xref: /freebsd/sys/kern/kern_sig.c (revision 7c1b51d6dc2e165ae7333373513b080f17cf79bd)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_gzio.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/refcount.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procdesc.h>
66 #include <sys/posix4.h>
67 #include <sys/pioctl.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/sdt.h>
71 #include <sys/sbuf.h>
72 #include <sys/sleepqueue.h>
73 #include <sys/smp.h>
74 #include <sys/stat.h>
75 #include <sys/sx.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/sysctl.h>
78 #include <sys/sysent.h>
79 #include <sys/syslog.h>
80 #include <sys/sysproto.h>
81 #include <sys/timers.h>
82 #include <sys/unistd.h>
83 #include <sys/wait.h>
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #include <sys/jail.h>
89 
90 #include <machine/cpu.h>
91 
92 #include <security/audit/audit.h>
93 
94 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95 
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE3(proc, , , signal__send,
98     "struct thread *", "struct proc *", "int");
99 SDT_PROBE_DEFINE2(proc, , , signal__clear,
100     "int", "ksiginfo_t *");
101 SDT_PROBE_DEFINE3(proc, , , signal__discard,
102     "struct thread *", "struct proc *", "int");
103 
104 static int	coredump(struct thread *);
105 static int	killpg1(struct thread *td, int sig, int pgid, int all,
106 		    ksiginfo_t *ksi);
107 static int	issignal(struct thread *td);
108 static int	sigprop(int sig);
109 static void	tdsigwakeup(struct thread *, int, sig_t, int);
110 static int	sig_suspend_threads(struct thread *, struct proc *, int);
111 static int	filt_sigattach(struct knote *kn);
112 static void	filt_sigdetach(struct knote *kn);
113 static int	filt_signal(struct knote *kn, long hint);
114 static struct thread *sigtd(struct proc *p, int sig, int prop);
115 static void	sigqueue_start(void);
116 
117 static uma_zone_t	ksiginfo_zone = NULL;
118 struct filterops sig_filtops = {
119 	.f_isfd = 0,
120 	.f_attach = filt_sigattach,
121 	.f_detach = filt_sigdetach,
122 	.f_event = filt_signal,
123 };
124 
125 static int	kern_logsigexit = 1;
126 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
127     &kern_logsigexit, 0,
128     "Log processes quitting on abnormal signals to syslog(3)");
129 
130 static int	kern_forcesigexit = 1;
131 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
132     &kern_forcesigexit, 0, "Force trap signal to be handled");
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
135     "POSIX real time signal");
136 
137 static int	max_pending_per_proc = 128;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139     &max_pending_per_proc, 0, "Max pending signals per proc");
140 
141 static int	preallocate_siginfo = 1024;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
143     &preallocate_siginfo, 0, "Preallocated signal memory size");
144 
145 static int	signal_overflow = 0;
146 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
147     &signal_overflow, 0, "Number of signals overflew");
148 
149 static int	signal_alloc_fail = 0;
150 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
151     &signal_alloc_fail, 0, "signals failed to be allocated");
152 
153 static int	kern_lognosys = 0;
154 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
155     "Log invalid syscalls");
156 
157 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
158 
159 /*
160  * Policy -- Can ucred cr1 send SIGIO to process cr2?
161  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
162  * in the right situations.
163  */
164 #define CANSIGIO(cr1, cr2) \
165 	((cr1)->cr_uid == 0 || \
166 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
167 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
169 	    (cr1)->cr_uid == (cr2)->cr_uid)
170 
171 static int	sugid_coredump;
172 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
173     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
174 
175 static int	capmode_coredump;
176 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
177     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
178 
179 static int	do_coredump = 1;
180 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
181 	&do_coredump, 0, "Enable/Disable coredumps");
182 
183 static int	set_core_nodump_flag = 0;
184 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
185 	0, "Enable setting the NODUMP flag on coredump files");
186 
187 static int	coredump_devctl = 0;
188 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
189 	0, "Generate a devctl notification when processes coredump");
190 
191 /*
192  * Signal properties and actions.
193  * The array below categorizes the signals and their default actions
194  * according to the following properties:
195  */
196 #define	SIGPROP_KILL		0x01	/* terminates process by default */
197 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
198 #define	SIGPROP_STOP		0x04	/* suspend process */
199 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
200 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
201 #define	SIGPROP_CONT		0x20	/* continue if suspended */
202 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
203 
204 static int sigproptbl[NSIG] = {
205 	[SIGHUP] =	SIGPROP_KILL,
206 	[SIGINT] =	SIGPROP_KILL,
207 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
208 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGKILL] =	SIGPROP_KILL,
214 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGPIPE] =	SIGPROP_KILL,
218 	[SIGALRM] =	SIGPROP_KILL,
219 	[SIGTERM] =	SIGPROP_KILL,
220 	[SIGURG] =	SIGPROP_IGNORE,
221 	[SIGSTOP] =	SIGPROP_STOP,
222 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
223 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
224 	[SIGCHLD] =	SIGPROP_IGNORE,
225 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
226 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGIO] =	SIGPROP_IGNORE,
228 	[SIGXCPU] =	SIGPROP_KILL,
229 	[SIGXFSZ] =	SIGPROP_KILL,
230 	[SIGVTALRM] =	SIGPROP_KILL,
231 	[SIGPROF] =	SIGPROP_KILL,
232 	[SIGWINCH] =	SIGPROP_IGNORE,
233 	[SIGINFO] =	SIGPROP_IGNORE,
234 	[SIGUSR1] =	SIGPROP_KILL,
235 	[SIGUSR2] =	SIGPROP_KILL,
236 };
237 
238 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
239 
240 static void
241 sigqueue_start(void)
242 {
243 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
244 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
245 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
246 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
247 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
248 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
249 }
250 
251 ksiginfo_t *
252 ksiginfo_alloc(int wait)
253 {
254 	int flags;
255 
256 	flags = M_ZERO;
257 	if (! wait)
258 		flags |= M_NOWAIT;
259 	if (ksiginfo_zone != NULL)
260 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
261 	return (NULL);
262 }
263 
264 void
265 ksiginfo_free(ksiginfo_t *ksi)
266 {
267 	uma_zfree(ksiginfo_zone, ksi);
268 }
269 
270 static __inline int
271 ksiginfo_tryfree(ksiginfo_t *ksi)
272 {
273 	if (!(ksi->ksi_flags & KSI_EXT)) {
274 		uma_zfree(ksiginfo_zone, ksi);
275 		return (1);
276 	}
277 	return (0);
278 }
279 
280 void
281 sigqueue_init(sigqueue_t *list, struct proc *p)
282 {
283 	SIGEMPTYSET(list->sq_signals);
284 	SIGEMPTYSET(list->sq_kill);
285 	SIGEMPTYSET(list->sq_ptrace);
286 	TAILQ_INIT(&list->sq_list);
287 	list->sq_proc = p;
288 	list->sq_flags = SQ_INIT;
289 }
290 
291 /*
292  * Get a signal's ksiginfo.
293  * Return:
294  *	0	-	signal not found
295  *	others	-	signal number
296  */
297 static int
298 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
299 {
300 	struct proc *p = sq->sq_proc;
301 	struct ksiginfo *ksi, *next;
302 	int count = 0;
303 
304 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
305 
306 	if (!SIGISMEMBER(sq->sq_signals, signo))
307 		return (0);
308 
309 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
310 		count++;
311 		SIGDELSET(sq->sq_ptrace, signo);
312 		si->ksi_flags |= KSI_PTRACE;
313 	}
314 	if (SIGISMEMBER(sq->sq_kill, signo)) {
315 		count++;
316 		if (count == 1)
317 			SIGDELSET(sq->sq_kill, signo);
318 	}
319 
320 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
321 		if (ksi->ksi_signo == signo) {
322 			if (count == 0) {
323 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
324 				ksi->ksi_sigq = NULL;
325 				ksiginfo_copy(ksi, si);
326 				if (ksiginfo_tryfree(ksi) && p != NULL)
327 					p->p_pendingcnt--;
328 			}
329 			if (++count > 1)
330 				break;
331 		}
332 	}
333 
334 	if (count <= 1)
335 		SIGDELSET(sq->sq_signals, signo);
336 	si->ksi_signo = signo;
337 	return (signo);
338 }
339 
340 void
341 sigqueue_take(ksiginfo_t *ksi)
342 {
343 	struct ksiginfo *kp;
344 	struct proc	*p;
345 	sigqueue_t	*sq;
346 
347 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
348 		return;
349 
350 	p = sq->sq_proc;
351 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
352 	ksi->ksi_sigq = NULL;
353 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
354 		p->p_pendingcnt--;
355 
356 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
357 	     kp = TAILQ_NEXT(kp, ksi_link)) {
358 		if (kp->ksi_signo == ksi->ksi_signo)
359 			break;
360 	}
361 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
362 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
363 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
364 }
365 
366 static int
367 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
368 {
369 	struct proc *p = sq->sq_proc;
370 	struct ksiginfo *ksi;
371 	int ret = 0;
372 
373 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
374 
375 	/*
376 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
377 	 * for these signals.
378 	 */
379 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
380 		SIGADDSET(sq->sq_kill, signo);
381 		goto out_set_bit;
382 	}
383 
384 	/* directly insert the ksi, don't copy it */
385 	if (si->ksi_flags & KSI_INS) {
386 		if (si->ksi_flags & KSI_HEAD)
387 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
388 		else
389 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
390 		si->ksi_sigq = sq;
391 		goto out_set_bit;
392 	}
393 
394 	if (__predict_false(ksiginfo_zone == NULL)) {
395 		SIGADDSET(sq->sq_kill, signo);
396 		goto out_set_bit;
397 	}
398 
399 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
400 		signal_overflow++;
401 		ret = EAGAIN;
402 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
403 		signal_alloc_fail++;
404 		ret = EAGAIN;
405 	} else {
406 		if (p != NULL)
407 			p->p_pendingcnt++;
408 		ksiginfo_copy(si, ksi);
409 		ksi->ksi_signo = signo;
410 		if (si->ksi_flags & KSI_HEAD)
411 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
412 		else
413 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
414 		ksi->ksi_sigq = sq;
415 	}
416 
417 	if (ret != 0) {
418 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
419 			SIGADDSET(sq->sq_ptrace, signo);
420 			ret = 0;
421 			goto out_set_bit;
422 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
423 		    (si->ksi_flags & KSI_SIGQ) == 0) {
424 			SIGADDSET(sq->sq_kill, signo);
425 			ret = 0;
426 			goto out_set_bit;
427 		}
428 		return (ret);
429 	}
430 
431 out_set_bit:
432 	SIGADDSET(sq->sq_signals, signo);
433 	return (ret);
434 }
435 
436 void
437 sigqueue_flush(sigqueue_t *sq)
438 {
439 	struct proc *p = sq->sq_proc;
440 	ksiginfo_t *ksi;
441 
442 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
443 
444 	if (p != NULL)
445 		PROC_LOCK_ASSERT(p, MA_OWNED);
446 
447 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
448 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
449 		ksi->ksi_sigq = NULL;
450 		if (ksiginfo_tryfree(ksi) && p != NULL)
451 			p->p_pendingcnt--;
452 	}
453 
454 	SIGEMPTYSET(sq->sq_signals);
455 	SIGEMPTYSET(sq->sq_kill);
456 	SIGEMPTYSET(sq->sq_ptrace);
457 }
458 
459 static void
460 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
461 {
462 	sigset_t tmp;
463 	struct proc *p1, *p2;
464 	ksiginfo_t *ksi, *next;
465 
466 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
467 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
468 	p1 = src->sq_proc;
469 	p2 = dst->sq_proc;
470 	/* Move siginfo to target list */
471 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
472 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
473 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
474 			if (p1 != NULL)
475 				p1->p_pendingcnt--;
476 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
477 			ksi->ksi_sigq = dst;
478 			if (p2 != NULL)
479 				p2->p_pendingcnt++;
480 		}
481 	}
482 
483 	/* Move pending bits to target list */
484 	tmp = src->sq_kill;
485 	SIGSETAND(tmp, *set);
486 	SIGSETOR(dst->sq_kill, tmp);
487 	SIGSETNAND(src->sq_kill, tmp);
488 
489 	tmp = src->sq_ptrace;
490 	SIGSETAND(tmp, *set);
491 	SIGSETOR(dst->sq_ptrace, tmp);
492 	SIGSETNAND(src->sq_ptrace, tmp);
493 
494 	tmp = src->sq_signals;
495 	SIGSETAND(tmp, *set);
496 	SIGSETOR(dst->sq_signals, tmp);
497 	SIGSETNAND(src->sq_signals, tmp);
498 }
499 
500 #if 0
501 static void
502 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
503 {
504 	sigset_t set;
505 
506 	SIGEMPTYSET(set);
507 	SIGADDSET(set, signo);
508 	sigqueue_move_set(src, dst, &set);
509 }
510 #endif
511 
512 static void
513 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
514 {
515 	struct proc *p = sq->sq_proc;
516 	ksiginfo_t *ksi, *next;
517 
518 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
519 
520 	/* Remove siginfo queue */
521 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
522 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
523 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
524 			ksi->ksi_sigq = NULL;
525 			if (ksiginfo_tryfree(ksi) && p != NULL)
526 				p->p_pendingcnt--;
527 		}
528 	}
529 	SIGSETNAND(sq->sq_kill, *set);
530 	SIGSETNAND(sq->sq_ptrace, *set);
531 	SIGSETNAND(sq->sq_signals, *set);
532 }
533 
534 void
535 sigqueue_delete(sigqueue_t *sq, int signo)
536 {
537 	sigset_t set;
538 
539 	SIGEMPTYSET(set);
540 	SIGADDSET(set, signo);
541 	sigqueue_delete_set(sq, &set);
542 }
543 
544 /* Remove a set of signals for a process */
545 static void
546 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
547 {
548 	sigqueue_t worklist;
549 	struct thread *td0;
550 
551 	PROC_LOCK_ASSERT(p, MA_OWNED);
552 
553 	sigqueue_init(&worklist, NULL);
554 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
555 
556 	FOREACH_THREAD_IN_PROC(p, td0)
557 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
558 
559 	sigqueue_flush(&worklist);
560 }
561 
562 void
563 sigqueue_delete_proc(struct proc *p, int signo)
564 {
565 	sigset_t set;
566 
567 	SIGEMPTYSET(set);
568 	SIGADDSET(set, signo);
569 	sigqueue_delete_set_proc(p, &set);
570 }
571 
572 static void
573 sigqueue_delete_stopmask_proc(struct proc *p)
574 {
575 	sigset_t set;
576 
577 	SIGEMPTYSET(set);
578 	SIGADDSET(set, SIGSTOP);
579 	SIGADDSET(set, SIGTSTP);
580 	SIGADDSET(set, SIGTTIN);
581 	SIGADDSET(set, SIGTTOU);
582 	sigqueue_delete_set_proc(p, &set);
583 }
584 
585 /*
586  * Determine signal that should be delivered to thread td, the current
587  * thread, 0 if none.  If there is a pending stop signal with default
588  * action, the process stops in issignal().
589  */
590 int
591 cursig(struct thread *td)
592 {
593 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
594 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
595 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
596 	return (SIGPENDING(td) ? issignal(td) : 0);
597 }
598 
599 /*
600  * Arrange for ast() to handle unmasked pending signals on return to user
601  * mode.  This must be called whenever a signal is added to td_sigqueue or
602  * unmasked in td_sigmask.
603  */
604 void
605 signotify(struct thread *td)
606 {
607 	struct proc *p;
608 
609 	p = td->td_proc;
610 
611 	PROC_LOCK_ASSERT(p, MA_OWNED);
612 
613 	if (SIGPENDING(td)) {
614 		thread_lock(td);
615 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
616 		thread_unlock(td);
617 	}
618 }
619 
620 int
621 sigonstack(size_t sp)
622 {
623 	struct thread *td = curthread;
624 
625 	return ((td->td_pflags & TDP_ALTSTACK) ?
626 #if defined(COMPAT_43)
627 	    ((td->td_sigstk.ss_size == 0) ?
628 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
629 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
630 #else
631 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
632 #endif
633 	    : 0);
634 }
635 
636 static __inline int
637 sigprop(int sig)
638 {
639 
640 	if (sig > 0 && sig < nitems(sigproptbl))
641 		return (sigproptbl[sig]);
642 	return (0);
643 }
644 
645 int
646 sig_ffs(sigset_t *set)
647 {
648 	int i;
649 
650 	for (i = 0; i < _SIG_WORDS; i++)
651 		if (set->__bits[i])
652 			return (ffs(set->__bits[i]) + (i * 32));
653 	return (0);
654 }
655 
656 static bool
657 sigact_flag_test(const struct sigaction *act, int flag)
658 {
659 
660 	/*
661 	 * SA_SIGINFO is reset when signal disposition is set to
662 	 * ignore or default.  Other flags are kept according to user
663 	 * settings.
664 	 */
665 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
666 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
667 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
668 }
669 
670 /*
671  * kern_sigaction
672  * sigaction
673  * freebsd4_sigaction
674  * osigaction
675  */
676 int
677 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
678     struct sigaction *oact, int flags)
679 {
680 	struct sigacts *ps;
681 	struct proc *p = td->td_proc;
682 
683 	if (!_SIG_VALID(sig))
684 		return (EINVAL);
685 	if (act != NULL && act->sa_handler != SIG_DFL &&
686 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
687 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
688 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
689 		return (EINVAL);
690 
691 	PROC_LOCK(p);
692 	ps = p->p_sigacts;
693 	mtx_lock(&ps->ps_mtx);
694 	if (oact) {
695 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
696 		oact->sa_flags = 0;
697 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
698 			oact->sa_flags |= SA_ONSTACK;
699 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
700 			oact->sa_flags |= SA_RESTART;
701 		if (SIGISMEMBER(ps->ps_sigreset, sig))
702 			oact->sa_flags |= SA_RESETHAND;
703 		if (SIGISMEMBER(ps->ps_signodefer, sig))
704 			oact->sa_flags |= SA_NODEFER;
705 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
706 			oact->sa_flags |= SA_SIGINFO;
707 			oact->sa_sigaction =
708 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
709 		} else
710 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
711 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
712 			oact->sa_flags |= SA_NOCLDSTOP;
713 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
714 			oact->sa_flags |= SA_NOCLDWAIT;
715 	}
716 	if (act) {
717 		if ((sig == SIGKILL || sig == SIGSTOP) &&
718 		    act->sa_handler != SIG_DFL) {
719 			mtx_unlock(&ps->ps_mtx);
720 			PROC_UNLOCK(p);
721 			return (EINVAL);
722 		}
723 
724 		/*
725 		 * Change setting atomically.
726 		 */
727 
728 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
729 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
730 		if (sigact_flag_test(act, SA_SIGINFO)) {
731 			ps->ps_sigact[_SIG_IDX(sig)] =
732 			    (__sighandler_t *)act->sa_sigaction;
733 			SIGADDSET(ps->ps_siginfo, sig);
734 		} else {
735 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
736 			SIGDELSET(ps->ps_siginfo, sig);
737 		}
738 		if (!sigact_flag_test(act, SA_RESTART))
739 			SIGADDSET(ps->ps_sigintr, sig);
740 		else
741 			SIGDELSET(ps->ps_sigintr, sig);
742 		if (sigact_flag_test(act, SA_ONSTACK))
743 			SIGADDSET(ps->ps_sigonstack, sig);
744 		else
745 			SIGDELSET(ps->ps_sigonstack, sig);
746 		if (sigact_flag_test(act, SA_RESETHAND))
747 			SIGADDSET(ps->ps_sigreset, sig);
748 		else
749 			SIGDELSET(ps->ps_sigreset, sig);
750 		if (sigact_flag_test(act, SA_NODEFER))
751 			SIGADDSET(ps->ps_signodefer, sig);
752 		else
753 			SIGDELSET(ps->ps_signodefer, sig);
754 		if (sig == SIGCHLD) {
755 			if (act->sa_flags & SA_NOCLDSTOP)
756 				ps->ps_flag |= PS_NOCLDSTOP;
757 			else
758 				ps->ps_flag &= ~PS_NOCLDSTOP;
759 			if (act->sa_flags & SA_NOCLDWAIT) {
760 				/*
761 				 * Paranoia: since SA_NOCLDWAIT is implemented
762 				 * by reparenting the dying child to PID 1 (and
763 				 * trust it to reap the zombie), PID 1 itself
764 				 * is forbidden to set SA_NOCLDWAIT.
765 				 */
766 				if (p->p_pid == 1)
767 					ps->ps_flag &= ~PS_NOCLDWAIT;
768 				else
769 					ps->ps_flag |= PS_NOCLDWAIT;
770 			} else
771 				ps->ps_flag &= ~PS_NOCLDWAIT;
772 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
773 				ps->ps_flag |= PS_CLDSIGIGN;
774 			else
775 				ps->ps_flag &= ~PS_CLDSIGIGN;
776 		}
777 		/*
778 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
779 		 * and for signals set to SIG_DFL where the default is to
780 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
781 		 * have to restart the process.
782 		 */
783 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
784 		    (sigprop(sig) & SIGPROP_IGNORE &&
785 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
786 			/* never to be seen again */
787 			sigqueue_delete_proc(p, sig);
788 			if (sig != SIGCONT)
789 				/* easier in psignal */
790 				SIGADDSET(ps->ps_sigignore, sig);
791 			SIGDELSET(ps->ps_sigcatch, sig);
792 		} else {
793 			SIGDELSET(ps->ps_sigignore, sig);
794 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
795 				SIGDELSET(ps->ps_sigcatch, sig);
796 			else
797 				SIGADDSET(ps->ps_sigcatch, sig);
798 		}
799 #ifdef COMPAT_FREEBSD4
800 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
801 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
802 		    (flags & KSA_FREEBSD4) == 0)
803 			SIGDELSET(ps->ps_freebsd4, sig);
804 		else
805 			SIGADDSET(ps->ps_freebsd4, sig);
806 #endif
807 #ifdef COMPAT_43
808 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
809 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
810 		    (flags & KSA_OSIGSET) == 0)
811 			SIGDELSET(ps->ps_osigset, sig);
812 		else
813 			SIGADDSET(ps->ps_osigset, sig);
814 #endif
815 	}
816 	mtx_unlock(&ps->ps_mtx);
817 	PROC_UNLOCK(p);
818 	return (0);
819 }
820 
821 #ifndef _SYS_SYSPROTO_H_
822 struct sigaction_args {
823 	int	sig;
824 	struct	sigaction *act;
825 	struct	sigaction *oact;
826 };
827 #endif
828 int
829 sys_sigaction(struct thread *td, struct sigaction_args *uap)
830 {
831 	struct sigaction act, oact;
832 	struct sigaction *actp, *oactp;
833 	int error;
834 
835 	actp = (uap->act != NULL) ? &act : NULL;
836 	oactp = (uap->oact != NULL) ? &oact : NULL;
837 	if (actp) {
838 		error = copyin(uap->act, actp, sizeof(act));
839 		if (error)
840 			return (error);
841 	}
842 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
843 	if (oactp && !error)
844 		error = copyout(oactp, uap->oact, sizeof(oact));
845 	return (error);
846 }
847 
848 #ifdef COMPAT_FREEBSD4
849 #ifndef _SYS_SYSPROTO_H_
850 struct freebsd4_sigaction_args {
851 	int	sig;
852 	struct	sigaction *act;
853 	struct	sigaction *oact;
854 };
855 #endif
856 int
857 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
858 {
859 	struct sigaction act, oact;
860 	struct sigaction *actp, *oactp;
861 	int error;
862 
863 
864 	actp = (uap->act != NULL) ? &act : NULL;
865 	oactp = (uap->oact != NULL) ? &oact : NULL;
866 	if (actp) {
867 		error = copyin(uap->act, actp, sizeof(act));
868 		if (error)
869 			return (error);
870 	}
871 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
872 	if (oactp && !error)
873 		error = copyout(oactp, uap->oact, sizeof(oact));
874 	return (error);
875 }
876 #endif	/* COMAPT_FREEBSD4 */
877 
878 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
879 #ifndef _SYS_SYSPROTO_H_
880 struct osigaction_args {
881 	int	signum;
882 	struct	osigaction *nsa;
883 	struct	osigaction *osa;
884 };
885 #endif
886 int
887 osigaction(struct thread *td, struct osigaction_args *uap)
888 {
889 	struct osigaction sa;
890 	struct sigaction nsa, osa;
891 	struct sigaction *nsap, *osap;
892 	int error;
893 
894 	if (uap->signum <= 0 || uap->signum >= ONSIG)
895 		return (EINVAL);
896 
897 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
898 	osap = (uap->osa != NULL) ? &osa : NULL;
899 
900 	if (nsap) {
901 		error = copyin(uap->nsa, &sa, sizeof(sa));
902 		if (error)
903 			return (error);
904 		nsap->sa_handler = sa.sa_handler;
905 		nsap->sa_flags = sa.sa_flags;
906 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
907 	}
908 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
909 	if (osap && !error) {
910 		sa.sa_handler = osap->sa_handler;
911 		sa.sa_flags = osap->sa_flags;
912 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
913 		error = copyout(&sa, uap->osa, sizeof(sa));
914 	}
915 	return (error);
916 }
917 
918 #if !defined(__i386__)
919 /* Avoid replicating the same stub everywhere */
920 int
921 osigreturn(struct thread *td, struct osigreturn_args *uap)
922 {
923 
924 	return (nosys(td, (struct nosys_args *)uap));
925 }
926 #endif
927 #endif /* COMPAT_43 */
928 
929 /*
930  * Initialize signal state for process 0;
931  * set to ignore signals that are ignored by default.
932  */
933 void
934 siginit(struct proc *p)
935 {
936 	int i;
937 	struct sigacts *ps;
938 
939 	PROC_LOCK(p);
940 	ps = p->p_sigacts;
941 	mtx_lock(&ps->ps_mtx);
942 	for (i = 1; i <= NSIG; i++) {
943 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
944 			SIGADDSET(ps->ps_sigignore, i);
945 		}
946 	}
947 	mtx_unlock(&ps->ps_mtx);
948 	PROC_UNLOCK(p);
949 }
950 
951 /*
952  * Reset specified signal to the default disposition.
953  */
954 static void
955 sigdflt(struct sigacts *ps, int sig)
956 {
957 
958 	mtx_assert(&ps->ps_mtx, MA_OWNED);
959 	SIGDELSET(ps->ps_sigcatch, sig);
960 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
961 		SIGADDSET(ps->ps_sigignore, sig);
962 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
963 	SIGDELSET(ps->ps_siginfo, sig);
964 }
965 
966 /*
967  * Reset signals for an exec of the specified process.
968  */
969 void
970 execsigs(struct proc *p)
971 {
972 	sigset_t osigignore;
973 	struct sigacts *ps;
974 	int sig;
975 	struct thread *td;
976 
977 	/*
978 	 * Reset caught signals.  Held signals remain held
979 	 * through td_sigmask (unless they were caught,
980 	 * and are now ignored by default).
981 	 */
982 	PROC_LOCK_ASSERT(p, MA_OWNED);
983 	ps = p->p_sigacts;
984 	mtx_lock(&ps->ps_mtx);
985 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
986 		sig = sig_ffs(&ps->ps_sigcatch);
987 		sigdflt(ps, sig);
988 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
989 			sigqueue_delete_proc(p, sig);
990 	}
991 
992 	/*
993 	 * As CloudABI processes cannot modify signal handlers, fully
994 	 * reset all signals to their default behavior. Do ignore
995 	 * SIGPIPE, as it would otherwise be impossible to recover from
996 	 * writes to broken pipes and sockets.
997 	 */
998 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
999 		osigignore = ps->ps_sigignore;
1000 		while (SIGNOTEMPTY(osigignore)) {
1001 			sig = sig_ffs(&osigignore);
1002 			SIGDELSET(osigignore, sig);
1003 			if (sig != SIGPIPE)
1004 				sigdflt(ps, sig);
1005 		}
1006 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1007 	}
1008 
1009 	/*
1010 	 * Reset stack state to the user stack.
1011 	 * Clear set of signals caught on the signal stack.
1012 	 */
1013 	td = curthread;
1014 	MPASS(td->td_proc == p);
1015 	td->td_sigstk.ss_flags = SS_DISABLE;
1016 	td->td_sigstk.ss_size = 0;
1017 	td->td_sigstk.ss_sp = 0;
1018 	td->td_pflags &= ~TDP_ALTSTACK;
1019 	/*
1020 	 * Reset no zombies if child dies flag as Solaris does.
1021 	 */
1022 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1023 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1024 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1025 	mtx_unlock(&ps->ps_mtx);
1026 }
1027 
1028 /*
1029  * kern_sigprocmask()
1030  *
1031  *	Manipulate signal mask.
1032  */
1033 int
1034 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1035     int flags)
1036 {
1037 	sigset_t new_block, oset1;
1038 	struct proc *p;
1039 	int error;
1040 
1041 	p = td->td_proc;
1042 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1043 		PROC_LOCK_ASSERT(p, MA_OWNED);
1044 	else
1045 		PROC_LOCK(p);
1046 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1047 	    ? MA_OWNED : MA_NOTOWNED);
1048 	if (oset != NULL)
1049 		*oset = td->td_sigmask;
1050 
1051 	error = 0;
1052 	if (set != NULL) {
1053 		switch (how) {
1054 		case SIG_BLOCK:
1055 			SIG_CANTMASK(*set);
1056 			oset1 = td->td_sigmask;
1057 			SIGSETOR(td->td_sigmask, *set);
1058 			new_block = td->td_sigmask;
1059 			SIGSETNAND(new_block, oset1);
1060 			break;
1061 		case SIG_UNBLOCK:
1062 			SIGSETNAND(td->td_sigmask, *set);
1063 			signotify(td);
1064 			goto out;
1065 		case SIG_SETMASK:
1066 			SIG_CANTMASK(*set);
1067 			oset1 = td->td_sigmask;
1068 			if (flags & SIGPROCMASK_OLD)
1069 				SIGSETLO(td->td_sigmask, *set);
1070 			else
1071 				td->td_sigmask = *set;
1072 			new_block = td->td_sigmask;
1073 			SIGSETNAND(new_block, oset1);
1074 			signotify(td);
1075 			break;
1076 		default:
1077 			error = EINVAL;
1078 			goto out;
1079 		}
1080 
1081 		/*
1082 		 * The new_block set contains signals that were not previously
1083 		 * blocked, but are blocked now.
1084 		 *
1085 		 * In case we block any signal that was not previously blocked
1086 		 * for td, and process has the signal pending, try to schedule
1087 		 * signal delivery to some thread that does not block the
1088 		 * signal, possibly waking it up.
1089 		 */
1090 		if (p->p_numthreads != 1)
1091 			reschedule_signals(p, new_block, flags);
1092 	}
1093 
1094 out:
1095 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1096 		PROC_UNLOCK(p);
1097 	return (error);
1098 }
1099 
1100 #ifndef _SYS_SYSPROTO_H_
1101 struct sigprocmask_args {
1102 	int	how;
1103 	const sigset_t *set;
1104 	sigset_t *oset;
1105 };
1106 #endif
1107 int
1108 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1109 {
1110 	sigset_t set, oset;
1111 	sigset_t *setp, *osetp;
1112 	int error;
1113 
1114 	setp = (uap->set != NULL) ? &set : NULL;
1115 	osetp = (uap->oset != NULL) ? &oset : NULL;
1116 	if (setp) {
1117 		error = copyin(uap->set, setp, sizeof(set));
1118 		if (error)
1119 			return (error);
1120 	}
1121 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1122 	if (osetp && !error) {
1123 		error = copyout(osetp, uap->oset, sizeof(oset));
1124 	}
1125 	return (error);
1126 }
1127 
1128 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1129 #ifndef _SYS_SYSPROTO_H_
1130 struct osigprocmask_args {
1131 	int	how;
1132 	osigset_t mask;
1133 };
1134 #endif
1135 int
1136 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1137 {
1138 	sigset_t set, oset;
1139 	int error;
1140 
1141 	OSIG2SIG(uap->mask, set);
1142 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1143 	SIG2OSIG(oset, td->td_retval[0]);
1144 	return (error);
1145 }
1146 #endif /* COMPAT_43 */
1147 
1148 int
1149 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1150 {
1151 	ksiginfo_t ksi;
1152 	sigset_t set;
1153 	int error;
1154 
1155 	error = copyin(uap->set, &set, sizeof(set));
1156 	if (error) {
1157 		td->td_retval[0] = error;
1158 		return (0);
1159 	}
1160 
1161 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1162 	if (error) {
1163 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1164 			error = ERESTART;
1165 		if (error == ERESTART)
1166 			return (error);
1167 		td->td_retval[0] = error;
1168 		return (0);
1169 	}
1170 
1171 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1172 	td->td_retval[0] = error;
1173 	return (0);
1174 }
1175 
1176 int
1177 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1178 {
1179 	struct timespec ts;
1180 	struct timespec *timeout;
1181 	sigset_t set;
1182 	ksiginfo_t ksi;
1183 	int error;
1184 
1185 	if (uap->timeout) {
1186 		error = copyin(uap->timeout, &ts, sizeof(ts));
1187 		if (error)
1188 			return (error);
1189 
1190 		timeout = &ts;
1191 	} else
1192 		timeout = NULL;
1193 
1194 	error = copyin(uap->set, &set, sizeof(set));
1195 	if (error)
1196 		return (error);
1197 
1198 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1199 	if (error)
1200 		return (error);
1201 
1202 	if (uap->info)
1203 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1204 
1205 	if (error == 0)
1206 		td->td_retval[0] = ksi.ksi_signo;
1207 	return (error);
1208 }
1209 
1210 int
1211 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1212 {
1213 	ksiginfo_t ksi;
1214 	sigset_t set;
1215 	int error;
1216 
1217 	error = copyin(uap->set, &set, sizeof(set));
1218 	if (error)
1219 		return (error);
1220 
1221 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1222 	if (error)
1223 		return (error);
1224 
1225 	if (uap->info)
1226 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1227 
1228 	if (error == 0)
1229 		td->td_retval[0] = ksi.ksi_signo;
1230 	return (error);
1231 }
1232 
1233 static void
1234 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1235 {
1236 	struct thread *thr;
1237 
1238 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1239 		if (thr == td)
1240 			thr->td_si = *si;
1241 		else
1242 			thr->td_si.si_signo = 0;
1243 	}
1244 }
1245 
1246 int
1247 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1248 	struct timespec *timeout)
1249 {
1250 	struct sigacts *ps;
1251 	sigset_t saved_mask, new_block;
1252 	struct proc *p;
1253 	int error, sig, timo, timevalid = 0;
1254 	struct timespec rts, ets, ts;
1255 	struct timeval tv;
1256 
1257 	p = td->td_proc;
1258 	error = 0;
1259 	ets.tv_sec = 0;
1260 	ets.tv_nsec = 0;
1261 
1262 	if (timeout != NULL) {
1263 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1264 			timevalid = 1;
1265 			getnanouptime(&rts);
1266 			ets = rts;
1267 			timespecadd(&ets, timeout);
1268 		}
1269 	}
1270 	ksiginfo_init(ksi);
1271 	/* Some signals can not be waited for. */
1272 	SIG_CANTMASK(waitset);
1273 	ps = p->p_sigacts;
1274 	PROC_LOCK(p);
1275 	saved_mask = td->td_sigmask;
1276 	SIGSETNAND(td->td_sigmask, waitset);
1277 	for (;;) {
1278 		mtx_lock(&ps->ps_mtx);
1279 		sig = cursig(td);
1280 		mtx_unlock(&ps->ps_mtx);
1281 		KASSERT(sig >= 0, ("sig %d", sig));
1282 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1283 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1284 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1285 				error = 0;
1286 				break;
1287 			}
1288 		}
1289 
1290 		if (error != 0)
1291 			break;
1292 
1293 		/*
1294 		 * POSIX says this must be checked after looking for pending
1295 		 * signals.
1296 		 */
1297 		if (timeout != NULL) {
1298 			if (!timevalid) {
1299 				error = EINVAL;
1300 				break;
1301 			}
1302 			getnanouptime(&rts);
1303 			if (timespeccmp(&rts, &ets, >=)) {
1304 				error = EAGAIN;
1305 				break;
1306 			}
1307 			ts = ets;
1308 			timespecsub(&ts, &rts);
1309 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1310 			timo = tvtohz(&tv);
1311 		} else {
1312 			timo = 0;
1313 		}
1314 
1315 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1316 
1317 		if (timeout != NULL) {
1318 			if (error == ERESTART) {
1319 				/* Timeout can not be restarted. */
1320 				error = EINTR;
1321 			} else if (error == EAGAIN) {
1322 				/* We will calculate timeout by ourself. */
1323 				error = 0;
1324 			}
1325 		}
1326 	}
1327 
1328 	new_block = saved_mask;
1329 	SIGSETNAND(new_block, td->td_sigmask);
1330 	td->td_sigmask = saved_mask;
1331 	/*
1332 	 * Fewer signals can be delivered to us, reschedule signal
1333 	 * notification.
1334 	 */
1335 	if (p->p_numthreads != 1)
1336 		reschedule_signals(p, new_block, 0);
1337 
1338 	if (error == 0) {
1339 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1340 
1341 		if (ksi->ksi_code == SI_TIMER)
1342 			itimer_accept(p, ksi->ksi_timerid, ksi);
1343 
1344 #ifdef KTRACE
1345 		if (KTRPOINT(td, KTR_PSIG)) {
1346 			sig_t action;
1347 
1348 			mtx_lock(&ps->ps_mtx);
1349 			action = ps->ps_sigact[_SIG_IDX(sig)];
1350 			mtx_unlock(&ps->ps_mtx);
1351 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1352 		}
1353 #endif
1354 		if (sig == SIGKILL) {
1355 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1356 			sigexit(td, sig);
1357 		}
1358 	}
1359 	PROC_UNLOCK(p);
1360 	return (error);
1361 }
1362 
1363 #ifndef _SYS_SYSPROTO_H_
1364 struct sigpending_args {
1365 	sigset_t	*set;
1366 };
1367 #endif
1368 int
1369 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1370 {
1371 	struct proc *p = td->td_proc;
1372 	sigset_t pending;
1373 
1374 	PROC_LOCK(p);
1375 	pending = p->p_sigqueue.sq_signals;
1376 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1377 	PROC_UNLOCK(p);
1378 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1379 }
1380 
1381 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1382 #ifndef _SYS_SYSPROTO_H_
1383 struct osigpending_args {
1384 	int	dummy;
1385 };
1386 #endif
1387 int
1388 osigpending(struct thread *td, struct osigpending_args *uap)
1389 {
1390 	struct proc *p = td->td_proc;
1391 	sigset_t pending;
1392 
1393 	PROC_LOCK(p);
1394 	pending = p->p_sigqueue.sq_signals;
1395 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1396 	PROC_UNLOCK(p);
1397 	SIG2OSIG(pending, td->td_retval[0]);
1398 	return (0);
1399 }
1400 #endif /* COMPAT_43 */
1401 
1402 #if defined(COMPAT_43)
1403 /*
1404  * Generalized interface signal handler, 4.3-compatible.
1405  */
1406 #ifndef _SYS_SYSPROTO_H_
1407 struct osigvec_args {
1408 	int	signum;
1409 	struct	sigvec *nsv;
1410 	struct	sigvec *osv;
1411 };
1412 #endif
1413 /* ARGSUSED */
1414 int
1415 osigvec(struct thread *td, struct osigvec_args *uap)
1416 {
1417 	struct sigvec vec;
1418 	struct sigaction nsa, osa;
1419 	struct sigaction *nsap, *osap;
1420 	int error;
1421 
1422 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1423 		return (EINVAL);
1424 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1425 	osap = (uap->osv != NULL) ? &osa : NULL;
1426 	if (nsap) {
1427 		error = copyin(uap->nsv, &vec, sizeof(vec));
1428 		if (error)
1429 			return (error);
1430 		nsap->sa_handler = vec.sv_handler;
1431 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1432 		nsap->sa_flags = vec.sv_flags;
1433 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1434 	}
1435 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1436 	if (osap && !error) {
1437 		vec.sv_handler = osap->sa_handler;
1438 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1439 		vec.sv_flags = osap->sa_flags;
1440 		vec.sv_flags &= ~SA_NOCLDWAIT;
1441 		vec.sv_flags ^= SA_RESTART;
1442 		error = copyout(&vec, uap->osv, sizeof(vec));
1443 	}
1444 	return (error);
1445 }
1446 
1447 #ifndef _SYS_SYSPROTO_H_
1448 struct osigblock_args {
1449 	int	mask;
1450 };
1451 #endif
1452 int
1453 osigblock(struct thread *td, struct osigblock_args *uap)
1454 {
1455 	sigset_t set, oset;
1456 
1457 	OSIG2SIG(uap->mask, set);
1458 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1459 	SIG2OSIG(oset, td->td_retval[0]);
1460 	return (0);
1461 }
1462 
1463 #ifndef _SYS_SYSPROTO_H_
1464 struct osigsetmask_args {
1465 	int	mask;
1466 };
1467 #endif
1468 int
1469 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1470 {
1471 	sigset_t set, oset;
1472 
1473 	OSIG2SIG(uap->mask, set);
1474 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1475 	SIG2OSIG(oset, td->td_retval[0]);
1476 	return (0);
1477 }
1478 #endif /* COMPAT_43 */
1479 
1480 /*
1481  * Suspend calling thread until signal, providing mask to be set in the
1482  * meantime.
1483  */
1484 #ifndef _SYS_SYSPROTO_H_
1485 struct sigsuspend_args {
1486 	const sigset_t *sigmask;
1487 };
1488 #endif
1489 /* ARGSUSED */
1490 int
1491 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1492 {
1493 	sigset_t mask;
1494 	int error;
1495 
1496 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1497 	if (error)
1498 		return (error);
1499 	return (kern_sigsuspend(td, mask));
1500 }
1501 
1502 int
1503 kern_sigsuspend(struct thread *td, sigset_t mask)
1504 {
1505 	struct proc *p = td->td_proc;
1506 	int has_sig, sig;
1507 
1508 	/*
1509 	 * When returning from sigsuspend, we want
1510 	 * the old mask to be restored after the
1511 	 * signal handler has finished.  Thus, we
1512 	 * save it here and mark the sigacts structure
1513 	 * to indicate this.
1514 	 */
1515 	PROC_LOCK(p);
1516 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1517 	    SIGPROCMASK_PROC_LOCKED);
1518 	td->td_pflags |= TDP_OLDMASK;
1519 
1520 	/*
1521 	 * Process signals now. Otherwise, we can get spurious wakeup
1522 	 * due to signal entered process queue, but delivered to other
1523 	 * thread. But sigsuspend should return only on signal
1524 	 * delivery.
1525 	 */
1526 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1527 	for (has_sig = 0; !has_sig;) {
1528 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1529 			0) == 0)
1530 			/* void */;
1531 		thread_suspend_check(0);
1532 		mtx_lock(&p->p_sigacts->ps_mtx);
1533 		while ((sig = cursig(td)) != 0) {
1534 			KASSERT(sig >= 0, ("sig %d", sig));
1535 			has_sig += postsig(sig);
1536 		}
1537 		mtx_unlock(&p->p_sigacts->ps_mtx);
1538 	}
1539 	PROC_UNLOCK(p);
1540 	td->td_errno = EINTR;
1541 	td->td_pflags |= TDP_NERRNO;
1542 	return (EJUSTRETURN);
1543 }
1544 
1545 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1546 /*
1547  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1548  * convention: libc stub passes mask, not pointer, to save a copyin.
1549  */
1550 #ifndef _SYS_SYSPROTO_H_
1551 struct osigsuspend_args {
1552 	osigset_t mask;
1553 };
1554 #endif
1555 /* ARGSUSED */
1556 int
1557 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1558 {
1559 	sigset_t mask;
1560 
1561 	OSIG2SIG(uap->mask, mask);
1562 	return (kern_sigsuspend(td, mask));
1563 }
1564 #endif /* COMPAT_43 */
1565 
1566 #if defined(COMPAT_43)
1567 #ifndef _SYS_SYSPROTO_H_
1568 struct osigstack_args {
1569 	struct	sigstack *nss;
1570 	struct	sigstack *oss;
1571 };
1572 #endif
1573 /* ARGSUSED */
1574 int
1575 osigstack(struct thread *td, struct osigstack_args *uap)
1576 {
1577 	struct sigstack nss, oss;
1578 	int error = 0;
1579 
1580 	if (uap->nss != NULL) {
1581 		error = copyin(uap->nss, &nss, sizeof(nss));
1582 		if (error)
1583 			return (error);
1584 	}
1585 	oss.ss_sp = td->td_sigstk.ss_sp;
1586 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1587 	if (uap->nss != NULL) {
1588 		td->td_sigstk.ss_sp = nss.ss_sp;
1589 		td->td_sigstk.ss_size = 0;
1590 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1591 		td->td_pflags |= TDP_ALTSTACK;
1592 	}
1593 	if (uap->oss != NULL)
1594 		error = copyout(&oss, uap->oss, sizeof(oss));
1595 
1596 	return (error);
1597 }
1598 #endif /* COMPAT_43 */
1599 
1600 #ifndef _SYS_SYSPROTO_H_
1601 struct sigaltstack_args {
1602 	stack_t	*ss;
1603 	stack_t	*oss;
1604 };
1605 #endif
1606 /* ARGSUSED */
1607 int
1608 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1609 {
1610 	stack_t ss, oss;
1611 	int error;
1612 
1613 	if (uap->ss != NULL) {
1614 		error = copyin(uap->ss, &ss, sizeof(ss));
1615 		if (error)
1616 			return (error);
1617 	}
1618 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1619 	    (uap->oss != NULL) ? &oss : NULL);
1620 	if (error)
1621 		return (error);
1622 	if (uap->oss != NULL)
1623 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1624 	return (error);
1625 }
1626 
1627 int
1628 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1629 {
1630 	struct proc *p = td->td_proc;
1631 	int oonstack;
1632 
1633 	oonstack = sigonstack(cpu_getstack(td));
1634 
1635 	if (oss != NULL) {
1636 		*oss = td->td_sigstk;
1637 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1638 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1639 	}
1640 
1641 	if (ss != NULL) {
1642 		if (oonstack)
1643 			return (EPERM);
1644 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1645 			return (EINVAL);
1646 		if (!(ss->ss_flags & SS_DISABLE)) {
1647 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1648 				return (ENOMEM);
1649 
1650 			td->td_sigstk = *ss;
1651 			td->td_pflags |= TDP_ALTSTACK;
1652 		} else {
1653 			td->td_pflags &= ~TDP_ALTSTACK;
1654 		}
1655 	}
1656 	return (0);
1657 }
1658 
1659 /*
1660  * Common code for kill process group/broadcast kill.
1661  * cp is calling process.
1662  */
1663 static int
1664 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1665 {
1666 	struct proc *p;
1667 	struct pgrp *pgrp;
1668 	int err;
1669 	int ret;
1670 
1671 	ret = ESRCH;
1672 	if (all) {
1673 		/*
1674 		 * broadcast
1675 		 */
1676 		sx_slock(&allproc_lock);
1677 		FOREACH_PROC_IN_SYSTEM(p) {
1678 			PROC_LOCK(p);
1679 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1680 			    p == td->td_proc || p->p_state == PRS_NEW) {
1681 				PROC_UNLOCK(p);
1682 				continue;
1683 			}
1684 			err = p_cansignal(td, p, sig);
1685 			if (err == 0) {
1686 				if (sig)
1687 					pksignal(p, sig, ksi);
1688 				ret = err;
1689 			}
1690 			else if (ret == ESRCH)
1691 				ret = err;
1692 			PROC_UNLOCK(p);
1693 		}
1694 		sx_sunlock(&allproc_lock);
1695 	} else {
1696 		sx_slock(&proctree_lock);
1697 		if (pgid == 0) {
1698 			/*
1699 			 * zero pgid means send to my process group.
1700 			 */
1701 			pgrp = td->td_proc->p_pgrp;
1702 			PGRP_LOCK(pgrp);
1703 		} else {
1704 			pgrp = pgfind(pgid);
1705 			if (pgrp == NULL) {
1706 				sx_sunlock(&proctree_lock);
1707 				return (ESRCH);
1708 			}
1709 		}
1710 		sx_sunlock(&proctree_lock);
1711 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1712 			PROC_LOCK(p);
1713 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1714 			    p->p_state == PRS_NEW) {
1715 				PROC_UNLOCK(p);
1716 				continue;
1717 			}
1718 			err = p_cansignal(td, p, sig);
1719 			if (err == 0) {
1720 				if (sig)
1721 					pksignal(p, sig, ksi);
1722 				ret = err;
1723 			}
1724 			else if (ret == ESRCH)
1725 				ret = err;
1726 			PROC_UNLOCK(p);
1727 		}
1728 		PGRP_UNLOCK(pgrp);
1729 	}
1730 	return (ret);
1731 }
1732 
1733 #ifndef _SYS_SYSPROTO_H_
1734 struct kill_args {
1735 	int	pid;
1736 	int	signum;
1737 };
1738 #endif
1739 /* ARGSUSED */
1740 int
1741 sys_kill(struct thread *td, struct kill_args *uap)
1742 {
1743 	ksiginfo_t ksi;
1744 	struct proc *p;
1745 	int error;
1746 
1747 	/*
1748 	 * A process in capability mode can send signals only to himself.
1749 	 * The main rationale behind this is that abort(3) is implemented as
1750 	 * kill(getpid(), SIGABRT).
1751 	 */
1752 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1753 		return (ECAPMODE);
1754 
1755 	AUDIT_ARG_SIGNUM(uap->signum);
1756 	AUDIT_ARG_PID(uap->pid);
1757 	if ((u_int)uap->signum > _SIG_MAXSIG)
1758 		return (EINVAL);
1759 
1760 	ksiginfo_init(&ksi);
1761 	ksi.ksi_signo = uap->signum;
1762 	ksi.ksi_code = SI_USER;
1763 	ksi.ksi_pid = td->td_proc->p_pid;
1764 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1765 
1766 	if (uap->pid > 0) {
1767 		/* kill single process */
1768 		if ((p = pfind(uap->pid)) == NULL) {
1769 			if ((p = zpfind(uap->pid)) == NULL)
1770 				return (ESRCH);
1771 		}
1772 		AUDIT_ARG_PROCESS(p);
1773 		error = p_cansignal(td, p, uap->signum);
1774 		if (error == 0 && uap->signum)
1775 			pksignal(p, uap->signum, &ksi);
1776 		PROC_UNLOCK(p);
1777 		return (error);
1778 	}
1779 	switch (uap->pid) {
1780 	case -1:		/* broadcast signal */
1781 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1782 	case 0:			/* signal own process group */
1783 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1784 	default:		/* negative explicit process group */
1785 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1786 	}
1787 	/* NOTREACHED */
1788 }
1789 
1790 int
1791 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1792 {
1793 	struct proc *p;
1794 	cap_rights_t rights;
1795 	int error;
1796 
1797 	AUDIT_ARG_SIGNUM(uap->signum);
1798 	AUDIT_ARG_FD(uap->fd);
1799 	if ((u_int)uap->signum > _SIG_MAXSIG)
1800 		return (EINVAL);
1801 
1802 	error = procdesc_find(td, uap->fd,
1803 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1804 	if (error)
1805 		return (error);
1806 	AUDIT_ARG_PROCESS(p);
1807 	error = p_cansignal(td, p, uap->signum);
1808 	if (error == 0 && uap->signum)
1809 		kern_psignal(p, uap->signum);
1810 	PROC_UNLOCK(p);
1811 	return (error);
1812 }
1813 
1814 #if defined(COMPAT_43)
1815 #ifndef _SYS_SYSPROTO_H_
1816 struct okillpg_args {
1817 	int	pgid;
1818 	int	signum;
1819 };
1820 #endif
1821 /* ARGSUSED */
1822 int
1823 okillpg(struct thread *td, struct okillpg_args *uap)
1824 {
1825 	ksiginfo_t ksi;
1826 
1827 	AUDIT_ARG_SIGNUM(uap->signum);
1828 	AUDIT_ARG_PID(uap->pgid);
1829 	if ((u_int)uap->signum > _SIG_MAXSIG)
1830 		return (EINVAL);
1831 
1832 	ksiginfo_init(&ksi);
1833 	ksi.ksi_signo = uap->signum;
1834 	ksi.ksi_code = SI_USER;
1835 	ksi.ksi_pid = td->td_proc->p_pid;
1836 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1837 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1838 }
1839 #endif /* COMPAT_43 */
1840 
1841 #ifndef _SYS_SYSPROTO_H_
1842 struct sigqueue_args {
1843 	pid_t pid;
1844 	int signum;
1845 	/* union sigval */ void *value;
1846 };
1847 #endif
1848 int
1849 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1850 {
1851 	union sigval sv;
1852 
1853 	sv.sival_ptr = uap->value;
1854 
1855 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1856 }
1857 
1858 int
1859 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1860 {
1861 	ksiginfo_t ksi;
1862 	struct proc *p;
1863 	int error;
1864 
1865 	if ((u_int)signum > _SIG_MAXSIG)
1866 		return (EINVAL);
1867 
1868 	/*
1869 	 * Specification says sigqueue can only send signal to
1870 	 * single process.
1871 	 */
1872 	if (pid <= 0)
1873 		return (EINVAL);
1874 
1875 	if ((p = pfind(pid)) == NULL) {
1876 		if ((p = zpfind(pid)) == NULL)
1877 			return (ESRCH);
1878 	}
1879 	error = p_cansignal(td, p, signum);
1880 	if (error == 0 && signum != 0) {
1881 		ksiginfo_init(&ksi);
1882 		ksi.ksi_flags = KSI_SIGQ;
1883 		ksi.ksi_signo = signum;
1884 		ksi.ksi_code = SI_QUEUE;
1885 		ksi.ksi_pid = td->td_proc->p_pid;
1886 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1887 		ksi.ksi_value = *value;
1888 		error = pksignal(p, ksi.ksi_signo, &ksi);
1889 	}
1890 	PROC_UNLOCK(p);
1891 	return (error);
1892 }
1893 
1894 /*
1895  * Send a signal to a process group.
1896  */
1897 void
1898 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1899 {
1900 	struct pgrp *pgrp;
1901 
1902 	if (pgid != 0) {
1903 		sx_slock(&proctree_lock);
1904 		pgrp = pgfind(pgid);
1905 		sx_sunlock(&proctree_lock);
1906 		if (pgrp != NULL) {
1907 			pgsignal(pgrp, sig, 0, ksi);
1908 			PGRP_UNLOCK(pgrp);
1909 		}
1910 	}
1911 }
1912 
1913 /*
1914  * Send a signal to a process group.  If checktty is 1,
1915  * limit to members which have a controlling terminal.
1916  */
1917 void
1918 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1919 {
1920 	struct proc *p;
1921 
1922 	if (pgrp) {
1923 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1924 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1925 			PROC_LOCK(p);
1926 			if (p->p_state == PRS_NORMAL &&
1927 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1928 				pksignal(p, sig, ksi);
1929 			PROC_UNLOCK(p);
1930 		}
1931 	}
1932 }
1933 
1934 
1935 /*
1936  * Recalculate the signal mask and reset the signal disposition after
1937  * usermode frame for delivery is formed.  Should be called after
1938  * mach-specific routine, because sysent->sv_sendsig() needs correct
1939  * ps_siginfo and signal mask.
1940  */
1941 static void
1942 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1943 {
1944 	sigset_t mask;
1945 
1946 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1947 	td->td_ru.ru_nsignals++;
1948 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1949 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1950 		SIGADDSET(mask, sig);
1951 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1952 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1953 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1954 		sigdflt(ps, sig);
1955 }
1956 
1957 
1958 /*
1959  * Send a signal caused by a trap to the current thread.  If it will be
1960  * caught immediately, deliver it with correct code.  Otherwise, post it
1961  * normally.
1962  */
1963 void
1964 trapsignal(struct thread *td, ksiginfo_t *ksi)
1965 {
1966 	struct sigacts *ps;
1967 	struct proc *p;
1968 	int sig;
1969 	int code;
1970 
1971 	p = td->td_proc;
1972 	sig = ksi->ksi_signo;
1973 	code = ksi->ksi_code;
1974 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1975 
1976 	PROC_LOCK(p);
1977 	ps = p->p_sigacts;
1978 	mtx_lock(&ps->ps_mtx);
1979 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1980 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1981 #ifdef KTRACE
1982 		if (KTRPOINT(curthread, KTR_PSIG))
1983 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1984 			    &td->td_sigmask, code);
1985 #endif
1986 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1987 				ksi, &td->td_sigmask);
1988 		postsig_done(sig, td, ps);
1989 		mtx_unlock(&ps->ps_mtx);
1990 	} else {
1991 		/*
1992 		 * Avoid a possible infinite loop if the thread
1993 		 * masking the signal or process is ignoring the
1994 		 * signal.
1995 		 */
1996 		if (kern_forcesigexit &&
1997 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1998 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1999 			SIGDELSET(td->td_sigmask, sig);
2000 			SIGDELSET(ps->ps_sigcatch, sig);
2001 			SIGDELSET(ps->ps_sigignore, sig);
2002 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2003 		}
2004 		mtx_unlock(&ps->ps_mtx);
2005 		p->p_code = code;	/* XXX for core dump/debugger */
2006 		p->p_sig = sig;		/* XXX to verify code */
2007 		tdsendsignal(p, td, sig, ksi);
2008 	}
2009 	PROC_UNLOCK(p);
2010 }
2011 
2012 static struct thread *
2013 sigtd(struct proc *p, int sig, int prop)
2014 {
2015 	struct thread *td, *signal_td;
2016 
2017 	PROC_LOCK_ASSERT(p, MA_OWNED);
2018 
2019 	/*
2020 	 * Check if current thread can handle the signal without
2021 	 * switching context to another thread.
2022 	 */
2023 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2024 		return (curthread);
2025 	signal_td = NULL;
2026 	FOREACH_THREAD_IN_PROC(p, td) {
2027 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2028 			signal_td = td;
2029 			break;
2030 		}
2031 	}
2032 	if (signal_td == NULL)
2033 		signal_td = FIRST_THREAD_IN_PROC(p);
2034 	return (signal_td);
2035 }
2036 
2037 /*
2038  * Send the signal to the process.  If the signal has an action, the action
2039  * is usually performed by the target process rather than the caller; we add
2040  * the signal to the set of pending signals for the process.
2041  *
2042  * Exceptions:
2043  *   o When a stop signal is sent to a sleeping process that takes the
2044  *     default action, the process is stopped without awakening it.
2045  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2046  *     regardless of the signal action (eg, blocked or ignored).
2047  *
2048  * Other ignored signals are discarded immediately.
2049  *
2050  * NB: This function may be entered from the debugger via the "kill" DDB
2051  * command.  There is little that can be done to mitigate the possibly messy
2052  * side effects of this unwise possibility.
2053  */
2054 void
2055 kern_psignal(struct proc *p, int sig)
2056 {
2057 	ksiginfo_t ksi;
2058 
2059 	ksiginfo_init(&ksi);
2060 	ksi.ksi_signo = sig;
2061 	ksi.ksi_code = SI_KERNEL;
2062 	(void) tdsendsignal(p, NULL, sig, &ksi);
2063 }
2064 
2065 int
2066 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2067 {
2068 
2069 	return (tdsendsignal(p, NULL, sig, ksi));
2070 }
2071 
2072 /* Utility function for finding a thread to send signal event to. */
2073 int
2074 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2075 {
2076 	struct thread *td;
2077 
2078 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2079 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2080 		if (td == NULL)
2081 			return (ESRCH);
2082 		*ttd = td;
2083 	} else {
2084 		*ttd = NULL;
2085 		PROC_LOCK(p);
2086 	}
2087 	return (0);
2088 }
2089 
2090 void
2091 tdsignal(struct thread *td, int sig)
2092 {
2093 	ksiginfo_t ksi;
2094 
2095 	ksiginfo_init(&ksi);
2096 	ksi.ksi_signo = sig;
2097 	ksi.ksi_code = SI_KERNEL;
2098 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2099 }
2100 
2101 void
2102 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2103 {
2104 
2105 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2106 }
2107 
2108 int
2109 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2110 {
2111 	sig_t action;
2112 	sigqueue_t *sigqueue;
2113 	int prop;
2114 	struct sigacts *ps;
2115 	int intrval;
2116 	int ret = 0;
2117 	int wakeup_swapper;
2118 
2119 	MPASS(td == NULL || p == td->td_proc);
2120 	PROC_LOCK_ASSERT(p, MA_OWNED);
2121 
2122 	if (!_SIG_VALID(sig))
2123 		panic("%s(): invalid signal %d", __func__, sig);
2124 
2125 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2126 
2127 	/*
2128 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2129 	 */
2130 	if (p->p_state == PRS_ZOMBIE) {
2131 		if (ksi && (ksi->ksi_flags & KSI_INS))
2132 			ksiginfo_tryfree(ksi);
2133 		return (ret);
2134 	}
2135 
2136 	ps = p->p_sigacts;
2137 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2138 	prop = sigprop(sig);
2139 
2140 	if (td == NULL) {
2141 		td = sigtd(p, sig, prop);
2142 		sigqueue = &p->p_sigqueue;
2143 	} else
2144 		sigqueue = &td->td_sigqueue;
2145 
2146 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2147 
2148 	/*
2149 	 * If the signal is being ignored,
2150 	 * then we forget about it immediately.
2151 	 * (Note: we don't set SIGCONT in ps_sigignore,
2152 	 * and if it is set to SIG_IGN,
2153 	 * action will be SIG_DFL here.)
2154 	 */
2155 	mtx_lock(&ps->ps_mtx);
2156 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2157 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2158 
2159 		mtx_unlock(&ps->ps_mtx);
2160 		if (ksi && (ksi->ksi_flags & KSI_INS))
2161 			ksiginfo_tryfree(ksi);
2162 		return (ret);
2163 	}
2164 	if (SIGISMEMBER(td->td_sigmask, sig))
2165 		action = SIG_HOLD;
2166 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2167 		action = SIG_CATCH;
2168 	else
2169 		action = SIG_DFL;
2170 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2171 		intrval = EINTR;
2172 	else
2173 		intrval = ERESTART;
2174 	mtx_unlock(&ps->ps_mtx);
2175 
2176 	if (prop & SIGPROP_CONT)
2177 		sigqueue_delete_stopmask_proc(p);
2178 	else if (prop & SIGPROP_STOP) {
2179 		/*
2180 		 * If sending a tty stop signal to a member of an orphaned
2181 		 * process group, discard the signal here if the action
2182 		 * is default; don't stop the process below if sleeping,
2183 		 * and don't clear any pending SIGCONT.
2184 		 */
2185 		if ((prop & SIGPROP_TTYSTOP) &&
2186 		    (p->p_pgrp->pg_jobc == 0) &&
2187 		    (action == SIG_DFL)) {
2188 			if (ksi && (ksi->ksi_flags & KSI_INS))
2189 				ksiginfo_tryfree(ksi);
2190 			return (ret);
2191 		}
2192 		sigqueue_delete_proc(p, SIGCONT);
2193 		if (p->p_flag & P_CONTINUED) {
2194 			p->p_flag &= ~P_CONTINUED;
2195 			PROC_LOCK(p->p_pptr);
2196 			sigqueue_take(p->p_ksi);
2197 			PROC_UNLOCK(p->p_pptr);
2198 		}
2199 	}
2200 
2201 	ret = sigqueue_add(sigqueue, sig, ksi);
2202 	if (ret != 0)
2203 		return (ret);
2204 	signotify(td);
2205 	/*
2206 	 * Defer further processing for signals which are held,
2207 	 * except that stopped processes must be continued by SIGCONT.
2208 	 */
2209 	if (action == SIG_HOLD &&
2210 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2211 		return (ret);
2212 
2213 	/* SIGKILL: Remove procfs STOPEVENTs. */
2214 	if (sig == SIGKILL) {
2215 		/* from procfs_ioctl.c: PIOCBIC */
2216 		p->p_stops = 0;
2217 		/* from procfs_ioctl.c: PIOCCONT */
2218 		p->p_step = 0;
2219 		wakeup(&p->p_step);
2220 	}
2221 	/*
2222 	 * Some signals have a process-wide effect and a per-thread
2223 	 * component.  Most processing occurs when the process next
2224 	 * tries to cross the user boundary, however there are some
2225 	 * times when processing needs to be done immediately, such as
2226 	 * waking up threads so that they can cross the user boundary.
2227 	 * We try to do the per-process part here.
2228 	 */
2229 	if (P_SHOULDSTOP(p)) {
2230 		KASSERT(!(p->p_flag & P_WEXIT),
2231 		    ("signal to stopped but exiting process"));
2232 		if (sig == SIGKILL) {
2233 			/*
2234 			 * If traced process is already stopped,
2235 			 * then no further action is necessary.
2236 			 */
2237 			if (p->p_flag & P_TRACED)
2238 				goto out;
2239 			/*
2240 			 * SIGKILL sets process running.
2241 			 * It will die elsewhere.
2242 			 * All threads must be restarted.
2243 			 */
2244 			p->p_flag &= ~P_STOPPED_SIG;
2245 			goto runfast;
2246 		}
2247 
2248 		if (prop & SIGPROP_CONT) {
2249 			/*
2250 			 * If traced process is already stopped,
2251 			 * then no further action is necessary.
2252 			 */
2253 			if (p->p_flag & P_TRACED)
2254 				goto out;
2255 			/*
2256 			 * If SIGCONT is default (or ignored), we continue the
2257 			 * process but don't leave the signal in sigqueue as
2258 			 * it has no further action.  If SIGCONT is held, we
2259 			 * continue the process and leave the signal in
2260 			 * sigqueue.  If the process catches SIGCONT, let it
2261 			 * handle the signal itself.  If it isn't waiting on
2262 			 * an event, it goes back to run state.
2263 			 * Otherwise, process goes back to sleep state.
2264 			 */
2265 			p->p_flag &= ~P_STOPPED_SIG;
2266 			PROC_SLOCK(p);
2267 			if (p->p_numthreads == p->p_suspcount) {
2268 				PROC_SUNLOCK(p);
2269 				p->p_flag |= P_CONTINUED;
2270 				p->p_xsig = SIGCONT;
2271 				PROC_LOCK(p->p_pptr);
2272 				childproc_continued(p);
2273 				PROC_UNLOCK(p->p_pptr);
2274 				PROC_SLOCK(p);
2275 			}
2276 			if (action == SIG_DFL) {
2277 				thread_unsuspend(p);
2278 				PROC_SUNLOCK(p);
2279 				sigqueue_delete(sigqueue, sig);
2280 				goto out;
2281 			}
2282 			if (action == SIG_CATCH) {
2283 				/*
2284 				 * The process wants to catch it so it needs
2285 				 * to run at least one thread, but which one?
2286 				 */
2287 				PROC_SUNLOCK(p);
2288 				goto runfast;
2289 			}
2290 			/*
2291 			 * The signal is not ignored or caught.
2292 			 */
2293 			thread_unsuspend(p);
2294 			PROC_SUNLOCK(p);
2295 			goto out;
2296 		}
2297 
2298 		if (prop & SIGPROP_STOP) {
2299 			/*
2300 			 * If traced process is already stopped,
2301 			 * then no further action is necessary.
2302 			 */
2303 			if (p->p_flag & P_TRACED)
2304 				goto out;
2305 			/*
2306 			 * Already stopped, don't need to stop again
2307 			 * (If we did the shell could get confused).
2308 			 * Just make sure the signal STOP bit set.
2309 			 */
2310 			p->p_flag |= P_STOPPED_SIG;
2311 			sigqueue_delete(sigqueue, sig);
2312 			goto out;
2313 		}
2314 
2315 		/*
2316 		 * All other kinds of signals:
2317 		 * If a thread is sleeping interruptibly, simulate a
2318 		 * wakeup so that when it is continued it will be made
2319 		 * runnable and can look at the signal.  However, don't make
2320 		 * the PROCESS runnable, leave it stopped.
2321 		 * It may run a bit until it hits a thread_suspend_check().
2322 		 */
2323 		wakeup_swapper = 0;
2324 		PROC_SLOCK(p);
2325 		thread_lock(td);
2326 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2327 			wakeup_swapper = sleepq_abort(td, intrval);
2328 		thread_unlock(td);
2329 		PROC_SUNLOCK(p);
2330 		if (wakeup_swapper)
2331 			kick_proc0();
2332 		goto out;
2333 		/*
2334 		 * Mutexes are short lived. Threads waiting on them will
2335 		 * hit thread_suspend_check() soon.
2336 		 */
2337 	} else if (p->p_state == PRS_NORMAL) {
2338 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2339 			tdsigwakeup(td, sig, action, intrval);
2340 			goto out;
2341 		}
2342 
2343 		MPASS(action == SIG_DFL);
2344 
2345 		if (prop & SIGPROP_STOP) {
2346 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2347 				goto out;
2348 			p->p_flag |= P_STOPPED_SIG;
2349 			p->p_xsig = sig;
2350 			PROC_SLOCK(p);
2351 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2352 			if (p->p_numthreads == p->p_suspcount) {
2353 				/*
2354 				 * only thread sending signal to another
2355 				 * process can reach here, if thread is sending
2356 				 * signal to its process, because thread does
2357 				 * not suspend itself here, p_numthreads
2358 				 * should never be equal to p_suspcount.
2359 				 */
2360 				thread_stopped(p);
2361 				PROC_SUNLOCK(p);
2362 				sigqueue_delete_proc(p, p->p_xsig);
2363 			} else
2364 				PROC_SUNLOCK(p);
2365 			if (wakeup_swapper)
2366 				kick_proc0();
2367 			goto out;
2368 		}
2369 	} else {
2370 		/* Not in "NORMAL" state. discard the signal. */
2371 		sigqueue_delete(sigqueue, sig);
2372 		goto out;
2373 	}
2374 
2375 	/*
2376 	 * The process is not stopped so we need to apply the signal to all the
2377 	 * running threads.
2378 	 */
2379 runfast:
2380 	tdsigwakeup(td, sig, action, intrval);
2381 	PROC_SLOCK(p);
2382 	thread_unsuspend(p);
2383 	PROC_SUNLOCK(p);
2384 out:
2385 	/* If we jump here, proc slock should not be owned. */
2386 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2387 	return (ret);
2388 }
2389 
2390 /*
2391  * The force of a signal has been directed against a single
2392  * thread.  We need to see what we can do about knocking it
2393  * out of any sleep it may be in etc.
2394  */
2395 static void
2396 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2397 {
2398 	struct proc *p = td->td_proc;
2399 	int prop;
2400 	int wakeup_swapper;
2401 
2402 	wakeup_swapper = 0;
2403 	PROC_LOCK_ASSERT(p, MA_OWNED);
2404 	prop = sigprop(sig);
2405 
2406 	PROC_SLOCK(p);
2407 	thread_lock(td);
2408 	/*
2409 	 * Bring the priority of a thread up if we want it to get
2410 	 * killed in this lifetime.  Be careful to avoid bumping the
2411 	 * priority of the idle thread, since we still allow to signal
2412 	 * kernel processes.
2413 	 */
2414 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2415 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2416 		sched_prio(td, PUSER);
2417 	if (TD_ON_SLEEPQ(td)) {
2418 		/*
2419 		 * If thread is sleeping uninterruptibly
2420 		 * we can't interrupt the sleep... the signal will
2421 		 * be noticed when the process returns through
2422 		 * trap() or syscall().
2423 		 */
2424 		if ((td->td_flags & TDF_SINTR) == 0)
2425 			goto out;
2426 		/*
2427 		 * If SIGCONT is default (or ignored) and process is
2428 		 * asleep, we are finished; the process should not
2429 		 * be awakened.
2430 		 */
2431 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2432 			thread_unlock(td);
2433 			PROC_SUNLOCK(p);
2434 			sigqueue_delete(&p->p_sigqueue, sig);
2435 			/*
2436 			 * It may be on either list in this state.
2437 			 * Remove from both for now.
2438 			 */
2439 			sigqueue_delete(&td->td_sigqueue, sig);
2440 			return;
2441 		}
2442 
2443 		/*
2444 		 * Don't awaken a sleeping thread for SIGSTOP if the
2445 		 * STOP signal is deferred.
2446 		 */
2447 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2448 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2449 			goto out;
2450 
2451 		/*
2452 		 * Give low priority threads a better chance to run.
2453 		 */
2454 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2455 			sched_prio(td, PUSER);
2456 
2457 		wakeup_swapper = sleepq_abort(td, intrval);
2458 	} else {
2459 		/*
2460 		 * Other states do nothing with the signal immediately,
2461 		 * other than kicking ourselves if we are running.
2462 		 * It will either never be noticed, or noticed very soon.
2463 		 */
2464 #ifdef SMP
2465 		if (TD_IS_RUNNING(td) && td != curthread)
2466 			forward_signal(td);
2467 #endif
2468 	}
2469 out:
2470 	PROC_SUNLOCK(p);
2471 	thread_unlock(td);
2472 	if (wakeup_swapper)
2473 		kick_proc0();
2474 }
2475 
2476 static int
2477 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2478 {
2479 	struct thread *td2;
2480 	int wakeup_swapper;
2481 
2482 	PROC_LOCK_ASSERT(p, MA_OWNED);
2483 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2484 	MPASS(sending || td == curthread);
2485 
2486 	wakeup_swapper = 0;
2487 	FOREACH_THREAD_IN_PROC(p, td2) {
2488 		thread_lock(td2);
2489 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2490 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2491 		    (td2->td_flags & TDF_SINTR)) {
2492 			if (td2->td_flags & TDF_SBDRY) {
2493 				/*
2494 				 * Once a thread is asleep with
2495 				 * TDF_SBDRY and without TDF_SERESTART
2496 				 * or TDF_SEINTR set, it should never
2497 				 * become suspended due to this check.
2498 				 */
2499 				KASSERT(!TD_IS_SUSPENDED(td2),
2500 				    ("thread with deferred stops suspended"));
2501 				if (TD_SBDRY_INTR(td2))
2502 					wakeup_swapper |= sleepq_abort(td2,
2503 					    TD_SBDRY_ERRNO(td2));
2504 			} else if (!TD_IS_SUSPENDED(td2)) {
2505 				thread_suspend_one(td2);
2506 			}
2507 		} else if (!TD_IS_SUSPENDED(td2)) {
2508 			if (sending || td != td2)
2509 				td2->td_flags |= TDF_ASTPENDING;
2510 #ifdef SMP
2511 			if (TD_IS_RUNNING(td2) && td2 != td)
2512 				forward_signal(td2);
2513 #endif
2514 		}
2515 		thread_unlock(td2);
2516 	}
2517 	return (wakeup_swapper);
2518 }
2519 
2520 /*
2521  * Stop the process for an event deemed interesting to the debugger. If si is
2522  * non-NULL, this is a signal exchange; the new signal requested by the
2523  * debugger will be returned for handling. If si is NULL, this is some other
2524  * type of interesting event. The debugger may request a signal be delivered in
2525  * that case as well, however it will be deferred until it can be handled.
2526  */
2527 int
2528 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2529 {
2530 	struct proc *p = td->td_proc;
2531 	struct thread *td2;
2532 	ksiginfo_t ksi;
2533 	int prop;
2534 
2535 	PROC_LOCK_ASSERT(p, MA_OWNED);
2536 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2537 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2538 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2539 
2540 	td->td_xsig = sig;
2541 
2542 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2543 		td->td_dbgflags |= TDB_XSIG;
2544 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2545 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2546 		PROC_SLOCK(p);
2547 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2548 			if (P_KILLED(p)) {
2549 				/*
2550 				 * Ensure that, if we've been PT_KILLed, the
2551 				 * exit status reflects that. Another thread
2552 				 * may also be in ptracestop(), having just
2553 				 * received the SIGKILL, but this thread was
2554 				 * unsuspended first.
2555 				 */
2556 				td->td_dbgflags &= ~TDB_XSIG;
2557 				td->td_xsig = SIGKILL;
2558 				p->p_ptevents = 0;
2559 				break;
2560 			}
2561 			if (p->p_flag & P_SINGLE_EXIT &&
2562 			    !(td->td_dbgflags & TDB_EXIT)) {
2563 				/*
2564 				 * Ignore ptrace stops except for thread exit
2565 				 * events when the process exits.
2566 				 */
2567 				td->td_dbgflags &= ~TDB_XSIG;
2568 				PROC_SUNLOCK(p);
2569 				return (0);
2570 			}
2571 
2572 			/*
2573 			 * Make wait(2) work.  Ensure that right after the
2574 			 * attach, the thread which was decided to become the
2575 			 * leader of attach gets reported to the waiter.
2576 			 * Otherwise, just avoid overwriting another thread's
2577 			 * assignment to p_xthread.  If another thread has
2578 			 * already set p_xthread, the current thread will get
2579 			 * a chance to report itself upon the next iteration.
2580 			 */
2581 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2582 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2583 			    p->p_xthread == NULL)) {
2584 				p->p_xsig = sig;
2585 				p->p_xthread = td;
2586 				td->td_dbgflags &= ~TDB_FSTP;
2587 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2588 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2589 				sig_suspend_threads(td, p, 0);
2590 			}
2591 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2592 				td->td_dbgflags &= ~TDB_STOPATFORK;
2593 				cv_broadcast(&p->p_dbgwait);
2594 			}
2595 stopme:
2596 			thread_suspend_switch(td, p);
2597 			if (p->p_xthread == td)
2598 				p->p_xthread = NULL;
2599 			if (!(p->p_flag & P_TRACED))
2600 				break;
2601 			if (td->td_dbgflags & TDB_SUSPEND) {
2602 				if (p->p_flag & P_SINGLE_EXIT)
2603 					break;
2604 				goto stopme;
2605 			}
2606 		}
2607 		PROC_SUNLOCK(p);
2608 	}
2609 
2610 	if (si != NULL && sig == td->td_xsig) {
2611 		/* Parent wants us to take the original signal unchanged. */
2612 		si->ksi_flags |= KSI_HEAD;
2613 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2614 			si->ksi_signo = 0;
2615 	} else if (td->td_xsig != 0) {
2616 		/*
2617 		 * If parent wants us to take a new signal, then it will leave
2618 		 * it in td->td_xsig; otherwise we just look for signals again.
2619 		 */
2620 		ksiginfo_init(&ksi);
2621 		ksi.ksi_signo = td->td_xsig;
2622 		ksi.ksi_flags |= KSI_PTRACE;
2623 		prop = sigprop(td->td_xsig);
2624 		td2 = sigtd(p, td->td_xsig, prop);
2625 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2626 		if (td != td2)
2627 			return (0);
2628 	}
2629 
2630 	return (td->td_xsig);
2631 }
2632 
2633 static void
2634 reschedule_signals(struct proc *p, sigset_t block, int flags)
2635 {
2636 	struct sigacts *ps;
2637 	struct thread *td;
2638 	int sig;
2639 
2640 	PROC_LOCK_ASSERT(p, MA_OWNED);
2641 	ps = p->p_sigacts;
2642 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2643 	    MA_OWNED : MA_NOTOWNED);
2644 	if (SIGISEMPTY(p->p_siglist))
2645 		return;
2646 	SIGSETAND(block, p->p_siglist);
2647 	while ((sig = sig_ffs(&block)) != 0) {
2648 		SIGDELSET(block, sig);
2649 		td = sigtd(p, sig, 0);
2650 		signotify(td);
2651 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2652 			mtx_lock(&ps->ps_mtx);
2653 		if (p->p_flag & P_TRACED ||
2654 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2655 		    !SIGISMEMBER(td->td_sigmask, sig)))
2656 			tdsigwakeup(td, sig, SIG_CATCH,
2657 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2658 			     ERESTART));
2659 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2660 			mtx_unlock(&ps->ps_mtx);
2661 	}
2662 }
2663 
2664 void
2665 tdsigcleanup(struct thread *td)
2666 {
2667 	struct proc *p;
2668 	sigset_t unblocked;
2669 
2670 	p = td->td_proc;
2671 	PROC_LOCK_ASSERT(p, MA_OWNED);
2672 
2673 	sigqueue_flush(&td->td_sigqueue);
2674 	if (p->p_numthreads == 1)
2675 		return;
2676 
2677 	/*
2678 	 * Since we cannot handle signals, notify signal post code
2679 	 * about this by filling the sigmask.
2680 	 *
2681 	 * Also, if needed, wake up thread(s) that do not block the
2682 	 * same signals as the exiting thread, since the thread might
2683 	 * have been selected for delivery and woken up.
2684 	 */
2685 	SIGFILLSET(unblocked);
2686 	SIGSETNAND(unblocked, td->td_sigmask);
2687 	SIGFILLSET(td->td_sigmask);
2688 	reschedule_signals(p, unblocked, 0);
2689 
2690 }
2691 
2692 static int
2693 sigdeferstop_curr_flags(int cflags)
2694 {
2695 
2696 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2697 	    (cflags & TDF_SBDRY) != 0);
2698 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2699 }
2700 
2701 /*
2702  * Defer the delivery of SIGSTOP for the current thread, according to
2703  * the requested mode.  Returns previous flags, which must be restored
2704  * by sigallowstop().
2705  *
2706  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2707  * cleared by the current thread, which allow the lock-less read-only
2708  * accesses below.
2709  */
2710 int
2711 sigdeferstop_impl(int mode)
2712 {
2713 	struct thread *td;
2714 	int cflags, nflags;
2715 
2716 	td = curthread;
2717 	cflags = sigdeferstop_curr_flags(td->td_flags);
2718 	switch (mode) {
2719 	case SIGDEFERSTOP_NOP:
2720 		nflags = cflags;
2721 		break;
2722 	case SIGDEFERSTOP_OFF:
2723 		nflags = 0;
2724 		break;
2725 	case SIGDEFERSTOP_SILENT:
2726 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2727 		break;
2728 	case SIGDEFERSTOP_EINTR:
2729 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2730 		break;
2731 	case SIGDEFERSTOP_ERESTART:
2732 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2733 		break;
2734 	default:
2735 		panic("sigdeferstop: invalid mode %x", mode);
2736 		break;
2737 	}
2738 	if (cflags == nflags)
2739 		return (SIGDEFERSTOP_VAL_NCHG);
2740 	thread_lock(td);
2741 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2742 	thread_unlock(td);
2743 	return (cflags);
2744 }
2745 
2746 /*
2747  * Restores the STOP handling mode, typically permitting the delivery
2748  * of SIGSTOP for the current thread.  This does not immediately
2749  * suspend if a stop was posted.  Instead, the thread will suspend
2750  * either via ast() or a subsequent interruptible sleep.
2751  */
2752 void
2753 sigallowstop_impl(int prev)
2754 {
2755 	struct thread *td;
2756 	int cflags;
2757 
2758 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2759 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2760 	    ("sigallowstop: incorrect previous mode %x", prev));
2761 	td = curthread;
2762 	cflags = sigdeferstop_curr_flags(td->td_flags);
2763 	if (cflags != prev) {
2764 		thread_lock(td);
2765 		td->td_flags = (td->td_flags & ~cflags) | prev;
2766 		thread_unlock(td);
2767 	}
2768 }
2769 
2770 /*
2771  * If the current process has received a signal (should be caught or cause
2772  * termination, should interrupt current syscall), return the signal number.
2773  * Stop signals with default action are processed immediately, then cleared;
2774  * they aren't returned.  This is checked after each entry to the system for
2775  * a syscall or trap (though this can usually be done without calling issignal
2776  * by checking the pending signal masks in cursig.) The normal call
2777  * sequence is
2778  *
2779  *	while (sig = cursig(curthread))
2780  *		postsig(sig);
2781  */
2782 static int
2783 issignal(struct thread *td)
2784 {
2785 	struct proc *p;
2786 	struct sigacts *ps;
2787 	struct sigqueue *queue;
2788 	sigset_t sigpending;
2789 	int sig, prop;
2790 	ksiginfo_t ksi;
2791 
2792 	p = td->td_proc;
2793 	ps = p->p_sigacts;
2794 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2795 	PROC_LOCK_ASSERT(p, MA_OWNED);
2796 	for (;;) {
2797 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2798 
2799 		sigpending = td->td_sigqueue.sq_signals;
2800 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2801 		SIGSETNAND(sigpending, td->td_sigmask);
2802 
2803 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2804 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2805 			SIG_STOPSIGMASK(sigpending);
2806 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2807 			return (0);
2808 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2809 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2810 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2811 			/*
2812 			 * If debugger just attached, always consume
2813 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2814 			 * execute the debugger attach ritual in
2815 			 * order.
2816 			 */
2817 			sig = SIGSTOP;
2818 			td->td_dbgflags |= TDB_FSTP;
2819 		} else {
2820 			sig = sig_ffs(&sigpending);
2821 		}
2822 
2823 		if (p->p_stops & S_SIG) {
2824 			mtx_unlock(&ps->ps_mtx);
2825 			stopevent(p, S_SIG, sig);
2826 			mtx_lock(&ps->ps_mtx);
2827 		}
2828 
2829 		/*
2830 		 * We should see pending but ignored signals
2831 		 * only if P_TRACED was on when they were posted.
2832 		 */
2833 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2834 			sigqueue_delete(&td->td_sigqueue, sig);
2835 			sigqueue_delete(&p->p_sigqueue, sig);
2836 			continue;
2837 		}
2838 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2839 			/*
2840 			 * If traced, always stop.
2841 			 * Remove old signal from queue before the stop.
2842 			 * XXX shrug off debugger, it causes siginfo to
2843 			 * be thrown away.
2844 			 */
2845 			queue = &td->td_sigqueue;
2846 			ksiginfo_init(&ksi);
2847 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2848 				queue = &p->p_sigqueue;
2849 				sigqueue_get(queue, sig, &ksi);
2850 			}
2851 			td->td_si = ksi.ksi_info;
2852 
2853 			mtx_unlock(&ps->ps_mtx);
2854 			sig = ptracestop(td, sig, &ksi);
2855 			mtx_lock(&ps->ps_mtx);
2856 
2857 			/*
2858 			 * Keep looking if the debugger discarded the signal
2859 			 * or replaced it with a masked signal.
2860 			 *
2861 			 * If the traced bit got turned off, go back up
2862 			 * to the top to rescan signals.  This ensures
2863 			 * that p_sig* and p_sigact are consistent.
2864 			 */
2865 			if (sig == 0 || (p->p_flag & P_TRACED) == 0)
2866 				continue;
2867 		}
2868 
2869 		prop = sigprop(sig);
2870 
2871 		/*
2872 		 * Decide whether the signal should be returned.
2873 		 * Return the signal's number, or fall through
2874 		 * to clear it from the pending mask.
2875 		 */
2876 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2877 
2878 		case (intptr_t)SIG_DFL:
2879 			/*
2880 			 * Don't take default actions on system processes.
2881 			 */
2882 			if (p->p_pid <= 1) {
2883 #ifdef DIAGNOSTIC
2884 				/*
2885 				 * Are you sure you want to ignore SIGSEGV
2886 				 * in init? XXX
2887 				 */
2888 				printf("Process (pid %lu) got signal %d\n",
2889 					(u_long)p->p_pid, sig);
2890 #endif
2891 				break;		/* == ignore */
2892 			}
2893 			/*
2894 			 * If there is a pending stop signal to process with
2895 			 * default action, stop here, then clear the signal.
2896 			 * Traced or exiting processes should ignore stops.
2897 			 * Additionally, a member of an orphaned process group
2898 			 * should ignore tty stops.
2899 			 */
2900 			if (prop & SIGPROP_STOP) {
2901 				if (p->p_flag &
2902 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2903 				    (p->p_pgrp->pg_jobc == 0 &&
2904 				     prop & SIGPROP_TTYSTOP))
2905 					break;	/* == ignore */
2906 				if (TD_SBDRY_INTR(td)) {
2907 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2908 					    ("lost TDF_SBDRY"));
2909 					return (-1);
2910 				}
2911 				mtx_unlock(&ps->ps_mtx);
2912 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2913 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2914 				sigqueue_delete(&td->td_sigqueue, sig);
2915 				sigqueue_delete(&p->p_sigqueue, sig);
2916 				p->p_flag |= P_STOPPED_SIG;
2917 				p->p_xsig = sig;
2918 				PROC_SLOCK(p);
2919 				sig_suspend_threads(td, p, 0);
2920 				thread_suspend_switch(td, p);
2921 				PROC_SUNLOCK(p);
2922 				mtx_lock(&ps->ps_mtx);
2923 				goto next;
2924 			} else if (prop & SIGPROP_IGNORE) {
2925 				/*
2926 				 * Except for SIGCONT, shouldn't get here.
2927 				 * Default action is to ignore; drop it.
2928 				 */
2929 				break;		/* == ignore */
2930 			} else
2931 				return (sig);
2932 			/*NOTREACHED*/
2933 
2934 		case (intptr_t)SIG_IGN:
2935 			/*
2936 			 * Masking above should prevent us ever trying
2937 			 * to take action on an ignored signal other
2938 			 * than SIGCONT, unless process is traced.
2939 			 */
2940 			if ((prop & SIGPROP_CONT) == 0 &&
2941 			    (p->p_flag & P_TRACED) == 0)
2942 				printf("issignal\n");
2943 			break;		/* == ignore */
2944 
2945 		default:
2946 			/*
2947 			 * This signal has an action, let
2948 			 * postsig() process it.
2949 			 */
2950 			return (sig);
2951 		}
2952 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2953 		sigqueue_delete(&p->p_sigqueue, sig);
2954 next:;
2955 	}
2956 	/* NOTREACHED */
2957 }
2958 
2959 void
2960 thread_stopped(struct proc *p)
2961 {
2962 	int n;
2963 
2964 	PROC_LOCK_ASSERT(p, MA_OWNED);
2965 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2966 	n = p->p_suspcount;
2967 	if (p == curproc)
2968 		n++;
2969 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2970 		PROC_SUNLOCK(p);
2971 		p->p_flag &= ~P_WAITED;
2972 		PROC_LOCK(p->p_pptr);
2973 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2974 			CLD_TRAPPED : CLD_STOPPED);
2975 		PROC_UNLOCK(p->p_pptr);
2976 		PROC_SLOCK(p);
2977 	}
2978 }
2979 
2980 /*
2981  * Take the action for the specified signal
2982  * from the current set of pending signals.
2983  */
2984 int
2985 postsig(sig)
2986 	int sig;
2987 {
2988 	struct thread *td = curthread;
2989 	struct proc *p = td->td_proc;
2990 	struct sigacts *ps;
2991 	sig_t action;
2992 	ksiginfo_t ksi;
2993 	sigset_t returnmask;
2994 
2995 	KASSERT(sig != 0, ("postsig"));
2996 
2997 	PROC_LOCK_ASSERT(p, MA_OWNED);
2998 	ps = p->p_sigacts;
2999 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3000 	ksiginfo_init(&ksi);
3001 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3002 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3003 		return (0);
3004 	ksi.ksi_signo = sig;
3005 	if (ksi.ksi_code == SI_TIMER)
3006 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3007 	action = ps->ps_sigact[_SIG_IDX(sig)];
3008 #ifdef KTRACE
3009 	if (KTRPOINT(td, KTR_PSIG))
3010 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3011 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3012 #endif
3013 	if (p->p_stops & S_SIG) {
3014 		mtx_unlock(&ps->ps_mtx);
3015 		stopevent(p, S_SIG, sig);
3016 		mtx_lock(&ps->ps_mtx);
3017 	}
3018 
3019 	if (action == SIG_DFL) {
3020 		/*
3021 		 * Default action, where the default is to kill
3022 		 * the process.  (Other cases were ignored above.)
3023 		 */
3024 		mtx_unlock(&ps->ps_mtx);
3025 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3026 		sigexit(td, sig);
3027 		/* NOTREACHED */
3028 	} else {
3029 		/*
3030 		 * If we get here, the signal must be caught.
3031 		 */
3032 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
3033 		    ("postsig action"));
3034 		/*
3035 		 * Set the new mask value and also defer further
3036 		 * occurrences of this signal.
3037 		 *
3038 		 * Special case: user has done a sigsuspend.  Here the
3039 		 * current mask is not of interest, but rather the
3040 		 * mask from before the sigsuspend is what we want
3041 		 * restored after the signal processing is completed.
3042 		 */
3043 		if (td->td_pflags & TDP_OLDMASK) {
3044 			returnmask = td->td_oldsigmask;
3045 			td->td_pflags &= ~TDP_OLDMASK;
3046 		} else
3047 			returnmask = td->td_sigmask;
3048 
3049 		if (p->p_sig == sig) {
3050 			p->p_code = 0;
3051 			p->p_sig = 0;
3052 		}
3053 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3054 		postsig_done(sig, td, ps);
3055 	}
3056 	return (1);
3057 }
3058 
3059 /*
3060  * Kill the current process for stated reason.
3061  */
3062 void
3063 killproc(struct proc *p, char *why)
3064 {
3065 
3066 	PROC_LOCK_ASSERT(p, MA_OWNED);
3067 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3068 	    p->p_comm);
3069 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3070 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3071 	p->p_flag |= P_WKILLED;
3072 	kern_psignal(p, SIGKILL);
3073 }
3074 
3075 /*
3076  * Force the current process to exit with the specified signal, dumping core
3077  * if appropriate.  We bypass the normal tests for masked and caught signals,
3078  * allowing unrecoverable failures to terminate the process without changing
3079  * signal state.  Mark the accounting record with the signal termination.
3080  * If dumping core, save the signal number for the debugger.  Calls exit and
3081  * does not return.
3082  */
3083 void
3084 sigexit(struct thread *td, int sig)
3085 {
3086 	struct proc *p = td->td_proc;
3087 
3088 	PROC_LOCK_ASSERT(p, MA_OWNED);
3089 	p->p_acflag |= AXSIG;
3090 	/*
3091 	 * We must be single-threading to generate a core dump.  This
3092 	 * ensures that the registers in the core file are up-to-date.
3093 	 * Also, the ELF dump handler assumes that the thread list doesn't
3094 	 * change out from under it.
3095 	 *
3096 	 * XXX If another thread attempts to single-thread before us
3097 	 *     (e.g. via fork()), we won't get a dump at all.
3098 	 */
3099 	if ((sigprop(sig) & SIGPROP_CORE) &&
3100 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3101 		p->p_sig = sig;
3102 		/*
3103 		 * Log signals which would cause core dumps
3104 		 * (Log as LOG_INFO to appease those who don't want
3105 		 * these messages.)
3106 		 * XXX : Todo, as well as euid, write out ruid too
3107 		 * Note that coredump() drops proc lock.
3108 		 */
3109 		if (coredump(td) == 0)
3110 			sig |= WCOREFLAG;
3111 		if (kern_logsigexit)
3112 			log(LOG_INFO,
3113 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3114 			    p->p_pid, p->p_comm,
3115 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3116 			    sig &~ WCOREFLAG,
3117 			    sig & WCOREFLAG ? " (core dumped)" : "");
3118 	} else
3119 		PROC_UNLOCK(p);
3120 	exit1(td, 0, sig);
3121 	/* NOTREACHED */
3122 }
3123 
3124 /*
3125  * Send queued SIGCHLD to parent when child process's state
3126  * is changed.
3127  */
3128 static void
3129 sigparent(struct proc *p, int reason, int status)
3130 {
3131 	PROC_LOCK_ASSERT(p, MA_OWNED);
3132 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3133 
3134 	if (p->p_ksi != NULL) {
3135 		p->p_ksi->ksi_signo  = SIGCHLD;
3136 		p->p_ksi->ksi_code   = reason;
3137 		p->p_ksi->ksi_status = status;
3138 		p->p_ksi->ksi_pid    = p->p_pid;
3139 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3140 		if (KSI_ONQ(p->p_ksi))
3141 			return;
3142 	}
3143 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3144 }
3145 
3146 static void
3147 childproc_jobstate(struct proc *p, int reason, int sig)
3148 {
3149 	struct sigacts *ps;
3150 
3151 	PROC_LOCK_ASSERT(p, MA_OWNED);
3152 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3153 
3154 	/*
3155 	 * Wake up parent sleeping in kern_wait(), also send
3156 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3157 	 * that parent will awake, because parent may masked
3158 	 * the signal.
3159 	 */
3160 	p->p_pptr->p_flag |= P_STATCHILD;
3161 	wakeup(p->p_pptr);
3162 
3163 	ps = p->p_pptr->p_sigacts;
3164 	mtx_lock(&ps->ps_mtx);
3165 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3166 		mtx_unlock(&ps->ps_mtx);
3167 		sigparent(p, reason, sig);
3168 	} else
3169 		mtx_unlock(&ps->ps_mtx);
3170 }
3171 
3172 void
3173 childproc_stopped(struct proc *p, int reason)
3174 {
3175 
3176 	childproc_jobstate(p, reason, p->p_xsig);
3177 }
3178 
3179 void
3180 childproc_continued(struct proc *p)
3181 {
3182 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3183 }
3184 
3185 void
3186 childproc_exited(struct proc *p)
3187 {
3188 	int reason, status;
3189 
3190 	if (WCOREDUMP(p->p_xsig)) {
3191 		reason = CLD_DUMPED;
3192 		status = WTERMSIG(p->p_xsig);
3193 	} else if (WIFSIGNALED(p->p_xsig)) {
3194 		reason = CLD_KILLED;
3195 		status = WTERMSIG(p->p_xsig);
3196 	} else {
3197 		reason = CLD_EXITED;
3198 		status = p->p_xexit;
3199 	}
3200 	/*
3201 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3202 	 * done in exit1().
3203 	 */
3204 	sigparent(p, reason, status);
3205 }
3206 
3207 /*
3208  * We only have 1 character for the core count in the format
3209  * string, so the range will be 0-9
3210  */
3211 #define	MAX_NUM_CORE_FILES 10
3212 #ifndef NUM_CORE_FILES
3213 #define	NUM_CORE_FILES 5
3214 #endif
3215 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3216 static int num_cores = NUM_CORE_FILES;
3217 
3218 static int
3219 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3220 {
3221 	int error;
3222 	int new_val;
3223 
3224 	new_val = num_cores;
3225 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3226 	if (error != 0 || req->newptr == NULL)
3227 		return (error);
3228 	if (new_val > MAX_NUM_CORE_FILES)
3229 		new_val = MAX_NUM_CORE_FILES;
3230 	if (new_val < 0)
3231 		new_val = 0;
3232 	num_cores = new_val;
3233 	return (0);
3234 }
3235 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3236 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3237 
3238 #define	GZ_SUFFIX	".gz"
3239 
3240 #ifdef GZIO
3241 static int compress_user_cores = 1;
3242 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN,
3243     &compress_user_cores, 0, "Compression of user corefiles");
3244 
3245 int compress_user_cores_gzlevel = 6;
3246 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN,
3247     &compress_user_cores_gzlevel, 0, "Corefile gzip compression level");
3248 #else
3249 static int compress_user_cores = 0;
3250 #endif
3251 
3252 /*
3253  * Protect the access to corefilename[] by allproc_lock.
3254  */
3255 #define	corefilename_lock	allproc_lock
3256 
3257 static char corefilename[MAXPATHLEN] = {"%N.core"};
3258 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3259 
3260 static int
3261 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3262 {
3263 	int error;
3264 
3265 	sx_xlock(&corefilename_lock);
3266 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3267 	    req);
3268 	sx_xunlock(&corefilename_lock);
3269 
3270 	return (error);
3271 }
3272 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3273     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3274     "Process corefile name format string");
3275 
3276 /*
3277  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3278  * Expand the name described in corefilename, using name, uid, and pid
3279  * and open/create core file.
3280  * corefilename is a printf-like string, with three format specifiers:
3281  *	%N	name of process ("name")
3282  *	%P	process id (pid)
3283  *	%U	user id (uid)
3284  * For example, "%N.core" is the default; they can be disabled completely
3285  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3286  * This is controlled by the sysctl variable kern.corefile (see above).
3287  */
3288 static int
3289 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3290     int compress, struct vnode **vpp, char **namep)
3291 {
3292 	struct nameidata nd;
3293 	struct sbuf sb;
3294 	const char *format;
3295 	char *hostname, *name;
3296 	int indexpos, i, error, cmode, flags, oflags;
3297 
3298 	hostname = NULL;
3299 	format = corefilename;
3300 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3301 	indexpos = -1;
3302 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3303 	sx_slock(&corefilename_lock);
3304 	for (i = 0; format[i] != '\0'; i++) {
3305 		switch (format[i]) {
3306 		case '%':	/* Format character */
3307 			i++;
3308 			switch (format[i]) {
3309 			case '%':
3310 				sbuf_putc(&sb, '%');
3311 				break;
3312 			case 'H':	/* hostname */
3313 				if (hostname == NULL) {
3314 					hostname = malloc(MAXHOSTNAMELEN,
3315 					    M_TEMP, M_WAITOK);
3316 				}
3317 				getcredhostname(td->td_ucred, hostname,
3318 				    MAXHOSTNAMELEN);
3319 				sbuf_printf(&sb, "%s", hostname);
3320 				break;
3321 			case 'I':	/* autoincrementing index */
3322 				sbuf_printf(&sb, "0");
3323 				indexpos = sbuf_len(&sb) - 1;
3324 				break;
3325 			case 'N':	/* process name */
3326 				sbuf_printf(&sb, "%s", comm);
3327 				break;
3328 			case 'P':	/* process id */
3329 				sbuf_printf(&sb, "%u", pid);
3330 				break;
3331 			case 'U':	/* user id */
3332 				sbuf_printf(&sb, "%u", uid);
3333 				break;
3334 			default:
3335 				log(LOG_ERR,
3336 				    "Unknown format character %c in "
3337 				    "corename `%s'\n", format[i], format);
3338 				break;
3339 			}
3340 			break;
3341 		default:
3342 			sbuf_putc(&sb, format[i]);
3343 			break;
3344 		}
3345 	}
3346 	sx_sunlock(&corefilename_lock);
3347 	free(hostname, M_TEMP);
3348 	if (compress)
3349 		sbuf_printf(&sb, GZ_SUFFIX);
3350 	if (sbuf_error(&sb) != 0) {
3351 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3352 		    "long\n", (long)pid, comm, (u_long)uid);
3353 		sbuf_delete(&sb);
3354 		free(name, M_TEMP);
3355 		return (ENOMEM);
3356 	}
3357 	sbuf_finish(&sb);
3358 	sbuf_delete(&sb);
3359 
3360 	cmode = S_IRUSR | S_IWUSR;
3361 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3362 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3363 
3364 	/*
3365 	 * If the core format has a %I in it, then we need to check
3366 	 * for existing corefiles before returning a name.
3367 	 * To do this we iterate over 0..num_cores to find a
3368 	 * non-existing core file name to use.
3369 	 */
3370 	if (indexpos != -1) {
3371 		for (i = 0; i < num_cores; i++) {
3372 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3373 			name[indexpos] = '0' + i;
3374 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3375 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3376 			    td->td_ucred, NULL);
3377 			if (error) {
3378 				if (error == EEXIST)
3379 					continue;
3380 				log(LOG_ERR,
3381 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3382 				    "on initial open test, error = %d\n",
3383 				    pid, comm, uid, name, error);
3384 			}
3385 			goto out;
3386 		}
3387 	}
3388 
3389 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3390 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3391 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3392 out:
3393 	if (error) {
3394 #ifdef AUDIT
3395 		audit_proc_coredump(td, name, error);
3396 #endif
3397 		free(name, M_TEMP);
3398 		return (error);
3399 	}
3400 	NDFREE(&nd, NDF_ONLY_PNBUF);
3401 	*vpp = nd.ni_vp;
3402 	*namep = name;
3403 	return (0);
3404 }
3405 
3406 static int
3407 coredump_sanitise_path(const char *path)
3408 {
3409 	size_t i;
3410 
3411 	/*
3412 	 * Only send a subset of ASCII to devd(8) because it
3413 	 * might pass these strings to sh -c.
3414 	 */
3415 	for (i = 0; path[i]; i++)
3416 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3417 		    path[i] != '/' && path[i] != '.' &&
3418 		    path[i] != '-')
3419 			return (0);
3420 
3421 	return (1);
3422 }
3423 
3424 /*
3425  * Dump a process' core.  The main routine does some
3426  * policy checking, and creates the name of the coredump;
3427  * then it passes on a vnode and a size limit to the process-specific
3428  * coredump routine if there is one; if there _is not_ one, it returns
3429  * ENOSYS; otherwise it returns the error from the process-specific routine.
3430  */
3431 
3432 static int
3433 coredump(struct thread *td)
3434 {
3435 	struct proc *p = td->td_proc;
3436 	struct ucred *cred = td->td_ucred;
3437 	struct vnode *vp;
3438 	struct flock lf;
3439 	struct vattr vattr;
3440 	int error, error1, locked;
3441 	char *name;			/* name of corefile */
3442 	void *rl_cookie;
3443 	off_t limit;
3444 	char *data = NULL;
3445 	char *fullpath, *freepath = NULL;
3446 	size_t len;
3447 	static const char comm_name[] = "comm=";
3448 	static const char core_name[] = "core=";
3449 
3450 	PROC_LOCK_ASSERT(p, MA_OWNED);
3451 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3452 	_STOPEVENT(p, S_CORE, 0);
3453 
3454 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3455 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3456 		PROC_UNLOCK(p);
3457 		return (EFAULT);
3458 	}
3459 
3460 	/*
3461 	 * Note that the bulk of limit checking is done after
3462 	 * the corefile is created.  The exception is if the limit
3463 	 * for corefiles is 0, in which case we don't bother
3464 	 * creating the corefile at all.  This layout means that
3465 	 * a corefile is truncated instead of not being created,
3466 	 * if it is larger than the limit.
3467 	 */
3468 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3469 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3470 		PROC_UNLOCK(p);
3471 		return (EFBIG);
3472 	}
3473 	PROC_UNLOCK(p);
3474 
3475 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3476 	    compress_user_cores, &vp, &name);
3477 	if (error != 0)
3478 		return (error);
3479 
3480 	/*
3481 	 * Don't dump to non-regular files or files with links.
3482 	 * Do not dump into system files.
3483 	 */
3484 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3485 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3486 		VOP_UNLOCK(vp, 0);
3487 		error = EFAULT;
3488 		goto out;
3489 	}
3490 
3491 	VOP_UNLOCK(vp, 0);
3492 
3493 	/* Postpone other writers, including core dumps of other processes. */
3494 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3495 
3496 	lf.l_whence = SEEK_SET;
3497 	lf.l_start = 0;
3498 	lf.l_len = 0;
3499 	lf.l_type = F_WRLCK;
3500 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3501 
3502 	VATTR_NULL(&vattr);
3503 	vattr.va_size = 0;
3504 	if (set_core_nodump_flag)
3505 		vattr.va_flags = UF_NODUMP;
3506 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3507 	VOP_SETATTR(vp, &vattr, cred);
3508 	VOP_UNLOCK(vp, 0);
3509 	PROC_LOCK(p);
3510 	p->p_acflag |= ACORE;
3511 	PROC_UNLOCK(p);
3512 
3513 	if (p->p_sysent->sv_coredump != NULL) {
3514 		error = p->p_sysent->sv_coredump(td, vp, limit,
3515 		    compress_user_cores ? IMGACT_CORE_COMPRESS : 0);
3516 	} else {
3517 		error = ENOSYS;
3518 	}
3519 
3520 	if (locked) {
3521 		lf.l_type = F_UNLCK;
3522 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3523 	}
3524 	vn_rangelock_unlock(vp, rl_cookie);
3525 
3526 	/*
3527 	 * Notify the userland helper that a process triggered a core dump.
3528 	 * This allows the helper to run an automated debugging session.
3529 	 */
3530 	if (error != 0 || coredump_devctl == 0)
3531 		goto out;
3532 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3533 	    sizeof(' ') + sizeof(core_name) - 1;
3534 	data = malloc(len, M_TEMP, M_WAITOK);
3535 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3536 		goto out;
3537 	if (!coredump_sanitise_path(fullpath))
3538 		goto out;
3539 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3540 	free(freepath, M_TEMP);
3541 	freepath = NULL;
3542 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3543 		goto out;
3544 	if (!coredump_sanitise_path(fullpath))
3545 		goto out;
3546 	strlcat(data, core_name, len);
3547 	strlcat(data, fullpath, len);
3548 	devctl_notify("kernel", "signal", "coredump", data);
3549 out:
3550 	error1 = vn_close(vp, FWRITE, cred, td);
3551 	if (error == 0)
3552 		error = error1;
3553 #ifdef AUDIT
3554 	audit_proc_coredump(td, name, error);
3555 #endif
3556 	free(freepath, M_TEMP);
3557 	free(data, M_TEMP);
3558 	free(name, M_TEMP);
3559 	return (error);
3560 }
3561 
3562 /*
3563  * Nonexistent system call-- signal process (may want to handle it).  Flag
3564  * error in case process won't see signal immediately (blocked or ignored).
3565  */
3566 #ifndef _SYS_SYSPROTO_H_
3567 struct nosys_args {
3568 	int	dummy;
3569 };
3570 #endif
3571 /* ARGSUSED */
3572 int
3573 nosys(struct thread *td, struct nosys_args *args)
3574 {
3575 	struct proc *p;
3576 
3577 	p = td->td_proc;
3578 
3579 	PROC_LOCK(p);
3580 	tdsignal(td, SIGSYS);
3581 	PROC_UNLOCK(p);
3582 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3583 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3584 		    td->td_sa.code);
3585 	}
3586 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3587 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3588 		    td->td_sa.code);
3589 	}
3590 	return (ENOSYS);
3591 }
3592 
3593 /*
3594  * Send a SIGIO or SIGURG signal to a process or process group using stored
3595  * credentials rather than those of the current process.
3596  */
3597 void
3598 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3599 {
3600 	ksiginfo_t ksi;
3601 	struct sigio *sigio;
3602 
3603 	ksiginfo_init(&ksi);
3604 	ksi.ksi_signo = sig;
3605 	ksi.ksi_code = SI_KERNEL;
3606 
3607 	SIGIO_LOCK();
3608 	sigio = *sigiop;
3609 	if (sigio == NULL) {
3610 		SIGIO_UNLOCK();
3611 		return;
3612 	}
3613 	if (sigio->sio_pgid > 0) {
3614 		PROC_LOCK(sigio->sio_proc);
3615 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3616 			kern_psignal(sigio->sio_proc, sig);
3617 		PROC_UNLOCK(sigio->sio_proc);
3618 	} else if (sigio->sio_pgid < 0) {
3619 		struct proc *p;
3620 
3621 		PGRP_LOCK(sigio->sio_pgrp);
3622 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3623 			PROC_LOCK(p);
3624 			if (p->p_state == PRS_NORMAL &&
3625 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3626 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3627 				kern_psignal(p, sig);
3628 			PROC_UNLOCK(p);
3629 		}
3630 		PGRP_UNLOCK(sigio->sio_pgrp);
3631 	}
3632 	SIGIO_UNLOCK();
3633 }
3634 
3635 static int
3636 filt_sigattach(struct knote *kn)
3637 {
3638 	struct proc *p = curproc;
3639 
3640 	kn->kn_ptr.p_proc = p;
3641 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3642 
3643 	knlist_add(p->p_klist, kn, 0);
3644 
3645 	return (0);
3646 }
3647 
3648 static void
3649 filt_sigdetach(struct knote *kn)
3650 {
3651 	struct proc *p = kn->kn_ptr.p_proc;
3652 
3653 	knlist_remove(p->p_klist, kn, 0);
3654 }
3655 
3656 /*
3657  * signal knotes are shared with proc knotes, so we apply a mask to
3658  * the hint in order to differentiate them from process hints.  This
3659  * could be avoided by using a signal-specific knote list, but probably
3660  * isn't worth the trouble.
3661  */
3662 static int
3663 filt_signal(struct knote *kn, long hint)
3664 {
3665 
3666 	if (hint & NOTE_SIGNAL) {
3667 		hint &= ~NOTE_SIGNAL;
3668 
3669 		if (kn->kn_id == hint)
3670 			kn->kn_data++;
3671 	}
3672 	return (kn->kn_data != 0);
3673 }
3674 
3675 struct sigacts *
3676 sigacts_alloc(void)
3677 {
3678 	struct sigacts *ps;
3679 
3680 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3681 	refcount_init(&ps->ps_refcnt, 1);
3682 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3683 	return (ps);
3684 }
3685 
3686 void
3687 sigacts_free(struct sigacts *ps)
3688 {
3689 
3690 	if (refcount_release(&ps->ps_refcnt) == 0)
3691 		return;
3692 	mtx_destroy(&ps->ps_mtx);
3693 	free(ps, M_SUBPROC);
3694 }
3695 
3696 struct sigacts *
3697 sigacts_hold(struct sigacts *ps)
3698 {
3699 
3700 	refcount_acquire(&ps->ps_refcnt);
3701 	return (ps);
3702 }
3703 
3704 void
3705 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3706 {
3707 
3708 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3709 	mtx_lock(&src->ps_mtx);
3710 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3711 	mtx_unlock(&src->ps_mtx);
3712 }
3713 
3714 int
3715 sigacts_shared(struct sigacts *ps)
3716 {
3717 
3718 	return (ps->ps_refcnt > 1);
3719 }
3720