xref: /freebsd/sys/kern/kern_sig.c (revision 7f49ce7a0b5f0d501d233308d73ccb1bf191a68b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 
609 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
610 
611 	if (SIGPENDING(td)) {
612 		thread_lock(td);
613 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
614 		thread_unlock(td);
615 	}
616 }
617 
618 /*
619  * Returns 1 (true) if altstack is configured for the thread, and the
620  * passed stack bottom address falls into the altstack range.  Handles
621  * the 43 compat special case where the alt stack size is zero.
622  */
623 int
624 sigonstack(size_t sp)
625 {
626 	struct thread *td;
627 
628 	td = curthread;
629 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
630 		return (0);
631 #if defined(COMPAT_43)
632 	if (td->td_sigstk.ss_size == 0)
633 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
634 #endif
635 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
636 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
637 }
638 
639 static __inline int
640 sigprop(int sig)
641 {
642 
643 	if (sig > 0 && sig < nitems(sigproptbl))
644 		return (sigproptbl[sig]);
645 	return (0);
646 }
647 
648 int
649 sig_ffs(sigset_t *set)
650 {
651 	int i;
652 
653 	for (i = 0; i < _SIG_WORDS; i++)
654 		if (set->__bits[i])
655 			return (ffs(set->__bits[i]) + (i * 32));
656 	return (0);
657 }
658 
659 static bool
660 sigact_flag_test(const struct sigaction *act, int flag)
661 {
662 
663 	/*
664 	 * SA_SIGINFO is reset when signal disposition is set to
665 	 * ignore or default.  Other flags are kept according to user
666 	 * settings.
667 	 */
668 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
669 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
670 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
671 }
672 
673 /*
674  * kern_sigaction
675  * sigaction
676  * freebsd4_sigaction
677  * osigaction
678  */
679 int
680 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
681     struct sigaction *oact, int flags)
682 {
683 	struct sigacts *ps;
684 	struct proc *p = td->td_proc;
685 
686 	if (!_SIG_VALID(sig))
687 		return (EINVAL);
688 	if (act != NULL && act->sa_handler != SIG_DFL &&
689 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
690 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
691 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
692 		return (EINVAL);
693 
694 	PROC_LOCK(p);
695 	ps = p->p_sigacts;
696 	mtx_lock(&ps->ps_mtx);
697 	if (oact) {
698 		memset(oact, 0, sizeof(*oact));
699 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
700 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
701 			oact->sa_flags |= SA_ONSTACK;
702 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
703 			oact->sa_flags |= SA_RESTART;
704 		if (SIGISMEMBER(ps->ps_sigreset, sig))
705 			oact->sa_flags |= SA_RESETHAND;
706 		if (SIGISMEMBER(ps->ps_signodefer, sig))
707 			oact->sa_flags |= SA_NODEFER;
708 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
709 			oact->sa_flags |= SA_SIGINFO;
710 			oact->sa_sigaction =
711 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
712 		} else
713 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
714 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
715 			oact->sa_flags |= SA_NOCLDSTOP;
716 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
717 			oact->sa_flags |= SA_NOCLDWAIT;
718 	}
719 	if (act) {
720 		if ((sig == SIGKILL || sig == SIGSTOP) &&
721 		    act->sa_handler != SIG_DFL) {
722 			mtx_unlock(&ps->ps_mtx);
723 			PROC_UNLOCK(p);
724 			return (EINVAL);
725 		}
726 
727 		/*
728 		 * Change setting atomically.
729 		 */
730 
731 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
732 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
733 		if (sigact_flag_test(act, SA_SIGINFO)) {
734 			ps->ps_sigact[_SIG_IDX(sig)] =
735 			    (__sighandler_t *)act->sa_sigaction;
736 			SIGADDSET(ps->ps_siginfo, sig);
737 		} else {
738 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
739 			SIGDELSET(ps->ps_siginfo, sig);
740 		}
741 		if (!sigact_flag_test(act, SA_RESTART))
742 			SIGADDSET(ps->ps_sigintr, sig);
743 		else
744 			SIGDELSET(ps->ps_sigintr, sig);
745 		if (sigact_flag_test(act, SA_ONSTACK))
746 			SIGADDSET(ps->ps_sigonstack, sig);
747 		else
748 			SIGDELSET(ps->ps_sigonstack, sig);
749 		if (sigact_flag_test(act, SA_RESETHAND))
750 			SIGADDSET(ps->ps_sigreset, sig);
751 		else
752 			SIGDELSET(ps->ps_sigreset, sig);
753 		if (sigact_flag_test(act, SA_NODEFER))
754 			SIGADDSET(ps->ps_signodefer, sig);
755 		else
756 			SIGDELSET(ps->ps_signodefer, sig);
757 		if (sig == SIGCHLD) {
758 			if (act->sa_flags & SA_NOCLDSTOP)
759 				ps->ps_flag |= PS_NOCLDSTOP;
760 			else
761 				ps->ps_flag &= ~PS_NOCLDSTOP;
762 			if (act->sa_flags & SA_NOCLDWAIT) {
763 				/*
764 				 * Paranoia: since SA_NOCLDWAIT is implemented
765 				 * by reparenting the dying child to PID 1 (and
766 				 * trust it to reap the zombie), PID 1 itself
767 				 * is forbidden to set SA_NOCLDWAIT.
768 				 */
769 				if (p->p_pid == 1)
770 					ps->ps_flag &= ~PS_NOCLDWAIT;
771 				else
772 					ps->ps_flag |= PS_NOCLDWAIT;
773 			} else
774 				ps->ps_flag &= ~PS_NOCLDWAIT;
775 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
776 				ps->ps_flag |= PS_CLDSIGIGN;
777 			else
778 				ps->ps_flag &= ~PS_CLDSIGIGN;
779 		}
780 		/*
781 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
782 		 * and for signals set to SIG_DFL where the default is to
783 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
784 		 * have to restart the process.
785 		 */
786 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
787 		    (sigprop(sig) & SIGPROP_IGNORE &&
788 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
789 			/* never to be seen again */
790 			sigqueue_delete_proc(p, sig);
791 			if (sig != SIGCONT)
792 				/* easier in psignal */
793 				SIGADDSET(ps->ps_sigignore, sig);
794 			SIGDELSET(ps->ps_sigcatch, sig);
795 		} else {
796 			SIGDELSET(ps->ps_sigignore, sig);
797 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
798 				SIGDELSET(ps->ps_sigcatch, sig);
799 			else
800 				SIGADDSET(ps->ps_sigcatch, sig);
801 		}
802 #ifdef COMPAT_FREEBSD4
803 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
804 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
805 		    (flags & KSA_FREEBSD4) == 0)
806 			SIGDELSET(ps->ps_freebsd4, sig);
807 		else
808 			SIGADDSET(ps->ps_freebsd4, sig);
809 #endif
810 #ifdef COMPAT_43
811 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
812 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
813 		    (flags & KSA_OSIGSET) == 0)
814 			SIGDELSET(ps->ps_osigset, sig);
815 		else
816 			SIGADDSET(ps->ps_osigset, sig);
817 #endif
818 	}
819 	mtx_unlock(&ps->ps_mtx);
820 	PROC_UNLOCK(p);
821 	return (0);
822 }
823 
824 #ifndef _SYS_SYSPROTO_H_
825 struct sigaction_args {
826 	int	sig;
827 	struct	sigaction *act;
828 	struct	sigaction *oact;
829 };
830 #endif
831 int
832 sys_sigaction(struct thread *td, struct sigaction_args *uap)
833 {
834 	struct sigaction act, oact;
835 	struct sigaction *actp, *oactp;
836 	int error;
837 
838 	actp = (uap->act != NULL) ? &act : NULL;
839 	oactp = (uap->oact != NULL) ? &oact : NULL;
840 	if (actp) {
841 		error = copyin(uap->act, actp, sizeof(act));
842 		if (error)
843 			return (error);
844 	}
845 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
846 	if (oactp && !error)
847 		error = copyout(oactp, uap->oact, sizeof(oact));
848 	return (error);
849 }
850 
851 #ifdef COMPAT_FREEBSD4
852 #ifndef _SYS_SYSPROTO_H_
853 struct freebsd4_sigaction_args {
854 	int	sig;
855 	struct	sigaction *act;
856 	struct	sigaction *oact;
857 };
858 #endif
859 int
860 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
861 {
862 	struct sigaction act, oact;
863 	struct sigaction *actp, *oactp;
864 	int error;
865 
866 
867 	actp = (uap->act != NULL) ? &act : NULL;
868 	oactp = (uap->oact != NULL) ? &oact : NULL;
869 	if (actp) {
870 		error = copyin(uap->act, actp, sizeof(act));
871 		if (error)
872 			return (error);
873 	}
874 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
875 	if (oactp && !error)
876 		error = copyout(oactp, uap->oact, sizeof(oact));
877 	return (error);
878 }
879 #endif	/* COMAPT_FREEBSD4 */
880 
881 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
882 #ifndef _SYS_SYSPROTO_H_
883 struct osigaction_args {
884 	int	signum;
885 	struct	osigaction *nsa;
886 	struct	osigaction *osa;
887 };
888 #endif
889 int
890 osigaction(struct thread *td, struct osigaction_args *uap)
891 {
892 	struct osigaction sa;
893 	struct sigaction nsa, osa;
894 	struct sigaction *nsap, *osap;
895 	int error;
896 
897 	if (uap->signum <= 0 || uap->signum >= ONSIG)
898 		return (EINVAL);
899 
900 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
901 	osap = (uap->osa != NULL) ? &osa : NULL;
902 
903 	if (nsap) {
904 		error = copyin(uap->nsa, &sa, sizeof(sa));
905 		if (error)
906 			return (error);
907 		nsap->sa_handler = sa.sa_handler;
908 		nsap->sa_flags = sa.sa_flags;
909 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
910 	}
911 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
912 	if (osap && !error) {
913 		sa.sa_handler = osap->sa_handler;
914 		sa.sa_flags = osap->sa_flags;
915 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
916 		error = copyout(&sa, uap->osa, sizeof(sa));
917 	}
918 	return (error);
919 }
920 
921 #if !defined(__i386__)
922 /* Avoid replicating the same stub everywhere */
923 int
924 osigreturn(struct thread *td, struct osigreturn_args *uap)
925 {
926 
927 	return (nosys(td, (struct nosys_args *)uap));
928 }
929 #endif
930 #endif /* COMPAT_43 */
931 
932 /* Would this signal be fatal to the current process, if it were caught ? */
933 bool
934 sig_isfatal(struct proc *p, int sig)
935 {
936 	intptr_t act;
937 	int prop;
938 
939 	mtx_assert(&p->p_sigacts->ps_mtx, MA_OWNED);
940 	act = (intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)];
941 	if ((intptr_t)SIG_DFL == act) {
942 		prop = sigprop(sig);
943 		return (0 != (prop & (SIGPROP_KILL | SIGPROP_CORE)));
944 	} else {
945 		return (false);
946 	}
947 }
948 
949 /*
950  * Initialize signal state for process 0;
951  * set to ignore signals that are ignored by default.
952  */
953 void
954 siginit(struct proc *p)
955 {
956 	int i;
957 	struct sigacts *ps;
958 
959 	PROC_LOCK(p);
960 	ps = p->p_sigacts;
961 	mtx_lock(&ps->ps_mtx);
962 	for (i = 1; i <= NSIG; i++) {
963 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
964 			SIGADDSET(ps->ps_sigignore, i);
965 		}
966 	}
967 	mtx_unlock(&ps->ps_mtx);
968 	PROC_UNLOCK(p);
969 }
970 
971 /*
972  * Reset specified signal to the default disposition.
973  */
974 static void
975 sigdflt(struct sigacts *ps, int sig)
976 {
977 
978 	mtx_assert(&ps->ps_mtx, MA_OWNED);
979 	SIGDELSET(ps->ps_sigcatch, sig);
980 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
981 		SIGADDSET(ps->ps_sigignore, sig);
982 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
983 	SIGDELSET(ps->ps_siginfo, sig);
984 }
985 
986 /*
987  * Reset signals for an exec of the specified process.
988  */
989 void
990 execsigs(struct proc *p)
991 {
992 	sigset_t osigignore;
993 	struct sigacts *ps;
994 	int sig;
995 	struct thread *td;
996 
997 	/*
998 	 * Reset caught signals.  Held signals remain held
999 	 * through td_sigmask (unless they were caught,
1000 	 * and are now ignored by default).
1001 	 */
1002 	PROC_LOCK_ASSERT(p, MA_OWNED);
1003 	ps = p->p_sigacts;
1004 	mtx_lock(&ps->ps_mtx);
1005 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
1006 		sig = sig_ffs(&ps->ps_sigcatch);
1007 		sigdflt(ps, sig);
1008 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
1009 			sigqueue_delete_proc(p, sig);
1010 	}
1011 
1012 	/*
1013 	 * As CloudABI processes cannot modify signal handlers, fully
1014 	 * reset all signals to their default behavior. Do ignore
1015 	 * SIGPIPE, as it would otherwise be impossible to recover from
1016 	 * writes to broken pipes and sockets.
1017 	 */
1018 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1019 		osigignore = ps->ps_sigignore;
1020 		while (SIGNOTEMPTY(osigignore)) {
1021 			sig = sig_ffs(&osigignore);
1022 			SIGDELSET(osigignore, sig);
1023 			if (sig != SIGPIPE)
1024 				sigdflt(ps, sig);
1025 		}
1026 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1027 	}
1028 
1029 	/*
1030 	 * Reset stack state to the user stack.
1031 	 * Clear set of signals caught on the signal stack.
1032 	 */
1033 	td = curthread;
1034 	MPASS(td->td_proc == p);
1035 	td->td_sigstk.ss_flags = SS_DISABLE;
1036 	td->td_sigstk.ss_size = 0;
1037 	td->td_sigstk.ss_sp = 0;
1038 	td->td_pflags &= ~TDP_ALTSTACK;
1039 	/*
1040 	 * Reset no zombies if child dies flag as Solaris does.
1041 	 */
1042 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1043 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1044 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1045 	mtx_unlock(&ps->ps_mtx);
1046 }
1047 
1048 /*
1049  * kern_sigprocmask()
1050  *
1051  *	Manipulate signal mask.
1052  */
1053 int
1054 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1055     int flags)
1056 {
1057 	sigset_t new_block, oset1;
1058 	struct proc *p;
1059 	int error;
1060 
1061 	p = td->td_proc;
1062 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1063 		PROC_LOCK_ASSERT(p, MA_OWNED);
1064 	else
1065 		PROC_LOCK(p);
1066 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1067 	    ? MA_OWNED : MA_NOTOWNED);
1068 	if (oset != NULL)
1069 		*oset = td->td_sigmask;
1070 
1071 	error = 0;
1072 	if (set != NULL) {
1073 		switch (how) {
1074 		case SIG_BLOCK:
1075 			SIG_CANTMASK(*set);
1076 			oset1 = td->td_sigmask;
1077 			SIGSETOR(td->td_sigmask, *set);
1078 			new_block = td->td_sigmask;
1079 			SIGSETNAND(new_block, oset1);
1080 			break;
1081 		case SIG_UNBLOCK:
1082 			SIGSETNAND(td->td_sigmask, *set);
1083 			signotify(td);
1084 			goto out;
1085 		case SIG_SETMASK:
1086 			SIG_CANTMASK(*set);
1087 			oset1 = td->td_sigmask;
1088 			if (flags & SIGPROCMASK_OLD)
1089 				SIGSETLO(td->td_sigmask, *set);
1090 			else
1091 				td->td_sigmask = *set;
1092 			new_block = td->td_sigmask;
1093 			SIGSETNAND(new_block, oset1);
1094 			signotify(td);
1095 			break;
1096 		default:
1097 			error = EINVAL;
1098 			goto out;
1099 		}
1100 
1101 		/*
1102 		 * The new_block set contains signals that were not previously
1103 		 * blocked, but are blocked now.
1104 		 *
1105 		 * In case we block any signal that was not previously blocked
1106 		 * for td, and process has the signal pending, try to schedule
1107 		 * signal delivery to some thread that does not block the
1108 		 * signal, possibly waking it up.
1109 		 */
1110 		if (p->p_numthreads != 1)
1111 			reschedule_signals(p, new_block, flags);
1112 	}
1113 
1114 out:
1115 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1116 		PROC_UNLOCK(p);
1117 	return (error);
1118 }
1119 
1120 #ifndef _SYS_SYSPROTO_H_
1121 struct sigprocmask_args {
1122 	int	how;
1123 	const sigset_t *set;
1124 	sigset_t *oset;
1125 };
1126 #endif
1127 int
1128 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1129 {
1130 	sigset_t set, oset;
1131 	sigset_t *setp, *osetp;
1132 	int error;
1133 
1134 	setp = (uap->set != NULL) ? &set : NULL;
1135 	osetp = (uap->oset != NULL) ? &oset : NULL;
1136 	if (setp) {
1137 		error = copyin(uap->set, setp, sizeof(set));
1138 		if (error)
1139 			return (error);
1140 	}
1141 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1142 	if (osetp && !error) {
1143 		error = copyout(osetp, uap->oset, sizeof(oset));
1144 	}
1145 	return (error);
1146 }
1147 
1148 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1149 #ifndef _SYS_SYSPROTO_H_
1150 struct osigprocmask_args {
1151 	int	how;
1152 	osigset_t mask;
1153 };
1154 #endif
1155 int
1156 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1157 {
1158 	sigset_t set, oset;
1159 	int error;
1160 
1161 	OSIG2SIG(uap->mask, set);
1162 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1163 	SIG2OSIG(oset, td->td_retval[0]);
1164 	return (error);
1165 }
1166 #endif /* COMPAT_43 */
1167 
1168 int
1169 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1170 {
1171 	ksiginfo_t ksi;
1172 	sigset_t set;
1173 	int error;
1174 
1175 	error = copyin(uap->set, &set, sizeof(set));
1176 	if (error) {
1177 		td->td_retval[0] = error;
1178 		return (0);
1179 	}
1180 
1181 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1182 	if (error) {
1183 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1184 			error = ERESTART;
1185 		if (error == ERESTART)
1186 			return (error);
1187 		td->td_retval[0] = error;
1188 		return (0);
1189 	}
1190 
1191 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1192 	td->td_retval[0] = error;
1193 	return (0);
1194 }
1195 
1196 int
1197 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1198 {
1199 	struct timespec ts;
1200 	struct timespec *timeout;
1201 	sigset_t set;
1202 	ksiginfo_t ksi;
1203 	int error;
1204 
1205 	if (uap->timeout) {
1206 		error = copyin(uap->timeout, &ts, sizeof(ts));
1207 		if (error)
1208 			return (error);
1209 
1210 		timeout = &ts;
1211 	} else
1212 		timeout = NULL;
1213 
1214 	error = copyin(uap->set, &set, sizeof(set));
1215 	if (error)
1216 		return (error);
1217 
1218 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1219 	if (error)
1220 		return (error);
1221 
1222 	if (uap->info)
1223 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1224 
1225 	if (error == 0)
1226 		td->td_retval[0] = ksi.ksi_signo;
1227 	return (error);
1228 }
1229 
1230 int
1231 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1232 {
1233 	ksiginfo_t ksi;
1234 	sigset_t set;
1235 	int error;
1236 
1237 	error = copyin(uap->set, &set, sizeof(set));
1238 	if (error)
1239 		return (error);
1240 
1241 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1242 	if (error)
1243 		return (error);
1244 
1245 	if (uap->info)
1246 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1247 
1248 	if (error == 0)
1249 		td->td_retval[0] = ksi.ksi_signo;
1250 	return (error);
1251 }
1252 
1253 static void
1254 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1255 {
1256 	struct thread *thr;
1257 
1258 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1259 		if (thr == td)
1260 			thr->td_si = *si;
1261 		else
1262 			thr->td_si.si_signo = 0;
1263 	}
1264 }
1265 
1266 int
1267 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1268 	struct timespec *timeout)
1269 {
1270 	struct sigacts *ps;
1271 	sigset_t saved_mask, new_block;
1272 	struct proc *p;
1273 	int error, sig, timo, timevalid = 0;
1274 	struct timespec rts, ets, ts;
1275 	struct timeval tv;
1276 
1277 	p = td->td_proc;
1278 	error = 0;
1279 	ets.tv_sec = 0;
1280 	ets.tv_nsec = 0;
1281 
1282 	if (timeout != NULL) {
1283 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1284 			timevalid = 1;
1285 			getnanouptime(&rts);
1286 			timespecadd(&rts, timeout, &ets);
1287 		}
1288 	}
1289 	ksiginfo_init(ksi);
1290 	/* Some signals can not be waited for. */
1291 	SIG_CANTMASK(waitset);
1292 	ps = p->p_sigacts;
1293 	PROC_LOCK(p);
1294 	saved_mask = td->td_sigmask;
1295 	SIGSETNAND(td->td_sigmask, waitset);
1296 	for (;;) {
1297 		mtx_lock(&ps->ps_mtx);
1298 		sig = cursig(td);
1299 		mtx_unlock(&ps->ps_mtx);
1300 		KASSERT(sig >= 0, ("sig %d", sig));
1301 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1302 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1303 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1304 				error = 0;
1305 				break;
1306 			}
1307 		}
1308 
1309 		if (error != 0)
1310 			break;
1311 
1312 		/*
1313 		 * POSIX says this must be checked after looking for pending
1314 		 * signals.
1315 		 */
1316 		if (timeout != NULL) {
1317 			if (!timevalid) {
1318 				error = EINVAL;
1319 				break;
1320 			}
1321 			getnanouptime(&rts);
1322 			if (timespeccmp(&rts, &ets, >=)) {
1323 				error = EAGAIN;
1324 				break;
1325 			}
1326 			timespecsub(&ets, &rts, &ts);
1327 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1328 			timo = tvtohz(&tv);
1329 		} else {
1330 			timo = 0;
1331 		}
1332 
1333 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1334 
1335 		if (timeout != NULL) {
1336 			if (error == ERESTART) {
1337 				/* Timeout can not be restarted. */
1338 				error = EINTR;
1339 			} else if (error == EAGAIN) {
1340 				/* We will calculate timeout by ourself. */
1341 				error = 0;
1342 			}
1343 		}
1344 	}
1345 
1346 	new_block = saved_mask;
1347 	SIGSETNAND(new_block, td->td_sigmask);
1348 	td->td_sigmask = saved_mask;
1349 	/*
1350 	 * Fewer signals can be delivered to us, reschedule signal
1351 	 * notification.
1352 	 */
1353 	if (p->p_numthreads != 1)
1354 		reschedule_signals(p, new_block, 0);
1355 
1356 	if (error == 0) {
1357 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1358 
1359 		if (ksi->ksi_code == SI_TIMER)
1360 			itimer_accept(p, ksi->ksi_timerid, ksi);
1361 
1362 #ifdef KTRACE
1363 		if (KTRPOINT(td, KTR_PSIG)) {
1364 			sig_t action;
1365 
1366 			mtx_lock(&ps->ps_mtx);
1367 			action = ps->ps_sigact[_SIG_IDX(sig)];
1368 			mtx_unlock(&ps->ps_mtx);
1369 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1370 		}
1371 #endif
1372 		if (sig == SIGKILL) {
1373 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1374 			sigexit(td, sig);
1375 		}
1376 	}
1377 	PROC_UNLOCK(p);
1378 	return (error);
1379 }
1380 
1381 #ifndef _SYS_SYSPROTO_H_
1382 struct sigpending_args {
1383 	sigset_t	*set;
1384 };
1385 #endif
1386 int
1387 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1388 {
1389 	struct proc *p = td->td_proc;
1390 	sigset_t pending;
1391 
1392 	PROC_LOCK(p);
1393 	pending = p->p_sigqueue.sq_signals;
1394 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1395 	PROC_UNLOCK(p);
1396 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1397 }
1398 
1399 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1400 #ifndef _SYS_SYSPROTO_H_
1401 struct osigpending_args {
1402 	int	dummy;
1403 };
1404 #endif
1405 int
1406 osigpending(struct thread *td, struct osigpending_args *uap)
1407 {
1408 	struct proc *p = td->td_proc;
1409 	sigset_t pending;
1410 
1411 	PROC_LOCK(p);
1412 	pending = p->p_sigqueue.sq_signals;
1413 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1414 	PROC_UNLOCK(p);
1415 	SIG2OSIG(pending, td->td_retval[0]);
1416 	return (0);
1417 }
1418 #endif /* COMPAT_43 */
1419 
1420 #if defined(COMPAT_43)
1421 /*
1422  * Generalized interface signal handler, 4.3-compatible.
1423  */
1424 #ifndef _SYS_SYSPROTO_H_
1425 struct osigvec_args {
1426 	int	signum;
1427 	struct	sigvec *nsv;
1428 	struct	sigvec *osv;
1429 };
1430 #endif
1431 /* ARGSUSED */
1432 int
1433 osigvec(struct thread *td, struct osigvec_args *uap)
1434 {
1435 	struct sigvec vec;
1436 	struct sigaction nsa, osa;
1437 	struct sigaction *nsap, *osap;
1438 	int error;
1439 
1440 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1441 		return (EINVAL);
1442 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1443 	osap = (uap->osv != NULL) ? &osa : NULL;
1444 	if (nsap) {
1445 		error = copyin(uap->nsv, &vec, sizeof(vec));
1446 		if (error)
1447 			return (error);
1448 		nsap->sa_handler = vec.sv_handler;
1449 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1450 		nsap->sa_flags = vec.sv_flags;
1451 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1452 	}
1453 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1454 	if (osap && !error) {
1455 		vec.sv_handler = osap->sa_handler;
1456 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1457 		vec.sv_flags = osap->sa_flags;
1458 		vec.sv_flags &= ~SA_NOCLDWAIT;
1459 		vec.sv_flags ^= SA_RESTART;
1460 		error = copyout(&vec, uap->osv, sizeof(vec));
1461 	}
1462 	return (error);
1463 }
1464 
1465 #ifndef _SYS_SYSPROTO_H_
1466 struct osigblock_args {
1467 	int	mask;
1468 };
1469 #endif
1470 int
1471 osigblock(struct thread *td, struct osigblock_args *uap)
1472 {
1473 	sigset_t set, oset;
1474 
1475 	OSIG2SIG(uap->mask, set);
1476 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1477 	SIG2OSIG(oset, td->td_retval[0]);
1478 	return (0);
1479 }
1480 
1481 #ifndef _SYS_SYSPROTO_H_
1482 struct osigsetmask_args {
1483 	int	mask;
1484 };
1485 #endif
1486 int
1487 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1488 {
1489 	sigset_t set, oset;
1490 
1491 	OSIG2SIG(uap->mask, set);
1492 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1493 	SIG2OSIG(oset, td->td_retval[0]);
1494 	return (0);
1495 }
1496 #endif /* COMPAT_43 */
1497 
1498 /*
1499  * Suspend calling thread until signal, providing mask to be set in the
1500  * meantime.
1501  */
1502 #ifndef _SYS_SYSPROTO_H_
1503 struct sigsuspend_args {
1504 	const sigset_t *sigmask;
1505 };
1506 #endif
1507 /* ARGSUSED */
1508 int
1509 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1510 {
1511 	sigset_t mask;
1512 	int error;
1513 
1514 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1515 	if (error)
1516 		return (error);
1517 	return (kern_sigsuspend(td, mask));
1518 }
1519 
1520 int
1521 kern_sigsuspend(struct thread *td, sigset_t mask)
1522 {
1523 	struct proc *p = td->td_proc;
1524 	int has_sig, sig;
1525 
1526 	/*
1527 	 * When returning from sigsuspend, we want
1528 	 * the old mask to be restored after the
1529 	 * signal handler has finished.  Thus, we
1530 	 * save it here and mark the sigacts structure
1531 	 * to indicate this.
1532 	 */
1533 	PROC_LOCK(p);
1534 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1535 	    SIGPROCMASK_PROC_LOCKED);
1536 	td->td_pflags |= TDP_OLDMASK;
1537 
1538 	/*
1539 	 * Process signals now. Otherwise, we can get spurious wakeup
1540 	 * due to signal entered process queue, but delivered to other
1541 	 * thread. But sigsuspend should return only on signal
1542 	 * delivery.
1543 	 */
1544 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1545 	for (has_sig = 0; !has_sig;) {
1546 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1547 			0) == 0)
1548 			/* void */;
1549 		thread_suspend_check(0);
1550 		mtx_lock(&p->p_sigacts->ps_mtx);
1551 		while ((sig = cursig(td)) != 0) {
1552 			KASSERT(sig >= 0, ("sig %d", sig));
1553 			has_sig += postsig(sig);
1554 		}
1555 		mtx_unlock(&p->p_sigacts->ps_mtx);
1556 	}
1557 	PROC_UNLOCK(p);
1558 	td->td_errno = EINTR;
1559 	td->td_pflags |= TDP_NERRNO;
1560 	return (EJUSTRETURN);
1561 }
1562 
1563 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1564 /*
1565  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1566  * convention: libc stub passes mask, not pointer, to save a copyin.
1567  */
1568 #ifndef _SYS_SYSPROTO_H_
1569 struct osigsuspend_args {
1570 	osigset_t mask;
1571 };
1572 #endif
1573 /* ARGSUSED */
1574 int
1575 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1576 {
1577 	sigset_t mask;
1578 
1579 	OSIG2SIG(uap->mask, mask);
1580 	return (kern_sigsuspend(td, mask));
1581 }
1582 #endif /* COMPAT_43 */
1583 
1584 #if defined(COMPAT_43)
1585 #ifndef _SYS_SYSPROTO_H_
1586 struct osigstack_args {
1587 	struct	sigstack *nss;
1588 	struct	sigstack *oss;
1589 };
1590 #endif
1591 /* ARGSUSED */
1592 int
1593 osigstack(struct thread *td, struct osigstack_args *uap)
1594 {
1595 	struct sigstack nss, oss;
1596 	int error = 0;
1597 
1598 	if (uap->nss != NULL) {
1599 		error = copyin(uap->nss, &nss, sizeof(nss));
1600 		if (error)
1601 			return (error);
1602 	}
1603 	oss.ss_sp = td->td_sigstk.ss_sp;
1604 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1605 	if (uap->nss != NULL) {
1606 		td->td_sigstk.ss_sp = nss.ss_sp;
1607 		td->td_sigstk.ss_size = 0;
1608 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1609 		td->td_pflags |= TDP_ALTSTACK;
1610 	}
1611 	if (uap->oss != NULL)
1612 		error = copyout(&oss, uap->oss, sizeof(oss));
1613 
1614 	return (error);
1615 }
1616 #endif /* COMPAT_43 */
1617 
1618 #ifndef _SYS_SYSPROTO_H_
1619 struct sigaltstack_args {
1620 	stack_t	*ss;
1621 	stack_t	*oss;
1622 };
1623 #endif
1624 /* ARGSUSED */
1625 int
1626 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1627 {
1628 	stack_t ss, oss;
1629 	int error;
1630 
1631 	if (uap->ss != NULL) {
1632 		error = copyin(uap->ss, &ss, sizeof(ss));
1633 		if (error)
1634 			return (error);
1635 	}
1636 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1637 	    (uap->oss != NULL) ? &oss : NULL);
1638 	if (error)
1639 		return (error);
1640 	if (uap->oss != NULL)
1641 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1642 	return (error);
1643 }
1644 
1645 int
1646 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1647 {
1648 	struct proc *p = td->td_proc;
1649 	int oonstack;
1650 
1651 	oonstack = sigonstack(cpu_getstack(td));
1652 
1653 	if (oss != NULL) {
1654 		*oss = td->td_sigstk;
1655 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1656 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1657 	}
1658 
1659 	if (ss != NULL) {
1660 		if (oonstack)
1661 			return (EPERM);
1662 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1663 			return (EINVAL);
1664 		if (!(ss->ss_flags & SS_DISABLE)) {
1665 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1666 				return (ENOMEM);
1667 
1668 			td->td_sigstk = *ss;
1669 			td->td_pflags |= TDP_ALTSTACK;
1670 		} else {
1671 			td->td_pflags &= ~TDP_ALTSTACK;
1672 		}
1673 	}
1674 	return (0);
1675 }
1676 
1677 /*
1678  * Common code for kill process group/broadcast kill.
1679  * cp is calling process.
1680  */
1681 static int
1682 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1683 {
1684 	struct proc *p;
1685 	struct pgrp *pgrp;
1686 	int err;
1687 	int ret;
1688 
1689 	ret = ESRCH;
1690 	if (all) {
1691 		/*
1692 		 * broadcast
1693 		 */
1694 		sx_slock(&allproc_lock);
1695 		FOREACH_PROC_IN_SYSTEM(p) {
1696 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1697 			    p == td->td_proc || p->p_state == PRS_NEW) {
1698 				continue;
1699 			}
1700 			PROC_LOCK(p);
1701 			err = p_cansignal(td, p, sig);
1702 			if (err == 0) {
1703 				if (sig)
1704 					pksignal(p, sig, ksi);
1705 				ret = err;
1706 			}
1707 			else if (ret == ESRCH)
1708 				ret = err;
1709 			PROC_UNLOCK(p);
1710 		}
1711 		sx_sunlock(&allproc_lock);
1712 	} else {
1713 		sx_slock(&proctree_lock);
1714 		if (pgid == 0) {
1715 			/*
1716 			 * zero pgid means send to my process group.
1717 			 */
1718 			pgrp = td->td_proc->p_pgrp;
1719 			PGRP_LOCK(pgrp);
1720 		} else {
1721 			pgrp = pgfind(pgid);
1722 			if (pgrp == NULL) {
1723 				sx_sunlock(&proctree_lock);
1724 				return (ESRCH);
1725 			}
1726 		}
1727 		sx_sunlock(&proctree_lock);
1728 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1729 			PROC_LOCK(p);
1730 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1731 			    p->p_state == PRS_NEW) {
1732 				PROC_UNLOCK(p);
1733 				continue;
1734 			}
1735 			err = p_cansignal(td, p, sig);
1736 			if (err == 0) {
1737 				if (sig)
1738 					pksignal(p, sig, ksi);
1739 				ret = err;
1740 			}
1741 			else if (ret == ESRCH)
1742 				ret = err;
1743 			PROC_UNLOCK(p);
1744 		}
1745 		PGRP_UNLOCK(pgrp);
1746 	}
1747 	return (ret);
1748 }
1749 
1750 #ifndef _SYS_SYSPROTO_H_
1751 struct kill_args {
1752 	int	pid;
1753 	int	signum;
1754 };
1755 #endif
1756 /* ARGSUSED */
1757 int
1758 sys_kill(struct thread *td, struct kill_args *uap)
1759 {
1760 	ksiginfo_t ksi;
1761 	struct proc *p;
1762 	int error;
1763 
1764 	/*
1765 	 * A process in capability mode can send signals only to himself.
1766 	 * The main rationale behind this is that abort(3) is implemented as
1767 	 * kill(getpid(), SIGABRT).
1768 	 */
1769 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1770 		return (ECAPMODE);
1771 
1772 	AUDIT_ARG_SIGNUM(uap->signum);
1773 	AUDIT_ARG_PID(uap->pid);
1774 	if ((u_int)uap->signum > _SIG_MAXSIG)
1775 		return (EINVAL);
1776 
1777 	ksiginfo_init(&ksi);
1778 	ksi.ksi_signo = uap->signum;
1779 	ksi.ksi_code = SI_USER;
1780 	ksi.ksi_pid = td->td_proc->p_pid;
1781 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1782 
1783 	if (uap->pid > 0) {
1784 		/* kill single process */
1785 		if ((p = pfind_any(uap->pid)) == NULL)
1786 			return (ESRCH);
1787 		AUDIT_ARG_PROCESS(p);
1788 		error = p_cansignal(td, p, uap->signum);
1789 		if (error == 0 && uap->signum)
1790 			pksignal(p, uap->signum, &ksi);
1791 		PROC_UNLOCK(p);
1792 		return (error);
1793 	}
1794 	switch (uap->pid) {
1795 	case -1:		/* broadcast signal */
1796 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1797 	case 0:			/* signal own process group */
1798 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1799 	default:		/* negative explicit process group */
1800 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1801 	}
1802 	/* NOTREACHED */
1803 }
1804 
1805 int
1806 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1807 {
1808 	struct proc *p;
1809 	int error;
1810 
1811 	AUDIT_ARG_SIGNUM(uap->signum);
1812 	AUDIT_ARG_FD(uap->fd);
1813 	if ((u_int)uap->signum > _SIG_MAXSIG)
1814 		return (EINVAL);
1815 
1816 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1817 	if (error)
1818 		return (error);
1819 	AUDIT_ARG_PROCESS(p);
1820 	error = p_cansignal(td, p, uap->signum);
1821 	if (error == 0 && uap->signum)
1822 		kern_psignal(p, uap->signum);
1823 	PROC_UNLOCK(p);
1824 	return (error);
1825 }
1826 
1827 #if defined(COMPAT_43)
1828 #ifndef _SYS_SYSPROTO_H_
1829 struct okillpg_args {
1830 	int	pgid;
1831 	int	signum;
1832 };
1833 #endif
1834 /* ARGSUSED */
1835 int
1836 okillpg(struct thread *td, struct okillpg_args *uap)
1837 {
1838 	ksiginfo_t ksi;
1839 
1840 	AUDIT_ARG_SIGNUM(uap->signum);
1841 	AUDIT_ARG_PID(uap->pgid);
1842 	if ((u_int)uap->signum > _SIG_MAXSIG)
1843 		return (EINVAL);
1844 
1845 	ksiginfo_init(&ksi);
1846 	ksi.ksi_signo = uap->signum;
1847 	ksi.ksi_code = SI_USER;
1848 	ksi.ksi_pid = td->td_proc->p_pid;
1849 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1850 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1851 }
1852 #endif /* COMPAT_43 */
1853 
1854 #ifndef _SYS_SYSPROTO_H_
1855 struct sigqueue_args {
1856 	pid_t pid;
1857 	int signum;
1858 	/* union sigval */ void *value;
1859 };
1860 #endif
1861 int
1862 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1863 {
1864 	union sigval sv;
1865 
1866 	sv.sival_ptr = uap->value;
1867 
1868 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1869 }
1870 
1871 int
1872 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1873 {
1874 	ksiginfo_t ksi;
1875 	struct proc *p;
1876 	int error;
1877 
1878 	if ((u_int)signum > _SIG_MAXSIG)
1879 		return (EINVAL);
1880 
1881 	/*
1882 	 * Specification says sigqueue can only send signal to
1883 	 * single process.
1884 	 */
1885 	if (pid <= 0)
1886 		return (EINVAL);
1887 
1888 	if ((p = pfind_any(pid)) == NULL)
1889 		return (ESRCH);
1890 	error = p_cansignal(td, p, signum);
1891 	if (error == 0 && signum != 0) {
1892 		ksiginfo_init(&ksi);
1893 		ksi.ksi_flags = KSI_SIGQ;
1894 		ksi.ksi_signo = signum;
1895 		ksi.ksi_code = SI_QUEUE;
1896 		ksi.ksi_pid = td->td_proc->p_pid;
1897 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1898 		ksi.ksi_value = *value;
1899 		error = pksignal(p, ksi.ksi_signo, &ksi);
1900 	}
1901 	PROC_UNLOCK(p);
1902 	return (error);
1903 }
1904 
1905 /*
1906  * Send a signal to a process group.
1907  */
1908 void
1909 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1910 {
1911 	struct pgrp *pgrp;
1912 
1913 	if (pgid != 0) {
1914 		sx_slock(&proctree_lock);
1915 		pgrp = pgfind(pgid);
1916 		sx_sunlock(&proctree_lock);
1917 		if (pgrp != NULL) {
1918 			pgsignal(pgrp, sig, 0, ksi);
1919 			PGRP_UNLOCK(pgrp);
1920 		}
1921 	}
1922 }
1923 
1924 /*
1925  * Send a signal to a process group.  If checktty is 1,
1926  * limit to members which have a controlling terminal.
1927  */
1928 void
1929 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1930 {
1931 	struct proc *p;
1932 
1933 	if (pgrp) {
1934 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1935 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1936 			PROC_LOCK(p);
1937 			if (p->p_state == PRS_NORMAL &&
1938 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1939 				pksignal(p, sig, ksi);
1940 			PROC_UNLOCK(p);
1941 		}
1942 	}
1943 }
1944 
1945 
1946 /*
1947  * Recalculate the signal mask and reset the signal disposition after
1948  * usermode frame for delivery is formed.  Should be called after
1949  * mach-specific routine, because sysent->sv_sendsig() needs correct
1950  * ps_siginfo and signal mask.
1951  */
1952 static void
1953 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1954 {
1955 	sigset_t mask;
1956 
1957 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1958 	td->td_ru.ru_nsignals++;
1959 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1960 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1961 		SIGADDSET(mask, sig);
1962 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1963 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1964 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1965 		sigdflt(ps, sig);
1966 }
1967 
1968 
1969 /*
1970  * Send a signal caused by a trap to the current thread.  If it will be
1971  * caught immediately, deliver it with correct code.  Otherwise, post it
1972  * normally.
1973  */
1974 void
1975 trapsignal(struct thread *td, ksiginfo_t *ksi)
1976 {
1977 	struct sigacts *ps;
1978 	struct proc *p;
1979 	int sig;
1980 	int code;
1981 
1982 	p = td->td_proc;
1983 	sig = ksi->ksi_signo;
1984 	code = ksi->ksi_code;
1985 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1986 
1987 	PROC_LOCK(p);
1988 	ps = p->p_sigacts;
1989 	mtx_lock(&ps->ps_mtx);
1990 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1991 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1992 #ifdef KTRACE
1993 		if (KTRPOINT(curthread, KTR_PSIG))
1994 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1995 			    &td->td_sigmask, code);
1996 #endif
1997 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1998 				ksi, &td->td_sigmask);
1999 		postsig_done(sig, td, ps);
2000 		mtx_unlock(&ps->ps_mtx);
2001 	} else {
2002 		/*
2003 		 * Avoid a possible infinite loop if the thread
2004 		 * masking the signal or process is ignoring the
2005 		 * signal.
2006 		 */
2007 		if (kern_forcesigexit &&
2008 		    (SIGISMEMBER(td->td_sigmask, sig) ||
2009 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2010 			SIGDELSET(td->td_sigmask, sig);
2011 			SIGDELSET(ps->ps_sigcatch, sig);
2012 			SIGDELSET(ps->ps_sigignore, sig);
2013 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2014 		}
2015 		mtx_unlock(&ps->ps_mtx);
2016 		p->p_sig = sig;		/* XXX to verify code */
2017 		tdsendsignal(p, td, sig, ksi);
2018 	}
2019 	PROC_UNLOCK(p);
2020 }
2021 
2022 static struct thread *
2023 sigtd(struct proc *p, int sig, int prop)
2024 {
2025 	struct thread *td, *signal_td;
2026 
2027 	PROC_LOCK_ASSERT(p, MA_OWNED);
2028 
2029 	/*
2030 	 * Check if current thread can handle the signal without
2031 	 * switching context to another thread.
2032 	 */
2033 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2034 		return (curthread);
2035 	signal_td = NULL;
2036 	FOREACH_THREAD_IN_PROC(p, td) {
2037 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2038 			signal_td = td;
2039 			break;
2040 		}
2041 	}
2042 	if (signal_td == NULL)
2043 		signal_td = FIRST_THREAD_IN_PROC(p);
2044 	return (signal_td);
2045 }
2046 
2047 /*
2048  * Send the signal to the process.  If the signal has an action, the action
2049  * is usually performed by the target process rather than the caller; we add
2050  * the signal to the set of pending signals for the process.
2051  *
2052  * Exceptions:
2053  *   o When a stop signal is sent to a sleeping process that takes the
2054  *     default action, the process is stopped without awakening it.
2055  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2056  *     regardless of the signal action (eg, blocked or ignored).
2057  *
2058  * Other ignored signals are discarded immediately.
2059  *
2060  * NB: This function may be entered from the debugger via the "kill" DDB
2061  * command.  There is little that can be done to mitigate the possibly messy
2062  * side effects of this unwise possibility.
2063  */
2064 void
2065 kern_psignal(struct proc *p, int sig)
2066 {
2067 	ksiginfo_t ksi;
2068 
2069 	ksiginfo_init(&ksi);
2070 	ksi.ksi_signo = sig;
2071 	ksi.ksi_code = SI_KERNEL;
2072 	(void) tdsendsignal(p, NULL, sig, &ksi);
2073 }
2074 
2075 int
2076 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2077 {
2078 
2079 	return (tdsendsignal(p, NULL, sig, ksi));
2080 }
2081 
2082 /* Utility function for finding a thread to send signal event to. */
2083 int
2084 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2085 {
2086 	struct thread *td;
2087 
2088 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2089 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2090 		if (td == NULL)
2091 			return (ESRCH);
2092 		*ttd = td;
2093 	} else {
2094 		*ttd = NULL;
2095 		PROC_LOCK(p);
2096 	}
2097 	return (0);
2098 }
2099 
2100 void
2101 tdsignal(struct thread *td, int sig)
2102 {
2103 	ksiginfo_t ksi;
2104 
2105 	ksiginfo_init(&ksi);
2106 	ksi.ksi_signo = sig;
2107 	ksi.ksi_code = SI_KERNEL;
2108 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2109 }
2110 
2111 void
2112 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2113 {
2114 
2115 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2116 }
2117 
2118 int
2119 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2120 {
2121 	sig_t action;
2122 	sigqueue_t *sigqueue;
2123 	int prop;
2124 	struct sigacts *ps;
2125 	int intrval;
2126 	int ret = 0;
2127 	int wakeup_swapper;
2128 
2129 	MPASS(td == NULL || p == td->td_proc);
2130 	PROC_LOCK_ASSERT(p, MA_OWNED);
2131 
2132 	if (!_SIG_VALID(sig))
2133 		panic("%s(): invalid signal %d", __func__, sig);
2134 
2135 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2136 
2137 	/*
2138 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2139 	 */
2140 	if (p->p_state == PRS_ZOMBIE) {
2141 		if (ksi && (ksi->ksi_flags & KSI_INS))
2142 			ksiginfo_tryfree(ksi);
2143 		return (ret);
2144 	}
2145 
2146 	ps = p->p_sigacts;
2147 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2148 	prop = sigprop(sig);
2149 
2150 	if (td == NULL) {
2151 		td = sigtd(p, sig, prop);
2152 		sigqueue = &p->p_sigqueue;
2153 	} else
2154 		sigqueue = &td->td_sigqueue;
2155 
2156 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2157 
2158 	/*
2159 	 * If the signal is being ignored,
2160 	 * then we forget about it immediately.
2161 	 * (Note: we don't set SIGCONT in ps_sigignore,
2162 	 * and if it is set to SIG_IGN,
2163 	 * action will be SIG_DFL here.)
2164 	 */
2165 	mtx_lock(&ps->ps_mtx);
2166 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2167 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2168 
2169 		mtx_unlock(&ps->ps_mtx);
2170 		if (ksi && (ksi->ksi_flags & KSI_INS))
2171 			ksiginfo_tryfree(ksi);
2172 		return (ret);
2173 	}
2174 	if (SIGISMEMBER(td->td_sigmask, sig))
2175 		action = SIG_HOLD;
2176 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2177 		action = SIG_CATCH;
2178 	else
2179 		action = SIG_DFL;
2180 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2181 		intrval = EINTR;
2182 	else
2183 		intrval = ERESTART;
2184 	mtx_unlock(&ps->ps_mtx);
2185 
2186 	if (prop & SIGPROP_CONT)
2187 		sigqueue_delete_stopmask_proc(p);
2188 	else if (prop & SIGPROP_STOP) {
2189 		/*
2190 		 * If sending a tty stop signal to a member of an orphaned
2191 		 * process group, discard the signal here if the action
2192 		 * is default; don't stop the process below if sleeping,
2193 		 * and don't clear any pending SIGCONT.
2194 		 */
2195 		if ((prop & SIGPROP_TTYSTOP) &&
2196 		    (p->p_pgrp->pg_jobc == 0) &&
2197 		    (action == SIG_DFL)) {
2198 			if (ksi && (ksi->ksi_flags & KSI_INS))
2199 				ksiginfo_tryfree(ksi);
2200 			return (ret);
2201 		}
2202 		sigqueue_delete_proc(p, SIGCONT);
2203 		if (p->p_flag & P_CONTINUED) {
2204 			p->p_flag &= ~P_CONTINUED;
2205 			PROC_LOCK(p->p_pptr);
2206 			sigqueue_take(p->p_ksi);
2207 			PROC_UNLOCK(p->p_pptr);
2208 		}
2209 	}
2210 
2211 	ret = sigqueue_add(sigqueue, sig, ksi);
2212 	if (ret != 0)
2213 		return (ret);
2214 	signotify(td);
2215 	/*
2216 	 * Defer further processing for signals which are held,
2217 	 * except that stopped processes must be continued by SIGCONT.
2218 	 */
2219 	if (action == SIG_HOLD &&
2220 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2221 		return (ret);
2222 
2223 	/* SIGKILL: Remove procfs STOPEVENTs. */
2224 	if (sig == SIGKILL) {
2225 		/* from procfs_ioctl.c: PIOCBIC */
2226 		p->p_stops = 0;
2227 		/* from procfs_ioctl.c: PIOCCONT */
2228 		p->p_step = 0;
2229 		wakeup(&p->p_step);
2230 	}
2231 	/*
2232 	 * Some signals have a process-wide effect and a per-thread
2233 	 * component.  Most processing occurs when the process next
2234 	 * tries to cross the user boundary, however there are some
2235 	 * times when processing needs to be done immediately, such as
2236 	 * waking up threads so that they can cross the user boundary.
2237 	 * We try to do the per-process part here.
2238 	 */
2239 	if (P_SHOULDSTOP(p)) {
2240 		KASSERT(!(p->p_flag & P_WEXIT),
2241 		    ("signal to stopped but exiting process"));
2242 		if (sig == SIGKILL) {
2243 			/*
2244 			 * If traced process is already stopped,
2245 			 * then no further action is necessary.
2246 			 */
2247 			if (p->p_flag & P_TRACED)
2248 				goto out;
2249 			/*
2250 			 * SIGKILL sets process running.
2251 			 * It will die elsewhere.
2252 			 * All threads must be restarted.
2253 			 */
2254 			p->p_flag &= ~P_STOPPED_SIG;
2255 			goto runfast;
2256 		}
2257 
2258 		if (prop & SIGPROP_CONT) {
2259 			/*
2260 			 * If traced process is already stopped,
2261 			 * then no further action is necessary.
2262 			 */
2263 			if (p->p_flag & P_TRACED)
2264 				goto out;
2265 			/*
2266 			 * If SIGCONT is default (or ignored), we continue the
2267 			 * process but don't leave the signal in sigqueue as
2268 			 * it has no further action.  If SIGCONT is held, we
2269 			 * continue the process and leave the signal in
2270 			 * sigqueue.  If the process catches SIGCONT, let it
2271 			 * handle the signal itself.  If it isn't waiting on
2272 			 * an event, it goes back to run state.
2273 			 * Otherwise, process goes back to sleep state.
2274 			 */
2275 			p->p_flag &= ~P_STOPPED_SIG;
2276 			PROC_SLOCK(p);
2277 			if (p->p_numthreads == p->p_suspcount) {
2278 				PROC_SUNLOCK(p);
2279 				p->p_flag |= P_CONTINUED;
2280 				p->p_xsig = SIGCONT;
2281 				PROC_LOCK(p->p_pptr);
2282 				childproc_continued(p);
2283 				PROC_UNLOCK(p->p_pptr);
2284 				PROC_SLOCK(p);
2285 			}
2286 			if (action == SIG_DFL) {
2287 				thread_unsuspend(p);
2288 				PROC_SUNLOCK(p);
2289 				sigqueue_delete(sigqueue, sig);
2290 				goto out;
2291 			}
2292 			if (action == SIG_CATCH) {
2293 				/*
2294 				 * The process wants to catch it so it needs
2295 				 * to run at least one thread, but which one?
2296 				 */
2297 				PROC_SUNLOCK(p);
2298 				goto runfast;
2299 			}
2300 			/*
2301 			 * The signal is not ignored or caught.
2302 			 */
2303 			thread_unsuspend(p);
2304 			PROC_SUNLOCK(p);
2305 			goto out;
2306 		}
2307 
2308 		if (prop & SIGPROP_STOP) {
2309 			/*
2310 			 * If traced process is already stopped,
2311 			 * then no further action is necessary.
2312 			 */
2313 			if (p->p_flag & P_TRACED)
2314 				goto out;
2315 			/*
2316 			 * Already stopped, don't need to stop again
2317 			 * (If we did the shell could get confused).
2318 			 * Just make sure the signal STOP bit set.
2319 			 */
2320 			p->p_flag |= P_STOPPED_SIG;
2321 			sigqueue_delete(sigqueue, sig);
2322 			goto out;
2323 		}
2324 
2325 		/*
2326 		 * All other kinds of signals:
2327 		 * If a thread is sleeping interruptibly, simulate a
2328 		 * wakeup so that when it is continued it will be made
2329 		 * runnable and can look at the signal.  However, don't make
2330 		 * the PROCESS runnable, leave it stopped.
2331 		 * It may run a bit until it hits a thread_suspend_check().
2332 		 */
2333 		wakeup_swapper = 0;
2334 		PROC_SLOCK(p);
2335 		thread_lock(td);
2336 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2337 			wakeup_swapper = sleepq_abort(td, intrval);
2338 		thread_unlock(td);
2339 		PROC_SUNLOCK(p);
2340 		if (wakeup_swapper)
2341 			kick_proc0();
2342 		goto out;
2343 		/*
2344 		 * Mutexes are short lived. Threads waiting on them will
2345 		 * hit thread_suspend_check() soon.
2346 		 */
2347 	} else if (p->p_state == PRS_NORMAL) {
2348 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2349 			tdsigwakeup(td, sig, action, intrval);
2350 			goto out;
2351 		}
2352 
2353 		MPASS(action == SIG_DFL);
2354 
2355 		if (prop & SIGPROP_STOP) {
2356 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2357 				goto out;
2358 			p->p_flag |= P_STOPPED_SIG;
2359 			p->p_xsig = sig;
2360 			PROC_SLOCK(p);
2361 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2362 			if (p->p_numthreads == p->p_suspcount) {
2363 				/*
2364 				 * only thread sending signal to another
2365 				 * process can reach here, if thread is sending
2366 				 * signal to its process, because thread does
2367 				 * not suspend itself here, p_numthreads
2368 				 * should never be equal to p_suspcount.
2369 				 */
2370 				thread_stopped(p);
2371 				PROC_SUNLOCK(p);
2372 				sigqueue_delete_proc(p, p->p_xsig);
2373 			} else
2374 				PROC_SUNLOCK(p);
2375 			if (wakeup_swapper)
2376 				kick_proc0();
2377 			goto out;
2378 		}
2379 	} else {
2380 		/* Not in "NORMAL" state. discard the signal. */
2381 		sigqueue_delete(sigqueue, sig);
2382 		goto out;
2383 	}
2384 
2385 	/*
2386 	 * The process is not stopped so we need to apply the signal to all the
2387 	 * running threads.
2388 	 */
2389 runfast:
2390 	tdsigwakeup(td, sig, action, intrval);
2391 	PROC_SLOCK(p);
2392 	thread_unsuspend(p);
2393 	PROC_SUNLOCK(p);
2394 out:
2395 	/* If we jump here, proc slock should not be owned. */
2396 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2397 	return (ret);
2398 }
2399 
2400 /*
2401  * The force of a signal has been directed against a single
2402  * thread.  We need to see what we can do about knocking it
2403  * out of any sleep it may be in etc.
2404  */
2405 static void
2406 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2407 {
2408 	struct proc *p = td->td_proc;
2409 	int prop;
2410 	int wakeup_swapper;
2411 
2412 	wakeup_swapper = 0;
2413 	PROC_LOCK_ASSERT(p, MA_OWNED);
2414 	prop = sigprop(sig);
2415 
2416 	PROC_SLOCK(p);
2417 	thread_lock(td);
2418 	/*
2419 	 * Bring the priority of a thread up if we want it to get
2420 	 * killed in this lifetime.  Be careful to avoid bumping the
2421 	 * priority of the idle thread, since we still allow to signal
2422 	 * kernel processes.
2423 	 */
2424 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2425 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2426 		sched_prio(td, PUSER);
2427 	if (TD_ON_SLEEPQ(td)) {
2428 		/*
2429 		 * If thread is sleeping uninterruptibly
2430 		 * we can't interrupt the sleep... the signal will
2431 		 * be noticed when the process returns through
2432 		 * trap() or syscall().
2433 		 */
2434 		if ((td->td_flags & TDF_SINTR) == 0)
2435 			goto out;
2436 		/*
2437 		 * If SIGCONT is default (or ignored) and process is
2438 		 * asleep, we are finished; the process should not
2439 		 * be awakened.
2440 		 */
2441 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2442 			thread_unlock(td);
2443 			PROC_SUNLOCK(p);
2444 			sigqueue_delete(&p->p_sigqueue, sig);
2445 			/*
2446 			 * It may be on either list in this state.
2447 			 * Remove from both for now.
2448 			 */
2449 			sigqueue_delete(&td->td_sigqueue, sig);
2450 			return;
2451 		}
2452 
2453 		/*
2454 		 * Don't awaken a sleeping thread for SIGSTOP if the
2455 		 * STOP signal is deferred.
2456 		 */
2457 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2458 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2459 			goto out;
2460 
2461 		/*
2462 		 * Give low priority threads a better chance to run.
2463 		 */
2464 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2465 			sched_prio(td, PUSER);
2466 
2467 		wakeup_swapper = sleepq_abort(td, intrval);
2468 	} else {
2469 		/*
2470 		 * Other states do nothing with the signal immediately,
2471 		 * other than kicking ourselves if we are running.
2472 		 * It will either never be noticed, or noticed very soon.
2473 		 */
2474 #ifdef SMP
2475 		if (TD_IS_RUNNING(td) && td != curthread)
2476 			forward_signal(td);
2477 #endif
2478 	}
2479 out:
2480 	PROC_SUNLOCK(p);
2481 	thread_unlock(td);
2482 	if (wakeup_swapper)
2483 		kick_proc0();
2484 }
2485 
2486 static int
2487 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2488 {
2489 	struct thread *td2;
2490 	int wakeup_swapper;
2491 
2492 	PROC_LOCK_ASSERT(p, MA_OWNED);
2493 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2494 	MPASS(sending || td == curthread);
2495 
2496 	wakeup_swapper = 0;
2497 	FOREACH_THREAD_IN_PROC(p, td2) {
2498 		thread_lock(td2);
2499 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2500 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2501 		    (td2->td_flags & TDF_SINTR)) {
2502 			if (td2->td_flags & TDF_SBDRY) {
2503 				/*
2504 				 * Once a thread is asleep with
2505 				 * TDF_SBDRY and without TDF_SERESTART
2506 				 * or TDF_SEINTR set, it should never
2507 				 * become suspended due to this check.
2508 				 */
2509 				KASSERT(!TD_IS_SUSPENDED(td2),
2510 				    ("thread with deferred stops suspended"));
2511 				if (TD_SBDRY_INTR(td2))
2512 					wakeup_swapper |= sleepq_abort(td2,
2513 					    TD_SBDRY_ERRNO(td2));
2514 			} else if (!TD_IS_SUSPENDED(td2)) {
2515 				thread_suspend_one(td2);
2516 			}
2517 		} else if (!TD_IS_SUSPENDED(td2)) {
2518 			if (sending || td != td2)
2519 				td2->td_flags |= TDF_ASTPENDING;
2520 #ifdef SMP
2521 			if (TD_IS_RUNNING(td2) && td2 != td)
2522 				forward_signal(td2);
2523 #endif
2524 		}
2525 		thread_unlock(td2);
2526 	}
2527 	return (wakeup_swapper);
2528 }
2529 
2530 /*
2531  * Stop the process for an event deemed interesting to the debugger. If si is
2532  * non-NULL, this is a signal exchange; the new signal requested by the
2533  * debugger will be returned for handling. If si is NULL, this is some other
2534  * type of interesting event. The debugger may request a signal be delivered in
2535  * that case as well, however it will be deferred until it can be handled.
2536  */
2537 int
2538 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2539 {
2540 	struct proc *p = td->td_proc;
2541 	struct thread *td2;
2542 	ksiginfo_t ksi;
2543 	int prop;
2544 
2545 	PROC_LOCK_ASSERT(p, MA_OWNED);
2546 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2547 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2548 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2549 
2550 	td->td_xsig = sig;
2551 
2552 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2553 		td->td_dbgflags |= TDB_XSIG;
2554 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2555 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2556 		PROC_SLOCK(p);
2557 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2558 			if (P_KILLED(p)) {
2559 				/*
2560 				 * Ensure that, if we've been PT_KILLed, the
2561 				 * exit status reflects that. Another thread
2562 				 * may also be in ptracestop(), having just
2563 				 * received the SIGKILL, but this thread was
2564 				 * unsuspended first.
2565 				 */
2566 				td->td_dbgflags &= ~TDB_XSIG;
2567 				td->td_xsig = SIGKILL;
2568 				p->p_ptevents = 0;
2569 				break;
2570 			}
2571 			if (p->p_flag & P_SINGLE_EXIT &&
2572 			    !(td->td_dbgflags & TDB_EXIT)) {
2573 				/*
2574 				 * Ignore ptrace stops except for thread exit
2575 				 * events when the process exits.
2576 				 */
2577 				td->td_dbgflags &= ~TDB_XSIG;
2578 				PROC_SUNLOCK(p);
2579 				return (0);
2580 			}
2581 
2582 			/*
2583 			 * Make wait(2) work.  Ensure that right after the
2584 			 * attach, the thread which was decided to become the
2585 			 * leader of attach gets reported to the waiter.
2586 			 * Otherwise, just avoid overwriting another thread's
2587 			 * assignment to p_xthread.  If another thread has
2588 			 * already set p_xthread, the current thread will get
2589 			 * a chance to report itself upon the next iteration.
2590 			 */
2591 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2592 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2593 			    p->p_xthread == NULL)) {
2594 				p->p_xsig = sig;
2595 				p->p_xthread = td;
2596 
2597 				/*
2598 				 * If we are on sleepqueue already,
2599 				 * let sleepqueue code decide if it
2600 				 * needs to go sleep after attach.
2601 				 */
2602 				if (td->td_wchan == NULL)
2603 					td->td_dbgflags &= ~TDB_FSTP;
2604 
2605 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2606 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2607 				sig_suspend_threads(td, p, 0);
2608 			}
2609 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2610 				td->td_dbgflags &= ~TDB_STOPATFORK;
2611 			}
2612 stopme:
2613 			thread_suspend_switch(td, p);
2614 			if (p->p_xthread == td)
2615 				p->p_xthread = NULL;
2616 			if (!(p->p_flag & P_TRACED))
2617 				break;
2618 			if (td->td_dbgflags & TDB_SUSPEND) {
2619 				if (p->p_flag & P_SINGLE_EXIT)
2620 					break;
2621 				goto stopme;
2622 			}
2623 		}
2624 		PROC_SUNLOCK(p);
2625 	}
2626 
2627 	if (si != NULL && sig == td->td_xsig) {
2628 		/* Parent wants us to take the original signal unchanged. */
2629 		si->ksi_flags |= KSI_HEAD;
2630 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2631 			si->ksi_signo = 0;
2632 	} else if (td->td_xsig != 0) {
2633 		/*
2634 		 * If parent wants us to take a new signal, then it will leave
2635 		 * it in td->td_xsig; otherwise we just look for signals again.
2636 		 */
2637 		ksiginfo_init(&ksi);
2638 		ksi.ksi_signo = td->td_xsig;
2639 		ksi.ksi_flags |= KSI_PTRACE;
2640 		prop = sigprop(td->td_xsig);
2641 		td2 = sigtd(p, td->td_xsig, prop);
2642 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2643 		if (td != td2)
2644 			return (0);
2645 	}
2646 
2647 	return (td->td_xsig);
2648 }
2649 
2650 static void
2651 reschedule_signals(struct proc *p, sigset_t block, int flags)
2652 {
2653 	struct sigacts *ps;
2654 	struct thread *td;
2655 	int sig;
2656 
2657 	PROC_LOCK_ASSERT(p, MA_OWNED);
2658 	ps = p->p_sigacts;
2659 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2660 	    MA_OWNED : MA_NOTOWNED);
2661 	if (SIGISEMPTY(p->p_siglist))
2662 		return;
2663 	SIGSETAND(block, p->p_siglist);
2664 	while ((sig = sig_ffs(&block)) != 0) {
2665 		SIGDELSET(block, sig);
2666 		td = sigtd(p, sig, 0);
2667 		signotify(td);
2668 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2669 			mtx_lock(&ps->ps_mtx);
2670 		if (p->p_flag & P_TRACED ||
2671 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2672 		    !SIGISMEMBER(td->td_sigmask, sig)))
2673 			tdsigwakeup(td, sig, SIG_CATCH,
2674 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2675 			     ERESTART));
2676 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2677 			mtx_unlock(&ps->ps_mtx);
2678 	}
2679 }
2680 
2681 void
2682 tdsigcleanup(struct thread *td)
2683 {
2684 	struct proc *p;
2685 	sigset_t unblocked;
2686 
2687 	p = td->td_proc;
2688 	PROC_LOCK_ASSERT(p, MA_OWNED);
2689 
2690 	sigqueue_flush(&td->td_sigqueue);
2691 	if (p->p_numthreads == 1)
2692 		return;
2693 
2694 	/*
2695 	 * Since we cannot handle signals, notify signal post code
2696 	 * about this by filling the sigmask.
2697 	 *
2698 	 * Also, if needed, wake up thread(s) that do not block the
2699 	 * same signals as the exiting thread, since the thread might
2700 	 * have been selected for delivery and woken up.
2701 	 */
2702 	SIGFILLSET(unblocked);
2703 	SIGSETNAND(unblocked, td->td_sigmask);
2704 	SIGFILLSET(td->td_sigmask);
2705 	reschedule_signals(p, unblocked, 0);
2706 
2707 }
2708 
2709 static int
2710 sigdeferstop_curr_flags(int cflags)
2711 {
2712 
2713 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2714 	    (cflags & TDF_SBDRY) != 0);
2715 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2716 }
2717 
2718 /*
2719  * Defer the delivery of SIGSTOP for the current thread, according to
2720  * the requested mode.  Returns previous flags, which must be restored
2721  * by sigallowstop().
2722  *
2723  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2724  * cleared by the current thread, which allow the lock-less read-only
2725  * accesses below.
2726  */
2727 int
2728 sigdeferstop_impl(int mode)
2729 {
2730 	struct thread *td;
2731 	int cflags, nflags;
2732 
2733 	td = curthread;
2734 	cflags = sigdeferstop_curr_flags(td->td_flags);
2735 	switch (mode) {
2736 	case SIGDEFERSTOP_NOP:
2737 		nflags = cflags;
2738 		break;
2739 	case SIGDEFERSTOP_OFF:
2740 		nflags = 0;
2741 		break;
2742 	case SIGDEFERSTOP_SILENT:
2743 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2744 		break;
2745 	case SIGDEFERSTOP_EINTR:
2746 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2747 		break;
2748 	case SIGDEFERSTOP_ERESTART:
2749 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2750 		break;
2751 	default:
2752 		panic("sigdeferstop: invalid mode %x", mode);
2753 		break;
2754 	}
2755 	if (cflags == nflags)
2756 		return (SIGDEFERSTOP_VAL_NCHG);
2757 	thread_lock(td);
2758 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2759 	thread_unlock(td);
2760 	return (cflags);
2761 }
2762 
2763 /*
2764  * Restores the STOP handling mode, typically permitting the delivery
2765  * of SIGSTOP for the current thread.  This does not immediately
2766  * suspend if a stop was posted.  Instead, the thread will suspend
2767  * either via ast() or a subsequent interruptible sleep.
2768  */
2769 void
2770 sigallowstop_impl(int prev)
2771 {
2772 	struct thread *td;
2773 	int cflags;
2774 
2775 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2776 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2777 	    ("sigallowstop: incorrect previous mode %x", prev));
2778 	td = curthread;
2779 	cflags = sigdeferstop_curr_flags(td->td_flags);
2780 	if (cflags != prev) {
2781 		thread_lock(td);
2782 		td->td_flags = (td->td_flags & ~cflags) | prev;
2783 		thread_unlock(td);
2784 	}
2785 }
2786 
2787 /*
2788  * If the current process has received a signal (should be caught or cause
2789  * termination, should interrupt current syscall), return the signal number.
2790  * Stop signals with default action are processed immediately, then cleared;
2791  * they aren't returned.  This is checked after each entry to the system for
2792  * a syscall or trap (though this can usually be done without calling issignal
2793  * by checking the pending signal masks in cursig.) The normal call
2794  * sequence is
2795  *
2796  *	while (sig = cursig(curthread))
2797  *		postsig(sig);
2798  */
2799 static int
2800 issignal(struct thread *td)
2801 {
2802 	struct proc *p;
2803 	struct sigacts *ps;
2804 	struct sigqueue *queue;
2805 	sigset_t sigpending;
2806 	ksiginfo_t ksi;
2807 	int prop, sig, traced;
2808 
2809 	p = td->td_proc;
2810 	ps = p->p_sigacts;
2811 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2812 	PROC_LOCK_ASSERT(p, MA_OWNED);
2813 	for (;;) {
2814 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2815 
2816 		sigpending = td->td_sigqueue.sq_signals;
2817 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2818 		SIGSETNAND(sigpending, td->td_sigmask);
2819 
2820 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2821 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2822 			SIG_STOPSIGMASK(sigpending);
2823 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2824 			return (0);
2825 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2826 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2827 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2828 			/*
2829 			 * If debugger just attached, always consume
2830 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2831 			 * execute the debugger attach ritual in
2832 			 * order.
2833 			 */
2834 			sig = SIGSTOP;
2835 			td->td_dbgflags |= TDB_FSTP;
2836 		} else {
2837 			sig = sig_ffs(&sigpending);
2838 		}
2839 
2840 		if (p->p_stops & S_SIG) {
2841 			mtx_unlock(&ps->ps_mtx);
2842 			stopevent(p, S_SIG, sig);
2843 			mtx_lock(&ps->ps_mtx);
2844 		}
2845 
2846 		/*
2847 		 * We should see pending but ignored signals
2848 		 * only if P_TRACED was on when they were posted.
2849 		 */
2850 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2851 			sigqueue_delete(&td->td_sigqueue, sig);
2852 			sigqueue_delete(&p->p_sigqueue, sig);
2853 			continue;
2854 		}
2855 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2856 			/*
2857 			 * If traced, always stop.
2858 			 * Remove old signal from queue before the stop.
2859 			 * XXX shrug off debugger, it causes siginfo to
2860 			 * be thrown away.
2861 			 */
2862 			queue = &td->td_sigqueue;
2863 			ksiginfo_init(&ksi);
2864 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2865 				queue = &p->p_sigqueue;
2866 				sigqueue_get(queue, sig, &ksi);
2867 			}
2868 			td->td_si = ksi.ksi_info;
2869 
2870 			mtx_unlock(&ps->ps_mtx);
2871 			sig = ptracestop(td, sig, &ksi);
2872 			mtx_lock(&ps->ps_mtx);
2873 
2874 			td->td_si.si_signo = 0;
2875 
2876 			/*
2877 			 * Keep looking if the debugger discarded or
2878 			 * replaced the signal.
2879 			 */
2880 			if (sig == 0)
2881 				continue;
2882 
2883 			/*
2884 			 * If the signal became masked, re-queue it.
2885 			 */
2886 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2887 				ksi.ksi_flags |= KSI_HEAD;
2888 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2889 				continue;
2890 			}
2891 
2892 			/*
2893 			 * If the traced bit got turned off, requeue
2894 			 * the signal and go back up to the top to
2895 			 * rescan signals.  This ensures that p_sig*
2896 			 * and p_sigact are consistent.
2897 			 */
2898 			if ((p->p_flag & P_TRACED) == 0) {
2899 				ksi.ksi_flags |= KSI_HEAD;
2900 				sigqueue_add(queue, sig, &ksi);
2901 				continue;
2902 			}
2903 		}
2904 
2905 		prop = sigprop(sig);
2906 
2907 		/*
2908 		 * Decide whether the signal should be returned.
2909 		 * Return the signal's number, or fall through
2910 		 * to clear it from the pending mask.
2911 		 */
2912 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2913 
2914 		case (intptr_t)SIG_DFL:
2915 			/*
2916 			 * Don't take default actions on system processes.
2917 			 */
2918 			if (p->p_pid <= 1) {
2919 #ifdef DIAGNOSTIC
2920 				/*
2921 				 * Are you sure you want to ignore SIGSEGV
2922 				 * in init? XXX
2923 				 */
2924 				printf("Process (pid %lu) got signal %d\n",
2925 					(u_long)p->p_pid, sig);
2926 #endif
2927 				break;		/* == ignore */
2928 			}
2929 			/*
2930 			 * If there is a pending stop signal to process with
2931 			 * default action, stop here, then clear the signal.
2932 			 * Traced or exiting processes should ignore stops.
2933 			 * Additionally, a member of an orphaned process group
2934 			 * should ignore tty stops.
2935 			 */
2936 			if (prop & SIGPROP_STOP) {
2937 				if (p->p_flag &
2938 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2939 				    (p->p_pgrp->pg_jobc == 0 &&
2940 				     prop & SIGPROP_TTYSTOP))
2941 					break;	/* == ignore */
2942 				if (TD_SBDRY_INTR(td)) {
2943 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2944 					    ("lost TDF_SBDRY"));
2945 					return (-1);
2946 				}
2947 				mtx_unlock(&ps->ps_mtx);
2948 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2949 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2950 				sigqueue_delete(&td->td_sigqueue, sig);
2951 				sigqueue_delete(&p->p_sigqueue, sig);
2952 				p->p_flag |= P_STOPPED_SIG;
2953 				p->p_xsig = sig;
2954 				PROC_SLOCK(p);
2955 				sig_suspend_threads(td, p, 0);
2956 				thread_suspend_switch(td, p);
2957 				PROC_SUNLOCK(p);
2958 				mtx_lock(&ps->ps_mtx);
2959 				goto next;
2960 			} else if (prop & SIGPROP_IGNORE) {
2961 				/*
2962 				 * Except for SIGCONT, shouldn't get here.
2963 				 * Default action is to ignore; drop it.
2964 				 */
2965 				break;		/* == ignore */
2966 			} else
2967 				return (sig);
2968 			/*NOTREACHED*/
2969 
2970 		case (intptr_t)SIG_IGN:
2971 			/*
2972 			 * Masking above should prevent us ever trying
2973 			 * to take action on an ignored signal other
2974 			 * than SIGCONT, unless process is traced.
2975 			 */
2976 			if ((prop & SIGPROP_CONT) == 0 &&
2977 			    (p->p_flag & P_TRACED) == 0)
2978 				printf("issignal\n");
2979 			break;		/* == ignore */
2980 
2981 		default:
2982 			/*
2983 			 * This signal has an action, let
2984 			 * postsig() process it.
2985 			 */
2986 			return (sig);
2987 		}
2988 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2989 		sigqueue_delete(&p->p_sigqueue, sig);
2990 next:;
2991 	}
2992 	/* NOTREACHED */
2993 }
2994 
2995 void
2996 thread_stopped(struct proc *p)
2997 {
2998 	int n;
2999 
3000 	PROC_LOCK_ASSERT(p, MA_OWNED);
3001 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3002 	n = p->p_suspcount;
3003 	if (p == curproc)
3004 		n++;
3005 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3006 		PROC_SUNLOCK(p);
3007 		p->p_flag &= ~P_WAITED;
3008 		PROC_LOCK(p->p_pptr);
3009 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3010 			CLD_TRAPPED : CLD_STOPPED);
3011 		PROC_UNLOCK(p->p_pptr);
3012 		PROC_SLOCK(p);
3013 	}
3014 }
3015 
3016 /*
3017  * Take the action for the specified signal
3018  * from the current set of pending signals.
3019  */
3020 int
3021 postsig(int sig)
3022 {
3023 	struct thread *td;
3024 	struct proc *p;
3025 	struct sigacts *ps;
3026 	sig_t action;
3027 	ksiginfo_t ksi;
3028 	sigset_t returnmask;
3029 
3030 	KASSERT(sig != 0, ("postsig"));
3031 
3032 	td = curthread;
3033 	p = td->td_proc;
3034 	PROC_LOCK_ASSERT(p, MA_OWNED);
3035 	ps = p->p_sigacts;
3036 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3037 	ksiginfo_init(&ksi);
3038 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3039 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3040 		return (0);
3041 	ksi.ksi_signo = sig;
3042 	if (ksi.ksi_code == SI_TIMER)
3043 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3044 	action = ps->ps_sigact[_SIG_IDX(sig)];
3045 #ifdef KTRACE
3046 	if (KTRPOINT(td, KTR_PSIG))
3047 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3048 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3049 #endif
3050 	if ((p->p_stops & S_SIG) != 0) {
3051 		mtx_unlock(&ps->ps_mtx);
3052 		stopevent(p, S_SIG, sig);
3053 		mtx_lock(&ps->ps_mtx);
3054 	}
3055 
3056 	if (action == SIG_DFL) {
3057 		/*
3058 		 * Default action, where the default is to kill
3059 		 * the process.  (Other cases were ignored above.)
3060 		 */
3061 		mtx_unlock(&ps->ps_mtx);
3062 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3063 		sigexit(td, sig);
3064 		/* NOTREACHED */
3065 	} else {
3066 		/*
3067 		 * If we get here, the signal must be caught.
3068 		 */
3069 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3070 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3071 		    ("postsig action: blocked sig %d", sig));
3072 
3073 		/*
3074 		 * Set the new mask value and also defer further
3075 		 * occurrences of this signal.
3076 		 *
3077 		 * Special case: user has done a sigsuspend.  Here the
3078 		 * current mask is not of interest, but rather the
3079 		 * mask from before the sigsuspend is what we want
3080 		 * restored after the signal processing is completed.
3081 		 */
3082 		if (td->td_pflags & TDP_OLDMASK) {
3083 			returnmask = td->td_oldsigmask;
3084 			td->td_pflags &= ~TDP_OLDMASK;
3085 		} else
3086 			returnmask = td->td_sigmask;
3087 
3088 		if (p->p_sig == sig) {
3089 			p->p_sig = 0;
3090 		}
3091 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3092 		postsig_done(sig, td, ps);
3093 	}
3094 	return (1);
3095 }
3096 
3097 void
3098 proc_wkilled(struct proc *p)
3099 {
3100 
3101 	PROC_LOCK_ASSERT(p, MA_OWNED);
3102 	if ((p->p_flag & P_WKILLED) == 0) {
3103 		p->p_flag |= P_WKILLED;
3104 		/*
3105 		 * Notify swapper that there is a process to swap in.
3106 		 * The notification is racy, at worst it would take 10
3107 		 * seconds for the swapper process to notice.
3108 		 */
3109 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3110 			wakeup(&proc0);
3111 	}
3112 }
3113 
3114 /*
3115  * Kill the current process for stated reason.
3116  */
3117 void
3118 killproc(struct proc *p, char *why)
3119 {
3120 
3121 	PROC_LOCK_ASSERT(p, MA_OWNED);
3122 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3123 	    p->p_comm);
3124 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3125 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3126 	    p->p_ucred->cr_uid, why);
3127 	proc_wkilled(p);
3128 	kern_psignal(p, SIGKILL);
3129 }
3130 
3131 /*
3132  * Force the current process to exit with the specified signal, dumping core
3133  * if appropriate.  We bypass the normal tests for masked and caught signals,
3134  * allowing unrecoverable failures to terminate the process without changing
3135  * signal state.  Mark the accounting record with the signal termination.
3136  * If dumping core, save the signal number for the debugger.  Calls exit and
3137  * does not return.
3138  */
3139 void
3140 sigexit(struct thread *td, int sig)
3141 {
3142 	struct proc *p = td->td_proc;
3143 
3144 	PROC_LOCK_ASSERT(p, MA_OWNED);
3145 	p->p_acflag |= AXSIG;
3146 	/*
3147 	 * We must be single-threading to generate a core dump.  This
3148 	 * ensures that the registers in the core file are up-to-date.
3149 	 * Also, the ELF dump handler assumes that the thread list doesn't
3150 	 * change out from under it.
3151 	 *
3152 	 * XXX If another thread attempts to single-thread before us
3153 	 *     (e.g. via fork()), we won't get a dump at all.
3154 	 */
3155 	if ((sigprop(sig) & SIGPROP_CORE) &&
3156 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3157 		p->p_sig = sig;
3158 		/*
3159 		 * Log signals which would cause core dumps
3160 		 * (Log as LOG_INFO to appease those who don't want
3161 		 * these messages.)
3162 		 * XXX : Todo, as well as euid, write out ruid too
3163 		 * Note that coredump() drops proc lock.
3164 		 */
3165 		if (coredump(td) == 0)
3166 			sig |= WCOREFLAG;
3167 		if (kern_logsigexit)
3168 			log(LOG_INFO,
3169 			    "pid %d (%s), jid %d, uid %d: exited on "
3170 			    "signal %d%s\n", p->p_pid, p->p_comm,
3171 			    p->p_ucred->cr_prison->pr_id,
3172 			    td->td_ucred->cr_uid,
3173 			    sig &~ WCOREFLAG,
3174 			    sig & WCOREFLAG ? " (core dumped)" : "");
3175 	} else
3176 		PROC_UNLOCK(p);
3177 	exit1(td, 0, sig);
3178 	/* NOTREACHED */
3179 }
3180 
3181 /*
3182  * Send queued SIGCHLD to parent when child process's state
3183  * is changed.
3184  */
3185 static void
3186 sigparent(struct proc *p, int reason, int status)
3187 {
3188 	PROC_LOCK_ASSERT(p, MA_OWNED);
3189 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3190 
3191 	if (p->p_ksi != NULL) {
3192 		p->p_ksi->ksi_signo  = SIGCHLD;
3193 		p->p_ksi->ksi_code   = reason;
3194 		p->p_ksi->ksi_status = status;
3195 		p->p_ksi->ksi_pid    = p->p_pid;
3196 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3197 		if (KSI_ONQ(p->p_ksi))
3198 			return;
3199 	}
3200 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3201 }
3202 
3203 static void
3204 childproc_jobstate(struct proc *p, int reason, int sig)
3205 {
3206 	struct sigacts *ps;
3207 
3208 	PROC_LOCK_ASSERT(p, MA_OWNED);
3209 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3210 
3211 	/*
3212 	 * Wake up parent sleeping in kern_wait(), also send
3213 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3214 	 * that parent will awake, because parent may masked
3215 	 * the signal.
3216 	 */
3217 	p->p_pptr->p_flag |= P_STATCHILD;
3218 	wakeup(p->p_pptr);
3219 
3220 	ps = p->p_pptr->p_sigacts;
3221 	mtx_lock(&ps->ps_mtx);
3222 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3223 		mtx_unlock(&ps->ps_mtx);
3224 		sigparent(p, reason, sig);
3225 	} else
3226 		mtx_unlock(&ps->ps_mtx);
3227 }
3228 
3229 void
3230 childproc_stopped(struct proc *p, int reason)
3231 {
3232 
3233 	childproc_jobstate(p, reason, p->p_xsig);
3234 }
3235 
3236 void
3237 childproc_continued(struct proc *p)
3238 {
3239 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3240 }
3241 
3242 void
3243 childproc_exited(struct proc *p)
3244 {
3245 	int reason, status;
3246 
3247 	if (WCOREDUMP(p->p_xsig)) {
3248 		reason = CLD_DUMPED;
3249 		status = WTERMSIG(p->p_xsig);
3250 	} else if (WIFSIGNALED(p->p_xsig)) {
3251 		reason = CLD_KILLED;
3252 		status = WTERMSIG(p->p_xsig);
3253 	} else {
3254 		reason = CLD_EXITED;
3255 		status = p->p_xexit;
3256 	}
3257 	/*
3258 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3259 	 * done in exit1().
3260 	 */
3261 	sigparent(p, reason, status);
3262 }
3263 
3264 #define	MAX_NUM_CORE_FILES 100000
3265 #ifndef NUM_CORE_FILES
3266 #define	NUM_CORE_FILES 5
3267 #endif
3268 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3269 static int num_cores = NUM_CORE_FILES;
3270 
3271 static int
3272 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3273 {
3274 	int error;
3275 	int new_val;
3276 
3277 	new_val = num_cores;
3278 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3279 	if (error != 0 || req->newptr == NULL)
3280 		return (error);
3281 	if (new_val > MAX_NUM_CORE_FILES)
3282 		new_val = MAX_NUM_CORE_FILES;
3283 	if (new_val < 0)
3284 		new_val = 0;
3285 	num_cores = new_val;
3286 	return (0);
3287 }
3288 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3289 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3290 	    "Maximum number of generated process corefiles while using index format");
3291 
3292 #define	GZIP_SUFFIX	".gz"
3293 #define	ZSTD_SUFFIX	".zst"
3294 
3295 int compress_user_cores = 0;
3296 
3297 static int
3298 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3299 {
3300 	int error, val;
3301 
3302 	val = compress_user_cores;
3303 	error = sysctl_handle_int(oidp, &val, 0, req);
3304 	if (error != 0 || req->newptr == NULL)
3305 		return (error);
3306 	if (val != 0 && !compressor_avail(val))
3307 		return (EINVAL);
3308 	compress_user_cores = val;
3309 	return (error);
3310 }
3311 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3312     0, sizeof(int), sysctl_compress_user_cores, "I",
3313     "Enable compression of user corefiles ("
3314     __XSTRING(COMPRESS_GZIP) " = gzip, "
3315     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3316 
3317 int compress_user_cores_level = 6;
3318 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3319     &compress_user_cores_level, 0,
3320     "Corefile compression level");
3321 
3322 /*
3323  * Protect the access to corefilename[] by allproc_lock.
3324  */
3325 #define	corefilename_lock	allproc_lock
3326 
3327 static char corefilename[MAXPATHLEN] = {"%N.core"};
3328 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3329 
3330 static int
3331 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3332 {
3333 	int error;
3334 
3335 	sx_xlock(&corefilename_lock);
3336 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3337 	    req);
3338 	sx_xunlock(&corefilename_lock);
3339 
3340 	return (error);
3341 }
3342 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3343     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3344     "Process corefile name format string");
3345 
3346 static void
3347 vnode_close_locked(struct thread *td, struct vnode *vp)
3348 {
3349 
3350 	VOP_UNLOCK(vp, 0);
3351 	vn_close(vp, FWRITE, td->td_ucred, td);
3352 }
3353 
3354 /*
3355  * If the core format has a %I in it, then we need to check
3356  * for existing corefiles before defining a name.
3357  * To do this we iterate over 0..ncores to find a
3358  * non-existing core file name to use. If all core files are
3359  * already used we choose the oldest one.
3360  */
3361 static int
3362 corefile_open_last(struct thread *td, char *name, int indexpos,
3363     int indexlen, int ncores, struct vnode **vpp)
3364 {
3365 	struct vnode *oldvp, *nextvp, *vp;
3366 	struct vattr vattr;
3367 	struct nameidata nd;
3368 	int error, i, flags, oflags, cmode;
3369 	char ch;
3370 	struct timespec lasttime;
3371 
3372 	nextvp = oldvp = NULL;
3373 	cmode = S_IRUSR | S_IWUSR;
3374 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3375 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3376 
3377 	for (i = 0; i < ncores; i++) {
3378 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3379 
3380 		ch = name[indexpos + indexlen];
3381 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3382 		    i);
3383 		name[indexpos + indexlen] = ch;
3384 
3385 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3386 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3387 		    NULL);
3388 		if (error != 0)
3389 			break;
3390 
3391 		vp = nd.ni_vp;
3392 		NDFREE(&nd, NDF_ONLY_PNBUF);
3393 		if ((flags & O_CREAT) == O_CREAT) {
3394 			nextvp = vp;
3395 			break;
3396 		}
3397 
3398 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3399 		if (error != 0) {
3400 			vnode_close_locked(td, vp);
3401 			break;
3402 		}
3403 
3404 		if (oldvp == NULL ||
3405 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3406 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3407 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3408 			if (oldvp != NULL)
3409 				vnode_close_locked(td, oldvp);
3410 			oldvp = vp;
3411 			lasttime = vattr.va_mtime;
3412 		} else {
3413 			vnode_close_locked(td, vp);
3414 		}
3415 	}
3416 
3417 	if (oldvp != NULL) {
3418 		if (nextvp == NULL) {
3419 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3420 				error = EFAULT;
3421 				vnode_close_locked(td, oldvp);
3422 			} else {
3423 				nextvp = oldvp;
3424 			}
3425 		} else {
3426 			vnode_close_locked(td, oldvp);
3427 		}
3428 	}
3429 	if (error != 0) {
3430 		if (nextvp != NULL)
3431 			vnode_close_locked(td, oldvp);
3432 	} else {
3433 		*vpp = nextvp;
3434 	}
3435 
3436 	return (error);
3437 }
3438 
3439 /*
3440  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3441  * Expand the name described in corefilename, using name, uid, and pid
3442  * and open/create core file.
3443  * corefilename is a printf-like string, with three format specifiers:
3444  *	%N	name of process ("name")
3445  *	%P	process id (pid)
3446  *	%U	user id (uid)
3447  * For example, "%N.core" is the default; they can be disabled completely
3448  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3449  * This is controlled by the sysctl variable kern.corefile (see above).
3450  */
3451 static int
3452 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3453     int compress, struct vnode **vpp, char **namep)
3454 {
3455 	struct sbuf sb;
3456 	struct nameidata nd;
3457 	const char *format;
3458 	char *hostname, *name;
3459 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3460 
3461 	hostname = NULL;
3462 	format = corefilename;
3463 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3464 	indexlen = 0;
3465 	indexpos = -1;
3466 	ncores = num_cores;
3467 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3468 	sx_slock(&corefilename_lock);
3469 	for (i = 0; format[i] != '\0'; i++) {
3470 		switch (format[i]) {
3471 		case '%':	/* Format character */
3472 			i++;
3473 			switch (format[i]) {
3474 			case '%':
3475 				sbuf_putc(&sb, '%');
3476 				break;
3477 			case 'H':	/* hostname */
3478 				if (hostname == NULL) {
3479 					hostname = malloc(MAXHOSTNAMELEN,
3480 					    M_TEMP, M_WAITOK);
3481 				}
3482 				getcredhostname(td->td_ucred, hostname,
3483 				    MAXHOSTNAMELEN);
3484 				sbuf_printf(&sb, "%s", hostname);
3485 				break;
3486 			case 'I':	/* autoincrementing index */
3487 				if (indexpos != -1) {
3488 					sbuf_printf(&sb, "%%I");
3489 					break;
3490 				}
3491 
3492 				indexpos = sbuf_len(&sb);
3493 				sbuf_printf(&sb, "%u", ncores - 1);
3494 				indexlen = sbuf_len(&sb) - indexpos;
3495 				break;
3496 			case 'N':	/* process name */
3497 				sbuf_printf(&sb, "%s", comm);
3498 				break;
3499 			case 'P':	/* process id */
3500 				sbuf_printf(&sb, "%u", pid);
3501 				break;
3502 			case 'U':	/* user id */
3503 				sbuf_printf(&sb, "%u", uid);
3504 				break;
3505 			default:
3506 				log(LOG_ERR,
3507 				    "Unknown format character %c in "
3508 				    "corename `%s'\n", format[i], format);
3509 				break;
3510 			}
3511 			break;
3512 		default:
3513 			sbuf_putc(&sb, format[i]);
3514 			break;
3515 		}
3516 	}
3517 	sx_sunlock(&corefilename_lock);
3518 	free(hostname, M_TEMP);
3519 	if (compress == COMPRESS_GZIP)
3520 		sbuf_printf(&sb, GZIP_SUFFIX);
3521 	else if (compress == COMPRESS_ZSTD)
3522 		sbuf_printf(&sb, ZSTD_SUFFIX);
3523 	if (sbuf_error(&sb) != 0) {
3524 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3525 		    "long\n", (long)pid, comm, (u_long)uid);
3526 		sbuf_delete(&sb);
3527 		free(name, M_TEMP);
3528 		return (ENOMEM);
3529 	}
3530 	sbuf_finish(&sb);
3531 	sbuf_delete(&sb);
3532 
3533 	if (indexpos != -1) {
3534 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3535 		    vpp);
3536 		if (error != 0) {
3537 			log(LOG_ERR,
3538 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3539 			    "on initial open test, error = %d\n",
3540 			    pid, comm, uid, name, error);
3541 		}
3542 	} else {
3543 		cmode = S_IRUSR | S_IWUSR;
3544 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3545 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3546 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3547 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3548 			flags |= O_EXCL;
3549 
3550 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3551 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3552 		    NULL);
3553 		if (error == 0) {
3554 			*vpp = nd.ni_vp;
3555 			NDFREE(&nd, NDF_ONLY_PNBUF);
3556 		}
3557 	}
3558 
3559 	if (error != 0) {
3560 #ifdef AUDIT
3561 		audit_proc_coredump(td, name, error);
3562 #endif
3563 		free(name, M_TEMP);
3564 		return (error);
3565 	}
3566 	*namep = name;
3567 	return (0);
3568 }
3569 
3570 /*
3571  * Dump a process' core.  The main routine does some
3572  * policy checking, and creates the name of the coredump;
3573  * then it passes on a vnode and a size limit to the process-specific
3574  * coredump routine if there is one; if there _is not_ one, it returns
3575  * ENOSYS; otherwise it returns the error from the process-specific routine.
3576  */
3577 
3578 static int
3579 coredump(struct thread *td)
3580 {
3581 	struct proc *p = td->td_proc;
3582 	struct ucred *cred = td->td_ucred;
3583 	struct vnode *vp;
3584 	struct flock lf;
3585 	struct vattr vattr;
3586 	int error, error1, locked;
3587 	char *name;			/* name of corefile */
3588 	void *rl_cookie;
3589 	off_t limit;
3590 	char *fullpath, *freepath = NULL;
3591 	struct sbuf *sb;
3592 
3593 	PROC_LOCK_ASSERT(p, MA_OWNED);
3594 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3595 	_STOPEVENT(p, S_CORE, 0);
3596 
3597 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3598 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3599 		PROC_UNLOCK(p);
3600 		return (EFAULT);
3601 	}
3602 
3603 	/*
3604 	 * Note that the bulk of limit checking is done after
3605 	 * the corefile is created.  The exception is if the limit
3606 	 * for corefiles is 0, in which case we don't bother
3607 	 * creating the corefile at all.  This layout means that
3608 	 * a corefile is truncated instead of not being created,
3609 	 * if it is larger than the limit.
3610 	 */
3611 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3612 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3613 		PROC_UNLOCK(p);
3614 		return (EFBIG);
3615 	}
3616 	PROC_UNLOCK(p);
3617 
3618 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3619 	    compress_user_cores, &vp, &name);
3620 	if (error != 0)
3621 		return (error);
3622 
3623 	/*
3624 	 * Don't dump to non-regular files or files with links.
3625 	 * Do not dump into system files. Effective user must own the corefile.
3626 	 */
3627 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3628 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3629 	    vattr.va_uid != cred->cr_uid) {
3630 		VOP_UNLOCK(vp, 0);
3631 		error = EFAULT;
3632 		goto out;
3633 	}
3634 
3635 	VOP_UNLOCK(vp, 0);
3636 
3637 	/* Postpone other writers, including core dumps of other processes. */
3638 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3639 
3640 	lf.l_whence = SEEK_SET;
3641 	lf.l_start = 0;
3642 	lf.l_len = 0;
3643 	lf.l_type = F_WRLCK;
3644 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3645 
3646 	VATTR_NULL(&vattr);
3647 	vattr.va_size = 0;
3648 	if (set_core_nodump_flag)
3649 		vattr.va_flags = UF_NODUMP;
3650 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3651 	VOP_SETATTR(vp, &vattr, cred);
3652 	VOP_UNLOCK(vp, 0);
3653 	PROC_LOCK(p);
3654 	p->p_acflag |= ACORE;
3655 	PROC_UNLOCK(p);
3656 
3657 	if (p->p_sysent->sv_coredump != NULL) {
3658 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3659 	} else {
3660 		error = ENOSYS;
3661 	}
3662 
3663 	if (locked) {
3664 		lf.l_type = F_UNLCK;
3665 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3666 	}
3667 	vn_rangelock_unlock(vp, rl_cookie);
3668 
3669 	/*
3670 	 * Notify the userland helper that a process triggered a core dump.
3671 	 * This allows the helper to run an automated debugging session.
3672 	 */
3673 	if (error != 0 || coredump_devctl == 0)
3674 		goto out;
3675 	sb = sbuf_new_auto();
3676 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3677 		goto out2;
3678 	sbuf_printf(sb, "comm=\"");
3679 	devctl_safe_quote_sb(sb, fullpath);
3680 	free(freepath, M_TEMP);
3681 	sbuf_printf(sb, "\" core=\"");
3682 
3683 	/*
3684 	 * We can't lookup core file vp directly. When we're replacing a core, and
3685 	 * other random times, we flush the name cache, so it will fail. Instead,
3686 	 * if the path of the core is relative, add the current dir in front if it.
3687 	 */
3688 	if (name[0] != '/') {
3689 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3690 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3691 			free(fullpath, M_TEMP);
3692 			goto out2;
3693 		}
3694 		devctl_safe_quote_sb(sb, fullpath);
3695 		free(fullpath, M_TEMP);
3696 		sbuf_putc(sb, '/');
3697 	}
3698 	devctl_safe_quote_sb(sb, name);
3699 	sbuf_printf(sb, "\"");
3700 	if (sbuf_finish(sb) == 0)
3701 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3702 out2:
3703 	sbuf_delete(sb);
3704 out:
3705 	error1 = vn_close(vp, FWRITE, cred, td);
3706 	if (error == 0)
3707 		error = error1;
3708 #ifdef AUDIT
3709 	audit_proc_coredump(td, name, error);
3710 #endif
3711 	free(name, M_TEMP);
3712 	return (error);
3713 }
3714 
3715 /*
3716  * Nonexistent system call-- signal process (may want to handle it).  Flag
3717  * error in case process won't see signal immediately (blocked or ignored).
3718  */
3719 #ifndef _SYS_SYSPROTO_H_
3720 struct nosys_args {
3721 	int	dummy;
3722 };
3723 #endif
3724 /* ARGSUSED */
3725 int
3726 nosys(struct thread *td, struct nosys_args *args)
3727 {
3728 	struct proc *p;
3729 
3730 	p = td->td_proc;
3731 
3732 	PROC_LOCK(p);
3733 	tdsignal(td, SIGSYS);
3734 	PROC_UNLOCK(p);
3735 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3736 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3737 		    td->td_sa.code);
3738 	}
3739 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3740 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3741 		    td->td_sa.code);
3742 	}
3743 	return (ENOSYS);
3744 }
3745 
3746 /*
3747  * Send a SIGIO or SIGURG signal to a process or process group using stored
3748  * credentials rather than those of the current process.
3749  */
3750 void
3751 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3752 {
3753 	ksiginfo_t ksi;
3754 	struct sigio *sigio;
3755 
3756 	ksiginfo_init(&ksi);
3757 	ksi.ksi_signo = sig;
3758 	ksi.ksi_code = SI_KERNEL;
3759 
3760 	SIGIO_LOCK();
3761 	sigio = *sigiop;
3762 	if (sigio == NULL) {
3763 		SIGIO_UNLOCK();
3764 		return;
3765 	}
3766 	if (sigio->sio_pgid > 0) {
3767 		PROC_LOCK(sigio->sio_proc);
3768 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3769 			kern_psignal(sigio->sio_proc, sig);
3770 		PROC_UNLOCK(sigio->sio_proc);
3771 	} else if (sigio->sio_pgid < 0) {
3772 		struct proc *p;
3773 
3774 		PGRP_LOCK(sigio->sio_pgrp);
3775 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3776 			PROC_LOCK(p);
3777 			if (p->p_state == PRS_NORMAL &&
3778 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3779 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3780 				kern_psignal(p, sig);
3781 			PROC_UNLOCK(p);
3782 		}
3783 		PGRP_UNLOCK(sigio->sio_pgrp);
3784 	}
3785 	SIGIO_UNLOCK();
3786 }
3787 
3788 static int
3789 filt_sigattach(struct knote *kn)
3790 {
3791 	struct proc *p = curproc;
3792 
3793 	kn->kn_ptr.p_proc = p;
3794 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3795 
3796 	knlist_add(p->p_klist, kn, 0);
3797 
3798 	return (0);
3799 }
3800 
3801 static void
3802 filt_sigdetach(struct knote *kn)
3803 {
3804 	struct proc *p = kn->kn_ptr.p_proc;
3805 
3806 	knlist_remove(p->p_klist, kn, 0);
3807 }
3808 
3809 /*
3810  * signal knotes are shared with proc knotes, so we apply a mask to
3811  * the hint in order to differentiate them from process hints.  This
3812  * could be avoided by using a signal-specific knote list, but probably
3813  * isn't worth the trouble.
3814  */
3815 static int
3816 filt_signal(struct knote *kn, long hint)
3817 {
3818 
3819 	if (hint & NOTE_SIGNAL) {
3820 		hint &= ~NOTE_SIGNAL;
3821 
3822 		if (kn->kn_id == hint)
3823 			kn->kn_data++;
3824 	}
3825 	return (kn->kn_data != 0);
3826 }
3827 
3828 struct sigacts *
3829 sigacts_alloc(void)
3830 {
3831 	struct sigacts *ps;
3832 
3833 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3834 	refcount_init(&ps->ps_refcnt, 1);
3835 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3836 	return (ps);
3837 }
3838 
3839 void
3840 sigacts_free(struct sigacts *ps)
3841 {
3842 
3843 	if (refcount_release(&ps->ps_refcnt) == 0)
3844 		return;
3845 	mtx_destroy(&ps->ps_mtx);
3846 	free(ps, M_SUBPROC);
3847 }
3848 
3849 struct sigacts *
3850 sigacts_hold(struct sigacts *ps)
3851 {
3852 
3853 	refcount_acquire(&ps->ps_refcnt);
3854 	return (ps);
3855 }
3856 
3857 void
3858 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3859 {
3860 
3861 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3862 	mtx_lock(&src->ps_mtx);
3863 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3864 	mtx_unlock(&src->ps_mtx);
3865 }
3866 
3867 int
3868 sigacts_shared(struct sigacts *ps)
3869 {
3870 
3871 	return (ps->ps_refcnt > 1);
3872 }
3873