to be seen again */
756 			sigqueue_delete_proc(p, sig);
757 			if (sig != SIGCONT)
758 				/* easier in psignal */
759 				SIGADDSET(ps->ps_sigignore, sig);
760 			SIGDELSET(ps->ps_sigcatch, sig);
761 		} else {
762 			SIGDELSET(ps->ps_sigignore, sig);
763 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
764 				SIGDELSET(ps->ps_sigcatch, sig);
765 			else
766 				SIGADDSET(ps->ps_sigcatch, sig);
767 		}
768 #ifdef COMPAT_FREEBSD4
769 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
770 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
771 		    (flags & KSA_FREEBSD4) == 0)
772 			SIGDELSET(ps->ps_freebsd4, sig);
773 		else
774 			SIGADDSET(ps->ps_freebsd4, sig);
775 #endif
776 #ifdef COMPAT_43
777 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
778 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
779 		    (flags & KSA_OSIGSET) == 0)
780 			SIGDELSET(ps->ps_osigset, sig);
781 		else
782 			SIGADDSET(ps->ps_osigset, sig);
783 #endif
784 	}
785 	mtx_unlock(&ps->ps_mtx);
786 	PROC_UNLOCK(p);
787 	return (0);
788 }
789 
790 #ifndef _SYS_SYSPROTO_H_
791 struct sigaction_args {
792 	int	sig;
793 	struct	sigaction *act;
794 	struct	sigaction *oact;
795 };
796 #endif
797 /*
798  * MPSAFE
799  */
800 int
801 sigaction(td, uap)
802 	struct thread *td;
803 	register struct sigaction_args *uap;
804 {
805 	struct sigaction act, oact;
806 	register struct sigaction *actp, *oactp;
807 	int error;
808 
809 	actp = (uap->act != NULL) ? &act : NULL;
810 	oactp = (uap->oact != NULL) ? &oact : NULL;
811 	if (actp) {
812 		error = copyin(uap->act, actp, sizeof(act));
813 		if (error)
814 			return (error);
815 	}
816 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
817 	if (oactp && !error)
818 		error = copyout(oactp, uap->oact, sizeof(oact));
819 	return (error);
820 }
821 
822 #ifdef COMPAT_FREEBSD4
823 #ifndef _SYS_SYSPROTO_H_
824 struct freebsd4_sigaction_args {
825 	int	sig;
826 	struct	sigaction *act;
827 	struct	sigaction *oact;
828 };
829 #endif
830 /*
831  * MPSAFE
832  */
833 int
834 freebsd4_sigaction(td, uap)
835 	struct thread *td;
836 	register struct freebsd4_sigaction_args *uap;
837 {
838 	struct sigaction act, oact;
839 	register struct sigaction *actp, *oactp;
840 	int error;
841 
842 
843 	actp = (uap->act != NULL) ? &act : NULL;
844 	oactp = (uap->oact != NULL) ? &oact : NULL;
845 	if (actp) {
846 		error = copyin(uap->act, actp, sizeof(act));
847 		if (error)
848 			return (error);
849 	}
850 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
851 	if (oactp && !error)
852 		error = copyout(oactp, uap->oact, sizeof(oact));
853 	return (error);
854 }
855 #endif	/* COMAPT_FREEBSD4 */
856 
857 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
858 #ifndef _SYS_SYSPROTO_H_
859 struct osigaction_args {
860 	int	signum;
861 	struct	osigaction *nsa;
862 	struct	osigaction *osa;
863 };
864 #endif
865 /*
866  * MPSAFE
867  */
868 int
869 osigaction(td, uap)
870 	struct thread *td;
871 	register struct osigaction_args *uap;
872 {
873 	struct osigaction sa;
874 	struct sigaction nsa, osa;
875 	register struct sigaction *nsap, *osap;
876 	int error;
877 
878 	if (uap->signum <= 0 || uap->signum >= ONSIG)
879 		return (EINVAL);
880 
881 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
882 	osap = (uap->osa != NULL) ? &osa : NULL;
883 
884 	if (nsap) {
885 		error = copyin(uap->nsa, &sa, sizeof(sa));
886 		if (error)
887 			return (error);
888 		nsap->sa_handler = sa.sa_handler;
889 		nsap->sa_flags = sa.sa_flags;
890 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
891 	}
892 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
893 	if (osap && !error) {
894 		sa.sa_handler = osap->sa_handler;
895 		sa.sa_flags = osap->sa_flags;
896 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
897 		error = copyout(&sa, uap->osa, sizeof(sa));
898 	}
899 	return (error);
900 }
901 
902 #if !defined(__i386__)
903 /* Avoid replicating the same stub everywhere */
904 int
905 osigreturn(td, uap)
906 	struct thread *td;
907 	struct osigreturn_args *uap;
908 {
909 
910 	return (nosys(td, (struct nosys_args *)uap));
911 }
912 #endif
913 #endif /* COMPAT_43 */
914 
915 /*
916  * Initialize signal state for process 0;
917  * set to ignore signals that are ignored by default.
918  */
919 void
920 siginit(p)
921 	struct proc *p;
922 {
923 	register int i;
924 	struct sigacts *ps;
925 
926 	PROC_LOCK(p);
927 	ps = p->p_sigacts;
928 	mtx_lock(&ps->ps_mtx);
929 	for (i = 1; i <= NSIG; i++)
930 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
931 			SIGADDSET(ps->ps_sigignore, i);
932 	mtx_unlock(&ps->ps_mtx);
933 	PROC_UNLOCK(p);
934 }
935 
936 /*
937  * Reset signals for an exec of the specified process.
938  */
939 void
940 execsigs(struct proc *p)
941 {
942 	struct sigacts *ps;
943 	int sig;
944 	struct thread *td;
945 
946 	/*
947 	 * Reset caught signals.  Held signals remain held
948 	 * through td_sigmask (unless they were caught,
949 	 * and are now ignored by default).
950 	 */
951 	PROC_LOCK_ASSERT(p, MA_OWNED);
952 	td = FIRST_THREAD_IN_PROC(p);
953 	ps = p->p_sigacts;
954 	mtx_lock(&ps->ps_mtx);
955 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
956 		sig = sig_ffs(&ps->ps_sigcatch);
957 		SIGDELSET(ps->ps_sigcatch, sig);
958 		if (sigprop(sig) & SA_IGNORE) {
959 			if (sig != SIGCONT)
960 				SIGADDSET(ps->ps_sigignore, sig);
961 			sigqueue_delete_proc(p, sig);
962 		}
963 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
964 	}
965 	/*
966 	 * Reset stack state to the user stack.
967 	 * Clear set of signals caught on the signal stack.
968 	 */
969 	td->td_sigstk.ss_flags = SS_DISABLE;
970 	td->td_sigstk.ss_size = 0;
971 	td->td_sigstk.ss_sp = 0;
972 	td->td_pflags &= ~TDP_ALTSTACK;
973 	/*
974 	 * Reset no zombies if child dies flag as Solaris does.
975 	 */
976 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
977 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
978 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
979 	mtx_unlock(&ps->ps_mtx);
980 }
981 
982 /*
983  * kern_sigprocmask()
984  *
985  *	Manipulate signal mask.
986  */
987 int
988 kern_sigprocmask(td, how, set, oset, old)
989 	struct thread *td;
990 	int how;
991 	sigset_t *set, *oset;
992 	int old;
993 {
994 	int error;
995 
996 	PROC_LOCK(td->td_proc);
997 	if (oset != NULL)
998 		*oset = td->td_sigmask;
999 
1000 	error = 0;
1001 	if (set != NULL) {
1002 		switch (how) {
1003 		case SIG_BLOCK:
1004 			SIG_CANTMASK(*set);
1005 			SIGSETOR(td->td_sigmask, *set);
1006 			break;
1007 		case SIG_UNBLOCK:
1008 			SIGSETNAND(td->td_sigmask, *set);
1009 			signotify(td);
1010 			break;
1011 		case SIG_SETMASK:
1012 			SIG_CANTMASK(*set);
1013 			if (old)
1014 				SIGSETLO(td->td_sigmask, *set);
1015 			else
1016 				td->td_sigmask = *set;
1017 			signotify(td);
1018 			break;
1019 		default:
1020 			error = EINVAL;
1021 			break;
1022 		}
1023 	}
1024 	PROC_UNLOCK(td->td_proc);
1025 	return (error);
1026 }
1027 
1028 /*
1029  * sigprocmask() - MP SAFE
1030  */
1031 
1032 #ifndef _SYS_SYSPROTO_H_
1033 struct sigprocmask_args {
1034 	int	how;
1035 	const sigset_t *set;
1036 	sigset_t *oset;
1037 };
1038 #endif
1039 int
1040 sigprocmask(td, uap)
1041 	register struct thread *td;
1042 	struct sigprocmask_args *uap;
1043 {
1044 	sigset_t set, oset;
1045 	sigset_t *setp, *osetp;
1046 	int error;
1047 
1048 	setp = (uap->set != NULL) ? &set : NULL;
1049 	osetp = (uap->oset != NULL) ? &oset : NULL;
1050 	if (setp) {
1051 		error = copyin(uap->set, setp, sizeof(set));
1052 		if (error)
1053 			return (error);
1054 	}
1055 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1056 	if (osetp && !error) {
1057 		error = copyout(osetp, uap->oset, sizeof(oset));
1058 	}
1059 	return (error);
1060 }
1061 
1062 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1063 /*
1064  * osigprocmask() - MP SAFE
1065  */
1066 #ifndef _SYS_SYSPROTO_H_
1067 struct osigprocmask_args {
1068 	int	how;
1069 	osigset_t mask;
1070 };
1071 #endif
1072 int
1073 osigprocmask(td, uap)
1074 	register struct thread *td;
1075 	struct osigprocmask_args *uap;
1076 {
1077 	sigset_t set, oset;
1078 	int error;
1079 
1080 	OSIG2SIG(uap->mask, set);
1081 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1082 	SIG2OSIG(oset, td->td_retval[0]);
1083 	return (error);
1084 }
1085 #endif /* COMPAT_43 */
1086 
1087 /*
1088  * MPSAFE
1089  */
1090 int
1091 sigwait(struct thread *td, struct sigwait_args *uap)
1092 {
1093 	ksiginfo_t ksi;
1094 	sigset_t set;
1095 	int error;
1096 
1097 	error = copyin(uap->set, &set, sizeof(set));
1098 	if (error) {
1099 		td->td_retval[0] = error;
1100 		return (0);
1101 	}
1102 
1103 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1104 	if (error) {
1105 		if (error == ERESTART)
1106 			return (error);
1107 		td->td_retval[0] = error;
1108 		return (0);
1109 	}
1110 
1111 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1112 	td->td_retval[0] = error;
1113 	return (0);
1114 }
1115 /*
1116  * MPSAFE
1117  */
1118 int
1119 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1120 {
1121 	struct timespec ts;
1122 	struct timespec *timeout;
1123 	sigset_t set;
1124 	ksiginfo_t ksi;
1125 	int error;
1126 
1127 	if (uap->timeout) {
1128 		error = copyin(uap->timeout, &ts, sizeof(ts));
1129 		if (error)
1130 			return (error);
1131 
1132 		timeout = &ts;
1133 	} else
1134 		timeout = NULL;
1135 
1136 	error = copyin(uap->set, &set, sizeof(set));
1137 	if (error)
1138 		return (error);
1139 
1140 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1141 	if (error)
1142 		return (error);
1143 
1144 	if (uap->info)
1145 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1146 
1147 	if (error == 0)
1148 		td->td_retval[0] = ksi.ksi_signo;
1149 	return (error);
1150 }
1151 
1152 /*
1153  * MPSAFE
1154  */
1155 int
1156 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1157 {
1158 	ksiginfo_t ksi;
1159 	sigset_t set;
1160 	int error;
1161 
1162 	error = copyin(uap->set, &set, sizeof(set));
1163 	if (error)
1164 		return (error);
1165 
1166 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1167 	if (error)
1168 		return (error);
1169 
1170 	if (uap->info)
1171 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1172 
1173 	if (error == 0)
1174 		td->td_retval[0] = ksi.ksi_signo;
1175 	return (error);
1176 }
1177 
1178 int
1179 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1180 	struct timespec *timeout)
1181 {
1182 	struct sigacts *ps;
1183 	sigset_t savedmask;
1184 	struct proc *p;
1185 	int error, sig, hz, i, timevalid = 0;
1186 	struct timespec rts, ets, ts;
1187 	struct timeval tv;
1188 
1189 	p = td->td_proc;
1190 	error = 0;
1191 	sig = 0;
1192 	SIG_CANTMASK(waitset);
1193 
1194 	PROC_LOCK(p);
1195 	ps = p->p_sigacts;
1196 	savedmask = td->td_sigmask;
1197 	if (timeout) {
1198 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1199 			timevalid = 1;
1200 			getnanouptime(&rts);
1201 		 	ets = rts;
1202 			timespecadd(&ets, timeout);
1203 		}
1204 	}
1205 
1206 restart:
1207 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1208 		if (!SIGISMEMBER(waitset, i))
1209 			continue;
1210 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1211 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1212 				if (p->p_flag & P_SA) {
1213 					p->p_flag |= P_SIGEVENT;
1214 					wakeup(&p->p_siglist);
1215 				}
1216 				sigqueue_move(&p->p_sigqueue,
1217 					&td->td_sigqueue, i);
1218 			} else
1219 				continue;
1220 		}
1221 
1222 		SIGFILLSET(td->td_sigmask);
1223 		SIG_CANTMASK(td->td_sigmask);
1224 		SIGDELSET(td->td_sigmask, i);
1225 		mtx_lock(&ps->ps_mtx);
1226 		sig = cursig(td);
1227 		mtx_unlock(&ps->ps_mtx);
1228 		if (sig)
1229 			goto out;
1230 		else {
1231 			/*
1232 			 * Because cursig() may have stopped current thread,
1233 			 * after it is resumed, things may have already been
1234 			 * changed, it should rescan any pending signals.
1235 			 */
1236 			goto restart;
1237 		}
1238 	}
1239 
1240 	if (error)
1241 		goto out;
1242 
1243 	/*
1244 	 * POSIX says this must be checked after looking for pending
1245 	 * signals.
1246 	 */
1247 	if (timeout) {
1248 		if (!timevalid) {
1249 			error = EINVAL;
1250 			goto out;
1251 		}
1252 		getnanouptime(&rts);
1253 		if (timespeccmp(&rts, &ets, >=)) {
1254 			error = EAGAIN;
1255 			goto out;
1256 		}
1257 		ts = ets;
1258 		timespecsub(&ts, &rts);
1259 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1260 		hz = tvtohz(&tv);
1261 	} else
1262 		hz = 0;
1263 
1264 	td->td_sigmask = savedmask;
1265 	SIGSETNAND(td->td_sigmask, waitset);
1266 	signotify(td);
1267 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1268 	if (timeout) {
1269 		if (error == ERESTART) {
1270 			/* timeout can not be restarted. */
1271 			error = EINTR;
1272 		} else if (error == EAGAIN) {
1273 			/* will calculate timeout by ourself. */
1274 			error = 0;
1275 		}
1276 	}
1277 	goto restart;
1278 
1279 out:
1280 	td->td_sigmask = savedmask;
1281 	signotify(td);
1282 	if (sig) {
1283 		ksiginfo_init(ksi);
1284 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1285 		ksi->ksi_signo = sig;
1286 		if (ksi->ksi_code == SI_TIMER)
1287 			itimer_accept(p, ksi->ksi_timerid, ksi);
1288 		error = 0;
1289 
1290 #ifdef KTRACE
1291 		if (KTRPOINT(td, KTR_PSIG)) {
1292 			sig_t action;
1293 
1294 			mtx_lock(&ps->ps_mtx);
1295 			action = ps->ps_sigact[_SIG_IDX(sig)];
1296 			mtx_unlock(&ps->ps_mtx);
1297 			ktrpsig(sig, action, &td->td_sigmask, 0);
1298 		}
1299 #endif
1300 		if (sig == SIGKILL)
1301 			sigexit(td, sig);
1302 	}
1303 	PROC_UNLOCK(p);
1304 	return (error);
1305 }
1306 
1307 #ifndef _SYS_SYSPROTO_H_
1308 struct sigpending_args {
1309 	sigset_t	*set;
1310 };
1311 #endif
1312 /*
1313  * MPSAFE
1314  */
1315 int
1316 sigpending(td, uap)
1317 	struct thread *td;
1318 	struct sigpending_args *uap;
1319 {
1320 	struct proc *p = td->td_proc;
1321 	sigset_t pending;
1322 
1323 	PROC_LOCK(p);
1324 	pending = p->p_sigqueue.sq_signals;
1325 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1326 	PROC_UNLOCK(p);
1327 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1328 }
1329 
1330 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1331 #ifndef _SYS_SYSPROTO_H_
1332 struct osigpending_args {
1333 	int	dummy;
1334 };
1335 #endif
1336 /*
1337  * MPSAFE
1338  */
1339 int
1340 osigpending(td, uap)
1341 	struct thread *td;
1342 	struct osigpending_args *uap;
1343 {
1344 	struct proc *p = td->td_proc;
1345 	sigset_t pending;
1346 
1347 	PROC_LOCK(p);
1348 	pending = p->p_sigqueue.sq_signals;
1349 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1350 	PROC_UNLOCK(p);
1351 	SIG2OSIG(pending, td->td_retval[0]);
1352 	return (0);
1353 }
1354 #endif /* COMPAT_43 */
1355 
1356 #if defined(COMPAT_43)
1357 /*
1358  * Generalized interface signal handler, 4.3-compatible.
1359  */
1360 #ifndef _SYS_SYSPROTO_H_
1361 struct osigvec_args {
1362 	int	signum;
1363 	struct	sigvec *nsv;
1364 	struct	sigvec *osv;
1365 };
1366 #endif
1367 /*
1368  * MPSAFE
1369  */
1370 /* ARGSUSED */
1371 int
1372 osigvec(td, uap)
1373 	struct thread *td;
1374 	register struct osigvec_args *uap;
1375 {
1376 	struct sigvec vec;
1377 	struct sigaction nsa, osa;
1378 	register struct sigaction *nsap, *osap;
1379 	int error;
1380 
1381 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1382 		return (EINVAL);
1383 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1384 	osap = (uap->osv != NULL) ? &osa : NULL;
1385 	if (nsap) {
1386 		error = copyin(uap->nsv, &vec, sizeof(vec));
1387 		if (error)
1388 			return (error);
1389 		nsap->sa_handler = vec.sv_handler;
1390 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1391 		nsap->sa_flags = vec.sv_flags;
1392 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1393 	}
1394 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1395 	if (osap && !error) {
1396 		vec.sv_handler = osap->sa_handler;
1397 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1398 		vec.sv_flags = osap->sa_flags;
1399 		vec.sv_flags &= ~SA_NOCLDWAIT;
1400 		vec.sv_flags ^= SA_RESTART;
1401 		error = copyout(&vec, uap->osv, sizeof(vec));
1402 	}
1403 	return (error);
1404 }
1405 
1406 #ifndef _SYS_SYSPROTO_H_
1407 struct osigblock_args {
1408 	int	mask;
1409 };
1410 #endif
1411 /*
1412  * MPSAFE
1413  */
1414 int
1415 osigblock(td, uap)
1416 	register struct thread *td;
1417 	struct osigblock_args *uap;
1418 {
1419 	struct proc *p = td->td_proc;
1420 	sigset_t set;
1421 
1422 	OSIG2SIG(uap->mask, set);
1423 	SIG_CANTMASK(set);
1424 	PROC_LOCK(p);
1425 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1426 	SIGSETOR(td->td_sigmask, set);
1427 	PROC_UNLOCK(p);
1428 	return (0);
1429 }
1430 
1431 #ifndef _SYS_SYSPROTO_H_
1432 struct osigsetmask_args {
1433 	int	mask;
1434 };
1435 #endif
1436 /*
1437  * MPSAFE
1438  */
1439 int
1440 osigsetmask(td, uap)
1441 	struct thread *td;
1442 	struct osigsetmask_args *uap;
1443 {
1444 	struct proc *p = td->td_proc;
1445 	sigset_t set;
1446 
1447 	OSIG2SIG(uap->mask, set);
1448 	SIG_CANTMASK(set);
1449 	PROC_LOCK(p);
1450 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1451 	SIGSETLO(td->td_sigmask, set);
1452 	signotify(td);
1453 	PROC_UNLOCK(p);
1454 	return (0);
1455 }
1456 #endif /* COMPAT_43 */
1457 
1458 /*
1459  * Suspend calling thread until signal, providing mask to be set
1460  * in the meantime.
1461  */
1462 #ifndef _SYS_SYSPROTO_H_
1463 struct sigsuspend_args {
1464 	const sigset_t *sigmask;
1465 };
1466 #endif
1467 /*
1468  * MPSAFE
1469  */
1470 /* ARGSUSED */
1471 int
1472 sigsuspend(td, uap)
1473 	struct thread *td;
1474 	struct sigsuspend_args *uap;
1475 {
1476 	sigset_t mask;
1477 	int error;
1478 
1479 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1480 	if (error)
1481 		return (error);
1482 	return (kern_sigsuspend(td, mask));
1483 }
1484 
1485 int
1486 kern_sigsuspend(struct thread *td, sigset_t mask)
1487 {
1488 	struct proc *p = td->td_proc;
1489 
1490 	/*
1491 	 * When returning from sigsuspend, we want
1492 	 * the old mask to be restored after the
1493 	 * signal handler has finished.  Thus, we
1494 	 * save it here and mark the sigacts structure
1495 	 * to indicate this.
1496 	 */
1497 	PROC_LOCK(p);
1498 	td->td_oldsigmask = td->td_sigmask;
1499 	td->td_pflags |= TDP_OLDMASK;
1500 	SIG_CANTMASK(mask);
1501 	td->td_sigmask = mask;
1502 	signotify(td);
1503 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1504 		/* void */;
1505 	PROC_UNLOCK(p);
1506 	/* always return EINTR rather than ERESTART... */
1507 	return (EINTR);
1508 }
1509 
1510 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1511 /*
1512  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1513  * convention: libc stub passes mask, not pointer, to save a copyin.
1514  */
1515 #ifndef _SYS_SYSPROTO_H_
1516 struct osigsuspend_args {
1517 	osigset_t mask;
1518 };
1519 #endif
1520 /*
1521  * MPSAFE
1522  */
1523 /* ARGSUSED */
1524 int
1525 osigsuspend(td, uap)
1526 	struct thread *td;
1527 	struct osigsuspend_args *uap;
1528 {
1529 	struct proc *p = td->td_proc;
1530 	sigset_t mask;
1531 
1532 	PROC_LOCK(p);
1533 	td->td_oldsigmask = td->td_sigmask;
1534 	td->td_pflags |= TDP_OLDMASK;
1535 	OSIG2SIG(uap->mask, mask);
1536 	SIG_CANTMASK(mask);
1537 	SIGSETLO(td->td_sigmask, mask);
1538 	signotify(td);
1539 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1540 		/* void */;
1541 	PROC_UNLOCK(p);
1542 	/* always return EINTR rather than ERESTART... */
1543 	return (EINTR);
1544 }
1545 #endif /* COMPAT_43 */
1546 
1547 #if defined(COMPAT_43)
1548 #ifndef _SYS_SYSPROTO_H_
1549 struct osigstack_args {
1550 	struct	sigstack *nss;
1551 	struct	sigstack *oss;
1552 };
1553 #endif
1554 /*
1555  * MPSAFE
1556  */
1557 /* ARGSUSED */
1558 int
1559 osigstack(td, uap)
1560 	struct thread *td;
1561 	register struct osigstack_args *uap;
1562 {
1563 	struct sigstack nss, oss;
1564 	int error = 0;
1565 
1566 	if (uap->nss != NULL) {
1567 		error = copyin(uap->nss, &nss, sizeof(nss));
1568 		if (error)
1569 			return (error);
1570 	}
1571 	oss.ss_sp = td->td_sigstk.ss_sp;
1572 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1573 	if (uap->nss != NULL) {
1574 		td->td_sigstk.ss_sp = nss.ss_sp;
1575 		td->td_sigstk.ss_size = 0;
1576 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1577 		td->td_pflags |= TDP_ALTSTACK;
1578 	}
1579 	if (uap->oss != NULL)
1580 		error = copyout(&oss, uap->oss, sizeof(oss));
1581 
1582 	return (error);
1583 }
1584 #endif /* COMPAT_43 */
1585 
1586 #ifndef _SYS_SYSPROTO_H_
1587 struct sigaltstack_args {
1588 	stack_t	*ss;
1589 	stack_t	*oss;
1590 };
1591 #endif
1592 /*
1593  * MPSAFE
1594  */
1595 /* ARGSUSED */
1596 int
1597 sigaltstack(td, uap)
1598 	struct thread *td;
1599 	register struct sigaltstack_args *uap;
1600 {
1601 	stack_t ss, oss;
1602 	int error;
1603 
1604 	if (uap->ss != NULL) {
1605 		error = copyin(uap->ss, &ss, sizeof(ss));
1606 		if (error)
1607 			return (error);
1608 	}
1609 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1610 	    (uap->oss != NULL) ? &oss : NULL);
1611 	if (error)
1612 		return (error);
1613 	if (uap->oss != NULL)
1614 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1615 	return (error);
1616 }
1617 
1618 int
1619 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1620 {
1621 	struct proc *p = td->td_proc;
1622 	int oonstack;
1623 
1624 	oonstack = sigonstack(cpu_getstack(td));
1625 
1626 	if (oss != NULL) {
1627 		*oss = td->td_sigstk;
1628 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1629 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1630 	}
1631 
1632 	if (ss != NULL) {
1633 		if (oonstack)
1634 			return (EPERM);
1635 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1636 			return (EINVAL);
1637 		if (!(ss->ss_flags & SS_DISABLE)) {
1638 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1639 				return (ENOMEM);
1640 
1641 			td->td_sigstk = *ss;
1642 			td->td_pflags |= TDP_ALTSTACK;
1643 		} else {
1644 			td->td_pflags &= ~TDP_ALTSTACK;
1645 		}
1646 	}
1647 	return (0);
1648 }
1649 
1650 /*
1651  * Common code for kill process group/broadcast kill.
1652  * cp is calling process.
1653  */
1654 static int
1655 killpg1(td, sig, pgid, all)
1656 	register struct thread *td;
1657 	int sig, pgid, all;
1658 {
1659 	register struct proc *p;
1660 	struct pgrp *pgrp;
1661 	int nfound = 0;
1662 
1663 	if (all) {
1664 		/*
1665 		 * broadcast
1666 		 */
1667 		sx_slock(&allproc_lock);
1668 		LIST_FOREACH(p, &allproc, p_list) {
1669 			PROC_LOCK(p);
1670 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1671 			    p == td->td_proc || p->p_state == PRS_NEW) {
1672 				PROC_UNLOCK(p);
1673 				continue;
1674 			}
1675 			if (p_cansignal(td, p, sig) == 0) {
1676 				nfound++;
1677 				if (sig)
1678 					psignal(p, sig);
1679 			}
1680 			PROC_UNLOCK(p);
1681 		}
1682 		sx_sunlock(&allproc_lock);
1683 	} else {
1684 		sx_slock(&proctree_lock);
1685 		if (pgid == 0) {
1686 			/*
1687 			 * zero pgid means send to my process group.
1688 			 */
1689 			pgrp = td->td_proc->p_pgrp;
1690 			PGRP_LOCK(pgrp);
1691 		} else {
1692 			pgrp = pgfind(pgid);
1693 			if (pgrp == NULL) {
1694 				sx_sunlock(&proctree_lock);
1695 				return (ESRCH);
1696 			}
1697 		}
1698 		sx_sunlock(&proctree_lock);
1699 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1700 			PROC_LOCK(p);
1701 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1702 				p->p_state == PRS_NEW ) {
1703 				PROC_UNLOCK(p);
1704 				continue;
1705 			}
1706 			if (p_cansignal(td, p, sig) == 0) {
1707 				nfound++;
1708 				if (sig)
1709 					psignal(p, sig);
1710 			}
1711 			PROC_UNLOCK(p);
1712 		}
1713 		PGRP_UNLOCK(pgrp);
1714 	}
1715 	return (nfound ? 0 : ESRCH);
1716 }
1717 
1718 #ifndef _SYS_SYSPROTO_H_
1719 struct kill_args {
1720 	int	pid;
1721 	int	signum;
1722 };
1723 #endif
1724 /*
1725  * MPSAFE
1726  */
1727 /* ARGSUSED */
1728 int
1729 kill(td, uap)
1730 	register struct thread *td;
1731 	register struct kill_args *uap;
1732 {
1733 	register struct proc *p;
1734 	int error;
1735 
1736 	AUDIT_ARG(signum, uap->signum);
1737 	if ((u_int)uap->signum > _SIG_MAXSIG)
1738 		return (EINVAL);
1739 
1740 	if (uap->pid > 0) {
1741 		/* kill single process */
1742 		if ((p = pfind(uap->pid)) == NULL) {
1743 			if ((p = zpfind(uap->pid)) == NULL)
1744 				return (ESRCH);
1745 		}
1746 		AUDIT_ARG(process, p);
1747 		error = p_cansignal(td, p, uap->signum);
1748 		if (error == 0 && uap->signum)
1749 			psignal(p, uap->signum);
1750 		PROC_UNLOCK(p);
1751 		return (error);
1752 	}
1753 	AUDIT_ARG(pid, uap->pid);
1754 	switch (uap->pid) {
1755 	case -1:		/* broadcast signal */
1756 		return (killpg1(td, uap->signum, 0, 1));
1757 	case 0:			/* signal own process group */
1758 		return (killpg1(td, uap->signum, 0, 0));
1759 	default:		/* negative explicit process group */
1760 		return (killpg1(td, uap->signum, -uap->pid, 0));
1761 	}
1762 	/* NOTREACHED */
1763 }
1764 
1765 #if defined(COMPAT_43)
1766 #ifndef _SYS_SYSPROTO_H_
1767 struct okillpg_args {
1768 	int	pgid;
1769 	int	signum;
1770 };
1771 #endif
1772 /*
1773  * MPSAFE
1774  */
1775 /* ARGSUSED */
1776 int
1777 okillpg(td, uap)
1778 	struct thread *td;
1779 	register struct okillpg_args *uap;
1780 {
1781 
1782 	AUDIT_ARG(signum, uap->signum);
1783 	AUDIT_ARG(pid, uap->pgid);
1784 	if ((u_int)uap->signum > _SIG_MAXSIG)
1785 		return (EINVAL);
1786 
1787 	return (killpg1(td, uap->signum, uap->pgid, 0));
1788 }
1789 #endif /* COMPAT_43 */
1790 
1791 #ifndef _SYS_SYSPROTO_H_
1792 struct sigqueue_args {
1793 	pid_t pid;
1794 	int signum;
1795 	/* union sigval */ void *value;
1796 };
1797 #endif
1798 
1799 int
1800 sigqueue(struct thread *td, struct sigqueue_args *uap)
1801 {
1802 	ksiginfo_t ksi;
1803 	struct proc *p;
1804 	int error;
1805 
1806 	if ((u_int)uap->signum > _SIG_MAXSIG)
1807 		return (EINVAL);
1808 
1809 	/*
1810 	 * Specification says sigqueue can only send signal to
1811 	 * single process.
1812 	 */
1813 	if (uap->pid <= 0)
1814 		return (EINVAL);
1815 
1816 	if ((p = pfind(uap->pid)) == NULL) {
1817 		if ((p = zpfind(uap->pid)) == NULL)
1818 			return (ESRCH);
1819 	}
1820 	error = p_cansignal(td, p, uap->signum);
1821 	if (error == 0 && uap->signum != 0) {
1822 		ksiginfo_init(&ksi);
1823 		ksi.ksi_signo = uap->signum;
1824 		ksi.ksi_code = SI_QUEUE;
1825 		ksi.ksi_pid = td->td_proc->p_pid;
1826 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1827 		ksi.ksi_value.sival_ptr = uap->value;
1828 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1829 	}
1830 	PROC_UNLOCK(p);
1831 	return (error);
1832 }
1833 
1834 /*
1835  * Send a signal to a process group.
1836  */
1837 void
1838 gsignal(pgid, sig)
1839 	int pgid, sig;
1840 {
1841 	struct pgrp *pgrp;
1842 
1843 	if (pgid != 0) {
1844 		sx_slock(&proctree_lock);
1845 		pgrp = pgfind(pgid);
1846 		sx_sunlock(&proctree_lock);
1847 		if (pgrp != NULL) {
1848 			pgsignal(pgrp, sig, 0);
1849 			PGRP_UNLOCK(pgrp);
1850 		}
1851 	}
1852 }
1853 
1854 /*
1855  * Send a signal to a process group.  If checktty is 1,
1856  * limit to members which have a controlling terminal.
1857  */
1858 void
1859 pgsignal(pgrp, sig, checkctty)
1860 	struct pgrp *pgrp;
1861 	int sig, checkctty;
1862 {
1863 	register struct proc *p;
1864 
1865 	if (pgrp) {
1866 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1867 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1868 			PROC_LOCK(p);
1869 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1870 				psignal(p, sig);
1871 			PROC_UNLOCK(p);
1872 		}
1873 	}
1874 }
1875 
1876 /*
1877  * Send a signal caused by a trap to the current thread.
1878  * If it will be caught immediately, deliver it with correct code.
1879  * Otherwise, post it normally.
1880  *
1881  * MPSAFE
1882  */
1883 void
1884 trapsignal(struct thread *td, ksiginfo_t *ksi)
1885 {
1886 	struct sigacts *ps;
1887 	struct proc *p;
1888 	int error;
1889 	int sig;
1890 	int code;
1891 
1892 	p = td->td_proc;
1893 	sig = ksi->ksi_signo;
1894 	code = ksi->ksi_code;
1895 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1896 
1897 	if (td->td_pflags & TDP_SA) {
1898 		if (td->td_mailbox == NULL)
1899 			thread_user_enter(td);
1900 		PROC_LOCK(p);
1901 		SIGDELSET(td->td_sigmask, sig);
1902 		mtx_lock_spin(&sched_lock);
1903 		/*
1904 		 * Force scheduling an upcall, so UTS has chance to
1905 		 * process the signal before thread runs again in
1906 		 * userland.
1907 		 */
1908 		if (td->td_upcall)
1909 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1910 		mtx_unlock_spin(&sched_lock);
1911 	} else {
1912 		PROC_LOCK(p);
1913 	}
1914 	ps = p->p_sigacts;
1915 	mtx_lock(&ps->ps_mtx);
1916 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1917 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1918 		p->p_stats->p_ru.ru_nsignals++;
1919 #ifdef KTRACE
1920 		if (KTRPOINT(curthread, KTR_PSIG))
1921 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1922 			    &td->td_sigmask, code);
1923 #endif
1924 		if (!(td->td_pflags & TDP_SA))
1925 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1926 				ksi, &td->td_sigmask);
1927 		else if (td->td_mailbox == NULL) {
1928 			mtx_unlock(&ps->ps_mtx);
1929 			/* UTS caused a sync signal */
1930 			p->p_code = code;	/* XXX for core dump/debugger */
1931 			p->p_sig = sig;		/* XXX to verify code */
1932 			sigexit(td, sig);
1933 		} else {
1934 			mtx_unlock(&ps->ps_mtx);
1935 			SIGADDSET(td->td_sigmask, sig);
1936 			PROC_UNLOCK(p);
1937 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1938 			    sizeof(siginfo_t));
1939 			PROC_LOCK(p);
1940 			/* UTS memory corrupted */
1941 			if (error)
1942 				sigexit(td, SIGSEGV);
1943 			mtx_lock(&ps->ps_mtx);
1944 		}
1945 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1946 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1947 			SIGADDSET(td->td_sigmask, sig);
1948 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1949 			/*
1950 			 * See kern_sigaction() for origin of this code.
1951 			 */
1952 			SIGDELSET(ps->ps_sigcatch, sig);
1953 			if (sig != SIGCONT &&
1954 			    sigprop(sig) & SA_IGNORE)
1955 				SIGADDSET(ps->ps_sigignore, sig);
1956 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1957 		}
1958 		mtx_unlock(&ps->ps_mtx);
1959 	} else {
1960 		/*
1961 		 * Avoid a possible infinite loop if the thread
1962 		 * masking the signal or process is ignoring the
1963 		 * signal.
1964 		 */
1965 		if (kern_forcesigexit &&
1966 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1967 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1968 			SIGDELSET(td->td_sigmask, sig);
1969 			SIGDELSET(ps->ps_sigcatch, sig);
1970 			SIGDELSET(ps->ps_sigignore, sig);
1971 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1972 		}
1973 		mtx_unlock(&ps->ps_mtx);
1974 		p->p_code = code;	/* XXX for core dump/debugger */
1975 		p->p_sig = sig;		/* XXX to verify code */
1976 		tdsignal(p, td, sig, ksi);
1977 	}
1978 	PROC_UNLOCK(p);
1979 }
1980 
1981 static struct thread *
1982 sigtd(struct proc *p, int sig, int prop)
1983 {
1984 	struct thread *td, *signal_td;
1985 
1986 	PROC_LOCK_ASSERT(p, MA_OWNED);
1987 
1988 	/*
1989 	 * Check if current thread can handle the signal without
1990 	 * switching conetxt to another thread.
1991 	 */
1992 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1993 		return (curthread);
1994 	signal_td = NULL;
1995 	mtx_lock_spin(&sched_lock);
1996 	FOREACH_THREAD_IN_PROC(p, td) {
1997 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1998 			signal_td = td;
1999 			break;
2000 		}
2001 	}
2002 	if (signal_td == NULL)
2003 		signal_td = FIRST_THREAD_IN_PROC(p);
2004 	mtx_unlock_spin(&sched_lock);
2005 	return (signal_td);
2006 }
2007 
2008 /*
2009  * Send the signal to the process.  If the signal has an action, the action
2010  * is usually performed by the target process rather than the caller; we add
2011  * the signal to the set of pending signals for the process.
2012  *
2013  * Exceptions:
2014  *   o When a stop signal is sent to a sleeping process that takes the
2015  *     default action, the process is stopped without awakening it.
2016  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2017  *     regardless of the signal action (eg, blocked or ignored).
2018  *
2019  * Other ignored signals are discarded immediately.
2020  *
2021  * MPSAFE
2022  */
2023 void
2024 psignal(struct proc *p, int sig)
2025 {
2026 	(void) tdsignal(p, NULL, sig, NULL);
2027 }
2028 
2029 int
2030 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2031 {
2032 	struct thread *td = NULL;
2033 
2034 	PROC_LOCK_ASSERT(p, MA_OWNED);
2035 
2036 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2037 
2038 	/*
2039 	 * ksi_code and other fields should be set before
2040 	 * calling this function.
2041 	 */
2042 	ksi->ksi_signo = sigev->sigev_signo;
2043 	ksi->ksi_value = sigev->sigev_value;
2044 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2045 		td = thread_find(p, sigev->sigev_notify_thread_id);
2046 		if (td == NULL)
2047 			return (ESRCH);
2048 	}
2049 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2050 }
2051 
2052 /*
2053  * MPSAFE
2054  */
2055 int
2056 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2057 {
2058 	sigset_t saved;
2059 	int ret;
2060 
2061 	if (p->p_flag & P_SA)
2062 		saved = p->p_sigqueue.sq_signals;
2063 	ret = do_tdsignal(p, td, sig, ksi);
2064 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2065 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2066 			/* pending set changed */
2067 			p->p_flag |= P_SIGEVENT;
2068 			wakeup(&p->p_siglist);
2069 		}
2070 	}
2071 	return (ret);
2072 }
2073 
2074 static int
2075 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2076 {
2077 	sig_t action;
2078 	sigqueue_t *sigqueue;
2079 	int prop;
2080 	struct sigacts *ps;
2081 	int intrval;
2082 	int ret = 0;
2083 
2084 	PROC_LOCK_ASSERT(p, MA_OWNED);
2085 
2086 	if (!_SIG_VALID(sig))
2087 		panic("do_tdsignal(): invalid signal");
2088 
2089 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2090 
2091 	/*
2092 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2093 	 */
2094 	if (p->p_state == PRS_ZOMBIE) {
2095 		if (ksi && (ksi->ksi_flags & KSI_INS))
2096 			ksiginfo_tryfree(ksi);
2097 		return (ret);
2098 	}
2099 
2100 	ps = p->p_sigacts;
2101 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2102 	prop = sigprop(sig);
2103 
2104 	/*
2105 	 * If the signal is blocked and not destined for this thread, then
2106 	 * assign it to the process so that we can find it later in the first
2107 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2108 	 */
2109 	if (td == NULL) {
2110 		td = sigtd(p, sig, prop);
2111 		if (SIGISMEMBER(td->td_sigmask, sig))
2112 			sigqueue = &p->p_sigqueue;
2113 		else
2114 			sigqueue = &td->td_sigqueue;
2115 	} else {
2116 		KASSERT(td->td_proc == p, ("invalid thread"));
2117 		sigqueue = &td->td_sigqueue;
2118 	}
2119 
2120 	/*
2121 	 * If the signal is being ignored,
2122 	 * or process is exiting or thread is exiting,
2123 	 * then we forget about it immediately.
2124 	 * (Note: we don't set SIGCONT in ps_sigignore,
2125 	 * and if it is set to SIG_IGN,
2126 	 * action will be SIG_DFL here.)
2127 	 */
2128 	mtx_lock(&ps->ps_mtx);
2129 	if (SIGISMEMBER(ps->ps_sigignore, sig) ||
2130 	    (p->p_flag & P_WEXIT)) {
2131 		mtx_unlock(&ps->ps_mtx);
2132 		if (ksi && (ksi->ksi_flags & KSI_INS))
2133 			ksiginfo_tryfree(ksi);
2134 		return (ret);
2135 	}
2136 	if (SIGISMEMBER(td->td_sigmask, sig))
2137 		action = SIG_HOLD;
2138 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2139 		action = SIG_CATCH;
2140 	else
2141 		action = SIG_DFL;
2142 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2143 		intrval = EINTR;
2144 	else
2145 		intrval = ERESTART;
2146 	mtx_unlock(&ps->ps_mtx);
2147 
2148 	if (prop & SA_CONT)
2149 		sigqueue_delete_stopmask_proc(p);
2150 	else if (prop & SA_STOP) {
2151 		/*
2152 		 * If sending a tty stop signal to a member of an orphaned
2153 		 * process group, discard the signal here if the action
2154 		 * is default; don't stop the process below if sleeping,
2155 		 * and don't clear any pending SIGCONT.
2156 		 */
2157 		if ((prop & SA_TTYSTOP) &&
2158 		    (p->p_pgrp->pg_jobc == 0) &&
2159 		    (action == SIG_DFL)) {
2160 			if (ksi && (ksi->ksi_flags & KSI_INS))
2161 				ksiginfo_tryfree(ksi);
2162 			return (ret);
2163 		}
2164 		sigqueue_delete_proc(p, SIGCONT);
2165 		if (p->p_flag & P_CONTINUED) {
2166 			p->p_flag &= ~P_CONTINUED;
2167 			PROC_LOCK(p->p_pptr);
2168 			sigqueue_take(p->p_ksi);
2169 			PROC_UNLOCK(p->p_pptr);
2170 		}
2171 	}
2172 
2173 	ret = sigqueue_add(sigqueue, sig, ksi);
2174 	if (ret != 0)
2175 		return (ret);
2176 	signotify(td);
2177 	/*
2178 	 * Defer further processing for signals which are held,
2179 	 * except that stopped processes must be continued by SIGCONT.
2180 	 */
2181 	if (action == SIG_HOLD &&
2182 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2183 		return (ret);
2184 	/*
2185 	 * SIGKILL: Remove procfs STOPEVENTs.
2186 	 */
2187 	if (sig == SIGKILL) {
2188 		/* from procfs_ioctl.c: PIOCBIC */
2189 		p->p_stops = 0;
2190 		/* from procfs_ioctl.c: PIOCCONT */
2191 		p->p_step = 0;
2192 		wakeup(&p->p_step);
2193 	}
2194 	/*
2195 	 * Some signals have a process-wide effect and a per-thread
2196 	 * component.  Most processing occurs when the process next
2197 	 * tries to cross the user boundary, however there are some
2198 	 * times when processing needs to be done immediatly, such as
2199 	 * waking up threads so that they can cross the user boundary.
2200 	 * We try do the per-process part here.
2201 	 */
2202 	if (P_SHOULDSTOP(p)) {
2203 		/*
2204 		 * The process is in stopped mode. All the threads should be
2205 		 * either winding down or already on the suspended queue.
2206 		 */
2207 		if (p->p_flag & P_TRACED) {
2208 			/*
2209 			 * The traced process is already stopped,
2210 			 * so no further action is necessary.
2211 			 * No signal can restart us.
2212 			 */
2213 			goto out;
2214 		}
2215 
2216 		if (sig == SIGKILL) {
2217 			/*
2218 			 * SIGKILL sets process running.
2219 			 * It will die elsewhere.
2220 			 * All threads must be restarted.
2221 			 */
2222 			p->p_flag &= ~P_STOPPED_SIG;
2223 			goto runfast;
2224 		}
2225 
2226 		if (prop & SA_CONT) {
2227 			/*
2228 			 * If SIGCONT is default (or ignored), we continue the
2229 			 * process but don't leave the signal in sigqueue as
2230 			 * it has no further action.  If SIGCONT is held, we
2231 			 * continue the process and leave the signal in
2232 			 * sigqueue.  If the process catches SIGCONT, let it
2233 			 * handle the signal itself.  If it isn't waiting on
2234 			 * an event, it goes back to run state.
2235 			 * Otherwise, process goes back to sleep state.
2236 			 */
2237 			p->p_flag &= ~P_STOPPED_SIG;
2238 			if (p->p_numthreads == p->p_suspcount) {
2239 				p->p_flag |= P_CONTINUED;
2240 				p->p_xstat = SIGCONT;
2241 				PROC_LOCK(p->p_pptr);
2242 				childproc_continued(p);
2243 				PROC_UNLOCK(p->p_pptr);
2244 			}
2245 			if (action == SIG_DFL) {
2246 				sigqueue_delete(sigqueue, sig);
2247 			} else if (action == SIG_CATCH) {
2248 				/*
2249 				 * The process wants to catch it so it needs
2250 				 * to run at least one thread, but which one?
2251 				 * It would seem that the answer would be to
2252 				 * run an upcall in the next KSE to run, and
2253 				 * deliver the signal that way. In a NON KSE
2254 				 * process, we need to make sure that the
2255 				 * single thread is runnable asap.
2256 				 * XXXKSE for now however, make them all run.
2257 				 */
2258 				goto runfast;
2259 			}
2260 			/*
2261 			 * The signal is not ignored or caught.
2262 			 */
2263 			mtx_lock_spin(&sched_lock);
2264 			thread_unsuspend(p);
2265 			mtx_unlock_spin(&sched_lock);
2266 			goto out;
2267 		}
2268 
2269 		if (prop & SA_STOP) {
2270 			/*
2271 			 * Already stopped, don't need to stop again
2272 			 * (If we did the shell could get confused).
2273 			 * Just make sure the signal STOP bit set.
2274 			 */
2275 			p->p_flag |= P_STOPPED_SIG;
2276 			sigqueue_delete(sigqueue, sig);
2277 			goto out;
2278 		}
2279 
2280 		/*
2281 		 * All other kinds of signals:
2282 		 * If a thread is sleeping interruptibly, simulate a
2283 		 * wakeup so that when it is continued it will be made
2284 		 * runnable and can look at the signal.  However, don't make
2285 		 * the PROCESS runnable, leave it stopped.
2286 		 * It may run a bit until it hits a thread_suspend_check().
2287 		 */
2288 		mtx_lock_spin(&sched_lock);
2289 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2290 			sleepq_abort(td, intrval);
2291 		mtx_unlock_spin(&sched_lock);
2292 		goto out;
2293 		/*
2294 		 * Mutexes are short lived. Threads waiting on them will
2295 		 * hit thread_suspend_check() soon.
2296 		 */
2297 	} else if (p->p_state == PRS_NORMAL) {
2298 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2299 			mtx_lock_spin(&sched_lock);
2300 			tdsigwakeup(td, sig, action, intrval);
2301 			mtx_unlock_spin(&sched_lock);
2302 			goto out;
2303 		}
2304 
2305 		MPASS(action == SIG_DFL);
2306 
2307 		if (prop & SA_STOP) {
2308 			if (p->p_flag & P_PPWAIT)
2309 				goto out;
2310 			p->p_flag |= P_STOPPED_SIG;
2311 			p->p_xstat = sig;
2312 			mtx_lock_spin(&sched_lock);
2313 			sig_suspend_threads(td, p, 1);
2314 			if (p->p_numthreads == p->p_suspcount) {
2315 				/*
2316 				 * only thread sending signal to another
2317 				 * process can reach here, if thread is sending
2318 				 * signal to its process, because thread does
2319 				 * not suspend itself here, p_numthreads
2320 				 * should never be equal to p_suspcount.
2321 				 */
2322 				thread_stopped(p);
2323 				mtx_unlock_spin(&sched_lock);
2324 				sigqueue_delete_proc(p, p->p_xstat);
2325 			} else
2326 				mtx_unlock_spin(&sched_lock);
2327 			goto out;
2328 		}
2329 		else
2330 			goto runfast;
2331 		/* NOTREACHED */
2332 	} else {
2333 		/* Not in "NORMAL" state. discard the signal. */
2334 		sigqueue_delete(sigqueue, sig);
2335 		goto out;
2336 	}
2337 
2338 	/*
2339 	 * The process is not stopped so we need to apply the signal to all the
2340 	 * running threads.
2341 	 */
2342 
2343 runfast:
2344 	mtx_lock_spin(&sched_lock);
2345 	tdsigwakeup(td, sig, action, intrval);
2346 	thread_unsuspend(p);
2347 	mtx_unlock_spin(&sched_lock);
2348 out:
2349 	/* If we jump here, sched_lock should not be owned. */
2350 	mtx_assert(&sched_lock, MA_NOTOWNED);
2351 	return (ret);
2352 }
2353 
2354 /*
2355  * The force of a signal has been directed against a single
2356  * thread.  We need to see what we can do about knocking it
2357  * out of any sleep it may be in etc.
2358  */
2359 static void
2360 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2361 {
2362 	struct proc *p = td->td_proc;
2363 	register int prop;
2364 
2365 	PROC_LOCK_ASSERT(p, MA_OWNED);
2366 	mtx_assert(&sched_lock, MA_OWNED);
2367 	prop = sigprop(sig);
2368 
2369 	/*
2370 	 * Bring the priority of a thread up if we want it to get
2371 	 * killed in this lifetime.
2372 	 */
2373 	if (action == SIG_DFL && (prop & SA_KILL)) {
2374 		if (p->p_nice > 0)
2375 			sched_nice(td->td_proc, 0);
2376 		if (td->td_priority > PUSER)
2377 			sched_prio(td, PUSER);
2378 	}
2379 
2380 	if (TD_ON_SLEEPQ(td)) {
2381 		/*
2382 		 * If thread is sleeping uninterruptibly
2383 		 * we can't interrupt the sleep... the signal will
2384 		 * be noticed when the process returns through
2385 		 * trap() or syscall().
2386 		 */
2387 		if ((td->td_flags & TDF_SINTR) == 0)
2388 			return;
2389 		/*
2390 		 * If SIGCONT is default (or ignored) and process is
2391 		 * asleep, we are finished; the process should not
2392 		 * be awakened.
2393 		 */
2394 		if ((prop & SA_CONT) && action == SIG_DFL) {
2395 			mtx_unlock_spin(&sched_lock);
2396 			sigqueue_delete(&p->p_sigqueue, sig);
2397 			/*
2398 			 * It may be on either list in this state.
2399 			 * Remove from both for now.
2400 			 */
2401 			sigqueue_delete(&td->td_sigqueue, sig);
2402 			mtx_lock_spin(&sched_lock);
2403 			return;
2404 		}
2405 
2406 		/*
2407 		 * Give low priority threads a better chance to run.
2408 		 */
2409 		if (td->td_priority > PUSER)
2410 			sched_prio(td, PUSER);
2411 
2412 		sleepq_abort(td, intrval);
2413 	} else {
2414 		/*
2415 		 * Other states do nothing with the signal immediately,
2416 		 * other than kicking ourselves if we are running.
2417 		 * It will either never be noticed, or noticed very soon.
2418 		 */
2419 #ifdef SMP
2420 		if (TD_IS_RUNNING(td) && td != curthread)
2421 			forward_signal(td);
2422 #endif
2423 	}
2424 }
2425 
2426 static void
2427 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2428 {
2429 	struct thread *td2;
2430 
2431 	PROC_LOCK_ASSERT(p, MA_OWNED);
2432 	mtx_assert(&sched_lock, MA_OWNED);
2433 
2434 	FOREACH_THREAD_IN_PROC(p, td2) {
2435 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2436 		    (td2->td_flags & TDF_SINTR) &&
2437 		    !TD_IS_SUSPENDED(td2)) {
2438 			thread_suspend_one(td2);
2439 		} else {
2440 			if (sending || td != td2)
2441 				td2->td_flags |= TDF_ASTPENDING;
2442 #ifdef SMP
2443 			if (TD_IS_RUNNING(td2) && td2 != td)
2444 				forward_signal(td2);
2445 #endif
2446 		}
2447 	}
2448 }
2449 
2450 int
2451 ptracestop(struct thread *td, int sig)
2452 {
2453 	struct proc *p = td->td_proc;
2454 
2455 	PROC_LOCK_ASSERT(p, MA_OWNED);
2456 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2457 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2458 
2459 	mtx_lock_spin(&sched_lock);
2460 	td->td_flags |= TDF_XSIG;
2461 	mtx_unlock_spin(&sched_lock);
2462 	td->td_xsig = sig;
2463 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2464 		if (p->p_flag & P_SINGLE_EXIT) {
2465 			mtx_lock_spin(&sched_lock);
2466 			td->td_flags &= ~TDF_XSIG;
2467 			mtx_unlock_spin(&sched_lock);
2468 			return (sig);
2469 		}
2470 		/*
2471 		 * Just make wait() to work, the last stopped thread
2472 		 * will win.
2473 		 */
2474 		p->p_xstat = sig;
2475 		p->p_xthread = td;
2476 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2477 		mtx_lock_spin(&sched_lock);
2478 		sig_suspend_threads(td, p, 0);
2479 stopme:
2480 		thread_stopped(p);
2481 		thread_suspend_one(td);
2482 		PROC_UNLOCK(p);
2483 		DROP_GIANT();
2484 		mi_switch(SW_VOL, NULL);
2485 		mtx_unlock_spin(&sched_lock);
2486 		PICKUP_GIANT();
2487 		PROC_LOCK(p);
2488 		if (!(p->p_flag & P_TRACED))
2489 			break;
2490 		if (td->td_flags & TDF_DBSUSPEND) {
2491 			if (p->p_flag & P_SINGLE_EXIT)
2492 				break;
2493 			mtx_lock_spin(&sched_lock);
2494 			goto stopme;
2495 		}
2496 	}
2497 	return (td->td_xsig);
2498 }
2499 
2500 /*
2501  * If the current process has received a signal (should be caught or cause
2502  * termination, should interrupt current syscall), return the signal number.
2503  * Stop signals with default action are processed immediately, then cleared;
2504  * they aren't returned.  This is checked after each entry to the system for
2505  * a syscall or trap (though this can usually be done without calling issignal
2506  * by checking the pending signal masks in cursig.) The normal call
2507  * sequence is
2508  *
2509  *	while (sig = cursig(curthread))
2510  *		postsig(sig);
2511  */
2512 static int
2513 issignal(td)
2514 	struct thread *td;
2515 {
2516 	struct proc *p;
2517 	struct sigacts *ps;
2518 	sigset_t sigpending;
2519 	int sig, prop, newsig;
2520 
2521 	p = td->td_proc;
2522 	ps = p->p_sigacts;
2523 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2524 	PROC_LOCK_ASSERT(p, MA_OWNED);
2525 	for (;;) {
2526 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2527 
2528 		sigpending = td->td_sigqueue.sq_signals;
2529 		SIGSETNAND(sigpending, td->td_sigmask);
2530 
2531 		if (p->p_flag & P_PPWAIT)
2532 			SIG_STOPSIGMASK(sigpending);
2533 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2534 			return (0);
2535 		sig = sig_ffs(&sigpending);
2536 
2537 		if (p->p_stops & S_SIG) {
2538 			mtx_unlock(&ps->ps_mtx);
2539 			stopevent(p, S_SIG, sig);
2540 			mtx_lock(&ps->ps_mtx);
2541 		}
2542 
2543 		/*
2544 		 * We should see pending but ignored signals
2545 		 * only if P_TRACED was on when they were posted.
2546 		 */
2547 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2548 			sigqueue_delete(&td->td_sigqueue, sig);
2549 			if (td->td_pflags & TDP_SA)
2550 				SIGADDSET(td->td_sigmask, sig);
2551 			continue;
2552 		}
2553 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2554 			/*
2555 			 * If traced, always stop.
2556 			 */
2557 			mtx_unlock(&ps->ps_mtx);
2558 			newsig = ptracestop(td, sig);
2559 			mtx_lock(&ps->ps_mtx);
2560 
2561 			if (td->td_pflags & TDP_SA)
2562 				SIGADDSET(td->td_sigmask, sig);
2563 
2564 			if (sig != newsig) {
2565 				ksiginfo_t ksi;
2566 				/*
2567 				 * clear old signal.
2568 				 * XXX shrug off debugger, it causes siginfo to
2569 				 * be thrown away.
2570 				 */
2571 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2572 
2573 				/*
2574 				 * If parent wants us to take the signal,
2575 				 * then it will leave it in p->p_xstat;
2576 				 * otherwise we just look for signals again.
2577 			 	*/
2578 				if (newsig == 0)
2579 					continue;
2580 				sig = newsig;
2581 
2582 				/*
2583 				 * Put the new signal into td_sigqueue. If the
2584 				 * signal is being masked, look for other signals.
2585 				 */
2586 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2587 				if (td->td_pflags & TDP_SA)
2588 					SIGDELSET(td->td_sigmask, sig);
2589 				if (SIGISMEMBER(td->td_sigmask, sig))
2590 					continue;
2591 				signotify(td);
2592 			}
2593 
2594 			/*
2595 			 * If the traced bit got turned off, go back up
2596 			 * to the top to rescan signals.  This ensures
2597 			 * that p_sig* and p_sigact are consistent.
2598 			 */
2599 			if ((p->p_flag & P_TRACED) == 0)
2600 				continue;
2601 		}
2602 
2603 		prop = sigprop(sig);
2604 
2605 		/*
2606 		 * Decide whether the signal should be returned.
2607 		 * Return the signal's number, or fall through
2608 		 * to clear it from the pending mask.
2609 		 */
2610 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2611 
2612 		case (intptr_t)SIG_DFL:
2613 			/*
2614 			 * Don't take default actions on system processes.
2615 			 */
2616 			if (p->p_pid <= 1) {
2617 #ifdef DIAGNOSTIC
2618 				/*
2619 				 * Are you sure you want to ignore SIGSEGV
2620 				 * in init? XXX
2621 				 */
2622 				printf("Process (pid %lu) got signal %d\n",
2623 					(u_long)p->p_pid, sig);
2624 #endif
2625 				break;		/* == ignore */
2626 			}
2627 			/*
2628 			 * If there is a pending stop signal to process
2629 			 * with default action, stop here,
2630 			 * then clear the signal.  However,
2631 			 * if process is member of an orphaned
2632 			 * process group, ignore tty stop signals.
2633 			 */
2634 			if (prop & SA_STOP) {
2635 				if (p->p_flag & P_TRACED ||
2636 		    		    (p->p_pgrp->pg_jobc == 0 &&
2637 				     prop & SA_TTYSTOP))
2638 					break;	/* == ignore */
2639 				mtx_unlock(&ps->ps_mtx);
2640 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2641 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2642 				p->p_flag |= P_STOPPED_SIG;
2643 				p->p_xstat = sig;
2644 				mtx_lock_spin(&sched_lock);
2645 				sig_suspend_threads(td, p, 0);
2646 				thread_stopped(p);
2647 				thread_suspend_one(td);
2648 				PROC_UNLOCK(p);
2649 				DROP_GIANT();
2650 				mi_switch(SW_INVOL, NULL);
2651 				mtx_unlock_spin(&sched_lock);
2652 				PICKUP_GIANT();
2653 				PROC_LOCK(p);
2654 				mtx_lock(&ps->ps_mtx);
2655 				break;
2656 			} else if (prop & SA_IGNORE) {
2657 				/*
2658 				 * Except for SIGCONT, shouldn't get here.
2659 				 * Default action is to ignore; drop it.
2660 				 */
2661 				break;		/* == ignore */
2662 			} else
2663 				return (sig);
2664 			/*NOTREACHED*/
2665 
2666 		case (intptr_t)SIG_IGN:
2667 			/*
2668 			 * Masking above should prevent us ever trying
2669 			 * to take action on an ignored signal other
2670 			 * than SIGCONT, unless process is traced.
2671 			 */
2672 			if ((prop & SA_CONT) == 0 &&
2673 			    (p->p_flag & P_TRACED) == 0)
2674 				printf("issignal\n");
2675 			break;		/* == ignore */
2676 
2677 		default:
2678 			/*
2679 			 * This signal has an action, let
2680 			 * postsig() process it.
2681 			 */
2682 			return (sig);
2683 		}
2684 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2685 	}
2686 	/* NOTREACHED */
2687 }
2688 
2689 /*
2690  * MPSAFE
2691  */
2692 void
2693 thread_stopped(struct proc *p)
2694 {
2695 	int n;
2696 
2697 	PROC_LOCK_ASSERT(p, MA_OWNED);
2698 	mtx_assert(&sched_lock, MA_OWNED);
2699 	n = p->p_suspcount;
2700 	if (p == curproc)
2701 		n++;
2702 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2703 		mtx_unlock_spin(&sched_lock);
2704 		p->p_flag &= ~P_WAITED;
2705 		PROC_LOCK(p->p_pptr);
2706 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2707 			CLD_TRAPPED : CLD_STOPPED);
2708 		PROC_UNLOCK(p->p_pptr);
2709 		mtx_lock_spin(&sched_lock);
2710 	}
2711 }
2712 
2713 /*
2714  * Take the action for the specified signal
2715  * from the current set of pending signals.
2716  */
2717 void
2718 postsig(sig)
2719 	register int sig;
2720 {
2721 	struct thread *td = curthread;
2722 	register struct proc *p = td->td_proc;
2723 	struct sigacts *ps;
2724 	sig_t action;
2725 	ksiginfo_t ksi;
2726 	sigset_t returnmask;
2727 	int code;
2728 
2729 	KASSERT(sig != 0, ("postsig"));
2730 
2731 	PROC_LOCK_ASSERT(p, MA_OWNED);
2732 	ps = p->p_sigacts;
2733 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2734 	ksiginfo_init(&ksi);
2735 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2736 	ksi.ksi_signo = sig;
2737 	if (ksi.ksi_code == SI_TIMER)
2738 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2739 	action = ps->ps_sigact[_SIG_IDX(sig)];
2740 #ifdef KTRACE
2741 	if (KTRPOINT(td, KTR_PSIG))
2742 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2743 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2744 #endif
2745 	if (p->p_stops & S_SIG) {
2746 		mtx_unlock(&ps->ps_mtx);
2747 		stopevent(p, S_SIG, sig);
2748 		mtx_lock(&ps->ps_mtx);
2749 	}
2750 
2751 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2752 		/*
2753 		 * Default action, where the default is to kill
2754 		 * the process.  (Other cases were ignored above.)
2755 		 */
2756 		mtx_unlock(&ps->ps_mtx);
2757 		sigexit(td, sig);
2758 		/* NOTREACHED */
2759 	} else {
2760 		if (td->td_pflags & TDP_SA) {
2761 			if (sig == SIGKILL) {
2762 				mtx_unlock(&ps->ps_mtx);
2763 				sigexit(td, sig);
2764 			}
2765 		}
2766 
2767 		/*
2768 		 * If we get here, the signal must be caught.
2769 		 */
2770 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2771 		    ("postsig action"));
2772 		/*
2773 		 * Set the new mask value and also defer further
2774 		 * occurrences of this signal.
2775 		 *
2776 		 * Special case: user has done a sigsuspend.  Here the
2777 		 * current mask is not of interest, but rather the
2778 		 * mask from before the sigsuspend is what we want
2779 		 * restored after the signal processing is completed.
2780 		 */
2781 		if (td->td_pflags & TDP_OLDMASK) {
2782 			returnmask = td->td_oldsigmask;
2783 			td->td_pflags &= ~TDP_OLDMASK;
2784 		} else
2785 			returnmask = td->td_sigmask;
2786 
2787 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2788 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2789 			SIGADDSET(td->td_sigmask, sig);
2790 
2791 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2792 			/*
2793 			 * See kern_sigaction() for origin of this code.
2794 			 */
2795 			SIGDELSET(ps->ps_sigcatch, sig);
2796 			if (sig != SIGCONT &&
2797 			    sigprop(sig) & SA_IGNORE)
2798 				SIGADDSET(ps->ps_sigignore, sig);
2799 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2800 		}
2801 		p->p_stats->p_ru.ru_nsignals++;
2802 		if (p->p_sig != sig) {
2803 			code = 0;
2804 		} else {
2805 			code = p->p_code;
2806 			p->p_code = 0;
2807 			p->p_sig = 0;
2808 		}
2809 		if (td->td_pflags & TDP_SA)
2810 			thread_signal_add(curthread, &ksi);
2811 		else
2812 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2813 	}
2814 }
2815 
2816 /*
2817  * Kill the current process for stated reason.
2818  */
2819 void
2820 killproc(p, why)
2821 	struct proc *p;
2822 	char *why;
2823 {
2824 
2825 	PROC_LOCK_ASSERT(p, MA_OWNED);
2826 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2827 		p, p->p_pid, p->p_comm);
2828 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2829 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2830 	psignal(p, SIGKILL);
2831 }
2832 
2833 /*
2834  * Force the current process to exit with the specified signal, dumping core
2835  * if appropriate.  We bypass the normal tests for masked and caught signals,
2836  * allowing unrecoverable failures to terminate the process without changing
2837  * signal state.  Mark the accounting record with the signal termination.
2838  * If dumping core, save the signal number for the debugger.  Calls exit and
2839  * does not return.
2840  *
2841  * MPSAFE
2842  */
2843 void
2844 sigexit(td, sig)
2845 	struct thread *td;
2846 	int sig;
2847 {
2848 	struct proc *p = td->td_proc;
2849 
2850 	PROC_LOCK_ASSERT(p, MA_OWNED);
2851 	p->p_acflag |= AXSIG;
2852 	/*
2853 	 * We must be single-threading to generate a core dump.  This
2854 	 * ensures that the registers in the core file are up-to-date.
2855 	 * Also, the ELF dump handler assumes that the thread list doesn't
2856 	 * change out from under it.
2857 	 *
2858 	 * XXX If another thread attempts to single-thread before us
2859 	 *     (e.g. via fork()), we won't get a dump at all.
2860 	 */
2861 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2862 		p->p_sig = sig;
2863 		/*
2864 		 * Log signals which would cause core dumps
2865 		 * (Log as LOG_INFO to appease those who don't want
2866 		 * these messages.)
2867 		 * XXX : Todo, as well as euid, write out ruid too
2868 		 * Note that coredump() drops proc lock.
2869 		 */
2870 		if (coredump(td) == 0)
2871 			sig |= WCOREFLAG;
2872 		if (kern_logsigexit)
2873 			log(LOG_INFO,
2874 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2875 			    p->p_pid, p->p_comm,
2876 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2877 			    sig &~ WCOREFLAG,
2878 			    sig & WCOREFLAG ? " (core dumped)" : "");
2879 	} else
2880 		PROC_UNLOCK(p);
2881 	exit1(td, W_EXITCODE(0, sig));
2882 	/* NOTREACHED */
2883 }
2884 
2885 /*
2886  * Send queued SIGCHLD to parent when child process's state
2887  * is changed.
2888  */
2889 static void
2890 sigparent(struct proc *p, int reason, int status)
2891 {
2892 	PROC_LOCK_ASSERT(p, MA_OWNED);
2893 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2894 
2895 	if (p->p_ksi != NULL) {
2896 		p->p_ksi->ksi_signo  = SIGCHLD;
2897 		p->p_ksi->ksi_code   = reason;
2898 		p->p_ksi->ksi_status = status;
2899 		p->p_ksi->ksi_pid    = p->p_pid;
2900 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2901 		if (KSI_ONQ(p->p_ksi))
2902 			return;
2903 	}
2904 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2905 }
2906 
2907 static void
2908 childproc_jobstate(struct proc *p, int reason, int status)
2909 {
2910 	struct sigacts *ps;
2911 
2912 	PROC_LOCK_ASSERT(p, MA_OWNED);
2913 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2914 
2915 	/*
2916 	 * Wake up parent sleeping in kern_wait(), also send
2917 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2918 	 * that parent will awake, because parent may masked
2919 	 * the signal.
2920 	 */
2921 	p->p_pptr->p_flag |= P_STATCHILD;
2922 	wakeup(p->p_pptr);
2923 
2924 	ps = p->p_pptr->p_sigacts;
2925 	mtx_lock(&ps->ps_mtx);
2926 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2927 		mtx_unlock(&ps->ps_mtx);
2928 		sigparent(p, reason, status);
2929 	} else
2930 		mtx_unlock(&ps->ps_mtx);
2931 }
2932 
2933 void
2934 childproc_stopped(struct proc *p, int reason)
2935 {
2936 	childproc_jobstate(p, reason, p->p_xstat);
2937 }
2938 
2939 void
2940 childproc_continued(struct proc *p)
2941 {
2942 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2943 }
2944 
2945 void
2946 childproc_exited(struct proc *p)
2947 {
2948 	int reason;
2949 	int status = p->p_xstat; /* convert to int */
2950 
2951 	reason = CLD_EXITED;
2952 	if (WCOREDUMP(status))
2953 		reason = CLD_DUMPED;
2954 	else if (WIFSIGNALED(status))
2955 		reason = CLD_KILLED;
2956 	/*
2957 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2958 	 * done in exit1().
2959 	 */
2960 	sigparent(p, reason, status);
2961 }
2962 
2963 static char corefilename[MAXPATHLEN] = {"%N.core"};
2964 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2965 	      sizeof(corefilename), "process corefile name format string");
2966 
2967 /*
2968  * expand_name(name, uid, pid)
2969  * Expand the name described in corefilename, using name, uid, and pid.
2970  * corefilename is a printf-like string, with three format specifiers:
2971  *	%N	name of process ("name")
2972  *	%P	process id (pid)
2973  *	%U	user id (uid)
2974  * For example, "%N.core" is the default; they can be disabled completely
2975  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2976  * This is controlled by the sysctl variable kern.corefile (see above).
2977  */
2978 
2979 static char *
2980 expand_name(name, uid, pid)
2981 	const char *name;
2982 	uid_t uid;
2983 	pid_t pid;
2984 {
2985 	const char *format, *appendstr;
2986 	char *temp;
2987 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2988 	size_t i, l, n;
2989 
2990 	format = corefilename;
2991 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2992 	if (temp == NULL)
2993 		return (NULL);
2994 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2995 		switch (format[i]) {
2996 		case '%':	/* Format character */
2997 			i++;
2998 			switch (format[i]) {
2999 			case '%':
3000 				appendstr = "%";
3001 				break;
3002 			case 'N':	/* process name */
3003 				appendstr = name;
3004 				break;
3005 			case 'P':	/* process id */
3006 				sprintf(buf, "%u", pid);
3007 				appendstr = buf;
3008 				break;
3009 			case 'U':	/* user id */
3010 				sprintf(buf, "%u", uid);
3011 				appendstr = buf;
3012 				break;
3013 			default:
3014 				appendstr = "";
3015 			  	log(LOG_ERR,
3016 				    "Unknown format character %c in `%s'\n",
3017 				    format[i], format);
3018 			}
3019 			l = strlen(appendstr);
3020 			if ((n + l) >= MAXPATHLEN)
3021 				goto toolong;
3022 			memcpy(temp + n, appendstr, l);
3023 			n += l;
3024 			break;
3025 		default:
3026 			temp[n++] = format[i];
3027 		}
3028 	}
3029 	if (format[i] != '\0')
3030 		goto toolong;
3031 	return (temp);
3032 toolong:
3033 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3034 	    (long)pid, name, (u_long)uid);
3035 	free(temp, M_TEMP);
3036 	return (NULL);
3037 }
3038 
3039 /*
3040  * Dump a process' core.  The main routine does some
3041  * policy checking, and creates the name of the coredump;
3042  * then it passes on a vnode and a size limit to the process-specific
3043  * coredump routine if there is one; if there _is not_ one, it returns
3044  * ENOSYS; otherwise it returns the error from the process-specific routine.
3045  */
3046 
3047 static int
3048 coredump(struct thread *td)
3049 {
3050 	struct proc *p = td->td_proc;
3051 	register struct vnode *vp;
3052 	register struct ucred *cred = td->td_ucred;
3053 	struct flock lf;
3054 	struct nameidata nd;
3055 	struct vattr vattr;
3056 	int error, error1, flags, locked;
3057 	struct mount *mp;
3058 	char *name;			/* name of corefile */
3059 	off_t limit;
3060 	int vfslocked;
3061 
3062 	PROC_LOCK_ASSERT(p, MA_OWNED);
3063 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3064 	_STOPEVENT(p, S_CORE, 0);
3065 
3066 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3067 		PROC_UNLOCK(p);
3068 		return (EFAULT);
3069 	}
3070 
3071 	/*
3072 	 * Note that the bulk of limit checking is done after
3073 	 * the corefile is created.  The exception is if the limit
3074 	 * for corefiles is 0, in which case we don't bother
3075 	 * creating the corefile at all.  This layout means that
3076 	 * a corefile is truncated instead of not being created,
3077 	 * if it is larger than the limit.
3078 	 */
3079 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3080 	PROC_UNLOCK(p);
3081 	if (limit == 0)
3082 		return (EFBIG);
3083 
3084 restart:
3085 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3086 	if (name == NULL)
3087 		return (EINVAL);
3088 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3089 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3090 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3091 	free(name, M_TEMP);
3092 	if (error)
3093 		return (error);
3094 	vfslocked = NDHASGIANT(&nd);
3095 	NDFREE(&nd, NDF_ONLY_PNBUF);
3096 	vp = nd.ni_vp;
3097 
3098 	/* Don't dump to non-regular files or files with links. */
3099 	if (vp->v_type != VREG ||
3100 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3101 		VOP_UNLOCK(vp, 0, td);
3102 		error = EFAULT;
3103 		goto close;
3104 	}
3105 
3106 	VOP_UNLOCK(vp, 0, td);
3107 	lf.l_whence = SEEK_SET;
3108 	lf.l_start = 0;
3109 	lf.l_len = 0;
3110 	lf.l_type = F_WRLCK;
3111 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3112 
3113 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3114 		lf.l_type = F_UNLCK;
3115 		if (locked)
3116 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3117 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3118 			goto out;
3119 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3120 			goto out;
3121 		VFS_UNLOCK_GIANT(vfslocked);
3122 		goto restart;
3123 	}
3124 
3125 	VATTR_NULL(&vattr);
3126 	vattr.va_size = 0;
3127 	if (set_core_nodump_flag)
3128 		vattr.va_flags = UF_NODUMP;
3129 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3130 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3131 	VOP_SETATTR(vp, &vattr, cred, td);
3132 	VOP_UNLOCK(vp, 0, td);
3133 	vn_finished_write(mp);
3134 	PROC_LOCK(p);
3135 	p->p_acflag |= ACORE;
3136 	PROC_UNLOCK(p);
3137 
3138 	error = p->p_sysent->sv_coredump ?
3139 	  p->p_sysent->sv_coredump(td, vp, limit) :
3140 	  ENOSYS;
3141 
3142 	if (locked) {
3143 		lf.l_type = F_UNLCK;
3144 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3145 	}
3146 close:
3147 	error1 = vn_close(vp, FWRITE, cred, td);
3148 	if (error == 0)
3149 		error = error1;
3150 out:
3151 	VFS_UNLOCK_GIANT(vfslocked);
3152 	return (error);
3153 }
3154 
3155 /*
3156  * Nonexistent system call-- signal process (may want to handle it).
3157  * Flag error in case process won't see signal immediately (blocked or ignored).
3158  */
3159 #ifndef _SYS_SYSPROTO_H_
3160 struct nosys_args {
3161 	int	dummy;
3162 };
3163 #endif
3164 /*
3165  * MPSAFE
3166  */
3167 /* ARGSUSED */
3168 int
3169 nosys(td, args)
3170 	struct thread *td;
3171 	struct nosys_args *args;
3172 {
3173 	struct proc *p = td->td_proc;
3174 
3175 	PROC_LOCK(p);
3176 	psignal(p, SIGSYS);
3177 	PROC_UNLOCK(p);
3178 	return (ENOSYS);
3179 }
3180 
3181 /*
3182  * Send a SIGIO or SIGURG signal to a process or process group using
3183  * stored credentials rather than those of the current process.
3184  */
3185 void
3186 pgsigio(sigiop, sig, checkctty)
3187 	struct sigio **sigiop;
3188 	int sig, checkctty;
3189 {
3190 	struct sigio *sigio;
3191 
3192 	SIGIO_LOCK();
3193 	sigio = *sigiop;
3194 	if (sigio == NULL) {
3195 		SIGIO_UNLOCK();
3196 		return;
3197 	}
3198 	if (sigio->sio_pgid > 0) {
3199 		PROC_LOCK(sigio->sio_proc);
3200 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3201 			psignal(sigio->sio_proc, sig);
3202 		PROC_UNLOCK(sigio->sio_proc);
3203 	} else if (sigio->sio_pgid < 0) {
3204 		struct proc *p;
3205 
3206 		PGRP_LOCK(sigio->sio_pgrp);
3207 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3208 			PROC_LOCK(p);
3209 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3210 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3211 				psignal(p, sig);
3212 			PROC_UNLOCK(p);
3213 		}
3214 		PGRP_UNLOCK(sigio->sio_pgrp);
3215 	}
3216 	SIGIO_UNLOCK();
3217 }
3218 
3219 static int
3220 filt_sigattach(struct knote *kn)
3221 {
3222 	struct proc *p = curproc;
3223 
3224 	kn->kn_ptr.p_proc = p;
3225 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3226 
3227 	knlist_add(&p->p_klist, kn, 0);
3228 
3229 	return (0);
3230 }
3231 
3232 static void
3233 filt_sigdetach(struct knote *kn)
3234 {
3235 	struct proc *p = kn->kn_ptr.p_proc;
3236 
3237 	knlist_remove(&p->p_klist, kn, 0);
3238 }
3239 
3240 /*
3241  * signal knotes are shared with proc knotes, so we apply a mask to
3242  * the hint in order to differentiate them from process hints.  This
3243  * could be avoided by using a signal-specific knote list, but probably
3244  * isn't worth the trouble.
3245  */
3246 static int
3247 filt_signal(struct knote *kn, long hint)
3248 {
3249 
3250 	if (hint & NOTE_SIGNAL) {
3251 		hint &= ~NOTE_SIGNAL;
3252 
3253 		if (kn->kn_id == hint)
3254 			kn->kn_data++;
3255 	}
3256 	return (kn->kn_data != 0);
3257 }
3258 
3259 struct sigacts *
3260 sigacts_alloc(void)
3261 {
3262 	struct sigacts *ps;
3263 
3264 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3265 	ps->ps_refcnt = 1;
3266 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3267 	return (ps);
3268 }
3269 
3270 void
3271 sigacts_free(struct sigacts *ps)
3272 {
3273 
3274 	mtx_lock(&ps->ps_mtx);
3275 	ps->ps_refcnt--;
3276 	if (ps->ps_refcnt == 0) {
3277 		mtx_destroy(&ps->ps_mtx);
3278 		free(ps, M_SUBPROC);
3279 	} else
3280 		mtx_unlock(&ps->ps_mtx);
3281 }
3282 
3283 struct sigacts *
3284 sigacts_hold(struct sigacts *ps)
3285 {
3286 	mtx_lock(&ps->ps_mtx);
3287 	ps->ps_refcnt++;
3288 	mtx_unlock(&ps->ps_mtx);
3289 	return (ps);
3290 }
3291 
3292 void
3293 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3294 {
3295 
3296 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3297 	mtx_lock(&src->ps_mtx);
3298 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3299 	mtx_unlock(&src->ps_mtx);
3300 }
3301 
3302 int
3303 sigacts_shared(struct sigacts *ps)
3304 {
3305 	int shared;
3306 
3307 	mtx_lock(&ps->ps_mtx);
3308 	shared = ps->ps_refcnt > 1;
3309 	mtx_unlock(&ps->ps_mtx);
3310 	return (shared);
3311 }
3312