xref: /freebsd/sys/kern/kern_sig.c (revision 77ebcc05eac2658a68b447e654cfdf7ff3e703b8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 
609 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
610 
611 	if (SIGPENDING(td)) {
612 		thread_lock(td);
613 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
614 		thread_unlock(td);
615 	}
616 }
617 
618 /*
619  * Returns 1 (true) if altstack is configured for the thread, and the
620  * passed stack bottom address falls into the altstack range.  Handles
621  * the 43 compat special case where the alt stack size is zero.
622  */
623 int
624 sigonstack(size_t sp)
625 {
626 	struct thread *td;
627 
628 	td = curthread;
629 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
630 		return (0);
631 #if defined(COMPAT_43)
632 	if (td->td_sigstk.ss_size == 0)
633 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
634 #endif
635 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
636 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
637 }
638 
639 static __inline int
640 sigprop(int sig)
641 {
642 
643 	if (sig > 0 && sig < nitems(sigproptbl))
644 		return (sigproptbl[sig]);
645 	return (0);
646 }
647 
648 int
649 sig_ffs(sigset_t *set)
650 {
651 	int i;
652 
653 	for (i = 0; i < _SIG_WORDS; i++)
654 		if (set->__bits[i])
655 			return (ffs(set->__bits[i]) + (i * 32));
656 	return (0);
657 }
658 
659 static bool
660 sigact_flag_test(const struct sigaction *act, int flag)
661 {
662 
663 	/*
664 	 * SA_SIGINFO is reset when signal disposition is set to
665 	 * ignore or default.  Other flags are kept according to user
666 	 * settings.
667 	 */
668 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
669 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
670 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
671 }
672 
673 /*
674  * kern_sigaction
675  * sigaction
676  * freebsd4_sigaction
677  * osigaction
678  */
679 int
680 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
681     struct sigaction *oact, int flags)
682 {
683 	struct sigacts *ps;
684 	struct proc *p = td->td_proc;
685 
686 	if (!_SIG_VALID(sig))
687 		return (EINVAL);
688 	if (act != NULL && act->sa_handler != SIG_DFL &&
689 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
690 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
691 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
692 		return (EINVAL);
693 
694 	PROC_LOCK(p);
695 	ps = p->p_sigacts;
696 	mtx_lock(&ps->ps_mtx);
697 	if (oact) {
698 		memset(oact, 0, sizeof(*oact));
699 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
700 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
701 			oact->sa_flags |= SA_ONSTACK;
702 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
703 			oact->sa_flags |= SA_RESTART;
704 		if (SIGISMEMBER(ps->ps_sigreset, sig))
705 			oact->sa_flags |= SA_RESETHAND;
706 		if (SIGISMEMBER(ps->ps_signodefer, sig))
707 			oact->sa_flags |= SA_NODEFER;
708 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
709 			oact->sa_flags |= SA_SIGINFO;
710 			oact->sa_sigaction =
711 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
712 		} else
713 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
714 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
715 			oact->sa_flags |= SA_NOCLDSTOP;
716 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
717 			oact->sa_flags |= SA_NOCLDWAIT;
718 	}
719 	if (act) {
720 		if ((sig == SIGKILL || sig == SIGSTOP) &&
721 		    act->sa_handler != SIG_DFL) {
722 			mtx_unlock(&ps->ps_mtx);
723 			PROC_UNLOCK(p);
724 			return (EINVAL);
725 		}
726 
727 		/*
728 		 * Change setting atomically.
729 		 */
730 
731 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
732 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
733 		if (sigact_flag_test(act, SA_SIGINFO)) {
734 			ps->ps_sigact[_SIG_IDX(sig)] =
735 			    (__sighandler_t *)act->sa_sigaction;
736 			SIGADDSET(ps->ps_siginfo, sig);
737 		} else {
738 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
739 			SIGDELSET(ps->ps_siginfo, sig);
740 		}
741 		if (!sigact_flag_test(act, SA_RESTART))
742 			SIGADDSET(ps->ps_sigintr, sig);
743 		else
744 			SIGDELSET(ps->ps_sigintr, sig);
745 		if (sigact_flag_test(act, SA_ONSTACK))
746 			SIGADDSET(ps->ps_sigonstack, sig);
747 		else
748 			SIGDELSET(ps->ps_sigonstack, sig);
749 		if (sigact_flag_test(act, SA_RESETHAND))
750 			SIGADDSET(ps->ps_sigreset, sig);
751 		else
752 			SIGDELSET(ps->ps_sigreset, sig);
753 		if (sigact_flag_test(act, SA_NODEFER))
754 			SIGADDSET(ps->ps_signodefer, sig);
755 		else
756 			SIGDELSET(ps->ps_signodefer, sig);
757 		if (sig == SIGCHLD) {
758 			if (act->sa_flags & SA_NOCLDSTOP)
759 				ps->ps_flag |= PS_NOCLDSTOP;
760 			else
761 				ps->ps_flag &= ~PS_NOCLDSTOP;
762 			if (act->sa_flags & SA_NOCLDWAIT) {
763 				/*
764 				 * Paranoia: since SA_NOCLDWAIT is implemented
765 				 * by reparenting the dying child to PID 1 (and
766 				 * trust it to reap the zombie), PID 1 itself
767 				 * is forbidden to set SA_NOCLDWAIT.
768 				 */
769 				if (p->p_pid == 1)
770 					ps->ps_flag &= ~PS_NOCLDWAIT;
771 				else
772 					ps->ps_flag |= PS_NOCLDWAIT;
773 			} else
774 				ps->ps_flag &= ~PS_NOCLDWAIT;
775 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
776 				ps->ps_flag |= PS_CLDSIGIGN;
777 			else
778 				ps->ps_flag &= ~PS_CLDSIGIGN;
779 		}
780 		/*
781 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
782 		 * and for signals set to SIG_DFL where the default is to
783 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
784 		 * have to restart the process.
785 		 */
786 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
787 		    (sigprop(sig) & SIGPROP_IGNORE &&
788 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
789 			/* never to be seen again */
790 			sigqueue_delete_proc(p, sig);
791 			if (sig != SIGCONT)
792 				/* easier in psignal */
793 				SIGADDSET(ps->ps_sigignore, sig);
794 			SIGDELSET(ps->ps_sigcatch, sig);
795 		} else {
796 			SIGDELSET(ps->ps_sigignore, sig);
797 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
798 				SIGDELSET(ps->ps_sigcatch, sig);
799 			else
800 				SIGADDSET(ps->ps_sigcatch, sig);
801 		}
802 #ifdef COMPAT_FREEBSD4
803 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
804 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
805 		    (flags & KSA_FREEBSD4) == 0)
806 			SIGDELSET(ps->ps_freebsd4, sig);
807 		else
808 			SIGADDSET(ps->ps_freebsd4, sig);
809 #endif
810 #ifdef COMPAT_43
811 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
812 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
813 		    (flags & KSA_OSIGSET) == 0)
814 			SIGDELSET(ps->ps_osigset, sig);
815 		else
816 			SIGADDSET(ps->ps_osigset, sig);
817 #endif
818 	}
819 	mtx_unlock(&ps->ps_mtx);
820 	PROC_UNLOCK(p);
821 	return (0);
822 }
823 
824 #ifndef _SYS_SYSPROTO_H_
825 struct sigaction_args {
826 	int	sig;
827 	struct	sigaction *act;
828 	struct	sigaction *oact;
829 };
830 #endif
831 int
832 sys_sigaction(struct thread *td, struct sigaction_args *uap)
833 {
834 	struct sigaction act, oact;
835 	struct sigaction *actp, *oactp;
836 	int error;
837 
838 	actp = (uap->act != NULL) ? &act : NULL;
839 	oactp = (uap->oact != NULL) ? &oact : NULL;
840 	if (actp) {
841 		error = copyin(uap->act, actp, sizeof(act));
842 		if (error)
843 			return (error);
844 	}
845 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
846 	if (oactp && !error)
847 		error = copyout(oactp, uap->oact, sizeof(oact));
848 	return (error);
849 }
850 
851 #ifdef COMPAT_FREEBSD4
852 #ifndef _SYS_SYSPROTO_H_
853 struct freebsd4_sigaction_args {
854 	int	sig;
855 	struct	sigaction *act;
856 	struct	sigaction *oact;
857 };
858 #endif
859 int
860 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
861 {
862 	struct sigaction act, oact;
863 	struct sigaction *actp, *oactp;
864 	int error;
865 
866 
867 	actp = (uap->act != NULL) ? &act : NULL;
868 	oactp = (uap->oact != NULL) ? &oact : NULL;
869 	if (actp) {
870 		error = copyin(uap->act, actp, sizeof(act));
871 		if (error)
872 			return (error);
873 	}
874 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
875 	if (oactp && !error)
876 		error = copyout(oactp, uap->oact, sizeof(oact));
877 	return (error);
878 }
879 #endif	/* COMAPT_FREEBSD4 */
880 
881 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
882 #ifndef _SYS_SYSPROTO_H_
883 struct osigaction_args {
884 	int	signum;
885 	struct	osigaction *nsa;
886 	struct	osigaction *osa;
887 };
888 #endif
889 int
890 osigaction(struct thread *td, struct osigaction_args *uap)
891 {
892 	struct osigaction sa;
893 	struct sigaction nsa, osa;
894 	struct sigaction *nsap, *osap;
895 	int error;
896 
897 	if (uap->signum <= 0 || uap->signum >= ONSIG)
898 		return (EINVAL);
899 
900 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
901 	osap = (uap->osa != NULL) ? &osa : NULL;
902 
903 	if (nsap) {
904 		error = copyin(uap->nsa, &sa, sizeof(sa));
905 		if (error)
906 			return (error);
907 		nsap->sa_handler = sa.sa_handler;
908 		nsap->sa_flags = sa.sa_flags;
909 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
910 	}
911 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
912 	if (osap && !error) {
913 		sa.sa_handler = osap->sa_handler;
914 		sa.sa_flags = osap->sa_flags;
915 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
916 		error = copyout(&sa, uap->osa, sizeof(sa));
917 	}
918 	return (error);
919 }
920 
921 #if !defined(__i386__)
922 /* Avoid replicating the same stub everywhere */
923 int
924 osigreturn(struct thread *td, struct osigreturn_args *uap)
925 {
926 
927 	return (nosys(td, (struct nosys_args *)uap));
928 }
929 #endif
930 #endif /* COMPAT_43 */
931 
932 /*
933  * Initialize signal state for process 0;
934  * set to ignore signals that are ignored by default.
935  */
936 void
937 siginit(struct proc *p)
938 {
939 	int i;
940 	struct sigacts *ps;
941 
942 	PROC_LOCK(p);
943 	ps = p->p_sigacts;
944 	mtx_lock(&ps->ps_mtx);
945 	for (i = 1; i <= NSIG; i++) {
946 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
947 			SIGADDSET(ps->ps_sigignore, i);
948 		}
949 	}
950 	mtx_unlock(&ps->ps_mtx);
951 	PROC_UNLOCK(p);
952 }
953 
954 /*
955  * Reset specified signal to the default disposition.
956  */
957 static void
958 sigdflt(struct sigacts *ps, int sig)
959 {
960 
961 	mtx_assert(&ps->ps_mtx, MA_OWNED);
962 	SIGDELSET(ps->ps_sigcatch, sig);
963 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
964 		SIGADDSET(ps->ps_sigignore, sig);
965 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
966 	SIGDELSET(ps->ps_siginfo, sig);
967 }
968 
969 /*
970  * Reset signals for an exec of the specified process.
971  */
972 void
973 execsigs(struct proc *p)
974 {
975 	sigset_t osigignore;
976 	struct sigacts *ps;
977 	int sig;
978 	struct thread *td;
979 
980 	/*
981 	 * Reset caught signals.  Held signals remain held
982 	 * through td_sigmask (unless they were caught,
983 	 * and are now ignored by default).
984 	 */
985 	PROC_LOCK_ASSERT(p, MA_OWNED);
986 	ps = p->p_sigacts;
987 	mtx_lock(&ps->ps_mtx);
988 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
989 		sig = sig_ffs(&ps->ps_sigcatch);
990 		sigdflt(ps, sig);
991 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
992 			sigqueue_delete_proc(p, sig);
993 	}
994 
995 	/*
996 	 * As CloudABI processes cannot modify signal handlers, fully
997 	 * reset all signals to their default behavior. Do ignore
998 	 * SIGPIPE, as it would otherwise be impossible to recover from
999 	 * writes to broken pipes and sockets.
1000 	 */
1001 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1002 		osigignore = ps->ps_sigignore;
1003 		while (SIGNOTEMPTY(osigignore)) {
1004 			sig = sig_ffs(&osigignore);
1005 			SIGDELSET(osigignore, sig);
1006 			if (sig != SIGPIPE)
1007 				sigdflt(ps, sig);
1008 		}
1009 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1010 	}
1011 
1012 	/*
1013 	 * Reset stack state to the user stack.
1014 	 * Clear set of signals caught on the signal stack.
1015 	 */
1016 	td = curthread;
1017 	MPASS(td->td_proc == p);
1018 	td->td_sigstk.ss_flags = SS_DISABLE;
1019 	td->td_sigstk.ss_size = 0;
1020 	td->td_sigstk.ss_sp = 0;
1021 	td->td_pflags &= ~TDP_ALTSTACK;
1022 	/*
1023 	 * Reset no zombies if child dies flag as Solaris does.
1024 	 */
1025 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1026 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1027 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1028 	mtx_unlock(&ps->ps_mtx);
1029 }
1030 
1031 /*
1032  * kern_sigprocmask()
1033  *
1034  *	Manipulate signal mask.
1035  */
1036 int
1037 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1038     int flags)
1039 {
1040 	sigset_t new_block, oset1;
1041 	struct proc *p;
1042 	int error;
1043 
1044 	p = td->td_proc;
1045 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1046 		PROC_LOCK_ASSERT(p, MA_OWNED);
1047 	else
1048 		PROC_LOCK(p);
1049 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1050 	    ? MA_OWNED : MA_NOTOWNED);
1051 	if (oset != NULL)
1052 		*oset = td->td_sigmask;
1053 
1054 	error = 0;
1055 	if (set != NULL) {
1056 		switch (how) {
1057 		case SIG_BLOCK:
1058 			SIG_CANTMASK(*set);
1059 			oset1 = td->td_sigmask;
1060 			SIGSETOR(td->td_sigmask, *set);
1061 			new_block = td->td_sigmask;
1062 			SIGSETNAND(new_block, oset1);
1063 			break;
1064 		case SIG_UNBLOCK:
1065 			SIGSETNAND(td->td_sigmask, *set);
1066 			signotify(td);
1067 			goto out;
1068 		case SIG_SETMASK:
1069 			SIG_CANTMASK(*set);
1070 			oset1 = td->td_sigmask;
1071 			if (flags & SIGPROCMASK_OLD)
1072 				SIGSETLO(td->td_sigmask, *set);
1073 			else
1074 				td->td_sigmask = *set;
1075 			new_block = td->td_sigmask;
1076 			SIGSETNAND(new_block, oset1);
1077 			signotify(td);
1078 			break;
1079 		default:
1080 			error = EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		/*
1085 		 * The new_block set contains signals that were not previously
1086 		 * blocked, but are blocked now.
1087 		 *
1088 		 * In case we block any signal that was not previously blocked
1089 		 * for td, and process has the signal pending, try to schedule
1090 		 * signal delivery to some thread that does not block the
1091 		 * signal, possibly waking it up.
1092 		 */
1093 		if (p->p_numthreads != 1)
1094 			reschedule_signals(p, new_block, flags);
1095 	}
1096 
1097 out:
1098 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1099 		PROC_UNLOCK(p);
1100 	return (error);
1101 }
1102 
1103 #ifndef _SYS_SYSPROTO_H_
1104 struct sigprocmask_args {
1105 	int	how;
1106 	const sigset_t *set;
1107 	sigset_t *oset;
1108 };
1109 #endif
1110 int
1111 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1112 {
1113 	sigset_t set, oset;
1114 	sigset_t *setp, *osetp;
1115 	int error;
1116 
1117 	setp = (uap->set != NULL) ? &set : NULL;
1118 	osetp = (uap->oset != NULL) ? &oset : NULL;
1119 	if (setp) {
1120 		error = copyin(uap->set, setp, sizeof(set));
1121 		if (error)
1122 			return (error);
1123 	}
1124 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1125 	if (osetp && !error) {
1126 		error = copyout(osetp, uap->oset, sizeof(oset));
1127 	}
1128 	return (error);
1129 }
1130 
1131 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1132 #ifndef _SYS_SYSPROTO_H_
1133 struct osigprocmask_args {
1134 	int	how;
1135 	osigset_t mask;
1136 };
1137 #endif
1138 int
1139 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1140 {
1141 	sigset_t set, oset;
1142 	int error;
1143 
1144 	OSIG2SIG(uap->mask, set);
1145 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1146 	SIG2OSIG(oset, td->td_retval[0]);
1147 	return (error);
1148 }
1149 #endif /* COMPAT_43 */
1150 
1151 int
1152 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1153 {
1154 	ksiginfo_t ksi;
1155 	sigset_t set;
1156 	int error;
1157 
1158 	error = copyin(uap->set, &set, sizeof(set));
1159 	if (error) {
1160 		td->td_retval[0] = error;
1161 		return (0);
1162 	}
1163 
1164 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1165 	if (error) {
1166 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1167 			error = ERESTART;
1168 		if (error == ERESTART)
1169 			return (error);
1170 		td->td_retval[0] = error;
1171 		return (0);
1172 	}
1173 
1174 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1175 	td->td_retval[0] = error;
1176 	return (0);
1177 }
1178 
1179 int
1180 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1181 {
1182 	struct timespec ts;
1183 	struct timespec *timeout;
1184 	sigset_t set;
1185 	ksiginfo_t ksi;
1186 	int error;
1187 
1188 	if (uap->timeout) {
1189 		error = copyin(uap->timeout, &ts, sizeof(ts));
1190 		if (error)
1191 			return (error);
1192 
1193 		timeout = &ts;
1194 	} else
1195 		timeout = NULL;
1196 
1197 	error = copyin(uap->set, &set, sizeof(set));
1198 	if (error)
1199 		return (error);
1200 
1201 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1202 	if (error)
1203 		return (error);
1204 
1205 	if (uap->info)
1206 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1207 
1208 	if (error == 0)
1209 		td->td_retval[0] = ksi.ksi_signo;
1210 	return (error);
1211 }
1212 
1213 int
1214 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1215 {
1216 	ksiginfo_t ksi;
1217 	sigset_t set;
1218 	int error;
1219 
1220 	error = copyin(uap->set, &set, sizeof(set));
1221 	if (error)
1222 		return (error);
1223 
1224 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1225 	if (error)
1226 		return (error);
1227 
1228 	if (uap->info)
1229 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1230 
1231 	if (error == 0)
1232 		td->td_retval[0] = ksi.ksi_signo;
1233 	return (error);
1234 }
1235 
1236 static void
1237 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1238 {
1239 	struct thread *thr;
1240 
1241 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1242 		if (thr == td)
1243 			thr->td_si = *si;
1244 		else
1245 			thr->td_si.si_signo = 0;
1246 	}
1247 }
1248 
1249 int
1250 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1251 	struct timespec *timeout)
1252 {
1253 	struct sigacts *ps;
1254 	sigset_t saved_mask, new_block;
1255 	struct proc *p;
1256 	int error, sig, timo, timevalid = 0;
1257 	struct timespec rts, ets, ts;
1258 	struct timeval tv;
1259 
1260 	p = td->td_proc;
1261 	error = 0;
1262 	ets.tv_sec = 0;
1263 	ets.tv_nsec = 0;
1264 
1265 	if (timeout != NULL) {
1266 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1267 			timevalid = 1;
1268 			getnanouptime(&rts);
1269 			timespecadd(&rts, timeout, &ets);
1270 		}
1271 	}
1272 	ksiginfo_init(ksi);
1273 	/* Some signals can not be waited for. */
1274 	SIG_CANTMASK(waitset);
1275 	ps = p->p_sigacts;
1276 	PROC_LOCK(p);
1277 	saved_mask = td->td_sigmask;
1278 	SIGSETNAND(td->td_sigmask, waitset);
1279 	for (;;) {
1280 		mtx_lock(&ps->ps_mtx);
1281 		sig = cursig(td);
1282 		mtx_unlock(&ps->ps_mtx);
1283 		KASSERT(sig >= 0, ("sig %d", sig));
1284 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1285 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1286 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1287 				error = 0;
1288 				break;
1289 			}
1290 		}
1291 
1292 		if (error != 0)
1293 			break;
1294 
1295 		/*
1296 		 * POSIX says this must be checked after looking for pending
1297 		 * signals.
1298 		 */
1299 		if (timeout != NULL) {
1300 			if (!timevalid) {
1301 				error = EINVAL;
1302 				break;
1303 			}
1304 			getnanouptime(&rts);
1305 			if (timespeccmp(&rts, &ets, >=)) {
1306 				error = EAGAIN;
1307 				break;
1308 			}
1309 			timespecsub(&ets, &rts, &ts);
1310 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1311 			timo = tvtohz(&tv);
1312 		} else {
1313 			timo = 0;
1314 		}
1315 
1316 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1317 
1318 		if (timeout != NULL) {
1319 			if (error == ERESTART) {
1320 				/* Timeout can not be restarted. */
1321 				error = EINTR;
1322 			} else if (error == EAGAIN) {
1323 				/* We will calculate timeout by ourself. */
1324 				error = 0;
1325 			}
1326 		}
1327 	}
1328 
1329 	new_block = saved_mask;
1330 	SIGSETNAND(new_block, td->td_sigmask);
1331 	td->td_sigmask = saved_mask;
1332 	/*
1333 	 * Fewer signals can be delivered to us, reschedule signal
1334 	 * notification.
1335 	 */
1336 	if (p->p_numthreads != 1)
1337 		reschedule_signals(p, new_block, 0);
1338 
1339 	if (error == 0) {
1340 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1341 
1342 		if (ksi->ksi_code == SI_TIMER)
1343 			itimer_accept(p, ksi->ksi_timerid, ksi);
1344 
1345 #ifdef KTRACE
1346 		if (KTRPOINT(td, KTR_PSIG)) {
1347 			sig_t action;
1348 
1349 			mtx_lock(&ps->ps_mtx);
1350 			action = ps->ps_sigact[_SIG_IDX(sig)];
1351 			mtx_unlock(&ps->ps_mtx);
1352 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1353 		}
1354 #endif
1355 		if (sig == SIGKILL) {
1356 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1357 			sigexit(td, sig);
1358 		}
1359 	}
1360 	PROC_UNLOCK(p);
1361 	return (error);
1362 }
1363 
1364 #ifndef _SYS_SYSPROTO_H_
1365 struct sigpending_args {
1366 	sigset_t	*set;
1367 };
1368 #endif
1369 int
1370 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1371 {
1372 	struct proc *p = td->td_proc;
1373 	sigset_t pending;
1374 
1375 	PROC_LOCK(p);
1376 	pending = p->p_sigqueue.sq_signals;
1377 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1378 	PROC_UNLOCK(p);
1379 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1380 }
1381 
1382 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct osigpending_args {
1385 	int	dummy;
1386 };
1387 #endif
1388 int
1389 osigpending(struct thread *td, struct osigpending_args *uap)
1390 {
1391 	struct proc *p = td->td_proc;
1392 	sigset_t pending;
1393 
1394 	PROC_LOCK(p);
1395 	pending = p->p_sigqueue.sq_signals;
1396 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1397 	PROC_UNLOCK(p);
1398 	SIG2OSIG(pending, td->td_retval[0]);
1399 	return (0);
1400 }
1401 #endif /* COMPAT_43 */
1402 
1403 #if defined(COMPAT_43)
1404 /*
1405  * Generalized interface signal handler, 4.3-compatible.
1406  */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigvec_args {
1409 	int	signum;
1410 	struct	sigvec *nsv;
1411 	struct	sigvec *osv;
1412 };
1413 #endif
1414 /* ARGSUSED */
1415 int
1416 osigvec(struct thread *td, struct osigvec_args *uap)
1417 {
1418 	struct sigvec vec;
1419 	struct sigaction nsa, osa;
1420 	struct sigaction *nsap, *osap;
1421 	int error;
1422 
1423 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1424 		return (EINVAL);
1425 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1426 	osap = (uap->osv != NULL) ? &osa : NULL;
1427 	if (nsap) {
1428 		error = copyin(uap->nsv, &vec, sizeof(vec));
1429 		if (error)
1430 			return (error);
1431 		nsap->sa_handler = vec.sv_handler;
1432 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1433 		nsap->sa_flags = vec.sv_flags;
1434 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1435 	}
1436 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1437 	if (osap && !error) {
1438 		vec.sv_handler = osap->sa_handler;
1439 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1440 		vec.sv_flags = osap->sa_flags;
1441 		vec.sv_flags &= ~SA_NOCLDWAIT;
1442 		vec.sv_flags ^= SA_RESTART;
1443 		error = copyout(&vec, uap->osv, sizeof(vec));
1444 	}
1445 	return (error);
1446 }
1447 
1448 #ifndef _SYS_SYSPROTO_H_
1449 struct osigblock_args {
1450 	int	mask;
1451 };
1452 #endif
1453 int
1454 osigblock(struct thread *td, struct osigblock_args *uap)
1455 {
1456 	sigset_t set, oset;
1457 
1458 	OSIG2SIG(uap->mask, set);
1459 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1460 	SIG2OSIG(oset, td->td_retval[0]);
1461 	return (0);
1462 }
1463 
1464 #ifndef _SYS_SYSPROTO_H_
1465 struct osigsetmask_args {
1466 	int	mask;
1467 };
1468 #endif
1469 int
1470 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1471 {
1472 	sigset_t set, oset;
1473 
1474 	OSIG2SIG(uap->mask, set);
1475 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1476 	SIG2OSIG(oset, td->td_retval[0]);
1477 	return (0);
1478 }
1479 #endif /* COMPAT_43 */
1480 
1481 /*
1482  * Suspend calling thread until signal, providing mask to be set in the
1483  * meantime.
1484  */
1485 #ifndef _SYS_SYSPROTO_H_
1486 struct sigsuspend_args {
1487 	const sigset_t *sigmask;
1488 };
1489 #endif
1490 /* ARGSUSED */
1491 int
1492 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1493 {
1494 	sigset_t mask;
1495 	int error;
1496 
1497 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1498 	if (error)
1499 		return (error);
1500 	return (kern_sigsuspend(td, mask));
1501 }
1502 
1503 int
1504 kern_sigsuspend(struct thread *td, sigset_t mask)
1505 {
1506 	struct proc *p = td->td_proc;
1507 	int has_sig, sig;
1508 
1509 	/*
1510 	 * When returning from sigsuspend, we want
1511 	 * the old mask to be restored after the
1512 	 * signal handler has finished.  Thus, we
1513 	 * save it here and mark the sigacts structure
1514 	 * to indicate this.
1515 	 */
1516 	PROC_LOCK(p);
1517 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1518 	    SIGPROCMASK_PROC_LOCKED);
1519 	td->td_pflags |= TDP_OLDMASK;
1520 
1521 	/*
1522 	 * Process signals now. Otherwise, we can get spurious wakeup
1523 	 * due to signal entered process queue, but delivered to other
1524 	 * thread. But sigsuspend should return only on signal
1525 	 * delivery.
1526 	 */
1527 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1528 	for (has_sig = 0; !has_sig;) {
1529 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1530 			0) == 0)
1531 			/* void */;
1532 		thread_suspend_check(0);
1533 		mtx_lock(&p->p_sigacts->ps_mtx);
1534 		while ((sig = cursig(td)) != 0) {
1535 			KASSERT(sig >= 0, ("sig %d", sig));
1536 			has_sig += postsig(sig);
1537 		}
1538 		mtx_unlock(&p->p_sigacts->ps_mtx);
1539 	}
1540 	PROC_UNLOCK(p);
1541 	td->td_errno = EINTR;
1542 	td->td_pflags |= TDP_NERRNO;
1543 	return (EJUSTRETURN);
1544 }
1545 
1546 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1547 /*
1548  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1549  * convention: libc stub passes mask, not pointer, to save a copyin.
1550  */
1551 #ifndef _SYS_SYSPROTO_H_
1552 struct osigsuspend_args {
1553 	osigset_t mask;
1554 };
1555 #endif
1556 /* ARGSUSED */
1557 int
1558 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1559 {
1560 	sigset_t mask;
1561 
1562 	OSIG2SIG(uap->mask, mask);
1563 	return (kern_sigsuspend(td, mask));
1564 }
1565 #endif /* COMPAT_43 */
1566 
1567 #if defined(COMPAT_43)
1568 #ifndef _SYS_SYSPROTO_H_
1569 struct osigstack_args {
1570 	struct	sigstack *nss;
1571 	struct	sigstack *oss;
1572 };
1573 #endif
1574 /* ARGSUSED */
1575 int
1576 osigstack(struct thread *td, struct osigstack_args *uap)
1577 {
1578 	struct sigstack nss, oss;
1579 	int error = 0;
1580 
1581 	if (uap->nss != NULL) {
1582 		error = copyin(uap->nss, &nss, sizeof(nss));
1583 		if (error)
1584 			return (error);
1585 	}
1586 	oss.ss_sp = td->td_sigstk.ss_sp;
1587 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1588 	if (uap->nss != NULL) {
1589 		td->td_sigstk.ss_sp = nss.ss_sp;
1590 		td->td_sigstk.ss_size = 0;
1591 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1592 		td->td_pflags |= TDP_ALTSTACK;
1593 	}
1594 	if (uap->oss != NULL)
1595 		error = copyout(&oss, uap->oss, sizeof(oss));
1596 
1597 	return (error);
1598 }
1599 #endif /* COMPAT_43 */
1600 
1601 #ifndef _SYS_SYSPROTO_H_
1602 struct sigaltstack_args {
1603 	stack_t	*ss;
1604 	stack_t	*oss;
1605 };
1606 #endif
1607 /* ARGSUSED */
1608 int
1609 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1610 {
1611 	stack_t ss, oss;
1612 	int error;
1613 
1614 	if (uap->ss != NULL) {
1615 		error = copyin(uap->ss, &ss, sizeof(ss));
1616 		if (error)
1617 			return (error);
1618 	}
1619 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1620 	    (uap->oss != NULL) ? &oss : NULL);
1621 	if (error)
1622 		return (error);
1623 	if (uap->oss != NULL)
1624 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1625 	return (error);
1626 }
1627 
1628 int
1629 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1630 {
1631 	struct proc *p = td->td_proc;
1632 	int oonstack;
1633 
1634 	oonstack = sigonstack(cpu_getstack(td));
1635 
1636 	if (oss != NULL) {
1637 		*oss = td->td_sigstk;
1638 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1639 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1640 	}
1641 
1642 	if (ss != NULL) {
1643 		if (oonstack)
1644 			return (EPERM);
1645 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1646 			return (EINVAL);
1647 		if (!(ss->ss_flags & SS_DISABLE)) {
1648 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1649 				return (ENOMEM);
1650 
1651 			td->td_sigstk = *ss;
1652 			td->td_pflags |= TDP_ALTSTACK;
1653 		} else {
1654 			td->td_pflags &= ~TDP_ALTSTACK;
1655 		}
1656 	}
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Common code for kill process group/broadcast kill.
1662  * cp is calling process.
1663  */
1664 static int
1665 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1666 {
1667 	struct proc *p;
1668 	struct pgrp *pgrp;
1669 	int err;
1670 	int ret;
1671 
1672 	ret = ESRCH;
1673 	if (all) {
1674 		/*
1675 		 * broadcast
1676 		 */
1677 		sx_slock(&allproc_lock);
1678 		FOREACH_PROC_IN_SYSTEM(p) {
1679 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1680 			    p == td->td_proc || p->p_state == PRS_NEW) {
1681 				continue;
1682 			}
1683 			PROC_LOCK(p);
1684 			err = p_cansignal(td, p, sig);
1685 			if (err == 0) {
1686 				if (sig)
1687 					pksignal(p, sig, ksi);
1688 				ret = err;
1689 			}
1690 			else if (ret == ESRCH)
1691 				ret = err;
1692 			PROC_UNLOCK(p);
1693 		}
1694 		sx_sunlock(&allproc_lock);
1695 	} else {
1696 		sx_slock(&proctree_lock);
1697 		if (pgid == 0) {
1698 			/*
1699 			 * zero pgid means send to my process group.
1700 			 */
1701 			pgrp = td->td_proc->p_pgrp;
1702 			PGRP_LOCK(pgrp);
1703 		} else {
1704 			pgrp = pgfind(pgid);
1705 			if (pgrp == NULL) {
1706 				sx_sunlock(&proctree_lock);
1707 				return (ESRCH);
1708 			}
1709 		}
1710 		sx_sunlock(&proctree_lock);
1711 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1712 			PROC_LOCK(p);
1713 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1714 			    p->p_state == PRS_NEW) {
1715 				PROC_UNLOCK(p);
1716 				continue;
1717 			}
1718 			err = p_cansignal(td, p, sig);
1719 			if (err == 0) {
1720 				if (sig)
1721 					pksignal(p, sig, ksi);
1722 				ret = err;
1723 			}
1724 			else if (ret == ESRCH)
1725 				ret = err;
1726 			PROC_UNLOCK(p);
1727 		}
1728 		PGRP_UNLOCK(pgrp);
1729 	}
1730 	return (ret);
1731 }
1732 
1733 #ifndef _SYS_SYSPROTO_H_
1734 struct kill_args {
1735 	int	pid;
1736 	int	signum;
1737 };
1738 #endif
1739 /* ARGSUSED */
1740 int
1741 sys_kill(struct thread *td, struct kill_args *uap)
1742 {
1743 	ksiginfo_t ksi;
1744 	struct proc *p;
1745 	int error;
1746 
1747 	/*
1748 	 * A process in capability mode can send signals only to himself.
1749 	 * The main rationale behind this is that abort(3) is implemented as
1750 	 * kill(getpid(), SIGABRT).
1751 	 */
1752 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1753 		return (ECAPMODE);
1754 
1755 	AUDIT_ARG_SIGNUM(uap->signum);
1756 	AUDIT_ARG_PID(uap->pid);
1757 	if ((u_int)uap->signum > _SIG_MAXSIG)
1758 		return (EINVAL);
1759 
1760 	ksiginfo_init(&ksi);
1761 	ksi.ksi_signo = uap->signum;
1762 	ksi.ksi_code = SI_USER;
1763 	ksi.ksi_pid = td->td_proc->p_pid;
1764 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1765 
1766 	if (uap->pid > 0) {
1767 		/* kill single process */
1768 		if ((p = pfind_any(uap->pid)) == NULL)
1769 			return (ESRCH);
1770 		AUDIT_ARG_PROCESS(p);
1771 		error = p_cansignal(td, p, uap->signum);
1772 		if (error == 0 && uap->signum)
1773 			pksignal(p, uap->signum, &ksi);
1774 		PROC_UNLOCK(p);
1775 		return (error);
1776 	}
1777 	switch (uap->pid) {
1778 	case -1:		/* broadcast signal */
1779 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1780 	case 0:			/* signal own process group */
1781 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1782 	default:		/* negative explicit process group */
1783 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1784 	}
1785 	/* NOTREACHED */
1786 }
1787 
1788 int
1789 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1790 {
1791 	struct proc *p;
1792 	int error;
1793 
1794 	AUDIT_ARG_SIGNUM(uap->signum);
1795 	AUDIT_ARG_FD(uap->fd);
1796 	if ((u_int)uap->signum > _SIG_MAXSIG)
1797 		return (EINVAL);
1798 
1799 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1800 	if (error)
1801 		return (error);
1802 	AUDIT_ARG_PROCESS(p);
1803 	error = p_cansignal(td, p, uap->signum);
1804 	if (error == 0 && uap->signum)
1805 		kern_psignal(p, uap->signum);
1806 	PROC_UNLOCK(p);
1807 	return (error);
1808 }
1809 
1810 #if defined(COMPAT_43)
1811 #ifndef _SYS_SYSPROTO_H_
1812 struct okillpg_args {
1813 	int	pgid;
1814 	int	signum;
1815 };
1816 #endif
1817 /* ARGSUSED */
1818 int
1819 okillpg(struct thread *td, struct okillpg_args *uap)
1820 {
1821 	ksiginfo_t ksi;
1822 
1823 	AUDIT_ARG_SIGNUM(uap->signum);
1824 	AUDIT_ARG_PID(uap->pgid);
1825 	if ((u_int)uap->signum > _SIG_MAXSIG)
1826 		return (EINVAL);
1827 
1828 	ksiginfo_init(&ksi);
1829 	ksi.ksi_signo = uap->signum;
1830 	ksi.ksi_code = SI_USER;
1831 	ksi.ksi_pid = td->td_proc->p_pid;
1832 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1833 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1834 }
1835 #endif /* COMPAT_43 */
1836 
1837 #ifndef _SYS_SYSPROTO_H_
1838 struct sigqueue_args {
1839 	pid_t pid;
1840 	int signum;
1841 	/* union sigval */ void *value;
1842 };
1843 #endif
1844 int
1845 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1846 {
1847 	union sigval sv;
1848 
1849 	sv.sival_ptr = uap->value;
1850 
1851 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1852 }
1853 
1854 int
1855 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1856 {
1857 	ksiginfo_t ksi;
1858 	struct proc *p;
1859 	int error;
1860 
1861 	if ((u_int)signum > _SIG_MAXSIG)
1862 		return (EINVAL);
1863 
1864 	/*
1865 	 * Specification says sigqueue can only send signal to
1866 	 * single process.
1867 	 */
1868 	if (pid <= 0)
1869 		return (EINVAL);
1870 
1871 	if ((p = pfind_any(pid)) == NULL)
1872 		return (ESRCH);
1873 	error = p_cansignal(td, p, signum);
1874 	if (error == 0 && signum != 0) {
1875 		ksiginfo_init(&ksi);
1876 		ksi.ksi_flags = KSI_SIGQ;
1877 		ksi.ksi_signo = signum;
1878 		ksi.ksi_code = SI_QUEUE;
1879 		ksi.ksi_pid = td->td_proc->p_pid;
1880 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1881 		ksi.ksi_value = *value;
1882 		error = pksignal(p, ksi.ksi_signo, &ksi);
1883 	}
1884 	PROC_UNLOCK(p);
1885 	return (error);
1886 }
1887 
1888 /*
1889  * Send a signal to a process group.
1890  */
1891 void
1892 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1893 {
1894 	struct pgrp *pgrp;
1895 
1896 	if (pgid != 0) {
1897 		sx_slock(&proctree_lock);
1898 		pgrp = pgfind(pgid);
1899 		sx_sunlock(&proctree_lock);
1900 		if (pgrp != NULL) {
1901 			pgsignal(pgrp, sig, 0, ksi);
1902 			PGRP_UNLOCK(pgrp);
1903 		}
1904 	}
1905 }
1906 
1907 /*
1908  * Send a signal to a process group.  If checktty is 1,
1909  * limit to members which have a controlling terminal.
1910  */
1911 void
1912 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1913 {
1914 	struct proc *p;
1915 
1916 	if (pgrp) {
1917 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1918 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1919 			PROC_LOCK(p);
1920 			if (p->p_state == PRS_NORMAL &&
1921 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1922 				pksignal(p, sig, ksi);
1923 			PROC_UNLOCK(p);
1924 		}
1925 	}
1926 }
1927 
1928 
1929 /*
1930  * Recalculate the signal mask and reset the signal disposition after
1931  * usermode frame for delivery is formed.  Should be called after
1932  * mach-specific routine, because sysent->sv_sendsig() needs correct
1933  * ps_siginfo and signal mask.
1934  */
1935 static void
1936 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1937 {
1938 	sigset_t mask;
1939 
1940 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1941 	td->td_ru.ru_nsignals++;
1942 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1943 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1944 		SIGADDSET(mask, sig);
1945 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1946 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1947 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1948 		sigdflt(ps, sig);
1949 }
1950 
1951 
1952 /*
1953  * Send a signal caused by a trap to the current thread.  If it will be
1954  * caught immediately, deliver it with correct code.  Otherwise, post it
1955  * normally.
1956  */
1957 void
1958 trapsignal(struct thread *td, ksiginfo_t *ksi)
1959 {
1960 	struct sigacts *ps;
1961 	struct proc *p;
1962 	int sig;
1963 	int code;
1964 
1965 	p = td->td_proc;
1966 	sig = ksi->ksi_signo;
1967 	code = ksi->ksi_code;
1968 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1969 
1970 	PROC_LOCK(p);
1971 	ps = p->p_sigacts;
1972 	mtx_lock(&ps->ps_mtx);
1973 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1974 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1975 #ifdef KTRACE
1976 		if (KTRPOINT(curthread, KTR_PSIG))
1977 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1978 			    &td->td_sigmask, code);
1979 #endif
1980 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1981 				ksi, &td->td_sigmask);
1982 		postsig_done(sig, td, ps);
1983 		mtx_unlock(&ps->ps_mtx);
1984 	} else {
1985 		/*
1986 		 * Avoid a possible infinite loop if the thread
1987 		 * masking the signal or process is ignoring the
1988 		 * signal.
1989 		 */
1990 		if (kern_forcesigexit &&
1991 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1992 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1993 			SIGDELSET(td->td_sigmask, sig);
1994 			SIGDELSET(ps->ps_sigcatch, sig);
1995 			SIGDELSET(ps->ps_sigignore, sig);
1996 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1997 		}
1998 		mtx_unlock(&ps->ps_mtx);
1999 		p->p_code = code;	/* XXX for core dump/debugger */
2000 		p->p_sig = sig;		/* XXX to verify code */
2001 		tdsendsignal(p, td, sig, ksi);
2002 	}
2003 	PROC_UNLOCK(p);
2004 }
2005 
2006 static struct thread *
2007 sigtd(struct proc *p, int sig, int prop)
2008 {
2009 	struct thread *td, *signal_td;
2010 
2011 	PROC_LOCK_ASSERT(p, MA_OWNED);
2012 
2013 	/*
2014 	 * Check if current thread can handle the signal without
2015 	 * switching context to another thread.
2016 	 */
2017 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2018 		return (curthread);
2019 	signal_td = NULL;
2020 	FOREACH_THREAD_IN_PROC(p, td) {
2021 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2022 			signal_td = td;
2023 			break;
2024 		}
2025 	}
2026 	if (signal_td == NULL)
2027 		signal_td = FIRST_THREAD_IN_PROC(p);
2028 	return (signal_td);
2029 }
2030 
2031 /*
2032  * Send the signal to the process.  If the signal has an action, the action
2033  * is usually performed by the target process rather than the caller; we add
2034  * the signal to the set of pending signals for the process.
2035  *
2036  * Exceptions:
2037  *   o When a stop signal is sent to a sleeping process that takes the
2038  *     default action, the process is stopped without awakening it.
2039  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2040  *     regardless of the signal action (eg, blocked or ignored).
2041  *
2042  * Other ignored signals are discarded immediately.
2043  *
2044  * NB: This function may be entered from the debugger via the "kill" DDB
2045  * command.  There is little that can be done to mitigate the possibly messy
2046  * side effects of this unwise possibility.
2047  */
2048 void
2049 kern_psignal(struct proc *p, int sig)
2050 {
2051 	ksiginfo_t ksi;
2052 
2053 	ksiginfo_init(&ksi);
2054 	ksi.ksi_signo = sig;
2055 	ksi.ksi_code = SI_KERNEL;
2056 	(void) tdsendsignal(p, NULL, sig, &ksi);
2057 }
2058 
2059 int
2060 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2061 {
2062 
2063 	return (tdsendsignal(p, NULL, sig, ksi));
2064 }
2065 
2066 /* Utility function for finding a thread to send signal event to. */
2067 int
2068 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2069 {
2070 	struct thread *td;
2071 
2072 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2073 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2074 		if (td == NULL)
2075 			return (ESRCH);
2076 		*ttd = td;
2077 	} else {
2078 		*ttd = NULL;
2079 		PROC_LOCK(p);
2080 	}
2081 	return (0);
2082 }
2083 
2084 void
2085 tdsignal(struct thread *td, int sig)
2086 {
2087 	ksiginfo_t ksi;
2088 
2089 	ksiginfo_init(&ksi);
2090 	ksi.ksi_signo = sig;
2091 	ksi.ksi_code = SI_KERNEL;
2092 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2093 }
2094 
2095 void
2096 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2097 {
2098 
2099 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2100 }
2101 
2102 int
2103 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2104 {
2105 	sig_t action;
2106 	sigqueue_t *sigqueue;
2107 	int prop;
2108 	struct sigacts *ps;
2109 	int intrval;
2110 	int ret = 0;
2111 	int wakeup_swapper;
2112 
2113 	MPASS(td == NULL || p == td->td_proc);
2114 	PROC_LOCK_ASSERT(p, MA_OWNED);
2115 
2116 	if (!_SIG_VALID(sig))
2117 		panic("%s(): invalid signal %d", __func__, sig);
2118 
2119 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2120 
2121 	/*
2122 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2123 	 */
2124 	if (p->p_state == PRS_ZOMBIE) {
2125 		if (ksi && (ksi->ksi_flags & KSI_INS))
2126 			ksiginfo_tryfree(ksi);
2127 		return (ret);
2128 	}
2129 
2130 	ps = p->p_sigacts;
2131 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2132 	prop = sigprop(sig);
2133 
2134 	if (td == NULL) {
2135 		td = sigtd(p, sig, prop);
2136 		sigqueue = &p->p_sigqueue;
2137 	} else
2138 		sigqueue = &td->td_sigqueue;
2139 
2140 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2141 
2142 	/*
2143 	 * If the signal is being ignored,
2144 	 * then we forget about it immediately.
2145 	 * (Note: we don't set SIGCONT in ps_sigignore,
2146 	 * and if it is set to SIG_IGN,
2147 	 * action will be SIG_DFL here.)
2148 	 */
2149 	mtx_lock(&ps->ps_mtx);
2150 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2151 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2152 
2153 		mtx_unlock(&ps->ps_mtx);
2154 		if (ksi && (ksi->ksi_flags & KSI_INS))
2155 			ksiginfo_tryfree(ksi);
2156 		return (ret);
2157 	}
2158 	if (SIGISMEMBER(td->td_sigmask, sig))
2159 		action = SIG_HOLD;
2160 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2161 		action = SIG_CATCH;
2162 	else
2163 		action = SIG_DFL;
2164 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2165 		intrval = EINTR;
2166 	else
2167 		intrval = ERESTART;
2168 	mtx_unlock(&ps->ps_mtx);
2169 
2170 	if (prop & SIGPROP_CONT)
2171 		sigqueue_delete_stopmask_proc(p);
2172 	else if (prop & SIGPROP_STOP) {
2173 		/*
2174 		 * If sending a tty stop signal to a member of an orphaned
2175 		 * process group, discard the signal here if the action
2176 		 * is default; don't stop the process below if sleeping,
2177 		 * and don't clear any pending SIGCONT.
2178 		 */
2179 		if ((prop & SIGPROP_TTYSTOP) &&
2180 		    (p->p_pgrp->pg_jobc == 0) &&
2181 		    (action == SIG_DFL)) {
2182 			if (ksi && (ksi->ksi_flags & KSI_INS))
2183 				ksiginfo_tryfree(ksi);
2184 			return (ret);
2185 		}
2186 		sigqueue_delete_proc(p, SIGCONT);
2187 		if (p->p_flag & P_CONTINUED) {
2188 			p->p_flag &= ~P_CONTINUED;
2189 			PROC_LOCK(p->p_pptr);
2190 			sigqueue_take(p->p_ksi);
2191 			PROC_UNLOCK(p->p_pptr);
2192 		}
2193 	}
2194 
2195 	ret = sigqueue_add(sigqueue, sig, ksi);
2196 	if (ret != 0)
2197 		return (ret);
2198 	signotify(td);
2199 	/*
2200 	 * Defer further processing for signals which are held,
2201 	 * except that stopped processes must be continued by SIGCONT.
2202 	 */
2203 	if (action == SIG_HOLD &&
2204 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2205 		return (ret);
2206 
2207 	/* SIGKILL: Remove procfs STOPEVENTs. */
2208 	if (sig == SIGKILL) {
2209 		/* from procfs_ioctl.c: PIOCBIC */
2210 		p->p_stops = 0;
2211 		/* from procfs_ioctl.c: PIOCCONT */
2212 		p->p_step = 0;
2213 		wakeup(&p->p_step);
2214 	}
2215 	/*
2216 	 * Some signals have a process-wide effect and a per-thread
2217 	 * component.  Most processing occurs when the process next
2218 	 * tries to cross the user boundary, however there are some
2219 	 * times when processing needs to be done immediately, such as
2220 	 * waking up threads so that they can cross the user boundary.
2221 	 * We try to do the per-process part here.
2222 	 */
2223 	if (P_SHOULDSTOP(p)) {
2224 		KASSERT(!(p->p_flag & P_WEXIT),
2225 		    ("signal to stopped but exiting process"));
2226 		if (sig == SIGKILL) {
2227 			/*
2228 			 * If traced process is already stopped,
2229 			 * then no further action is necessary.
2230 			 */
2231 			if (p->p_flag & P_TRACED)
2232 				goto out;
2233 			/*
2234 			 * SIGKILL sets process running.
2235 			 * It will die elsewhere.
2236 			 * All threads must be restarted.
2237 			 */
2238 			p->p_flag &= ~P_STOPPED_SIG;
2239 			goto runfast;
2240 		}
2241 
2242 		if (prop & SIGPROP_CONT) {
2243 			/*
2244 			 * If traced process is already stopped,
2245 			 * then no further action is necessary.
2246 			 */
2247 			if (p->p_flag & P_TRACED)
2248 				goto out;
2249 			/*
2250 			 * If SIGCONT is default (or ignored), we continue the
2251 			 * process but don't leave the signal in sigqueue as
2252 			 * it has no further action.  If SIGCONT is held, we
2253 			 * continue the process and leave the signal in
2254 			 * sigqueue.  If the process catches SIGCONT, let it
2255 			 * handle the signal itself.  If it isn't waiting on
2256 			 * an event, it goes back to run state.
2257 			 * Otherwise, process goes back to sleep state.
2258 			 */
2259 			p->p_flag &= ~P_STOPPED_SIG;
2260 			PROC_SLOCK(p);
2261 			if (p->p_numthreads == p->p_suspcount) {
2262 				PROC_SUNLOCK(p);
2263 				p->p_flag |= P_CONTINUED;
2264 				p->p_xsig = SIGCONT;
2265 				PROC_LOCK(p->p_pptr);
2266 				childproc_continued(p);
2267 				PROC_UNLOCK(p->p_pptr);
2268 				PROC_SLOCK(p);
2269 			}
2270 			if (action == SIG_DFL) {
2271 				thread_unsuspend(p);
2272 				PROC_SUNLOCK(p);
2273 				sigqueue_delete(sigqueue, sig);
2274 				goto out;
2275 			}
2276 			if (action == SIG_CATCH) {
2277 				/*
2278 				 * The process wants to catch it so it needs
2279 				 * to run at least one thread, but which one?
2280 				 */
2281 				PROC_SUNLOCK(p);
2282 				goto runfast;
2283 			}
2284 			/*
2285 			 * The signal is not ignored or caught.
2286 			 */
2287 			thread_unsuspend(p);
2288 			PROC_SUNLOCK(p);
2289 			goto out;
2290 		}
2291 
2292 		if (prop & SIGPROP_STOP) {
2293 			/*
2294 			 * If traced process is already stopped,
2295 			 * then no further action is necessary.
2296 			 */
2297 			if (p->p_flag & P_TRACED)
2298 				goto out;
2299 			/*
2300 			 * Already stopped, don't need to stop again
2301 			 * (If we did the shell could get confused).
2302 			 * Just make sure the signal STOP bit set.
2303 			 */
2304 			p->p_flag |= P_STOPPED_SIG;
2305 			sigqueue_delete(sigqueue, sig);
2306 			goto out;
2307 		}
2308 
2309 		/*
2310 		 * All other kinds of signals:
2311 		 * If a thread is sleeping interruptibly, simulate a
2312 		 * wakeup so that when it is continued it will be made
2313 		 * runnable and can look at the signal.  However, don't make
2314 		 * the PROCESS runnable, leave it stopped.
2315 		 * It may run a bit until it hits a thread_suspend_check().
2316 		 */
2317 		wakeup_swapper = 0;
2318 		PROC_SLOCK(p);
2319 		thread_lock(td);
2320 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2321 			wakeup_swapper = sleepq_abort(td, intrval);
2322 		thread_unlock(td);
2323 		PROC_SUNLOCK(p);
2324 		if (wakeup_swapper)
2325 			kick_proc0();
2326 		goto out;
2327 		/*
2328 		 * Mutexes are short lived. Threads waiting on them will
2329 		 * hit thread_suspend_check() soon.
2330 		 */
2331 	} else if (p->p_state == PRS_NORMAL) {
2332 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2333 			tdsigwakeup(td, sig, action, intrval);
2334 			goto out;
2335 		}
2336 
2337 		MPASS(action == SIG_DFL);
2338 
2339 		if (prop & SIGPROP_STOP) {
2340 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2341 				goto out;
2342 			p->p_flag |= P_STOPPED_SIG;
2343 			p->p_xsig = sig;
2344 			PROC_SLOCK(p);
2345 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2346 			if (p->p_numthreads == p->p_suspcount) {
2347 				/*
2348 				 * only thread sending signal to another
2349 				 * process can reach here, if thread is sending
2350 				 * signal to its process, because thread does
2351 				 * not suspend itself here, p_numthreads
2352 				 * should never be equal to p_suspcount.
2353 				 */
2354 				thread_stopped(p);
2355 				PROC_SUNLOCK(p);
2356 				sigqueue_delete_proc(p, p->p_xsig);
2357 			} else
2358 				PROC_SUNLOCK(p);
2359 			if (wakeup_swapper)
2360 				kick_proc0();
2361 			goto out;
2362 		}
2363 	} else {
2364 		/* Not in "NORMAL" state. discard the signal. */
2365 		sigqueue_delete(sigqueue, sig);
2366 		goto out;
2367 	}
2368 
2369 	/*
2370 	 * The process is not stopped so we need to apply the signal to all the
2371 	 * running threads.
2372 	 */
2373 runfast:
2374 	tdsigwakeup(td, sig, action, intrval);
2375 	PROC_SLOCK(p);
2376 	thread_unsuspend(p);
2377 	PROC_SUNLOCK(p);
2378 out:
2379 	/* If we jump here, proc slock should not be owned. */
2380 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2381 	return (ret);
2382 }
2383 
2384 /*
2385  * The force of a signal has been directed against a single
2386  * thread.  We need to see what we can do about knocking it
2387  * out of any sleep it may be in etc.
2388  */
2389 static void
2390 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2391 {
2392 	struct proc *p = td->td_proc;
2393 	int prop;
2394 	int wakeup_swapper;
2395 
2396 	wakeup_swapper = 0;
2397 	PROC_LOCK_ASSERT(p, MA_OWNED);
2398 	prop = sigprop(sig);
2399 
2400 	PROC_SLOCK(p);
2401 	thread_lock(td);
2402 	/*
2403 	 * Bring the priority of a thread up if we want it to get
2404 	 * killed in this lifetime.  Be careful to avoid bumping the
2405 	 * priority of the idle thread, since we still allow to signal
2406 	 * kernel processes.
2407 	 */
2408 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2409 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2410 		sched_prio(td, PUSER);
2411 	if (TD_ON_SLEEPQ(td)) {
2412 		/*
2413 		 * If thread is sleeping uninterruptibly
2414 		 * we can't interrupt the sleep... the signal will
2415 		 * be noticed when the process returns through
2416 		 * trap() or syscall().
2417 		 */
2418 		if ((td->td_flags & TDF_SINTR) == 0)
2419 			goto out;
2420 		/*
2421 		 * If SIGCONT is default (or ignored) and process is
2422 		 * asleep, we are finished; the process should not
2423 		 * be awakened.
2424 		 */
2425 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2426 			thread_unlock(td);
2427 			PROC_SUNLOCK(p);
2428 			sigqueue_delete(&p->p_sigqueue, sig);
2429 			/*
2430 			 * It may be on either list in this state.
2431 			 * Remove from both for now.
2432 			 */
2433 			sigqueue_delete(&td->td_sigqueue, sig);
2434 			return;
2435 		}
2436 
2437 		/*
2438 		 * Don't awaken a sleeping thread for SIGSTOP if the
2439 		 * STOP signal is deferred.
2440 		 */
2441 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2442 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2443 			goto out;
2444 
2445 		/*
2446 		 * Give low priority threads a better chance to run.
2447 		 */
2448 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2449 			sched_prio(td, PUSER);
2450 
2451 		wakeup_swapper = sleepq_abort(td, intrval);
2452 	} else {
2453 		/*
2454 		 * Other states do nothing with the signal immediately,
2455 		 * other than kicking ourselves if we are running.
2456 		 * It will either never be noticed, or noticed very soon.
2457 		 */
2458 #ifdef SMP
2459 		if (TD_IS_RUNNING(td) && td != curthread)
2460 			forward_signal(td);
2461 #endif
2462 	}
2463 out:
2464 	PROC_SUNLOCK(p);
2465 	thread_unlock(td);
2466 	if (wakeup_swapper)
2467 		kick_proc0();
2468 }
2469 
2470 static int
2471 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2472 {
2473 	struct thread *td2;
2474 	int wakeup_swapper;
2475 
2476 	PROC_LOCK_ASSERT(p, MA_OWNED);
2477 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2478 	MPASS(sending || td == curthread);
2479 
2480 	wakeup_swapper = 0;
2481 	FOREACH_THREAD_IN_PROC(p, td2) {
2482 		thread_lock(td2);
2483 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2484 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2485 		    (td2->td_flags & TDF_SINTR)) {
2486 			if (td2->td_flags & TDF_SBDRY) {
2487 				/*
2488 				 * Once a thread is asleep with
2489 				 * TDF_SBDRY and without TDF_SERESTART
2490 				 * or TDF_SEINTR set, it should never
2491 				 * become suspended due to this check.
2492 				 */
2493 				KASSERT(!TD_IS_SUSPENDED(td2),
2494 				    ("thread with deferred stops suspended"));
2495 				if (TD_SBDRY_INTR(td2))
2496 					wakeup_swapper |= sleepq_abort(td2,
2497 					    TD_SBDRY_ERRNO(td2));
2498 			} else if (!TD_IS_SUSPENDED(td2)) {
2499 				thread_suspend_one(td2);
2500 			}
2501 		} else if (!TD_IS_SUSPENDED(td2)) {
2502 			if (sending || td != td2)
2503 				td2->td_flags |= TDF_ASTPENDING;
2504 #ifdef SMP
2505 			if (TD_IS_RUNNING(td2) && td2 != td)
2506 				forward_signal(td2);
2507 #endif
2508 		}
2509 		thread_unlock(td2);
2510 	}
2511 	return (wakeup_swapper);
2512 }
2513 
2514 /*
2515  * Stop the process for an event deemed interesting to the debugger. If si is
2516  * non-NULL, this is a signal exchange; the new signal requested by the
2517  * debugger will be returned for handling. If si is NULL, this is some other
2518  * type of interesting event. The debugger may request a signal be delivered in
2519  * that case as well, however it will be deferred until it can be handled.
2520  */
2521 int
2522 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2523 {
2524 	struct proc *p = td->td_proc;
2525 	struct thread *td2;
2526 	ksiginfo_t ksi;
2527 	int prop;
2528 
2529 	PROC_LOCK_ASSERT(p, MA_OWNED);
2530 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2531 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2532 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2533 
2534 	td->td_xsig = sig;
2535 
2536 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2537 		td->td_dbgflags |= TDB_XSIG;
2538 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2539 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2540 		PROC_SLOCK(p);
2541 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2542 			if (P_KILLED(p)) {
2543 				/*
2544 				 * Ensure that, if we've been PT_KILLed, the
2545 				 * exit status reflects that. Another thread
2546 				 * may also be in ptracestop(), having just
2547 				 * received the SIGKILL, but this thread was
2548 				 * unsuspended first.
2549 				 */
2550 				td->td_dbgflags &= ~TDB_XSIG;
2551 				td->td_xsig = SIGKILL;
2552 				p->p_ptevents = 0;
2553 				break;
2554 			}
2555 			if (p->p_flag & P_SINGLE_EXIT &&
2556 			    !(td->td_dbgflags & TDB_EXIT)) {
2557 				/*
2558 				 * Ignore ptrace stops except for thread exit
2559 				 * events when the process exits.
2560 				 */
2561 				td->td_dbgflags &= ~TDB_XSIG;
2562 				PROC_SUNLOCK(p);
2563 				return (0);
2564 			}
2565 
2566 			/*
2567 			 * Make wait(2) work.  Ensure that right after the
2568 			 * attach, the thread which was decided to become the
2569 			 * leader of attach gets reported to the waiter.
2570 			 * Otherwise, just avoid overwriting another thread's
2571 			 * assignment to p_xthread.  If another thread has
2572 			 * already set p_xthread, the current thread will get
2573 			 * a chance to report itself upon the next iteration.
2574 			 */
2575 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2576 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2577 			    p->p_xthread == NULL)) {
2578 				p->p_xsig = sig;
2579 				p->p_xthread = td;
2580 				td->td_dbgflags &= ~TDB_FSTP;
2581 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2582 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2583 				sig_suspend_threads(td, p, 0);
2584 			}
2585 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2586 				td->td_dbgflags &= ~TDB_STOPATFORK;
2587 			}
2588 stopme:
2589 			thread_suspend_switch(td, p);
2590 			if (p->p_xthread == td)
2591 				p->p_xthread = NULL;
2592 			if (!(p->p_flag & P_TRACED))
2593 				break;
2594 			if (td->td_dbgflags & TDB_SUSPEND) {
2595 				if (p->p_flag & P_SINGLE_EXIT)
2596 					break;
2597 				goto stopme;
2598 			}
2599 		}
2600 		PROC_SUNLOCK(p);
2601 	}
2602 
2603 	if (si != NULL && sig == td->td_xsig) {
2604 		/* Parent wants us to take the original signal unchanged. */
2605 		si->ksi_flags |= KSI_HEAD;
2606 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2607 			si->ksi_signo = 0;
2608 	} else if (td->td_xsig != 0) {
2609 		/*
2610 		 * If parent wants us to take a new signal, then it will leave
2611 		 * it in td->td_xsig; otherwise we just look for signals again.
2612 		 */
2613 		ksiginfo_init(&ksi);
2614 		ksi.ksi_signo = td->td_xsig;
2615 		ksi.ksi_flags |= KSI_PTRACE;
2616 		prop = sigprop(td->td_xsig);
2617 		td2 = sigtd(p, td->td_xsig, prop);
2618 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2619 		if (td != td2)
2620 			return (0);
2621 	}
2622 
2623 	return (td->td_xsig);
2624 }
2625 
2626 static void
2627 reschedule_signals(struct proc *p, sigset_t block, int flags)
2628 {
2629 	struct sigacts *ps;
2630 	struct thread *td;
2631 	int sig;
2632 
2633 	PROC_LOCK_ASSERT(p, MA_OWNED);
2634 	ps = p->p_sigacts;
2635 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2636 	    MA_OWNED : MA_NOTOWNED);
2637 	if (SIGISEMPTY(p->p_siglist))
2638 		return;
2639 	SIGSETAND(block, p->p_siglist);
2640 	while ((sig = sig_ffs(&block)) != 0) {
2641 		SIGDELSET(block, sig);
2642 		td = sigtd(p, sig, 0);
2643 		signotify(td);
2644 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2645 			mtx_lock(&ps->ps_mtx);
2646 		if (p->p_flag & P_TRACED ||
2647 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2648 		    !SIGISMEMBER(td->td_sigmask, sig)))
2649 			tdsigwakeup(td, sig, SIG_CATCH,
2650 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2651 			     ERESTART));
2652 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2653 			mtx_unlock(&ps->ps_mtx);
2654 	}
2655 }
2656 
2657 void
2658 tdsigcleanup(struct thread *td)
2659 {
2660 	struct proc *p;
2661 	sigset_t unblocked;
2662 
2663 	p = td->td_proc;
2664 	PROC_LOCK_ASSERT(p, MA_OWNED);
2665 
2666 	sigqueue_flush(&td->td_sigqueue);
2667 	if (p->p_numthreads == 1)
2668 		return;
2669 
2670 	/*
2671 	 * Since we cannot handle signals, notify signal post code
2672 	 * about this by filling the sigmask.
2673 	 *
2674 	 * Also, if needed, wake up thread(s) that do not block the
2675 	 * same signals as the exiting thread, since the thread might
2676 	 * have been selected for delivery and woken up.
2677 	 */
2678 	SIGFILLSET(unblocked);
2679 	SIGSETNAND(unblocked, td->td_sigmask);
2680 	SIGFILLSET(td->td_sigmask);
2681 	reschedule_signals(p, unblocked, 0);
2682 
2683 }
2684 
2685 static int
2686 sigdeferstop_curr_flags(int cflags)
2687 {
2688 
2689 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2690 	    (cflags & TDF_SBDRY) != 0);
2691 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2692 }
2693 
2694 /*
2695  * Defer the delivery of SIGSTOP for the current thread, according to
2696  * the requested mode.  Returns previous flags, which must be restored
2697  * by sigallowstop().
2698  *
2699  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2700  * cleared by the current thread, which allow the lock-less read-only
2701  * accesses below.
2702  */
2703 int
2704 sigdeferstop_impl(int mode)
2705 {
2706 	struct thread *td;
2707 	int cflags, nflags;
2708 
2709 	td = curthread;
2710 	cflags = sigdeferstop_curr_flags(td->td_flags);
2711 	switch (mode) {
2712 	case SIGDEFERSTOP_NOP:
2713 		nflags = cflags;
2714 		break;
2715 	case SIGDEFERSTOP_OFF:
2716 		nflags = 0;
2717 		break;
2718 	case SIGDEFERSTOP_SILENT:
2719 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2720 		break;
2721 	case SIGDEFERSTOP_EINTR:
2722 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2723 		break;
2724 	case SIGDEFERSTOP_ERESTART:
2725 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2726 		break;
2727 	default:
2728 		panic("sigdeferstop: invalid mode %x", mode);
2729 		break;
2730 	}
2731 	if (cflags == nflags)
2732 		return (SIGDEFERSTOP_VAL_NCHG);
2733 	thread_lock(td);
2734 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2735 	thread_unlock(td);
2736 	return (cflags);
2737 }
2738 
2739 /*
2740  * Restores the STOP handling mode, typically permitting the delivery
2741  * of SIGSTOP for the current thread.  This does not immediately
2742  * suspend if a stop was posted.  Instead, the thread will suspend
2743  * either via ast() or a subsequent interruptible sleep.
2744  */
2745 void
2746 sigallowstop_impl(int prev)
2747 {
2748 	struct thread *td;
2749 	int cflags;
2750 
2751 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2752 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2753 	    ("sigallowstop: incorrect previous mode %x", prev));
2754 	td = curthread;
2755 	cflags = sigdeferstop_curr_flags(td->td_flags);
2756 	if (cflags != prev) {
2757 		thread_lock(td);
2758 		td->td_flags = (td->td_flags & ~cflags) | prev;
2759 		thread_unlock(td);
2760 	}
2761 }
2762 
2763 /*
2764  * If the current process has received a signal (should be caught or cause
2765  * termination, should interrupt current syscall), return the signal number.
2766  * Stop signals with default action are processed immediately, then cleared;
2767  * they aren't returned.  This is checked after each entry to the system for
2768  * a syscall or trap (though this can usually be done without calling issignal
2769  * by checking the pending signal masks in cursig.) The normal call
2770  * sequence is
2771  *
2772  *	while (sig = cursig(curthread))
2773  *		postsig(sig);
2774  */
2775 static int
2776 issignal(struct thread *td)
2777 {
2778 	struct proc *p;
2779 	struct sigacts *ps;
2780 	struct sigqueue *queue;
2781 	sigset_t sigpending;
2782 	ksiginfo_t ksi;
2783 	int prop, sig, traced;
2784 
2785 	p = td->td_proc;
2786 	ps = p->p_sigacts;
2787 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2788 	PROC_LOCK_ASSERT(p, MA_OWNED);
2789 	for (;;) {
2790 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2791 
2792 		sigpending = td->td_sigqueue.sq_signals;
2793 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2794 		SIGSETNAND(sigpending, td->td_sigmask);
2795 
2796 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2797 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2798 			SIG_STOPSIGMASK(sigpending);
2799 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2800 			return (0);
2801 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2802 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2803 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2804 			/*
2805 			 * If debugger just attached, always consume
2806 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2807 			 * execute the debugger attach ritual in
2808 			 * order.
2809 			 */
2810 			sig = SIGSTOP;
2811 			td->td_dbgflags |= TDB_FSTP;
2812 		} else {
2813 			sig = sig_ffs(&sigpending);
2814 		}
2815 
2816 		if (p->p_stops & S_SIG) {
2817 			mtx_unlock(&ps->ps_mtx);
2818 			stopevent(p, S_SIG, sig);
2819 			mtx_lock(&ps->ps_mtx);
2820 		}
2821 
2822 		/*
2823 		 * We should see pending but ignored signals
2824 		 * only if P_TRACED was on when they were posted.
2825 		 */
2826 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2827 			sigqueue_delete(&td->td_sigqueue, sig);
2828 			sigqueue_delete(&p->p_sigqueue, sig);
2829 			continue;
2830 		}
2831 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2832 			/*
2833 			 * If traced, always stop.
2834 			 * Remove old signal from queue before the stop.
2835 			 * XXX shrug off debugger, it causes siginfo to
2836 			 * be thrown away.
2837 			 */
2838 			queue = &td->td_sigqueue;
2839 			ksiginfo_init(&ksi);
2840 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2841 				queue = &p->p_sigqueue;
2842 				sigqueue_get(queue, sig, &ksi);
2843 			}
2844 			td->td_si = ksi.ksi_info;
2845 
2846 			mtx_unlock(&ps->ps_mtx);
2847 			sig = ptracestop(td, sig, &ksi);
2848 			mtx_lock(&ps->ps_mtx);
2849 
2850 			/*
2851 			 * Keep looking if the debugger discarded or
2852 			 * replaced the signal.
2853 			 */
2854 			if (sig == 0)
2855 				continue;
2856 
2857 			/*
2858 			 * If the signal became masked, re-queue it.
2859 			 */
2860 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2861 				ksi.ksi_flags |= KSI_HEAD;
2862 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2863 				continue;
2864 			}
2865 
2866 			/*
2867 			 * If the traced bit got turned off, requeue
2868 			 * the signal and go back up to the top to
2869 			 * rescan signals.  This ensures that p_sig*
2870 			 * and p_sigact are consistent.
2871 			 */
2872 			if ((p->p_flag & P_TRACED) == 0) {
2873 				ksi.ksi_flags |= KSI_HEAD;
2874 				sigqueue_add(queue, sig, &ksi);
2875 				continue;
2876 			}
2877 		}
2878 
2879 		prop = sigprop(sig);
2880 
2881 		/*
2882 		 * Decide whether the signal should be returned.
2883 		 * Return the signal's number, or fall through
2884 		 * to clear it from the pending mask.
2885 		 */
2886 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2887 
2888 		case (intptr_t)SIG_DFL:
2889 			/*
2890 			 * Don't take default actions on system processes.
2891 			 */
2892 			if (p->p_pid <= 1) {
2893 #ifdef DIAGNOSTIC
2894 				/*
2895 				 * Are you sure you want to ignore SIGSEGV
2896 				 * in init? XXX
2897 				 */
2898 				printf("Process (pid %lu) got signal %d\n",
2899 					(u_long)p->p_pid, sig);
2900 #endif
2901 				break;		/* == ignore */
2902 			}
2903 			/*
2904 			 * If there is a pending stop signal to process with
2905 			 * default action, stop here, then clear the signal.
2906 			 * Traced or exiting processes should ignore stops.
2907 			 * Additionally, a member of an orphaned process group
2908 			 * should ignore tty stops.
2909 			 */
2910 			if (prop & SIGPROP_STOP) {
2911 				if (p->p_flag &
2912 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2913 				    (p->p_pgrp->pg_jobc == 0 &&
2914 				     prop & SIGPROP_TTYSTOP))
2915 					break;	/* == ignore */
2916 				if (TD_SBDRY_INTR(td)) {
2917 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2918 					    ("lost TDF_SBDRY"));
2919 					return (-1);
2920 				}
2921 				mtx_unlock(&ps->ps_mtx);
2922 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2923 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2924 				sigqueue_delete(&td->td_sigqueue, sig);
2925 				sigqueue_delete(&p->p_sigqueue, sig);
2926 				p->p_flag |= P_STOPPED_SIG;
2927 				p->p_xsig = sig;
2928 				PROC_SLOCK(p);
2929 				sig_suspend_threads(td, p, 0);
2930 				thread_suspend_switch(td, p);
2931 				PROC_SUNLOCK(p);
2932 				mtx_lock(&ps->ps_mtx);
2933 				goto next;
2934 			} else if (prop & SIGPROP_IGNORE) {
2935 				/*
2936 				 * Except for SIGCONT, shouldn't get here.
2937 				 * Default action is to ignore; drop it.
2938 				 */
2939 				break;		/* == ignore */
2940 			} else
2941 				return (sig);
2942 			/*NOTREACHED*/
2943 
2944 		case (intptr_t)SIG_IGN:
2945 			/*
2946 			 * Masking above should prevent us ever trying
2947 			 * to take action on an ignored signal other
2948 			 * than SIGCONT, unless process is traced.
2949 			 */
2950 			if ((prop & SIGPROP_CONT) == 0 &&
2951 			    (p->p_flag & P_TRACED) == 0)
2952 				printf("issignal\n");
2953 			break;		/* == ignore */
2954 
2955 		default:
2956 			/*
2957 			 * This signal has an action, let
2958 			 * postsig() process it.
2959 			 */
2960 			return (sig);
2961 		}
2962 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2963 		sigqueue_delete(&p->p_sigqueue, sig);
2964 next:;
2965 	}
2966 	/* NOTREACHED */
2967 }
2968 
2969 void
2970 thread_stopped(struct proc *p)
2971 {
2972 	int n;
2973 
2974 	PROC_LOCK_ASSERT(p, MA_OWNED);
2975 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2976 	n = p->p_suspcount;
2977 	if (p == curproc)
2978 		n++;
2979 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2980 		PROC_SUNLOCK(p);
2981 		p->p_flag &= ~P_WAITED;
2982 		PROC_LOCK(p->p_pptr);
2983 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2984 			CLD_TRAPPED : CLD_STOPPED);
2985 		PROC_UNLOCK(p->p_pptr);
2986 		PROC_SLOCK(p);
2987 	}
2988 }
2989 
2990 /*
2991  * Take the action for the specified signal
2992  * from the current set of pending signals.
2993  */
2994 int
2995 postsig(int sig)
2996 {
2997 	struct thread *td;
2998 	struct proc *p;
2999 	struct sigacts *ps;
3000 	sig_t action;
3001 	ksiginfo_t ksi;
3002 	sigset_t returnmask;
3003 
3004 	KASSERT(sig != 0, ("postsig"));
3005 
3006 	td = curthread;
3007 	p = td->td_proc;
3008 	PROC_LOCK_ASSERT(p, MA_OWNED);
3009 	ps = p->p_sigacts;
3010 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3011 	ksiginfo_init(&ksi);
3012 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3013 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3014 		return (0);
3015 	ksi.ksi_signo = sig;
3016 	if (ksi.ksi_code == SI_TIMER)
3017 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3018 	action = ps->ps_sigact[_SIG_IDX(sig)];
3019 #ifdef KTRACE
3020 	if (KTRPOINT(td, KTR_PSIG))
3021 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3022 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3023 #endif
3024 	if ((p->p_stops & S_SIG) != 0) {
3025 		mtx_unlock(&ps->ps_mtx);
3026 		stopevent(p, S_SIG, sig);
3027 		mtx_lock(&ps->ps_mtx);
3028 	}
3029 
3030 	if (action == SIG_DFL) {
3031 		/*
3032 		 * Default action, where the default is to kill
3033 		 * the process.  (Other cases were ignored above.)
3034 		 */
3035 		mtx_unlock(&ps->ps_mtx);
3036 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3037 		sigexit(td, sig);
3038 		/* NOTREACHED */
3039 	} else {
3040 		/*
3041 		 * If we get here, the signal must be caught.
3042 		 */
3043 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3044 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3045 		    ("postsig action: blocked sig %d", sig));
3046 
3047 		/*
3048 		 * Set the new mask value and also defer further
3049 		 * occurrences of this signal.
3050 		 *
3051 		 * Special case: user has done a sigsuspend.  Here the
3052 		 * current mask is not of interest, but rather the
3053 		 * mask from before the sigsuspend is what we want
3054 		 * restored after the signal processing is completed.
3055 		 */
3056 		if (td->td_pflags & TDP_OLDMASK) {
3057 			returnmask = td->td_oldsigmask;
3058 			td->td_pflags &= ~TDP_OLDMASK;
3059 		} else
3060 			returnmask = td->td_sigmask;
3061 
3062 		if (p->p_sig == sig) {
3063 			p->p_code = 0;
3064 			p->p_sig = 0;
3065 		}
3066 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3067 		postsig_done(sig, td, ps);
3068 	}
3069 	return (1);
3070 }
3071 
3072 void
3073 proc_wkilled(struct proc *p)
3074 {
3075 
3076 	PROC_LOCK_ASSERT(p, MA_OWNED);
3077 	if ((p->p_flag & P_WKILLED) == 0) {
3078 		p->p_flag |= P_WKILLED;
3079 		/*
3080 		 * Notify swapper that there is a process to swap in.
3081 		 * The notification is racy, at worst it would take 10
3082 		 * seconds for the swapper process to notice.
3083 		 */
3084 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3085 			wakeup(&proc0);
3086 	}
3087 }
3088 
3089 /*
3090  * Kill the current process for stated reason.
3091  */
3092 void
3093 killproc(struct proc *p, char *why)
3094 {
3095 
3096 	PROC_LOCK_ASSERT(p, MA_OWNED);
3097 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3098 	    p->p_comm);
3099 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3100 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3101 	proc_wkilled(p);
3102 	kern_psignal(p, SIGKILL);
3103 }
3104 
3105 /*
3106  * Force the current process to exit with the specified signal, dumping core
3107  * if appropriate.  We bypass the normal tests for masked and caught signals,
3108  * allowing unrecoverable failures to terminate the process without changing
3109  * signal state.  Mark the accounting record with the signal termination.
3110  * If dumping core, save the signal number for the debugger.  Calls exit and
3111  * does not return.
3112  */
3113 void
3114 sigexit(struct thread *td, int sig)
3115 {
3116 	struct proc *p = td->td_proc;
3117 
3118 	PROC_LOCK_ASSERT(p, MA_OWNED);
3119 	p->p_acflag |= AXSIG;
3120 	/*
3121 	 * We must be single-threading to generate a core dump.  This
3122 	 * ensures that the registers in the core file are up-to-date.
3123 	 * Also, the ELF dump handler assumes that the thread list doesn't
3124 	 * change out from under it.
3125 	 *
3126 	 * XXX If another thread attempts to single-thread before us
3127 	 *     (e.g. via fork()), we won't get a dump at all.
3128 	 */
3129 	if ((sigprop(sig) & SIGPROP_CORE) &&
3130 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3131 		p->p_sig = sig;
3132 		/*
3133 		 * Log signals which would cause core dumps
3134 		 * (Log as LOG_INFO to appease those who don't want
3135 		 * these messages.)
3136 		 * XXX : Todo, as well as euid, write out ruid too
3137 		 * Note that coredump() drops proc lock.
3138 		 */
3139 		if (coredump(td) == 0)
3140 			sig |= WCOREFLAG;
3141 		if (kern_logsigexit)
3142 			log(LOG_INFO,
3143 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3144 			    p->p_pid, p->p_comm,
3145 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3146 			    sig &~ WCOREFLAG,
3147 			    sig & WCOREFLAG ? " (core dumped)" : "");
3148 	} else
3149 		PROC_UNLOCK(p);
3150 	exit1(td, 0, sig);
3151 	/* NOTREACHED */
3152 }
3153 
3154 /*
3155  * Send queued SIGCHLD to parent when child process's state
3156  * is changed.
3157  */
3158 static void
3159 sigparent(struct proc *p, int reason, int status)
3160 {
3161 	PROC_LOCK_ASSERT(p, MA_OWNED);
3162 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3163 
3164 	if (p->p_ksi != NULL) {
3165 		p->p_ksi->ksi_signo  = SIGCHLD;
3166 		p->p_ksi->ksi_code   = reason;
3167 		p->p_ksi->ksi_status = status;
3168 		p->p_ksi->ksi_pid    = p->p_pid;
3169 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3170 		if (KSI_ONQ(p->p_ksi))
3171 			return;
3172 	}
3173 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3174 }
3175 
3176 static void
3177 childproc_jobstate(struct proc *p, int reason, int sig)
3178 {
3179 	struct sigacts *ps;
3180 
3181 	PROC_LOCK_ASSERT(p, MA_OWNED);
3182 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3183 
3184 	/*
3185 	 * Wake up parent sleeping in kern_wait(), also send
3186 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3187 	 * that parent will awake, because parent may masked
3188 	 * the signal.
3189 	 */
3190 	p->p_pptr->p_flag |= P_STATCHILD;
3191 	wakeup(p->p_pptr);
3192 
3193 	ps = p->p_pptr->p_sigacts;
3194 	mtx_lock(&ps->ps_mtx);
3195 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3196 		mtx_unlock(&ps->ps_mtx);
3197 		sigparent(p, reason, sig);
3198 	} else
3199 		mtx_unlock(&ps->ps_mtx);
3200 }
3201 
3202 void
3203 childproc_stopped(struct proc *p, int reason)
3204 {
3205 
3206 	childproc_jobstate(p, reason, p->p_xsig);
3207 }
3208 
3209 void
3210 childproc_continued(struct proc *p)
3211 {
3212 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3213 }
3214 
3215 void
3216 childproc_exited(struct proc *p)
3217 {
3218 	int reason, status;
3219 
3220 	if (WCOREDUMP(p->p_xsig)) {
3221 		reason = CLD_DUMPED;
3222 		status = WTERMSIG(p->p_xsig);
3223 	} else if (WIFSIGNALED(p->p_xsig)) {
3224 		reason = CLD_KILLED;
3225 		status = WTERMSIG(p->p_xsig);
3226 	} else {
3227 		reason = CLD_EXITED;
3228 		status = p->p_xexit;
3229 	}
3230 	/*
3231 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3232 	 * done in exit1().
3233 	 */
3234 	sigparent(p, reason, status);
3235 }
3236 
3237 #define	MAX_NUM_CORE_FILES 100000
3238 #ifndef NUM_CORE_FILES
3239 #define	NUM_CORE_FILES 5
3240 #endif
3241 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3242 static int num_cores = NUM_CORE_FILES;
3243 
3244 static int
3245 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3246 {
3247 	int error;
3248 	int new_val;
3249 
3250 	new_val = num_cores;
3251 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3252 	if (error != 0 || req->newptr == NULL)
3253 		return (error);
3254 	if (new_val > MAX_NUM_CORE_FILES)
3255 		new_val = MAX_NUM_CORE_FILES;
3256 	if (new_val < 0)
3257 		new_val = 0;
3258 	num_cores = new_val;
3259 	return (0);
3260 }
3261 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3262 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3263 	    "Maximum number of generated process corefiles while using index format");
3264 
3265 #define	GZIP_SUFFIX	".gz"
3266 #define	ZSTD_SUFFIX	".zst"
3267 
3268 int compress_user_cores = 0;
3269 
3270 static int
3271 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3272 {
3273 	int error, val;
3274 
3275 	val = compress_user_cores;
3276 	error = sysctl_handle_int(oidp, &val, 0, req);
3277 	if (error != 0 || req->newptr == NULL)
3278 		return (error);
3279 	if (val != 0 && !compressor_avail(val))
3280 		return (EINVAL);
3281 	compress_user_cores = val;
3282 	return (error);
3283 }
3284 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3285     0, sizeof(int), sysctl_compress_user_cores, "I",
3286     "Enable compression of user corefiles ("
3287     __XSTRING(COMPRESS_GZIP) " = gzip, "
3288     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3289 
3290 int compress_user_cores_level = 6;
3291 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3292     &compress_user_cores_level, 0,
3293     "Corefile compression level");
3294 
3295 /*
3296  * Protect the access to corefilename[] by allproc_lock.
3297  */
3298 #define	corefilename_lock	allproc_lock
3299 
3300 static char corefilename[MAXPATHLEN] = {"%N.core"};
3301 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3302 
3303 static int
3304 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3305 {
3306 	int error;
3307 
3308 	sx_xlock(&corefilename_lock);
3309 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3310 	    req);
3311 	sx_xunlock(&corefilename_lock);
3312 
3313 	return (error);
3314 }
3315 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3316     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3317     "Process corefile name format string");
3318 
3319 static void
3320 vnode_close_locked(struct thread *td, struct vnode *vp)
3321 {
3322 
3323 	VOP_UNLOCK(vp, 0);
3324 	vn_close(vp, FWRITE, td->td_ucred, td);
3325 }
3326 
3327 /*
3328  * If the core format has a %I in it, then we need to check
3329  * for existing corefiles before defining a name.
3330  * To do this we iterate over 0..ncores to find a
3331  * non-existing core file name to use. If all core files are
3332  * already used we choose the oldest one.
3333  */
3334 static int
3335 corefile_open_last(struct thread *td, char *name, int indexpos,
3336     int indexlen, int ncores, struct vnode **vpp)
3337 {
3338 	struct vnode *oldvp, *nextvp, *vp;
3339 	struct vattr vattr;
3340 	struct nameidata nd;
3341 	int error, i, flags, oflags, cmode;
3342 	char ch;
3343 	struct timespec lasttime;
3344 
3345 	nextvp = oldvp = NULL;
3346 	cmode = S_IRUSR | S_IWUSR;
3347 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3348 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3349 
3350 	for (i = 0; i < ncores; i++) {
3351 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3352 
3353 		ch = name[indexpos + indexlen];
3354 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3355 		    i);
3356 		name[indexpos + indexlen] = ch;
3357 
3358 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3359 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3360 		    NULL);
3361 		if (error != 0)
3362 			break;
3363 
3364 		vp = nd.ni_vp;
3365 		NDFREE(&nd, NDF_ONLY_PNBUF);
3366 		if ((flags & O_CREAT) == O_CREAT) {
3367 			nextvp = vp;
3368 			break;
3369 		}
3370 
3371 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3372 		if (error != 0) {
3373 			vnode_close_locked(td, vp);
3374 			break;
3375 		}
3376 
3377 		if (oldvp == NULL ||
3378 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3379 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3380 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3381 			if (oldvp != NULL)
3382 				vnode_close_locked(td, oldvp);
3383 			oldvp = vp;
3384 			lasttime = vattr.va_mtime;
3385 		} else {
3386 			vnode_close_locked(td, vp);
3387 		}
3388 	}
3389 
3390 	if (oldvp != NULL) {
3391 		if (nextvp == NULL)
3392 			nextvp = oldvp;
3393 		else
3394 			vnode_close_locked(td, oldvp);
3395 	}
3396 	if (error != 0) {
3397 		if (nextvp != NULL)
3398 			vnode_close_locked(td, oldvp);
3399 	} else {
3400 		*vpp = nextvp;
3401 	}
3402 
3403 	return (error);
3404 }
3405 
3406 /*
3407  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3408  * Expand the name described in corefilename, using name, uid, and pid
3409  * and open/create core file.
3410  * corefilename is a printf-like string, with three format specifiers:
3411  *	%N	name of process ("name")
3412  *	%P	process id (pid)
3413  *	%U	user id (uid)
3414  * For example, "%N.core" is the default; they can be disabled completely
3415  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3416  * This is controlled by the sysctl variable kern.corefile (see above).
3417  */
3418 static int
3419 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3420     int compress, struct vnode **vpp, char **namep)
3421 {
3422 	struct sbuf sb;
3423 	struct nameidata nd;
3424 	const char *format;
3425 	char *hostname, *name;
3426 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3427 
3428 	hostname = NULL;
3429 	format = corefilename;
3430 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3431 	indexlen = 0;
3432 	indexpos = -1;
3433 	ncores = num_cores;
3434 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3435 	sx_slock(&corefilename_lock);
3436 	for (i = 0; format[i] != '\0'; i++) {
3437 		switch (format[i]) {
3438 		case '%':	/* Format character */
3439 			i++;
3440 			switch (format[i]) {
3441 			case '%':
3442 				sbuf_putc(&sb, '%');
3443 				break;
3444 			case 'H':	/* hostname */
3445 				if (hostname == NULL) {
3446 					hostname = malloc(MAXHOSTNAMELEN,
3447 					    M_TEMP, M_WAITOK);
3448 				}
3449 				getcredhostname(td->td_ucred, hostname,
3450 				    MAXHOSTNAMELEN);
3451 				sbuf_printf(&sb, "%s", hostname);
3452 				break;
3453 			case 'I':	/* autoincrementing index */
3454 				if (indexpos != -1) {
3455 					sbuf_printf(&sb, "%%I");
3456 					break;
3457 				}
3458 
3459 				indexpos = sbuf_len(&sb);
3460 				sbuf_printf(&sb, "%u", ncores - 1);
3461 				indexlen = sbuf_len(&sb) - indexpos;
3462 				break;
3463 			case 'N':	/* process name */
3464 				sbuf_printf(&sb, "%s", comm);
3465 				break;
3466 			case 'P':	/* process id */
3467 				sbuf_printf(&sb, "%u", pid);
3468 				break;
3469 			case 'U':	/* user id */
3470 				sbuf_printf(&sb, "%u", uid);
3471 				break;
3472 			default:
3473 				log(LOG_ERR,
3474 				    "Unknown format character %c in "
3475 				    "corename `%s'\n", format[i], format);
3476 				break;
3477 			}
3478 			break;
3479 		default:
3480 			sbuf_putc(&sb, format[i]);
3481 			break;
3482 		}
3483 	}
3484 	sx_sunlock(&corefilename_lock);
3485 	free(hostname, M_TEMP);
3486 	if (compress == COMPRESS_GZIP)
3487 		sbuf_printf(&sb, GZIP_SUFFIX);
3488 	else if (compress == COMPRESS_ZSTD)
3489 		sbuf_printf(&sb, ZSTD_SUFFIX);
3490 	if (sbuf_error(&sb) != 0) {
3491 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3492 		    "long\n", (long)pid, comm, (u_long)uid);
3493 		sbuf_delete(&sb);
3494 		free(name, M_TEMP);
3495 		return (ENOMEM);
3496 	}
3497 	sbuf_finish(&sb);
3498 	sbuf_delete(&sb);
3499 
3500 	if (indexpos != -1) {
3501 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3502 		    vpp);
3503 		if (error != 0) {
3504 			log(LOG_ERR,
3505 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3506 			    "on initial open test, error = %d\n",
3507 			    pid, comm, uid, name, error);
3508 		}
3509 	} else {
3510 		cmode = S_IRUSR | S_IWUSR;
3511 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3512 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3513 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3514 
3515 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3516 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3517 		    NULL);
3518 		if (error == 0) {
3519 			*vpp = nd.ni_vp;
3520 			NDFREE(&nd, NDF_ONLY_PNBUF);
3521 		}
3522 	}
3523 
3524 	if (error != 0) {
3525 #ifdef AUDIT
3526 		audit_proc_coredump(td, name, error);
3527 #endif
3528 		free(name, M_TEMP);
3529 		return (error);
3530 	}
3531 	*namep = name;
3532 	return (0);
3533 }
3534 
3535 /*
3536  * Dump a process' core.  The main routine does some
3537  * policy checking, and creates the name of the coredump;
3538  * then it passes on a vnode and a size limit to the process-specific
3539  * coredump routine if there is one; if there _is not_ one, it returns
3540  * ENOSYS; otherwise it returns the error from the process-specific routine.
3541  */
3542 
3543 static int
3544 coredump(struct thread *td)
3545 {
3546 	struct proc *p = td->td_proc;
3547 	struct ucred *cred = td->td_ucred;
3548 	struct vnode *vp;
3549 	struct flock lf;
3550 	struct vattr vattr;
3551 	int error, error1, locked;
3552 	char *name;			/* name of corefile */
3553 	void *rl_cookie;
3554 	off_t limit;
3555 	char *fullpath, *freepath = NULL;
3556 	struct sbuf *sb;
3557 
3558 	PROC_LOCK_ASSERT(p, MA_OWNED);
3559 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3560 	_STOPEVENT(p, S_CORE, 0);
3561 
3562 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3563 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3564 		PROC_UNLOCK(p);
3565 		return (EFAULT);
3566 	}
3567 
3568 	/*
3569 	 * Note that the bulk of limit checking is done after
3570 	 * the corefile is created.  The exception is if the limit
3571 	 * for corefiles is 0, in which case we don't bother
3572 	 * creating the corefile at all.  This layout means that
3573 	 * a corefile is truncated instead of not being created,
3574 	 * if it is larger than the limit.
3575 	 */
3576 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3577 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3578 		PROC_UNLOCK(p);
3579 		return (EFBIG);
3580 	}
3581 	PROC_UNLOCK(p);
3582 
3583 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3584 	    compress_user_cores, &vp, &name);
3585 	if (error != 0)
3586 		return (error);
3587 
3588 	/*
3589 	 * Don't dump to non-regular files or files with links.
3590 	 * Do not dump into system files.
3591 	 */
3592 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3593 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3594 		VOP_UNLOCK(vp, 0);
3595 		error = EFAULT;
3596 		goto out;
3597 	}
3598 
3599 	VOP_UNLOCK(vp, 0);
3600 
3601 	/* Postpone other writers, including core dumps of other processes. */
3602 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3603 
3604 	lf.l_whence = SEEK_SET;
3605 	lf.l_start = 0;
3606 	lf.l_len = 0;
3607 	lf.l_type = F_WRLCK;
3608 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3609 
3610 	VATTR_NULL(&vattr);
3611 	vattr.va_size = 0;
3612 	if (set_core_nodump_flag)
3613 		vattr.va_flags = UF_NODUMP;
3614 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3615 	VOP_SETATTR(vp, &vattr, cred);
3616 	VOP_UNLOCK(vp, 0);
3617 	PROC_LOCK(p);
3618 	p->p_acflag |= ACORE;
3619 	PROC_UNLOCK(p);
3620 
3621 	if (p->p_sysent->sv_coredump != NULL) {
3622 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3623 	} else {
3624 		error = ENOSYS;
3625 	}
3626 
3627 	if (locked) {
3628 		lf.l_type = F_UNLCK;
3629 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3630 	}
3631 	vn_rangelock_unlock(vp, rl_cookie);
3632 
3633 	/*
3634 	 * Notify the userland helper that a process triggered a core dump.
3635 	 * This allows the helper to run an automated debugging session.
3636 	 */
3637 	if (error != 0 || coredump_devctl == 0)
3638 		goto out;
3639 	sb = sbuf_new_auto();
3640 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3641 		goto out2;
3642 	sbuf_printf(sb, "comm=\"");
3643 	devctl_safe_quote_sb(sb, fullpath);
3644 	free(freepath, M_TEMP);
3645 	sbuf_printf(sb, "\" core=\"");
3646 
3647 	/*
3648 	 * We can't lookup core file vp directly. When we're replacing a core, and
3649 	 * other random times, we flush the name cache, so it will fail. Instead,
3650 	 * if the path of the core is relative, add the current dir in front if it.
3651 	 */
3652 	if (name[0] != '/') {
3653 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3654 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3655 			free(fullpath, M_TEMP);
3656 			goto out2;
3657 		}
3658 		devctl_safe_quote_sb(sb, fullpath);
3659 		free(fullpath, M_TEMP);
3660 		sbuf_putc(sb, '/');
3661 	}
3662 	devctl_safe_quote_sb(sb, name);
3663 	sbuf_printf(sb, "\"");
3664 	if (sbuf_finish(sb) == 0)
3665 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3666 out2:
3667 	sbuf_delete(sb);
3668 out:
3669 	error1 = vn_close(vp, FWRITE, cred, td);
3670 	if (error == 0)
3671 		error = error1;
3672 #ifdef AUDIT
3673 	audit_proc_coredump(td, name, error);
3674 #endif
3675 	free(name, M_TEMP);
3676 	return (error);
3677 }
3678 
3679 /*
3680  * Nonexistent system call-- signal process (may want to handle it).  Flag
3681  * error in case process won't see signal immediately (blocked or ignored).
3682  */
3683 #ifndef _SYS_SYSPROTO_H_
3684 struct nosys_args {
3685 	int	dummy;
3686 };
3687 #endif
3688 /* ARGSUSED */
3689 int
3690 nosys(struct thread *td, struct nosys_args *args)
3691 {
3692 	struct proc *p;
3693 
3694 	p = td->td_proc;
3695 
3696 	PROC_LOCK(p);
3697 	tdsignal(td, SIGSYS);
3698 	PROC_UNLOCK(p);
3699 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3700 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3701 		    td->td_sa.code);
3702 	}
3703 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3704 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3705 		    td->td_sa.code);
3706 	}
3707 	return (ENOSYS);
3708 }
3709 
3710 /*
3711  * Send a SIGIO or SIGURG signal to a process or process group using stored
3712  * credentials rather than those of the current process.
3713  */
3714 void
3715 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3716 {
3717 	ksiginfo_t ksi;
3718 	struct sigio *sigio;
3719 
3720 	ksiginfo_init(&ksi);
3721 	ksi.ksi_signo = sig;
3722 	ksi.ksi_code = SI_KERNEL;
3723 
3724 	SIGIO_LOCK();
3725 	sigio = *sigiop;
3726 	if (sigio == NULL) {
3727 		SIGIO_UNLOCK();
3728 		return;
3729 	}
3730 	if (sigio->sio_pgid > 0) {
3731 		PROC_LOCK(sigio->sio_proc);
3732 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3733 			kern_psignal(sigio->sio_proc, sig);
3734 		PROC_UNLOCK(sigio->sio_proc);
3735 	} else if (sigio->sio_pgid < 0) {
3736 		struct proc *p;
3737 
3738 		PGRP_LOCK(sigio->sio_pgrp);
3739 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3740 			PROC_LOCK(p);
3741 			if (p->p_state == PRS_NORMAL &&
3742 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3743 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3744 				kern_psignal(p, sig);
3745 			PROC_UNLOCK(p);
3746 		}
3747 		PGRP_UNLOCK(sigio->sio_pgrp);
3748 	}
3749 	SIGIO_UNLOCK();
3750 }
3751 
3752 static int
3753 filt_sigattach(struct knote *kn)
3754 {
3755 	struct proc *p = curproc;
3756 
3757 	kn->kn_ptr.p_proc = p;
3758 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3759 
3760 	knlist_add(p->p_klist, kn, 0);
3761 
3762 	return (0);
3763 }
3764 
3765 static void
3766 filt_sigdetach(struct knote *kn)
3767 {
3768 	struct proc *p = kn->kn_ptr.p_proc;
3769 
3770 	knlist_remove(p->p_klist, kn, 0);
3771 }
3772 
3773 /*
3774  * signal knotes are shared with proc knotes, so we apply a mask to
3775  * the hint in order to differentiate them from process hints.  This
3776  * could be avoided by using a signal-specific knote list, but probably
3777  * isn't worth the trouble.
3778  */
3779 static int
3780 filt_signal(struct knote *kn, long hint)
3781 {
3782 
3783 	if (hint & NOTE_SIGNAL) {
3784 		hint &= ~NOTE_SIGNAL;
3785 
3786 		if (kn->kn_id == hint)
3787 			kn->kn_data++;
3788 	}
3789 	return (kn->kn_data != 0);
3790 }
3791 
3792 struct sigacts *
3793 sigacts_alloc(void)
3794 {
3795 	struct sigacts *ps;
3796 
3797 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3798 	refcount_init(&ps->ps_refcnt, 1);
3799 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3800 	return (ps);
3801 }
3802 
3803 void
3804 sigacts_free(struct sigacts *ps)
3805 {
3806 
3807 	if (refcount_release(&ps->ps_refcnt) == 0)
3808 		return;
3809 	mtx_destroy(&ps->ps_mtx);
3810 	free(ps, M_SUBPROC);
3811 }
3812 
3813 struct sigacts *
3814 sigacts_hold(struct sigacts *ps)
3815 {
3816 
3817 	refcount_acquire(&ps->ps_refcnt);
3818 	return (ps);
3819 }
3820 
3821 void
3822 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3823 {
3824 
3825 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3826 	mtx_lock(&src->ps_mtx);
3827 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3828 	mtx_unlock(&src->ps_mtx);
3829 }
3830 
3831 int
3832 sigacts_shared(struct sigacts *ps)
3833 {
3834 
3835 	return (ps->ps_refcnt > 1);
3836 }
3837