xref: /freebsd/sys/kern/kern_sig.c (revision 7bda9663949a80e4e56006369d6df8dc8eeb6cff)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 
609 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
610 
611 	if (SIGPENDING(td)) {
612 		thread_lock(td);
613 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
614 		thread_unlock(td);
615 	}
616 }
617 
618 int
619 sigonstack(size_t sp)
620 {
621 	struct thread *td = curthread;
622 
623 	return ((td->td_pflags & TDP_ALTSTACK) ?
624 #if defined(COMPAT_43)
625 	    ((td->td_sigstk.ss_size == 0) ?
626 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
627 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
628 #else
629 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
630 #endif
631 	    : 0);
632 }
633 
634 static __inline int
635 sigprop(int sig)
636 {
637 
638 	if (sig > 0 && sig < nitems(sigproptbl))
639 		return (sigproptbl[sig]);
640 	return (0);
641 }
642 
643 int
644 sig_ffs(sigset_t *set)
645 {
646 	int i;
647 
648 	for (i = 0; i < _SIG_WORDS; i++)
649 		if (set->__bits[i])
650 			return (ffs(set->__bits[i]) + (i * 32));
651 	return (0);
652 }
653 
654 static bool
655 sigact_flag_test(const struct sigaction *act, int flag)
656 {
657 
658 	/*
659 	 * SA_SIGINFO is reset when signal disposition is set to
660 	 * ignore or default.  Other flags are kept according to user
661 	 * settings.
662 	 */
663 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
664 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
665 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
666 }
667 
668 /*
669  * kern_sigaction
670  * sigaction
671  * freebsd4_sigaction
672  * osigaction
673  */
674 int
675 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
676     struct sigaction *oact, int flags)
677 {
678 	struct sigacts *ps;
679 	struct proc *p = td->td_proc;
680 
681 	if (!_SIG_VALID(sig))
682 		return (EINVAL);
683 	if (act != NULL && act->sa_handler != SIG_DFL &&
684 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
685 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
686 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
687 		return (EINVAL);
688 
689 	PROC_LOCK(p);
690 	ps = p->p_sigacts;
691 	mtx_lock(&ps->ps_mtx);
692 	if (oact) {
693 		memset(oact, 0, sizeof(*oact));
694 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
695 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
696 			oact->sa_flags |= SA_ONSTACK;
697 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
698 			oact->sa_flags |= SA_RESTART;
699 		if (SIGISMEMBER(ps->ps_sigreset, sig))
700 			oact->sa_flags |= SA_RESETHAND;
701 		if (SIGISMEMBER(ps->ps_signodefer, sig))
702 			oact->sa_flags |= SA_NODEFER;
703 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
704 			oact->sa_flags |= SA_SIGINFO;
705 			oact->sa_sigaction =
706 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
707 		} else
708 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
709 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
710 			oact->sa_flags |= SA_NOCLDSTOP;
711 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
712 			oact->sa_flags |= SA_NOCLDWAIT;
713 	}
714 	if (act) {
715 		if ((sig == SIGKILL || sig == SIGSTOP) &&
716 		    act->sa_handler != SIG_DFL) {
717 			mtx_unlock(&ps->ps_mtx);
718 			PROC_UNLOCK(p);
719 			return (EINVAL);
720 		}
721 
722 		/*
723 		 * Change setting atomically.
724 		 */
725 
726 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
727 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
728 		if (sigact_flag_test(act, SA_SIGINFO)) {
729 			ps->ps_sigact[_SIG_IDX(sig)] =
730 			    (__sighandler_t *)act->sa_sigaction;
731 			SIGADDSET(ps->ps_siginfo, sig);
732 		} else {
733 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
734 			SIGDELSET(ps->ps_siginfo, sig);
735 		}
736 		if (!sigact_flag_test(act, SA_RESTART))
737 			SIGADDSET(ps->ps_sigintr, sig);
738 		else
739 			SIGDELSET(ps->ps_sigintr, sig);
740 		if (sigact_flag_test(act, SA_ONSTACK))
741 			SIGADDSET(ps->ps_sigonstack, sig);
742 		else
743 			SIGDELSET(ps->ps_sigonstack, sig);
744 		if (sigact_flag_test(act, SA_RESETHAND))
745 			SIGADDSET(ps->ps_sigreset, sig);
746 		else
747 			SIGDELSET(ps->ps_sigreset, sig);
748 		if (sigact_flag_test(act, SA_NODEFER))
749 			SIGADDSET(ps->ps_signodefer, sig);
750 		else
751 			SIGDELSET(ps->ps_signodefer, sig);
752 		if (sig == SIGCHLD) {
753 			if (act->sa_flags & SA_NOCLDSTOP)
754 				ps->ps_flag |= PS_NOCLDSTOP;
755 			else
756 				ps->ps_flag &= ~PS_NOCLDSTOP;
757 			if (act->sa_flags & SA_NOCLDWAIT) {
758 				/*
759 				 * Paranoia: since SA_NOCLDWAIT is implemented
760 				 * by reparenting the dying child to PID 1 (and
761 				 * trust it to reap the zombie), PID 1 itself
762 				 * is forbidden to set SA_NOCLDWAIT.
763 				 */
764 				if (p->p_pid == 1)
765 					ps->ps_flag &= ~PS_NOCLDWAIT;
766 				else
767 					ps->ps_flag |= PS_NOCLDWAIT;
768 			} else
769 				ps->ps_flag &= ~PS_NOCLDWAIT;
770 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
771 				ps->ps_flag |= PS_CLDSIGIGN;
772 			else
773 				ps->ps_flag &= ~PS_CLDSIGIGN;
774 		}
775 		/*
776 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
777 		 * and for signals set to SIG_DFL where the default is to
778 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
779 		 * have to restart the process.
780 		 */
781 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
782 		    (sigprop(sig) & SIGPROP_IGNORE &&
783 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
784 			/* never to be seen again */
785 			sigqueue_delete_proc(p, sig);
786 			if (sig != SIGCONT)
787 				/* easier in psignal */
788 				SIGADDSET(ps->ps_sigignore, sig);
789 			SIGDELSET(ps->ps_sigcatch, sig);
790 		} else {
791 			SIGDELSET(ps->ps_sigignore, sig);
792 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
793 				SIGDELSET(ps->ps_sigcatch, sig);
794 			else
795 				SIGADDSET(ps->ps_sigcatch, sig);
796 		}
797 #ifdef COMPAT_FREEBSD4
798 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
799 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
800 		    (flags & KSA_FREEBSD4) == 0)
801 			SIGDELSET(ps->ps_freebsd4, sig);
802 		else
803 			SIGADDSET(ps->ps_freebsd4, sig);
804 #endif
805 #ifdef COMPAT_43
806 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
807 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
808 		    (flags & KSA_OSIGSET) == 0)
809 			SIGDELSET(ps->ps_osigset, sig);
810 		else
811 			SIGADDSET(ps->ps_osigset, sig);
812 #endif
813 	}
814 	mtx_unlock(&ps->ps_mtx);
815 	PROC_UNLOCK(p);
816 	return (0);
817 }
818 
819 #ifndef _SYS_SYSPROTO_H_
820 struct sigaction_args {
821 	int	sig;
822 	struct	sigaction *act;
823 	struct	sigaction *oact;
824 };
825 #endif
826 int
827 sys_sigaction(struct thread *td, struct sigaction_args *uap)
828 {
829 	struct sigaction act, oact;
830 	struct sigaction *actp, *oactp;
831 	int error;
832 
833 	actp = (uap->act != NULL) ? &act : NULL;
834 	oactp = (uap->oact != NULL) ? &oact : NULL;
835 	if (actp) {
836 		error = copyin(uap->act, actp, sizeof(act));
837 		if (error)
838 			return (error);
839 	}
840 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
841 	if (oactp && !error)
842 		error = copyout(oactp, uap->oact, sizeof(oact));
843 	return (error);
844 }
845 
846 #ifdef COMPAT_FREEBSD4
847 #ifndef _SYS_SYSPROTO_H_
848 struct freebsd4_sigaction_args {
849 	int	sig;
850 	struct	sigaction *act;
851 	struct	sigaction *oact;
852 };
853 #endif
854 int
855 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
856 {
857 	struct sigaction act, oact;
858 	struct sigaction *actp, *oactp;
859 	int error;
860 
861 
862 	actp = (uap->act != NULL) ? &act : NULL;
863 	oactp = (uap->oact != NULL) ? &oact : NULL;
864 	if (actp) {
865 		error = copyin(uap->act, actp, sizeof(act));
866 		if (error)
867 			return (error);
868 	}
869 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
870 	if (oactp && !error)
871 		error = copyout(oactp, uap->oact, sizeof(oact));
872 	return (error);
873 }
874 #endif	/* COMAPT_FREEBSD4 */
875 
876 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
877 #ifndef _SYS_SYSPROTO_H_
878 struct osigaction_args {
879 	int	signum;
880 	struct	osigaction *nsa;
881 	struct	osigaction *osa;
882 };
883 #endif
884 int
885 osigaction(struct thread *td, struct osigaction_args *uap)
886 {
887 	struct osigaction sa;
888 	struct sigaction nsa, osa;
889 	struct sigaction *nsap, *osap;
890 	int error;
891 
892 	if (uap->signum <= 0 || uap->signum >= ONSIG)
893 		return (EINVAL);
894 
895 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
896 	osap = (uap->osa != NULL) ? &osa : NULL;
897 
898 	if (nsap) {
899 		error = copyin(uap->nsa, &sa, sizeof(sa));
900 		if (error)
901 			return (error);
902 		nsap->sa_handler = sa.sa_handler;
903 		nsap->sa_flags = sa.sa_flags;
904 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
905 	}
906 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
907 	if (osap && !error) {
908 		sa.sa_handler = osap->sa_handler;
909 		sa.sa_flags = osap->sa_flags;
910 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
911 		error = copyout(&sa, uap->osa, sizeof(sa));
912 	}
913 	return (error);
914 }
915 
916 #if !defined(__i386__)
917 /* Avoid replicating the same stub everywhere */
918 int
919 osigreturn(struct thread *td, struct osigreturn_args *uap)
920 {
921 
922 	return (nosys(td, (struct nosys_args *)uap));
923 }
924 #endif
925 #endif /* COMPAT_43 */
926 
927 /*
928  * Initialize signal state for process 0;
929  * set to ignore signals that are ignored by default.
930  */
931 void
932 siginit(struct proc *p)
933 {
934 	int i;
935 	struct sigacts *ps;
936 
937 	PROC_LOCK(p);
938 	ps = p->p_sigacts;
939 	mtx_lock(&ps->ps_mtx);
940 	for (i = 1; i <= NSIG; i++) {
941 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
942 			SIGADDSET(ps->ps_sigignore, i);
943 		}
944 	}
945 	mtx_unlock(&ps->ps_mtx);
946 	PROC_UNLOCK(p);
947 }
948 
949 /*
950  * Reset specified signal to the default disposition.
951  */
952 static void
953 sigdflt(struct sigacts *ps, int sig)
954 {
955 
956 	mtx_assert(&ps->ps_mtx, MA_OWNED);
957 	SIGDELSET(ps->ps_sigcatch, sig);
958 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
959 		SIGADDSET(ps->ps_sigignore, sig);
960 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
961 	SIGDELSET(ps->ps_siginfo, sig);
962 }
963 
964 /*
965  * Reset signals for an exec of the specified process.
966  */
967 void
968 execsigs(struct proc *p)
969 {
970 	sigset_t osigignore;
971 	struct sigacts *ps;
972 	int sig;
973 	struct thread *td;
974 
975 	/*
976 	 * Reset caught signals.  Held signals remain held
977 	 * through td_sigmask (unless they were caught,
978 	 * and are now ignored by default).
979 	 */
980 	PROC_LOCK_ASSERT(p, MA_OWNED);
981 	ps = p->p_sigacts;
982 	mtx_lock(&ps->ps_mtx);
983 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
984 		sig = sig_ffs(&ps->ps_sigcatch);
985 		sigdflt(ps, sig);
986 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
987 			sigqueue_delete_proc(p, sig);
988 	}
989 
990 	/*
991 	 * As CloudABI processes cannot modify signal handlers, fully
992 	 * reset all signals to their default behavior. Do ignore
993 	 * SIGPIPE, as it would otherwise be impossible to recover from
994 	 * writes to broken pipes and sockets.
995 	 */
996 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
997 		osigignore = ps->ps_sigignore;
998 		while (SIGNOTEMPTY(osigignore)) {
999 			sig = sig_ffs(&osigignore);
1000 			SIGDELSET(osigignore, sig);
1001 			if (sig != SIGPIPE)
1002 				sigdflt(ps, sig);
1003 		}
1004 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1005 	}
1006 
1007 	/*
1008 	 * Reset stack state to the user stack.
1009 	 * Clear set of signals caught on the signal stack.
1010 	 */
1011 	td = curthread;
1012 	MPASS(td->td_proc == p);
1013 	td->td_sigstk.ss_flags = SS_DISABLE;
1014 	td->td_sigstk.ss_size = 0;
1015 	td->td_sigstk.ss_sp = 0;
1016 	td->td_pflags &= ~TDP_ALTSTACK;
1017 	/*
1018 	 * Reset no zombies if child dies flag as Solaris does.
1019 	 */
1020 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1021 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1022 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1023 	mtx_unlock(&ps->ps_mtx);
1024 }
1025 
1026 /*
1027  * kern_sigprocmask()
1028  *
1029  *	Manipulate signal mask.
1030  */
1031 int
1032 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1033     int flags)
1034 {
1035 	sigset_t new_block, oset1;
1036 	struct proc *p;
1037 	int error;
1038 
1039 	p = td->td_proc;
1040 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1041 		PROC_LOCK_ASSERT(p, MA_OWNED);
1042 	else
1043 		PROC_LOCK(p);
1044 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1045 	    ? MA_OWNED : MA_NOTOWNED);
1046 	if (oset != NULL)
1047 		*oset = td->td_sigmask;
1048 
1049 	error = 0;
1050 	if (set != NULL) {
1051 		switch (how) {
1052 		case SIG_BLOCK:
1053 			SIG_CANTMASK(*set);
1054 			oset1 = td->td_sigmask;
1055 			SIGSETOR(td->td_sigmask, *set);
1056 			new_block = td->td_sigmask;
1057 			SIGSETNAND(new_block, oset1);
1058 			break;
1059 		case SIG_UNBLOCK:
1060 			SIGSETNAND(td->td_sigmask, *set);
1061 			signotify(td);
1062 			goto out;
1063 		case SIG_SETMASK:
1064 			SIG_CANTMASK(*set);
1065 			oset1 = td->td_sigmask;
1066 			if (flags & SIGPROCMASK_OLD)
1067 				SIGSETLO(td->td_sigmask, *set);
1068 			else
1069 				td->td_sigmask = *set;
1070 			new_block = td->td_sigmask;
1071 			SIGSETNAND(new_block, oset1);
1072 			signotify(td);
1073 			break;
1074 		default:
1075 			error = EINVAL;
1076 			goto out;
1077 		}
1078 
1079 		/*
1080 		 * The new_block set contains signals that were not previously
1081 		 * blocked, but are blocked now.
1082 		 *
1083 		 * In case we block any signal that was not previously blocked
1084 		 * for td, and process has the signal pending, try to schedule
1085 		 * signal delivery to some thread that does not block the
1086 		 * signal, possibly waking it up.
1087 		 */
1088 		if (p->p_numthreads != 1)
1089 			reschedule_signals(p, new_block, flags);
1090 	}
1091 
1092 out:
1093 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1094 		PROC_UNLOCK(p);
1095 	return (error);
1096 }
1097 
1098 #ifndef _SYS_SYSPROTO_H_
1099 struct sigprocmask_args {
1100 	int	how;
1101 	const sigset_t *set;
1102 	sigset_t *oset;
1103 };
1104 #endif
1105 int
1106 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1107 {
1108 	sigset_t set, oset;
1109 	sigset_t *setp, *osetp;
1110 	int error;
1111 
1112 	setp = (uap->set != NULL) ? &set : NULL;
1113 	osetp = (uap->oset != NULL) ? &oset : NULL;
1114 	if (setp) {
1115 		error = copyin(uap->set, setp, sizeof(set));
1116 		if (error)
1117 			return (error);
1118 	}
1119 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1120 	if (osetp && !error) {
1121 		error = copyout(osetp, uap->oset, sizeof(oset));
1122 	}
1123 	return (error);
1124 }
1125 
1126 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1127 #ifndef _SYS_SYSPROTO_H_
1128 struct osigprocmask_args {
1129 	int	how;
1130 	osigset_t mask;
1131 };
1132 #endif
1133 int
1134 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1135 {
1136 	sigset_t set, oset;
1137 	int error;
1138 
1139 	OSIG2SIG(uap->mask, set);
1140 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1141 	SIG2OSIG(oset, td->td_retval[0]);
1142 	return (error);
1143 }
1144 #endif /* COMPAT_43 */
1145 
1146 int
1147 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1148 {
1149 	ksiginfo_t ksi;
1150 	sigset_t set;
1151 	int error;
1152 
1153 	error = copyin(uap->set, &set, sizeof(set));
1154 	if (error) {
1155 		td->td_retval[0] = error;
1156 		return (0);
1157 	}
1158 
1159 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1160 	if (error) {
1161 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1162 			error = ERESTART;
1163 		if (error == ERESTART)
1164 			return (error);
1165 		td->td_retval[0] = error;
1166 		return (0);
1167 	}
1168 
1169 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1170 	td->td_retval[0] = error;
1171 	return (0);
1172 }
1173 
1174 int
1175 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1176 {
1177 	struct timespec ts;
1178 	struct timespec *timeout;
1179 	sigset_t set;
1180 	ksiginfo_t ksi;
1181 	int error;
1182 
1183 	if (uap->timeout) {
1184 		error = copyin(uap->timeout, &ts, sizeof(ts));
1185 		if (error)
1186 			return (error);
1187 
1188 		timeout = &ts;
1189 	} else
1190 		timeout = NULL;
1191 
1192 	error = copyin(uap->set, &set, sizeof(set));
1193 	if (error)
1194 		return (error);
1195 
1196 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1197 	if (error)
1198 		return (error);
1199 
1200 	if (uap->info)
1201 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1202 
1203 	if (error == 0)
1204 		td->td_retval[0] = ksi.ksi_signo;
1205 	return (error);
1206 }
1207 
1208 int
1209 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1210 {
1211 	ksiginfo_t ksi;
1212 	sigset_t set;
1213 	int error;
1214 
1215 	error = copyin(uap->set, &set, sizeof(set));
1216 	if (error)
1217 		return (error);
1218 
1219 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1220 	if (error)
1221 		return (error);
1222 
1223 	if (uap->info)
1224 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1225 
1226 	if (error == 0)
1227 		td->td_retval[0] = ksi.ksi_signo;
1228 	return (error);
1229 }
1230 
1231 static void
1232 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1233 {
1234 	struct thread *thr;
1235 
1236 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1237 		if (thr == td)
1238 			thr->td_si = *si;
1239 		else
1240 			thr->td_si.si_signo = 0;
1241 	}
1242 }
1243 
1244 int
1245 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1246 	struct timespec *timeout)
1247 {
1248 	struct sigacts *ps;
1249 	sigset_t saved_mask, new_block;
1250 	struct proc *p;
1251 	int error, sig, timo, timevalid = 0;
1252 	struct timespec rts, ets, ts;
1253 	struct timeval tv;
1254 
1255 	p = td->td_proc;
1256 	error = 0;
1257 	ets.tv_sec = 0;
1258 	ets.tv_nsec = 0;
1259 
1260 	if (timeout != NULL) {
1261 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1262 			timevalid = 1;
1263 			getnanouptime(&rts);
1264 			timespecadd(&rts, timeout, &ets);
1265 		}
1266 	}
1267 	ksiginfo_init(ksi);
1268 	/* Some signals can not be waited for. */
1269 	SIG_CANTMASK(waitset);
1270 	ps = p->p_sigacts;
1271 	PROC_LOCK(p);
1272 	saved_mask = td->td_sigmask;
1273 	SIGSETNAND(td->td_sigmask, waitset);
1274 	for (;;) {
1275 		mtx_lock(&ps->ps_mtx);
1276 		sig = cursig(td);
1277 		mtx_unlock(&ps->ps_mtx);
1278 		KASSERT(sig >= 0, ("sig %d", sig));
1279 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1280 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1281 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1282 				error = 0;
1283 				break;
1284 			}
1285 		}
1286 
1287 		if (error != 0)
1288 			break;
1289 
1290 		/*
1291 		 * POSIX says this must be checked after looking for pending
1292 		 * signals.
1293 		 */
1294 		if (timeout != NULL) {
1295 			if (!timevalid) {
1296 				error = EINVAL;
1297 				break;
1298 			}
1299 			getnanouptime(&rts);
1300 			if (timespeccmp(&rts, &ets, >=)) {
1301 				error = EAGAIN;
1302 				break;
1303 			}
1304 			timespecsub(&ets, &rts, &ts);
1305 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1306 			timo = tvtohz(&tv);
1307 		} else {
1308 			timo = 0;
1309 		}
1310 
1311 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1312 
1313 		if (timeout != NULL) {
1314 			if (error == ERESTART) {
1315 				/* Timeout can not be restarted. */
1316 				error = EINTR;
1317 			} else if (error == EAGAIN) {
1318 				/* We will calculate timeout by ourself. */
1319 				error = 0;
1320 			}
1321 		}
1322 	}
1323 
1324 	new_block = saved_mask;
1325 	SIGSETNAND(new_block, td->td_sigmask);
1326 	td->td_sigmask = saved_mask;
1327 	/*
1328 	 * Fewer signals can be delivered to us, reschedule signal
1329 	 * notification.
1330 	 */
1331 	if (p->p_numthreads != 1)
1332 		reschedule_signals(p, new_block, 0);
1333 
1334 	if (error == 0) {
1335 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1336 
1337 		if (ksi->ksi_code == SI_TIMER)
1338 			itimer_accept(p, ksi->ksi_timerid, ksi);
1339 
1340 #ifdef KTRACE
1341 		if (KTRPOINT(td, KTR_PSIG)) {
1342 			sig_t action;
1343 
1344 			mtx_lock(&ps->ps_mtx);
1345 			action = ps->ps_sigact[_SIG_IDX(sig)];
1346 			mtx_unlock(&ps->ps_mtx);
1347 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1348 		}
1349 #endif
1350 		if (sig == SIGKILL) {
1351 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1352 			sigexit(td, sig);
1353 		}
1354 	}
1355 	PROC_UNLOCK(p);
1356 	return (error);
1357 }
1358 
1359 #ifndef _SYS_SYSPROTO_H_
1360 struct sigpending_args {
1361 	sigset_t	*set;
1362 };
1363 #endif
1364 int
1365 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1366 {
1367 	struct proc *p = td->td_proc;
1368 	sigset_t pending;
1369 
1370 	PROC_LOCK(p);
1371 	pending = p->p_sigqueue.sq_signals;
1372 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1373 	PROC_UNLOCK(p);
1374 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1375 }
1376 
1377 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1378 #ifndef _SYS_SYSPROTO_H_
1379 struct osigpending_args {
1380 	int	dummy;
1381 };
1382 #endif
1383 int
1384 osigpending(struct thread *td, struct osigpending_args *uap)
1385 {
1386 	struct proc *p = td->td_proc;
1387 	sigset_t pending;
1388 
1389 	PROC_LOCK(p);
1390 	pending = p->p_sigqueue.sq_signals;
1391 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1392 	PROC_UNLOCK(p);
1393 	SIG2OSIG(pending, td->td_retval[0]);
1394 	return (0);
1395 }
1396 #endif /* COMPAT_43 */
1397 
1398 #if defined(COMPAT_43)
1399 /*
1400  * Generalized interface signal handler, 4.3-compatible.
1401  */
1402 #ifndef _SYS_SYSPROTO_H_
1403 struct osigvec_args {
1404 	int	signum;
1405 	struct	sigvec *nsv;
1406 	struct	sigvec *osv;
1407 };
1408 #endif
1409 /* ARGSUSED */
1410 int
1411 osigvec(struct thread *td, struct osigvec_args *uap)
1412 {
1413 	struct sigvec vec;
1414 	struct sigaction nsa, osa;
1415 	struct sigaction *nsap, *osap;
1416 	int error;
1417 
1418 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1419 		return (EINVAL);
1420 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1421 	osap = (uap->osv != NULL) ? &osa : NULL;
1422 	if (nsap) {
1423 		error = copyin(uap->nsv, &vec, sizeof(vec));
1424 		if (error)
1425 			return (error);
1426 		nsap->sa_handler = vec.sv_handler;
1427 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1428 		nsap->sa_flags = vec.sv_flags;
1429 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1430 	}
1431 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1432 	if (osap && !error) {
1433 		vec.sv_handler = osap->sa_handler;
1434 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1435 		vec.sv_flags = osap->sa_flags;
1436 		vec.sv_flags &= ~SA_NOCLDWAIT;
1437 		vec.sv_flags ^= SA_RESTART;
1438 		error = copyout(&vec, uap->osv, sizeof(vec));
1439 	}
1440 	return (error);
1441 }
1442 
1443 #ifndef _SYS_SYSPROTO_H_
1444 struct osigblock_args {
1445 	int	mask;
1446 };
1447 #endif
1448 int
1449 osigblock(struct thread *td, struct osigblock_args *uap)
1450 {
1451 	sigset_t set, oset;
1452 
1453 	OSIG2SIG(uap->mask, set);
1454 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1455 	SIG2OSIG(oset, td->td_retval[0]);
1456 	return (0);
1457 }
1458 
1459 #ifndef _SYS_SYSPROTO_H_
1460 struct osigsetmask_args {
1461 	int	mask;
1462 };
1463 #endif
1464 int
1465 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1466 {
1467 	sigset_t set, oset;
1468 
1469 	OSIG2SIG(uap->mask, set);
1470 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1471 	SIG2OSIG(oset, td->td_retval[0]);
1472 	return (0);
1473 }
1474 #endif /* COMPAT_43 */
1475 
1476 /*
1477  * Suspend calling thread until signal, providing mask to be set in the
1478  * meantime.
1479  */
1480 #ifndef _SYS_SYSPROTO_H_
1481 struct sigsuspend_args {
1482 	const sigset_t *sigmask;
1483 };
1484 #endif
1485 /* ARGSUSED */
1486 int
1487 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1488 {
1489 	sigset_t mask;
1490 	int error;
1491 
1492 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1493 	if (error)
1494 		return (error);
1495 	return (kern_sigsuspend(td, mask));
1496 }
1497 
1498 int
1499 kern_sigsuspend(struct thread *td, sigset_t mask)
1500 {
1501 	struct proc *p = td->td_proc;
1502 	int has_sig, sig;
1503 
1504 	/*
1505 	 * When returning from sigsuspend, we want
1506 	 * the old mask to be restored after the
1507 	 * signal handler has finished.  Thus, we
1508 	 * save it here and mark the sigacts structure
1509 	 * to indicate this.
1510 	 */
1511 	PROC_LOCK(p);
1512 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1513 	    SIGPROCMASK_PROC_LOCKED);
1514 	td->td_pflags |= TDP_OLDMASK;
1515 
1516 	/*
1517 	 * Process signals now. Otherwise, we can get spurious wakeup
1518 	 * due to signal entered process queue, but delivered to other
1519 	 * thread. But sigsuspend should return only on signal
1520 	 * delivery.
1521 	 */
1522 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1523 	for (has_sig = 0; !has_sig;) {
1524 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1525 			0) == 0)
1526 			/* void */;
1527 		thread_suspend_check(0);
1528 		mtx_lock(&p->p_sigacts->ps_mtx);
1529 		while ((sig = cursig(td)) != 0) {
1530 			KASSERT(sig >= 0, ("sig %d", sig));
1531 			has_sig += postsig(sig);
1532 		}
1533 		mtx_unlock(&p->p_sigacts->ps_mtx);
1534 	}
1535 	PROC_UNLOCK(p);
1536 	td->td_errno = EINTR;
1537 	td->td_pflags |= TDP_NERRNO;
1538 	return (EJUSTRETURN);
1539 }
1540 
1541 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1542 /*
1543  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1544  * convention: libc stub passes mask, not pointer, to save a copyin.
1545  */
1546 #ifndef _SYS_SYSPROTO_H_
1547 struct osigsuspend_args {
1548 	osigset_t mask;
1549 };
1550 #endif
1551 /* ARGSUSED */
1552 int
1553 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1554 {
1555 	sigset_t mask;
1556 
1557 	OSIG2SIG(uap->mask, mask);
1558 	return (kern_sigsuspend(td, mask));
1559 }
1560 #endif /* COMPAT_43 */
1561 
1562 #if defined(COMPAT_43)
1563 #ifndef _SYS_SYSPROTO_H_
1564 struct osigstack_args {
1565 	struct	sigstack *nss;
1566 	struct	sigstack *oss;
1567 };
1568 #endif
1569 /* ARGSUSED */
1570 int
1571 osigstack(struct thread *td, struct osigstack_args *uap)
1572 {
1573 	struct sigstack nss, oss;
1574 	int error = 0;
1575 
1576 	if (uap->nss != NULL) {
1577 		error = copyin(uap->nss, &nss, sizeof(nss));
1578 		if (error)
1579 			return (error);
1580 	}
1581 	oss.ss_sp = td->td_sigstk.ss_sp;
1582 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1583 	if (uap->nss != NULL) {
1584 		td->td_sigstk.ss_sp = nss.ss_sp;
1585 		td->td_sigstk.ss_size = 0;
1586 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1587 		td->td_pflags |= TDP_ALTSTACK;
1588 	}
1589 	if (uap->oss != NULL)
1590 		error = copyout(&oss, uap->oss, sizeof(oss));
1591 
1592 	return (error);
1593 }
1594 #endif /* COMPAT_43 */
1595 
1596 #ifndef _SYS_SYSPROTO_H_
1597 struct sigaltstack_args {
1598 	stack_t	*ss;
1599 	stack_t	*oss;
1600 };
1601 #endif
1602 /* ARGSUSED */
1603 int
1604 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1605 {
1606 	stack_t ss, oss;
1607 	int error;
1608 
1609 	if (uap->ss != NULL) {
1610 		error = copyin(uap->ss, &ss, sizeof(ss));
1611 		if (error)
1612 			return (error);
1613 	}
1614 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1615 	    (uap->oss != NULL) ? &oss : NULL);
1616 	if (error)
1617 		return (error);
1618 	if (uap->oss != NULL)
1619 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1620 	return (error);
1621 }
1622 
1623 int
1624 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1625 {
1626 	struct proc *p = td->td_proc;
1627 	int oonstack;
1628 
1629 	oonstack = sigonstack(cpu_getstack(td));
1630 
1631 	if (oss != NULL) {
1632 		*oss = td->td_sigstk;
1633 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1634 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1635 	}
1636 
1637 	if (ss != NULL) {
1638 		if (oonstack)
1639 			return (EPERM);
1640 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1641 			return (EINVAL);
1642 		if (!(ss->ss_flags & SS_DISABLE)) {
1643 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1644 				return (ENOMEM);
1645 
1646 			td->td_sigstk = *ss;
1647 			td->td_pflags |= TDP_ALTSTACK;
1648 		} else {
1649 			td->td_pflags &= ~TDP_ALTSTACK;
1650 		}
1651 	}
1652 	return (0);
1653 }
1654 
1655 /*
1656  * Common code for kill process group/broadcast kill.
1657  * cp is calling process.
1658  */
1659 static int
1660 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1661 {
1662 	struct proc *p;
1663 	struct pgrp *pgrp;
1664 	int err;
1665 	int ret;
1666 
1667 	ret = ESRCH;
1668 	if (all) {
1669 		/*
1670 		 * broadcast
1671 		 */
1672 		sx_slock(&allproc_lock);
1673 		FOREACH_PROC_IN_SYSTEM(p) {
1674 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1675 			    p == td->td_proc || p->p_state == PRS_NEW) {
1676 				continue;
1677 			}
1678 			PROC_LOCK(p);
1679 			err = p_cansignal(td, p, sig);
1680 			if (err == 0) {
1681 				if (sig)
1682 					pksignal(p, sig, ksi);
1683 				ret = err;
1684 			}
1685 			else if (ret == ESRCH)
1686 				ret = err;
1687 			PROC_UNLOCK(p);
1688 		}
1689 		sx_sunlock(&allproc_lock);
1690 	} else {
1691 		sx_slock(&proctree_lock);
1692 		if (pgid == 0) {
1693 			/*
1694 			 * zero pgid means send to my process group.
1695 			 */
1696 			pgrp = td->td_proc->p_pgrp;
1697 			PGRP_LOCK(pgrp);
1698 		} else {
1699 			pgrp = pgfind(pgid);
1700 			if (pgrp == NULL) {
1701 				sx_sunlock(&proctree_lock);
1702 				return (ESRCH);
1703 			}
1704 		}
1705 		sx_sunlock(&proctree_lock);
1706 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1707 			PROC_LOCK(p);
1708 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1709 			    p->p_state == PRS_NEW) {
1710 				PROC_UNLOCK(p);
1711 				continue;
1712 			}
1713 			err = p_cansignal(td, p, sig);
1714 			if (err == 0) {
1715 				if (sig)
1716 					pksignal(p, sig, ksi);
1717 				ret = err;
1718 			}
1719 			else if (ret == ESRCH)
1720 				ret = err;
1721 			PROC_UNLOCK(p);
1722 		}
1723 		PGRP_UNLOCK(pgrp);
1724 	}
1725 	return (ret);
1726 }
1727 
1728 #ifndef _SYS_SYSPROTO_H_
1729 struct kill_args {
1730 	int	pid;
1731 	int	signum;
1732 };
1733 #endif
1734 /* ARGSUSED */
1735 int
1736 sys_kill(struct thread *td, struct kill_args *uap)
1737 {
1738 	ksiginfo_t ksi;
1739 	struct proc *p;
1740 	int error;
1741 
1742 	/*
1743 	 * A process in capability mode can send signals only to himself.
1744 	 * The main rationale behind this is that abort(3) is implemented as
1745 	 * kill(getpid(), SIGABRT).
1746 	 */
1747 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1748 		return (ECAPMODE);
1749 
1750 	AUDIT_ARG_SIGNUM(uap->signum);
1751 	AUDIT_ARG_PID(uap->pid);
1752 	if ((u_int)uap->signum > _SIG_MAXSIG)
1753 		return (EINVAL);
1754 
1755 	ksiginfo_init(&ksi);
1756 	ksi.ksi_signo = uap->signum;
1757 	ksi.ksi_code = SI_USER;
1758 	ksi.ksi_pid = td->td_proc->p_pid;
1759 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1760 
1761 	if (uap->pid > 0) {
1762 		/* kill single process */
1763 		if ((p = pfind_any(uap->pid)) == NULL)
1764 			return (ESRCH);
1765 		AUDIT_ARG_PROCESS(p);
1766 		error = p_cansignal(td, p, uap->signum);
1767 		if (error == 0 && uap->signum)
1768 			pksignal(p, uap->signum, &ksi);
1769 		PROC_UNLOCK(p);
1770 		return (error);
1771 	}
1772 	switch (uap->pid) {
1773 	case -1:		/* broadcast signal */
1774 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1775 	case 0:			/* signal own process group */
1776 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1777 	default:		/* negative explicit process group */
1778 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1779 	}
1780 	/* NOTREACHED */
1781 }
1782 
1783 int
1784 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1785 {
1786 	struct proc *p;
1787 	int error;
1788 
1789 	AUDIT_ARG_SIGNUM(uap->signum);
1790 	AUDIT_ARG_FD(uap->fd);
1791 	if ((u_int)uap->signum > _SIG_MAXSIG)
1792 		return (EINVAL);
1793 
1794 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1795 	if (error)
1796 		return (error);
1797 	AUDIT_ARG_PROCESS(p);
1798 	error = p_cansignal(td, p, uap->signum);
1799 	if (error == 0 && uap->signum)
1800 		kern_psignal(p, uap->signum);
1801 	PROC_UNLOCK(p);
1802 	return (error);
1803 }
1804 
1805 #if defined(COMPAT_43)
1806 #ifndef _SYS_SYSPROTO_H_
1807 struct okillpg_args {
1808 	int	pgid;
1809 	int	signum;
1810 };
1811 #endif
1812 /* ARGSUSED */
1813 int
1814 okillpg(struct thread *td, struct okillpg_args *uap)
1815 {
1816 	ksiginfo_t ksi;
1817 
1818 	AUDIT_ARG_SIGNUM(uap->signum);
1819 	AUDIT_ARG_PID(uap->pgid);
1820 	if ((u_int)uap->signum > _SIG_MAXSIG)
1821 		return (EINVAL);
1822 
1823 	ksiginfo_init(&ksi);
1824 	ksi.ksi_signo = uap->signum;
1825 	ksi.ksi_code = SI_USER;
1826 	ksi.ksi_pid = td->td_proc->p_pid;
1827 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1828 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1829 }
1830 #endif /* COMPAT_43 */
1831 
1832 #ifndef _SYS_SYSPROTO_H_
1833 struct sigqueue_args {
1834 	pid_t pid;
1835 	int signum;
1836 	/* union sigval */ void *value;
1837 };
1838 #endif
1839 int
1840 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1841 {
1842 	union sigval sv;
1843 
1844 	sv.sival_ptr = uap->value;
1845 
1846 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1847 }
1848 
1849 int
1850 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1851 {
1852 	ksiginfo_t ksi;
1853 	struct proc *p;
1854 	int error;
1855 
1856 	if ((u_int)signum > _SIG_MAXSIG)
1857 		return (EINVAL);
1858 
1859 	/*
1860 	 * Specification says sigqueue can only send signal to
1861 	 * single process.
1862 	 */
1863 	if (pid <= 0)
1864 		return (EINVAL);
1865 
1866 	if ((p = pfind_any(pid)) == NULL)
1867 		return (ESRCH);
1868 	error = p_cansignal(td, p, signum);
1869 	if (error == 0 && signum != 0) {
1870 		ksiginfo_init(&ksi);
1871 		ksi.ksi_flags = KSI_SIGQ;
1872 		ksi.ksi_signo = signum;
1873 		ksi.ksi_code = SI_QUEUE;
1874 		ksi.ksi_pid = td->td_proc->p_pid;
1875 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1876 		ksi.ksi_value = *value;
1877 		error = pksignal(p, ksi.ksi_signo, &ksi);
1878 	}
1879 	PROC_UNLOCK(p);
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Send a signal to a process group.
1885  */
1886 void
1887 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1888 {
1889 	struct pgrp *pgrp;
1890 
1891 	if (pgid != 0) {
1892 		sx_slock(&proctree_lock);
1893 		pgrp = pgfind(pgid);
1894 		sx_sunlock(&proctree_lock);
1895 		if (pgrp != NULL) {
1896 			pgsignal(pgrp, sig, 0, ksi);
1897 			PGRP_UNLOCK(pgrp);
1898 		}
1899 	}
1900 }
1901 
1902 /*
1903  * Send a signal to a process group.  If checktty is 1,
1904  * limit to members which have a controlling terminal.
1905  */
1906 void
1907 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1908 {
1909 	struct proc *p;
1910 
1911 	if (pgrp) {
1912 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1913 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1914 			PROC_LOCK(p);
1915 			if (p->p_state == PRS_NORMAL &&
1916 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1917 				pksignal(p, sig, ksi);
1918 			PROC_UNLOCK(p);
1919 		}
1920 	}
1921 }
1922 
1923 
1924 /*
1925  * Recalculate the signal mask and reset the signal disposition after
1926  * usermode frame for delivery is formed.  Should be called after
1927  * mach-specific routine, because sysent->sv_sendsig() needs correct
1928  * ps_siginfo and signal mask.
1929  */
1930 static void
1931 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1932 {
1933 	sigset_t mask;
1934 
1935 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1936 	td->td_ru.ru_nsignals++;
1937 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1938 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1939 		SIGADDSET(mask, sig);
1940 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1941 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1942 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1943 		sigdflt(ps, sig);
1944 }
1945 
1946 
1947 /*
1948  * Send a signal caused by a trap to the current thread.  If it will be
1949  * caught immediately, deliver it with correct code.  Otherwise, post it
1950  * normally.
1951  */
1952 void
1953 trapsignal(struct thread *td, ksiginfo_t *ksi)
1954 {
1955 	struct sigacts *ps;
1956 	struct proc *p;
1957 	int sig;
1958 	int code;
1959 
1960 	p = td->td_proc;
1961 	sig = ksi->ksi_signo;
1962 	code = ksi->ksi_code;
1963 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1964 
1965 	PROC_LOCK(p);
1966 	ps = p->p_sigacts;
1967 	mtx_lock(&ps->ps_mtx);
1968 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1969 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1970 #ifdef KTRACE
1971 		if (KTRPOINT(curthread, KTR_PSIG))
1972 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1973 			    &td->td_sigmask, code);
1974 #endif
1975 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1976 				ksi, &td->td_sigmask);
1977 		postsig_done(sig, td, ps);
1978 		mtx_unlock(&ps->ps_mtx);
1979 	} else {
1980 		/*
1981 		 * Avoid a possible infinite loop if the thread
1982 		 * masking the signal or process is ignoring the
1983 		 * signal.
1984 		 */
1985 		if (kern_forcesigexit &&
1986 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1987 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1988 			SIGDELSET(td->td_sigmask, sig);
1989 			SIGDELSET(ps->ps_sigcatch, sig);
1990 			SIGDELSET(ps->ps_sigignore, sig);
1991 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1992 		}
1993 		mtx_unlock(&ps->ps_mtx);
1994 		p->p_code = code;	/* XXX for core dump/debugger */
1995 		p->p_sig = sig;		/* XXX to verify code */
1996 		tdsendsignal(p, td, sig, ksi);
1997 	}
1998 	PROC_UNLOCK(p);
1999 }
2000 
2001 static struct thread *
2002 sigtd(struct proc *p, int sig, int prop)
2003 {
2004 	struct thread *td, *signal_td;
2005 
2006 	PROC_LOCK_ASSERT(p, MA_OWNED);
2007 
2008 	/*
2009 	 * Check if current thread can handle the signal without
2010 	 * switching context to another thread.
2011 	 */
2012 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2013 		return (curthread);
2014 	signal_td = NULL;
2015 	FOREACH_THREAD_IN_PROC(p, td) {
2016 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2017 			signal_td = td;
2018 			break;
2019 		}
2020 	}
2021 	if (signal_td == NULL)
2022 		signal_td = FIRST_THREAD_IN_PROC(p);
2023 	return (signal_td);
2024 }
2025 
2026 /*
2027  * Send the signal to the process.  If the signal has an action, the action
2028  * is usually performed by the target process rather than the caller; we add
2029  * the signal to the set of pending signals for the process.
2030  *
2031  * Exceptions:
2032  *   o When a stop signal is sent to a sleeping process that takes the
2033  *     default action, the process is stopped without awakening it.
2034  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2035  *     regardless of the signal action (eg, blocked or ignored).
2036  *
2037  * Other ignored signals are discarded immediately.
2038  *
2039  * NB: This function may be entered from the debugger via the "kill" DDB
2040  * command.  There is little that can be done to mitigate the possibly messy
2041  * side effects of this unwise possibility.
2042  */
2043 void
2044 kern_psignal(struct proc *p, int sig)
2045 {
2046 	ksiginfo_t ksi;
2047 
2048 	ksiginfo_init(&ksi);
2049 	ksi.ksi_signo = sig;
2050 	ksi.ksi_code = SI_KERNEL;
2051 	(void) tdsendsignal(p, NULL, sig, &ksi);
2052 }
2053 
2054 int
2055 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2056 {
2057 
2058 	return (tdsendsignal(p, NULL, sig, ksi));
2059 }
2060 
2061 /* Utility function for finding a thread to send signal event to. */
2062 int
2063 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2064 {
2065 	struct thread *td;
2066 
2067 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2068 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2069 		if (td == NULL)
2070 			return (ESRCH);
2071 		*ttd = td;
2072 	} else {
2073 		*ttd = NULL;
2074 		PROC_LOCK(p);
2075 	}
2076 	return (0);
2077 }
2078 
2079 void
2080 tdsignal(struct thread *td, int sig)
2081 {
2082 	ksiginfo_t ksi;
2083 
2084 	ksiginfo_init(&ksi);
2085 	ksi.ksi_signo = sig;
2086 	ksi.ksi_code = SI_KERNEL;
2087 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2088 }
2089 
2090 void
2091 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2092 {
2093 
2094 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2095 }
2096 
2097 int
2098 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2099 {
2100 	sig_t action;
2101 	sigqueue_t *sigqueue;
2102 	int prop;
2103 	struct sigacts *ps;
2104 	int intrval;
2105 	int ret = 0;
2106 	int wakeup_swapper;
2107 
2108 	MPASS(td == NULL || p == td->td_proc);
2109 	PROC_LOCK_ASSERT(p, MA_OWNED);
2110 
2111 	if (!_SIG_VALID(sig))
2112 		panic("%s(): invalid signal %d", __func__, sig);
2113 
2114 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2115 
2116 	/*
2117 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2118 	 */
2119 	if (p->p_state == PRS_ZOMBIE) {
2120 		if (ksi && (ksi->ksi_flags & KSI_INS))
2121 			ksiginfo_tryfree(ksi);
2122 		return (ret);
2123 	}
2124 
2125 	ps = p->p_sigacts;
2126 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2127 	prop = sigprop(sig);
2128 
2129 	if (td == NULL) {
2130 		td = sigtd(p, sig, prop);
2131 		sigqueue = &p->p_sigqueue;
2132 	} else
2133 		sigqueue = &td->td_sigqueue;
2134 
2135 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2136 
2137 	/*
2138 	 * If the signal is being ignored,
2139 	 * then we forget about it immediately.
2140 	 * (Note: we don't set SIGCONT in ps_sigignore,
2141 	 * and if it is set to SIG_IGN,
2142 	 * action will be SIG_DFL here.)
2143 	 */
2144 	mtx_lock(&ps->ps_mtx);
2145 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2146 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2147 
2148 		mtx_unlock(&ps->ps_mtx);
2149 		if (ksi && (ksi->ksi_flags & KSI_INS))
2150 			ksiginfo_tryfree(ksi);
2151 		return (ret);
2152 	}
2153 	if (SIGISMEMBER(td->td_sigmask, sig))
2154 		action = SIG_HOLD;
2155 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2156 		action = SIG_CATCH;
2157 	else
2158 		action = SIG_DFL;
2159 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2160 		intrval = EINTR;
2161 	else
2162 		intrval = ERESTART;
2163 	mtx_unlock(&ps->ps_mtx);
2164 
2165 	if (prop & SIGPROP_CONT)
2166 		sigqueue_delete_stopmask_proc(p);
2167 	else if (prop & SIGPROP_STOP) {
2168 		/*
2169 		 * If sending a tty stop signal to a member of an orphaned
2170 		 * process group, discard the signal here if the action
2171 		 * is default; don't stop the process below if sleeping,
2172 		 * and don't clear any pending SIGCONT.
2173 		 */
2174 		if ((prop & SIGPROP_TTYSTOP) &&
2175 		    (p->p_pgrp->pg_jobc == 0) &&
2176 		    (action == SIG_DFL)) {
2177 			if (ksi && (ksi->ksi_flags & KSI_INS))
2178 				ksiginfo_tryfree(ksi);
2179 			return (ret);
2180 		}
2181 		sigqueue_delete_proc(p, SIGCONT);
2182 		if (p->p_flag & P_CONTINUED) {
2183 			p->p_flag &= ~P_CONTINUED;
2184 			PROC_LOCK(p->p_pptr);
2185 			sigqueue_take(p->p_ksi);
2186 			PROC_UNLOCK(p->p_pptr);
2187 		}
2188 	}
2189 
2190 	ret = sigqueue_add(sigqueue, sig, ksi);
2191 	if (ret != 0)
2192 		return (ret);
2193 	signotify(td);
2194 	/*
2195 	 * Defer further processing for signals which are held,
2196 	 * except that stopped processes must be continued by SIGCONT.
2197 	 */
2198 	if (action == SIG_HOLD &&
2199 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2200 		return (ret);
2201 
2202 	/* SIGKILL: Remove procfs STOPEVENTs. */
2203 	if (sig == SIGKILL) {
2204 		/* from procfs_ioctl.c: PIOCBIC */
2205 		p->p_stops = 0;
2206 		/* from procfs_ioctl.c: PIOCCONT */
2207 		p->p_step = 0;
2208 		wakeup(&p->p_step);
2209 	}
2210 	/*
2211 	 * Some signals have a process-wide effect and a per-thread
2212 	 * component.  Most processing occurs when the process next
2213 	 * tries to cross the user boundary, however there are some
2214 	 * times when processing needs to be done immediately, such as
2215 	 * waking up threads so that they can cross the user boundary.
2216 	 * We try to do the per-process part here.
2217 	 */
2218 	if (P_SHOULDSTOP(p)) {
2219 		KASSERT(!(p->p_flag & P_WEXIT),
2220 		    ("signal to stopped but exiting process"));
2221 		if (sig == SIGKILL) {
2222 			/*
2223 			 * If traced process is already stopped,
2224 			 * then no further action is necessary.
2225 			 */
2226 			if (p->p_flag & P_TRACED)
2227 				goto out;
2228 			/*
2229 			 * SIGKILL sets process running.
2230 			 * It will die elsewhere.
2231 			 * All threads must be restarted.
2232 			 */
2233 			p->p_flag &= ~P_STOPPED_SIG;
2234 			goto runfast;
2235 		}
2236 
2237 		if (prop & SIGPROP_CONT) {
2238 			/*
2239 			 * If traced process is already stopped,
2240 			 * then no further action is necessary.
2241 			 */
2242 			if (p->p_flag & P_TRACED)
2243 				goto out;
2244 			/*
2245 			 * If SIGCONT is default (or ignored), we continue the
2246 			 * process but don't leave the signal in sigqueue as
2247 			 * it has no further action.  If SIGCONT is held, we
2248 			 * continue the process and leave the signal in
2249 			 * sigqueue.  If the process catches SIGCONT, let it
2250 			 * handle the signal itself.  If it isn't waiting on
2251 			 * an event, it goes back to run state.
2252 			 * Otherwise, process goes back to sleep state.
2253 			 */
2254 			p->p_flag &= ~P_STOPPED_SIG;
2255 			PROC_SLOCK(p);
2256 			if (p->p_numthreads == p->p_suspcount) {
2257 				PROC_SUNLOCK(p);
2258 				p->p_flag |= P_CONTINUED;
2259 				p->p_xsig = SIGCONT;
2260 				PROC_LOCK(p->p_pptr);
2261 				childproc_continued(p);
2262 				PROC_UNLOCK(p->p_pptr);
2263 				PROC_SLOCK(p);
2264 			}
2265 			if (action == SIG_DFL) {
2266 				thread_unsuspend(p);
2267 				PROC_SUNLOCK(p);
2268 				sigqueue_delete(sigqueue, sig);
2269 				goto out;
2270 			}
2271 			if (action == SIG_CATCH) {
2272 				/*
2273 				 * The process wants to catch it so it needs
2274 				 * to run at least one thread, but which one?
2275 				 */
2276 				PROC_SUNLOCK(p);
2277 				goto runfast;
2278 			}
2279 			/*
2280 			 * The signal is not ignored or caught.
2281 			 */
2282 			thread_unsuspend(p);
2283 			PROC_SUNLOCK(p);
2284 			goto out;
2285 		}
2286 
2287 		if (prop & SIGPROP_STOP) {
2288 			/*
2289 			 * If traced process is already stopped,
2290 			 * then no further action is necessary.
2291 			 */
2292 			if (p->p_flag & P_TRACED)
2293 				goto out;
2294 			/*
2295 			 * Already stopped, don't need to stop again
2296 			 * (If we did the shell could get confused).
2297 			 * Just make sure the signal STOP bit set.
2298 			 */
2299 			p->p_flag |= P_STOPPED_SIG;
2300 			sigqueue_delete(sigqueue, sig);
2301 			goto out;
2302 		}
2303 
2304 		/*
2305 		 * All other kinds of signals:
2306 		 * If a thread is sleeping interruptibly, simulate a
2307 		 * wakeup so that when it is continued it will be made
2308 		 * runnable and can look at the signal.  However, don't make
2309 		 * the PROCESS runnable, leave it stopped.
2310 		 * It may run a bit until it hits a thread_suspend_check().
2311 		 */
2312 		wakeup_swapper = 0;
2313 		PROC_SLOCK(p);
2314 		thread_lock(td);
2315 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2316 			wakeup_swapper = sleepq_abort(td, intrval);
2317 		thread_unlock(td);
2318 		PROC_SUNLOCK(p);
2319 		if (wakeup_swapper)
2320 			kick_proc0();
2321 		goto out;
2322 		/*
2323 		 * Mutexes are short lived. Threads waiting on them will
2324 		 * hit thread_suspend_check() soon.
2325 		 */
2326 	} else if (p->p_state == PRS_NORMAL) {
2327 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2328 			tdsigwakeup(td, sig, action, intrval);
2329 			goto out;
2330 		}
2331 
2332 		MPASS(action == SIG_DFL);
2333 
2334 		if (prop & SIGPROP_STOP) {
2335 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2336 				goto out;
2337 			p->p_flag |= P_STOPPED_SIG;
2338 			p->p_xsig = sig;
2339 			PROC_SLOCK(p);
2340 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2341 			if (p->p_numthreads == p->p_suspcount) {
2342 				/*
2343 				 * only thread sending signal to another
2344 				 * process can reach here, if thread is sending
2345 				 * signal to its process, because thread does
2346 				 * not suspend itself here, p_numthreads
2347 				 * should never be equal to p_suspcount.
2348 				 */
2349 				thread_stopped(p);
2350 				PROC_SUNLOCK(p);
2351 				sigqueue_delete_proc(p, p->p_xsig);
2352 			} else
2353 				PROC_SUNLOCK(p);
2354 			if (wakeup_swapper)
2355 				kick_proc0();
2356 			goto out;
2357 		}
2358 	} else {
2359 		/* Not in "NORMAL" state. discard the signal. */
2360 		sigqueue_delete(sigqueue, sig);
2361 		goto out;
2362 	}
2363 
2364 	/*
2365 	 * The process is not stopped so we need to apply the signal to all the
2366 	 * running threads.
2367 	 */
2368 runfast:
2369 	tdsigwakeup(td, sig, action, intrval);
2370 	PROC_SLOCK(p);
2371 	thread_unsuspend(p);
2372 	PROC_SUNLOCK(p);
2373 out:
2374 	/* If we jump here, proc slock should not be owned. */
2375 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2376 	return (ret);
2377 }
2378 
2379 /*
2380  * The force of a signal has been directed against a single
2381  * thread.  We need to see what we can do about knocking it
2382  * out of any sleep it may be in etc.
2383  */
2384 static void
2385 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2386 {
2387 	struct proc *p = td->td_proc;
2388 	int prop;
2389 	int wakeup_swapper;
2390 
2391 	wakeup_swapper = 0;
2392 	PROC_LOCK_ASSERT(p, MA_OWNED);
2393 	prop = sigprop(sig);
2394 
2395 	PROC_SLOCK(p);
2396 	thread_lock(td);
2397 	/*
2398 	 * Bring the priority of a thread up if we want it to get
2399 	 * killed in this lifetime.  Be careful to avoid bumping the
2400 	 * priority of the idle thread, since we still allow to signal
2401 	 * kernel processes.
2402 	 */
2403 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2404 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2405 		sched_prio(td, PUSER);
2406 	if (TD_ON_SLEEPQ(td)) {
2407 		/*
2408 		 * If thread is sleeping uninterruptibly
2409 		 * we can't interrupt the sleep... the signal will
2410 		 * be noticed when the process returns through
2411 		 * trap() or syscall().
2412 		 */
2413 		if ((td->td_flags & TDF_SINTR) == 0)
2414 			goto out;
2415 		/*
2416 		 * If SIGCONT is default (or ignored) and process is
2417 		 * asleep, we are finished; the process should not
2418 		 * be awakened.
2419 		 */
2420 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2421 			thread_unlock(td);
2422 			PROC_SUNLOCK(p);
2423 			sigqueue_delete(&p->p_sigqueue, sig);
2424 			/*
2425 			 * It may be on either list in this state.
2426 			 * Remove from both for now.
2427 			 */
2428 			sigqueue_delete(&td->td_sigqueue, sig);
2429 			return;
2430 		}
2431 
2432 		/*
2433 		 * Don't awaken a sleeping thread for SIGSTOP if the
2434 		 * STOP signal is deferred.
2435 		 */
2436 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2437 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2438 			goto out;
2439 
2440 		/*
2441 		 * Give low priority threads a better chance to run.
2442 		 */
2443 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2444 			sched_prio(td, PUSER);
2445 
2446 		wakeup_swapper = sleepq_abort(td, intrval);
2447 	} else {
2448 		/*
2449 		 * Other states do nothing with the signal immediately,
2450 		 * other than kicking ourselves if we are running.
2451 		 * It will either never be noticed, or noticed very soon.
2452 		 */
2453 #ifdef SMP
2454 		if (TD_IS_RUNNING(td) && td != curthread)
2455 			forward_signal(td);
2456 #endif
2457 	}
2458 out:
2459 	PROC_SUNLOCK(p);
2460 	thread_unlock(td);
2461 	if (wakeup_swapper)
2462 		kick_proc0();
2463 }
2464 
2465 static int
2466 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2467 {
2468 	struct thread *td2;
2469 	int wakeup_swapper;
2470 
2471 	PROC_LOCK_ASSERT(p, MA_OWNED);
2472 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2473 	MPASS(sending || td == curthread);
2474 
2475 	wakeup_swapper = 0;
2476 	FOREACH_THREAD_IN_PROC(p, td2) {
2477 		thread_lock(td2);
2478 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2479 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2480 		    (td2->td_flags & TDF_SINTR)) {
2481 			if (td2->td_flags & TDF_SBDRY) {
2482 				/*
2483 				 * Once a thread is asleep with
2484 				 * TDF_SBDRY and without TDF_SERESTART
2485 				 * or TDF_SEINTR set, it should never
2486 				 * become suspended due to this check.
2487 				 */
2488 				KASSERT(!TD_IS_SUSPENDED(td2),
2489 				    ("thread with deferred stops suspended"));
2490 				if (TD_SBDRY_INTR(td2))
2491 					wakeup_swapper |= sleepq_abort(td2,
2492 					    TD_SBDRY_ERRNO(td2));
2493 			} else if (!TD_IS_SUSPENDED(td2)) {
2494 				thread_suspend_one(td2);
2495 			}
2496 		} else if (!TD_IS_SUSPENDED(td2)) {
2497 			if (sending || td != td2)
2498 				td2->td_flags |= TDF_ASTPENDING;
2499 #ifdef SMP
2500 			if (TD_IS_RUNNING(td2) && td2 != td)
2501 				forward_signal(td2);
2502 #endif
2503 		}
2504 		thread_unlock(td2);
2505 	}
2506 	return (wakeup_swapper);
2507 }
2508 
2509 /*
2510  * Stop the process for an event deemed interesting to the debugger. If si is
2511  * non-NULL, this is a signal exchange; the new signal requested by the
2512  * debugger will be returned for handling. If si is NULL, this is some other
2513  * type of interesting event. The debugger may request a signal be delivered in
2514  * that case as well, however it will be deferred until it can be handled.
2515  */
2516 int
2517 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2518 {
2519 	struct proc *p = td->td_proc;
2520 	struct thread *td2;
2521 	ksiginfo_t ksi;
2522 	int prop;
2523 
2524 	PROC_LOCK_ASSERT(p, MA_OWNED);
2525 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2526 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2527 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2528 
2529 	td->td_xsig = sig;
2530 
2531 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2532 		td->td_dbgflags |= TDB_XSIG;
2533 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2534 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2535 		PROC_SLOCK(p);
2536 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2537 			if (P_KILLED(p)) {
2538 				/*
2539 				 * Ensure that, if we've been PT_KILLed, the
2540 				 * exit status reflects that. Another thread
2541 				 * may also be in ptracestop(), having just
2542 				 * received the SIGKILL, but this thread was
2543 				 * unsuspended first.
2544 				 */
2545 				td->td_dbgflags &= ~TDB_XSIG;
2546 				td->td_xsig = SIGKILL;
2547 				p->p_ptevents = 0;
2548 				break;
2549 			}
2550 			if (p->p_flag & P_SINGLE_EXIT &&
2551 			    !(td->td_dbgflags & TDB_EXIT)) {
2552 				/*
2553 				 * Ignore ptrace stops except for thread exit
2554 				 * events when the process exits.
2555 				 */
2556 				td->td_dbgflags &= ~TDB_XSIG;
2557 				PROC_SUNLOCK(p);
2558 				return (0);
2559 			}
2560 
2561 			/*
2562 			 * Make wait(2) work.  Ensure that right after the
2563 			 * attach, the thread which was decided to become the
2564 			 * leader of attach gets reported to the waiter.
2565 			 * Otherwise, just avoid overwriting another thread's
2566 			 * assignment to p_xthread.  If another thread has
2567 			 * already set p_xthread, the current thread will get
2568 			 * a chance to report itself upon the next iteration.
2569 			 */
2570 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2571 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2572 			    p->p_xthread == NULL)) {
2573 				p->p_xsig = sig;
2574 				p->p_xthread = td;
2575 				td->td_dbgflags &= ~TDB_FSTP;
2576 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2577 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2578 				sig_suspend_threads(td, p, 0);
2579 			}
2580 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2581 				td->td_dbgflags &= ~TDB_STOPATFORK;
2582 			}
2583 stopme:
2584 			thread_suspend_switch(td, p);
2585 			if (p->p_xthread == td)
2586 				p->p_xthread = NULL;
2587 			if (!(p->p_flag & P_TRACED))
2588 				break;
2589 			if (td->td_dbgflags & TDB_SUSPEND) {
2590 				if (p->p_flag & P_SINGLE_EXIT)
2591 					break;
2592 				goto stopme;
2593 			}
2594 		}
2595 		PROC_SUNLOCK(p);
2596 	}
2597 
2598 	if (si != NULL && sig == td->td_xsig) {
2599 		/* Parent wants us to take the original signal unchanged. */
2600 		si->ksi_flags |= KSI_HEAD;
2601 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2602 			si->ksi_signo = 0;
2603 	} else if (td->td_xsig != 0) {
2604 		/*
2605 		 * If parent wants us to take a new signal, then it will leave
2606 		 * it in td->td_xsig; otherwise we just look for signals again.
2607 		 */
2608 		ksiginfo_init(&ksi);
2609 		ksi.ksi_signo = td->td_xsig;
2610 		ksi.ksi_flags |= KSI_PTRACE;
2611 		prop = sigprop(td->td_xsig);
2612 		td2 = sigtd(p, td->td_xsig, prop);
2613 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2614 		if (td != td2)
2615 			return (0);
2616 	}
2617 
2618 	return (td->td_xsig);
2619 }
2620 
2621 static void
2622 reschedule_signals(struct proc *p, sigset_t block, int flags)
2623 {
2624 	struct sigacts *ps;
2625 	struct thread *td;
2626 	int sig;
2627 
2628 	PROC_LOCK_ASSERT(p, MA_OWNED);
2629 	ps = p->p_sigacts;
2630 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2631 	    MA_OWNED : MA_NOTOWNED);
2632 	if (SIGISEMPTY(p->p_siglist))
2633 		return;
2634 	SIGSETAND(block, p->p_siglist);
2635 	while ((sig = sig_ffs(&block)) != 0) {
2636 		SIGDELSET(block, sig);
2637 		td = sigtd(p, sig, 0);
2638 		signotify(td);
2639 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2640 			mtx_lock(&ps->ps_mtx);
2641 		if (p->p_flag & P_TRACED ||
2642 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2643 		    !SIGISMEMBER(td->td_sigmask, sig)))
2644 			tdsigwakeup(td, sig, SIG_CATCH,
2645 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2646 			     ERESTART));
2647 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2648 			mtx_unlock(&ps->ps_mtx);
2649 	}
2650 }
2651 
2652 void
2653 tdsigcleanup(struct thread *td)
2654 {
2655 	struct proc *p;
2656 	sigset_t unblocked;
2657 
2658 	p = td->td_proc;
2659 	PROC_LOCK_ASSERT(p, MA_OWNED);
2660 
2661 	sigqueue_flush(&td->td_sigqueue);
2662 	if (p->p_numthreads == 1)
2663 		return;
2664 
2665 	/*
2666 	 * Since we cannot handle signals, notify signal post code
2667 	 * about this by filling the sigmask.
2668 	 *
2669 	 * Also, if needed, wake up thread(s) that do not block the
2670 	 * same signals as the exiting thread, since the thread might
2671 	 * have been selected for delivery and woken up.
2672 	 */
2673 	SIGFILLSET(unblocked);
2674 	SIGSETNAND(unblocked, td->td_sigmask);
2675 	SIGFILLSET(td->td_sigmask);
2676 	reschedule_signals(p, unblocked, 0);
2677 
2678 }
2679 
2680 static int
2681 sigdeferstop_curr_flags(int cflags)
2682 {
2683 
2684 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2685 	    (cflags & TDF_SBDRY) != 0);
2686 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2687 }
2688 
2689 /*
2690  * Defer the delivery of SIGSTOP for the current thread, according to
2691  * the requested mode.  Returns previous flags, which must be restored
2692  * by sigallowstop().
2693  *
2694  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2695  * cleared by the current thread, which allow the lock-less read-only
2696  * accesses below.
2697  */
2698 int
2699 sigdeferstop_impl(int mode)
2700 {
2701 	struct thread *td;
2702 	int cflags, nflags;
2703 
2704 	td = curthread;
2705 	cflags = sigdeferstop_curr_flags(td->td_flags);
2706 	switch (mode) {
2707 	case SIGDEFERSTOP_NOP:
2708 		nflags = cflags;
2709 		break;
2710 	case SIGDEFERSTOP_OFF:
2711 		nflags = 0;
2712 		break;
2713 	case SIGDEFERSTOP_SILENT:
2714 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2715 		break;
2716 	case SIGDEFERSTOP_EINTR:
2717 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2718 		break;
2719 	case SIGDEFERSTOP_ERESTART:
2720 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2721 		break;
2722 	default:
2723 		panic("sigdeferstop: invalid mode %x", mode);
2724 		break;
2725 	}
2726 	if (cflags == nflags)
2727 		return (SIGDEFERSTOP_VAL_NCHG);
2728 	thread_lock(td);
2729 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2730 	thread_unlock(td);
2731 	return (cflags);
2732 }
2733 
2734 /*
2735  * Restores the STOP handling mode, typically permitting the delivery
2736  * of SIGSTOP for the current thread.  This does not immediately
2737  * suspend if a stop was posted.  Instead, the thread will suspend
2738  * either via ast() or a subsequent interruptible sleep.
2739  */
2740 void
2741 sigallowstop_impl(int prev)
2742 {
2743 	struct thread *td;
2744 	int cflags;
2745 
2746 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2747 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2748 	    ("sigallowstop: incorrect previous mode %x", prev));
2749 	td = curthread;
2750 	cflags = sigdeferstop_curr_flags(td->td_flags);
2751 	if (cflags != prev) {
2752 		thread_lock(td);
2753 		td->td_flags = (td->td_flags & ~cflags) | prev;
2754 		thread_unlock(td);
2755 	}
2756 }
2757 
2758 /*
2759  * If the current process has received a signal (should be caught or cause
2760  * termination, should interrupt current syscall), return the signal number.
2761  * Stop signals with default action are processed immediately, then cleared;
2762  * they aren't returned.  This is checked after each entry to the system for
2763  * a syscall or trap (though this can usually be done without calling issignal
2764  * by checking the pending signal masks in cursig.) The normal call
2765  * sequence is
2766  *
2767  *	while (sig = cursig(curthread))
2768  *		postsig(sig);
2769  */
2770 static int
2771 issignal(struct thread *td)
2772 {
2773 	struct proc *p;
2774 	struct sigacts *ps;
2775 	struct sigqueue *queue;
2776 	sigset_t sigpending;
2777 	ksiginfo_t ksi;
2778 	int prop, sig, traced;
2779 
2780 	p = td->td_proc;
2781 	ps = p->p_sigacts;
2782 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2783 	PROC_LOCK_ASSERT(p, MA_OWNED);
2784 	for (;;) {
2785 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2786 
2787 		sigpending = td->td_sigqueue.sq_signals;
2788 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2789 		SIGSETNAND(sigpending, td->td_sigmask);
2790 
2791 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2792 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2793 			SIG_STOPSIGMASK(sigpending);
2794 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2795 			return (0);
2796 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2797 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2798 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2799 			/*
2800 			 * If debugger just attached, always consume
2801 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2802 			 * execute the debugger attach ritual in
2803 			 * order.
2804 			 */
2805 			sig = SIGSTOP;
2806 			td->td_dbgflags |= TDB_FSTP;
2807 		} else {
2808 			sig = sig_ffs(&sigpending);
2809 		}
2810 
2811 		if (p->p_stops & S_SIG) {
2812 			mtx_unlock(&ps->ps_mtx);
2813 			stopevent(p, S_SIG, sig);
2814 			mtx_lock(&ps->ps_mtx);
2815 		}
2816 
2817 		/*
2818 		 * We should see pending but ignored signals
2819 		 * only if P_TRACED was on when they were posted.
2820 		 */
2821 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2822 			sigqueue_delete(&td->td_sigqueue, sig);
2823 			sigqueue_delete(&p->p_sigqueue, sig);
2824 			continue;
2825 		}
2826 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2827 			/*
2828 			 * If traced, always stop.
2829 			 * Remove old signal from queue before the stop.
2830 			 * XXX shrug off debugger, it causes siginfo to
2831 			 * be thrown away.
2832 			 */
2833 			queue = &td->td_sigqueue;
2834 			ksiginfo_init(&ksi);
2835 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2836 				queue = &p->p_sigqueue;
2837 				sigqueue_get(queue, sig, &ksi);
2838 			}
2839 			td->td_si = ksi.ksi_info;
2840 
2841 			mtx_unlock(&ps->ps_mtx);
2842 			sig = ptracestop(td, sig, &ksi);
2843 			mtx_lock(&ps->ps_mtx);
2844 
2845 			/*
2846 			 * Keep looking if the debugger discarded or
2847 			 * replaced the signal.
2848 			 */
2849 			if (sig == 0)
2850 				continue;
2851 
2852 			/*
2853 			 * If the signal became masked, re-queue it.
2854 			 */
2855 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2856 				ksi.ksi_flags |= KSI_HEAD;
2857 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2858 				continue;
2859 			}
2860 
2861 			/*
2862 			 * If the traced bit got turned off, requeue
2863 			 * the signal and go back up to the top to
2864 			 * rescan signals.  This ensures that p_sig*
2865 			 * and p_sigact are consistent.
2866 			 */
2867 			if ((p->p_flag & P_TRACED) == 0) {
2868 				ksi.ksi_flags |= KSI_HEAD;
2869 				sigqueue_add(queue, sig, &ksi);
2870 				continue;
2871 			}
2872 		}
2873 
2874 		prop = sigprop(sig);
2875 
2876 		/*
2877 		 * Decide whether the signal should be returned.
2878 		 * Return the signal's number, or fall through
2879 		 * to clear it from the pending mask.
2880 		 */
2881 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2882 
2883 		case (intptr_t)SIG_DFL:
2884 			/*
2885 			 * Don't take default actions on system processes.
2886 			 */
2887 			if (p->p_pid <= 1) {
2888 #ifdef DIAGNOSTIC
2889 				/*
2890 				 * Are you sure you want to ignore SIGSEGV
2891 				 * in init? XXX
2892 				 */
2893 				printf("Process (pid %lu) got signal %d\n",
2894 					(u_long)p->p_pid, sig);
2895 #endif
2896 				break;		/* == ignore */
2897 			}
2898 			/*
2899 			 * If there is a pending stop signal to process with
2900 			 * default action, stop here, then clear the signal.
2901 			 * Traced or exiting processes should ignore stops.
2902 			 * Additionally, a member of an orphaned process group
2903 			 * should ignore tty stops.
2904 			 */
2905 			if (prop & SIGPROP_STOP) {
2906 				if (p->p_flag &
2907 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2908 				    (p->p_pgrp->pg_jobc == 0 &&
2909 				     prop & SIGPROP_TTYSTOP))
2910 					break;	/* == ignore */
2911 				if (TD_SBDRY_INTR(td)) {
2912 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2913 					    ("lost TDF_SBDRY"));
2914 					return (-1);
2915 				}
2916 				mtx_unlock(&ps->ps_mtx);
2917 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2918 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2919 				sigqueue_delete(&td->td_sigqueue, sig);
2920 				sigqueue_delete(&p->p_sigqueue, sig);
2921 				p->p_flag |= P_STOPPED_SIG;
2922 				p->p_xsig = sig;
2923 				PROC_SLOCK(p);
2924 				sig_suspend_threads(td, p, 0);
2925 				thread_suspend_switch(td, p);
2926 				PROC_SUNLOCK(p);
2927 				mtx_lock(&ps->ps_mtx);
2928 				goto next;
2929 			} else if (prop & SIGPROP_IGNORE) {
2930 				/*
2931 				 * Except for SIGCONT, shouldn't get here.
2932 				 * Default action is to ignore; drop it.
2933 				 */
2934 				break;		/* == ignore */
2935 			} else
2936 				return (sig);
2937 			/*NOTREACHED*/
2938 
2939 		case (intptr_t)SIG_IGN:
2940 			/*
2941 			 * Masking above should prevent us ever trying
2942 			 * to take action on an ignored signal other
2943 			 * than SIGCONT, unless process is traced.
2944 			 */
2945 			if ((prop & SIGPROP_CONT) == 0 &&
2946 			    (p->p_flag & P_TRACED) == 0)
2947 				printf("issignal\n");
2948 			break;		/* == ignore */
2949 
2950 		default:
2951 			/*
2952 			 * This signal has an action, let
2953 			 * postsig() process it.
2954 			 */
2955 			return (sig);
2956 		}
2957 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2958 		sigqueue_delete(&p->p_sigqueue, sig);
2959 next:;
2960 	}
2961 	/* NOTREACHED */
2962 }
2963 
2964 void
2965 thread_stopped(struct proc *p)
2966 {
2967 	int n;
2968 
2969 	PROC_LOCK_ASSERT(p, MA_OWNED);
2970 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2971 	n = p->p_suspcount;
2972 	if (p == curproc)
2973 		n++;
2974 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2975 		PROC_SUNLOCK(p);
2976 		p->p_flag &= ~P_WAITED;
2977 		PROC_LOCK(p->p_pptr);
2978 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2979 			CLD_TRAPPED : CLD_STOPPED);
2980 		PROC_UNLOCK(p->p_pptr);
2981 		PROC_SLOCK(p);
2982 	}
2983 }
2984 
2985 /*
2986  * Take the action for the specified signal
2987  * from the current set of pending signals.
2988  */
2989 int
2990 postsig(int sig)
2991 {
2992 	struct thread *td;
2993 	struct proc *p;
2994 	struct sigacts *ps;
2995 	sig_t action;
2996 	ksiginfo_t ksi;
2997 	sigset_t returnmask;
2998 
2999 	KASSERT(sig != 0, ("postsig"));
3000 
3001 	td = curthread;
3002 	p = td->td_proc;
3003 	PROC_LOCK_ASSERT(p, MA_OWNED);
3004 	ps = p->p_sigacts;
3005 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3006 	ksiginfo_init(&ksi);
3007 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3008 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3009 		return (0);
3010 	ksi.ksi_signo = sig;
3011 	if (ksi.ksi_code == SI_TIMER)
3012 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3013 	action = ps->ps_sigact[_SIG_IDX(sig)];
3014 #ifdef KTRACE
3015 	if (KTRPOINT(td, KTR_PSIG))
3016 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3017 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3018 #endif
3019 	if ((p->p_stops & S_SIG) != 0) {
3020 		mtx_unlock(&ps->ps_mtx);
3021 		stopevent(p, S_SIG, sig);
3022 		mtx_lock(&ps->ps_mtx);
3023 	}
3024 
3025 	if (action == SIG_DFL) {
3026 		/*
3027 		 * Default action, where the default is to kill
3028 		 * the process.  (Other cases were ignored above.)
3029 		 */
3030 		mtx_unlock(&ps->ps_mtx);
3031 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3032 		sigexit(td, sig);
3033 		/* NOTREACHED */
3034 	} else {
3035 		/*
3036 		 * If we get here, the signal must be caught.
3037 		 */
3038 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3039 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3040 		    ("postsig action: blocked sig %d", sig));
3041 
3042 		/*
3043 		 * Set the new mask value and also defer further
3044 		 * occurrences of this signal.
3045 		 *
3046 		 * Special case: user has done a sigsuspend.  Here the
3047 		 * current mask is not of interest, but rather the
3048 		 * mask from before the sigsuspend is what we want
3049 		 * restored after the signal processing is completed.
3050 		 */
3051 		if (td->td_pflags & TDP_OLDMASK) {
3052 			returnmask = td->td_oldsigmask;
3053 			td->td_pflags &= ~TDP_OLDMASK;
3054 		} else
3055 			returnmask = td->td_sigmask;
3056 
3057 		if (p->p_sig == sig) {
3058 			p->p_code = 0;
3059 			p->p_sig = 0;
3060 		}
3061 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3062 		postsig_done(sig, td, ps);
3063 	}
3064 	return (1);
3065 }
3066 
3067 /*
3068  * Kill the current process for stated reason.
3069  */
3070 void
3071 killproc(struct proc *p, char *why)
3072 {
3073 
3074 	PROC_LOCK_ASSERT(p, MA_OWNED);
3075 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3076 	    p->p_comm);
3077 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3078 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3079 	p->p_flag |= P_WKILLED;
3080 	kern_psignal(p, SIGKILL);
3081 }
3082 
3083 /*
3084  * Force the current process to exit with the specified signal, dumping core
3085  * if appropriate.  We bypass the normal tests for masked and caught signals,
3086  * allowing unrecoverable failures to terminate the process without changing
3087  * signal state.  Mark the accounting record with the signal termination.
3088  * If dumping core, save the signal number for the debugger.  Calls exit and
3089  * does not return.
3090  */
3091 void
3092 sigexit(struct thread *td, int sig)
3093 {
3094 	struct proc *p = td->td_proc;
3095 
3096 	PROC_LOCK_ASSERT(p, MA_OWNED);
3097 	p->p_acflag |= AXSIG;
3098 	/*
3099 	 * We must be single-threading to generate a core dump.  This
3100 	 * ensures that the registers in the core file are up-to-date.
3101 	 * Also, the ELF dump handler assumes that the thread list doesn't
3102 	 * change out from under it.
3103 	 *
3104 	 * XXX If another thread attempts to single-thread before us
3105 	 *     (e.g. via fork()), we won't get a dump at all.
3106 	 */
3107 	if ((sigprop(sig) & SIGPROP_CORE) &&
3108 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3109 		p->p_sig = sig;
3110 		/*
3111 		 * Log signals which would cause core dumps
3112 		 * (Log as LOG_INFO to appease those who don't want
3113 		 * these messages.)
3114 		 * XXX : Todo, as well as euid, write out ruid too
3115 		 * Note that coredump() drops proc lock.
3116 		 */
3117 		if (coredump(td) == 0)
3118 			sig |= WCOREFLAG;
3119 		if (kern_logsigexit)
3120 			log(LOG_INFO,
3121 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3122 			    p->p_pid, p->p_comm,
3123 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3124 			    sig &~ WCOREFLAG,
3125 			    sig & WCOREFLAG ? " (core dumped)" : "");
3126 	} else
3127 		PROC_UNLOCK(p);
3128 	exit1(td, 0, sig);
3129 	/* NOTREACHED */
3130 }
3131 
3132 /*
3133  * Send queued SIGCHLD to parent when child process's state
3134  * is changed.
3135  */
3136 static void
3137 sigparent(struct proc *p, int reason, int status)
3138 {
3139 	PROC_LOCK_ASSERT(p, MA_OWNED);
3140 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3141 
3142 	if (p->p_ksi != NULL) {
3143 		p->p_ksi->ksi_signo  = SIGCHLD;
3144 		p->p_ksi->ksi_code   = reason;
3145 		p->p_ksi->ksi_status = status;
3146 		p->p_ksi->ksi_pid    = p->p_pid;
3147 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3148 		if (KSI_ONQ(p->p_ksi))
3149 			return;
3150 	}
3151 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3152 }
3153 
3154 static void
3155 childproc_jobstate(struct proc *p, int reason, int sig)
3156 {
3157 	struct sigacts *ps;
3158 
3159 	PROC_LOCK_ASSERT(p, MA_OWNED);
3160 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3161 
3162 	/*
3163 	 * Wake up parent sleeping in kern_wait(), also send
3164 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3165 	 * that parent will awake, because parent may masked
3166 	 * the signal.
3167 	 */
3168 	p->p_pptr->p_flag |= P_STATCHILD;
3169 	wakeup(p->p_pptr);
3170 
3171 	ps = p->p_pptr->p_sigacts;
3172 	mtx_lock(&ps->ps_mtx);
3173 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3174 		mtx_unlock(&ps->ps_mtx);
3175 		sigparent(p, reason, sig);
3176 	} else
3177 		mtx_unlock(&ps->ps_mtx);
3178 }
3179 
3180 void
3181 childproc_stopped(struct proc *p, int reason)
3182 {
3183 
3184 	childproc_jobstate(p, reason, p->p_xsig);
3185 }
3186 
3187 void
3188 childproc_continued(struct proc *p)
3189 {
3190 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3191 }
3192 
3193 void
3194 childproc_exited(struct proc *p)
3195 {
3196 	int reason, status;
3197 
3198 	if (WCOREDUMP(p->p_xsig)) {
3199 		reason = CLD_DUMPED;
3200 		status = WTERMSIG(p->p_xsig);
3201 	} else if (WIFSIGNALED(p->p_xsig)) {
3202 		reason = CLD_KILLED;
3203 		status = WTERMSIG(p->p_xsig);
3204 	} else {
3205 		reason = CLD_EXITED;
3206 		status = p->p_xexit;
3207 	}
3208 	/*
3209 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3210 	 * done in exit1().
3211 	 */
3212 	sigparent(p, reason, status);
3213 }
3214 
3215 #define	MAX_NUM_CORE_FILES 100000
3216 #ifndef NUM_CORE_FILES
3217 #define	NUM_CORE_FILES 5
3218 #endif
3219 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3220 static int num_cores = NUM_CORE_FILES;
3221 
3222 static int
3223 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3224 {
3225 	int error;
3226 	int new_val;
3227 
3228 	new_val = num_cores;
3229 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3230 	if (error != 0 || req->newptr == NULL)
3231 		return (error);
3232 	if (new_val > MAX_NUM_CORE_FILES)
3233 		new_val = MAX_NUM_CORE_FILES;
3234 	if (new_val < 0)
3235 		new_val = 0;
3236 	num_cores = new_val;
3237 	return (0);
3238 }
3239 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3240 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3241 	    "Maximum number of generated process corefiles while using index format");
3242 
3243 #define	GZIP_SUFFIX	".gz"
3244 #define	ZSTD_SUFFIX	".zst"
3245 
3246 int compress_user_cores = 0;
3247 
3248 static int
3249 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3250 {
3251 	int error, val;
3252 
3253 	val = compress_user_cores;
3254 	error = sysctl_handle_int(oidp, &val, 0, req);
3255 	if (error != 0 || req->newptr == NULL)
3256 		return (error);
3257 	if (val != 0 && !compressor_avail(val))
3258 		return (EINVAL);
3259 	compress_user_cores = val;
3260 	return (error);
3261 }
3262 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3263     0, sizeof(int), sysctl_compress_user_cores, "I",
3264     "Enable compression of user corefiles ("
3265     __XSTRING(COMPRESS_GZIP) " = gzip, "
3266     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3267 
3268 int compress_user_cores_level = 6;
3269 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3270     &compress_user_cores_level, 0,
3271     "Corefile compression level");
3272 
3273 /*
3274  * Protect the access to corefilename[] by allproc_lock.
3275  */
3276 #define	corefilename_lock	allproc_lock
3277 
3278 static char corefilename[MAXPATHLEN] = {"%N.core"};
3279 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3280 
3281 static int
3282 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3283 {
3284 	int error;
3285 
3286 	sx_xlock(&corefilename_lock);
3287 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3288 	    req);
3289 	sx_xunlock(&corefilename_lock);
3290 
3291 	return (error);
3292 }
3293 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3294     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3295     "Process corefile name format string");
3296 
3297 static void
3298 vnode_close_locked(struct thread *td, struct vnode *vp)
3299 {
3300 
3301 	VOP_UNLOCK(vp, 0);
3302 	vn_close(vp, FWRITE, td->td_ucred, td);
3303 }
3304 
3305 /*
3306  * If the core format has a %I in it, then we need to check
3307  * for existing corefiles before defining a name.
3308  * To do this we iterate over 0..ncores to find a
3309  * non-existing core file name to use. If all core files are
3310  * already used we choose the oldest one.
3311  */
3312 static int
3313 corefile_open_last(struct thread *td, char *name, int indexpos,
3314     int indexlen, int ncores, struct vnode **vpp)
3315 {
3316 	struct vnode *oldvp, *nextvp, *vp;
3317 	struct vattr vattr;
3318 	struct nameidata nd;
3319 	int error, i, flags, oflags, cmode;
3320 	char ch;
3321 	struct timespec lasttime;
3322 
3323 	nextvp = oldvp = NULL;
3324 	cmode = S_IRUSR | S_IWUSR;
3325 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3326 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3327 
3328 	for (i = 0; i < ncores; i++) {
3329 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3330 
3331 		ch = name[indexpos + indexlen];
3332 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3333 		    i);
3334 		name[indexpos + indexlen] = ch;
3335 
3336 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3337 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3338 		    NULL);
3339 		if (error != 0)
3340 			break;
3341 
3342 		vp = nd.ni_vp;
3343 		NDFREE(&nd, NDF_ONLY_PNBUF);
3344 		if ((flags & O_CREAT) == O_CREAT) {
3345 			nextvp = vp;
3346 			break;
3347 		}
3348 
3349 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3350 		if (error != 0) {
3351 			vnode_close_locked(td, vp);
3352 			break;
3353 		}
3354 
3355 		if (oldvp == NULL ||
3356 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3357 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3358 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3359 			if (oldvp != NULL)
3360 				vnode_close_locked(td, oldvp);
3361 			oldvp = vp;
3362 			lasttime = vattr.va_mtime;
3363 		} else {
3364 			vnode_close_locked(td, vp);
3365 		}
3366 	}
3367 
3368 	if (oldvp != NULL) {
3369 		if (nextvp == NULL)
3370 			nextvp = oldvp;
3371 		else
3372 			vnode_close_locked(td, oldvp);
3373 	}
3374 	if (error != 0) {
3375 		if (nextvp != NULL)
3376 			vnode_close_locked(td, oldvp);
3377 	} else {
3378 		*vpp = nextvp;
3379 	}
3380 
3381 	return (error);
3382 }
3383 
3384 /*
3385  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3386  * Expand the name described in corefilename, using name, uid, and pid
3387  * and open/create core file.
3388  * corefilename is a printf-like string, with three format specifiers:
3389  *	%N	name of process ("name")
3390  *	%P	process id (pid)
3391  *	%U	user id (uid)
3392  * For example, "%N.core" is the default; they can be disabled completely
3393  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3394  * This is controlled by the sysctl variable kern.corefile (see above).
3395  */
3396 static int
3397 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3398     int compress, struct vnode **vpp, char **namep)
3399 {
3400 	struct sbuf sb;
3401 	struct nameidata nd;
3402 	const char *format;
3403 	char *hostname, *name;
3404 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3405 
3406 	hostname = NULL;
3407 	format = corefilename;
3408 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3409 	indexlen = 0;
3410 	indexpos = -1;
3411 	ncores = num_cores;
3412 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3413 	sx_slock(&corefilename_lock);
3414 	for (i = 0; format[i] != '\0'; i++) {
3415 		switch (format[i]) {
3416 		case '%':	/* Format character */
3417 			i++;
3418 			switch (format[i]) {
3419 			case '%':
3420 				sbuf_putc(&sb, '%');
3421 				break;
3422 			case 'H':	/* hostname */
3423 				if (hostname == NULL) {
3424 					hostname = malloc(MAXHOSTNAMELEN,
3425 					    M_TEMP, M_WAITOK);
3426 				}
3427 				getcredhostname(td->td_ucred, hostname,
3428 				    MAXHOSTNAMELEN);
3429 				sbuf_printf(&sb, "%s", hostname);
3430 				break;
3431 			case 'I':	/* autoincrementing index */
3432 				if (indexpos != -1) {
3433 					sbuf_printf(&sb, "%%I");
3434 					break;
3435 				}
3436 
3437 				indexpos = sbuf_len(&sb);
3438 				sbuf_printf(&sb, "%u", ncores - 1);
3439 				indexlen = sbuf_len(&sb) - indexpos;
3440 				break;
3441 			case 'N':	/* process name */
3442 				sbuf_printf(&sb, "%s", comm);
3443 				break;
3444 			case 'P':	/* process id */
3445 				sbuf_printf(&sb, "%u", pid);
3446 				break;
3447 			case 'U':	/* user id */
3448 				sbuf_printf(&sb, "%u", uid);
3449 				break;
3450 			default:
3451 				log(LOG_ERR,
3452 				    "Unknown format character %c in "
3453 				    "corename `%s'\n", format[i], format);
3454 				break;
3455 			}
3456 			break;
3457 		default:
3458 			sbuf_putc(&sb, format[i]);
3459 			break;
3460 		}
3461 	}
3462 	sx_sunlock(&corefilename_lock);
3463 	free(hostname, M_TEMP);
3464 	if (compress == COMPRESS_GZIP)
3465 		sbuf_printf(&sb, GZIP_SUFFIX);
3466 	else if (compress == COMPRESS_ZSTD)
3467 		sbuf_printf(&sb, ZSTD_SUFFIX);
3468 	if (sbuf_error(&sb) != 0) {
3469 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3470 		    "long\n", (long)pid, comm, (u_long)uid);
3471 		sbuf_delete(&sb);
3472 		free(name, M_TEMP);
3473 		return (ENOMEM);
3474 	}
3475 	sbuf_finish(&sb);
3476 	sbuf_delete(&sb);
3477 
3478 	if (indexpos != -1) {
3479 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3480 		    vpp);
3481 		if (error != 0) {
3482 			log(LOG_ERR,
3483 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3484 			    "on initial open test, error = %d\n",
3485 			    pid, comm, uid, name, error);
3486 		}
3487 	} else {
3488 		cmode = S_IRUSR | S_IWUSR;
3489 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3490 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3491 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3492 
3493 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3494 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3495 		    NULL);
3496 		if (error == 0) {
3497 			*vpp = nd.ni_vp;
3498 			NDFREE(&nd, NDF_ONLY_PNBUF);
3499 		}
3500 	}
3501 
3502 	if (error != 0) {
3503 #ifdef AUDIT
3504 		audit_proc_coredump(td, name, error);
3505 #endif
3506 		free(name, M_TEMP);
3507 		return (error);
3508 	}
3509 	*namep = name;
3510 	return (0);
3511 }
3512 
3513 /*
3514  * Dump a process' core.  The main routine does some
3515  * policy checking, and creates the name of the coredump;
3516  * then it passes on a vnode and a size limit to the process-specific
3517  * coredump routine if there is one; if there _is not_ one, it returns
3518  * ENOSYS; otherwise it returns the error from the process-specific routine.
3519  */
3520 
3521 static int
3522 coredump(struct thread *td)
3523 {
3524 	struct proc *p = td->td_proc;
3525 	struct ucred *cred = td->td_ucred;
3526 	struct vnode *vp;
3527 	struct flock lf;
3528 	struct vattr vattr;
3529 	int error, error1, locked;
3530 	char *name;			/* name of corefile */
3531 	void *rl_cookie;
3532 	off_t limit;
3533 	char *fullpath, *freepath = NULL;
3534 	struct sbuf *sb;
3535 
3536 	PROC_LOCK_ASSERT(p, MA_OWNED);
3537 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3538 	_STOPEVENT(p, S_CORE, 0);
3539 
3540 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3541 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3542 		PROC_UNLOCK(p);
3543 		return (EFAULT);
3544 	}
3545 
3546 	/*
3547 	 * Note that the bulk of limit checking is done after
3548 	 * the corefile is created.  The exception is if the limit
3549 	 * for corefiles is 0, in which case we don't bother
3550 	 * creating the corefile at all.  This layout means that
3551 	 * a corefile is truncated instead of not being created,
3552 	 * if it is larger than the limit.
3553 	 */
3554 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3555 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3556 		PROC_UNLOCK(p);
3557 		return (EFBIG);
3558 	}
3559 	PROC_UNLOCK(p);
3560 
3561 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3562 	    compress_user_cores, &vp, &name);
3563 	if (error != 0)
3564 		return (error);
3565 
3566 	/*
3567 	 * Don't dump to non-regular files or files with links.
3568 	 * Do not dump into system files.
3569 	 */
3570 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3571 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3572 		VOP_UNLOCK(vp, 0);
3573 		error = EFAULT;
3574 		goto out;
3575 	}
3576 
3577 	VOP_UNLOCK(vp, 0);
3578 
3579 	/* Postpone other writers, including core dumps of other processes. */
3580 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3581 
3582 	lf.l_whence = SEEK_SET;
3583 	lf.l_start = 0;
3584 	lf.l_len = 0;
3585 	lf.l_type = F_WRLCK;
3586 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3587 
3588 	VATTR_NULL(&vattr);
3589 	vattr.va_size = 0;
3590 	if (set_core_nodump_flag)
3591 		vattr.va_flags = UF_NODUMP;
3592 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3593 	VOP_SETATTR(vp, &vattr, cred);
3594 	VOP_UNLOCK(vp, 0);
3595 	PROC_LOCK(p);
3596 	p->p_acflag |= ACORE;
3597 	PROC_UNLOCK(p);
3598 
3599 	if (p->p_sysent->sv_coredump != NULL) {
3600 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3601 	} else {
3602 		error = ENOSYS;
3603 	}
3604 
3605 	if (locked) {
3606 		lf.l_type = F_UNLCK;
3607 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3608 	}
3609 	vn_rangelock_unlock(vp, rl_cookie);
3610 
3611 	/*
3612 	 * Notify the userland helper that a process triggered a core dump.
3613 	 * This allows the helper to run an automated debugging session.
3614 	 */
3615 	if (error != 0 || coredump_devctl == 0)
3616 		goto out;
3617 	sb = sbuf_new_auto();
3618 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3619 		goto out2;
3620 	sbuf_printf(sb, "comm=\"");
3621 	devctl_safe_quote_sb(sb, fullpath);
3622 	free(freepath, M_TEMP);
3623 	sbuf_printf(sb, "\" core=\"");
3624 
3625 	/*
3626 	 * We can't lookup core file vp directly. When we're replacing a core, and
3627 	 * other random times, we flush the name cache, so it will fail. Instead,
3628 	 * if the path of the core is relative, add the current dir in front if it.
3629 	 */
3630 	if (name[0] != '/') {
3631 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3632 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3633 			free(fullpath, M_TEMP);
3634 			goto out2;
3635 		}
3636 		devctl_safe_quote_sb(sb, fullpath);
3637 		free(fullpath, M_TEMP);
3638 		sbuf_putc(sb, '/');
3639 	}
3640 	devctl_safe_quote_sb(sb, name);
3641 	sbuf_printf(sb, "\"");
3642 	if (sbuf_finish(sb) == 0)
3643 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3644 out2:
3645 	sbuf_delete(sb);
3646 out:
3647 	error1 = vn_close(vp, FWRITE, cred, td);
3648 	if (error == 0)
3649 		error = error1;
3650 #ifdef AUDIT
3651 	audit_proc_coredump(td, name, error);
3652 #endif
3653 	free(name, M_TEMP);
3654 	return (error);
3655 }
3656 
3657 /*
3658  * Nonexistent system call-- signal process (may want to handle it).  Flag
3659  * error in case process won't see signal immediately (blocked or ignored).
3660  */
3661 #ifndef _SYS_SYSPROTO_H_
3662 struct nosys_args {
3663 	int	dummy;
3664 };
3665 #endif
3666 /* ARGSUSED */
3667 int
3668 nosys(struct thread *td, struct nosys_args *args)
3669 {
3670 	struct proc *p;
3671 
3672 	p = td->td_proc;
3673 
3674 	PROC_LOCK(p);
3675 	tdsignal(td, SIGSYS);
3676 	PROC_UNLOCK(p);
3677 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3678 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3679 		    td->td_sa.code);
3680 	}
3681 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3682 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3683 		    td->td_sa.code);
3684 	}
3685 	return (ENOSYS);
3686 }
3687 
3688 /*
3689  * Send a SIGIO or SIGURG signal to a process or process group using stored
3690  * credentials rather than those of the current process.
3691  */
3692 void
3693 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3694 {
3695 	ksiginfo_t ksi;
3696 	struct sigio *sigio;
3697 
3698 	ksiginfo_init(&ksi);
3699 	ksi.ksi_signo = sig;
3700 	ksi.ksi_code = SI_KERNEL;
3701 
3702 	SIGIO_LOCK();
3703 	sigio = *sigiop;
3704 	if (sigio == NULL) {
3705 		SIGIO_UNLOCK();
3706 		return;
3707 	}
3708 	if (sigio->sio_pgid > 0) {
3709 		PROC_LOCK(sigio->sio_proc);
3710 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3711 			kern_psignal(sigio->sio_proc, sig);
3712 		PROC_UNLOCK(sigio->sio_proc);
3713 	} else if (sigio->sio_pgid < 0) {
3714 		struct proc *p;
3715 
3716 		PGRP_LOCK(sigio->sio_pgrp);
3717 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3718 			PROC_LOCK(p);
3719 			if (p->p_state == PRS_NORMAL &&
3720 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3721 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3722 				kern_psignal(p, sig);
3723 			PROC_UNLOCK(p);
3724 		}
3725 		PGRP_UNLOCK(sigio->sio_pgrp);
3726 	}
3727 	SIGIO_UNLOCK();
3728 }
3729 
3730 static int
3731 filt_sigattach(struct knote *kn)
3732 {
3733 	struct proc *p = curproc;
3734 
3735 	kn->kn_ptr.p_proc = p;
3736 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3737 
3738 	knlist_add(p->p_klist, kn, 0);
3739 
3740 	return (0);
3741 }
3742 
3743 static void
3744 filt_sigdetach(struct knote *kn)
3745 {
3746 	struct proc *p = kn->kn_ptr.p_proc;
3747 
3748 	knlist_remove(p->p_klist, kn, 0);
3749 }
3750 
3751 /*
3752  * signal knotes are shared with proc knotes, so we apply a mask to
3753  * the hint in order to differentiate them from process hints.  This
3754  * could be avoided by using a signal-specific knote list, but probably
3755  * isn't worth the trouble.
3756  */
3757 static int
3758 filt_signal(struct knote *kn, long hint)
3759 {
3760 
3761 	if (hint & NOTE_SIGNAL) {
3762 		hint &= ~NOTE_SIGNAL;
3763 
3764 		if (kn->kn_id == hint)
3765 			kn->kn_data++;
3766 	}
3767 	return (kn->kn_data != 0);
3768 }
3769 
3770 struct sigacts *
3771 sigacts_alloc(void)
3772 {
3773 	struct sigacts *ps;
3774 
3775 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3776 	refcount_init(&ps->ps_refcnt, 1);
3777 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3778 	return (ps);
3779 }
3780 
3781 void
3782 sigacts_free(struct sigacts *ps)
3783 {
3784 
3785 	if (refcount_release(&ps->ps_refcnt) == 0)
3786 		return;
3787 	mtx_destroy(&ps->ps_mtx);
3788 	free(ps, M_SUBPROC);
3789 }
3790 
3791 struct sigacts *
3792 sigacts_hold(struct sigacts *ps)
3793 {
3794 
3795 	refcount_acquire(&ps->ps_refcnt);
3796 	return (ps);
3797 }
3798 
3799 void
3800 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3801 {
3802 
3803 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3804 	mtx_lock(&src->ps_mtx);
3805 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3806 	mtx_unlock(&src->ps_mtx);
3807 }
3808 
3809 int
3810 sigacts_shared(struct sigacts *ps)
3811 {
3812 
3813 	return (ps->ps_refcnt > 1);
3814 }
3815