xref: /freebsd/sys/kern/kern_sig.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 #include "opt_procdesc.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/capability.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/procdesc.h>
65 #include <sys/posix4.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/sdt.h>
70 #include <sys/sbuf.h>
71 #include <sys/sleepqueue.h>
72 #include <sys/smp.h>
73 #include <sys/stat.h>
74 #include <sys/sx.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/sysctl.h>
77 #include <sys/sysent.h>
78 #include <sys/syslog.h>
79 #include <sys/sysproto.h>
80 #include <sys/timers.h>
81 #include <sys/unistd.h>
82 #include <sys/wait.h>
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #include <sys/jail.h>
88 
89 #include <machine/cpu.h>
90 
91 #include <security/audit/audit.h>
92 
93 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
94 
95 SDT_PROVIDER_DECLARE(proc);
96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
107 
108 static int	coredump(struct thread *);
109 static char	*expand_name(const char *, uid_t, pid_t, struct thread *, int);
110 static int	killpg1(struct thread *td, int sig, int pgid, int all,
111 		    ksiginfo_t *ksi);
112 static int	issignal(struct thread *td, int stop_allowed);
113 static int	sigprop(int sig);
114 static void	tdsigwakeup(struct thread *, int, sig_t, int);
115 static void	sig_suspend_threads(struct thread *, struct proc *, int);
116 static int	filt_sigattach(struct knote *kn);
117 static void	filt_sigdetach(struct knote *kn);
118 static int	filt_signal(struct knote *kn, long hint);
119 static struct thread *sigtd(struct proc *p, int sig, int prop);
120 static void	sigqueue_start(void);
121 
122 static uma_zone_t	ksiginfo_zone = NULL;
123 struct filterops sig_filtops = {
124 	.f_isfd = 0,
125 	.f_attach = filt_sigattach,
126 	.f_detach = filt_sigdetach,
127 	.f_event = filt_signal,
128 };
129 
130 static int	kern_logsigexit = 1;
131 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
132     &kern_logsigexit, 0,
133     "Log processes quitting on abnormal signals to syslog(3)");
134 
135 static int	kern_forcesigexit = 1;
136 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
137     &kern_forcesigexit, 0, "Force trap signal to be handled");
138 
139 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
140     "POSIX real time signal");
141 
142 static int	max_pending_per_proc = 128;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
144     &max_pending_per_proc, 0, "Max pending signals per proc");
145 
146 static int	preallocate_siginfo = 1024;
147 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
149     &preallocate_siginfo, 0, "Preallocated signal memory size");
150 
151 static int	signal_overflow = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
153     &signal_overflow, 0, "Number of signals overflew");
154 
155 static int	signal_alloc_fail = 0;
156 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
157     &signal_alloc_fail, 0, "signals failed to be allocated");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	do_coredump = 1;
178 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
179 	&do_coredump, 0, "Enable/Disable coredumps");
180 
181 static int	set_core_nodump_flag = 0;
182 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
183 	0, "Enable setting the NODUMP flag on coredump files");
184 
185 /*
186  * Signal properties and actions.
187  * The array below categorizes the signals and their default actions
188  * according to the following properties:
189  */
190 #define	SA_KILL		0x01		/* terminates process by default */
191 #define	SA_CORE		0x02		/* ditto and coredumps */
192 #define	SA_STOP		0x04		/* suspend process */
193 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
194 #define	SA_IGNORE	0x10		/* ignore by default */
195 #define	SA_CONT		0x20		/* continue if suspended */
196 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
197 
198 static int sigproptbl[NSIG] = {
199         SA_KILL,			/* SIGHUP */
200         SA_KILL,			/* SIGINT */
201         SA_KILL|SA_CORE,		/* SIGQUIT */
202         SA_KILL|SA_CORE,		/* SIGILL */
203         SA_KILL|SA_CORE,		/* SIGTRAP */
204         SA_KILL|SA_CORE,		/* SIGABRT */
205         SA_KILL|SA_CORE,		/* SIGEMT */
206         SA_KILL|SA_CORE,		/* SIGFPE */
207         SA_KILL,			/* SIGKILL */
208         SA_KILL|SA_CORE,		/* SIGBUS */
209         SA_KILL|SA_CORE,		/* SIGSEGV */
210         SA_KILL|SA_CORE,		/* SIGSYS */
211         SA_KILL,			/* SIGPIPE */
212         SA_KILL,			/* SIGALRM */
213         SA_KILL,			/* SIGTERM */
214         SA_IGNORE,			/* SIGURG */
215         SA_STOP,			/* SIGSTOP */
216         SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
217         SA_IGNORE|SA_CONT,		/* SIGCONT */
218         SA_IGNORE,			/* SIGCHLD */
219         SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
220         SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
221         SA_IGNORE,			/* SIGIO */
222         SA_KILL,			/* SIGXCPU */
223         SA_KILL,			/* SIGXFSZ */
224         SA_KILL,			/* SIGVTALRM */
225         SA_KILL,			/* SIGPROF */
226         SA_IGNORE,			/* SIGWINCH  */
227         SA_IGNORE,			/* SIGINFO */
228         SA_KILL,			/* SIGUSR1 */
229         SA_KILL,			/* SIGUSR2 */
230 };
231 
232 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
233 
234 static void
235 sigqueue_start(void)
236 {
237 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
238 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
239 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
240 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
241 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
242 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
243 }
244 
245 ksiginfo_t *
246 ksiginfo_alloc(int wait)
247 {
248 	int flags;
249 
250 	flags = M_ZERO;
251 	if (! wait)
252 		flags |= M_NOWAIT;
253 	if (ksiginfo_zone != NULL)
254 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
255 	return (NULL);
256 }
257 
258 void
259 ksiginfo_free(ksiginfo_t *ksi)
260 {
261 	uma_zfree(ksiginfo_zone, ksi);
262 }
263 
264 static __inline int
265 ksiginfo_tryfree(ksiginfo_t *ksi)
266 {
267 	if (!(ksi->ksi_flags & KSI_EXT)) {
268 		uma_zfree(ksiginfo_zone, ksi);
269 		return (1);
270 	}
271 	return (0);
272 }
273 
274 void
275 sigqueue_init(sigqueue_t *list, struct proc *p)
276 {
277 	SIGEMPTYSET(list->sq_signals);
278 	SIGEMPTYSET(list->sq_kill);
279 	TAILQ_INIT(&list->sq_list);
280 	list->sq_proc = p;
281 	list->sq_flags = SQ_INIT;
282 }
283 
284 /*
285  * Get a signal's ksiginfo.
286  * Return:
287  * 	0	-	signal not found
288  *	others	-	signal number
289  */
290 static int
291 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
292 {
293 	struct proc *p = sq->sq_proc;
294 	struct ksiginfo *ksi, *next;
295 	int count = 0;
296 
297 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
298 
299 	if (!SIGISMEMBER(sq->sq_signals, signo))
300 		return (0);
301 
302 	if (SIGISMEMBER(sq->sq_kill, signo)) {
303 		count++;
304 		SIGDELSET(sq->sq_kill, signo);
305 	}
306 
307 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
308 		if (ksi->ksi_signo == signo) {
309 			if (count == 0) {
310 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
311 				ksi->ksi_sigq = NULL;
312 				ksiginfo_copy(ksi, si);
313 				if (ksiginfo_tryfree(ksi) && p != NULL)
314 					p->p_pendingcnt--;
315 			}
316 			if (++count > 1)
317 				break;
318 		}
319 	}
320 
321 	if (count <= 1)
322 		SIGDELSET(sq->sq_signals, signo);
323 	si->ksi_signo = signo;
324 	return (signo);
325 }
326 
327 void
328 sigqueue_take(ksiginfo_t *ksi)
329 {
330 	struct ksiginfo *kp;
331 	struct proc	*p;
332 	sigqueue_t	*sq;
333 
334 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
335 		return;
336 
337 	p = sq->sq_proc;
338 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
339 	ksi->ksi_sigq = NULL;
340 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
341 		p->p_pendingcnt--;
342 
343 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
344 	     kp = TAILQ_NEXT(kp, ksi_link)) {
345 		if (kp->ksi_signo == ksi->ksi_signo)
346 			break;
347 	}
348 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
349 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
350 }
351 
352 static int
353 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
354 {
355 	struct proc *p = sq->sq_proc;
356 	struct ksiginfo *ksi;
357 	int ret = 0;
358 
359 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
360 
361 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
362 		SIGADDSET(sq->sq_kill, signo);
363 		goto out_set_bit;
364 	}
365 
366 	/* directly insert the ksi, don't copy it */
367 	if (si->ksi_flags & KSI_INS) {
368 		if (si->ksi_flags & KSI_HEAD)
369 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
370 		else
371 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
372 		si->ksi_sigq = sq;
373 		goto out_set_bit;
374 	}
375 
376 	if (__predict_false(ksiginfo_zone == NULL)) {
377 		SIGADDSET(sq->sq_kill, signo);
378 		goto out_set_bit;
379 	}
380 
381 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
382 		signal_overflow++;
383 		ret = EAGAIN;
384 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
385 		signal_alloc_fail++;
386 		ret = EAGAIN;
387 	} else {
388 		if (p != NULL)
389 			p->p_pendingcnt++;
390 		ksiginfo_copy(si, ksi);
391 		ksi->ksi_signo = signo;
392 		if (si->ksi_flags & KSI_HEAD)
393 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
394 		else
395 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
396 		ksi->ksi_sigq = sq;
397 	}
398 
399 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
400 	    (si->ksi_flags & KSI_SIGQ) == 0) {
401 		if (ret != 0)
402 			SIGADDSET(sq->sq_kill, signo);
403 		ret = 0;
404 		goto out_set_bit;
405 	}
406 
407 	if (ret != 0)
408 		return (ret);
409 
410 out_set_bit:
411 	SIGADDSET(sq->sq_signals, signo);
412 	return (ret);
413 }
414 
415 void
416 sigqueue_flush(sigqueue_t *sq)
417 {
418 	struct proc *p = sq->sq_proc;
419 	ksiginfo_t *ksi;
420 
421 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
422 
423 	if (p != NULL)
424 		PROC_LOCK_ASSERT(p, MA_OWNED);
425 
426 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
427 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
428 		ksi->ksi_sigq = NULL;
429 		if (ksiginfo_tryfree(ksi) && p != NULL)
430 			p->p_pendingcnt--;
431 	}
432 
433 	SIGEMPTYSET(sq->sq_signals);
434 	SIGEMPTYSET(sq->sq_kill);
435 }
436 
437 static void
438 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
439 {
440 	sigset_t tmp;
441 	struct proc *p1, *p2;
442 	ksiginfo_t *ksi, *next;
443 
444 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
445 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
446 	p1 = src->sq_proc;
447 	p2 = dst->sq_proc;
448 	/* Move siginfo to target list */
449 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
450 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
451 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
452 			if (p1 != NULL)
453 				p1->p_pendingcnt--;
454 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
455 			ksi->ksi_sigq = dst;
456 			if (p2 != NULL)
457 				p2->p_pendingcnt++;
458 		}
459 	}
460 
461 	/* Move pending bits to target list */
462 	tmp = src->sq_kill;
463 	SIGSETAND(tmp, *set);
464 	SIGSETOR(dst->sq_kill, tmp);
465 	SIGSETNAND(src->sq_kill, tmp);
466 
467 	tmp = src->sq_signals;
468 	SIGSETAND(tmp, *set);
469 	SIGSETOR(dst->sq_signals, tmp);
470 	SIGSETNAND(src->sq_signals, tmp);
471 }
472 
473 #if 0
474 static void
475 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
476 {
477 	sigset_t set;
478 
479 	SIGEMPTYSET(set);
480 	SIGADDSET(set, signo);
481 	sigqueue_move_set(src, dst, &set);
482 }
483 #endif
484 
485 static void
486 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
487 {
488 	struct proc *p = sq->sq_proc;
489 	ksiginfo_t *ksi, *next;
490 
491 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
492 
493 	/* Remove siginfo queue */
494 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
495 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
496 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
497 			ksi->ksi_sigq = NULL;
498 			if (ksiginfo_tryfree(ksi) && p != NULL)
499 				p->p_pendingcnt--;
500 		}
501 	}
502 	SIGSETNAND(sq->sq_kill, *set);
503 	SIGSETNAND(sq->sq_signals, *set);
504 }
505 
506 void
507 sigqueue_delete(sigqueue_t *sq, int signo)
508 {
509 	sigset_t set;
510 
511 	SIGEMPTYSET(set);
512 	SIGADDSET(set, signo);
513 	sigqueue_delete_set(sq, &set);
514 }
515 
516 /* Remove a set of signals for a process */
517 static void
518 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
519 {
520 	sigqueue_t worklist;
521 	struct thread *td0;
522 
523 	PROC_LOCK_ASSERT(p, MA_OWNED);
524 
525 	sigqueue_init(&worklist, NULL);
526 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
527 
528 	FOREACH_THREAD_IN_PROC(p, td0)
529 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
530 
531 	sigqueue_flush(&worklist);
532 }
533 
534 void
535 sigqueue_delete_proc(struct proc *p, int signo)
536 {
537 	sigset_t set;
538 
539 	SIGEMPTYSET(set);
540 	SIGADDSET(set, signo);
541 	sigqueue_delete_set_proc(p, &set);
542 }
543 
544 static void
545 sigqueue_delete_stopmask_proc(struct proc *p)
546 {
547 	sigset_t set;
548 
549 	SIGEMPTYSET(set);
550 	SIGADDSET(set, SIGSTOP);
551 	SIGADDSET(set, SIGTSTP);
552 	SIGADDSET(set, SIGTTIN);
553 	SIGADDSET(set, SIGTTOU);
554 	sigqueue_delete_set_proc(p, &set);
555 }
556 
557 /*
558  * Determine signal that should be delivered to process p, the current
559  * process, 0 if none.  If there is a pending stop signal with default
560  * action, the process stops in issignal().
561  */
562 int
563 cursig(struct thread *td, int stop_allowed)
564 {
565 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
566 	KASSERT(stop_allowed == SIG_STOP_ALLOWED ||
567 	    stop_allowed == SIG_STOP_NOT_ALLOWED, ("cursig: stop_allowed"));
568 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
569 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
570 	return (SIGPENDING(td) ? issignal(td, stop_allowed) : 0);
571 }
572 
573 /*
574  * Arrange for ast() to handle unmasked pending signals on return to user
575  * mode.  This must be called whenever a signal is added to td_sigqueue or
576  * unmasked in td_sigmask.
577  */
578 void
579 signotify(struct thread *td)
580 {
581 	struct proc *p;
582 
583 	p = td->td_proc;
584 
585 	PROC_LOCK_ASSERT(p, MA_OWNED);
586 
587 	if (SIGPENDING(td)) {
588 		thread_lock(td);
589 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
590 		thread_unlock(td);
591 	}
592 }
593 
594 int
595 sigonstack(size_t sp)
596 {
597 	struct thread *td = curthread;
598 
599 	return ((td->td_pflags & TDP_ALTSTACK) ?
600 #if defined(COMPAT_43)
601 	    ((td->td_sigstk.ss_size == 0) ?
602 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
603 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
604 #else
605 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
606 #endif
607 	    : 0);
608 }
609 
610 static __inline int
611 sigprop(int sig)
612 {
613 
614 	if (sig > 0 && sig < NSIG)
615 		return (sigproptbl[_SIG_IDX(sig)]);
616 	return (0);
617 }
618 
619 int
620 sig_ffs(sigset_t *set)
621 {
622 	int i;
623 
624 	for (i = 0; i < _SIG_WORDS; i++)
625 		if (set->__bits[i])
626 			return (ffs(set->__bits[i]) + (i * 32));
627 	return (0);
628 }
629 
630 /*
631  * kern_sigaction
632  * sigaction
633  * freebsd4_sigaction
634  * osigaction
635  */
636 int
637 kern_sigaction(td, sig, act, oact, flags)
638 	struct thread *td;
639 	register int sig;
640 	struct sigaction *act, *oact;
641 	int flags;
642 {
643 	struct sigacts *ps;
644 	struct proc *p = td->td_proc;
645 
646 	if (!_SIG_VALID(sig))
647 		return (EINVAL);
648 
649 	PROC_LOCK(p);
650 	ps = p->p_sigacts;
651 	mtx_lock(&ps->ps_mtx);
652 	if (oact) {
653 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
654 		oact->sa_flags = 0;
655 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
656 			oact->sa_flags |= SA_ONSTACK;
657 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
658 			oact->sa_flags |= SA_RESTART;
659 		if (SIGISMEMBER(ps->ps_sigreset, sig))
660 			oact->sa_flags |= SA_RESETHAND;
661 		if (SIGISMEMBER(ps->ps_signodefer, sig))
662 			oact->sa_flags |= SA_NODEFER;
663 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
664 			oact->sa_flags |= SA_SIGINFO;
665 			oact->sa_sigaction =
666 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
667 		} else
668 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
669 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
670 			oact->sa_flags |= SA_NOCLDSTOP;
671 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
672 			oact->sa_flags |= SA_NOCLDWAIT;
673 	}
674 	if (act) {
675 		if ((sig == SIGKILL || sig == SIGSTOP) &&
676 		    act->sa_handler != SIG_DFL) {
677 			mtx_unlock(&ps->ps_mtx);
678 			PROC_UNLOCK(p);
679 			return (EINVAL);
680 		}
681 
682 		/*
683 		 * Change setting atomically.
684 		 */
685 
686 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
687 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
688 		if (act->sa_flags & SA_SIGINFO) {
689 			ps->ps_sigact[_SIG_IDX(sig)] =
690 			    (__sighandler_t *)act->sa_sigaction;
691 			SIGADDSET(ps->ps_siginfo, sig);
692 		} else {
693 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
694 			SIGDELSET(ps->ps_siginfo, sig);
695 		}
696 		if (!(act->sa_flags & SA_RESTART))
697 			SIGADDSET(ps->ps_sigintr, sig);
698 		else
699 			SIGDELSET(ps->ps_sigintr, sig);
700 		if (act->sa_flags & SA_ONSTACK)
701 			SIGADDSET(ps->ps_sigonstack, sig);
702 		else
703 			SIGDELSET(ps->ps_sigonstack, sig);
704 		if (act->sa_flags & SA_RESETHAND)
705 			SIGADDSET(ps->ps_sigreset, sig);
706 		else
707 			SIGDELSET(ps->ps_sigreset, sig);
708 		if (act->sa_flags & SA_NODEFER)
709 			SIGADDSET(ps->ps_signodefer, sig);
710 		else
711 			SIGDELSET(ps->ps_signodefer, sig);
712 		if (sig == SIGCHLD) {
713 			if (act->sa_flags & SA_NOCLDSTOP)
714 				ps->ps_flag |= PS_NOCLDSTOP;
715 			else
716 				ps->ps_flag &= ~PS_NOCLDSTOP;
717 			if (act->sa_flags & SA_NOCLDWAIT) {
718 				/*
719 				 * Paranoia: since SA_NOCLDWAIT is implemented
720 				 * by reparenting the dying child to PID 1 (and
721 				 * trust it to reap the zombie), PID 1 itself
722 				 * is forbidden to set SA_NOCLDWAIT.
723 				 */
724 				if (p->p_pid == 1)
725 					ps->ps_flag &= ~PS_NOCLDWAIT;
726 				else
727 					ps->ps_flag |= PS_NOCLDWAIT;
728 			} else
729 				ps->ps_flag &= ~PS_NOCLDWAIT;
730 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
731 				ps->ps_flag |= PS_CLDSIGIGN;
732 			else
733 				ps->ps_flag &= ~PS_CLDSIGIGN;
734 		}
735 		/*
736 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
737 		 * and for signals set to SIG_DFL where the default is to
738 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
739 		 * have to restart the process.
740 		 */
741 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
742 		    (sigprop(sig) & SA_IGNORE &&
743 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
744 			/* never to be seen again */
745 			sigqueue_delete_proc(p, sig);
746 			if (sig != SIGCONT)
747 				/* easier in psignal */
748 				SIGADDSET(ps->ps_sigignore, sig);
749 			SIGDELSET(ps->ps_sigcatch, sig);
750 		} else {
751 			SIGDELSET(ps->ps_sigignore, sig);
752 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
753 				SIGDELSET(ps->ps_sigcatch, sig);
754 			else
755 				SIGADDSET(ps->ps_sigcatch, sig);
756 		}
757 #ifdef COMPAT_FREEBSD4
758 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
759 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
760 		    (flags & KSA_FREEBSD4) == 0)
761 			SIGDELSET(ps->ps_freebsd4, sig);
762 		else
763 			SIGADDSET(ps->ps_freebsd4, sig);
764 #endif
765 #ifdef COMPAT_43
766 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
767 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
768 		    (flags & KSA_OSIGSET) == 0)
769 			SIGDELSET(ps->ps_osigset, sig);
770 		else
771 			SIGADDSET(ps->ps_osigset, sig);
772 #endif
773 	}
774 	mtx_unlock(&ps->ps_mtx);
775 	PROC_UNLOCK(p);
776 	return (0);
777 }
778 
779 #ifndef _SYS_SYSPROTO_H_
780 struct sigaction_args {
781 	int	sig;
782 	struct	sigaction *act;
783 	struct	sigaction *oact;
784 };
785 #endif
786 int
787 sys_sigaction(td, uap)
788 	struct thread *td;
789 	register struct sigaction_args *uap;
790 {
791 	struct sigaction act, oact;
792 	register struct sigaction *actp, *oactp;
793 	int error;
794 
795 	actp = (uap->act != NULL) ? &act : NULL;
796 	oactp = (uap->oact != NULL) ? &oact : NULL;
797 	if (actp) {
798 		error = copyin(uap->act, actp, sizeof(act));
799 		if (error)
800 			return (error);
801 	}
802 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
803 	if (oactp && !error)
804 		error = copyout(oactp, uap->oact, sizeof(oact));
805 	return (error);
806 }
807 
808 #ifdef COMPAT_FREEBSD4
809 #ifndef _SYS_SYSPROTO_H_
810 struct freebsd4_sigaction_args {
811 	int	sig;
812 	struct	sigaction *act;
813 	struct	sigaction *oact;
814 };
815 #endif
816 int
817 freebsd4_sigaction(td, uap)
818 	struct thread *td;
819 	register struct freebsd4_sigaction_args *uap;
820 {
821 	struct sigaction act, oact;
822 	register struct sigaction *actp, *oactp;
823 	int error;
824 
825 
826 	actp = (uap->act != NULL) ? &act : NULL;
827 	oactp = (uap->oact != NULL) ? &oact : NULL;
828 	if (actp) {
829 		error = copyin(uap->act, actp, sizeof(act));
830 		if (error)
831 			return (error);
832 	}
833 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
834 	if (oactp && !error)
835 		error = copyout(oactp, uap->oact, sizeof(oact));
836 	return (error);
837 }
838 #endif	/* COMAPT_FREEBSD4 */
839 
840 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
841 #ifndef _SYS_SYSPROTO_H_
842 struct osigaction_args {
843 	int	signum;
844 	struct	osigaction *nsa;
845 	struct	osigaction *osa;
846 };
847 #endif
848 int
849 osigaction(td, uap)
850 	struct thread *td;
851 	register struct osigaction_args *uap;
852 {
853 	struct osigaction sa;
854 	struct sigaction nsa, osa;
855 	register struct sigaction *nsap, *osap;
856 	int error;
857 
858 	if (uap->signum <= 0 || uap->signum >= ONSIG)
859 		return (EINVAL);
860 
861 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
862 	osap = (uap->osa != NULL) ? &osa : NULL;
863 
864 	if (nsap) {
865 		error = copyin(uap->nsa, &sa, sizeof(sa));
866 		if (error)
867 			return (error);
868 		nsap->sa_handler = sa.sa_handler;
869 		nsap->sa_flags = sa.sa_flags;
870 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
871 	}
872 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
873 	if (osap && !error) {
874 		sa.sa_handler = osap->sa_handler;
875 		sa.sa_flags = osap->sa_flags;
876 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
877 		error = copyout(&sa, uap->osa, sizeof(sa));
878 	}
879 	return (error);
880 }
881 
882 #if !defined(__i386__)
883 /* Avoid replicating the same stub everywhere */
884 int
885 osigreturn(td, uap)
886 	struct thread *td;
887 	struct osigreturn_args *uap;
888 {
889 
890 	return (nosys(td, (struct nosys_args *)uap));
891 }
892 #endif
893 #endif /* COMPAT_43 */
894 
895 /*
896  * Initialize signal state for process 0;
897  * set to ignore signals that are ignored by default.
898  */
899 void
900 siginit(p)
901 	struct proc *p;
902 {
903 	register int i;
904 	struct sigacts *ps;
905 
906 	PROC_LOCK(p);
907 	ps = p->p_sigacts;
908 	mtx_lock(&ps->ps_mtx);
909 	for (i = 1; i <= NSIG; i++)
910 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
911 			SIGADDSET(ps->ps_sigignore, i);
912 	mtx_unlock(&ps->ps_mtx);
913 	PROC_UNLOCK(p);
914 }
915 
916 /*
917  * Reset signals for an exec of the specified process.
918  */
919 void
920 execsigs(struct proc *p)
921 {
922 	struct sigacts *ps;
923 	int sig;
924 	struct thread *td;
925 
926 	/*
927 	 * Reset caught signals.  Held signals remain held
928 	 * through td_sigmask (unless they were caught,
929 	 * and are now ignored by default).
930 	 */
931 	PROC_LOCK_ASSERT(p, MA_OWNED);
932 	td = FIRST_THREAD_IN_PROC(p);
933 	ps = p->p_sigacts;
934 	mtx_lock(&ps->ps_mtx);
935 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
936 		sig = sig_ffs(&ps->ps_sigcatch);
937 		SIGDELSET(ps->ps_sigcatch, sig);
938 		if (sigprop(sig) & SA_IGNORE) {
939 			if (sig != SIGCONT)
940 				SIGADDSET(ps->ps_sigignore, sig);
941 			sigqueue_delete_proc(p, sig);
942 		}
943 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
944 	}
945 	/*
946 	 * Reset stack state to the user stack.
947 	 * Clear set of signals caught on the signal stack.
948 	 */
949 	td->td_sigstk.ss_flags = SS_DISABLE;
950 	td->td_sigstk.ss_size = 0;
951 	td->td_sigstk.ss_sp = 0;
952 	td->td_pflags &= ~TDP_ALTSTACK;
953 	/*
954 	 * Reset no zombies if child dies flag as Solaris does.
955 	 */
956 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
957 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
958 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
959 	mtx_unlock(&ps->ps_mtx);
960 }
961 
962 /*
963  * kern_sigprocmask()
964  *
965  *	Manipulate signal mask.
966  */
967 int
968 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
969     int flags)
970 {
971 	sigset_t new_block, oset1;
972 	struct proc *p;
973 	int error;
974 
975 	p = td->td_proc;
976 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
977 		PROC_LOCK(p);
978 	if (oset != NULL)
979 		*oset = td->td_sigmask;
980 
981 	error = 0;
982 	if (set != NULL) {
983 		switch (how) {
984 		case SIG_BLOCK:
985 			SIG_CANTMASK(*set);
986 			oset1 = td->td_sigmask;
987 			SIGSETOR(td->td_sigmask, *set);
988 			new_block = td->td_sigmask;
989 			SIGSETNAND(new_block, oset1);
990 			break;
991 		case SIG_UNBLOCK:
992 			SIGSETNAND(td->td_sigmask, *set);
993 			signotify(td);
994 			goto out;
995 		case SIG_SETMASK:
996 			SIG_CANTMASK(*set);
997 			oset1 = td->td_sigmask;
998 			if (flags & SIGPROCMASK_OLD)
999 				SIGSETLO(td->td_sigmask, *set);
1000 			else
1001 				td->td_sigmask = *set;
1002 			new_block = td->td_sigmask;
1003 			SIGSETNAND(new_block, oset1);
1004 			signotify(td);
1005 			break;
1006 		default:
1007 			error = EINVAL;
1008 			goto out;
1009 		}
1010 
1011 		/*
1012 		 * The new_block set contains signals that were not previously
1013 		 * blocked, but are blocked now.
1014 		 *
1015 		 * In case we block any signal that was not previously blocked
1016 		 * for td, and process has the signal pending, try to schedule
1017 		 * signal delivery to some thread that does not block the
1018 		 * signal, possibly waking it up.
1019 		 */
1020 		if (p->p_numthreads != 1)
1021 			reschedule_signals(p, new_block, flags);
1022 	}
1023 
1024 out:
1025 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1026 		PROC_UNLOCK(p);
1027 	return (error);
1028 }
1029 
1030 #ifndef _SYS_SYSPROTO_H_
1031 struct sigprocmask_args {
1032 	int	how;
1033 	const sigset_t *set;
1034 	sigset_t *oset;
1035 };
1036 #endif
1037 int
1038 sys_sigprocmask(td, uap)
1039 	register struct thread *td;
1040 	struct sigprocmask_args *uap;
1041 {
1042 	sigset_t set, oset;
1043 	sigset_t *setp, *osetp;
1044 	int error;
1045 
1046 	setp = (uap->set != NULL) ? &set : NULL;
1047 	osetp = (uap->oset != NULL) ? &oset : NULL;
1048 	if (setp) {
1049 		error = copyin(uap->set, setp, sizeof(set));
1050 		if (error)
1051 			return (error);
1052 	}
1053 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1054 	if (osetp && !error) {
1055 		error = copyout(osetp, uap->oset, sizeof(oset));
1056 	}
1057 	return (error);
1058 }
1059 
1060 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1061 #ifndef _SYS_SYSPROTO_H_
1062 struct osigprocmask_args {
1063 	int	how;
1064 	osigset_t mask;
1065 };
1066 #endif
1067 int
1068 osigprocmask(td, uap)
1069 	register struct thread *td;
1070 	struct osigprocmask_args *uap;
1071 {
1072 	sigset_t set, oset;
1073 	int error;
1074 
1075 	OSIG2SIG(uap->mask, set);
1076 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1077 	SIG2OSIG(oset, td->td_retval[0]);
1078 	return (error);
1079 }
1080 #endif /* COMPAT_43 */
1081 
1082 int
1083 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1084 {
1085 	ksiginfo_t ksi;
1086 	sigset_t set;
1087 	int error;
1088 
1089 	error = copyin(uap->set, &set, sizeof(set));
1090 	if (error) {
1091 		td->td_retval[0] = error;
1092 		return (0);
1093 	}
1094 
1095 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1096 	if (error) {
1097 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1098 			error = ERESTART;
1099 		if (error == ERESTART)
1100 			return (error);
1101 		td->td_retval[0] = error;
1102 		return (0);
1103 	}
1104 
1105 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1106 	td->td_retval[0] = error;
1107 	return (0);
1108 }
1109 
1110 int
1111 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1112 {
1113 	struct timespec ts;
1114 	struct timespec *timeout;
1115 	sigset_t set;
1116 	ksiginfo_t ksi;
1117 	int error;
1118 
1119 	if (uap->timeout) {
1120 		error = copyin(uap->timeout, &ts, sizeof(ts));
1121 		if (error)
1122 			return (error);
1123 
1124 		timeout = &ts;
1125 	} else
1126 		timeout = NULL;
1127 
1128 	error = copyin(uap->set, &set, sizeof(set));
1129 	if (error)
1130 		return (error);
1131 
1132 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1133 	if (error)
1134 		return (error);
1135 
1136 	if (uap->info)
1137 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1138 
1139 	if (error == 0)
1140 		td->td_retval[0] = ksi.ksi_signo;
1141 	return (error);
1142 }
1143 
1144 int
1145 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1146 {
1147 	ksiginfo_t ksi;
1148 	sigset_t set;
1149 	int error;
1150 
1151 	error = copyin(uap->set, &set, sizeof(set));
1152 	if (error)
1153 		return (error);
1154 
1155 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1156 	if (error)
1157 		return (error);
1158 
1159 	if (uap->info)
1160 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1161 
1162 	if (error == 0)
1163 		td->td_retval[0] = ksi.ksi_signo;
1164 	return (error);
1165 }
1166 
1167 int
1168 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1169 	struct timespec *timeout)
1170 {
1171 	struct sigacts *ps;
1172 	sigset_t saved_mask, new_block;
1173 	struct proc *p;
1174 	int error, sig, timo, timevalid = 0;
1175 	struct timespec rts, ets, ts;
1176 	struct timeval tv;
1177 
1178 	p = td->td_proc;
1179 	error = 0;
1180 	ets.tv_sec = 0;
1181 	ets.tv_nsec = 0;
1182 
1183 	if (timeout != NULL) {
1184 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1185 			timevalid = 1;
1186 			getnanouptime(&rts);
1187 		 	ets = rts;
1188 			timespecadd(&ets, timeout);
1189 		}
1190 	}
1191 	ksiginfo_init(ksi);
1192 	/* Some signals can not be waited for. */
1193 	SIG_CANTMASK(waitset);
1194 	ps = p->p_sigacts;
1195 	PROC_LOCK(p);
1196 	saved_mask = td->td_sigmask;
1197 	SIGSETNAND(td->td_sigmask, waitset);
1198 	for (;;) {
1199 		mtx_lock(&ps->ps_mtx);
1200 		sig = cursig(td, SIG_STOP_ALLOWED);
1201 		mtx_unlock(&ps->ps_mtx);
1202 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1203 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1204 		    	    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1205 				error = 0;
1206 				break;
1207 			}
1208 		}
1209 
1210 		if (error != 0)
1211 			break;
1212 
1213 		/*
1214 		 * POSIX says this must be checked after looking for pending
1215 		 * signals.
1216 		 */
1217 		if (timeout != NULL) {
1218 			if (!timevalid) {
1219 				error = EINVAL;
1220 				break;
1221 			}
1222 			getnanouptime(&rts);
1223 			if (timespeccmp(&rts, &ets, >=)) {
1224 				error = EAGAIN;
1225 				break;
1226 			}
1227 			ts = ets;
1228 			timespecsub(&ts, &rts);
1229 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1230 			timo = tvtohz(&tv);
1231 		} else {
1232 			timo = 0;
1233 		}
1234 
1235 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1236 
1237 		if (timeout != NULL) {
1238 			if (error == ERESTART) {
1239 				/* Timeout can not be restarted. */
1240 				error = EINTR;
1241 			} else if (error == EAGAIN) {
1242 				/* We will calculate timeout by ourself. */
1243 				error = 0;
1244 			}
1245 		}
1246 	}
1247 
1248 	new_block = saved_mask;
1249 	SIGSETNAND(new_block, td->td_sigmask);
1250 	td->td_sigmask = saved_mask;
1251 	/*
1252 	 * Fewer signals can be delivered to us, reschedule signal
1253 	 * notification.
1254 	 */
1255 	if (p->p_numthreads != 1)
1256 		reschedule_signals(p, new_block, 0);
1257 
1258 	if (error == 0) {
1259 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1260 
1261 		if (ksi->ksi_code == SI_TIMER)
1262 			itimer_accept(p, ksi->ksi_timerid, ksi);
1263 
1264 #ifdef KTRACE
1265 		if (KTRPOINT(td, KTR_PSIG)) {
1266 			sig_t action;
1267 
1268 			mtx_lock(&ps->ps_mtx);
1269 			action = ps->ps_sigact[_SIG_IDX(sig)];
1270 			mtx_unlock(&ps->ps_mtx);
1271 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1272 		}
1273 #endif
1274 		if (sig == SIGKILL)
1275 			sigexit(td, sig);
1276 	}
1277 	PROC_UNLOCK(p);
1278 	return (error);
1279 }
1280 
1281 #ifndef _SYS_SYSPROTO_H_
1282 struct sigpending_args {
1283 	sigset_t	*set;
1284 };
1285 #endif
1286 int
1287 sys_sigpending(td, uap)
1288 	struct thread *td;
1289 	struct sigpending_args *uap;
1290 {
1291 	struct proc *p = td->td_proc;
1292 	sigset_t pending;
1293 
1294 	PROC_LOCK(p);
1295 	pending = p->p_sigqueue.sq_signals;
1296 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1297 	PROC_UNLOCK(p);
1298 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1299 }
1300 
1301 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1302 #ifndef _SYS_SYSPROTO_H_
1303 struct osigpending_args {
1304 	int	dummy;
1305 };
1306 #endif
1307 int
1308 osigpending(td, uap)
1309 	struct thread *td;
1310 	struct osigpending_args *uap;
1311 {
1312 	struct proc *p = td->td_proc;
1313 	sigset_t pending;
1314 
1315 	PROC_LOCK(p);
1316 	pending = p->p_sigqueue.sq_signals;
1317 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1318 	PROC_UNLOCK(p);
1319 	SIG2OSIG(pending, td->td_retval[0]);
1320 	return (0);
1321 }
1322 #endif /* COMPAT_43 */
1323 
1324 #if defined(COMPAT_43)
1325 /*
1326  * Generalized interface signal handler, 4.3-compatible.
1327  */
1328 #ifndef _SYS_SYSPROTO_H_
1329 struct osigvec_args {
1330 	int	signum;
1331 	struct	sigvec *nsv;
1332 	struct	sigvec *osv;
1333 };
1334 #endif
1335 /* ARGSUSED */
1336 int
1337 osigvec(td, uap)
1338 	struct thread *td;
1339 	register struct osigvec_args *uap;
1340 {
1341 	struct sigvec vec;
1342 	struct sigaction nsa, osa;
1343 	register struct sigaction *nsap, *osap;
1344 	int error;
1345 
1346 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1347 		return (EINVAL);
1348 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1349 	osap = (uap->osv != NULL) ? &osa : NULL;
1350 	if (nsap) {
1351 		error = copyin(uap->nsv, &vec, sizeof(vec));
1352 		if (error)
1353 			return (error);
1354 		nsap->sa_handler = vec.sv_handler;
1355 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1356 		nsap->sa_flags = vec.sv_flags;
1357 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1358 	}
1359 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1360 	if (osap && !error) {
1361 		vec.sv_handler = osap->sa_handler;
1362 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1363 		vec.sv_flags = osap->sa_flags;
1364 		vec.sv_flags &= ~SA_NOCLDWAIT;
1365 		vec.sv_flags ^= SA_RESTART;
1366 		error = copyout(&vec, uap->osv, sizeof(vec));
1367 	}
1368 	return (error);
1369 }
1370 
1371 #ifndef _SYS_SYSPROTO_H_
1372 struct osigblock_args {
1373 	int	mask;
1374 };
1375 #endif
1376 int
1377 osigblock(td, uap)
1378 	register struct thread *td;
1379 	struct osigblock_args *uap;
1380 {
1381 	sigset_t set, oset;
1382 
1383 	OSIG2SIG(uap->mask, set);
1384 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1385 	SIG2OSIG(oset, td->td_retval[0]);
1386 	return (0);
1387 }
1388 
1389 #ifndef _SYS_SYSPROTO_H_
1390 struct osigsetmask_args {
1391 	int	mask;
1392 };
1393 #endif
1394 int
1395 osigsetmask(td, uap)
1396 	struct thread *td;
1397 	struct osigsetmask_args *uap;
1398 {
1399 	sigset_t set, oset;
1400 
1401 	OSIG2SIG(uap->mask, set);
1402 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1403 	SIG2OSIG(oset, td->td_retval[0]);
1404 	return (0);
1405 }
1406 #endif /* COMPAT_43 */
1407 
1408 /*
1409  * Suspend calling thread until signal, providing mask to be set in the
1410  * meantime.
1411  */
1412 #ifndef _SYS_SYSPROTO_H_
1413 struct sigsuspend_args {
1414 	const sigset_t *sigmask;
1415 };
1416 #endif
1417 /* ARGSUSED */
1418 int
1419 sys_sigsuspend(td, uap)
1420 	struct thread *td;
1421 	struct sigsuspend_args *uap;
1422 {
1423 	sigset_t mask;
1424 	int error;
1425 
1426 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1427 	if (error)
1428 		return (error);
1429 	return (kern_sigsuspend(td, mask));
1430 }
1431 
1432 int
1433 kern_sigsuspend(struct thread *td, sigset_t mask)
1434 {
1435 	struct proc *p = td->td_proc;
1436 	int has_sig, sig;
1437 
1438 	/*
1439 	 * When returning from sigsuspend, we want
1440 	 * the old mask to be restored after the
1441 	 * signal handler has finished.  Thus, we
1442 	 * save it here and mark the sigacts structure
1443 	 * to indicate this.
1444 	 */
1445 	PROC_LOCK(p);
1446 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1447 	    SIGPROCMASK_PROC_LOCKED);
1448 	td->td_pflags |= TDP_OLDMASK;
1449 
1450 	/*
1451 	 * Process signals now. Otherwise, we can get spurious wakeup
1452 	 * due to signal entered process queue, but delivered to other
1453 	 * thread. But sigsuspend should return only on signal
1454 	 * delivery.
1455 	 */
1456 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1457 	for (has_sig = 0; !has_sig;) {
1458 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1459 			0) == 0)
1460 			/* void */;
1461 		thread_suspend_check(0);
1462 		mtx_lock(&p->p_sigacts->ps_mtx);
1463 		while ((sig = cursig(td, SIG_STOP_ALLOWED)) != 0)
1464 			has_sig += postsig(sig);
1465 		mtx_unlock(&p->p_sigacts->ps_mtx);
1466 	}
1467 	PROC_UNLOCK(p);
1468 	td->td_errno = EINTR;
1469 	td->td_pflags |= TDP_NERRNO;
1470 	return (EJUSTRETURN);
1471 }
1472 
1473 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1474 /*
1475  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1476  * convention: libc stub passes mask, not pointer, to save a copyin.
1477  */
1478 #ifndef _SYS_SYSPROTO_H_
1479 struct osigsuspend_args {
1480 	osigset_t mask;
1481 };
1482 #endif
1483 /* ARGSUSED */
1484 int
1485 osigsuspend(td, uap)
1486 	struct thread *td;
1487 	struct osigsuspend_args *uap;
1488 {
1489 	sigset_t mask;
1490 
1491 	OSIG2SIG(uap->mask, mask);
1492 	return (kern_sigsuspend(td, mask));
1493 }
1494 #endif /* COMPAT_43 */
1495 
1496 #if defined(COMPAT_43)
1497 #ifndef _SYS_SYSPROTO_H_
1498 struct osigstack_args {
1499 	struct	sigstack *nss;
1500 	struct	sigstack *oss;
1501 };
1502 #endif
1503 /* ARGSUSED */
1504 int
1505 osigstack(td, uap)
1506 	struct thread *td;
1507 	register struct osigstack_args *uap;
1508 {
1509 	struct sigstack nss, oss;
1510 	int error = 0;
1511 
1512 	if (uap->nss != NULL) {
1513 		error = copyin(uap->nss, &nss, sizeof(nss));
1514 		if (error)
1515 			return (error);
1516 	}
1517 	oss.ss_sp = td->td_sigstk.ss_sp;
1518 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1519 	if (uap->nss != NULL) {
1520 		td->td_sigstk.ss_sp = nss.ss_sp;
1521 		td->td_sigstk.ss_size = 0;
1522 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1523 		td->td_pflags |= TDP_ALTSTACK;
1524 	}
1525 	if (uap->oss != NULL)
1526 		error = copyout(&oss, uap->oss, sizeof(oss));
1527 
1528 	return (error);
1529 }
1530 #endif /* COMPAT_43 */
1531 
1532 #ifndef _SYS_SYSPROTO_H_
1533 struct sigaltstack_args {
1534 	stack_t	*ss;
1535 	stack_t	*oss;
1536 };
1537 #endif
1538 /* ARGSUSED */
1539 int
1540 sys_sigaltstack(td, uap)
1541 	struct thread *td;
1542 	register struct sigaltstack_args *uap;
1543 {
1544 	stack_t ss, oss;
1545 	int error;
1546 
1547 	if (uap->ss != NULL) {
1548 		error = copyin(uap->ss, &ss, sizeof(ss));
1549 		if (error)
1550 			return (error);
1551 	}
1552 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1553 	    (uap->oss != NULL) ? &oss : NULL);
1554 	if (error)
1555 		return (error);
1556 	if (uap->oss != NULL)
1557 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1558 	return (error);
1559 }
1560 
1561 int
1562 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1563 {
1564 	struct proc *p = td->td_proc;
1565 	int oonstack;
1566 
1567 	oonstack = sigonstack(cpu_getstack(td));
1568 
1569 	if (oss != NULL) {
1570 		*oss = td->td_sigstk;
1571 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1572 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1573 	}
1574 
1575 	if (ss != NULL) {
1576 		if (oonstack)
1577 			return (EPERM);
1578 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1579 			return (EINVAL);
1580 		if (!(ss->ss_flags & SS_DISABLE)) {
1581 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1582 				return (ENOMEM);
1583 
1584 			td->td_sigstk = *ss;
1585 			td->td_pflags |= TDP_ALTSTACK;
1586 		} else {
1587 			td->td_pflags &= ~TDP_ALTSTACK;
1588 		}
1589 	}
1590 	return (0);
1591 }
1592 
1593 /*
1594  * Common code for kill process group/broadcast kill.
1595  * cp is calling process.
1596  */
1597 static int
1598 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1599 {
1600 	struct proc *p;
1601 	struct pgrp *pgrp;
1602 	int err;
1603 	int ret;
1604 
1605 	ret = ESRCH;
1606 	if (all) {
1607 		/*
1608 		 * broadcast
1609 		 */
1610 		sx_slock(&allproc_lock);
1611 		FOREACH_PROC_IN_SYSTEM(p) {
1612 			PROC_LOCK(p);
1613 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1614 			    p == td->td_proc || p->p_state == PRS_NEW) {
1615 				PROC_UNLOCK(p);
1616 				continue;
1617 			}
1618 			err = p_cansignal(td, p, sig);
1619 			if (err == 0) {
1620 				if (sig)
1621 					pksignal(p, sig, ksi);
1622 				ret = err;
1623 			}
1624 			else if (ret == ESRCH)
1625 				ret = err;
1626 			PROC_UNLOCK(p);
1627 		}
1628 		sx_sunlock(&allproc_lock);
1629 	} else {
1630 		sx_slock(&proctree_lock);
1631 		if (pgid == 0) {
1632 			/*
1633 			 * zero pgid means send to my process group.
1634 			 */
1635 			pgrp = td->td_proc->p_pgrp;
1636 			PGRP_LOCK(pgrp);
1637 		} else {
1638 			pgrp = pgfind(pgid);
1639 			if (pgrp == NULL) {
1640 				sx_sunlock(&proctree_lock);
1641 				return (ESRCH);
1642 			}
1643 		}
1644 		sx_sunlock(&proctree_lock);
1645 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1646 			PROC_LOCK(p);
1647 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1648 			    p->p_state == PRS_NEW) {
1649 				PROC_UNLOCK(p);
1650 				continue;
1651 			}
1652 			err = p_cansignal(td, p, sig);
1653 			if (err == 0) {
1654 				if (sig)
1655 					pksignal(p, sig, ksi);
1656 				ret = err;
1657 			}
1658 			else if (ret == ESRCH)
1659 				ret = err;
1660 			PROC_UNLOCK(p);
1661 		}
1662 		PGRP_UNLOCK(pgrp);
1663 	}
1664 	return (ret);
1665 }
1666 
1667 #ifndef _SYS_SYSPROTO_H_
1668 struct kill_args {
1669 	int	pid;
1670 	int	signum;
1671 };
1672 #endif
1673 /* ARGSUSED */
1674 int
1675 sys_kill(struct thread *td, struct kill_args *uap)
1676 {
1677 	ksiginfo_t ksi;
1678 	struct proc *p;
1679 	int error;
1680 
1681 	AUDIT_ARG_SIGNUM(uap->signum);
1682 	AUDIT_ARG_PID(uap->pid);
1683 	if ((u_int)uap->signum > _SIG_MAXSIG)
1684 		return (EINVAL);
1685 
1686 	ksiginfo_init(&ksi);
1687 	ksi.ksi_signo = uap->signum;
1688 	ksi.ksi_code = SI_USER;
1689 	ksi.ksi_pid = td->td_proc->p_pid;
1690 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1691 
1692 	if (uap->pid > 0) {
1693 		/* kill single process */
1694 		if ((p = pfind(uap->pid)) == NULL) {
1695 			if ((p = zpfind(uap->pid)) == NULL)
1696 				return (ESRCH);
1697 		}
1698 		AUDIT_ARG_PROCESS(p);
1699 		error = p_cansignal(td, p, uap->signum);
1700 		if (error == 0 && uap->signum)
1701 			pksignal(p, uap->signum, &ksi);
1702 		PROC_UNLOCK(p);
1703 		return (error);
1704 	}
1705 	switch (uap->pid) {
1706 	case -1:		/* broadcast signal */
1707 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1708 	case 0:			/* signal own process group */
1709 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1710 	default:		/* negative explicit process group */
1711 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1712 	}
1713 	/* NOTREACHED */
1714 }
1715 
1716 int
1717 sys_pdkill(td, uap)
1718 	struct thread *td;
1719 	struct pdkill_args *uap;
1720 {
1721 #ifdef PROCDESC
1722 	struct proc *p;
1723 	int error;
1724 
1725 	AUDIT_ARG_SIGNUM(uap->signum);
1726 	AUDIT_ARG_FD(uap->fd);
1727 	if ((u_int)uap->signum > _SIG_MAXSIG)
1728 		return (EINVAL);
1729 
1730 	error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
1731 	if (error)
1732 		return (error);
1733 	AUDIT_ARG_PROCESS(p);
1734 	error = p_cansignal(td, p, uap->signum);
1735 	if (error == 0 && uap->signum)
1736 		kern_psignal(p, uap->signum);
1737 	PROC_UNLOCK(p);
1738 	return (error);
1739 #else
1740 	return (ENOSYS);
1741 #endif
1742 }
1743 
1744 #if defined(COMPAT_43)
1745 #ifndef _SYS_SYSPROTO_H_
1746 struct okillpg_args {
1747 	int	pgid;
1748 	int	signum;
1749 };
1750 #endif
1751 /* ARGSUSED */
1752 int
1753 okillpg(struct thread *td, struct okillpg_args *uap)
1754 {
1755 	ksiginfo_t ksi;
1756 
1757 	AUDIT_ARG_SIGNUM(uap->signum);
1758 	AUDIT_ARG_PID(uap->pgid);
1759 	if ((u_int)uap->signum > _SIG_MAXSIG)
1760 		return (EINVAL);
1761 
1762 	ksiginfo_init(&ksi);
1763 	ksi.ksi_signo = uap->signum;
1764 	ksi.ksi_code = SI_USER;
1765 	ksi.ksi_pid = td->td_proc->p_pid;
1766 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1767 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1768 }
1769 #endif /* COMPAT_43 */
1770 
1771 #ifndef _SYS_SYSPROTO_H_
1772 struct sigqueue_args {
1773 	pid_t pid;
1774 	int signum;
1775 	/* union sigval */ void *value;
1776 };
1777 #endif
1778 int
1779 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1780 {
1781 	ksiginfo_t ksi;
1782 	struct proc *p;
1783 	int error;
1784 
1785 	if ((u_int)uap->signum > _SIG_MAXSIG)
1786 		return (EINVAL);
1787 
1788 	/*
1789 	 * Specification says sigqueue can only send signal to
1790 	 * single process.
1791 	 */
1792 	if (uap->pid <= 0)
1793 		return (EINVAL);
1794 
1795 	if ((p = pfind(uap->pid)) == NULL) {
1796 		if ((p = zpfind(uap->pid)) == NULL)
1797 			return (ESRCH);
1798 	}
1799 	error = p_cansignal(td, p, uap->signum);
1800 	if (error == 0 && uap->signum != 0) {
1801 		ksiginfo_init(&ksi);
1802 		ksi.ksi_flags = KSI_SIGQ;
1803 		ksi.ksi_signo = uap->signum;
1804 		ksi.ksi_code = SI_QUEUE;
1805 		ksi.ksi_pid = td->td_proc->p_pid;
1806 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1807 		ksi.ksi_value.sival_ptr = uap->value;
1808 		error = pksignal(p, ksi.ksi_signo, &ksi);
1809 	}
1810 	PROC_UNLOCK(p);
1811 	return (error);
1812 }
1813 
1814 /*
1815  * Send a signal to a process group.
1816  */
1817 void
1818 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1819 {
1820 	struct pgrp *pgrp;
1821 
1822 	if (pgid != 0) {
1823 		sx_slock(&proctree_lock);
1824 		pgrp = pgfind(pgid);
1825 		sx_sunlock(&proctree_lock);
1826 		if (pgrp != NULL) {
1827 			pgsignal(pgrp, sig, 0, ksi);
1828 			PGRP_UNLOCK(pgrp);
1829 		}
1830 	}
1831 }
1832 
1833 /*
1834  * Send a signal to a process group.  If checktty is 1,
1835  * limit to members which have a controlling terminal.
1836  */
1837 void
1838 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1839 {
1840 	struct proc *p;
1841 
1842 	if (pgrp) {
1843 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1844 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1845 			PROC_LOCK(p);
1846 			if (p->p_state == PRS_NORMAL &&
1847 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1848 				pksignal(p, sig, ksi);
1849 			PROC_UNLOCK(p);
1850 		}
1851 	}
1852 }
1853 
1854 /*
1855  * Send a signal caused by a trap to the current thread.  If it will be
1856  * caught immediately, deliver it with correct code.  Otherwise, post it
1857  * normally.
1858  */
1859 void
1860 trapsignal(struct thread *td, ksiginfo_t *ksi)
1861 {
1862 	struct sigacts *ps;
1863 	sigset_t mask;
1864 	struct proc *p;
1865 	int sig;
1866 	int code;
1867 
1868 	p = td->td_proc;
1869 	sig = ksi->ksi_signo;
1870 	code = ksi->ksi_code;
1871 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1872 
1873 	PROC_LOCK(p);
1874 	ps = p->p_sigacts;
1875 	mtx_lock(&ps->ps_mtx);
1876 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1877 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1878 		td->td_ru.ru_nsignals++;
1879 #ifdef KTRACE
1880 		if (KTRPOINT(curthread, KTR_PSIG))
1881 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1882 			    &td->td_sigmask, code);
1883 #endif
1884 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1885 				ksi, &td->td_sigmask);
1886 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1887 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1888 			SIGADDSET(mask, sig);
1889 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1890 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1891 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1892 			/*
1893 			 * See kern_sigaction() for origin of this code.
1894 			 */
1895 			SIGDELSET(ps->ps_sigcatch, sig);
1896 			if (sig != SIGCONT &&
1897 			    sigprop(sig) & SA_IGNORE)
1898 				SIGADDSET(ps->ps_sigignore, sig);
1899 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1900 		}
1901 		mtx_unlock(&ps->ps_mtx);
1902 	} else {
1903 		/*
1904 		 * Avoid a possible infinite loop if the thread
1905 		 * masking the signal or process is ignoring the
1906 		 * signal.
1907 		 */
1908 		if (kern_forcesigexit &&
1909 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1910 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1911 			SIGDELSET(td->td_sigmask, sig);
1912 			SIGDELSET(ps->ps_sigcatch, sig);
1913 			SIGDELSET(ps->ps_sigignore, sig);
1914 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1915 		}
1916 		mtx_unlock(&ps->ps_mtx);
1917 		p->p_code = code;	/* XXX for core dump/debugger */
1918 		p->p_sig = sig;		/* XXX to verify code */
1919 		tdsendsignal(p, td, sig, ksi);
1920 	}
1921 	PROC_UNLOCK(p);
1922 }
1923 
1924 static struct thread *
1925 sigtd(struct proc *p, int sig, int prop)
1926 {
1927 	struct thread *td, *signal_td;
1928 
1929 	PROC_LOCK_ASSERT(p, MA_OWNED);
1930 
1931 	/*
1932 	 * Check if current thread can handle the signal without
1933 	 * switching context to another thread.
1934 	 */
1935 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1936 		return (curthread);
1937 	signal_td = NULL;
1938 	FOREACH_THREAD_IN_PROC(p, td) {
1939 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1940 			signal_td = td;
1941 			break;
1942 		}
1943 	}
1944 	if (signal_td == NULL)
1945 		signal_td = FIRST_THREAD_IN_PROC(p);
1946 	return (signal_td);
1947 }
1948 
1949 /*
1950  * Send the signal to the process.  If the signal has an action, the action
1951  * is usually performed by the target process rather than the caller; we add
1952  * the signal to the set of pending signals for the process.
1953  *
1954  * Exceptions:
1955  *   o When a stop signal is sent to a sleeping process that takes the
1956  *     default action, the process is stopped without awakening it.
1957  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1958  *     regardless of the signal action (eg, blocked or ignored).
1959  *
1960  * Other ignored signals are discarded immediately.
1961  *
1962  * NB: This function may be entered from the debugger via the "kill" DDB
1963  * command.  There is little that can be done to mitigate the possibly messy
1964  * side effects of this unwise possibility.
1965  */
1966 void
1967 kern_psignal(struct proc *p, int sig)
1968 {
1969 	ksiginfo_t ksi;
1970 
1971 	ksiginfo_init(&ksi);
1972 	ksi.ksi_signo = sig;
1973 	ksi.ksi_code = SI_KERNEL;
1974 	(void) tdsendsignal(p, NULL, sig, &ksi);
1975 }
1976 
1977 int
1978 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1979 {
1980 
1981 	return (tdsendsignal(p, NULL, sig, ksi));
1982 }
1983 
1984 /* Utility function for finding a thread to send signal event to. */
1985 int
1986 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1987 {
1988 	struct thread *td;
1989 
1990 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1991 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
1992 		if (td == NULL)
1993 			return (ESRCH);
1994 		*ttd = td;
1995 	} else {
1996 		*ttd = NULL;
1997 		PROC_LOCK(p);
1998 	}
1999 	return (0);
2000 }
2001 
2002 void
2003 tdsignal(struct thread *td, int sig)
2004 {
2005 	ksiginfo_t ksi;
2006 
2007 	ksiginfo_init(&ksi);
2008 	ksi.ksi_signo = sig;
2009 	ksi.ksi_code = SI_KERNEL;
2010 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2011 }
2012 
2013 void
2014 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2015 {
2016 
2017 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2018 }
2019 
2020 int
2021 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2022 {
2023 	sig_t action;
2024 	sigqueue_t *sigqueue;
2025 	int prop;
2026 	struct sigacts *ps;
2027 	int intrval;
2028 	int ret = 0;
2029 	int wakeup_swapper;
2030 
2031 	MPASS(td == NULL || p == td->td_proc);
2032 	PROC_LOCK_ASSERT(p, MA_OWNED);
2033 
2034 	if (!_SIG_VALID(sig))
2035 		panic("%s(): invalid signal %d", __func__, sig);
2036 
2037 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2038 
2039 	/*
2040 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2041 	 */
2042 	if (p->p_state == PRS_ZOMBIE) {
2043 		if (ksi && (ksi->ksi_flags & KSI_INS))
2044 			ksiginfo_tryfree(ksi);
2045 		return (ret);
2046 	}
2047 
2048 	ps = p->p_sigacts;
2049 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2050 	prop = sigprop(sig);
2051 
2052 	if (td == NULL) {
2053 		td = sigtd(p, sig, prop);
2054 		sigqueue = &p->p_sigqueue;
2055 	} else {
2056 		KASSERT(td->td_proc == p, ("invalid thread"));
2057 		sigqueue = &td->td_sigqueue;
2058 	}
2059 
2060 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2061 
2062 	/*
2063 	 * If the signal is being ignored,
2064 	 * then we forget about it immediately.
2065 	 * (Note: we don't set SIGCONT in ps_sigignore,
2066 	 * and if it is set to SIG_IGN,
2067 	 * action will be SIG_DFL here.)
2068 	 */
2069 	mtx_lock(&ps->ps_mtx);
2070 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2071 		SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
2072 
2073 		mtx_unlock(&ps->ps_mtx);
2074 		if (ksi && (ksi->ksi_flags & KSI_INS))
2075 			ksiginfo_tryfree(ksi);
2076 		return (ret);
2077 	}
2078 	if (SIGISMEMBER(td->td_sigmask, sig))
2079 		action = SIG_HOLD;
2080 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2081 		action = SIG_CATCH;
2082 	else
2083 		action = SIG_DFL;
2084 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2085 		intrval = EINTR;
2086 	else
2087 		intrval = ERESTART;
2088 	mtx_unlock(&ps->ps_mtx);
2089 
2090 	if (prop & SA_CONT)
2091 		sigqueue_delete_stopmask_proc(p);
2092 	else if (prop & SA_STOP) {
2093 		/*
2094 		 * If sending a tty stop signal to a member of an orphaned
2095 		 * process group, discard the signal here if the action
2096 		 * is default; don't stop the process below if sleeping,
2097 		 * and don't clear any pending SIGCONT.
2098 		 */
2099 		if ((prop & SA_TTYSTOP) &&
2100 		    (p->p_pgrp->pg_jobc == 0) &&
2101 		    (action == SIG_DFL)) {
2102 			if (ksi && (ksi->ksi_flags & KSI_INS))
2103 				ksiginfo_tryfree(ksi);
2104 			return (ret);
2105 		}
2106 		sigqueue_delete_proc(p, SIGCONT);
2107 		if (p->p_flag & P_CONTINUED) {
2108 			p->p_flag &= ~P_CONTINUED;
2109 			PROC_LOCK(p->p_pptr);
2110 			sigqueue_take(p->p_ksi);
2111 			PROC_UNLOCK(p->p_pptr);
2112 		}
2113 	}
2114 
2115 	ret = sigqueue_add(sigqueue, sig, ksi);
2116 	if (ret != 0)
2117 		return (ret);
2118 	signotify(td);
2119 	/*
2120 	 * Defer further processing for signals which are held,
2121 	 * except that stopped processes must be continued by SIGCONT.
2122 	 */
2123 	if (action == SIG_HOLD &&
2124 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2125 		return (ret);
2126 	/*
2127 	 * SIGKILL: Remove procfs STOPEVENTs.
2128 	 */
2129 	if (sig == SIGKILL) {
2130 		/* from procfs_ioctl.c: PIOCBIC */
2131 		p->p_stops = 0;
2132 		/* from procfs_ioctl.c: PIOCCONT */
2133 		p->p_step = 0;
2134 		wakeup(&p->p_step);
2135 	}
2136 	/*
2137 	 * Some signals have a process-wide effect and a per-thread
2138 	 * component.  Most processing occurs when the process next
2139 	 * tries to cross the user boundary, however there are some
2140 	 * times when processing needs to be done immediatly, such as
2141 	 * waking up threads so that they can cross the user boundary.
2142 	 * We try do the per-process part here.
2143 	 */
2144 	if (P_SHOULDSTOP(p)) {
2145 		KASSERT(!(p->p_flag & P_WEXIT),
2146 		    ("signal to stopped but exiting process"));
2147 		if (sig == SIGKILL) {
2148 			/*
2149 			 * If traced process is already stopped,
2150 			 * then no further action is necessary.
2151 			 */
2152 			if (p->p_flag & P_TRACED)
2153 				goto out;
2154 			/*
2155 			 * SIGKILL sets process running.
2156 			 * It will die elsewhere.
2157 			 * All threads must be restarted.
2158 			 */
2159 			p->p_flag &= ~P_STOPPED_SIG;
2160 			goto runfast;
2161 		}
2162 
2163 		if (prop & SA_CONT) {
2164 			/*
2165 			 * If traced process is already stopped,
2166 			 * then no further action is necessary.
2167 			 */
2168 			if (p->p_flag & P_TRACED)
2169 				goto out;
2170 			/*
2171 			 * If SIGCONT is default (or ignored), we continue the
2172 			 * process but don't leave the signal in sigqueue as
2173 			 * it has no further action.  If SIGCONT is held, we
2174 			 * continue the process and leave the signal in
2175 			 * sigqueue.  If the process catches SIGCONT, let it
2176 			 * handle the signal itself.  If it isn't waiting on
2177 			 * an event, it goes back to run state.
2178 			 * Otherwise, process goes back to sleep state.
2179 			 */
2180 			p->p_flag &= ~P_STOPPED_SIG;
2181 			PROC_SLOCK(p);
2182 			if (p->p_numthreads == p->p_suspcount) {
2183 				PROC_SUNLOCK(p);
2184 				p->p_flag |= P_CONTINUED;
2185 				p->p_xstat = SIGCONT;
2186 				PROC_LOCK(p->p_pptr);
2187 				childproc_continued(p);
2188 				PROC_UNLOCK(p->p_pptr);
2189 				PROC_SLOCK(p);
2190 			}
2191 			if (action == SIG_DFL) {
2192 				thread_unsuspend(p);
2193 				PROC_SUNLOCK(p);
2194 				sigqueue_delete(sigqueue, sig);
2195 				goto out;
2196 			}
2197 			if (action == SIG_CATCH) {
2198 				/*
2199 				 * The process wants to catch it so it needs
2200 				 * to run at least one thread, but which one?
2201 				 */
2202 				PROC_SUNLOCK(p);
2203 				goto runfast;
2204 			}
2205 			/*
2206 			 * The signal is not ignored or caught.
2207 			 */
2208 			thread_unsuspend(p);
2209 			PROC_SUNLOCK(p);
2210 			goto out;
2211 		}
2212 
2213 		if (prop & SA_STOP) {
2214 			/*
2215 			 * If traced process is already stopped,
2216 			 * then no further action is necessary.
2217 			 */
2218 			if (p->p_flag & P_TRACED)
2219 				goto out;
2220 			/*
2221 			 * Already stopped, don't need to stop again
2222 			 * (If we did the shell could get confused).
2223 			 * Just make sure the signal STOP bit set.
2224 			 */
2225 			p->p_flag |= P_STOPPED_SIG;
2226 			sigqueue_delete(sigqueue, sig);
2227 			goto out;
2228 		}
2229 
2230 		/*
2231 		 * All other kinds of signals:
2232 		 * If a thread is sleeping interruptibly, simulate a
2233 		 * wakeup so that when it is continued it will be made
2234 		 * runnable and can look at the signal.  However, don't make
2235 		 * the PROCESS runnable, leave it stopped.
2236 		 * It may run a bit until it hits a thread_suspend_check().
2237 		 */
2238 		wakeup_swapper = 0;
2239 		PROC_SLOCK(p);
2240 		thread_lock(td);
2241 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2242 			wakeup_swapper = sleepq_abort(td, intrval);
2243 		thread_unlock(td);
2244 		PROC_SUNLOCK(p);
2245 		if (wakeup_swapper)
2246 			kick_proc0();
2247 		goto out;
2248 		/*
2249 		 * Mutexes are short lived. Threads waiting on them will
2250 		 * hit thread_suspend_check() soon.
2251 		 */
2252 	} else if (p->p_state == PRS_NORMAL) {
2253 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2254 			tdsigwakeup(td, sig, action, intrval);
2255 			goto out;
2256 		}
2257 
2258 		MPASS(action == SIG_DFL);
2259 
2260 		if (prop & SA_STOP) {
2261 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2262 				goto out;
2263 			p->p_flag |= P_STOPPED_SIG;
2264 			p->p_xstat = sig;
2265 			PROC_SLOCK(p);
2266 			sig_suspend_threads(td, p, 1);
2267 			if (p->p_numthreads == p->p_suspcount) {
2268 				/*
2269 				 * only thread sending signal to another
2270 				 * process can reach here, if thread is sending
2271 				 * signal to its process, because thread does
2272 				 * not suspend itself here, p_numthreads
2273 				 * should never be equal to p_suspcount.
2274 				 */
2275 				thread_stopped(p);
2276 				PROC_SUNLOCK(p);
2277 				sigqueue_delete_proc(p, p->p_xstat);
2278 			} else
2279 				PROC_SUNLOCK(p);
2280 			goto out;
2281 		}
2282 	} else {
2283 		/* Not in "NORMAL" state. discard the signal. */
2284 		sigqueue_delete(sigqueue, sig);
2285 		goto out;
2286 	}
2287 
2288 	/*
2289 	 * The process is not stopped so we need to apply the signal to all the
2290 	 * running threads.
2291 	 */
2292 runfast:
2293 	tdsigwakeup(td, sig, action, intrval);
2294 	PROC_SLOCK(p);
2295 	thread_unsuspend(p);
2296 	PROC_SUNLOCK(p);
2297 out:
2298 	/* If we jump here, proc slock should not be owned. */
2299 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2300 	return (ret);
2301 }
2302 
2303 /*
2304  * The force of a signal has been directed against a single
2305  * thread.  We need to see what we can do about knocking it
2306  * out of any sleep it may be in etc.
2307  */
2308 static void
2309 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2310 {
2311 	struct proc *p = td->td_proc;
2312 	register int prop;
2313 	int wakeup_swapper;
2314 
2315 	wakeup_swapper = 0;
2316 	PROC_LOCK_ASSERT(p, MA_OWNED);
2317 	prop = sigprop(sig);
2318 
2319 	PROC_SLOCK(p);
2320 	thread_lock(td);
2321 	/*
2322 	 * Bring the priority of a thread up if we want it to get
2323 	 * killed in this lifetime.
2324 	 */
2325 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2326 		sched_prio(td, PUSER);
2327 	if (TD_ON_SLEEPQ(td)) {
2328 		/*
2329 		 * If thread is sleeping uninterruptibly
2330 		 * we can't interrupt the sleep... the signal will
2331 		 * be noticed when the process returns through
2332 		 * trap() or syscall().
2333 		 */
2334 		if ((td->td_flags & TDF_SINTR) == 0)
2335 			goto out;
2336 		/*
2337 		 * If SIGCONT is default (or ignored) and process is
2338 		 * asleep, we are finished; the process should not
2339 		 * be awakened.
2340 		 */
2341 		if ((prop & SA_CONT) && action == SIG_DFL) {
2342 			thread_unlock(td);
2343 			PROC_SUNLOCK(p);
2344 			sigqueue_delete(&p->p_sigqueue, sig);
2345 			/*
2346 			 * It may be on either list in this state.
2347 			 * Remove from both for now.
2348 			 */
2349 			sigqueue_delete(&td->td_sigqueue, sig);
2350 			return;
2351 		}
2352 
2353 		/*
2354 		 * Give low priority threads a better chance to run.
2355 		 */
2356 		if (td->td_priority > PUSER)
2357 			sched_prio(td, PUSER);
2358 
2359 		wakeup_swapper = sleepq_abort(td, intrval);
2360 	} else {
2361 		/*
2362 		 * Other states do nothing with the signal immediately,
2363 		 * other than kicking ourselves if we are running.
2364 		 * It will either never be noticed, or noticed very soon.
2365 		 */
2366 #ifdef SMP
2367 		if (TD_IS_RUNNING(td) && td != curthread)
2368 			forward_signal(td);
2369 #endif
2370 	}
2371 out:
2372 	PROC_SUNLOCK(p);
2373 	thread_unlock(td);
2374 	if (wakeup_swapper)
2375 		kick_proc0();
2376 }
2377 
2378 static void
2379 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2380 {
2381 	struct thread *td2;
2382 	int wakeup_swapper;
2383 
2384 	PROC_LOCK_ASSERT(p, MA_OWNED);
2385 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2386 
2387 	wakeup_swapper = 0;
2388 	FOREACH_THREAD_IN_PROC(p, td2) {
2389 		thread_lock(td2);
2390 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2391 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2392 		    (td2->td_flags & TDF_SINTR)) {
2393 			if (td2->td_flags & TDF_SBDRY) {
2394 				if (TD_IS_SUSPENDED(td2))
2395 					wakeup_swapper |=
2396 					    thread_unsuspend_one(td2);
2397 				if (TD_ON_SLEEPQ(td2))
2398 					wakeup_swapper |=
2399 					    sleepq_abort(td2, ERESTART);
2400 			} else if (!TD_IS_SUSPENDED(td2)) {
2401 				thread_suspend_one(td2);
2402 			}
2403 		} else if (!TD_IS_SUSPENDED(td2)) {
2404 			if (sending || td != td2)
2405 				td2->td_flags |= TDF_ASTPENDING;
2406 #ifdef SMP
2407 			if (TD_IS_RUNNING(td2) && td2 != td)
2408 				forward_signal(td2);
2409 #endif
2410 		}
2411 		thread_unlock(td2);
2412 	}
2413 	if (wakeup_swapper)
2414 		kick_proc0();
2415 }
2416 
2417 int
2418 ptracestop(struct thread *td, int sig)
2419 {
2420 	struct proc *p = td->td_proc;
2421 
2422 	PROC_LOCK_ASSERT(p, MA_OWNED);
2423 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2424 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2425 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2426 
2427 	td->td_dbgflags |= TDB_XSIG;
2428 	td->td_xsig = sig;
2429 	PROC_SLOCK(p);
2430 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2431 		if (p->p_flag & P_SINGLE_EXIT) {
2432 			td->td_dbgflags &= ~TDB_XSIG;
2433 			PROC_SUNLOCK(p);
2434 			return (sig);
2435 		}
2436 		/*
2437 		 * Just make wait() to work, the last stopped thread
2438 		 * will win.
2439 		 */
2440 		p->p_xstat = sig;
2441 		p->p_xthread = td;
2442 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2443 		sig_suspend_threads(td, p, 0);
2444 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2445 			td->td_dbgflags &= ~TDB_STOPATFORK;
2446 			cv_broadcast(&p->p_dbgwait);
2447 		}
2448 stopme:
2449 		thread_suspend_switch(td);
2450 		if (p->p_xthread == td)
2451 			p->p_xthread = NULL;
2452 		if (!(p->p_flag & P_TRACED))
2453 			break;
2454 		if (td->td_dbgflags & TDB_SUSPEND) {
2455 			if (p->p_flag & P_SINGLE_EXIT)
2456 				break;
2457 			goto stopme;
2458 		}
2459 	}
2460 	PROC_SUNLOCK(p);
2461 	return (td->td_xsig);
2462 }
2463 
2464 static void
2465 reschedule_signals(struct proc *p, sigset_t block, int flags)
2466 {
2467 	struct sigacts *ps;
2468 	struct thread *td;
2469 	int sig;
2470 
2471 	PROC_LOCK_ASSERT(p, MA_OWNED);
2472 	if (SIGISEMPTY(p->p_siglist))
2473 		return;
2474 	ps = p->p_sigacts;
2475 	SIGSETAND(block, p->p_siglist);
2476 	while ((sig = sig_ffs(&block)) != 0) {
2477 		SIGDELSET(block, sig);
2478 		td = sigtd(p, sig, 0);
2479 		signotify(td);
2480 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2481 			mtx_lock(&ps->ps_mtx);
2482 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2483 			tdsigwakeup(td, sig, SIG_CATCH,
2484 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2485 			     ERESTART));
2486 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2487 			mtx_unlock(&ps->ps_mtx);
2488 	}
2489 }
2490 
2491 void
2492 tdsigcleanup(struct thread *td)
2493 {
2494 	struct proc *p;
2495 	sigset_t unblocked;
2496 
2497 	p = td->td_proc;
2498 	PROC_LOCK_ASSERT(p, MA_OWNED);
2499 
2500 	sigqueue_flush(&td->td_sigqueue);
2501 	if (p->p_numthreads == 1)
2502 		return;
2503 
2504 	/*
2505 	 * Since we cannot handle signals, notify signal post code
2506 	 * about this by filling the sigmask.
2507 	 *
2508 	 * Also, if needed, wake up thread(s) that do not block the
2509 	 * same signals as the exiting thread, since the thread might
2510 	 * have been selected for delivery and woken up.
2511 	 */
2512 	SIGFILLSET(unblocked);
2513 	SIGSETNAND(unblocked, td->td_sigmask);
2514 	SIGFILLSET(td->td_sigmask);
2515 	reschedule_signals(p, unblocked, 0);
2516 
2517 }
2518 
2519 /*
2520  * If the current process has received a signal (should be caught or cause
2521  * termination, should interrupt current syscall), return the signal number.
2522  * Stop signals with default action are processed immediately, then cleared;
2523  * they aren't returned.  This is checked after each entry to the system for
2524  * a syscall or trap (though this can usually be done without calling issignal
2525  * by checking the pending signal masks in cursig.) The normal call
2526  * sequence is
2527  *
2528  *	while (sig = cursig(curthread))
2529  *		postsig(sig);
2530  */
2531 static int
2532 issignal(struct thread *td, int stop_allowed)
2533 {
2534 	struct proc *p;
2535 	struct sigacts *ps;
2536 	struct sigqueue *queue;
2537 	sigset_t sigpending;
2538 	int sig, prop, newsig;
2539 
2540 	p = td->td_proc;
2541 	ps = p->p_sigacts;
2542 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2543 	PROC_LOCK_ASSERT(p, MA_OWNED);
2544 	for (;;) {
2545 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2546 
2547 		sigpending = td->td_sigqueue.sq_signals;
2548 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2549 		SIGSETNAND(sigpending, td->td_sigmask);
2550 
2551 		if (p->p_flag & P_PPWAIT)
2552 			SIG_STOPSIGMASK(sigpending);
2553 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2554 			return (0);
2555 		sig = sig_ffs(&sigpending);
2556 
2557 		if (p->p_stops & S_SIG) {
2558 			mtx_unlock(&ps->ps_mtx);
2559 			stopevent(p, S_SIG, sig);
2560 			mtx_lock(&ps->ps_mtx);
2561 		}
2562 
2563 		/*
2564 		 * We should see pending but ignored signals
2565 		 * only if P_TRACED was on when they were posted.
2566 		 */
2567 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2568 			sigqueue_delete(&td->td_sigqueue, sig);
2569 			sigqueue_delete(&p->p_sigqueue, sig);
2570 			continue;
2571 		}
2572 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2573 			/*
2574 			 * If traced, always stop.
2575 			 * Remove old signal from queue before the stop.
2576 			 * XXX shrug off debugger, it causes siginfo to
2577 			 * be thrown away.
2578 			 */
2579 			queue = &td->td_sigqueue;
2580 			td->td_dbgksi.ksi_signo = 0;
2581 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2582 				queue = &p->p_sigqueue;
2583 				sigqueue_get(queue, sig, &td->td_dbgksi);
2584 			}
2585 
2586 			mtx_unlock(&ps->ps_mtx);
2587 			newsig = ptracestop(td, sig);
2588 			mtx_lock(&ps->ps_mtx);
2589 
2590 			if (sig != newsig) {
2591 
2592 				/*
2593 				 * If parent wants us to take the signal,
2594 				 * then it will leave it in p->p_xstat;
2595 				 * otherwise we just look for signals again.
2596 			 	*/
2597 				if (newsig == 0)
2598 					continue;
2599 				sig = newsig;
2600 
2601 				/*
2602 				 * Put the new signal into td_sigqueue. If the
2603 				 * signal is being masked, look for other signals.
2604 				 */
2605 				sigqueue_add(queue, sig, NULL);
2606 				if (SIGISMEMBER(td->td_sigmask, sig))
2607 					continue;
2608 				signotify(td);
2609 			} else {
2610 				if (td->td_dbgksi.ksi_signo != 0) {
2611 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2612 					if (sigqueue_add(&td->td_sigqueue, sig,
2613 					    &td->td_dbgksi) != 0)
2614 						td->td_dbgksi.ksi_signo = 0;
2615 				}
2616 				if (td->td_dbgksi.ksi_signo == 0)
2617 					sigqueue_add(&td->td_sigqueue, sig,
2618 					    NULL);
2619 			}
2620 
2621 			/*
2622 			 * If the traced bit got turned off, go back up
2623 			 * to the top to rescan signals.  This ensures
2624 			 * that p_sig* and p_sigact are consistent.
2625 			 */
2626 			if ((p->p_flag & P_TRACED) == 0)
2627 				continue;
2628 		}
2629 
2630 		prop = sigprop(sig);
2631 
2632 		/*
2633 		 * Decide whether the signal should be returned.
2634 		 * Return the signal's number, or fall through
2635 		 * to clear it from the pending mask.
2636 		 */
2637 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2638 
2639 		case (intptr_t)SIG_DFL:
2640 			/*
2641 			 * Don't take default actions on system processes.
2642 			 */
2643 			if (p->p_pid <= 1) {
2644 #ifdef DIAGNOSTIC
2645 				/*
2646 				 * Are you sure you want to ignore SIGSEGV
2647 				 * in init? XXX
2648 				 */
2649 				printf("Process (pid %lu) got signal %d\n",
2650 					(u_long)p->p_pid, sig);
2651 #endif
2652 				break;		/* == ignore */
2653 			}
2654 			/*
2655 			 * If there is a pending stop signal to process
2656 			 * with default action, stop here,
2657 			 * then clear the signal.  However,
2658 			 * if process is member of an orphaned
2659 			 * process group, ignore tty stop signals.
2660 			 */
2661 			if (prop & SA_STOP) {
2662 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2663 		    		    (p->p_pgrp->pg_jobc == 0 &&
2664 				     prop & SA_TTYSTOP))
2665 					break;	/* == ignore */
2666 
2667 				/* Ignore, but do not drop the stop signal. */
2668 				if (stop_allowed != SIG_STOP_ALLOWED)
2669 					return (sig);
2670 				mtx_unlock(&ps->ps_mtx);
2671 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2672 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2673 				p->p_flag |= P_STOPPED_SIG;
2674 				p->p_xstat = sig;
2675 				PROC_SLOCK(p);
2676 				sig_suspend_threads(td, p, 0);
2677 				thread_suspend_switch(td);
2678 				PROC_SUNLOCK(p);
2679 				mtx_lock(&ps->ps_mtx);
2680 				break;
2681 			} else if (prop & SA_IGNORE) {
2682 				/*
2683 				 * Except for SIGCONT, shouldn't get here.
2684 				 * Default action is to ignore; drop it.
2685 				 */
2686 				break;		/* == ignore */
2687 			} else
2688 				return (sig);
2689 			/*NOTREACHED*/
2690 
2691 		case (intptr_t)SIG_IGN:
2692 			/*
2693 			 * Masking above should prevent us ever trying
2694 			 * to take action on an ignored signal other
2695 			 * than SIGCONT, unless process is traced.
2696 			 */
2697 			if ((prop & SA_CONT) == 0 &&
2698 			    (p->p_flag & P_TRACED) == 0)
2699 				printf("issignal\n");
2700 			break;		/* == ignore */
2701 
2702 		default:
2703 			/*
2704 			 * This signal has an action, let
2705 			 * postsig() process it.
2706 			 */
2707 			return (sig);
2708 		}
2709 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2710 		sigqueue_delete(&p->p_sigqueue, sig);
2711 	}
2712 	/* NOTREACHED */
2713 }
2714 
2715 void
2716 thread_stopped(struct proc *p)
2717 {
2718 	int n;
2719 
2720 	PROC_LOCK_ASSERT(p, MA_OWNED);
2721 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2722 	n = p->p_suspcount;
2723 	if (p == curproc)
2724 		n++;
2725 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2726 		PROC_SUNLOCK(p);
2727 		p->p_flag &= ~P_WAITED;
2728 		PROC_LOCK(p->p_pptr);
2729 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2730 			CLD_TRAPPED : CLD_STOPPED);
2731 		PROC_UNLOCK(p->p_pptr);
2732 		PROC_SLOCK(p);
2733 	}
2734 }
2735 
2736 /*
2737  * Take the action for the specified signal
2738  * from the current set of pending signals.
2739  */
2740 int
2741 postsig(sig)
2742 	register int sig;
2743 {
2744 	struct thread *td = curthread;
2745 	register struct proc *p = td->td_proc;
2746 	struct sigacts *ps;
2747 	sig_t action;
2748 	ksiginfo_t ksi;
2749 	sigset_t returnmask, mask;
2750 
2751 	KASSERT(sig != 0, ("postsig"));
2752 
2753 	PROC_LOCK_ASSERT(p, MA_OWNED);
2754 	ps = p->p_sigacts;
2755 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2756 	ksiginfo_init(&ksi);
2757 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2758 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2759 		return (0);
2760 	ksi.ksi_signo = sig;
2761 	if (ksi.ksi_code == SI_TIMER)
2762 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2763 	action = ps->ps_sigact[_SIG_IDX(sig)];
2764 #ifdef KTRACE
2765 	if (KTRPOINT(td, KTR_PSIG))
2766 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2767 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2768 #endif
2769 	if (p->p_stops & S_SIG) {
2770 		mtx_unlock(&ps->ps_mtx);
2771 		stopevent(p, S_SIG, sig);
2772 		mtx_lock(&ps->ps_mtx);
2773 	}
2774 
2775 	if (action == SIG_DFL) {
2776 		/*
2777 		 * Default action, where the default is to kill
2778 		 * the process.  (Other cases were ignored above.)
2779 		 */
2780 		mtx_unlock(&ps->ps_mtx);
2781 		sigexit(td, sig);
2782 		/* NOTREACHED */
2783 	} else {
2784 		/*
2785 		 * If we get here, the signal must be caught.
2786 		 */
2787 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2788 		    ("postsig action"));
2789 		/*
2790 		 * Set the new mask value and also defer further
2791 		 * occurrences of this signal.
2792 		 *
2793 		 * Special case: user has done a sigsuspend.  Here the
2794 		 * current mask is not of interest, but rather the
2795 		 * mask from before the sigsuspend is what we want
2796 		 * restored after the signal processing is completed.
2797 		 */
2798 		if (td->td_pflags & TDP_OLDMASK) {
2799 			returnmask = td->td_oldsigmask;
2800 			td->td_pflags &= ~TDP_OLDMASK;
2801 		} else
2802 			returnmask = td->td_sigmask;
2803 
2804 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2805 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2806 			SIGADDSET(mask, sig);
2807 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2808 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2809 
2810 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2811 			/*
2812 			 * See kern_sigaction() for origin of this code.
2813 			 */
2814 			SIGDELSET(ps->ps_sigcatch, sig);
2815 			if (sig != SIGCONT &&
2816 			    sigprop(sig) & SA_IGNORE)
2817 				SIGADDSET(ps->ps_sigignore, sig);
2818 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2819 		}
2820 		td->td_ru.ru_nsignals++;
2821 		if (p->p_sig == sig) {
2822 			p->p_code = 0;
2823 			p->p_sig = 0;
2824 		}
2825 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2826 	}
2827 	return (1);
2828 }
2829 
2830 /*
2831  * Kill the current process for stated reason.
2832  */
2833 void
2834 killproc(p, why)
2835 	struct proc *p;
2836 	char *why;
2837 {
2838 
2839 	PROC_LOCK_ASSERT(p, MA_OWNED);
2840 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2841 		p, p->p_pid, p->p_comm);
2842 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2843 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2844 	p->p_flag |= P_WKILLED;
2845 	kern_psignal(p, SIGKILL);
2846 }
2847 
2848 /*
2849  * Force the current process to exit with the specified signal, dumping core
2850  * if appropriate.  We bypass the normal tests for masked and caught signals,
2851  * allowing unrecoverable failures to terminate the process without changing
2852  * signal state.  Mark the accounting record with the signal termination.
2853  * If dumping core, save the signal number for the debugger.  Calls exit and
2854  * does not return.
2855  */
2856 void
2857 sigexit(td, sig)
2858 	struct thread *td;
2859 	int sig;
2860 {
2861 	struct proc *p = td->td_proc;
2862 
2863 	PROC_LOCK_ASSERT(p, MA_OWNED);
2864 	p->p_acflag |= AXSIG;
2865 	/*
2866 	 * We must be single-threading to generate a core dump.  This
2867 	 * ensures that the registers in the core file are up-to-date.
2868 	 * Also, the ELF dump handler assumes that the thread list doesn't
2869 	 * change out from under it.
2870 	 *
2871 	 * XXX If another thread attempts to single-thread before us
2872 	 *     (e.g. via fork()), we won't get a dump at all.
2873 	 */
2874 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2875 		p->p_sig = sig;
2876 		/*
2877 		 * Log signals which would cause core dumps
2878 		 * (Log as LOG_INFO to appease those who don't want
2879 		 * these messages.)
2880 		 * XXX : Todo, as well as euid, write out ruid too
2881 		 * Note that coredump() drops proc lock.
2882 		 */
2883 		if (coredump(td) == 0)
2884 			sig |= WCOREFLAG;
2885 		if (kern_logsigexit)
2886 			log(LOG_INFO,
2887 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2888 			    p->p_pid, p->p_comm,
2889 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2890 			    sig &~ WCOREFLAG,
2891 			    sig & WCOREFLAG ? " (core dumped)" : "");
2892 	} else
2893 		PROC_UNLOCK(p);
2894 	exit1(td, W_EXITCODE(0, sig));
2895 	/* NOTREACHED */
2896 }
2897 
2898 /*
2899  * Send queued SIGCHLD to parent when child process's state
2900  * is changed.
2901  */
2902 static void
2903 sigparent(struct proc *p, int reason, int status)
2904 {
2905 	PROC_LOCK_ASSERT(p, MA_OWNED);
2906 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2907 
2908 	if (p->p_ksi != NULL) {
2909 		p->p_ksi->ksi_signo  = SIGCHLD;
2910 		p->p_ksi->ksi_code   = reason;
2911 		p->p_ksi->ksi_status = status;
2912 		p->p_ksi->ksi_pid    = p->p_pid;
2913 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2914 		if (KSI_ONQ(p->p_ksi))
2915 			return;
2916 	}
2917 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2918 }
2919 
2920 static void
2921 childproc_jobstate(struct proc *p, int reason, int status)
2922 {
2923 	struct sigacts *ps;
2924 
2925 	PROC_LOCK_ASSERT(p, MA_OWNED);
2926 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2927 
2928 	/*
2929 	 * Wake up parent sleeping in kern_wait(), also send
2930 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2931 	 * that parent will awake, because parent may masked
2932 	 * the signal.
2933 	 */
2934 	p->p_pptr->p_flag |= P_STATCHILD;
2935 	wakeup(p->p_pptr);
2936 
2937 	ps = p->p_pptr->p_sigacts;
2938 	mtx_lock(&ps->ps_mtx);
2939 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2940 		mtx_unlock(&ps->ps_mtx);
2941 		sigparent(p, reason, status);
2942 	} else
2943 		mtx_unlock(&ps->ps_mtx);
2944 }
2945 
2946 void
2947 childproc_stopped(struct proc *p, int reason)
2948 {
2949 	childproc_jobstate(p, reason, p->p_xstat);
2950 }
2951 
2952 void
2953 childproc_continued(struct proc *p)
2954 {
2955 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2956 }
2957 
2958 void
2959 childproc_exited(struct proc *p)
2960 {
2961 	int reason;
2962 	int status = p->p_xstat; /* convert to int */
2963 
2964 	reason = CLD_EXITED;
2965 	if (WCOREDUMP(status))
2966 		reason = CLD_DUMPED;
2967 	else if (WIFSIGNALED(status))
2968 		reason = CLD_KILLED;
2969 	/*
2970 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2971 	 * done in exit1().
2972 	 */
2973 	sigparent(p, reason, status);
2974 }
2975 
2976 /*
2977  * We only have 1 character for the core count in the format
2978  * string, so the range will be 0-9
2979  */
2980 #define MAX_NUM_CORES 10
2981 static int num_cores = 5;
2982 
2983 static int
2984 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
2985 {
2986 	int error;
2987 	int new_val;
2988 
2989 	new_val = num_cores;
2990 	error = sysctl_handle_int(oidp, &new_val, 0, req);
2991 	if (error != 0 || req->newptr == NULL)
2992 		return (error);
2993 	if (new_val > MAX_NUM_CORES)
2994 		new_val = MAX_NUM_CORES;
2995 	if (new_val < 0)
2996 		new_val = 0;
2997 	num_cores = new_val;
2998 	return (0);
2999 }
3000 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3001 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3002 
3003 #if defined(COMPRESS_USER_CORES)
3004 int compress_user_cores = 1;
3005 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3006         &compress_user_cores, 0, "");
3007 
3008 int compress_user_cores_gzlevel = -1; /* default level */
3009 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3010     &compress_user_cores_gzlevel, -1, "user core gz compression level");
3011 
3012 #define GZ_SUFFIX	".gz"
3013 #define GZ_SUFFIX_LEN	3
3014 #endif
3015 
3016 static char corefilename[MAXPATHLEN] = {"%N.core"};
3017 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3018 	      sizeof(corefilename), "process corefile name format string");
3019 
3020 /*
3021  * expand_name(name, uid, pid, td, compress)
3022  * Expand the name described in corefilename, using name, uid, and pid.
3023  * corefilename is a printf-like string, with three format specifiers:
3024  *	%N	name of process ("name")
3025  *	%P	process id (pid)
3026  *	%U	user id (uid)
3027  * For example, "%N.core" is the default; they can be disabled completely
3028  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3029  * This is controlled by the sysctl variable kern.corefile (see above).
3030  */
3031 static char *
3032 expand_name(const char *name, uid_t uid, pid_t pid, struct thread *td,
3033     int compress)
3034 {
3035 	struct sbuf sb;
3036 	const char *format;
3037 	char *temp;
3038 	size_t i;
3039 	int indexpos;
3040 	char *hostname;
3041 
3042 	hostname = NULL;
3043 	format = corefilename;
3044 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
3045 	if (temp == NULL)
3046 		return (NULL);
3047 	indexpos = -1;
3048 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
3049 	for (i = 0; format[i]; i++) {
3050 		switch (format[i]) {
3051 		case '%':	/* Format character */
3052 			i++;
3053 			switch (format[i]) {
3054 			case '%':
3055 				sbuf_putc(&sb, '%');
3056 				break;
3057 			case 'H':	/* hostname */
3058 				if (hostname == NULL) {
3059 					hostname = malloc(MAXHOSTNAMELEN,
3060 					    M_TEMP, M_NOWAIT);
3061 					if (hostname == NULL) {
3062 						log(LOG_ERR,
3063 						    "pid %ld (%s), uid (%lu): "
3064 						    "unable to alloc memory "
3065 						    "for corefile hostname\n",
3066 						    (long)pid, name,
3067 						    (u_long)uid);
3068                                                 goto nomem;
3069                                         }
3070                                 }
3071 				getcredhostname(td->td_ucred, hostname,
3072 				    MAXHOSTNAMELEN);
3073 				sbuf_printf(&sb, "%s", hostname);
3074 				break;
3075 			case 'I':       /* autoincrementing index */
3076 				sbuf_printf(&sb, "0");
3077 				indexpos = sbuf_len(&sb) - 1;
3078 				break;
3079 			case 'N':	/* process name */
3080 				sbuf_printf(&sb, "%s", name);
3081 				break;
3082 			case 'P':	/* process id */
3083 				sbuf_printf(&sb, "%u", pid);
3084 				break;
3085 			case 'U':	/* user id */
3086 				sbuf_printf(&sb, "%u", uid);
3087 				break;
3088 			default:
3089 			  	log(LOG_ERR,
3090 				    "Unknown format character %c in "
3091 				    "corename `%s'\n", format[i], format);
3092 			}
3093 			break;
3094 		default:
3095 			sbuf_putc(&sb, format[i]);
3096 		}
3097 	}
3098 	free(hostname, M_TEMP);
3099 #ifdef COMPRESS_USER_CORES
3100 	if (compress) {
3101 		sbuf_printf(&sb, GZ_SUFFIX);
3102 	}
3103 #endif
3104 	if (sbuf_error(&sb) != 0) {
3105 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3106 		    "long\n", (long)pid, name, (u_long)uid);
3107 nomem:
3108 		sbuf_delete(&sb);
3109 		free(temp, M_TEMP);
3110 		return (NULL);
3111 	}
3112 	sbuf_finish(&sb);
3113 	sbuf_delete(&sb);
3114 
3115 	/*
3116 	 * If the core format has a %I in it, then we need to check
3117 	 * for existing corefiles before returning a name.
3118 	 * To do this we iterate over 0..num_cores to find a
3119 	 * non-existing core file name to use.
3120 	 */
3121 	if (indexpos != -1) {
3122 		struct nameidata nd;
3123 		int error, n;
3124 		int flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3125 		int cmode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP;
3126 
3127 		for (n = 0; n < num_cores; n++) {
3128 			temp[indexpos] = '0' + n;
3129 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE,
3130 			    temp, td);
3131 			error = vn_open(&nd, &flags, cmode, NULL);
3132 			if (error) {
3133 				if (error == EEXIST) {
3134 					continue;
3135 				}
3136 				log(LOG_ERR,
3137 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3138                                     "on initial open test, error = %d\n",
3139 				    pid, name, uid, temp, error);
3140 				free(temp, M_TEMP);
3141 				return (NULL);
3142 			}
3143 			NDFREE(&nd, NDF_ONLY_PNBUF);
3144 			VOP_UNLOCK(nd.ni_vp, 0);
3145 			error = vn_close(nd.ni_vp, FWRITE, td->td_ucred, td);
3146 			if (error) {
3147 				log(LOG_ERR,
3148 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3149                                     "on close after initial open test, "
3150                                     "error = %d\n",
3151 				    pid, name, uid, temp, error);
3152 				free(temp, M_TEMP);
3153 				return (NULL);
3154 			}
3155 			break;
3156 		}
3157 	}
3158 	return (temp);
3159 }
3160 
3161 /*
3162  * Dump a process' core.  The main routine does some
3163  * policy checking, and creates the name of the coredump;
3164  * then it passes on a vnode and a size limit to the process-specific
3165  * coredump routine if there is one; if there _is not_ one, it returns
3166  * ENOSYS; otherwise it returns the error from the process-specific routine.
3167  */
3168 
3169 static int
3170 coredump(struct thread *td)
3171 {
3172 	struct proc *p = td->td_proc;
3173 	register struct vnode *vp;
3174 	register struct ucred *cred = td->td_ucred;
3175 	struct flock lf;
3176 	struct nameidata nd;
3177 	struct vattr vattr;
3178 	int error, error1, flags, locked;
3179 	struct mount *mp;
3180 	char *name;			/* name of corefile */
3181 	off_t limit;
3182 	int compress;
3183 
3184 #ifdef COMPRESS_USER_CORES
3185 	compress = compress_user_cores;
3186 #else
3187 	compress = 0;
3188 #endif
3189 	PROC_LOCK_ASSERT(p, MA_OWNED);
3190 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3191 	_STOPEVENT(p, S_CORE, 0);
3192 
3193 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid, td,
3194 	    compress);
3195 	if (name == NULL) {
3196 		PROC_UNLOCK(p);
3197 #ifdef AUDIT
3198 		audit_proc_coredump(td, NULL, EINVAL);
3199 #endif
3200 		return (EINVAL);
3201 	}
3202 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3203 		PROC_UNLOCK(p);
3204 #ifdef AUDIT
3205 		audit_proc_coredump(td, name, EFAULT);
3206 #endif
3207 		free(name, M_TEMP);
3208 		return (EFAULT);
3209 	}
3210 
3211 	/*
3212 	 * Note that the bulk of limit checking is done after
3213 	 * the corefile is created.  The exception is if the limit
3214 	 * for corefiles is 0, in which case we don't bother
3215 	 * creating the corefile at all.  This layout means that
3216 	 * a corefile is truncated instead of not being created,
3217 	 * if it is larger than the limit.
3218 	 */
3219 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3220 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3221 		PROC_UNLOCK(p);
3222 #ifdef AUDIT
3223 		audit_proc_coredump(td, name, EFBIG);
3224 #endif
3225 		free(name, M_TEMP);
3226 		return (EFBIG);
3227 	}
3228 	PROC_UNLOCK(p);
3229 
3230 restart:
3231 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3232 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3233 	error = vn_open_cred(&nd, &flags, S_IRUSR | S_IWUSR, VN_OPEN_NOAUDIT,
3234 	    cred, NULL);
3235 	if (error) {
3236 #ifdef AUDIT
3237 		audit_proc_coredump(td, name, error);
3238 #endif
3239 		free(name, M_TEMP);
3240 		return (error);
3241 	}
3242 	NDFREE(&nd, NDF_ONLY_PNBUF);
3243 	vp = nd.ni_vp;
3244 
3245 	/* Don't dump to non-regular files or files with links. */
3246 	if (vp->v_type != VREG ||
3247 	    VOP_GETATTR(vp, &vattr, cred) || vattr.va_nlink != 1) {
3248 		VOP_UNLOCK(vp, 0);
3249 		error = EFAULT;
3250 		goto close;
3251 	}
3252 
3253 	VOP_UNLOCK(vp, 0);
3254 	lf.l_whence = SEEK_SET;
3255 	lf.l_start = 0;
3256 	lf.l_len = 0;
3257 	lf.l_type = F_WRLCK;
3258 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3259 
3260 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3261 		lf.l_type = F_UNLCK;
3262 		if (locked)
3263 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3264 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3265 			goto out;
3266 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3267 			goto out;
3268 		goto restart;
3269 	}
3270 
3271 	VATTR_NULL(&vattr);
3272 	vattr.va_size = 0;
3273 	if (set_core_nodump_flag)
3274 		vattr.va_flags = UF_NODUMP;
3275 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3276 	VOP_SETATTR(vp, &vattr, cred);
3277 	VOP_UNLOCK(vp, 0);
3278 	vn_finished_write(mp);
3279 	PROC_LOCK(p);
3280 	p->p_acflag |= ACORE;
3281 	PROC_UNLOCK(p);
3282 
3283 	error = p->p_sysent->sv_coredump ?
3284 	  p->p_sysent->sv_coredump(td, vp, limit, compress ? IMGACT_CORE_COMPRESS : 0) :
3285 	  ENOSYS;
3286 
3287 	if (locked) {
3288 		lf.l_type = F_UNLCK;
3289 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3290 	}
3291 close:
3292 	error1 = vn_close(vp, FWRITE, cred, td);
3293 	if (error == 0)
3294 		error = error1;
3295 out:
3296 #ifdef AUDIT
3297 	audit_proc_coredump(td, name, error);
3298 #endif
3299 	free(name, M_TEMP);
3300 	return (error);
3301 }
3302 
3303 /*
3304  * Nonexistent system call-- signal process (may want to handle it).  Flag
3305  * error in case process won't see signal immediately (blocked or ignored).
3306  */
3307 #ifndef _SYS_SYSPROTO_H_
3308 struct nosys_args {
3309 	int	dummy;
3310 };
3311 #endif
3312 /* ARGSUSED */
3313 int
3314 nosys(td, args)
3315 	struct thread *td;
3316 	struct nosys_args *args;
3317 {
3318 	struct proc *p = td->td_proc;
3319 
3320 	PROC_LOCK(p);
3321 	tdsignal(td, SIGSYS);
3322 	PROC_UNLOCK(p);
3323 	return (ENOSYS);
3324 }
3325 
3326 /*
3327  * Send a SIGIO or SIGURG signal to a process or process group using stored
3328  * credentials rather than those of the current process.
3329  */
3330 void
3331 pgsigio(sigiop, sig, checkctty)
3332 	struct sigio **sigiop;
3333 	int sig, checkctty;
3334 {
3335 	ksiginfo_t ksi;
3336 	struct sigio *sigio;
3337 
3338 	ksiginfo_init(&ksi);
3339 	ksi.ksi_signo = sig;
3340 	ksi.ksi_code = SI_KERNEL;
3341 
3342 	SIGIO_LOCK();
3343 	sigio = *sigiop;
3344 	if (sigio == NULL) {
3345 		SIGIO_UNLOCK();
3346 		return;
3347 	}
3348 	if (sigio->sio_pgid > 0) {
3349 		PROC_LOCK(sigio->sio_proc);
3350 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3351 			kern_psignal(sigio->sio_proc, sig);
3352 		PROC_UNLOCK(sigio->sio_proc);
3353 	} else if (sigio->sio_pgid < 0) {
3354 		struct proc *p;
3355 
3356 		PGRP_LOCK(sigio->sio_pgrp);
3357 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3358 			PROC_LOCK(p);
3359 			if (p->p_state == PRS_NORMAL &&
3360 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3361 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3362 				kern_psignal(p, sig);
3363 			PROC_UNLOCK(p);
3364 		}
3365 		PGRP_UNLOCK(sigio->sio_pgrp);
3366 	}
3367 	SIGIO_UNLOCK();
3368 }
3369 
3370 static int
3371 filt_sigattach(struct knote *kn)
3372 {
3373 	struct proc *p = curproc;
3374 
3375 	kn->kn_ptr.p_proc = p;
3376 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3377 
3378 	knlist_add(&p->p_klist, kn, 0);
3379 
3380 	return (0);
3381 }
3382 
3383 static void
3384 filt_sigdetach(struct knote *kn)
3385 {
3386 	struct proc *p = kn->kn_ptr.p_proc;
3387 
3388 	knlist_remove(&p->p_klist, kn, 0);
3389 }
3390 
3391 /*
3392  * signal knotes are shared with proc knotes, so we apply a mask to
3393  * the hint in order to differentiate them from process hints.  This
3394  * could be avoided by using a signal-specific knote list, but probably
3395  * isn't worth the trouble.
3396  */
3397 static int
3398 filt_signal(struct knote *kn, long hint)
3399 {
3400 
3401 	if (hint & NOTE_SIGNAL) {
3402 		hint &= ~NOTE_SIGNAL;
3403 
3404 		if (kn->kn_id == hint)
3405 			kn->kn_data++;
3406 	}
3407 	return (kn->kn_data != 0);
3408 }
3409 
3410 struct sigacts *
3411 sigacts_alloc(void)
3412 {
3413 	struct sigacts *ps;
3414 
3415 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3416 	ps->ps_refcnt = 1;
3417 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3418 	return (ps);
3419 }
3420 
3421 void
3422 sigacts_free(struct sigacts *ps)
3423 {
3424 
3425 	mtx_lock(&ps->ps_mtx);
3426 	ps->ps_refcnt--;
3427 	if (ps->ps_refcnt == 0) {
3428 		mtx_destroy(&ps->ps_mtx);
3429 		free(ps, M_SUBPROC);
3430 	} else
3431 		mtx_unlock(&ps->ps_mtx);
3432 }
3433 
3434 struct sigacts *
3435 sigacts_hold(struct sigacts *ps)
3436 {
3437 	mtx_lock(&ps->ps_mtx);
3438 	ps->ps_refcnt++;
3439 	mtx_unlock(&ps->ps_mtx);
3440 	return (ps);
3441 }
3442 
3443 void
3444 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3445 {
3446 
3447 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3448 	mtx_lock(&src->ps_mtx);
3449 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3450 	mtx_unlock(&src->ps_mtx);
3451 }
3452 
3453 int
3454 sigacts_shared(struct sigacts *ps)
3455 {
3456 	int shared;
3457 
3458 	mtx_lock(&ps->ps_mtx);
3459 	shared = ps->ps_refcnt > 1;
3460 	mtx_unlock(&ps->ps_mtx);
3461 	return (shared);
3462 }
3463