xref: /freebsd/sys/kern/kern_sig.c (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
218 
219 static int sigproptbl[NSIG] = {
220 	[SIGHUP] =	SIGPROP_KILL,
221 	[SIGINT] =	SIGPROP_KILL,
222 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
228 	[SIGKILL] =	SIGPROP_KILL,
229 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
232 	[SIGPIPE] =	SIGPROP_KILL,
233 	[SIGALRM] =	SIGPROP_KILL,
234 	[SIGTERM] =	SIGPROP_KILL,
235 	[SIGURG] =	SIGPROP_IGNORE,
236 	[SIGSTOP] =	SIGPROP_STOP,
237 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
238 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
239 	[SIGCHLD] =	SIGPROP_IGNORE,
240 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
242 	[SIGIO] =	SIGPROP_IGNORE,
243 	[SIGXCPU] =	SIGPROP_KILL,
244 	[SIGXFSZ] =	SIGPROP_KILL,
245 	[SIGVTALRM] =	SIGPROP_KILL,
246 	[SIGPROF] =	SIGPROP_KILL,
247 	[SIGWINCH] =	SIGPROP_IGNORE,
248 	[SIGINFO] =	SIGPROP_IGNORE,
249 	[SIGUSR1] =	SIGPROP_KILL,
250 	[SIGUSR2] =	SIGPROP_KILL,
251 };
252 
253 sigset_t fastblock_mask;
254 
255 static void
256 sigqueue_start(void)
257 {
258 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
259 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
260 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
261 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
262 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
263 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
264 	SIGFILLSET(fastblock_mask);
265 	SIG_CANTMASK(fastblock_mask);
266 }
267 
268 ksiginfo_t *
269 ksiginfo_alloc(int wait)
270 {
271 	int flags;
272 
273 	flags = M_ZERO;
274 	if (! wait)
275 		flags |= M_NOWAIT;
276 	if (ksiginfo_zone != NULL)
277 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
278 	return (NULL);
279 }
280 
281 void
282 ksiginfo_free(ksiginfo_t *ksi)
283 {
284 	uma_zfree(ksiginfo_zone, ksi);
285 }
286 
287 static __inline int
288 ksiginfo_tryfree(ksiginfo_t *ksi)
289 {
290 	if (!(ksi->ksi_flags & KSI_EXT)) {
291 		uma_zfree(ksiginfo_zone, ksi);
292 		return (1);
293 	}
294 	return (0);
295 }
296 
297 void
298 sigqueue_init(sigqueue_t *list, struct proc *p)
299 {
300 	SIGEMPTYSET(list->sq_signals);
301 	SIGEMPTYSET(list->sq_kill);
302 	SIGEMPTYSET(list->sq_ptrace);
303 	TAILQ_INIT(&list->sq_list);
304 	list->sq_proc = p;
305 	list->sq_flags = SQ_INIT;
306 }
307 
308 /*
309  * Get a signal's ksiginfo.
310  * Return:
311  *	0	-	signal not found
312  *	others	-	signal number
313  */
314 static int
315 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
316 {
317 	struct proc *p = sq->sq_proc;
318 	struct ksiginfo *ksi, *next;
319 	int count = 0;
320 
321 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
322 
323 	if (!SIGISMEMBER(sq->sq_signals, signo))
324 		return (0);
325 
326 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
327 		count++;
328 		SIGDELSET(sq->sq_ptrace, signo);
329 		si->ksi_flags |= KSI_PTRACE;
330 	}
331 	if (SIGISMEMBER(sq->sq_kill, signo)) {
332 		count++;
333 		if (count == 1)
334 			SIGDELSET(sq->sq_kill, signo);
335 	}
336 
337 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
338 		if (ksi->ksi_signo == signo) {
339 			if (count == 0) {
340 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
341 				ksi->ksi_sigq = NULL;
342 				ksiginfo_copy(ksi, si);
343 				if (ksiginfo_tryfree(ksi) && p != NULL)
344 					p->p_pendingcnt--;
345 			}
346 			if (++count > 1)
347 				break;
348 		}
349 	}
350 
351 	if (count <= 1)
352 		SIGDELSET(sq->sq_signals, signo);
353 	si->ksi_signo = signo;
354 	return (signo);
355 }
356 
357 void
358 sigqueue_take(ksiginfo_t *ksi)
359 {
360 	struct ksiginfo *kp;
361 	struct proc	*p;
362 	sigqueue_t	*sq;
363 
364 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
365 		return;
366 
367 	p = sq->sq_proc;
368 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
369 	ksi->ksi_sigq = NULL;
370 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
371 		p->p_pendingcnt--;
372 
373 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
374 	     kp = TAILQ_NEXT(kp, ksi_link)) {
375 		if (kp->ksi_signo == ksi->ksi_signo)
376 			break;
377 	}
378 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
379 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
380 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
381 }
382 
383 static int
384 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
385 {
386 	struct proc *p = sq->sq_proc;
387 	struct ksiginfo *ksi;
388 	int ret = 0;
389 
390 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
391 
392 	/*
393 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
394 	 * for these signals.
395 	 */
396 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	/* directly insert the ksi, don't copy it */
402 	if (si->ksi_flags & KSI_INS) {
403 		if (si->ksi_flags & KSI_HEAD)
404 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
405 		else
406 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
407 		si->ksi_sigq = sq;
408 		goto out_set_bit;
409 	}
410 
411 	if (__predict_false(ksiginfo_zone == NULL)) {
412 		SIGADDSET(sq->sq_kill, signo);
413 		goto out_set_bit;
414 	}
415 
416 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
417 		signal_overflow++;
418 		ret = EAGAIN;
419 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
420 		signal_alloc_fail++;
421 		ret = EAGAIN;
422 	} else {
423 		if (p != NULL)
424 			p->p_pendingcnt++;
425 		ksiginfo_copy(si, ksi);
426 		ksi->ksi_signo = signo;
427 		if (si->ksi_flags & KSI_HEAD)
428 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
429 		else
430 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
431 		ksi->ksi_sigq = sq;
432 	}
433 
434 	if (ret != 0) {
435 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
436 			SIGADDSET(sq->sq_ptrace, signo);
437 			ret = 0;
438 			goto out_set_bit;
439 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
440 		    (si->ksi_flags & KSI_SIGQ) == 0) {
441 			SIGADDSET(sq->sq_kill, signo);
442 			ret = 0;
443 			goto out_set_bit;
444 		}
445 		return (ret);
446 	}
447 
448 out_set_bit:
449 	SIGADDSET(sq->sq_signals, signo);
450 	return (ret);
451 }
452 
453 void
454 sigqueue_flush(sigqueue_t *sq)
455 {
456 	struct proc *p = sq->sq_proc;
457 	ksiginfo_t *ksi;
458 
459 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
460 
461 	if (p != NULL)
462 		PROC_LOCK_ASSERT(p, MA_OWNED);
463 
464 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
465 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
466 		ksi->ksi_sigq = NULL;
467 		if (ksiginfo_tryfree(ksi) && p != NULL)
468 			p->p_pendingcnt--;
469 	}
470 
471 	SIGEMPTYSET(sq->sq_signals);
472 	SIGEMPTYSET(sq->sq_kill);
473 	SIGEMPTYSET(sq->sq_ptrace);
474 }
475 
476 static void
477 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
478 {
479 	sigset_t tmp;
480 	struct proc *p1, *p2;
481 	ksiginfo_t *ksi, *next;
482 
483 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
484 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
485 	p1 = src->sq_proc;
486 	p2 = dst->sq_proc;
487 	/* Move siginfo to target list */
488 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
489 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
490 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
491 			if (p1 != NULL)
492 				p1->p_pendingcnt--;
493 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
494 			ksi->ksi_sigq = dst;
495 			if (p2 != NULL)
496 				p2->p_pendingcnt++;
497 		}
498 	}
499 
500 	/* Move pending bits to target list */
501 	tmp = src->sq_kill;
502 	SIGSETAND(tmp, *set);
503 	SIGSETOR(dst->sq_kill, tmp);
504 	SIGSETNAND(src->sq_kill, tmp);
505 
506 	tmp = src->sq_ptrace;
507 	SIGSETAND(tmp, *set);
508 	SIGSETOR(dst->sq_ptrace, tmp);
509 	SIGSETNAND(src->sq_ptrace, tmp);
510 
511 	tmp = src->sq_signals;
512 	SIGSETAND(tmp, *set);
513 	SIGSETOR(dst->sq_signals, tmp);
514 	SIGSETNAND(src->sq_signals, tmp);
515 }
516 
517 #if 0
518 static void
519 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
520 {
521 	sigset_t set;
522 
523 	SIGEMPTYSET(set);
524 	SIGADDSET(set, signo);
525 	sigqueue_move_set(src, dst, &set);
526 }
527 #endif
528 
529 static void
530 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
531 {
532 	struct proc *p = sq->sq_proc;
533 	ksiginfo_t *ksi, *next;
534 
535 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
536 
537 	/* Remove siginfo queue */
538 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
539 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
540 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
541 			ksi->ksi_sigq = NULL;
542 			if (ksiginfo_tryfree(ksi) && p != NULL)
543 				p->p_pendingcnt--;
544 		}
545 	}
546 	SIGSETNAND(sq->sq_kill, *set);
547 	SIGSETNAND(sq->sq_ptrace, *set);
548 	SIGSETNAND(sq->sq_signals, *set);
549 }
550 
551 void
552 sigqueue_delete(sigqueue_t *sq, int signo)
553 {
554 	sigset_t set;
555 
556 	SIGEMPTYSET(set);
557 	SIGADDSET(set, signo);
558 	sigqueue_delete_set(sq, &set);
559 }
560 
561 /* Remove a set of signals for a process */
562 static void
563 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
564 {
565 	sigqueue_t worklist;
566 	struct thread *td0;
567 
568 	PROC_LOCK_ASSERT(p, MA_OWNED);
569 
570 	sigqueue_init(&worklist, NULL);
571 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
572 
573 	FOREACH_THREAD_IN_PROC(p, td0)
574 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
575 
576 	sigqueue_flush(&worklist);
577 }
578 
579 void
580 sigqueue_delete_proc(struct proc *p, int signo)
581 {
582 	sigset_t set;
583 
584 	SIGEMPTYSET(set);
585 	SIGADDSET(set, signo);
586 	sigqueue_delete_set_proc(p, &set);
587 }
588 
589 static void
590 sigqueue_delete_stopmask_proc(struct proc *p)
591 {
592 	sigset_t set;
593 
594 	SIGEMPTYSET(set);
595 	SIGADDSET(set, SIGSTOP);
596 	SIGADDSET(set, SIGTSTP);
597 	SIGADDSET(set, SIGTTIN);
598 	SIGADDSET(set, SIGTTOU);
599 	sigqueue_delete_set_proc(p, &set);
600 }
601 
602 /*
603  * Determine signal that should be delivered to thread td, the current
604  * thread, 0 if none.  If there is a pending stop signal with default
605  * action, the process stops in issignal().
606  */
607 int
608 cursig(struct thread *td)
609 {
610 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
611 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
612 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
613 	return (SIGPENDING(td) ? issignal(td) : 0);
614 }
615 
616 /*
617  * Arrange for ast() to handle unmasked pending signals on return to user
618  * mode.  This must be called whenever a signal is added to td_sigqueue or
619  * unmasked in td_sigmask.
620  */
621 void
622 signotify(struct thread *td)
623 {
624 
625 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
626 
627 	if (SIGPENDING(td)) {
628 		thread_lock(td);
629 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
630 		thread_unlock(td);
631 	}
632 }
633 
634 /*
635  * Returns 1 (true) if altstack is configured for the thread, and the
636  * passed stack bottom address falls into the altstack range.  Handles
637  * the 43 compat special case where the alt stack size is zero.
638  */
639 int
640 sigonstack(size_t sp)
641 {
642 	struct thread *td;
643 
644 	td = curthread;
645 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
646 		return (0);
647 #if defined(COMPAT_43)
648 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
649 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
650 #endif
651 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
652 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
653 }
654 
655 static __inline int
656 sigprop(int sig)
657 {
658 
659 	if (sig > 0 && sig < nitems(sigproptbl))
660 		return (sigproptbl[sig]);
661 	return (0);
662 }
663 
664 int
665 sig_ffs(sigset_t *set)
666 {
667 	int i;
668 
669 	for (i = 0; i < _SIG_WORDS; i++)
670 		if (set->__bits[i])
671 			return (ffs(set->__bits[i]) + (i * 32));
672 	return (0);
673 }
674 
675 static bool
676 sigact_flag_test(const struct sigaction *act, int flag)
677 {
678 
679 	/*
680 	 * SA_SIGINFO is reset when signal disposition is set to
681 	 * ignore or default.  Other flags are kept according to user
682 	 * settings.
683 	 */
684 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
685 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
686 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
687 }
688 
689 /*
690  * kern_sigaction
691  * sigaction
692  * freebsd4_sigaction
693  * osigaction
694  */
695 int
696 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
697     struct sigaction *oact, int flags)
698 {
699 	struct sigacts *ps;
700 	struct proc *p = td->td_proc;
701 
702 	if (!_SIG_VALID(sig))
703 		return (EINVAL);
704 	if (act != NULL && act->sa_handler != SIG_DFL &&
705 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
706 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
707 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
708 		return (EINVAL);
709 
710 	PROC_LOCK(p);
711 	ps = p->p_sigacts;
712 	mtx_lock(&ps->ps_mtx);
713 	if (oact) {
714 		memset(oact, 0, sizeof(*oact));
715 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
716 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
717 			oact->sa_flags |= SA_ONSTACK;
718 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
719 			oact->sa_flags |= SA_RESTART;
720 		if (SIGISMEMBER(ps->ps_sigreset, sig))
721 			oact->sa_flags |= SA_RESETHAND;
722 		if (SIGISMEMBER(ps->ps_signodefer, sig))
723 			oact->sa_flags |= SA_NODEFER;
724 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
725 			oact->sa_flags |= SA_SIGINFO;
726 			oact->sa_sigaction =
727 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
728 		} else
729 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
730 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
731 			oact->sa_flags |= SA_NOCLDSTOP;
732 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
733 			oact->sa_flags |= SA_NOCLDWAIT;
734 	}
735 	if (act) {
736 		if ((sig == SIGKILL || sig == SIGSTOP) &&
737 		    act->sa_handler != SIG_DFL) {
738 			mtx_unlock(&ps->ps_mtx);
739 			PROC_UNLOCK(p);
740 			return (EINVAL);
741 		}
742 
743 		/*
744 		 * Change setting atomically.
745 		 */
746 
747 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
748 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
749 		if (sigact_flag_test(act, SA_SIGINFO)) {
750 			ps->ps_sigact[_SIG_IDX(sig)] =
751 			    (__sighandler_t *)act->sa_sigaction;
752 			SIGADDSET(ps->ps_siginfo, sig);
753 		} else {
754 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
755 			SIGDELSET(ps->ps_siginfo, sig);
756 		}
757 		if (!sigact_flag_test(act, SA_RESTART))
758 			SIGADDSET(ps->ps_sigintr, sig);
759 		else
760 			SIGDELSET(ps->ps_sigintr, sig);
761 		if (sigact_flag_test(act, SA_ONSTACK))
762 			SIGADDSET(ps->ps_sigonstack, sig);
763 		else
764 			SIGDELSET(ps->ps_sigonstack, sig);
765 		if (sigact_flag_test(act, SA_RESETHAND))
766 			SIGADDSET(ps->ps_sigreset, sig);
767 		else
768 			SIGDELSET(ps->ps_sigreset, sig);
769 		if (sigact_flag_test(act, SA_NODEFER))
770 			SIGADDSET(ps->ps_signodefer, sig);
771 		else
772 			SIGDELSET(ps->ps_signodefer, sig);
773 		if (sig == SIGCHLD) {
774 			if (act->sa_flags & SA_NOCLDSTOP)
775 				ps->ps_flag |= PS_NOCLDSTOP;
776 			else
777 				ps->ps_flag &= ~PS_NOCLDSTOP;
778 			if (act->sa_flags & SA_NOCLDWAIT) {
779 				/*
780 				 * Paranoia: since SA_NOCLDWAIT is implemented
781 				 * by reparenting the dying child to PID 1 (and
782 				 * trust it to reap the zombie), PID 1 itself
783 				 * is forbidden to set SA_NOCLDWAIT.
784 				 */
785 				if (p->p_pid == 1)
786 					ps->ps_flag &= ~PS_NOCLDWAIT;
787 				else
788 					ps->ps_flag |= PS_NOCLDWAIT;
789 			} else
790 				ps->ps_flag &= ~PS_NOCLDWAIT;
791 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
792 				ps->ps_flag |= PS_CLDSIGIGN;
793 			else
794 				ps->ps_flag &= ~PS_CLDSIGIGN;
795 		}
796 		/*
797 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
798 		 * and for signals set to SIG_DFL where the default is to
799 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
800 		 * have to restart the process.
801 		 */
802 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
803 		    (sigprop(sig) & SIGPROP_IGNORE &&
804 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
805 			/* never to be seen again */
806 			sigqueue_delete_proc(p, sig);
807 			if (sig != SIGCONT)
808 				/* easier in psignal */
809 				SIGADDSET(ps->ps_sigignore, sig);
810 			SIGDELSET(ps->ps_sigcatch, sig);
811 		} else {
812 			SIGDELSET(ps->ps_sigignore, sig);
813 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
814 				SIGDELSET(ps->ps_sigcatch, sig);
815 			else
816 				SIGADDSET(ps->ps_sigcatch, sig);
817 		}
818 #ifdef COMPAT_FREEBSD4
819 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
820 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
821 		    (flags & KSA_FREEBSD4) == 0)
822 			SIGDELSET(ps->ps_freebsd4, sig);
823 		else
824 			SIGADDSET(ps->ps_freebsd4, sig);
825 #endif
826 #ifdef COMPAT_43
827 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
828 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
829 		    (flags & KSA_OSIGSET) == 0)
830 			SIGDELSET(ps->ps_osigset, sig);
831 		else
832 			SIGADDSET(ps->ps_osigset, sig);
833 #endif
834 	}
835 	mtx_unlock(&ps->ps_mtx);
836 	PROC_UNLOCK(p);
837 	return (0);
838 }
839 
840 #ifndef _SYS_SYSPROTO_H_
841 struct sigaction_args {
842 	int	sig;
843 	struct	sigaction *act;
844 	struct	sigaction *oact;
845 };
846 #endif
847 int
848 sys_sigaction(struct thread *td, struct sigaction_args *uap)
849 {
850 	struct sigaction act, oact;
851 	struct sigaction *actp, *oactp;
852 	int error;
853 
854 	actp = (uap->act != NULL) ? &act : NULL;
855 	oactp = (uap->oact != NULL) ? &oact : NULL;
856 	if (actp) {
857 		error = copyin(uap->act, actp, sizeof(act));
858 		if (error)
859 			return (error);
860 	}
861 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
862 	if (oactp && !error)
863 		error = copyout(oactp, uap->oact, sizeof(oact));
864 	return (error);
865 }
866 
867 #ifdef COMPAT_FREEBSD4
868 #ifndef _SYS_SYSPROTO_H_
869 struct freebsd4_sigaction_args {
870 	int	sig;
871 	struct	sigaction *act;
872 	struct	sigaction *oact;
873 };
874 #endif
875 int
876 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
877 {
878 	struct sigaction act, oact;
879 	struct sigaction *actp, *oactp;
880 	int error;
881 
882 	actp = (uap->act != NULL) ? &act : NULL;
883 	oactp = (uap->oact != NULL) ? &oact : NULL;
884 	if (actp) {
885 		error = copyin(uap->act, actp, sizeof(act));
886 		if (error)
887 			return (error);
888 	}
889 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
890 	if (oactp && !error)
891 		error = copyout(oactp, uap->oact, sizeof(oact));
892 	return (error);
893 }
894 #endif	/* COMAPT_FREEBSD4 */
895 
896 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
897 #ifndef _SYS_SYSPROTO_H_
898 struct osigaction_args {
899 	int	signum;
900 	struct	osigaction *nsa;
901 	struct	osigaction *osa;
902 };
903 #endif
904 int
905 osigaction(struct thread *td, struct osigaction_args *uap)
906 {
907 	struct osigaction sa;
908 	struct sigaction nsa, osa;
909 	struct sigaction *nsap, *osap;
910 	int error;
911 
912 	if (uap->signum <= 0 || uap->signum >= ONSIG)
913 		return (EINVAL);
914 
915 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
916 	osap = (uap->osa != NULL) ? &osa : NULL;
917 
918 	if (nsap) {
919 		error = copyin(uap->nsa, &sa, sizeof(sa));
920 		if (error)
921 			return (error);
922 		nsap->sa_handler = sa.sa_handler;
923 		nsap->sa_flags = sa.sa_flags;
924 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
925 	}
926 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
927 	if (osap && !error) {
928 		sa.sa_handler = osap->sa_handler;
929 		sa.sa_flags = osap->sa_flags;
930 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
931 		error = copyout(&sa, uap->osa, sizeof(sa));
932 	}
933 	return (error);
934 }
935 
936 #if !defined(__i386__)
937 /* Avoid replicating the same stub everywhere */
938 int
939 osigreturn(struct thread *td, struct osigreturn_args *uap)
940 {
941 
942 	return (nosys(td, (struct nosys_args *)uap));
943 }
944 #endif
945 #endif /* COMPAT_43 */
946 
947 /*
948  * Initialize signal state for process 0;
949  * set to ignore signals that are ignored by default.
950  */
951 void
952 siginit(struct proc *p)
953 {
954 	int i;
955 	struct sigacts *ps;
956 
957 	PROC_LOCK(p);
958 	ps = p->p_sigacts;
959 	mtx_lock(&ps->ps_mtx);
960 	for (i = 1; i <= NSIG; i++) {
961 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
962 			SIGADDSET(ps->ps_sigignore, i);
963 		}
964 	}
965 	mtx_unlock(&ps->ps_mtx);
966 	PROC_UNLOCK(p);
967 }
968 
969 /*
970  * Reset specified signal to the default disposition.
971  */
972 static void
973 sigdflt(struct sigacts *ps, int sig)
974 {
975 
976 	mtx_assert(&ps->ps_mtx, MA_OWNED);
977 	SIGDELSET(ps->ps_sigcatch, sig);
978 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
979 		SIGADDSET(ps->ps_sigignore, sig);
980 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
981 	SIGDELSET(ps->ps_siginfo, sig);
982 }
983 
984 /*
985  * Reset signals for an exec of the specified process.
986  */
987 void
988 execsigs(struct proc *p)
989 {
990 	sigset_t osigignore;
991 	struct sigacts *ps;
992 	int sig;
993 	struct thread *td;
994 
995 	/*
996 	 * Reset caught signals.  Held signals remain held
997 	 * through td_sigmask (unless they were caught,
998 	 * and are now ignored by default).
999 	 */
1000 	PROC_LOCK_ASSERT(p, MA_OWNED);
1001 	ps = p->p_sigacts;
1002 	mtx_lock(&ps->ps_mtx);
1003 	sig_drop_caught(p);
1004 
1005 	/*
1006 	 * As CloudABI processes cannot modify signal handlers, fully
1007 	 * reset all signals to their default behavior. Do ignore
1008 	 * SIGPIPE, as it would otherwise be impossible to recover from
1009 	 * writes to broken pipes and sockets.
1010 	 */
1011 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1012 		osigignore = ps->ps_sigignore;
1013 		while (SIGNOTEMPTY(osigignore)) {
1014 			sig = sig_ffs(&osigignore);
1015 			SIGDELSET(osigignore, sig);
1016 			if (sig != SIGPIPE)
1017 				sigdflt(ps, sig);
1018 		}
1019 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1020 	}
1021 
1022 	/*
1023 	 * Reset stack state to the user stack.
1024 	 * Clear set of signals caught on the signal stack.
1025 	 */
1026 	td = curthread;
1027 	MPASS(td->td_proc == p);
1028 	td->td_sigstk.ss_flags = SS_DISABLE;
1029 	td->td_sigstk.ss_size = 0;
1030 	td->td_sigstk.ss_sp = 0;
1031 	td->td_pflags &= ~TDP_ALTSTACK;
1032 	/*
1033 	 * Reset no zombies if child dies flag as Solaris does.
1034 	 */
1035 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1036 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1037 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1038 	mtx_unlock(&ps->ps_mtx);
1039 }
1040 
1041 /*
1042  * kern_sigprocmask()
1043  *
1044  *	Manipulate signal mask.
1045  */
1046 int
1047 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1048     int flags)
1049 {
1050 	sigset_t new_block, oset1;
1051 	struct proc *p;
1052 	int error;
1053 
1054 	p = td->td_proc;
1055 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1056 		PROC_LOCK_ASSERT(p, MA_OWNED);
1057 	else
1058 		PROC_LOCK(p);
1059 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1060 	    ? MA_OWNED : MA_NOTOWNED);
1061 	if (oset != NULL)
1062 		*oset = td->td_sigmask;
1063 
1064 	error = 0;
1065 	if (set != NULL) {
1066 		switch (how) {
1067 		case SIG_BLOCK:
1068 			SIG_CANTMASK(*set);
1069 			oset1 = td->td_sigmask;
1070 			SIGSETOR(td->td_sigmask, *set);
1071 			new_block = td->td_sigmask;
1072 			SIGSETNAND(new_block, oset1);
1073 			break;
1074 		case SIG_UNBLOCK:
1075 			SIGSETNAND(td->td_sigmask, *set);
1076 			signotify(td);
1077 			goto out;
1078 		case SIG_SETMASK:
1079 			SIG_CANTMASK(*set);
1080 			oset1 = td->td_sigmask;
1081 			if (flags & SIGPROCMASK_OLD)
1082 				SIGSETLO(td->td_sigmask, *set);
1083 			else
1084 				td->td_sigmask = *set;
1085 			new_block = td->td_sigmask;
1086 			SIGSETNAND(new_block, oset1);
1087 			signotify(td);
1088 			break;
1089 		default:
1090 			error = EINVAL;
1091 			goto out;
1092 		}
1093 
1094 		/*
1095 		 * The new_block set contains signals that were not previously
1096 		 * blocked, but are blocked now.
1097 		 *
1098 		 * In case we block any signal that was not previously blocked
1099 		 * for td, and process has the signal pending, try to schedule
1100 		 * signal delivery to some thread that does not block the
1101 		 * signal, possibly waking it up.
1102 		 */
1103 		if (p->p_numthreads != 1)
1104 			reschedule_signals(p, new_block, flags);
1105 	}
1106 
1107 out:
1108 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1109 		PROC_UNLOCK(p);
1110 	return (error);
1111 }
1112 
1113 #ifndef _SYS_SYSPROTO_H_
1114 struct sigprocmask_args {
1115 	int	how;
1116 	const sigset_t *set;
1117 	sigset_t *oset;
1118 };
1119 #endif
1120 int
1121 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1122 {
1123 	sigset_t set, oset;
1124 	sigset_t *setp, *osetp;
1125 	int error;
1126 
1127 	setp = (uap->set != NULL) ? &set : NULL;
1128 	osetp = (uap->oset != NULL) ? &oset : NULL;
1129 	if (setp) {
1130 		error = copyin(uap->set, setp, sizeof(set));
1131 		if (error)
1132 			return (error);
1133 	}
1134 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1135 	if (osetp && !error) {
1136 		error = copyout(osetp, uap->oset, sizeof(oset));
1137 	}
1138 	return (error);
1139 }
1140 
1141 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1142 #ifndef _SYS_SYSPROTO_H_
1143 struct osigprocmask_args {
1144 	int	how;
1145 	osigset_t mask;
1146 };
1147 #endif
1148 int
1149 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1150 {
1151 	sigset_t set, oset;
1152 	int error;
1153 
1154 	OSIG2SIG(uap->mask, set);
1155 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1156 	SIG2OSIG(oset, td->td_retval[0]);
1157 	return (error);
1158 }
1159 #endif /* COMPAT_43 */
1160 
1161 int
1162 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1163 {
1164 	ksiginfo_t ksi;
1165 	sigset_t set;
1166 	int error;
1167 
1168 	error = copyin(uap->set, &set, sizeof(set));
1169 	if (error) {
1170 		td->td_retval[0] = error;
1171 		return (0);
1172 	}
1173 
1174 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1175 	if (error) {
1176 		/*
1177 		 * sigwait() function shall not return EINTR, but
1178 		 * the syscall does.  Non-ancient libc provides the
1179 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1180 		 * is used by libthr to handle required cancellation
1181 		 * point in the sigwait().
1182 		 */
1183 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1184 			return (ERESTART);
1185 		td->td_retval[0] = error;
1186 		return (0);
1187 	}
1188 
1189 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1190 	td->td_retval[0] = error;
1191 	return (0);
1192 }
1193 
1194 int
1195 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1196 {
1197 	struct timespec ts;
1198 	struct timespec *timeout;
1199 	sigset_t set;
1200 	ksiginfo_t ksi;
1201 	int error;
1202 
1203 	if (uap->timeout) {
1204 		error = copyin(uap->timeout, &ts, sizeof(ts));
1205 		if (error)
1206 			return (error);
1207 
1208 		timeout = &ts;
1209 	} else
1210 		timeout = NULL;
1211 
1212 	error = copyin(uap->set, &set, sizeof(set));
1213 	if (error)
1214 		return (error);
1215 
1216 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1217 	if (error)
1218 		return (error);
1219 
1220 	if (uap->info)
1221 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1222 
1223 	if (error == 0)
1224 		td->td_retval[0] = ksi.ksi_signo;
1225 	return (error);
1226 }
1227 
1228 int
1229 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1230 {
1231 	ksiginfo_t ksi;
1232 	sigset_t set;
1233 	int error;
1234 
1235 	error = copyin(uap->set, &set, sizeof(set));
1236 	if (error)
1237 		return (error);
1238 
1239 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1240 	if (error)
1241 		return (error);
1242 
1243 	if (uap->info)
1244 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1245 
1246 	if (error == 0)
1247 		td->td_retval[0] = ksi.ksi_signo;
1248 	return (error);
1249 }
1250 
1251 static void
1252 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1253 {
1254 	struct thread *thr;
1255 
1256 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1257 		if (thr == td)
1258 			thr->td_si = *si;
1259 		else
1260 			thr->td_si.si_signo = 0;
1261 	}
1262 }
1263 
1264 int
1265 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1266 	struct timespec *timeout)
1267 {
1268 	struct sigacts *ps;
1269 	sigset_t saved_mask, new_block;
1270 	struct proc *p;
1271 	int error, sig, timo, timevalid = 0;
1272 	struct timespec rts, ets, ts;
1273 	struct timeval tv;
1274 	bool traced;
1275 
1276 	p = td->td_proc;
1277 	error = 0;
1278 	ets.tv_sec = 0;
1279 	ets.tv_nsec = 0;
1280 	traced = false;
1281 
1282 	/* Ensure the sigfastblock value is up to date. */
1283 	sigfastblock_fetch(td);
1284 
1285 	if (timeout != NULL) {
1286 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1287 			timevalid = 1;
1288 			getnanouptime(&rts);
1289 			timespecadd(&rts, timeout, &ets);
1290 		}
1291 	}
1292 	ksiginfo_init(ksi);
1293 	/* Some signals can not be waited for. */
1294 	SIG_CANTMASK(waitset);
1295 	ps = p->p_sigacts;
1296 	PROC_LOCK(p);
1297 	saved_mask = td->td_sigmask;
1298 	SIGSETNAND(td->td_sigmask, waitset);
1299 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1300 	    !kern_sig_discard_ign)
1301 		td->td_pflags2 |= TDP2_SIGWAIT;
1302 	for (;;) {
1303 		mtx_lock(&ps->ps_mtx);
1304 		sig = cursig(td);
1305 		mtx_unlock(&ps->ps_mtx);
1306 		KASSERT(sig >= 0, ("sig %d", sig));
1307 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1308 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1309 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1310 				error = 0;
1311 				break;
1312 			}
1313 		}
1314 
1315 		if (error != 0)
1316 			break;
1317 
1318 		/*
1319 		 * POSIX says this must be checked after looking for pending
1320 		 * signals.
1321 		 */
1322 		if (timeout != NULL) {
1323 			if (!timevalid) {
1324 				error = EINVAL;
1325 				break;
1326 			}
1327 			getnanouptime(&rts);
1328 			if (timespeccmp(&rts, &ets, >=)) {
1329 				error = EAGAIN;
1330 				break;
1331 			}
1332 			timespecsub(&ets, &rts, &ts);
1333 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1334 			timo = tvtohz(&tv);
1335 		} else {
1336 			timo = 0;
1337 		}
1338 
1339 		if (traced) {
1340 			error = EINTR;
1341 			break;
1342 		}
1343 
1344 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1345 
1346 		/* The syscalls can not be restarted. */
1347 		if (error == ERESTART)
1348 			error = EINTR;
1349 
1350 		/* We will calculate timeout by ourself. */
1351 		if (timeout != NULL && error == EAGAIN)
1352 			error = 0;
1353 
1354 		/*
1355 		 * If PTRACE_SCE or PTRACE_SCX were set after
1356 		 * userspace entered the syscall, return spurious
1357 		 * EINTR after wait was done.  Only do this as last
1358 		 * resort after rechecking for possible queued signals
1359 		 * and expired timeouts.
1360 		 */
1361 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1362 			traced = true;
1363 	}
1364 	td->td_pflags2 &= ~TDP2_SIGWAIT;
1365 
1366 	new_block = saved_mask;
1367 	SIGSETNAND(new_block, td->td_sigmask);
1368 	td->td_sigmask = saved_mask;
1369 	/*
1370 	 * Fewer signals can be delivered to us, reschedule signal
1371 	 * notification.
1372 	 */
1373 	if (p->p_numthreads != 1)
1374 		reschedule_signals(p, new_block, 0);
1375 
1376 	if (error == 0) {
1377 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1378 
1379 		if (ksi->ksi_code == SI_TIMER)
1380 			itimer_accept(p, ksi->ksi_timerid, ksi);
1381 
1382 #ifdef KTRACE
1383 		if (KTRPOINT(td, KTR_PSIG)) {
1384 			sig_t action;
1385 
1386 			mtx_lock(&ps->ps_mtx);
1387 			action = ps->ps_sigact[_SIG_IDX(sig)];
1388 			mtx_unlock(&ps->ps_mtx);
1389 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1390 		}
1391 #endif
1392 		if (sig == SIGKILL) {
1393 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1394 			sigexit(td, sig);
1395 		}
1396 	}
1397 	PROC_UNLOCK(p);
1398 	return (error);
1399 }
1400 
1401 #ifndef _SYS_SYSPROTO_H_
1402 struct sigpending_args {
1403 	sigset_t	*set;
1404 };
1405 #endif
1406 int
1407 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1408 {
1409 	struct proc *p = td->td_proc;
1410 	sigset_t pending;
1411 
1412 	PROC_LOCK(p);
1413 	pending = p->p_sigqueue.sq_signals;
1414 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1415 	PROC_UNLOCK(p);
1416 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1417 }
1418 
1419 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1420 #ifndef _SYS_SYSPROTO_H_
1421 struct osigpending_args {
1422 	int	dummy;
1423 };
1424 #endif
1425 int
1426 osigpending(struct thread *td, struct osigpending_args *uap)
1427 {
1428 	struct proc *p = td->td_proc;
1429 	sigset_t pending;
1430 
1431 	PROC_LOCK(p);
1432 	pending = p->p_sigqueue.sq_signals;
1433 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1434 	PROC_UNLOCK(p);
1435 	SIG2OSIG(pending, td->td_retval[0]);
1436 	return (0);
1437 }
1438 #endif /* COMPAT_43 */
1439 
1440 #if defined(COMPAT_43)
1441 /*
1442  * Generalized interface signal handler, 4.3-compatible.
1443  */
1444 #ifndef _SYS_SYSPROTO_H_
1445 struct osigvec_args {
1446 	int	signum;
1447 	struct	sigvec *nsv;
1448 	struct	sigvec *osv;
1449 };
1450 #endif
1451 /* ARGSUSED */
1452 int
1453 osigvec(struct thread *td, struct osigvec_args *uap)
1454 {
1455 	struct sigvec vec;
1456 	struct sigaction nsa, osa;
1457 	struct sigaction *nsap, *osap;
1458 	int error;
1459 
1460 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1461 		return (EINVAL);
1462 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1463 	osap = (uap->osv != NULL) ? &osa : NULL;
1464 	if (nsap) {
1465 		error = copyin(uap->nsv, &vec, sizeof(vec));
1466 		if (error)
1467 			return (error);
1468 		nsap->sa_handler = vec.sv_handler;
1469 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1470 		nsap->sa_flags = vec.sv_flags;
1471 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1472 	}
1473 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1474 	if (osap && !error) {
1475 		vec.sv_handler = osap->sa_handler;
1476 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1477 		vec.sv_flags = osap->sa_flags;
1478 		vec.sv_flags &= ~SA_NOCLDWAIT;
1479 		vec.sv_flags ^= SA_RESTART;
1480 		error = copyout(&vec, uap->osv, sizeof(vec));
1481 	}
1482 	return (error);
1483 }
1484 
1485 #ifndef _SYS_SYSPROTO_H_
1486 struct osigblock_args {
1487 	int	mask;
1488 };
1489 #endif
1490 int
1491 osigblock(struct thread *td, struct osigblock_args *uap)
1492 {
1493 	sigset_t set, oset;
1494 
1495 	OSIG2SIG(uap->mask, set);
1496 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1497 	SIG2OSIG(oset, td->td_retval[0]);
1498 	return (0);
1499 }
1500 
1501 #ifndef _SYS_SYSPROTO_H_
1502 struct osigsetmask_args {
1503 	int	mask;
1504 };
1505 #endif
1506 int
1507 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1508 {
1509 	sigset_t set, oset;
1510 
1511 	OSIG2SIG(uap->mask, set);
1512 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1513 	SIG2OSIG(oset, td->td_retval[0]);
1514 	return (0);
1515 }
1516 #endif /* COMPAT_43 */
1517 
1518 /*
1519  * Suspend calling thread until signal, providing mask to be set in the
1520  * meantime.
1521  */
1522 #ifndef _SYS_SYSPROTO_H_
1523 struct sigsuspend_args {
1524 	const sigset_t *sigmask;
1525 };
1526 #endif
1527 /* ARGSUSED */
1528 int
1529 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1530 {
1531 	sigset_t mask;
1532 	int error;
1533 
1534 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1535 	if (error)
1536 		return (error);
1537 	return (kern_sigsuspend(td, mask));
1538 }
1539 
1540 int
1541 kern_sigsuspend(struct thread *td, sigset_t mask)
1542 {
1543 	struct proc *p = td->td_proc;
1544 	int has_sig, sig;
1545 
1546 	/* Ensure the sigfastblock value is up to date. */
1547 	sigfastblock_fetch(td);
1548 
1549 	/*
1550 	 * When returning from sigsuspend, we want
1551 	 * the old mask to be restored after the
1552 	 * signal handler has finished.  Thus, we
1553 	 * save it here and mark the sigacts structure
1554 	 * to indicate this.
1555 	 */
1556 	PROC_LOCK(p);
1557 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1558 	    SIGPROCMASK_PROC_LOCKED);
1559 	td->td_pflags |= TDP_OLDMASK;
1560 
1561 	/*
1562 	 * Process signals now. Otherwise, we can get spurious wakeup
1563 	 * due to signal entered process queue, but delivered to other
1564 	 * thread. But sigsuspend should return only on signal
1565 	 * delivery.
1566 	 */
1567 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1568 	for (has_sig = 0; !has_sig;) {
1569 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1570 			0) == 0)
1571 			/* void */;
1572 		thread_suspend_check(0);
1573 		mtx_lock(&p->p_sigacts->ps_mtx);
1574 		while ((sig = cursig(td)) != 0) {
1575 			KASSERT(sig >= 0, ("sig %d", sig));
1576 			has_sig += postsig(sig);
1577 		}
1578 		mtx_unlock(&p->p_sigacts->ps_mtx);
1579 
1580 		/*
1581 		 * If PTRACE_SCE or PTRACE_SCX were set after
1582 		 * userspace entered the syscall, return spurious
1583 		 * EINTR.
1584 		 */
1585 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1586 			has_sig += 1;
1587 	}
1588 	PROC_UNLOCK(p);
1589 	td->td_errno = EINTR;
1590 	td->td_pflags |= TDP_NERRNO;
1591 	return (EJUSTRETURN);
1592 }
1593 
1594 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1595 /*
1596  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1597  * convention: libc stub passes mask, not pointer, to save a copyin.
1598  */
1599 #ifndef _SYS_SYSPROTO_H_
1600 struct osigsuspend_args {
1601 	osigset_t mask;
1602 };
1603 #endif
1604 /* ARGSUSED */
1605 int
1606 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1607 {
1608 	sigset_t mask;
1609 
1610 	OSIG2SIG(uap->mask, mask);
1611 	return (kern_sigsuspend(td, mask));
1612 }
1613 #endif /* COMPAT_43 */
1614 
1615 #if defined(COMPAT_43)
1616 #ifndef _SYS_SYSPROTO_H_
1617 struct osigstack_args {
1618 	struct	sigstack *nss;
1619 	struct	sigstack *oss;
1620 };
1621 #endif
1622 /* ARGSUSED */
1623 int
1624 osigstack(struct thread *td, struct osigstack_args *uap)
1625 {
1626 	struct sigstack nss, oss;
1627 	int error = 0;
1628 
1629 	if (uap->nss != NULL) {
1630 		error = copyin(uap->nss, &nss, sizeof(nss));
1631 		if (error)
1632 			return (error);
1633 	}
1634 	oss.ss_sp = td->td_sigstk.ss_sp;
1635 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1636 	if (uap->nss != NULL) {
1637 		td->td_sigstk.ss_sp = nss.ss_sp;
1638 		td->td_sigstk.ss_size = 0;
1639 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1640 		td->td_pflags |= TDP_ALTSTACK;
1641 	}
1642 	if (uap->oss != NULL)
1643 		error = copyout(&oss, uap->oss, sizeof(oss));
1644 
1645 	return (error);
1646 }
1647 #endif /* COMPAT_43 */
1648 
1649 #ifndef _SYS_SYSPROTO_H_
1650 struct sigaltstack_args {
1651 	stack_t	*ss;
1652 	stack_t	*oss;
1653 };
1654 #endif
1655 /* ARGSUSED */
1656 int
1657 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1658 {
1659 	stack_t ss, oss;
1660 	int error;
1661 
1662 	if (uap->ss != NULL) {
1663 		error = copyin(uap->ss, &ss, sizeof(ss));
1664 		if (error)
1665 			return (error);
1666 	}
1667 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1668 	    (uap->oss != NULL) ? &oss : NULL);
1669 	if (error)
1670 		return (error);
1671 	if (uap->oss != NULL)
1672 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1673 	return (error);
1674 }
1675 
1676 int
1677 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1678 {
1679 	struct proc *p = td->td_proc;
1680 	int oonstack;
1681 
1682 	oonstack = sigonstack(cpu_getstack(td));
1683 
1684 	if (oss != NULL) {
1685 		*oss = td->td_sigstk;
1686 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1687 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1688 	}
1689 
1690 	if (ss != NULL) {
1691 		if (oonstack)
1692 			return (EPERM);
1693 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1694 			return (EINVAL);
1695 		if (!(ss->ss_flags & SS_DISABLE)) {
1696 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1697 				return (ENOMEM);
1698 
1699 			td->td_sigstk = *ss;
1700 			td->td_pflags |= TDP_ALTSTACK;
1701 		} else {
1702 			td->td_pflags &= ~TDP_ALTSTACK;
1703 		}
1704 	}
1705 	return (0);
1706 }
1707 
1708 struct killpg1_ctx {
1709 	struct thread *td;
1710 	ksiginfo_t *ksi;
1711 	int sig;
1712 	bool sent;
1713 	bool found;
1714 	int ret;
1715 };
1716 
1717 static void
1718 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1719 {
1720 	int err;
1721 
1722 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1723 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1724 		return;
1725 	PROC_LOCK(p);
1726 	err = p_cansignal(arg->td, p, arg->sig);
1727 	if (err == 0 && arg->sig != 0)
1728 		pksignal(p, arg->sig, arg->ksi);
1729 	PROC_UNLOCK(p);
1730 	if (err != ESRCH)
1731 		arg->found = true;
1732 	if (err == 0)
1733 		arg->sent = true;
1734 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1735 		arg->ret = err;
1736 }
1737 
1738 /*
1739  * Common code for kill process group/broadcast kill.
1740  * cp is calling process.
1741  */
1742 static int
1743 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1744 {
1745 	struct proc *p;
1746 	struct pgrp *pgrp;
1747 	struct killpg1_ctx arg;
1748 
1749 	arg.td = td;
1750 	arg.ksi = ksi;
1751 	arg.sig = sig;
1752 	arg.sent = false;
1753 	arg.found = false;
1754 	arg.ret = 0;
1755 	if (all) {
1756 		/*
1757 		 * broadcast
1758 		 */
1759 		sx_slock(&allproc_lock);
1760 		FOREACH_PROC_IN_SYSTEM(p) {
1761 			killpg1_sendsig(p, true, &arg);
1762 		}
1763 		sx_sunlock(&allproc_lock);
1764 	} else {
1765 		sx_slock(&proctree_lock);
1766 		if (pgid == 0) {
1767 			/*
1768 			 * zero pgid means send to my process group.
1769 			 */
1770 			pgrp = td->td_proc->p_pgrp;
1771 			PGRP_LOCK(pgrp);
1772 		} else {
1773 			pgrp = pgfind(pgid);
1774 			if (pgrp == NULL) {
1775 				sx_sunlock(&proctree_lock);
1776 				return (ESRCH);
1777 			}
1778 		}
1779 		sx_sunlock(&proctree_lock);
1780 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1781 			killpg1_sendsig(p, false, &arg);
1782 		}
1783 		PGRP_UNLOCK(pgrp);
1784 	}
1785 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1786 	if (arg.ret == 0 && !arg.sent)
1787 		arg.ret = arg.found ? EPERM : ESRCH;
1788 	return (arg.ret);
1789 }
1790 
1791 #ifndef _SYS_SYSPROTO_H_
1792 struct kill_args {
1793 	int	pid;
1794 	int	signum;
1795 };
1796 #endif
1797 /* ARGSUSED */
1798 int
1799 sys_kill(struct thread *td, struct kill_args *uap)
1800 {
1801 
1802 	return (kern_kill(td, uap->pid, uap->signum));
1803 }
1804 
1805 int
1806 kern_kill(struct thread *td, pid_t pid, int signum)
1807 {
1808 	ksiginfo_t ksi;
1809 	struct proc *p;
1810 	int error;
1811 
1812 	/*
1813 	 * A process in capability mode can send signals only to himself.
1814 	 * The main rationale behind this is that abort(3) is implemented as
1815 	 * kill(getpid(), SIGABRT).
1816 	 */
1817 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1818 		return (ECAPMODE);
1819 
1820 	AUDIT_ARG_SIGNUM(signum);
1821 	AUDIT_ARG_PID(pid);
1822 	if ((u_int)signum > _SIG_MAXSIG)
1823 		return (EINVAL);
1824 
1825 	ksiginfo_init(&ksi);
1826 	ksi.ksi_signo = signum;
1827 	ksi.ksi_code = SI_USER;
1828 	ksi.ksi_pid = td->td_proc->p_pid;
1829 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1830 
1831 	if (pid > 0) {
1832 		/* kill single process */
1833 		if ((p = pfind_any(pid)) == NULL)
1834 			return (ESRCH);
1835 		AUDIT_ARG_PROCESS(p);
1836 		error = p_cansignal(td, p, signum);
1837 		if (error == 0 && signum)
1838 			pksignal(p, signum, &ksi);
1839 		PROC_UNLOCK(p);
1840 		return (error);
1841 	}
1842 	switch (pid) {
1843 	case -1:		/* broadcast signal */
1844 		return (killpg1(td, signum, 0, 1, &ksi));
1845 	case 0:			/* signal own process group */
1846 		return (killpg1(td, signum, 0, 0, &ksi));
1847 	default:		/* negative explicit process group */
1848 		return (killpg1(td, signum, -pid, 0, &ksi));
1849 	}
1850 	/* NOTREACHED */
1851 }
1852 
1853 int
1854 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1855 {
1856 	struct proc *p;
1857 	int error;
1858 
1859 	AUDIT_ARG_SIGNUM(uap->signum);
1860 	AUDIT_ARG_FD(uap->fd);
1861 	if ((u_int)uap->signum > _SIG_MAXSIG)
1862 		return (EINVAL);
1863 
1864 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1865 	if (error)
1866 		return (error);
1867 	AUDIT_ARG_PROCESS(p);
1868 	error = p_cansignal(td, p, uap->signum);
1869 	if (error == 0 && uap->signum)
1870 		kern_psignal(p, uap->signum);
1871 	PROC_UNLOCK(p);
1872 	return (error);
1873 }
1874 
1875 #if defined(COMPAT_43)
1876 #ifndef _SYS_SYSPROTO_H_
1877 struct okillpg_args {
1878 	int	pgid;
1879 	int	signum;
1880 };
1881 #endif
1882 /* ARGSUSED */
1883 int
1884 okillpg(struct thread *td, struct okillpg_args *uap)
1885 {
1886 	ksiginfo_t ksi;
1887 
1888 	AUDIT_ARG_SIGNUM(uap->signum);
1889 	AUDIT_ARG_PID(uap->pgid);
1890 	if ((u_int)uap->signum > _SIG_MAXSIG)
1891 		return (EINVAL);
1892 
1893 	ksiginfo_init(&ksi);
1894 	ksi.ksi_signo = uap->signum;
1895 	ksi.ksi_code = SI_USER;
1896 	ksi.ksi_pid = td->td_proc->p_pid;
1897 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1898 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1899 }
1900 #endif /* COMPAT_43 */
1901 
1902 #ifndef _SYS_SYSPROTO_H_
1903 struct sigqueue_args {
1904 	pid_t pid;
1905 	int signum;
1906 	/* union sigval */ void *value;
1907 };
1908 #endif
1909 int
1910 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1911 {
1912 	union sigval sv;
1913 
1914 	sv.sival_ptr = uap->value;
1915 
1916 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1917 }
1918 
1919 int
1920 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1921 {
1922 	ksiginfo_t ksi;
1923 	struct proc *p;
1924 	int error;
1925 
1926 	if ((u_int)signum > _SIG_MAXSIG)
1927 		return (EINVAL);
1928 
1929 	/*
1930 	 * Specification says sigqueue can only send signal to
1931 	 * single process.
1932 	 */
1933 	if (pid <= 0)
1934 		return (EINVAL);
1935 
1936 	if ((p = pfind_any(pid)) == NULL)
1937 		return (ESRCH);
1938 	error = p_cansignal(td, p, signum);
1939 	if (error == 0 && signum != 0) {
1940 		ksiginfo_init(&ksi);
1941 		ksi.ksi_flags = KSI_SIGQ;
1942 		ksi.ksi_signo = signum;
1943 		ksi.ksi_code = SI_QUEUE;
1944 		ksi.ksi_pid = td->td_proc->p_pid;
1945 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1946 		ksi.ksi_value = *value;
1947 		error = pksignal(p, ksi.ksi_signo, &ksi);
1948 	}
1949 	PROC_UNLOCK(p);
1950 	return (error);
1951 }
1952 
1953 /*
1954  * Send a signal to a process group.
1955  */
1956 void
1957 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1958 {
1959 	struct pgrp *pgrp;
1960 
1961 	if (pgid != 0) {
1962 		sx_slock(&proctree_lock);
1963 		pgrp = pgfind(pgid);
1964 		sx_sunlock(&proctree_lock);
1965 		if (pgrp != NULL) {
1966 			pgsignal(pgrp, sig, 0, ksi);
1967 			PGRP_UNLOCK(pgrp);
1968 		}
1969 	}
1970 }
1971 
1972 /*
1973  * Send a signal to a process group.  If checktty is 1,
1974  * limit to members which have a controlling terminal.
1975  */
1976 void
1977 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1978 {
1979 	struct proc *p;
1980 
1981 	if (pgrp) {
1982 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1983 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1984 			PROC_LOCK(p);
1985 			if (p->p_state == PRS_NORMAL &&
1986 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1987 				pksignal(p, sig, ksi);
1988 			PROC_UNLOCK(p);
1989 		}
1990 	}
1991 }
1992 
1993 /*
1994  * Recalculate the signal mask and reset the signal disposition after
1995  * usermode frame for delivery is formed.  Should be called after
1996  * mach-specific routine, because sysent->sv_sendsig() needs correct
1997  * ps_siginfo and signal mask.
1998  */
1999 static void
2000 postsig_done(int sig, struct thread *td, struct sigacts *ps)
2001 {
2002 	sigset_t mask;
2003 
2004 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2005 	td->td_ru.ru_nsignals++;
2006 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
2007 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
2008 		SIGADDSET(mask, sig);
2009 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2010 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2011 	if (SIGISMEMBER(ps->ps_sigreset, sig))
2012 		sigdflt(ps, sig);
2013 }
2014 
2015 /*
2016  * Send a signal caused by a trap to the current thread.  If it will be
2017  * caught immediately, deliver it with correct code.  Otherwise, post it
2018  * normally.
2019  */
2020 void
2021 trapsignal(struct thread *td, ksiginfo_t *ksi)
2022 {
2023 	struct sigacts *ps;
2024 	struct proc *p;
2025 	sigset_t sigmask;
2026 	int code, sig;
2027 
2028 	p = td->td_proc;
2029 	sig = ksi->ksi_signo;
2030 	code = ksi->ksi_code;
2031 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2032 
2033 	sigfastblock_fetch(td);
2034 	PROC_LOCK(p);
2035 	ps = p->p_sigacts;
2036 	mtx_lock(&ps->ps_mtx);
2037 	sigmask = td->td_sigmask;
2038 	if (td->td_sigblock_val != 0)
2039 		SIGSETOR(sigmask, fastblock_mask);
2040 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2041 	    !SIGISMEMBER(sigmask, sig)) {
2042 #ifdef KTRACE
2043 		if (KTRPOINT(curthread, KTR_PSIG))
2044 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2045 			    &td->td_sigmask, code);
2046 #endif
2047 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2048 				ksi, &td->td_sigmask);
2049 		postsig_done(sig, td, ps);
2050 		mtx_unlock(&ps->ps_mtx);
2051 	} else {
2052 		/*
2053 		 * Avoid a possible infinite loop if the thread
2054 		 * masking the signal or process is ignoring the
2055 		 * signal.
2056 		 */
2057 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2058 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2059 			SIGDELSET(td->td_sigmask, sig);
2060 			SIGDELSET(ps->ps_sigcatch, sig);
2061 			SIGDELSET(ps->ps_sigignore, sig);
2062 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2063 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2064 			td->td_sigblock_val = 0;
2065 		}
2066 		mtx_unlock(&ps->ps_mtx);
2067 		p->p_sig = sig;		/* XXX to verify code */
2068 		tdsendsignal(p, td, sig, ksi);
2069 	}
2070 	PROC_UNLOCK(p);
2071 }
2072 
2073 static struct thread *
2074 sigtd(struct proc *p, int sig, bool fast_sigblock)
2075 {
2076 	struct thread *td, *signal_td;
2077 
2078 	PROC_LOCK_ASSERT(p, MA_OWNED);
2079 	MPASS(!fast_sigblock || p == curproc);
2080 
2081 	/*
2082 	 * Check if current thread can handle the signal without
2083 	 * switching context to another thread.
2084 	 */
2085 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2086 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2087 		return (curthread);
2088 	signal_td = NULL;
2089 	FOREACH_THREAD_IN_PROC(p, td) {
2090 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2091 		    td != curthread || td->td_sigblock_val == 0)) {
2092 			signal_td = td;
2093 			break;
2094 		}
2095 	}
2096 	if (signal_td == NULL)
2097 		signal_td = FIRST_THREAD_IN_PROC(p);
2098 	return (signal_td);
2099 }
2100 
2101 /*
2102  * Send the signal to the process.  If the signal has an action, the action
2103  * is usually performed by the target process rather than the caller; we add
2104  * the signal to the set of pending signals for the process.
2105  *
2106  * Exceptions:
2107  *   o When a stop signal is sent to a sleeping process that takes the
2108  *     default action, the process is stopped without awakening it.
2109  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2110  *     regardless of the signal action (eg, blocked or ignored).
2111  *
2112  * Other ignored signals are discarded immediately.
2113  *
2114  * NB: This function may be entered from the debugger via the "kill" DDB
2115  * command.  There is little that can be done to mitigate the possibly messy
2116  * side effects of this unwise possibility.
2117  */
2118 void
2119 kern_psignal(struct proc *p, int sig)
2120 {
2121 	ksiginfo_t ksi;
2122 
2123 	ksiginfo_init(&ksi);
2124 	ksi.ksi_signo = sig;
2125 	ksi.ksi_code = SI_KERNEL;
2126 	(void) tdsendsignal(p, NULL, sig, &ksi);
2127 }
2128 
2129 int
2130 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2131 {
2132 
2133 	return (tdsendsignal(p, NULL, sig, ksi));
2134 }
2135 
2136 /* Utility function for finding a thread to send signal event to. */
2137 int
2138 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2139 {
2140 	struct thread *td;
2141 
2142 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2143 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2144 		if (td == NULL)
2145 			return (ESRCH);
2146 		*ttd = td;
2147 	} else {
2148 		*ttd = NULL;
2149 		PROC_LOCK(p);
2150 	}
2151 	return (0);
2152 }
2153 
2154 void
2155 tdsignal(struct thread *td, int sig)
2156 {
2157 	ksiginfo_t ksi;
2158 
2159 	ksiginfo_init(&ksi);
2160 	ksi.ksi_signo = sig;
2161 	ksi.ksi_code = SI_KERNEL;
2162 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2163 }
2164 
2165 void
2166 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2167 {
2168 
2169 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2170 }
2171 
2172 int
2173 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2174 {
2175 	sig_t action;
2176 	sigqueue_t *sigqueue;
2177 	int prop;
2178 	struct sigacts *ps;
2179 	int intrval;
2180 	int ret = 0;
2181 	int wakeup_swapper;
2182 
2183 	MPASS(td == NULL || p == td->td_proc);
2184 	PROC_LOCK_ASSERT(p, MA_OWNED);
2185 
2186 	if (!_SIG_VALID(sig))
2187 		panic("%s(): invalid signal %d", __func__, sig);
2188 
2189 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2190 
2191 	/*
2192 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2193 	 */
2194 	if (p->p_state == PRS_ZOMBIE) {
2195 		if (ksi && (ksi->ksi_flags & KSI_INS))
2196 			ksiginfo_tryfree(ksi);
2197 		return (ret);
2198 	}
2199 
2200 	ps = p->p_sigacts;
2201 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2202 	prop = sigprop(sig);
2203 
2204 	if (td == NULL) {
2205 		td = sigtd(p, sig, false);
2206 		sigqueue = &p->p_sigqueue;
2207 	} else
2208 		sigqueue = &td->td_sigqueue;
2209 
2210 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2211 
2212 	/*
2213 	 * If the signal is being ignored, then we forget about it
2214 	 * immediately, except when the target process executes
2215 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2216 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2217 	 */
2218 	mtx_lock(&ps->ps_mtx);
2219 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2220 		if (kern_sig_discard_ign &&
2221 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2222 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2223 
2224 			mtx_unlock(&ps->ps_mtx);
2225 			if (ksi && (ksi->ksi_flags & KSI_INS))
2226 				ksiginfo_tryfree(ksi);
2227 			return (ret);
2228 		} else {
2229 			action = SIG_CATCH;
2230 		}
2231 	} else if (SIGISMEMBER(td->td_sigmask, sig))
2232 		action = SIG_HOLD;
2233 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2234 		action = SIG_CATCH;
2235 	else
2236 		action = SIG_DFL;
2237 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2238 		intrval = EINTR;
2239 	else
2240 		intrval = ERESTART;
2241 	mtx_unlock(&ps->ps_mtx);
2242 
2243 	if (prop & SIGPROP_CONT)
2244 		sigqueue_delete_stopmask_proc(p);
2245 	else if (prop & SIGPROP_STOP) {
2246 		/*
2247 		 * If sending a tty stop signal to a member of an orphaned
2248 		 * process group, discard the signal here if the action
2249 		 * is default; don't stop the process below if sleeping,
2250 		 * and don't clear any pending SIGCONT.
2251 		 */
2252 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2253 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2254 		    action == SIG_DFL) {
2255 			if (ksi && (ksi->ksi_flags & KSI_INS))
2256 				ksiginfo_tryfree(ksi);
2257 			return (ret);
2258 		}
2259 		sigqueue_delete_proc(p, SIGCONT);
2260 		if (p->p_flag & P_CONTINUED) {
2261 			p->p_flag &= ~P_CONTINUED;
2262 			PROC_LOCK(p->p_pptr);
2263 			sigqueue_take(p->p_ksi);
2264 			PROC_UNLOCK(p->p_pptr);
2265 		}
2266 	}
2267 
2268 	ret = sigqueue_add(sigqueue, sig, ksi);
2269 	if (ret != 0)
2270 		return (ret);
2271 	signotify(td);
2272 	/*
2273 	 * Defer further processing for signals which are held,
2274 	 * except that stopped processes must be continued by SIGCONT.
2275 	 */
2276 	if (action == SIG_HOLD &&
2277 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2278 		return (ret);
2279 
2280 	wakeup_swapper = 0;
2281 
2282 	/*
2283 	 * Some signals have a process-wide effect and a per-thread
2284 	 * component.  Most processing occurs when the process next
2285 	 * tries to cross the user boundary, however there are some
2286 	 * times when processing needs to be done immediately, such as
2287 	 * waking up threads so that they can cross the user boundary.
2288 	 * We try to do the per-process part here.
2289 	 */
2290 	if (P_SHOULDSTOP(p)) {
2291 		KASSERT(!(p->p_flag & P_WEXIT),
2292 		    ("signal to stopped but exiting process"));
2293 		if (sig == SIGKILL) {
2294 			/*
2295 			 * If traced process is already stopped,
2296 			 * then no further action is necessary.
2297 			 */
2298 			if (p->p_flag & P_TRACED)
2299 				goto out;
2300 			/*
2301 			 * SIGKILL sets process running.
2302 			 * It will die elsewhere.
2303 			 * All threads must be restarted.
2304 			 */
2305 			p->p_flag &= ~P_STOPPED_SIG;
2306 			goto runfast;
2307 		}
2308 
2309 		if (prop & SIGPROP_CONT) {
2310 			/*
2311 			 * If traced process is already stopped,
2312 			 * then no further action is necessary.
2313 			 */
2314 			if (p->p_flag & P_TRACED)
2315 				goto out;
2316 			/*
2317 			 * If SIGCONT is default (or ignored), we continue the
2318 			 * process but don't leave the signal in sigqueue as
2319 			 * it has no further action.  If SIGCONT is held, we
2320 			 * continue the process and leave the signal in
2321 			 * sigqueue.  If the process catches SIGCONT, let it
2322 			 * handle the signal itself.  If it isn't waiting on
2323 			 * an event, it goes back to run state.
2324 			 * Otherwise, process goes back to sleep state.
2325 			 */
2326 			p->p_flag &= ~P_STOPPED_SIG;
2327 			PROC_SLOCK(p);
2328 			if (p->p_numthreads == p->p_suspcount) {
2329 				PROC_SUNLOCK(p);
2330 				p->p_flag |= P_CONTINUED;
2331 				p->p_xsig = SIGCONT;
2332 				PROC_LOCK(p->p_pptr);
2333 				childproc_continued(p);
2334 				PROC_UNLOCK(p->p_pptr);
2335 				PROC_SLOCK(p);
2336 			}
2337 			if (action == SIG_DFL) {
2338 				thread_unsuspend(p);
2339 				PROC_SUNLOCK(p);
2340 				sigqueue_delete(sigqueue, sig);
2341 				goto out_cont;
2342 			}
2343 			if (action == SIG_CATCH) {
2344 				/*
2345 				 * The process wants to catch it so it needs
2346 				 * to run at least one thread, but which one?
2347 				 */
2348 				PROC_SUNLOCK(p);
2349 				goto runfast;
2350 			}
2351 			/*
2352 			 * The signal is not ignored or caught.
2353 			 */
2354 			thread_unsuspend(p);
2355 			PROC_SUNLOCK(p);
2356 			goto out_cont;
2357 		}
2358 
2359 		if (prop & SIGPROP_STOP) {
2360 			/*
2361 			 * If traced process is already stopped,
2362 			 * then no further action is necessary.
2363 			 */
2364 			if (p->p_flag & P_TRACED)
2365 				goto out;
2366 			/*
2367 			 * Already stopped, don't need to stop again
2368 			 * (If we did the shell could get confused).
2369 			 * Just make sure the signal STOP bit set.
2370 			 */
2371 			p->p_flag |= P_STOPPED_SIG;
2372 			sigqueue_delete(sigqueue, sig);
2373 			goto out;
2374 		}
2375 
2376 		/*
2377 		 * All other kinds of signals:
2378 		 * If a thread is sleeping interruptibly, simulate a
2379 		 * wakeup so that when it is continued it will be made
2380 		 * runnable and can look at the signal.  However, don't make
2381 		 * the PROCESS runnable, leave it stopped.
2382 		 * It may run a bit until it hits a thread_suspend_check().
2383 		 */
2384 		PROC_SLOCK(p);
2385 		thread_lock(td);
2386 		if (TD_CAN_ABORT(td))
2387 			wakeup_swapper = sleepq_abort(td, intrval);
2388 		else
2389 			thread_unlock(td);
2390 		PROC_SUNLOCK(p);
2391 		goto out;
2392 		/*
2393 		 * Mutexes are short lived. Threads waiting on them will
2394 		 * hit thread_suspend_check() soon.
2395 		 */
2396 	} else if (p->p_state == PRS_NORMAL) {
2397 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2398 			tdsigwakeup(td, sig, action, intrval);
2399 			goto out;
2400 		}
2401 
2402 		MPASS(action == SIG_DFL);
2403 
2404 		if (prop & SIGPROP_STOP) {
2405 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2406 				goto out;
2407 			p->p_flag |= P_STOPPED_SIG;
2408 			p->p_xsig = sig;
2409 			PROC_SLOCK(p);
2410 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2411 			if (p->p_numthreads == p->p_suspcount) {
2412 				/*
2413 				 * only thread sending signal to another
2414 				 * process can reach here, if thread is sending
2415 				 * signal to its process, because thread does
2416 				 * not suspend itself here, p_numthreads
2417 				 * should never be equal to p_suspcount.
2418 				 */
2419 				thread_stopped(p);
2420 				PROC_SUNLOCK(p);
2421 				sigqueue_delete_proc(p, p->p_xsig);
2422 			} else
2423 				PROC_SUNLOCK(p);
2424 			goto out;
2425 		}
2426 	} else {
2427 		/* Not in "NORMAL" state. discard the signal. */
2428 		sigqueue_delete(sigqueue, sig);
2429 		goto out;
2430 	}
2431 
2432 	/*
2433 	 * The process is not stopped so we need to apply the signal to all the
2434 	 * running threads.
2435 	 */
2436 runfast:
2437 	tdsigwakeup(td, sig, action, intrval);
2438 	PROC_SLOCK(p);
2439 	thread_unsuspend(p);
2440 	PROC_SUNLOCK(p);
2441 out_cont:
2442 	itimer_proc_continue(p);
2443 	kqtimer_proc_continue(p);
2444 out:
2445 	/* If we jump here, proc slock should not be owned. */
2446 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2447 	if (wakeup_swapper)
2448 		kick_proc0();
2449 
2450 	return (ret);
2451 }
2452 
2453 /*
2454  * The force of a signal has been directed against a single
2455  * thread.  We need to see what we can do about knocking it
2456  * out of any sleep it may be in etc.
2457  */
2458 static void
2459 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2460 {
2461 	struct proc *p = td->td_proc;
2462 	int prop, wakeup_swapper;
2463 
2464 	PROC_LOCK_ASSERT(p, MA_OWNED);
2465 	prop = sigprop(sig);
2466 
2467 	PROC_SLOCK(p);
2468 	thread_lock(td);
2469 	/*
2470 	 * Bring the priority of a thread up if we want it to get
2471 	 * killed in this lifetime.  Be careful to avoid bumping the
2472 	 * priority of the idle thread, since we still allow to signal
2473 	 * kernel processes.
2474 	 */
2475 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2476 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2477 		sched_prio(td, PUSER);
2478 	if (TD_ON_SLEEPQ(td)) {
2479 		/*
2480 		 * If thread is sleeping uninterruptibly
2481 		 * we can't interrupt the sleep... the signal will
2482 		 * be noticed when the process returns through
2483 		 * trap() or syscall().
2484 		 */
2485 		if ((td->td_flags & TDF_SINTR) == 0)
2486 			goto out;
2487 		/*
2488 		 * If SIGCONT is default (or ignored) and process is
2489 		 * asleep, we are finished; the process should not
2490 		 * be awakened.
2491 		 */
2492 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2493 			thread_unlock(td);
2494 			PROC_SUNLOCK(p);
2495 			sigqueue_delete(&p->p_sigqueue, sig);
2496 			/*
2497 			 * It may be on either list in this state.
2498 			 * Remove from both for now.
2499 			 */
2500 			sigqueue_delete(&td->td_sigqueue, sig);
2501 			return;
2502 		}
2503 
2504 		/*
2505 		 * Don't awaken a sleeping thread for SIGSTOP if the
2506 		 * STOP signal is deferred.
2507 		 */
2508 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2509 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2510 			goto out;
2511 
2512 		/*
2513 		 * Give low priority threads a better chance to run.
2514 		 */
2515 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2516 			sched_prio(td, PUSER);
2517 
2518 		wakeup_swapper = sleepq_abort(td, intrval);
2519 		PROC_SUNLOCK(p);
2520 		if (wakeup_swapper)
2521 			kick_proc0();
2522 		return;
2523 	}
2524 
2525 	/*
2526 	 * Other states do nothing with the signal immediately,
2527 	 * other than kicking ourselves if we are running.
2528 	 * It will either never be noticed, or noticed very soon.
2529 	 */
2530 #ifdef SMP
2531 	if (TD_IS_RUNNING(td) && td != curthread)
2532 		forward_signal(td);
2533 #endif
2534 
2535 out:
2536 	PROC_SUNLOCK(p);
2537 	thread_unlock(td);
2538 }
2539 
2540 static void
2541 ptrace_coredump(struct thread *td)
2542 {
2543 	struct proc *p;
2544 	struct thr_coredump_req *tcq;
2545 	void *rl_cookie;
2546 
2547 	MPASS(td == curthread);
2548 	p = td->td_proc;
2549 	PROC_LOCK_ASSERT(p, MA_OWNED);
2550 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2551 		return;
2552 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2553 
2554 	tcq = td->td_coredump;
2555 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2556 
2557 	if (p->p_sysent->sv_coredump == NULL) {
2558 		tcq->tc_error = ENOSYS;
2559 		goto wake;
2560 	}
2561 
2562 	PROC_UNLOCK(p);
2563 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2564 
2565 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2566 	    tcq->tc_limit, tcq->tc_flags);
2567 
2568 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2569 	PROC_LOCK(p);
2570 wake:
2571 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2572 	td->td_coredump = NULL;
2573 	wakeup(p);
2574 }
2575 
2576 static int
2577 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2578 {
2579 	struct thread *td2;
2580 	int wakeup_swapper;
2581 
2582 	PROC_LOCK_ASSERT(p, MA_OWNED);
2583 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2584 	MPASS(sending || td == curthread);
2585 
2586 	wakeup_swapper = 0;
2587 	FOREACH_THREAD_IN_PROC(p, td2) {
2588 		thread_lock(td2);
2589 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2590 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2591 		    (td2->td_flags & TDF_SINTR)) {
2592 			if (td2->td_flags & TDF_SBDRY) {
2593 				/*
2594 				 * Once a thread is asleep with
2595 				 * TDF_SBDRY and without TDF_SERESTART
2596 				 * or TDF_SEINTR set, it should never
2597 				 * become suspended due to this check.
2598 				 */
2599 				KASSERT(!TD_IS_SUSPENDED(td2),
2600 				    ("thread with deferred stops suspended"));
2601 				if (TD_SBDRY_INTR(td2)) {
2602 					wakeup_swapper |= sleepq_abort(td2,
2603 					    TD_SBDRY_ERRNO(td2));
2604 					continue;
2605 				}
2606 			} else if (!TD_IS_SUSPENDED(td2))
2607 				thread_suspend_one(td2);
2608 		} else if (!TD_IS_SUSPENDED(td2)) {
2609 			if (sending || td != td2)
2610 				td2->td_flags |= TDF_ASTPENDING;
2611 #ifdef SMP
2612 			if (TD_IS_RUNNING(td2) && td2 != td)
2613 				forward_signal(td2);
2614 #endif
2615 		}
2616 		thread_unlock(td2);
2617 	}
2618 	return (wakeup_swapper);
2619 }
2620 
2621 /*
2622  * Stop the process for an event deemed interesting to the debugger. If si is
2623  * non-NULL, this is a signal exchange; the new signal requested by the
2624  * debugger will be returned for handling. If si is NULL, this is some other
2625  * type of interesting event. The debugger may request a signal be delivered in
2626  * that case as well, however it will be deferred until it can be handled.
2627  */
2628 int
2629 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2630 {
2631 	struct proc *p = td->td_proc;
2632 	struct thread *td2;
2633 	ksiginfo_t ksi;
2634 
2635 	PROC_LOCK_ASSERT(p, MA_OWNED);
2636 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2637 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2638 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2639 
2640 	td->td_xsig = sig;
2641 
2642 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2643 		td->td_dbgflags |= TDB_XSIG;
2644 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2645 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2646 		PROC_SLOCK(p);
2647 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2648 			if (P_KILLED(p)) {
2649 				/*
2650 				 * Ensure that, if we've been PT_KILLed, the
2651 				 * exit status reflects that. Another thread
2652 				 * may also be in ptracestop(), having just
2653 				 * received the SIGKILL, but this thread was
2654 				 * unsuspended first.
2655 				 */
2656 				td->td_dbgflags &= ~TDB_XSIG;
2657 				td->td_xsig = SIGKILL;
2658 				p->p_ptevents = 0;
2659 				break;
2660 			}
2661 			if (p->p_flag & P_SINGLE_EXIT &&
2662 			    !(td->td_dbgflags & TDB_EXIT)) {
2663 				/*
2664 				 * Ignore ptrace stops except for thread exit
2665 				 * events when the process exits.
2666 				 */
2667 				td->td_dbgflags &= ~TDB_XSIG;
2668 				PROC_SUNLOCK(p);
2669 				return (0);
2670 			}
2671 
2672 			/*
2673 			 * Make wait(2) work.  Ensure that right after the
2674 			 * attach, the thread which was decided to become the
2675 			 * leader of attach gets reported to the waiter.
2676 			 * Otherwise, just avoid overwriting another thread's
2677 			 * assignment to p_xthread.  If another thread has
2678 			 * already set p_xthread, the current thread will get
2679 			 * a chance to report itself upon the next iteration.
2680 			 */
2681 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2682 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2683 			    p->p_xthread == NULL)) {
2684 				p->p_xsig = sig;
2685 				p->p_xthread = td;
2686 
2687 				/*
2688 				 * If we are on sleepqueue already,
2689 				 * let sleepqueue code decide if it
2690 				 * needs to go sleep after attach.
2691 				 */
2692 				if (td->td_wchan == NULL)
2693 					td->td_dbgflags &= ~TDB_FSTP;
2694 
2695 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2696 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2697 				sig_suspend_threads(td, p, 0);
2698 			}
2699 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2700 				td->td_dbgflags &= ~TDB_STOPATFORK;
2701 			}
2702 stopme:
2703 			td->td_dbgflags |= TDB_SSWITCH;
2704 			thread_suspend_switch(td, p);
2705 			td->td_dbgflags &= ~TDB_SSWITCH;
2706 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2707 				PROC_SUNLOCK(p);
2708 				ptrace_coredump(td);
2709 				PROC_SLOCK(p);
2710 				goto stopme;
2711 			}
2712 			if (p->p_xthread == td)
2713 				p->p_xthread = NULL;
2714 			if (!(p->p_flag & P_TRACED))
2715 				break;
2716 			if (td->td_dbgflags & TDB_SUSPEND) {
2717 				if (p->p_flag & P_SINGLE_EXIT)
2718 					break;
2719 				goto stopme;
2720 			}
2721 		}
2722 		PROC_SUNLOCK(p);
2723 	}
2724 
2725 	if (si != NULL && sig == td->td_xsig) {
2726 		/* Parent wants us to take the original signal unchanged. */
2727 		si->ksi_flags |= KSI_HEAD;
2728 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2729 			si->ksi_signo = 0;
2730 	} else if (td->td_xsig != 0) {
2731 		/*
2732 		 * If parent wants us to take a new signal, then it will leave
2733 		 * it in td->td_xsig; otherwise we just look for signals again.
2734 		 */
2735 		ksiginfo_init(&ksi);
2736 		ksi.ksi_signo = td->td_xsig;
2737 		ksi.ksi_flags |= KSI_PTRACE;
2738 		td2 = sigtd(p, td->td_xsig, false);
2739 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2740 		if (td != td2)
2741 			return (0);
2742 	}
2743 
2744 	return (td->td_xsig);
2745 }
2746 
2747 static void
2748 reschedule_signals(struct proc *p, sigset_t block, int flags)
2749 {
2750 	struct sigacts *ps;
2751 	struct thread *td;
2752 	int sig;
2753 	bool fastblk, pslocked;
2754 
2755 	PROC_LOCK_ASSERT(p, MA_OWNED);
2756 	ps = p->p_sigacts;
2757 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2758 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2759 	if (SIGISEMPTY(p->p_siglist))
2760 		return;
2761 	SIGSETAND(block, p->p_siglist);
2762 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2763 	while ((sig = sig_ffs(&block)) != 0) {
2764 		SIGDELSET(block, sig);
2765 		td = sigtd(p, sig, fastblk);
2766 
2767 		/*
2768 		 * If sigtd() selected us despite sigfastblock is
2769 		 * blocking, do not activate AST or wake us, to avoid
2770 		 * loop in AST handler.
2771 		 */
2772 		if (fastblk && td == curthread)
2773 			continue;
2774 
2775 		signotify(td);
2776 		if (!pslocked)
2777 			mtx_lock(&ps->ps_mtx);
2778 		if (p->p_flag & P_TRACED ||
2779 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2780 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2781 			tdsigwakeup(td, sig, SIG_CATCH,
2782 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2783 			    ERESTART));
2784 		}
2785 		if (!pslocked)
2786 			mtx_unlock(&ps->ps_mtx);
2787 	}
2788 }
2789 
2790 void
2791 tdsigcleanup(struct thread *td)
2792 {
2793 	struct proc *p;
2794 	sigset_t unblocked;
2795 
2796 	p = td->td_proc;
2797 	PROC_LOCK_ASSERT(p, MA_OWNED);
2798 
2799 	sigqueue_flush(&td->td_sigqueue);
2800 	if (p->p_numthreads == 1)
2801 		return;
2802 
2803 	/*
2804 	 * Since we cannot handle signals, notify signal post code
2805 	 * about this by filling the sigmask.
2806 	 *
2807 	 * Also, if needed, wake up thread(s) that do not block the
2808 	 * same signals as the exiting thread, since the thread might
2809 	 * have been selected for delivery and woken up.
2810 	 */
2811 	SIGFILLSET(unblocked);
2812 	SIGSETNAND(unblocked, td->td_sigmask);
2813 	SIGFILLSET(td->td_sigmask);
2814 	reschedule_signals(p, unblocked, 0);
2815 
2816 }
2817 
2818 static int
2819 sigdeferstop_curr_flags(int cflags)
2820 {
2821 
2822 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2823 	    (cflags & TDF_SBDRY) != 0);
2824 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2825 }
2826 
2827 /*
2828  * Defer the delivery of SIGSTOP for the current thread, according to
2829  * the requested mode.  Returns previous flags, which must be restored
2830  * by sigallowstop().
2831  *
2832  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2833  * cleared by the current thread, which allow the lock-less read-only
2834  * accesses below.
2835  */
2836 int
2837 sigdeferstop_impl(int mode)
2838 {
2839 	struct thread *td;
2840 	int cflags, nflags;
2841 
2842 	td = curthread;
2843 	cflags = sigdeferstop_curr_flags(td->td_flags);
2844 	switch (mode) {
2845 	case SIGDEFERSTOP_NOP:
2846 		nflags = cflags;
2847 		break;
2848 	case SIGDEFERSTOP_OFF:
2849 		nflags = 0;
2850 		break;
2851 	case SIGDEFERSTOP_SILENT:
2852 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2853 		break;
2854 	case SIGDEFERSTOP_EINTR:
2855 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2856 		break;
2857 	case SIGDEFERSTOP_ERESTART:
2858 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2859 		break;
2860 	default:
2861 		panic("sigdeferstop: invalid mode %x", mode);
2862 		break;
2863 	}
2864 	if (cflags == nflags)
2865 		return (SIGDEFERSTOP_VAL_NCHG);
2866 	thread_lock(td);
2867 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2868 	thread_unlock(td);
2869 	return (cflags);
2870 }
2871 
2872 /*
2873  * Restores the STOP handling mode, typically permitting the delivery
2874  * of SIGSTOP for the current thread.  This does not immediately
2875  * suspend if a stop was posted.  Instead, the thread will suspend
2876  * either via ast() or a subsequent interruptible sleep.
2877  */
2878 void
2879 sigallowstop_impl(int prev)
2880 {
2881 	struct thread *td;
2882 	int cflags;
2883 
2884 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2885 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2886 	    ("sigallowstop: incorrect previous mode %x", prev));
2887 	td = curthread;
2888 	cflags = sigdeferstop_curr_flags(td->td_flags);
2889 	if (cflags != prev) {
2890 		thread_lock(td);
2891 		td->td_flags = (td->td_flags & ~cflags) | prev;
2892 		thread_unlock(td);
2893 	}
2894 }
2895 
2896 /*
2897  * If the current process has received a signal (should be caught or cause
2898  * termination, should interrupt current syscall), return the signal number.
2899  * Stop signals with default action are processed immediately, then cleared;
2900  * they aren't returned.  This is checked after each entry to the system for
2901  * a syscall or trap (though this can usually be done without calling issignal
2902  * by checking the pending signal masks in cursig.) The normal call
2903  * sequence is
2904  *
2905  *	while (sig = cursig(curthread))
2906  *		postsig(sig);
2907  */
2908 static int
2909 issignal(struct thread *td)
2910 {
2911 	struct proc *p;
2912 	struct sigacts *ps;
2913 	struct sigqueue *queue;
2914 	sigset_t sigpending;
2915 	ksiginfo_t ksi;
2916 	int prop, sig;
2917 
2918 	p = td->td_proc;
2919 	ps = p->p_sigacts;
2920 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2921 	PROC_LOCK_ASSERT(p, MA_OWNED);
2922 	for (;;) {
2923 		sigpending = td->td_sigqueue.sq_signals;
2924 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2925 		SIGSETNAND(sigpending, td->td_sigmask);
2926 
2927 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2928 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2929 			SIG_STOPSIGMASK(sigpending);
2930 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2931 			return (0);
2932 
2933 		/*
2934 		 * Do fast sigblock if requested by usermode.  Since
2935 		 * we do know that there was a signal pending at this
2936 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
2937 		 * usermode to perform a dummy call to
2938 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
2939 		 * delivery of postponed pending signal.
2940 		 */
2941 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
2942 			if (td->td_sigblock_val != 0)
2943 				SIGSETNAND(sigpending, fastblock_mask);
2944 			if (SIGISEMPTY(sigpending)) {
2945 				td->td_pflags |= TDP_SIGFASTPENDING;
2946 				return (0);
2947 			}
2948 		}
2949 
2950 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2951 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2952 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2953 			/*
2954 			 * If debugger just attached, always consume
2955 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2956 			 * execute the debugger attach ritual in
2957 			 * order.
2958 			 */
2959 			sig = SIGSTOP;
2960 			td->td_dbgflags |= TDB_FSTP;
2961 		} else {
2962 			sig = sig_ffs(&sigpending);
2963 		}
2964 
2965 		/*
2966 		 * We should allow pending but ignored signals below
2967 		 * only if there is sigwait() active, or P_TRACED was
2968 		 * on when they were posted.
2969 		 */
2970 		if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2971 		    (p->p_flag & P_TRACED) == 0 &&
2972 		    (td->td_pflags2 & TDP2_SIGWAIT) == 0) {
2973 			sigqueue_delete(&td->td_sigqueue, sig);
2974 			sigqueue_delete(&p->p_sigqueue, sig);
2975 			continue;
2976 		}
2977 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2978 			/*
2979 			 * If traced, always stop.
2980 			 * Remove old signal from queue before the stop.
2981 			 * XXX shrug off debugger, it causes siginfo to
2982 			 * be thrown away.
2983 			 */
2984 			queue = &td->td_sigqueue;
2985 			ksiginfo_init(&ksi);
2986 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2987 				queue = &p->p_sigqueue;
2988 				sigqueue_get(queue, sig, &ksi);
2989 			}
2990 			td->td_si = ksi.ksi_info;
2991 
2992 			mtx_unlock(&ps->ps_mtx);
2993 			sig = ptracestop(td, sig, &ksi);
2994 			mtx_lock(&ps->ps_mtx);
2995 
2996 			td->td_si.si_signo = 0;
2997 
2998 			/*
2999 			 * Keep looking if the debugger discarded or
3000 			 * replaced the signal.
3001 			 */
3002 			if (sig == 0)
3003 				continue;
3004 
3005 			/*
3006 			 * If the signal became masked, re-queue it.
3007 			 */
3008 			if (SIGISMEMBER(td->td_sigmask, sig)) {
3009 				ksi.ksi_flags |= KSI_HEAD;
3010 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
3011 				continue;
3012 			}
3013 
3014 			/*
3015 			 * If the traced bit got turned off, requeue
3016 			 * the signal and go back up to the top to
3017 			 * rescan signals.  This ensures that p_sig*
3018 			 * and p_sigact are consistent.
3019 			 */
3020 			if ((p->p_flag & P_TRACED) == 0) {
3021 				ksi.ksi_flags |= KSI_HEAD;
3022 				sigqueue_add(queue, sig, &ksi);
3023 				continue;
3024 			}
3025 		}
3026 
3027 		prop = sigprop(sig);
3028 
3029 		/*
3030 		 * Decide whether the signal should be returned.
3031 		 * Return the signal's number, or fall through
3032 		 * to clear it from the pending mask.
3033 		 */
3034 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3035 		case (intptr_t)SIG_DFL:
3036 			/*
3037 			 * Don't take default actions on system processes.
3038 			 */
3039 			if (p->p_pid <= 1) {
3040 #ifdef DIAGNOSTIC
3041 				/*
3042 				 * Are you sure you want to ignore SIGSEGV
3043 				 * in init? XXX
3044 				 */
3045 				printf("Process (pid %lu) got signal %d\n",
3046 					(u_long)p->p_pid, sig);
3047 #endif
3048 				break;		/* == ignore */
3049 			}
3050 			/*
3051 			 * If there is a pending stop signal to process with
3052 			 * default action, stop here, then clear the signal.
3053 			 * Traced or exiting processes should ignore stops.
3054 			 * Additionally, a member of an orphaned process group
3055 			 * should ignore tty stops.
3056 			 */
3057 			if (prop & SIGPROP_STOP) {
3058 				mtx_unlock(&ps->ps_mtx);
3059 				if ((p->p_flag & (P_TRACED | P_WEXIT |
3060 				    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3061 				    pg_flags & PGRP_ORPHANED) != 0 &&
3062 				    (prop & SIGPROP_TTYSTOP) != 0)) {
3063 					mtx_lock(&ps->ps_mtx);
3064 					break;	/* == ignore */
3065 				}
3066 				if (TD_SBDRY_INTR(td)) {
3067 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
3068 					    ("lost TDF_SBDRY"));
3069 					mtx_lock(&ps->ps_mtx);
3070 					return (-1);
3071 				}
3072 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3073 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
3074 				sigqueue_delete(&td->td_sigqueue, sig);
3075 				sigqueue_delete(&p->p_sigqueue, sig);
3076 				p->p_flag |= P_STOPPED_SIG;
3077 				p->p_xsig = sig;
3078 				PROC_SLOCK(p);
3079 				sig_suspend_threads(td, p, 0);
3080 				thread_suspend_switch(td, p);
3081 				PROC_SUNLOCK(p);
3082 				mtx_lock(&ps->ps_mtx);
3083 				goto next;
3084 			} else if ((prop & SIGPROP_IGNORE) != 0 &&
3085 			    (td->td_pflags2 & TDP2_SIGWAIT) == 0) {
3086 				/*
3087 				 * Default action is to ignore; drop it if
3088 				 * not in kern_sigtimedwait().
3089 				 */
3090 				break;		/* == ignore */
3091 			} else
3092 				return (sig);
3093 			/*NOTREACHED*/
3094 
3095 		case (intptr_t)SIG_IGN:
3096 			if ((td->td_pflags2 & TDP2_SIGWAIT) == 0)
3097 				break;		/* == ignore */
3098 			else
3099 				return (sig);
3100 
3101 		default:
3102 			/*
3103 			 * This signal has an action, let
3104 			 * postsig() process it.
3105 			 */
3106 			return (sig);
3107 		}
3108 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3109 		sigqueue_delete(&p->p_sigqueue, sig);
3110 next:;
3111 	}
3112 	/* NOTREACHED */
3113 }
3114 
3115 void
3116 thread_stopped(struct proc *p)
3117 {
3118 	int n;
3119 
3120 	PROC_LOCK_ASSERT(p, MA_OWNED);
3121 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3122 	n = p->p_suspcount;
3123 	if (p == curproc)
3124 		n++;
3125 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3126 		PROC_SUNLOCK(p);
3127 		p->p_flag &= ~P_WAITED;
3128 		PROC_LOCK(p->p_pptr);
3129 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3130 			CLD_TRAPPED : CLD_STOPPED);
3131 		PROC_UNLOCK(p->p_pptr);
3132 		PROC_SLOCK(p);
3133 	}
3134 }
3135 
3136 /*
3137  * Take the action for the specified signal
3138  * from the current set of pending signals.
3139  */
3140 int
3141 postsig(int sig)
3142 {
3143 	struct thread *td;
3144 	struct proc *p;
3145 	struct sigacts *ps;
3146 	sig_t action;
3147 	ksiginfo_t ksi;
3148 	sigset_t returnmask;
3149 
3150 	KASSERT(sig != 0, ("postsig"));
3151 
3152 	td = curthread;
3153 	p = td->td_proc;
3154 	PROC_LOCK_ASSERT(p, MA_OWNED);
3155 	ps = p->p_sigacts;
3156 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3157 	ksiginfo_init(&ksi);
3158 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3159 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3160 		return (0);
3161 	ksi.ksi_signo = sig;
3162 	if (ksi.ksi_code == SI_TIMER)
3163 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3164 	action = ps->ps_sigact[_SIG_IDX(sig)];
3165 #ifdef KTRACE
3166 	if (KTRPOINT(td, KTR_PSIG))
3167 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3168 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3169 #endif
3170 
3171 	if (action == SIG_DFL) {
3172 		/*
3173 		 * Default action, where the default is to kill
3174 		 * the process.  (Other cases were ignored above.)
3175 		 */
3176 		mtx_unlock(&ps->ps_mtx);
3177 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3178 		sigexit(td, sig);
3179 		/* NOTREACHED */
3180 	} else {
3181 		/*
3182 		 * If we get here, the signal must be caught.
3183 		 */
3184 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3185 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3186 		    ("postsig action: blocked sig %d", sig));
3187 
3188 		/*
3189 		 * Set the new mask value and also defer further
3190 		 * occurrences of this signal.
3191 		 *
3192 		 * Special case: user has done a sigsuspend.  Here the
3193 		 * current mask is not of interest, but rather the
3194 		 * mask from before the sigsuspend is what we want
3195 		 * restored after the signal processing is completed.
3196 		 */
3197 		if (td->td_pflags & TDP_OLDMASK) {
3198 			returnmask = td->td_oldsigmask;
3199 			td->td_pflags &= ~TDP_OLDMASK;
3200 		} else
3201 			returnmask = td->td_sigmask;
3202 
3203 		if (p->p_sig == sig) {
3204 			p->p_sig = 0;
3205 		}
3206 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3207 		postsig_done(sig, td, ps);
3208 	}
3209 	return (1);
3210 }
3211 
3212 int
3213 sig_ast_checksusp(struct thread *td)
3214 {
3215 	struct proc *p;
3216 	int ret;
3217 
3218 	p = td->td_proc;
3219 	PROC_LOCK_ASSERT(p, MA_OWNED);
3220 
3221 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3222 		return (0);
3223 
3224 	ret = thread_suspend_check(1);
3225 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3226 	return (ret);
3227 }
3228 
3229 int
3230 sig_ast_needsigchk(struct thread *td)
3231 {
3232 	struct proc *p;
3233 	struct sigacts *ps;
3234 	int ret, sig;
3235 
3236 	p = td->td_proc;
3237 	PROC_LOCK_ASSERT(p, MA_OWNED);
3238 
3239 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3240 		return (0);
3241 
3242 	ps = p->p_sigacts;
3243 	mtx_lock(&ps->ps_mtx);
3244 	sig = cursig(td);
3245 	if (sig == -1) {
3246 		mtx_unlock(&ps->ps_mtx);
3247 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3248 		KASSERT(TD_SBDRY_INTR(td),
3249 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3250 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3251 		    (TDF_SEINTR | TDF_SERESTART),
3252 		    ("both TDF_SEINTR and TDF_SERESTART"));
3253 		ret = TD_SBDRY_ERRNO(td);
3254 	} else if (sig != 0) {
3255 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3256 		mtx_unlock(&ps->ps_mtx);
3257 	} else {
3258 		mtx_unlock(&ps->ps_mtx);
3259 		ret = 0;
3260 	}
3261 
3262 	/*
3263 	 * Do not go into sleep if this thread was the ptrace(2)
3264 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3265 	 * but we usually act on the signal by interrupting sleep, and
3266 	 * should do that here as well.
3267 	 */
3268 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3269 		if (ret == 0)
3270 			ret = EINTR;
3271 		td->td_dbgflags &= ~TDB_FSTP;
3272 	}
3273 
3274 	return (ret);
3275 }
3276 
3277 int
3278 sig_intr(void)
3279 {
3280 	struct thread *td;
3281 	struct proc *p;
3282 	int ret;
3283 
3284 	td = curthread;
3285 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3286 		return (0);
3287 
3288 	p = td->td_proc;
3289 
3290 	PROC_LOCK(p);
3291 	ret = sig_ast_checksusp(td);
3292 	if (ret == 0)
3293 		ret = sig_ast_needsigchk(td);
3294 	PROC_UNLOCK(p);
3295 	return (ret);
3296 }
3297 
3298 void
3299 proc_wkilled(struct proc *p)
3300 {
3301 
3302 	PROC_LOCK_ASSERT(p, MA_OWNED);
3303 	if ((p->p_flag & P_WKILLED) == 0) {
3304 		p->p_flag |= P_WKILLED;
3305 		/*
3306 		 * Notify swapper that there is a process to swap in.
3307 		 * The notification is racy, at worst it would take 10
3308 		 * seconds for the swapper process to notice.
3309 		 */
3310 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3311 			wakeup(&proc0);
3312 	}
3313 }
3314 
3315 /*
3316  * Kill the current process for stated reason.
3317  */
3318 void
3319 killproc(struct proc *p, const char *why)
3320 {
3321 
3322 	PROC_LOCK_ASSERT(p, MA_OWNED);
3323 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3324 	    p->p_comm);
3325 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3326 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3327 	    p->p_ucred->cr_uid, why);
3328 	proc_wkilled(p);
3329 	kern_psignal(p, SIGKILL);
3330 }
3331 
3332 /*
3333  * Force the current process to exit with the specified signal, dumping core
3334  * if appropriate.  We bypass the normal tests for masked and caught signals,
3335  * allowing unrecoverable failures to terminate the process without changing
3336  * signal state.  Mark the accounting record with the signal termination.
3337  * If dumping core, save the signal number for the debugger.  Calls exit and
3338  * does not return.
3339  */
3340 void
3341 sigexit(struct thread *td, int sig)
3342 {
3343 	struct proc *p = td->td_proc;
3344 
3345 	PROC_LOCK_ASSERT(p, MA_OWNED);
3346 	p->p_acflag |= AXSIG;
3347 	/*
3348 	 * We must be single-threading to generate a core dump.  This
3349 	 * ensures that the registers in the core file are up-to-date.
3350 	 * Also, the ELF dump handler assumes that the thread list doesn't
3351 	 * change out from under it.
3352 	 *
3353 	 * XXX If another thread attempts to single-thread before us
3354 	 *     (e.g. via fork()), we won't get a dump at all.
3355 	 */
3356 	if ((sigprop(sig) & SIGPROP_CORE) &&
3357 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3358 		p->p_sig = sig;
3359 		/*
3360 		 * Log signals which would cause core dumps
3361 		 * (Log as LOG_INFO to appease those who don't want
3362 		 * these messages.)
3363 		 * XXX : Todo, as well as euid, write out ruid too
3364 		 * Note that coredump() drops proc lock.
3365 		 */
3366 		if (coredump(td) == 0)
3367 			sig |= WCOREFLAG;
3368 		if (kern_logsigexit)
3369 			log(LOG_INFO,
3370 			    "pid %d (%s), jid %d, uid %d: exited on "
3371 			    "signal %d%s\n", p->p_pid, p->p_comm,
3372 			    p->p_ucred->cr_prison->pr_id,
3373 			    td->td_ucred->cr_uid,
3374 			    sig &~ WCOREFLAG,
3375 			    sig & WCOREFLAG ? " (core dumped)" : "");
3376 	} else
3377 		PROC_UNLOCK(p);
3378 	exit1(td, 0, sig);
3379 	/* NOTREACHED */
3380 }
3381 
3382 /*
3383  * Send queued SIGCHLD to parent when child process's state
3384  * is changed.
3385  */
3386 static void
3387 sigparent(struct proc *p, int reason, int status)
3388 {
3389 	PROC_LOCK_ASSERT(p, MA_OWNED);
3390 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3391 
3392 	if (p->p_ksi != NULL) {
3393 		p->p_ksi->ksi_signo  = SIGCHLD;
3394 		p->p_ksi->ksi_code   = reason;
3395 		p->p_ksi->ksi_status = status;
3396 		p->p_ksi->ksi_pid    = p->p_pid;
3397 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3398 		if (KSI_ONQ(p->p_ksi))
3399 			return;
3400 	}
3401 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3402 }
3403 
3404 static void
3405 childproc_jobstate(struct proc *p, int reason, int sig)
3406 {
3407 	struct sigacts *ps;
3408 
3409 	PROC_LOCK_ASSERT(p, MA_OWNED);
3410 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3411 
3412 	/*
3413 	 * Wake up parent sleeping in kern_wait(), also send
3414 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3415 	 * that parent will awake, because parent may masked
3416 	 * the signal.
3417 	 */
3418 	p->p_pptr->p_flag |= P_STATCHILD;
3419 	wakeup(p->p_pptr);
3420 
3421 	ps = p->p_pptr->p_sigacts;
3422 	mtx_lock(&ps->ps_mtx);
3423 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3424 		mtx_unlock(&ps->ps_mtx);
3425 		sigparent(p, reason, sig);
3426 	} else
3427 		mtx_unlock(&ps->ps_mtx);
3428 }
3429 
3430 void
3431 childproc_stopped(struct proc *p, int reason)
3432 {
3433 
3434 	childproc_jobstate(p, reason, p->p_xsig);
3435 }
3436 
3437 void
3438 childproc_continued(struct proc *p)
3439 {
3440 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3441 }
3442 
3443 void
3444 childproc_exited(struct proc *p)
3445 {
3446 	int reason, status;
3447 
3448 	if (WCOREDUMP(p->p_xsig)) {
3449 		reason = CLD_DUMPED;
3450 		status = WTERMSIG(p->p_xsig);
3451 	} else if (WIFSIGNALED(p->p_xsig)) {
3452 		reason = CLD_KILLED;
3453 		status = WTERMSIG(p->p_xsig);
3454 	} else {
3455 		reason = CLD_EXITED;
3456 		status = p->p_xexit;
3457 	}
3458 	/*
3459 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3460 	 * done in exit1().
3461 	 */
3462 	sigparent(p, reason, status);
3463 }
3464 
3465 #define	MAX_NUM_CORE_FILES 100000
3466 #ifndef NUM_CORE_FILES
3467 #define	NUM_CORE_FILES 5
3468 #endif
3469 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3470 static int num_cores = NUM_CORE_FILES;
3471 
3472 static int
3473 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3474 {
3475 	int error;
3476 	int new_val;
3477 
3478 	new_val = num_cores;
3479 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3480 	if (error != 0 || req->newptr == NULL)
3481 		return (error);
3482 	if (new_val > MAX_NUM_CORE_FILES)
3483 		new_val = MAX_NUM_CORE_FILES;
3484 	if (new_val < 0)
3485 		new_val = 0;
3486 	num_cores = new_val;
3487 	return (0);
3488 }
3489 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3490     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3491     sysctl_debug_num_cores_check, "I",
3492     "Maximum number of generated process corefiles while using index format");
3493 
3494 #define	GZIP_SUFFIX	".gz"
3495 #define	ZSTD_SUFFIX	".zst"
3496 
3497 int compress_user_cores = 0;
3498 
3499 static int
3500 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3501 {
3502 	int error, val;
3503 
3504 	val = compress_user_cores;
3505 	error = sysctl_handle_int(oidp, &val, 0, req);
3506 	if (error != 0 || req->newptr == NULL)
3507 		return (error);
3508 	if (val != 0 && !compressor_avail(val))
3509 		return (EINVAL);
3510 	compress_user_cores = val;
3511 	return (error);
3512 }
3513 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3514     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3515     sysctl_compress_user_cores, "I",
3516     "Enable compression of user corefiles ("
3517     __XSTRING(COMPRESS_GZIP) " = gzip, "
3518     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3519 
3520 int compress_user_cores_level = 6;
3521 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3522     &compress_user_cores_level, 0,
3523     "Corefile compression level");
3524 
3525 /*
3526  * Protect the access to corefilename[] by allproc_lock.
3527  */
3528 #define	corefilename_lock	allproc_lock
3529 
3530 static char corefilename[MAXPATHLEN] = {"%N.core"};
3531 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3532 
3533 static int
3534 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3535 {
3536 	int error;
3537 
3538 	sx_xlock(&corefilename_lock);
3539 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3540 	    req);
3541 	sx_xunlock(&corefilename_lock);
3542 
3543 	return (error);
3544 }
3545 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3546     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3547     "Process corefile name format string");
3548 
3549 static void
3550 vnode_close_locked(struct thread *td, struct vnode *vp)
3551 {
3552 
3553 	VOP_UNLOCK(vp);
3554 	vn_close(vp, FWRITE, td->td_ucred, td);
3555 }
3556 
3557 /*
3558  * If the core format has a %I in it, then we need to check
3559  * for existing corefiles before defining a name.
3560  * To do this we iterate over 0..ncores to find a
3561  * non-existing core file name to use. If all core files are
3562  * already used we choose the oldest one.
3563  */
3564 static int
3565 corefile_open_last(struct thread *td, char *name, int indexpos,
3566     int indexlen, int ncores, struct vnode **vpp)
3567 {
3568 	struct vnode *oldvp, *nextvp, *vp;
3569 	struct vattr vattr;
3570 	struct nameidata nd;
3571 	int error, i, flags, oflags, cmode;
3572 	char ch;
3573 	struct timespec lasttime;
3574 
3575 	nextvp = oldvp = NULL;
3576 	cmode = S_IRUSR | S_IWUSR;
3577 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3578 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3579 
3580 	for (i = 0; i < ncores; i++) {
3581 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3582 
3583 		ch = name[indexpos + indexlen];
3584 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3585 		    i);
3586 		name[indexpos + indexlen] = ch;
3587 
3588 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3589 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3590 		    NULL);
3591 		if (error != 0)
3592 			break;
3593 
3594 		vp = nd.ni_vp;
3595 		NDFREE(&nd, NDF_ONLY_PNBUF);
3596 		if ((flags & O_CREAT) == O_CREAT) {
3597 			nextvp = vp;
3598 			break;
3599 		}
3600 
3601 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3602 		if (error != 0) {
3603 			vnode_close_locked(td, vp);
3604 			break;
3605 		}
3606 
3607 		if (oldvp == NULL ||
3608 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3609 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3610 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3611 			if (oldvp != NULL)
3612 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3613 			oldvp = vp;
3614 			VOP_UNLOCK(oldvp);
3615 			lasttime = vattr.va_mtime;
3616 		} else {
3617 			vnode_close_locked(td, vp);
3618 		}
3619 	}
3620 
3621 	if (oldvp != NULL) {
3622 		if (nextvp == NULL) {
3623 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3624 				error = EFAULT;
3625 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3626 			} else {
3627 				nextvp = oldvp;
3628 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3629 				if (error != 0) {
3630 					vn_close(nextvp, FWRITE, td->td_ucred,
3631 					    td);
3632 					nextvp = NULL;
3633 				}
3634 			}
3635 		} else {
3636 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3637 		}
3638 	}
3639 	if (error != 0) {
3640 		if (nextvp != NULL)
3641 			vnode_close_locked(td, oldvp);
3642 	} else {
3643 		*vpp = nextvp;
3644 	}
3645 
3646 	return (error);
3647 }
3648 
3649 /*
3650  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3651  * Expand the name described in corefilename, using name, uid, and pid
3652  * and open/create core file.
3653  * corefilename is a printf-like string, with three format specifiers:
3654  *	%N	name of process ("name")
3655  *	%P	process id (pid)
3656  *	%U	user id (uid)
3657  * For example, "%N.core" is the default; they can be disabled completely
3658  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3659  * This is controlled by the sysctl variable kern.corefile (see above).
3660  */
3661 static int
3662 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3663     int compress, int signum, struct vnode **vpp, char **namep)
3664 {
3665 	struct sbuf sb;
3666 	struct nameidata nd;
3667 	const char *format;
3668 	char *hostname, *name;
3669 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3670 
3671 	hostname = NULL;
3672 	format = corefilename;
3673 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3674 	indexlen = 0;
3675 	indexpos = -1;
3676 	ncores = num_cores;
3677 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3678 	sx_slock(&corefilename_lock);
3679 	for (i = 0; format[i] != '\0'; i++) {
3680 		switch (format[i]) {
3681 		case '%':	/* Format character */
3682 			i++;
3683 			switch (format[i]) {
3684 			case '%':
3685 				sbuf_putc(&sb, '%');
3686 				break;
3687 			case 'H':	/* hostname */
3688 				if (hostname == NULL) {
3689 					hostname = malloc(MAXHOSTNAMELEN,
3690 					    M_TEMP, M_WAITOK);
3691 				}
3692 				getcredhostname(td->td_ucred, hostname,
3693 				    MAXHOSTNAMELEN);
3694 				sbuf_printf(&sb, "%s", hostname);
3695 				break;
3696 			case 'I':	/* autoincrementing index */
3697 				if (indexpos != -1) {
3698 					sbuf_printf(&sb, "%%I");
3699 					break;
3700 				}
3701 
3702 				indexpos = sbuf_len(&sb);
3703 				sbuf_printf(&sb, "%u", ncores - 1);
3704 				indexlen = sbuf_len(&sb) - indexpos;
3705 				break;
3706 			case 'N':	/* process name */
3707 				sbuf_printf(&sb, "%s", comm);
3708 				break;
3709 			case 'P':	/* process id */
3710 				sbuf_printf(&sb, "%u", pid);
3711 				break;
3712 			case 'S':	/* signal number */
3713 				sbuf_printf(&sb, "%i", signum);
3714 				break;
3715 			case 'U':	/* user id */
3716 				sbuf_printf(&sb, "%u", uid);
3717 				break;
3718 			default:
3719 				log(LOG_ERR,
3720 				    "Unknown format character %c in "
3721 				    "corename `%s'\n", format[i], format);
3722 				break;
3723 			}
3724 			break;
3725 		default:
3726 			sbuf_putc(&sb, format[i]);
3727 			break;
3728 		}
3729 	}
3730 	sx_sunlock(&corefilename_lock);
3731 	free(hostname, M_TEMP);
3732 	if (compress == COMPRESS_GZIP)
3733 		sbuf_printf(&sb, GZIP_SUFFIX);
3734 	else if (compress == COMPRESS_ZSTD)
3735 		sbuf_printf(&sb, ZSTD_SUFFIX);
3736 	if (sbuf_error(&sb) != 0) {
3737 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3738 		    "long\n", (long)pid, comm, (u_long)uid);
3739 		sbuf_delete(&sb);
3740 		free(name, M_TEMP);
3741 		return (ENOMEM);
3742 	}
3743 	sbuf_finish(&sb);
3744 	sbuf_delete(&sb);
3745 
3746 	if (indexpos != -1) {
3747 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3748 		    vpp);
3749 		if (error != 0) {
3750 			log(LOG_ERR,
3751 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3752 			    "on initial open test, error = %d\n",
3753 			    pid, comm, uid, name, error);
3754 		}
3755 	} else {
3756 		cmode = S_IRUSR | S_IWUSR;
3757 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3758 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3759 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3760 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3761 			flags |= O_EXCL;
3762 
3763 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3764 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3765 		    NULL);
3766 		if (error == 0) {
3767 			*vpp = nd.ni_vp;
3768 			NDFREE(&nd, NDF_ONLY_PNBUF);
3769 		}
3770 	}
3771 
3772 	if (error != 0) {
3773 #ifdef AUDIT
3774 		audit_proc_coredump(td, name, error);
3775 #endif
3776 		free(name, M_TEMP);
3777 		return (error);
3778 	}
3779 	*namep = name;
3780 	return (0);
3781 }
3782 
3783 /*
3784  * Dump a process' core.  The main routine does some
3785  * policy checking, and creates the name of the coredump;
3786  * then it passes on a vnode and a size limit to the process-specific
3787  * coredump routine if there is one; if there _is not_ one, it returns
3788  * ENOSYS; otherwise it returns the error from the process-specific routine.
3789  */
3790 
3791 static int
3792 coredump(struct thread *td)
3793 {
3794 	struct proc *p = td->td_proc;
3795 	struct ucred *cred = td->td_ucred;
3796 	struct vnode *vp;
3797 	struct flock lf;
3798 	struct vattr vattr;
3799 	size_t fullpathsize;
3800 	int error, error1, locked;
3801 	char *name;			/* name of corefile */
3802 	void *rl_cookie;
3803 	off_t limit;
3804 	char *fullpath, *freepath = NULL;
3805 	struct sbuf *sb;
3806 
3807 	PROC_LOCK_ASSERT(p, MA_OWNED);
3808 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3809 
3810 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3811 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3812 		PROC_UNLOCK(p);
3813 		return (EFAULT);
3814 	}
3815 
3816 	/*
3817 	 * Note that the bulk of limit checking is done after
3818 	 * the corefile is created.  The exception is if the limit
3819 	 * for corefiles is 0, in which case we don't bother
3820 	 * creating the corefile at all.  This layout means that
3821 	 * a corefile is truncated instead of not being created,
3822 	 * if it is larger than the limit.
3823 	 */
3824 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3825 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3826 		PROC_UNLOCK(p);
3827 		return (EFBIG);
3828 	}
3829 	PROC_UNLOCK(p);
3830 
3831 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3832 	    compress_user_cores, p->p_sig, &vp, &name);
3833 	if (error != 0)
3834 		return (error);
3835 
3836 	/*
3837 	 * Don't dump to non-regular files or files with links.
3838 	 * Do not dump into system files. Effective user must own the corefile.
3839 	 */
3840 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3841 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3842 	    vattr.va_uid != cred->cr_uid) {
3843 		VOP_UNLOCK(vp);
3844 		error = EFAULT;
3845 		goto out;
3846 	}
3847 
3848 	VOP_UNLOCK(vp);
3849 
3850 	/* Postpone other writers, including core dumps of other processes. */
3851 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3852 
3853 	lf.l_whence = SEEK_SET;
3854 	lf.l_start = 0;
3855 	lf.l_len = 0;
3856 	lf.l_type = F_WRLCK;
3857 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3858 
3859 	VATTR_NULL(&vattr);
3860 	vattr.va_size = 0;
3861 	if (set_core_nodump_flag)
3862 		vattr.va_flags = UF_NODUMP;
3863 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3864 	VOP_SETATTR(vp, &vattr, cred);
3865 	VOP_UNLOCK(vp);
3866 	PROC_LOCK(p);
3867 	p->p_acflag |= ACORE;
3868 	PROC_UNLOCK(p);
3869 
3870 	if (p->p_sysent->sv_coredump != NULL) {
3871 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3872 	} else {
3873 		error = ENOSYS;
3874 	}
3875 
3876 	if (locked) {
3877 		lf.l_type = F_UNLCK;
3878 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3879 	}
3880 	vn_rangelock_unlock(vp, rl_cookie);
3881 
3882 	/*
3883 	 * Notify the userland helper that a process triggered a core dump.
3884 	 * This allows the helper to run an automated debugging session.
3885 	 */
3886 	if (error != 0 || coredump_devctl == 0)
3887 		goto out;
3888 	sb = sbuf_new_auto();
3889 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3890 		goto out2;
3891 	sbuf_printf(sb, "comm=\"");
3892 	devctl_safe_quote_sb(sb, fullpath);
3893 	free(freepath, M_TEMP);
3894 	sbuf_printf(sb, "\" core=\"");
3895 
3896 	/*
3897 	 * We can't lookup core file vp directly. When we're replacing a core, and
3898 	 * other random times, we flush the name cache, so it will fail. Instead,
3899 	 * if the path of the core is relative, add the current dir in front if it.
3900 	 */
3901 	if (name[0] != '/') {
3902 		fullpathsize = MAXPATHLEN;
3903 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3904 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3905 			free(freepath, M_TEMP);
3906 			goto out2;
3907 		}
3908 		devctl_safe_quote_sb(sb, fullpath);
3909 		free(freepath, M_TEMP);
3910 		sbuf_putc(sb, '/');
3911 	}
3912 	devctl_safe_quote_sb(sb, name);
3913 	sbuf_printf(sb, "\"");
3914 	if (sbuf_finish(sb) == 0)
3915 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3916 out2:
3917 	sbuf_delete(sb);
3918 out:
3919 	error1 = vn_close(vp, FWRITE, cred, td);
3920 	if (error == 0)
3921 		error = error1;
3922 #ifdef AUDIT
3923 	audit_proc_coredump(td, name, error);
3924 #endif
3925 	free(name, M_TEMP);
3926 	return (error);
3927 }
3928 
3929 /*
3930  * Nonexistent system call-- signal process (may want to handle it).  Flag
3931  * error in case process won't see signal immediately (blocked or ignored).
3932  */
3933 #ifndef _SYS_SYSPROTO_H_
3934 struct nosys_args {
3935 	int	dummy;
3936 };
3937 #endif
3938 /* ARGSUSED */
3939 int
3940 nosys(struct thread *td, struct nosys_args *args)
3941 {
3942 	struct proc *p;
3943 
3944 	p = td->td_proc;
3945 
3946 	PROC_LOCK(p);
3947 	tdsignal(td, SIGSYS);
3948 	PROC_UNLOCK(p);
3949 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3950 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3951 		    td->td_sa.code);
3952 	}
3953 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
3954 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
3955 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3956 		    td->td_sa.code);
3957 	}
3958 	return (ENOSYS);
3959 }
3960 
3961 /*
3962  * Send a SIGIO or SIGURG signal to a process or process group using stored
3963  * credentials rather than those of the current process.
3964  */
3965 void
3966 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3967 {
3968 	ksiginfo_t ksi;
3969 	struct sigio *sigio;
3970 
3971 	ksiginfo_init(&ksi);
3972 	ksi.ksi_signo = sig;
3973 	ksi.ksi_code = SI_KERNEL;
3974 
3975 	SIGIO_LOCK();
3976 	sigio = *sigiop;
3977 	if (sigio == NULL) {
3978 		SIGIO_UNLOCK();
3979 		return;
3980 	}
3981 	if (sigio->sio_pgid > 0) {
3982 		PROC_LOCK(sigio->sio_proc);
3983 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3984 			kern_psignal(sigio->sio_proc, sig);
3985 		PROC_UNLOCK(sigio->sio_proc);
3986 	} else if (sigio->sio_pgid < 0) {
3987 		struct proc *p;
3988 
3989 		PGRP_LOCK(sigio->sio_pgrp);
3990 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3991 			PROC_LOCK(p);
3992 			if (p->p_state == PRS_NORMAL &&
3993 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3994 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3995 				kern_psignal(p, sig);
3996 			PROC_UNLOCK(p);
3997 		}
3998 		PGRP_UNLOCK(sigio->sio_pgrp);
3999 	}
4000 	SIGIO_UNLOCK();
4001 }
4002 
4003 static int
4004 filt_sigattach(struct knote *kn)
4005 {
4006 	struct proc *p = curproc;
4007 
4008 	kn->kn_ptr.p_proc = p;
4009 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4010 
4011 	knlist_add(p->p_klist, kn, 0);
4012 
4013 	return (0);
4014 }
4015 
4016 static void
4017 filt_sigdetach(struct knote *kn)
4018 {
4019 	struct proc *p = kn->kn_ptr.p_proc;
4020 
4021 	knlist_remove(p->p_klist, kn, 0);
4022 }
4023 
4024 /*
4025  * signal knotes are shared with proc knotes, so we apply a mask to
4026  * the hint in order to differentiate them from process hints.  This
4027  * could be avoided by using a signal-specific knote list, but probably
4028  * isn't worth the trouble.
4029  */
4030 static int
4031 filt_signal(struct knote *kn, long hint)
4032 {
4033 
4034 	if (hint & NOTE_SIGNAL) {
4035 		hint &= ~NOTE_SIGNAL;
4036 
4037 		if (kn->kn_id == hint)
4038 			kn->kn_data++;
4039 	}
4040 	return (kn->kn_data != 0);
4041 }
4042 
4043 struct sigacts *
4044 sigacts_alloc(void)
4045 {
4046 	struct sigacts *ps;
4047 
4048 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4049 	refcount_init(&ps->ps_refcnt, 1);
4050 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4051 	return (ps);
4052 }
4053 
4054 void
4055 sigacts_free(struct sigacts *ps)
4056 {
4057 
4058 	if (refcount_release(&ps->ps_refcnt) == 0)
4059 		return;
4060 	mtx_destroy(&ps->ps_mtx);
4061 	free(ps, M_SUBPROC);
4062 }
4063 
4064 struct sigacts *
4065 sigacts_hold(struct sigacts *ps)
4066 {
4067 
4068 	refcount_acquire(&ps->ps_refcnt);
4069 	return (ps);
4070 }
4071 
4072 void
4073 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4074 {
4075 
4076 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4077 	mtx_lock(&src->ps_mtx);
4078 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4079 	mtx_unlock(&src->ps_mtx);
4080 }
4081 
4082 int
4083 sigacts_shared(struct sigacts *ps)
4084 {
4085 
4086 	return (ps->ps_refcnt > 1);
4087 }
4088 
4089 void
4090 sig_drop_caught(struct proc *p)
4091 {
4092 	int sig;
4093 	struct sigacts *ps;
4094 
4095 	ps = p->p_sigacts;
4096 	PROC_LOCK_ASSERT(p, MA_OWNED);
4097 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4098 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
4099 		sig = sig_ffs(&ps->ps_sigcatch);
4100 		sigdflt(ps, sig);
4101 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4102 			sigqueue_delete_proc(p, sig);
4103 	}
4104 }
4105 
4106 static void
4107 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4108 {
4109 	ksiginfo_t ksi;
4110 
4111 	/*
4112 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4113 	 * issue syscalls despite corruption.
4114 	 */
4115 	sigfastblock_clear(td);
4116 
4117 	if (!sendsig)
4118 		return;
4119 	ksiginfo_init_trap(&ksi);
4120 	ksi.ksi_signo = SIGSEGV;
4121 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4122 	ksi.ksi_addr = td->td_sigblock_ptr;
4123 	trapsignal(td, &ksi);
4124 }
4125 
4126 static bool
4127 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4128 {
4129 	uint32_t res;
4130 
4131 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4132 		return (true);
4133 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4134 		sigfastblock_failed(td, sendsig, false);
4135 		return (false);
4136 	}
4137 	*valp = res;
4138 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4139 	return (true);
4140 }
4141 
4142 static void
4143 sigfastblock_resched(struct thread *td, bool resched)
4144 {
4145 	struct proc *p;
4146 
4147 	if (resched) {
4148 		p = td->td_proc;
4149 		PROC_LOCK(p);
4150 		reschedule_signals(p, td->td_sigmask, 0);
4151 		PROC_UNLOCK(p);
4152 	}
4153 	thread_lock(td);
4154 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4155 	thread_unlock(td);
4156 }
4157 
4158 int
4159 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4160 {
4161 	struct proc *p;
4162 	int error, res;
4163 	uint32_t oldval;
4164 
4165 	error = 0;
4166 	p = td->td_proc;
4167 	switch (uap->cmd) {
4168 	case SIGFASTBLOCK_SETPTR:
4169 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4170 			error = EBUSY;
4171 			break;
4172 		}
4173 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4174 			error = EINVAL;
4175 			break;
4176 		}
4177 		td->td_pflags |= TDP_SIGFASTBLOCK;
4178 		td->td_sigblock_ptr = uap->ptr;
4179 		break;
4180 
4181 	case SIGFASTBLOCK_UNBLOCK:
4182 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4183 			error = EINVAL;
4184 			break;
4185 		}
4186 
4187 		for (;;) {
4188 			res = casueword32(td->td_sigblock_ptr,
4189 			    SIGFASTBLOCK_PEND, &oldval, 0);
4190 			if (res == -1) {
4191 				error = EFAULT;
4192 				sigfastblock_failed(td, false, true);
4193 				break;
4194 			}
4195 			if (res == 0)
4196 				break;
4197 			MPASS(res == 1);
4198 			if (oldval != SIGFASTBLOCK_PEND) {
4199 				error = EBUSY;
4200 				break;
4201 			}
4202 			error = thread_check_susp(td, false);
4203 			if (error != 0)
4204 				break;
4205 		}
4206 		if (error != 0)
4207 			break;
4208 
4209 		/*
4210 		 * td_sigblock_val is cleared there, but not on a
4211 		 * syscall exit.  The end effect is that a single
4212 		 * interruptible sleep, while user sigblock word is
4213 		 * set, might return EINTR or ERESTART to usermode
4214 		 * without delivering signal.  All further sleeps,
4215 		 * until userspace clears the word and does
4216 		 * sigfastblock(UNBLOCK), observe current word and no
4217 		 * longer get interrupted.  It is slight
4218 		 * non-conformance, with alternative to have read the
4219 		 * sigblock word on each syscall entry.
4220 		 */
4221 		td->td_sigblock_val = 0;
4222 
4223 		/*
4224 		 * Rely on normal ast mechanism to deliver pending
4225 		 * signals to current thread.  But notify others about
4226 		 * fake unblock.
4227 		 */
4228 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4229 
4230 		break;
4231 
4232 	case SIGFASTBLOCK_UNSETPTR:
4233 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4234 			error = EINVAL;
4235 			break;
4236 		}
4237 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4238 			error = EFAULT;
4239 			break;
4240 		}
4241 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4242 			error = EBUSY;
4243 			break;
4244 		}
4245 		sigfastblock_clear(td);
4246 		break;
4247 
4248 	default:
4249 		error = EINVAL;
4250 		break;
4251 	}
4252 	return (error);
4253 }
4254 
4255 void
4256 sigfastblock_clear(struct thread *td)
4257 {
4258 	bool resched;
4259 
4260 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4261 		return;
4262 	td->td_sigblock_val = 0;
4263 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4264 	    SIGPENDING(td);
4265 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4266 	sigfastblock_resched(td, resched);
4267 }
4268 
4269 void
4270 sigfastblock_fetch(struct thread *td)
4271 {
4272 	uint32_t val;
4273 
4274 	(void)sigfastblock_fetch_sig(td, true, &val);
4275 }
4276 
4277 static void
4278 sigfastblock_setpend1(struct thread *td)
4279 {
4280 	int res;
4281 	uint32_t oldval;
4282 
4283 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4284 		return;
4285 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4286 	if (res == -1) {
4287 		sigfastblock_failed(td, true, false);
4288 		return;
4289 	}
4290 	for (;;) {
4291 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4292 		    oldval | SIGFASTBLOCK_PEND);
4293 		if (res == -1) {
4294 			sigfastblock_failed(td, true, true);
4295 			return;
4296 		}
4297 		if (res == 0) {
4298 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4299 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4300 			break;
4301 		}
4302 		MPASS(res == 1);
4303 		if (thread_check_susp(td, false) != 0)
4304 			break;
4305 	}
4306 }
4307 
4308 void
4309 sigfastblock_setpend(struct thread *td, bool resched)
4310 {
4311 	struct proc *p;
4312 
4313 	sigfastblock_setpend1(td);
4314 	if (resched) {
4315 		p = td->td_proc;
4316 		PROC_LOCK(p);
4317 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4318 		PROC_UNLOCK(p);
4319 	}
4320 }
4321