xref: /freebsd/sys/kern/kern_sig.c (revision 6026dcd7ca888f3433f4df34ede69a77c1eb7701)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_compat.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/ctype.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/bus.h>
52 #include <sys/capsicum.h>
53 #include <sys/compressor.h>
54 #include <sys/condvar.h>
55 #include <sys/event.h>
56 #include <sys/fcntl.h>
57 #include <sys/imgact.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/ktrace.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/posix4.h>
69 #include <sys/pioctl.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static int	sigprop(int sig);
111 static void	tdsigwakeup(struct thread *, int, sig_t, int);
112 static int	sig_suspend_threads(struct thread *, struct proc *, int);
113 static int	filt_sigattach(struct knote *kn);
114 static void	filt_sigdetach(struct knote *kn);
115 static int	filt_signal(struct knote *kn, long hint);
116 static struct thread *sigtd(struct proc *p, int sig, int prop);
117 static void	sigqueue_start(void);
118 
119 static uma_zone_t	ksiginfo_zone = NULL;
120 struct filterops sig_filtops = {
121 	.f_isfd = 0,
122 	.f_attach = filt_sigattach,
123 	.f_detach = filt_sigdetach,
124 	.f_event = filt_signal,
125 };
126 
127 static int	kern_logsigexit = 1;
128 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
129     &kern_logsigexit, 0,
130     "Log processes quitting on abnormal signals to syslog(3)");
131 
132 static int	kern_forcesigexit = 1;
133 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
134     &kern_forcesigexit, 0, "Force trap signal to be handled");
135 
136 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
137     "POSIX real time signal");
138 
139 static int	max_pending_per_proc = 128;
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
141     &max_pending_per_proc, 0, "Max pending signals per proc");
142 
143 static int	preallocate_siginfo = 1024;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
145     &preallocate_siginfo, 0, "Preallocated signal memory size");
146 
147 static int	signal_overflow = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
149     &signal_overflow, 0, "Number of signals overflew");
150 
151 static int	signal_alloc_fail = 0;
152 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
153     &signal_alloc_fail, 0, "signals failed to be allocated");
154 
155 static int	kern_lognosys = 0;
156 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
157     "Log invalid syscalls");
158 
159 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
160 
161 /*
162  * Policy -- Can ucred cr1 send SIGIO to process cr2?
163  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
164  * in the right situations.
165  */
166 #define CANSIGIO(cr1, cr2) \
167 	((cr1)->cr_uid == 0 || \
168 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
171 	    (cr1)->cr_uid == (cr2)->cr_uid)
172 
173 static int	sugid_coredump;
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	capmode_coredump;
178 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
179     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
180 
181 static int	do_coredump = 1;
182 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
183 	&do_coredump, 0, "Enable/Disable coredumps");
184 
185 static int	set_core_nodump_flag = 0;
186 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
187 	0, "Enable setting the NODUMP flag on coredump files");
188 
189 static int	coredump_devctl = 0;
190 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
191 	0, "Generate a devctl notification when processes coredump");
192 
193 /*
194  * Signal properties and actions.
195  * The array below categorizes the signals and their default actions
196  * according to the following properties:
197  */
198 #define	SIGPROP_KILL		0x01	/* terminates process by default */
199 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
200 #define	SIGPROP_STOP		0x04	/* suspend process */
201 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
202 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
203 #define	SIGPROP_CONT		0x20	/* continue if suspended */
204 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
205 
206 static int sigproptbl[NSIG] = {
207 	[SIGHUP] =	SIGPROP_KILL,
208 	[SIGINT] =	SIGPROP_KILL,
209 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGKILL] =	SIGPROP_KILL,
216 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
219 	[SIGPIPE] =	SIGPROP_KILL,
220 	[SIGALRM] =	SIGPROP_KILL,
221 	[SIGTERM] =	SIGPROP_KILL,
222 	[SIGURG] =	SIGPROP_IGNORE,
223 	[SIGSTOP] =	SIGPROP_STOP,
224 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
225 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
226 	[SIGCHLD] =	SIGPROP_IGNORE,
227 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
229 	[SIGIO] =	SIGPROP_IGNORE,
230 	[SIGXCPU] =	SIGPROP_KILL,
231 	[SIGXFSZ] =	SIGPROP_KILL,
232 	[SIGVTALRM] =	SIGPROP_KILL,
233 	[SIGPROF] =	SIGPROP_KILL,
234 	[SIGWINCH] =	SIGPROP_IGNORE,
235 	[SIGINFO] =	SIGPROP_IGNORE,
236 	[SIGUSR1] =	SIGPROP_KILL,
237 	[SIGUSR2] =	SIGPROP_KILL,
238 };
239 
240 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
241 
242 static void
243 sigqueue_start(void)
244 {
245 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
246 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
247 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
248 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
249 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
250 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
251 }
252 
253 ksiginfo_t *
254 ksiginfo_alloc(int wait)
255 {
256 	int flags;
257 
258 	flags = M_ZERO;
259 	if (! wait)
260 		flags |= M_NOWAIT;
261 	if (ksiginfo_zone != NULL)
262 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
263 	return (NULL);
264 }
265 
266 void
267 ksiginfo_free(ksiginfo_t *ksi)
268 {
269 	uma_zfree(ksiginfo_zone, ksi);
270 }
271 
272 static __inline int
273 ksiginfo_tryfree(ksiginfo_t *ksi)
274 {
275 	if (!(ksi->ksi_flags & KSI_EXT)) {
276 		uma_zfree(ksiginfo_zone, ksi);
277 		return (1);
278 	}
279 	return (0);
280 }
281 
282 void
283 sigqueue_init(sigqueue_t *list, struct proc *p)
284 {
285 	SIGEMPTYSET(list->sq_signals);
286 	SIGEMPTYSET(list->sq_kill);
287 	SIGEMPTYSET(list->sq_ptrace);
288 	TAILQ_INIT(&list->sq_list);
289 	list->sq_proc = p;
290 	list->sq_flags = SQ_INIT;
291 }
292 
293 /*
294  * Get a signal's ksiginfo.
295  * Return:
296  *	0	-	signal not found
297  *	others	-	signal number
298  */
299 static int
300 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
301 {
302 	struct proc *p = sq->sq_proc;
303 	struct ksiginfo *ksi, *next;
304 	int count = 0;
305 
306 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
307 
308 	if (!SIGISMEMBER(sq->sq_signals, signo))
309 		return (0);
310 
311 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
312 		count++;
313 		SIGDELSET(sq->sq_ptrace, signo);
314 		si->ksi_flags |= KSI_PTRACE;
315 	}
316 	if (SIGISMEMBER(sq->sq_kill, signo)) {
317 		count++;
318 		if (count == 1)
319 			SIGDELSET(sq->sq_kill, signo);
320 	}
321 
322 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
323 		if (ksi->ksi_signo == signo) {
324 			if (count == 0) {
325 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
326 				ksi->ksi_sigq = NULL;
327 				ksiginfo_copy(ksi, si);
328 				if (ksiginfo_tryfree(ksi) && p != NULL)
329 					p->p_pendingcnt--;
330 			}
331 			if (++count > 1)
332 				break;
333 		}
334 	}
335 
336 	if (count <= 1)
337 		SIGDELSET(sq->sq_signals, signo);
338 	si->ksi_signo = signo;
339 	return (signo);
340 }
341 
342 void
343 sigqueue_take(ksiginfo_t *ksi)
344 {
345 	struct ksiginfo *kp;
346 	struct proc	*p;
347 	sigqueue_t	*sq;
348 
349 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
350 		return;
351 
352 	p = sq->sq_proc;
353 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
354 	ksi->ksi_sigq = NULL;
355 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
356 		p->p_pendingcnt--;
357 
358 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
359 	     kp = TAILQ_NEXT(kp, ksi_link)) {
360 		if (kp->ksi_signo == ksi->ksi_signo)
361 			break;
362 	}
363 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
364 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
365 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
366 }
367 
368 static int
369 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
370 {
371 	struct proc *p = sq->sq_proc;
372 	struct ksiginfo *ksi;
373 	int ret = 0;
374 
375 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
376 
377 	/*
378 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
379 	 * for these signals.
380 	 */
381 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
382 		SIGADDSET(sq->sq_kill, signo);
383 		goto out_set_bit;
384 	}
385 
386 	/* directly insert the ksi, don't copy it */
387 	if (si->ksi_flags & KSI_INS) {
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
392 		si->ksi_sigq = sq;
393 		goto out_set_bit;
394 	}
395 
396 	if (__predict_false(ksiginfo_zone == NULL)) {
397 		SIGADDSET(sq->sq_kill, signo);
398 		goto out_set_bit;
399 	}
400 
401 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
402 		signal_overflow++;
403 		ret = EAGAIN;
404 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
405 		signal_alloc_fail++;
406 		ret = EAGAIN;
407 	} else {
408 		if (p != NULL)
409 			p->p_pendingcnt++;
410 		ksiginfo_copy(si, ksi);
411 		ksi->ksi_signo = signo;
412 		if (si->ksi_flags & KSI_HEAD)
413 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
414 		else
415 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
416 		ksi->ksi_sigq = sq;
417 	}
418 
419 	if (ret != 0) {
420 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
421 			SIGADDSET(sq->sq_ptrace, signo);
422 			ret = 0;
423 			goto out_set_bit;
424 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
425 		    (si->ksi_flags & KSI_SIGQ) == 0) {
426 			SIGADDSET(sq->sq_kill, signo);
427 			ret = 0;
428 			goto out_set_bit;
429 		}
430 		return (ret);
431 	}
432 
433 out_set_bit:
434 	SIGADDSET(sq->sq_signals, signo);
435 	return (ret);
436 }
437 
438 void
439 sigqueue_flush(sigqueue_t *sq)
440 {
441 	struct proc *p = sq->sq_proc;
442 	ksiginfo_t *ksi;
443 
444 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
445 
446 	if (p != NULL)
447 		PROC_LOCK_ASSERT(p, MA_OWNED);
448 
449 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
450 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
451 		ksi->ksi_sigq = NULL;
452 		if (ksiginfo_tryfree(ksi) && p != NULL)
453 			p->p_pendingcnt--;
454 	}
455 
456 	SIGEMPTYSET(sq->sq_signals);
457 	SIGEMPTYSET(sq->sq_kill);
458 	SIGEMPTYSET(sq->sq_ptrace);
459 }
460 
461 static void
462 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
463 {
464 	sigset_t tmp;
465 	struct proc *p1, *p2;
466 	ksiginfo_t *ksi, *next;
467 
468 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
469 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
470 	p1 = src->sq_proc;
471 	p2 = dst->sq_proc;
472 	/* Move siginfo to target list */
473 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
474 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
475 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
476 			if (p1 != NULL)
477 				p1->p_pendingcnt--;
478 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
479 			ksi->ksi_sigq = dst;
480 			if (p2 != NULL)
481 				p2->p_pendingcnt++;
482 		}
483 	}
484 
485 	/* Move pending bits to target list */
486 	tmp = src->sq_kill;
487 	SIGSETAND(tmp, *set);
488 	SIGSETOR(dst->sq_kill, tmp);
489 	SIGSETNAND(src->sq_kill, tmp);
490 
491 	tmp = src->sq_ptrace;
492 	SIGSETAND(tmp, *set);
493 	SIGSETOR(dst->sq_ptrace, tmp);
494 	SIGSETNAND(src->sq_ptrace, tmp);
495 
496 	tmp = src->sq_signals;
497 	SIGSETAND(tmp, *set);
498 	SIGSETOR(dst->sq_signals, tmp);
499 	SIGSETNAND(src->sq_signals, tmp);
500 }
501 
502 #if 0
503 static void
504 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
505 {
506 	sigset_t set;
507 
508 	SIGEMPTYSET(set);
509 	SIGADDSET(set, signo);
510 	sigqueue_move_set(src, dst, &set);
511 }
512 #endif
513 
514 static void
515 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
516 {
517 	struct proc *p = sq->sq_proc;
518 	ksiginfo_t *ksi, *next;
519 
520 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
521 
522 	/* Remove siginfo queue */
523 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
524 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
525 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
526 			ksi->ksi_sigq = NULL;
527 			if (ksiginfo_tryfree(ksi) && p != NULL)
528 				p->p_pendingcnt--;
529 		}
530 	}
531 	SIGSETNAND(sq->sq_kill, *set);
532 	SIGSETNAND(sq->sq_ptrace, *set);
533 	SIGSETNAND(sq->sq_signals, *set);
534 }
535 
536 void
537 sigqueue_delete(sigqueue_t *sq, int signo)
538 {
539 	sigset_t set;
540 
541 	SIGEMPTYSET(set);
542 	SIGADDSET(set, signo);
543 	sigqueue_delete_set(sq, &set);
544 }
545 
546 /* Remove a set of signals for a process */
547 static void
548 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
549 {
550 	sigqueue_t worklist;
551 	struct thread *td0;
552 
553 	PROC_LOCK_ASSERT(p, MA_OWNED);
554 
555 	sigqueue_init(&worklist, NULL);
556 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
557 
558 	FOREACH_THREAD_IN_PROC(p, td0)
559 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
560 
561 	sigqueue_flush(&worklist);
562 }
563 
564 void
565 sigqueue_delete_proc(struct proc *p, int signo)
566 {
567 	sigset_t set;
568 
569 	SIGEMPTYSET(set);
570 	SIGADDSET(set, signo);
571 	sigqueue_delete_set_proc(p, &set);
572 }
573 
574 static void
575 sigqueue_delete_stopmask_proc(struct proc *p)
576 {
577 	sigset_t set;
578 
579 	SIGEMPTYSET(set);
580 	SIGADDSET(set, SIGSTOP);
581 	SIGADDSET(set, SIGTSTP);
582 	SIGADDSET(set, SIGTTIN);
583 	SIGADDSET(set, SIGTTOU);
584 	sigqueue_delete_set_proc(p, &set);
585 }
586 
587 /*
588  * Determine signal that should be delivered to thread td, the current
589  * thread, 0 if none.  If there is a pending stop signal with default
590  * action, the process stops in issignal().
591  */
592 int
593 cursig(struct thread *td)
594 {
595 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
596 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
597 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
598 	return (SIGPENDING(td) ? issignal(td) : 0);
599 }
600 
601 /*
602  * Arrange for ast() to handle unmasked pending signals on return to user
603  * mode.  This must be called whenever a signal is added to td_sigqueue or
604  * unmasked in td_sigmask.
605  */
606 void
607 signotify(struct thread *td)
608 {
609 	struct proc *p;
610 
611 	p = td->td_proc;
612 
613 	PROC_LOCK_ASSERT(p, MA_OWNED);
614 
615 	if (SIGPENDING(td)) {
616 		thread_lock(td);
617 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
618 		thread_unlock(td);
619 	}
620 }
621 
622 int
623 sigonstack(size_t sp)
624 {
625 	struct thread *td = curthread;
626 
627 	return ((td->td_pflags & TDP_ALTSTACK) ?
628 #if defined(COMPAT_43)
629 	    ((td->td_sigstk.ss_size == 0) ?
630 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
631 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
632 #else
633 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
634 #endif
635 	    : 0);
636 }
637 
638 static __inline int
639 sigprop(int sig)
640 {
641 
642 	if (sig > 0 && sig < nitems(sigproptbl))
643 		return (sigproptbl[sig]);
644 	return (0);
645 }
646 
647 int
648 sig_ffs(sigset_t *set)
649 {
650 	int i;
651 
652 	for (i = 0; i < _SIG_WORDS; i++)
653 		if (set->__bits[i])
654 			return (ffs(set->__bits[i]) + (i * 32));
655 	return (0);
656 }
657 
658 static bool
659 sigact_flag_test(const struct sigaction *act, int flag)
660 {
661 
662 	/*
663 	 * SA_SIGINFO is reset when signal disposition is set to
664 	 * ignore or default.  Other flags are kept according to user
665 	 * settings.
666 	 */
667 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
668 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
669 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
670 }
671 
672 /*
673  * kern_sigaction
674  * sigaction
675  * freebsd4_sigaction
676  * osigaction
677  */
678 int
679 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
680     struct sigaction *oact, int flags)
681 {
682 	struct sigacts *ps;
683 	struct proc *p = td->td_proc;
684 
685 	if (!_SIG_VALID(sig))
686 		return (EINVAL);
687 	if (act != NULL && act->sa_handler != SIG_DFL &&
688 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
689 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
690 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
691 		return (EINVAL);
692 
693 	PROC_LOCK(p);
694 	ps = p->p_sigacts;
695 	mtx_lock(&ps->ps_mtx);
696 	if (oact) {
697 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
698 		oact->sa_flags = 0;
699 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
700 			oact->sa_flags |= SA_ONSTACK;
701 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
702 			oact->sa_flags |= SA_RESTART;
703 		if (SIGISMEMBER(ps->ps_sigreset, sig))
704 			oact->sa_flags |= SA_RESETHAND;
705 		if (SIGISMEMBER(ps->ps_signodefer, sig))
706 			oact->sa_flags |= SA_NODEFER;
707 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
708 			oact->sa_flags |= SA_SIGINFO;
709 			oact->sa_sigaction =
710 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
711 		} else
712 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
713 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
714 			oact->sa_flags |= SA_NOCLDSTOP;
715 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
716 			oact->sa_flags |= SA_NOCLDWAIT;
717 	}
718 	if (act) {
719 		if ((sig == SIGKILL || sig == SIGSTOP) &&
720 		    act->sa_handler != SIG_DFL) {
721 			mtx_unlock(&ps->ps_mtx);
722 			PROC_UNLOCK(p);
723 			return (EINVAL);
724 		}
725 
726 		/*
727 		 * Change setting atomically.
728 		 */
729 
730 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
731 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
732 		if (sigact_flag_test(act, SA_SIGINFO)) {
733 			ps->ps_sigact[_SIG_IDX(sig)] =
734 			    (__sighandler_t *)act->sa_sigaction;
735 			SIGADDSET(ps->ps_siginfo, sig);
736 		} else {
737 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
738 			SIGDELSET(ps->ps_siginfo, sig);
739 		}
740 		if (!sigact_flag_test(act, SA_RESTART))
741 			SIGADDSET(ps->ps_sigintr, sig);
742 		else
743 			SIGDELSET(ps->ps_sigintr, sig);
744 		if (sigact_flag_test(act, SA_ONSTACK))
745 			SIGADDSET(ps->ps_sigonstack, sig);
746 		else
747 			SIGDELSET(ps->ps_sigonstack, sig);
748 		if (sigact_flag_test(act, SA_RESETHAND))
749 			SIGADDSET(ps->ps_sigreset, sig);
750 		else
751 			SIGDELSET(ps->ps_sigreset, sig);
752 		if (sigact_flag_test(act, SA_NODEFER))
753 			SIGADDSET(ps->ps_signodefer, sig);
754 		else
755 			SIGDELSET(ps->ps_signodefer, sig);
756 		if (sig == SIGCHLD) {
757 			if (act->sa_flags & SA_NOCLDSTOP)
758 				ps->ps_flag |= PS_NOCLDSTOP;
759 			else
760 				ps->ps_flag &= ~PS_NOCLDSTOP;
761 			if (act->sa_flags & SA_NOCLDWAIT) {
762 				/*
763 				 * Paranoia: since SA_NOCLDWAIT is implemented
764 				 * by reparenting the dying child to PID 1 (and
765 				 * trust it to reap the zombie), PID 1 itself
766 				 * is forbidden to set SA_NOCLDWAIT.
767 				 */
768 				if (p->p_pid == 1)
769 					ps->ps_flag &= ~PS_NOCLDWAIT;
770 				else
771 					ps->ps_flag |= PS_NOCLDWAIT;
772 			} else
773 				ps->ps_flag &= ~PS_NOCLDWAIT;
774 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
775 				ps->ps_flag |= PS_CLDSIGIGN;
776 			else
777 				ps->ps_flag &= ~PS_CLDSIGIGN;
778 		}
779 		/*
780 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
781 		 * and for signals set to SIG_DFL where the default is to
782 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
783 		 * have to restart the process.
784 		 */
785 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
786 		    (sigprop(sig) & SIGPROP_IGNORE &&
787 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
788 			/* never to be seen again */
789 			sigqueue_delete_proc(p, sig);
790 			if (sig != SIGCONT)
791 				/* easier in psignal */
792 				SIGADDSET(ps->ps_sigignore, sig);
793 			SIGDELSET(ps->ps_sigcatch, sig);
794 		} else {
795 			SIGDELSET(ps->ps_sigignore, sig);
796 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
797 				SIGDELSET(ps->ps_sigcatch, sig);
798 			else
799 				SIGADDSET(ps->ps_sigcatch, sig);
800 		}
801 #ifdef COMPAT_FREEBSD4
802 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
803 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
804 		    (flags & KSA_FREEBSD4) == 0)
805 			SIGDELSET(ps->ps_freebsd4, sig);
806 		else
807 			SIGADDSET(ps->ps_freebsd4, sig);
808 #endif
809 #ifdef COMPAT_43
810 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
811 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
812 		    (flags & KSA_OSIGSET) == 0)
813 			SIGDELSET(ps->ps_osigset, sig);
814 		else
815 			SIGADDSET(ps->ps_osigset, sig);
816 #endif
817 	}
818 	mtx_unlock(&ps->ps_mtx);
819 	PROC_UNLOCK(p);
820 	return (0);
821 }
822 
823 #ifndef _SYS_SYSPROTO_H_
824 struct sigaction_args {
825 	int	sig;
826 	struct	sigaction *act;
827 	struct	sigaction *oact;
828 };
829 #endif
830 int
831 sys_sigaction(struct thread *td, struct sigaction_args *uap)
832 {
833 	struct sigaction act, oact;
834 	struct sigaction *actp, *oactp;
835 	int error;
836 
837 	actp = (uap->act != NULL) ? &act : NULL;
838 	oactp = (uap->oact != NULL) ? &oact : NULL;
839 	if (actp) {
840 		error = copyin(uap->act, actp, sizeof(act));
841 		if (error)
842 			return (error);
843 	}
844 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
845 	if (oactp && !error)
846 		error = copyout(oactp, uap->oact, sizeof(oact));
847 	return (error);
848 }
849 
850 #ifdef COMPAT_FREEBSD4
851 #ifndef _SYS_SYSPROTO_H_
852 struct freebsd4_sigaction_args {
853 	int	sig;
854 	struct	sigaction *act;
855 	struct	sigaction *oact;
856 };
857 #endif
858 int
859 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
860 {
861 	struct sigaction act, oact;
862 	struct sigaction *actp, *oactp;
863 	int error;
864 
865 
866 	actp = (uap->act != NULL) ? &act : NULL;
867 	oactp = (uap->oact != NULL) ? &oact : NULL;
868 	if (actp) {
869 		error = copyin(uap->act, actp, sizeof(act));
870 		if (error)
871 			return (error);
872 	}
873 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
874 	if (oactp && !error)
875 		error = copyout(oactp, uap->oact, sizeof(oact));
876 	return (error);
877 }
878 #endif	/* COMAPT_FREEBSD4 */
879 
880 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
881 #ifndef _SYS_SYSPROTO_H_
882 struct osigaction_args {
883 	int	signum;
884 	struct	osigaction *nsa;
885 	struct	osigaction *osa;
886 };
887 #endif
888 int
889 osigaction(struct thread *td, struct osigaction_args *uap)
890 {
891 	struct osigaction sa;
892 	struct sigaction nsa, osa;
893 	struct sigaction *nsap, *osap;
894 	int error;
895 
896 	if (uap->signum <= 0 || uap->signum >= ONSIG)
897 		return (EINVAL);
898 
899 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
900 	osap = (uap->osa != NULL) ? &osa : NULL;
901 
902 	if (nsap) {
903 		error = copyin(uap->nsa, &sa, sizeof(sa));
904 		if (error)
905 			return (error);
906 		nsap->sa_handler = sa.sa_handler;
907 		nsap->sa_flags = sa.sa_flags;
908 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
909 	}
910 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
911 	if (osap && !error) {
912 		sa.sa_handler = osap->sa_handler;
913 		sa.sa_flags = osap->sa_flags;
914 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
915 		error = copyout(&sa, uap->osa, sizeof(sa));
916 	}
917 	return (error);
918 }
919 
920 #if !defined(__i386__)
921 /* Avoid replicating the same stub everywhere */
922 int
923 osigreturn(struct thread *td, struct osigreturn_args *uap)
924 {
925 
926 	return (nosys(td, (struct nosys_args *)uap));
927 }
928 #endif
929 #endif /* COMPAT_43 */
930 
931 /*
932  * Initialize signal state for process 0;
933  * set to ignore signals that are ignored by default.
934  */
935 void
936 siginit(struct proc *p)
937 {
938 	int i;
939 	struct sigacts *ps;
940 
941 	PROC_LOCK(p);
942 	ps = p->p_sigacts;
943 	mtx_lock(&ps->ps_mtx);
944 	for (i = 1; i <= NSIG; i++) {
945 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
946 			SIGADDSET(ps->ps_sigignore, i);
947 		}
948 	}
949 	mtx_unlock(&ps->ps_mtx);
950 	PROC_UNLOCK(p);
951 }
952 
953 /*
954  * Reset specified signal to the default disposition.
955  */
956 static void
957 sigdflt(struct sigacts *ps, int sig)
958 {
959 
960 	mtx_assert(&ps->ps_mtx, MA_OWNED);
961 	SIGDELSET(ps->ps_sigcatch, sig);
962 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
963 		SIGADDSET(ps->ps_sigignore, sig);
964 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
965 	SIGDELSET(ps->ps_siginfo, sig);
966 }
967 
968 /*
969  * Reset signals for an exec of the specified process.
970  */
971 void
972 execsigs(struct proc *p)
973 {
974 	sigset_t osigignore;
975 	struct sigacts *ps;
976 	int sig;
977 	struct thread *td;
978 
979 	/*
980 	 * Reset caught signals.  Held signals remain held
981 	 * through td_sigmask (unless they were caught,
982 	 * and are now ignored by default).
983 	 */
984 	PROC_LOCK_ASSERT(p, MA_OWNED);
985 	ps = p->p_sigacts;
986 	mtx_lock(&ps->ps_mtx);
987 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
988 		sig = sig_ffs(&ps->ps_sigcatch);
989 		sigdflt(ps, sig);
990 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
991 			sigqueue_delete_proc(p, sig);
992 	}
993 
994 	/*
995 	 * As CloudABI processes cannot modify signal handlers, fully
996 	 * reset all signals to their default behavior. Do ignore
997 	 * SIGPIPE, as it would otherwise be impossible to recover from
998 	 * writes to broken pipes and sockets.
999 	 */
1000 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1001 		osigignore = ps->ps_sigignore;
1002 		while (SIGNOTEMPTY(osigignore)) {
1003 			sig = sig_ffs(&osigignore);
1004 			SIGDELSET(osigignore, sig);
1005 			if (sig != SIGPIPE)
1006 				sigdflt(ps, sig);
1007 		}
1008 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1009 	}
1010 
1011 	/*
1012 	 * Reset stack state to the user stack.
1013 	 * Clear set of signals caught on the signal stack.
1014 	 */
1015 	td = curthread;
1016 	MPASS(td->td_proc == p);
1017 	td->td_sigstk.ss_flags = SS_DISABLE;
1018 	td->td_sigstk.ss_size = 0;
1019 	td->td_sigstk.ss_sp = 0;
1020 	td->td_pflags &= ~TDP_ALTSTACK;
1021 	/*
1022 	 * Reset no zombies if child dies flag as Solaris does.
1023 	 */
1024 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1025 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1026 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1027 	mtx_unlock(&ps->ps_mtx);
1028 }
1029 
1030 /*
1031  * kern_sigprocmask()
1032  *
1033  *	Manipulate signal mask.
1034  */
1035 int
1036 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1037     int flags)
1038 {
1039 	sigset_t new_block, oset1;
1040 	struct proc *p;
1041 	int error;
1042 
1043 	p = td->td_proc;
1044 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1045 		PROC_LOCK_ASSERT(p, MA_OWNED);
1046 	else
1047 		PROC_LOCK(p);
1048 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1049 	    ? MA_OWNED : MA_NOTOWNED);
1050 	if (oset != NULL)
1051 		*oset = td->td_sigmask;
1052 
1053 	error = 0;
1054 	if (set != NULL) {
1055 		switch (how) {
1056 		case SIG_BLOCK:
1057 			SIG_CANTMASK(*set);
1058 			oset1 = td->td_sigmask;
1059 			SIGSETOR(td->td_sigmask, *set);
1060 			new_block = td->td_sigmask;
1061 			SIGSETNAND(new_block, oset1);
1062 			break;
1063 		case SIG_UNBLOCK:
1064 			SIGSETNAND(td->td_sigmask, *set);
1065 			signotify(td);
1066 			goto out;
1067 		case SIG_SETMASK:
1068 			SIG_CANTMASK(*set);
1069 			oset1 = td->td_sigmask;
1070 			if (flags & SIGPROCMASK_OLD)
1071 				SIGSETLO(td->td_sigmask, *set);
1072 			else
1073 				td->td_sigmask = *set;
1074 			new_block = td->td_sigmask;
1075 			SIGSETNAND(new_block, oset1);
1076 			signotify(td);
1077 			break;
1078 		default:
1079 			error = EINVAL;
1080 			goto out;
1081 		}
1082 
1083 		/*
1084 		 * The new_block set contains signals that were not previously
1085 		 * blocked, but are blocked now.
1086 		 *
1087 		 * In case we block any signal that was not previously blocked
1088 		 * for td, and process has the signal pending, try to schedule
1089 		 * signal delivery to some thread that does not block the
1090 		 * signal, possibly waking it up.
1091 		 */
1092 		if (p->p_numthreads != 1)
1093 			reschedule_signals(p, new_block, flags);
1094 	}
1095 
1096 out:
1097 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1098 		PROC_UNLOCK(p);
1099 	return (error);
1100 }
1101 
1102 #ifndef _SYS_SYSPROTO_H_
1103 struct sigprocmask_args {
1104 	int	how;
1105 	const sigset_t *set;
1106 	sigset_t *oset;
1107 };
1108 #endif
1109 int
1110 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1111 {
1112 	sigset_t set, oset;
1113 	sigset_t *setp, *osetp;
1114 	int error;
1115 
1116 	setp = (uap->set != NULL) ? &set : NULL;
1117 	osetp = (uap->oset != NULL) ? &oset : NULL;
1118 	if (setp) {
1119 		error = copyin(uap->set, setp, sizeof(set));
1120 		if (error)
1121 			return (error);
1122 	}
1123 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1124 	if (osetp && !error) {
1125 		error = copyout(osetp, uap->oset, sizeof(oset));
1126 	}
1127 	return (error);
1128 }
1129 
1130 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1131 #ifndef _SYS_SYSPROTO_H_
1132 struct osigprocmask_args {
1133 	int	how;
1134 	osigset_t mask;
1135 };
1136 #endif
1137 int
1138 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1139 {
1140 	sigset_t set, oset;
1141 	int error;
1142 
1143 	OSIG2SIG(uap->mask, set);
1144 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1145 	SIG2OSIG(oset, td->td_retval[0]);
1146 	return (error);
1147 }
1148 #endif /* COMPAT_43 */
1149 
1150 int
1151 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1152 {
1153 	ksiginfo_t ksi;
1154 	sigset_t set;
1155 	int error;
1156 
1157 	error = copyin(uap->set, &set, sizeof(set));
1158 	if (error) {
1159 		td->td_retval[0] = error;
1160 		return (0);
1161 	}
1162 
1163 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1164 	if (error) {
1165 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1166 			error = ERESTART;
1167 		if (error == ERESTART)
1168 			return (error);
1169 		td->td_retval[0] = error;
1170 		return (0);
1171 	}
1172 
1173 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1174 	td->td_retval[0] = error;
1175 	return (0);
1176 }
1177 
1178 int
1179 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1180 {
1181 	struct timespec ts;
1182 	struct timespec *timeout;
1183 	sigset_t set;
1184 	ksiginfo_t ksi;
1185 	int error;
1186 
1187 	if (uap->timeout) {
1188 		error = copyin(uap->timeout, &ts, sizeof(ts));
1189 		if (error)
1190 			return (error);
1191 
1192 		timeout = &ts;
1193 	} else
1194 		timeout = NULL;
1195 
1196 	error = copyin(uap->set, &set, sizeof(set));
1197 	if (error)
1198 		return (error);
1199 
1200 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1201 	if (error)
1202 		return (error);
1203 
1204 	if (uap->info)
1205 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1206 
1207 	if (error == 0)
1208 		td->td_retval[0] = ksi.ksi_signo;
1209 	return (error);
1210 }
1211 
1212 int
1213 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1214 {
1215 	ksiginfo_t ksi;
1216 	sigset_t set;
1217 	int error;
1218 
1219 	error = copyin(uap->set, &set, sizeof(set));
1220 	if (error)
1221 		return (error);
1222 
1223 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1224 	if (error)
1225 		return (error);
1226 
1227 	if (uap->info)
1228 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1229 
1230 	if (error == 0)
1231 		td->td_retval[0] = ksi.ksi_signo;
1232 	return (error);
1233 }
1234 
1235 static void
1236 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1237 {
1238 	struct thread *thr;
1239 
1240 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1241 		if (thr == td)
1242 			thr->td_si = *si;
1243 		else
1244 			thr->td_si.si_signo = 0;
1245 	}
1246 }
1247 
1248 int
1249 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1250 	struct timespec *timeout)
1251 {
1252 	struct sigacts *ps;
1253 	sigset_t saved_mask, new_block;
1254 	struct proc *p;
1255 	int error, sig, timo, timevalid = 0;
1256 	struct timespec rts, ets, ts;
1257 	struct timeval tv;
1258 
1259 	p = td->td_proc;
1260 	error = 0;
1261 	ets.tv_sec = 0;
1262 	ets.tv_nsec = 0;
1263 
1264 	if (timeout != NULL) {
1265 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1266 			timevalid = 1;
1267 			getnanouptime(&rts);
1268 			ets = rts;
1269 			timespecadd(&ets, timeout);
1270 		}
1271 	}
1272 	ksiginfo_init(ksi);
1273 	/* Some signals can not be waited for. */
1274 	SIG_CANTMASK(waitset);
1275 	ps = p->p_sigacts;
1276 	PROC_LOCK(p);
1277 	saved_mask = td->td_sigmask;
1278 	SIGSETNAND(td->td_sigmask, waitset);
1279 	for (;;) {
1280 		mtx_lock(&ps->ps_mtx);
1281 		sig = cursig(td);
1282 		mtx_unlock(&ps->ps_mtx);
1283 		KASSERT(sig >= 0, ("sig %d", sig));
1284 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1285 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1286 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1287 				error = 0;
1288 				break;
1289 			}
1290 		}
1291 
1292 		if (error != 0)
1293 			break;
1294 
1295 		/*
1296 		 * POSIX says this must be checked after looking for pending
1297 		 * signals.
1298 		 */
1299 		if (timeout != NULL) {
1300 			if (!timevalid) {
1301 				error = EINVAL;
1302 				break;
1303 			}
1304 			getnanouptime(&rts);
1305 			if (timespeccmp(&rts, &ets, >=)) {
1306 				error = EAGAIN;
1307 				break;
1308 			}
1309 			ts = ets;
1310 			timespecsub(&ts, &rts);
1311 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1312 			timo = tvtohz(&tv);
1313 		} else {
1314 			timo = 0;
1315 		}
1316 
1317 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1318 
1319 		if (timeout != NULL) {
1320 			if (error == ERESTART) {
1321 				/* Timeout can not be restarted. */
1322 				error = EINTR;
1323 			} else if (error == EAGAIN) {
1324 				/* We will calculate timeout by ourself. */
1325 				error = 0;
1326 			}
1327 		}
1328 	}
1329 
1330 	new_block = saved_mask;
1331 	SIGSETNAND(new_block, td->td_sigmask);
1332 	td->td_sigmask = saved_mask;
1333 	/*
1334 	 * Fewer signals can be delivered to us, reschedule signal
1335 	 * notification.
1336 	 */
1337 	if (p->p_numthreads != 1)
1338 		reschedule_signals(p, new_block, 0);
1339 
1340 	if (error == 0) {
1341 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1342 
1343 		if (ksi->ksi_code == SI_TIMER)
1344 			itimer_accept(p, ksi->ksi_timerid, ksi);
1345 
1346 #ifdef KTRACE
1347 		if (KTRPOINT(td, KTR_PSIG)) {
1348 			sig_t action;
1349 
1350 			mtx_lock(&ps->ps_mtx);
1351 			action = ps->ps_sigact[_SIG_IDX(sig)];
1352 			mtx_unlock(&ps->ps_mtx);
1353 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1354 		}
1355 #endif
1356 		if (sig == SIGKILL) {
1357 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1358 			sigexit(td, sig);
1359 		}
1360 	}
1361 	PROC_UNLOCK(p);
1362 	return (error);
1363 }
1364 
1365 #ifndef _SYS_SYSPROTO_H_
1366 struct sigpending_args {
1367 	sigset_t	*set;
1368 };
1369 #endif
1370 int
1371 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1372 {
1373 	struct proc *p = td->td_proc;
1374 	sigset_t pending;
1375 
1376 	PROC_LOCK(p);
1377 	pending = p->p_sigqueue.sq_signals;
1378 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1379 	PROC_UNLOCK(p);
1380 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1381 }
1382 
1383 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1384 #ifndef _SYS_SYSPROTO_H_
1385 struct osigpending_args {
1386 	int	dummy;
1387 };
1388 #endif
1389 int
1390 osigpending(struct thread *td, struct osigpending_args *uap)
1391 {
1392 	struct proc *p = td->td_proc;
1393 	sigset_t pending;
1394 
1395 	PROC_LOCK(p);
1396 	pending = p->p_sigqueue.sq_signals;
1397 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1398 	PROC_UNLOCK(p);
1399 	SIG2OSIG(pending, td->td_retval[0]);
1400 	return (0);
1401 }
1402 #endif /* COMPAT_43 */
1403 
1404 #if defined(COMPAT_43)
1405 /*
1406  * Generalized interface signal handler, 4.3-compatible.
1407  */
1408 #ifndef _SYS_SYSPROTO_H_
1409 struct osigvec_args {
1410 	int	signum;
1411 	struct	sigvec *nsv;
1412 	struct	sigvec *osv;
1413 };
1414 #endif
1415 /* ARGSUSED */
1416 int
1417 osigvec(struct thread *td, struct osigvec_args *uap)
1418 {
1419 	struct sigvec vec;
1420 	struct sigaction nsa, osa;
1421 	struct sigaction *nsap, *osap;
1422 	int error;
1423 
1424 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1425 		return (EINVAL);
1426 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1427 	osap = (uap->osv != NULL) ? &osa : NULL;
1428 	if (nsap) {
1429 		error = copyin(uap->nsv, &vec, sizeof(vec));
1430 		if (error)
1431 			return (error);
1432 		nsap->sa_handler = vec.sv_handler;
1433 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1434 		nsap->sa_flags = vec.sv_flags;
1435 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1436 	}
1437 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1438 	if (osap && !error) {
1439 		vec.sv_handler = osap->sa_handler;
1440 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1441 		vec.sv_flags = osap->sa_flags;
1442 		vec.sv_flags &= ~SA_NOCLDWAIT;
1443 		vec.sv_flags ^= SA_RESTART;
1444 		error = copyout(&vec, uap->osv, sizeof(vec));
1445 	}
1446 	return (error);
1447 }
1448 
1449 #ifndef _SYS_SYSPROTO_H_
1450 struct osigblock_args {
1451 	int	mask;
1452 };
1453 #endif
1454 int
1455 osigblock(struct thread *td, struct osigblock_args *uap)
1456 {
1457 	sigset_t set, oset;
1458 
1459 	OSIG2SIG(uap->mask, set);
1460 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1461 	SIG2OSIG(oset, td->td_retval[0]);
1462 	return (0);
1463 }
1464 
1465 #ifndef _SYS_SYSPROTO_H_
1466 struct osigsetmask_args {
1467 	int	mask;
1468 };
1469 #endif
1470 int
1471 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1472 {
1473 	sigset_t set, oset;
1474 
1475 	OSIG2SIG(uap->mask, set);
1476 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1477 	SIG2OSIG(oset, td->td_retval[0]);
1478 	return (0);
1479 }
1480 #endif /* COMPAT_43 */
1481 
1482 /*
1483  * Suspend calling thread until signal, providing mask to be set in the
1484  * meantime.
1485  */
1486 #ifndef _SYS_SYSPROTO_H_
1487 struct sigsuspend_args {
1488 	const sigset_t *sigmask;
1489 };
1490 #endif
1491 /* ARGSUSED */
1492 int
1493 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1494 {
1495 	sigset_t mask;
1496 	int error;
1497 
1498 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1499 	if (error)
1500 		return (error);
1501 	return (kern_sigsuspend(td, mask));
1502 }
1503 
1504 int
1505 kern_sigsuspend(struct thread *td, sigset_t mask)
1506 {
1507 	struct proc *p = td->td_proc;
1508 	int has_sig, sig;
1509 
1510 	/*
1511 	 * When returning from sigsuspend, we want
1512 	 * the old mask to be restored after the
1513 	 * signal handler has finished.  Thus, we
1514 	 * save it here and mark the sigacts structure
1515 	 * to indicate this.
1516 	 */
1517 	PROC_LOCK(p);
1518 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1519 	    SIGPROCMASK_PROC_LOCKED);
1520 	td->td_pflags |= TDP_OLDMASK;
1521 
1522 	/*
1523 	 * Process signals now. Otherwise, we can get spurious wakeup
1524 	 * due to signal entered process queue, but delivered to other
1525 	 * thread. But sigsuspend should return only on signal
1526 	 * delivery.
1527 	 */
1528 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1529 	for (has_sig = 0; !has_sig;) {
1530 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1531 			0) == 0)
1532 			/* void */;
1533 		thread_suspend_check(0);
1534 		mtx_lock(&p->p_sigacts->ps_mtx);
1535 		while ((sig = cursig(td)) != 0) {
1536 			KASSERT(sig >= 0, ("sig %d", sig));
1537 			has_sig += postsig(sig);
1538 		}
1539 		mtx_unlock(&p->p_sigacts->ps_mtx);
1540 	}
1541 	PROC_UNLOCK(p);
1542 	td->td_errno = EINTR;
1543 	td->td_pflags |= TDP_NERRNO;
1544 	return (EJUSTRETURN);
1545 }
1546 
1547 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1548 /*
1549  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1550  * convention: libc stub passes mask, not pointer, to save a copyin.
1551  */
1552 #ifndef _SYS_SYSPROTO_H_
1553 struct osigsuspend_args {
1554 	osigset_t mask;
1555 };
1556 #endif
1557 /* ARGSUSED */
1558 int
1559 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1560 {
1561 	sigset_t mask;
1562 
1563 	OSIG2SIG(uap->mask, mask);
1564 	return (kern_sigsuspend(td, mask));
1565 }
1566 #endif /* COMPAT_43 */
1567 
1568 #if defined(COMPAT_43)
1569 #ifndef _SYS_SYSPROTO_H_
1570 struct osigstack_args {
1571 	struct	sigstack *nss;
1572 	struct	sigstack *oss;
1573 };
1574 #endif
1575 /* ARGSUSED */
1576 int
1577 osigstack(struct thread *td, struct osigstack_args *uap)
1578 {
1579 	struct sigstack nss, oss;
1580 	int error = 0;
1581 
1582 	if (uap->nss != NULL) {
1583 		error = copyin(uap->nss, &nss, sizeof(nss));
1584 		if (error)
1585 			return (error);
1586 	}
1587 	oss.ss_sp = td->td_sigstk.ss_sp;
1588 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1589 	if (uap->nss != NULL) {
1590 		td->td_sigstk.ss_sp = nss.ss_sp;
1591 		td->td_sigstk.ss_size = 0;
1592 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1593 		td->td_pflags |= TDP_ALTSTACK;
1594 	}
1595 	if (uap->oss != NULL)
1596 		error = copyout(&oss, uap->oss, sizeof(oss));
1597 
1598 	return (error);
1599 }
1600 #endif /* COMPAT_43 */
1601 
1602 #ifndef _SYS_SYSPROTO_H_
1603 struct sigaltstack_args {
1604 	stack_t	*ss;
1605 	stack_t	*oss;
1606 };
1607 #endif
1608 /* ARGSUSED */
1609 int
1610 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1611 {
1612 	stack_t ss, oss;
1613 	int error;
1614 
1615 	if (uap->ss != NULL) {
1616 		error = copyin(uap->ss, &ss, sizeof(ss));
1617 		if (error)
1618 			return (error);
1619 	}
1620 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1621 	    (uap->oss != NULL) ? &oss : NULL);
1622 	if (error)
1623 		return (error);
1624 	if (uap->oss != NULL)
1625 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1626 	return (error);
1627 }
1628 
1629 int
1630 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1631 {
1632 	struct proc *p = td->td_proc;
1633 	int oonstack;
1634 
1635 	oonstack = sigonstack(cpu_getstack(td));
1636 
1637 	if (oss != NULL) {
1638 		*oss = td->td_sigstk;
1639 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1640 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1641 	}
1642 
1643 	if (ss != NULL) {
1644 		if (oonstack)
1645 			return (EPERM);
1646 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1647 			return (EINVAL);
1648 		if (!(ss->ss_flags & SS_DISABLE)) {
1649 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1650 				return (ENOMEM);
1651 
1652 			td->td_sigstk = *ss;
1653 			td->td_pflags |= TDP_ALTSTACK;
1654 		} else {
1655 			td->td_pflags &= ~TDP_ALTSTACK;
1656 		}
1657 	}
1658 	return (0);
1659 }
1660 
1661 /*
1662  * Common code for kill process group/broadcast kill.
1663  * cp is calling process.
1664  */
1665 static int
1666 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1667 {
1668 	struct proc *p;
1669 	struct pgrp *pgrp;
1670 	int err;
1671 	int ret;
1672 
1673 	ret = ESRCH;
1674 	if (all) {
1675 		/*
1676 		 * broadcast
1677 		 */
1678 		sx_slock(&allproc_lock);
1679 		FOREACH_PROC_IN_SYSTEM(p) {
1680 			PROC_LOCK(p);
1681 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1682 			    p == td->td_proc || p->p_state == PRS_NEW) {
1683 				PROC_UNLOCK(p);
1684 				continue;
1685 			}
1686 			err = p_cansignal(td, p, sig);
1687 			if (err == 0) {
1688 				if (sig)
1689 					pksignal(p, sig, ksi);
1690 				ret = err;
1691 			}
1692 			else if (ret == ESRCH)
1693 				ret = err;
1694 			PROC_UNLOCK(p);
1695 		}
1696 		sx_sunlock(&allproc_lock);
1697 	} else {
1698 		sx_slock(&proctree_lock);
1699 		if (pgid == 0) {
1700 			/*
1701 			 * zero pgid means send to my process group.
1702 			 */
1703 			pgrp = td->td_proc->p_pgrp;
1704 			PGRP_LOCK(pgrp);
1705 		} else {
1706 			pgrp = pgfind(pgid);
1707 			if (pgrp == NULL) {
1708 				sx_sunlock(&proctree_lock);
1709 				return (ESRCH);
1710 			}
1711 		}
1712 		sx_sunlock(&proctree_lock);
1713 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1714 			PROC_LOCK(p);
1715 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1716 			    p->p_state == PRS_NEW) {
1717 				PROC_UNLOCK(p);
1718 				continue;
1719 			}
1720 			err = p_cansignal(td, p, sig);
1721 			if (err == 0) {
1722 				if (sig)
1723 					pksignal(p, sig, ksi);
1724 				ret = err;
1725 			}
1726 			else if (ret == ESRCH)
1727 				ret = err;
1728 			PROC_UNLOCK(p);
1729 		}
1730 		PGRP_UNLOCK(pgrp);
1731 	}
1732 	return (ret);
1733 }
1734 
1735 #ifndef _SYS_SYSPROTO_H_
1736 struct kill_args {
1737 	int	pid;
1738 	int	signum;
1739 };
1740 #endif
1741 /* ARGSUSED */
1742 int
1743 sys_kill(struct thread *td, struct kill_args *uap)
1744 {
1745 	ksiginfo_t ksi;
1746 	struct proc *p;
1747 	int error;
1748 
1749 	/*
1750 	 * A process in capability mode can send signals only to himself.
1751 	 * The main rationale behind this is that abort(3) is implemented as
1752 	 * kill(getpid(), SIGABRT).
1753 	 */
1754 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1755 		return (ECAPMODE);
1756 
1757 	AUDIT_ARG_SIGNUM(uap->signum);
1758 	AUDIT_ARG_PID(uap->pid);
1759 	if ((u_int)uap->signum > _SIG_MAXSIG)
1760 		return (EINVAL);
1761 
1762 	ksiginfo_init(&ksi);
1763 	ksi.ksi_signo = uap->signum;
1764 	ksi.ksi_code = SI_USER;
1765 	ksi.ksi_pid = td->td_proc->p_pid;
1766 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1767 
1768 	if (uap->pid > 0) {
1769 		/* kill single process */
1770 		if ((p = pfind_any(uap->pid)) == NULL)
1771 			return (ESRCH);
1772 		AUDIT_ARG_PROCESS(p);
1773 		error = p_cansignal(td, p, uap->signum);
1774 		if (error == 0 && uap->signum)
1775 			pksignal(p, uap->signum, &ksi);
1776 		PROC_UNLOCK(p);
1777 		return (error);
1778 	}
1779 	switch (uap->pid) {
1780 	case -1:		/* broadcast signal */
1781 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1782 	case 0:			/* signal own process group */
1783 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1784 	default:		/* negative explicit process group */
1785 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1786 	}
1787 	/* NOTREACHED */
1788 }
1789 
1790 int
1791 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1792 {
1793 	struct proc *p;
1794 	cap_rights_t rights;
1795 	int error;
1796 
1797 	AUDIT_ARG_SIGNUM(uap->signum);
1798 	AUDIT_ARG_FD(uap->fd);
1799 	if ((u_int)uap->signum > _SIG_MAXSIG)
1800 		return (EINVAL);
1801 
1802 	error = procdesc_find(td, uap->fd,
1803 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1804 	if (error)
1805 		return (error);
1806 	AUDIT_ARG_PROCESS(p);
1807 	error = p_cansignal(td, p, uap->signum);
1808 	if (error == 0 && uap->signum)
1809 		kern_psignal(p, uap->signum);
1810 	PROC_UNLOCK(p);
1811 	return (error);
1812 }
1813 
1814 #if defined(COMPAT_43)
1815 #ifndef _SYS_SYSPROTO_H_
1816 struct okillpg_args {
1817 	int	pgid;
1818 	int	signum;
1819 };
1820 #endif
1821 /* ARGSUSED */
1822 int
1823 okillpg(struct thread *td, struct okillpg_args *uap)
1824 {
1825 	ksiginfo_t ksi;
1826 
1827 	AUDIT_ARG_SIGNUM(uap->signum);
1828 	AUDIT_ARG_PID(uap->pgid);
1829 	if ((u_int)uap->signum > _SIG_MAXSIG)
1830 		return (EINVAL);
1831 
1832 	ksiginfo_init(&ksi);
1833 	ksi.ksi_signo = uap->signum;
1834 	ksi.ksi_code = SI_USER;
1835 	ksi.ksi_pid = td->td_proc->p_pid;
1836 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1837 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1838 }
1839 #endif /* COMPAT_43 */
1840 
1841 #ifndef _SYS_SYSPROTO_H_
1842 struct sigqueue_args {
1843 	pid_t pid;
1844 	int signum;
1845 	/* union sigval */ void *value;
1846 };
1847 #endif
1848 int
1849 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1850 {
1851 	union sigval sv;
1852 
1853 	sv.sival_ptr = uap->value;
1854 
1855 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1856 }
1857 
1858 int
1859 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1860 {
1861 	ksiginfo_t ksi;
1862 	struct proc *p;
1863 	int error;
1864 
1865 	if ((u_int)signum > _SIG_MAXSIG)
1866 		return (EINVAL);
1867 
1868 	/*
1869 	 * Specification says sigqueue can only send signal to
1870 	 * single process.
1871 	 */
1872 	if (pid <= 0)
1873 		return (EINVAL);
1874 
1875 	if ((p = pfind_any(pid)) == NULL)
1876 		return (ESRCH);
1877 	error = p_cansignal(td, p, signum);
1878 	if (error == 0 && signum != 0) {
1879 		ksiginfo_init(&ksi);
1880 		ksi.ksi_flags = KSI_SIGQ;
1881 		ksi.ksi_signo = signum;
1882 		ksi.ksi_code = SI_QUEUE;
1883 		ksi.ksi_pid = td->td_proc->p_pid;
1884 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1885 		ksi.ksi_value = *value;
1886 		error = pksignal(p, ksi.ksi_signo, &ksi);
1887 	}
1888 	PROC_UNLOCK(p);
1889 	return (error);
1890 }
1891 
1892 /*
1893  * Send a signal to a process group.
1894  */
1895 void
1896 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1897 {
1898 	struct pgrp *pgrp;
1899 
1900 	if (pgid != 0) {
1901 		sx_slock(&proctree_lock);
1902 		pgrp = pgfind(pgid);
1903 		sx_sunlock(&proctree_lock);
1904 		if (pgrp != NULL) {
1905 			pgsignal(pgrp, sig, 0, ksi);
1906 			PGRP_UNLOCK(pgrp);
1907 		}
1908 	}
1909 }
1910 
1911 /*
1912  * Send a signal to a process group.  If checktty is 1,
1913  * limit to members which have a controlling terminal.
1914  */
1915 void
1916 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1917 {
1918 	struct proc *p;
1919 
1920 	if (pgrp) {
1921 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1922 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1923 			PROC_LOCK(p);
1924 			if (p->p_state == PRS_NORMAL &&
1925 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1926 				pksignal(p, sig, ksi);
1927 			PROC_UNLOCK(p);
1928 		}
1929 	}
1930 }
1931 
1932 
1933 /*
1934  * Recalculate the signal mask and reset the signal disposition after
1935  * usermode frame for delivery is formed.  Should be called after
1936  * mach-specific routine, because sysent->sv_sendsig() needs correct
1937  * ps_siginfo and signal mask.
1938  */
1939 static void
1940 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1941 {
1942 	sigset_t mask;
1943 
1944 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1945 	td->td_ru.ru_nsignals++;
1946 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1947 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1948 		SIGADDSET(mask, sig);
1949 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1950 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1951 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1952 		sigdflt(ps, sig);
1953 }
1954 
1955 
1956 /*
1957  * Send a signal caused by a trap to the current thread.  If it will be
1958  * caught immediately, deliver it with correct code.  Otherwise, post it
1959  * normally.
1960  */
1961 void
1962 trapsignal(struct thread *td, ksiginfo_t *ksi)
1963 {
1964 	struct sigacts *ps;
1965 	struct proc *p;
1966 	int sig;
1967 	int code;
1968 
1969 	p = td->td_proc;
1970 	sig = ksi->ksi_signo;
1971 	code = ksi->ksi_code;
1972 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1973 
1974 	PROC_LOCK(p);
1975 	ps = p->p_sigacts;
1976 	mtx_lock(&ps->ps_mtx);
1977 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1978 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1979 #ifdef KTRACE
1980 		if (KTRPOINT(curthread, KTR_PSIG))
1981 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1982 			    &td->td_sigmask, code);
1983 #endif
1984 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1985 				ksi, &td->td_sigmask);
1986 		postsig_done(sig, td, ps);
1987 		mtx_unlock(&ps->ps_mtx);
1988 	} else {
1989 		/*
1990 		 * Avoid a possible infinite loop if the thread
1991 		 * masking the signal or process is ignoring the
1992 		 * signal.
1993 		 */
1994 		if (kern_forcesigexit &&
1995 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1996 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1997 			SIGDELSET(td->td_sigmask, sig);
1998 			SIGDELSET(ps->ps_sigcatch, sig);
1999 			SIGDELSET(ps->ps_sigignore, sig);
2000 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2001 		}
2002 		mtx_unlock(&ps->ps_mtx);
2003 		p->p_code = code;	/* XXX for core dump/debugger */
2004 		p->p_sig = sig;		/* XXX to verify code */
2005 		tdsendsignal(p, td, sig, ksi);
2006 	}
2007 	PROC_UNLOCK(p);
2008 }
2009 
2010 static struct thread *
2011 sigtd(struct proc *p, int sig, int prop)
2012 {
2013 	struct thread *td, *signal_td;
2014 
2015 	PROC_LOCK_ASSERT(p, MA_OWNED);
2016 
2017 	/*
2018 	 * Check if current thread can handle the signal without
2019 	 * switching context to another thread.
2020 	 */
2021 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2022 		return (curthread);
2023 	signal_td = NULL;
2024 	FOREACH_THREAD_IN_PROC(p, td) {
2025 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2026 			signal_td = td;
2027 			break;
2028 		}
2029 	}
2030 	if (signal_td == NULL)
2031 		signal_td = FIRST_THREAD_IN_PROC(p);
2032 	return (signal_td);
2033 }
2034 
2035 /*
2036  * Send the signal to the process.  If the signal has an action, the action
2037  * is usually performed by the target process rather than the caller; we add
2038  * the signal to the set of pending signals for the process.
2039  *
2040  * Exceptions:
2041  *   o When a stop signal is sent to a sleeping process that takes the
2042  *     default action, the process is stopped without awakening it.
2043  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2044  *     regardless of the signal action (eg, blocked or ignored).
2045  *
2046  * Other ignored signals are discarded immediately.
2047  *
2048  * NB: This function may be entered from the debugger via the "kill" DDB
2049  * command.  There is little that can be done to mitigate the possibly messy
2050  * side effects of this unwise possibility.
2051  */
2052 void
2053 kern_psignal(struct proc *p, int sig)
2054 {
2055 	ksiginfo_t ksi;
2056 
2057 	ksiginfo_init(&ksi);
2058 	ksi.ksi_signo = sig;
2059 	ksi.ksi_code = SI_KERNEL;
2060 	(void) tdsendsignal(p, NULL, sig, &ksi);
2061 }
2062 
2063 int
2064 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2065 {
2066 
2067 	return (tdsendsignal(p, NULL, sig, ksi));
2068 }
2069 
2070 /* Utility function for finding a thread to send signal event to. */
2071 int
2072 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2073 {
2074 	struct thread *td;
2075 
2076 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2077 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2078 		if (td == NULL)
2079 			return (ESRCH);
2080 		*ttd = td;
2081 	} else {
2082 		*ttd = NULL;
2083 		PROC_LOCK(p);
2084 	}
2085 	return (0);
2086 }
2087 
2088 void
2089 tdsignal(struct thread *td, int sig)
2090 {
2091 	ksiginfo_t ksi;
2092 
2093 	ksiginfo_init(&ksi);
2094 	ksi.ksi_signo = sig;
2095 	ksi.ksi_code = SI_KERNEL;
2096 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2097 }
2098 
2099 void
2100 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2101 {
2102 
2103 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2104 }
2105 
2106 int
2107 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2108 {
2109 	sig_t action;
2110 	sigqueue_t *sigqueue;
2111 	int prop;
2112 	struct sigacts *ps;
2113 	int intrval;
2114 	int ret = 0;
2115 	int wakeup_swapper;
2116 
2117 	MPASS(td == NULL || p == td->td_proc);
2118 	PROC_LOCK_ASSERT(p, MA_OWNED);
2119 
2120 	if (!_SIG_VALID(sig))
2121 		panic("%s(): invalid signal %d", __func__, sig);
2122 
2123 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2124 
2125 	/*
2126 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2127 	 */
2128 	if (p->p_state == PRS_ZOMBIE) {
2129 		if (ksi && (ksi->ksi_flags & KSI_INS))
2130 			ksiginfo_tryfree(ksi);
2131 		return (ret);
2132 	}
2133 
2134 	ps = p->p_sigacts;
2135 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2136 	prop = sigprop(sig);
2137 
2138 	if (td == NULL) {
2139 		td = sigtd(p, sig, prop);
2140 		sigqueue = &p->p_sigqueue;
2141 	} else
2142 		sigqueue = &td->td_sigqueue;
2143 
2144 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2145 
2146 	/*
2147 	 * If the signal is being ignored,
2148 	 * then we forget about it immediately.
2149 	 * (Note: we don't set SIGCONT in ps_sigignore,
2150 	 * and if it is set to SIG_IGN,
2151 	 * action will be SIG_DFL here.)
2152 	 */
2153 	mtx_lock(&ps->ps_mtx);
2154 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2155 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2156 
2157 		mtx_unlock(&ps->ps_mtx);
2158 		if (ksi && (ksi->ksi_flags & KSI_INS))
2159 			ksiginfo_tryfree(ksi);
2160 		return (ret);
2161 	}
2162 	if (SIGISMEMBER(td->td_sigmask, sig))
2163 		action = SIG_HOLD;
2164 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2165 		action = SIG_CATCH;
2166 	else
2167 		action = SIG_DFL;
2168 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2169 		intrval = EINTR;
2170 	else
2171 		intrval = ERESTART;
2172 	mtx_unlock(&ps->ps_mtx);
2173 
2174 	if (prop & SIGPROP_CONT)
2175 		sigqueue_delete_stopmask_proc(p);
2176 	else if (prop & SIGPROP_STOP) {
2177 		/*
2178 		 * If sending a tty stop signal to a member of an orphaned
2179 		 * process group, discard the signal here if the action
2180 		 * is default; don't stop the process below if sleeping,
2181 		 * and don't clear any pending SIGCONT.
2182 		 */
2183 		if ((prop & SIGPROP_TTYSTOP) &&
2184 		    (p->p_pgrp->pg_jobc == 0) &&
2185 		    (action == SIG_DFL)) {
2186 			if (ksi && (ksi->ksi_flags & KSI_INS))
2187 				ksiginfo_tryfree(ksi);
2188 			return (ret);
2189 		}
2190 		sigqueue_delete_proc(p, SIGCONT);
2191 		if (p->p_flag & P_CONTINUED) {
2192 			p->p_flag &= ~P_CONTINUED;
2193 			PROC_LOCK(p->p_pptr);
2194 			sigqueue_take(p->p_ksi);
2195 			PROC_UNLOCK(p->p_pptr);
2196 		}
2197 	}
2198 
2199 	ret = sigqueue_add(sigqueue, sig, ksi);
2200 	if (ret != 0)
2201 		return (ret);
2202 	signotify(td);
2203 	/*
2204 	 * Defer further processing for signals which are held,
2205 	 * except that stopped processes must be continued by SIGCONT.
2206 	 */
2207 	if (action == SIG_HOLD &&
2208 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2209 		return (ret);
2210 
2211 	/* SIGKILL: Remove procfs STOPEVENTs. */
2212 	if (sig == SIGKILL) {
2213 		/* from procfs_ioctl.c: PIOCBIC */
2214 		p->p_stops = 0;
2215 		/* from procfs_ioctl.c: PIOCCONT */
2216 		p->p_step = 0;
2217 		wakeup(&p->p_step);
2218 	}
2219 	/*
2220 	 * Some signals have a process-wide effect and a per-thread
2221 	 * component.  Most processing occurs when the process next
2222 	 * tries to cross the user boundary, however there are some
2223 	 * times when processing needs to be done immediately, such as
2224 	 * waking up threads so that they can cross the user boundary.
2225 	 * We try to do the per-process part here.
2226 	 */
2227 	if (P_SHOULDSTOP(p)) {
2228 		KASSERT(!(p->p_flag & P_WEXIT),
2229 		    ("signal to stopped but exiting process"));
2230 		if (sig == SIGKILL) {
2231 			/*
2232 			 * If traced process is already stopped,
2233 			 * then no further action is necessary.
2234 			 */
2235 			if (p->p_flag & P_TRACED)
2236 				goto out;
2237 			/*
2238 			 * SIGKILL sets process running.
2239 			 * It will die elsewhere.
2240 			 * All threads must be restarted.
2241 			 */
2242 			p->p_flag &= ~P_STOPPED_SIG;
2243 			goto runfast;
2244 		}
2245 
2246 		if (prop & SIGPROP_CONT) {
2247 			/*
2248 			 * If traced process is already stopped,
2249 			 * then no further action is necessary.
2250 			 */
2251 			if (p->p_flag & P_TRACED)
2252 				goto out;
2253 			/*
2254 			 * If SIGCONT is default (or ignored), we continue the
2255 			 * process but don't leave the signal in sigqueue as
2256 			 * it has no further action.  If SIGCONT is held, we
2257 			 * continue the process and leave the signal in
2258 			 * sigqueue.  If the process catches SIGCONT, let it
2259 			 * handle the signal itself.  If it isn't waiting on
2260 			 * an event, it goes back to run state.
2261 			 * Otherwise, process goes back to sleep state.
2262 			 */
2263 			p->p_flag &= ~P_STOPPED_SIG;
2264 			PROC_SLOCK(p);
2265 			if (p->p_numthreads == p->p_suspcount) {
2266 				PROC_SUNLOCK(p);
2267 				p->p_flag |= P_CONTINUED;
2268 				p->p_xsig = SIGCONT;
2269 				PROC_LOCK(p->p_pptr);
2270 				childproc_continued(p);
2271 				PROC_UNLOCK(p->p_pptr);
2272 				PROC_SLOCK(p);
2273 			}
2274 			if (action == SIG_DFL) {
2275 				thread_unsuspend(p);
2276 				PROC_SUNLOCK(p);
2277 				sigqueue_delete(sigqueue, sig);
2278 				goto out;
2279 			}
2280 			if (action == SIG_CATCH) {
2281 				/*
2282 				 * The process wants to catch it so it needs
2283 				 * to run at least one thread, but which one?
2284 				 */
2285 				PROC_SUNLOCK(p);
2286 				goto runfast;
2287 			}
2288 			/*
2289 			 * The signal is not ignored or caught.
2290 			 */
2291 			thread_unsuspend(p);
2292 			PROC_SUNLOCK(p);
2293 			goto out;
2294 		}
2295 
2296 		if (prop & SIGPROP_STOP) {
2297 			/*
2298 			 * If traced process is already stopped,
2299 			 * then no further action is necessary.
2300 			 */
2301 			if (p->p_flag & P_TRACED)
2302 				goto out;
2303 			/*
2304 			 * Already stopped, don't need to stop again
2305 			 * (If we did the shell could get confused).
2306 			 * Just make sure the signal STOP bit set.
2307 			 */
2308 			p->p_flag |= P_STOPPED_SIG;
2309 			sigqueue_delete(sigqueue, sig);
2310 			goto out;
2311 		}
2312 
2313 		/*
2314 		 * All other kinds of signals:
2315 		 * If a thread is sleeping interruptibly, simulate a
2316 		 * wakeup so that when it is continued it will be made
2317 		 * runnable and can look at the signal.  However, don't make
2318 		 * the PROCESS runnable, leave it stopped.
2319 		 * It may run a bit until it hits a thread_suspend_check().
2320 		 */
2321 		wakeup_swapper = 0;
2322 		PROC_SLOCK(p);
2323 		thread_lock(td);
2324 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2325 			wakeup_swapper = sleepq_abort(td, intrval);
2326 		thread_unlock(td);
2327 		PROC_SUNLOCK(p);
2328 		if (wakeup_swapper)
2329 			kick_proc0();
2330 		goto out;
2331 		/*
2332 		 * Mutexes are short lived. Threads waiting on them will
2333 		 * hit thread_suspend_check() soon.
2334 		 */
2335 	} else if (p->p_state == PRS_NORMAL) {
2336 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2337 			tdsigwakeup(td, sig, action, intrval);
2338 			goto out;
2339 		}
2340 
2341 		MPASS(action == SIG_DFL);
2342 
2343 		if (prop & SIGPROP_STOP) {
2344 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2345 				goto out;
2346 			p->p_flag |= P_STOPPED_SIG;
2347 			p->p_xsig = sig;
2348 			PROC_SLOCK(p);
2349 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2350 			if (p->p_numthreads == p->p_suspcount) {
2351 				/*
2352 				 * only thread sending signal to another
2353 				 * process can reach here, if thread is sending
2354 				 * signal to its process, because thread does
2355 				 * not suspend itself here, p_numthreads
2356 				 * should never be equal to p_suspcount.
2357 				 */
2358 				thread_stopped(p);
2359 				PROC_SUNLOCK(p);
2360 				sigqueue_delete_proc(p, p->p_xsig);
2361 			} else
2362 				PROC_SUNLOCK(p);
2363 			if (wakeup_swapper)
2364 				kick_proc0();
2365 			goto out;
2366 		}
2367 	} else {
2368 		/* Not in "NORMAL" state. discard the signal. */
2369 		sigqueue_delete(sigqueue, sig);
2370 		goto out;
2371 	}
2372 
2373 	/*
2374 	 * The process is not stopped so we need to apply the signal to all the
2375 	 * running threads.
2376 	 */
2377 runfast:
2378 	tdsigwakeup(td, sig, action, intrval);
2379 	PROC_SLOCK(p);
2380 	thread_unsuspend(p);
2381 	PROC_SUNLOCK(p);
2382 out:
2383 	/* If we jump here, proc slock should not be owned. */
2384 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2385 	return (ret);
2386 }
2387 
2388 /*
2389  * The force of a signal has been directed against a single
2390  * thread.  We need to see what we can do about knocking it
2391  * out of any sleep it may be in etc.
2392  */
2393 static void
2394 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2395 {
2396 	struct proc *p = td->td_proc;
2397 	int prop;
2398 	int wakeup_swapper;
2399 
2400 	wakeup_swapper = 0;
2401 	PROC_LOCK_ASSERT(p, MA_OWNED);
2402 	prop = sigprop(sig);
2403 
2404 	PROC_SLOCK(p);
2405 	thread_lock(td);
2406 	/*
2407 	 * Bring the priority of a thread up if we want it to get
2408 	 * killed in this lifetime.  Be careful to avoid bumping the
2409 	 * priority of the idle thread, since we still allow to signal
2410 	 * kernel processes.
2411 	 */
2412 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2413 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2414 		sched_prio(td, PUSER);
2415 	if (TD_ON_SLEEPQ(td)) {
2416 		/*
2417 		 * If thread is sleeping uninterruptibly
2418 		 * we can't interrupt the sleep... the signal will
2419 		 * be noticed when the process returns through
2420 		 * trap() or syscall().
2421 		 */
2422 		if ((td->td_flags & TDF_SINTR) == 0)
2423 			goto out;
2424 		/*
2425 		 * If SIGCONT is default (or ignored) and process is
2426 		 * asleep, we are finished; the process should not
2427 		 * be awakened.
2428 		 */
2429 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2430 			thread_unlock(td);
2431 			PROC_SUNLOCK(p);
2432 			sigqueue_delete(&p->p_sigqueue, sig);
2433 			/*
2434 			 * It may be on either list in this state.
2435 			 * Remove from both for now.
2436 			 */
2437 			sigqueue_delete(&td->td_sigqueue, sig);
2438 			return;
2439 		}
2440 
2441 		/*
2442 		 * Don't awaken a sleeping thread for SIGSTOP if the
2443 		 * STOP signal is deferred.
2444 		 */
2445 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2446 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2447 			goto out;
2448 
2449 		/*
2450 		 * Give low priority threads a better chance to run.
2451 		 */
2452 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2453 			sched_prio(td, PUSER);
2454 
2455 		wakeup_swapper = sleepq_abort(td, intrval);
2456 	} else {
2457 		/*
2458 		 * Other states do nothing with the signal immediately,
2459 		 * other than kicking ourselves if we are running.
2460 		 * It will either never be noticed, or noticed very soon.
2461 		 */
2462 #ifdef SMP
2463 		if (TD_IS_RUNNING(td) && td != curthread)
2464 			forward_signal(td);
2465 #endif
2466 	}
2467 out:
2468 	PROC_SUNLOCK(p);
2469 	thread_unlock(td);
2470 	if (wakeup_swapper)
2471 		kick_proc0();
2472 }
2473 
2474 static int
2475 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2476 {
2477 	struct thread *td2;
2478 	int wakeup_swapper;
2479 
2480 	PROC_LOCK_ASSERT(p, MA_OWNED);
2481 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2482 	MPASS(sending || td == curthread);
2483 
2484 	wakeup_swapper = 0;
2485 	FOREACH_THREAD_IN_PROC(p, td2) {
2486 		thread_lock(td2);
2487 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2488 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2489 		    (td2->td_flags & TDF_SINTR)) {
2490 			if (td2->td_flags & TDF_SBDRY) {
2491 				/*
2492 				 * Once a thread is asleep with
2493 				 * TDF_SBDRY and without TDF_SERESTART
2494 				 * or TDF_SEINTR set, it should never
2495 				 * become suspended due to this check.
2496 				 */
2497 				KASSERT(!TD_IS_SUSPENDED(td2),
2498 				    ("thread with deferred stops suspended"));
2499 				if (TD_SBDRY_INTR(td2))
2500 					wakeup_swapper |= sleepq_abort(td2,
2501 					    TD_SBDRY_ERRNO(td2));
2502 			} else if (!TD_IS_SUSPENDED(td2)) {
2503 				thread_suspend_one(td2);
2504 			}
2505 		} else if (!TD_IS_SUSPENDED(td2)) {
2506 			if (sending || td != td2)
2507 				td2->td_flags |= TDF_ASTPENDING;
2508 #ifdef SMP
2509 			if (TD_IS_RUNNING(td2) && td2 != td)
2510 				forward_signal(td2);
2511 #endif
2512 		}
2513 		thread_unlock(td2);
2514 	}
2515 	return (wakeup_swapper);
2516 }
2517 
2518 /*
2519  * Stop the process for an event deemed interesting to the debugger. If si is
2520  * non-NULL, this is a signal exchange; the new signal requested by the
2521  * debugger will be returned for handling. If si is NULL, this is some other
2522  * type of interesting event. The debugger may request a signal be delivered in
2523  * that case as well, however it will be deferred until it can be handled.
2524  */
2525 int
2526 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2527 {
2528 	struct proc *p = td->td_proc;
2529 	struct thread *td2;
2530 	ksiginfo_t ksi;
2531 	int prop;
2532 
2533 	PROC_LOCK_ASSERT(p, MA_OWNED);
2534 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2535 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2536 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2537 
2538 	td->td_xsig = sig;
2539 
2540 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2541 		td->td_dbgflags |= TDB_XSIG;
2542 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2543 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2544 		PROC_SLOCK(p);
2545 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2546 			if (P_KILLED(p)) {
2547 				/*
2548 				 * Ensure that, if we've been PT_KILLed, the
2549 				 * exit status reflects that. Another thread
2550 				 * may also be in ptracestop(), having just
2551 				 * received the SIGKILL, but this thread was
2552 				 * unsuspended first.
2553 				 */
2554 				td->td_dbgflags &= ~TDB_XSIG;
2555 				td->td_xsig = SIGKILL;
2556 				p->p_ptevents = 0;
2557 				break;
2558 			}
2559 			if (p->p_flag & P_SINGLE_EXIT &&
2560 			    !(td->td_dbgflags & TDB_EXIT)) {
2561 				/*
2562 				 * Ignore ptrace stops except for thread exit
2563 				 * events when the process exits.
2564 				 */
2565 				td->td_dbgflags &= ~TDB_XSIG;
2566 				PROC_SUNLOCK(p);
2567 				return (0);
2568 			}
2569 
2570 			/*
2571 			 * Make wait(2) work.  Ensure that right after the
2572 			 * attach, the thread which was decided to become the
2573 			 * leader of attach gets reported to the waiter.
2574 			 * Otherwise, just avoid overwriting another thread's
2575 			 * assignment to p_xthread.  If another thread has
2576 			 * already set p_xthread, the current thread will get
2577 			 * a chance to report itself upon the next iteration.
2578 			 */
2579 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2580 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2581 			    p->p_xthread == NULL)) {
2582 				p->p_xsig = sig;
2583 				p->p_xthread = td;
2584 				td->td_dbgflags &= ~TDB_FSTP;
2585 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2586 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2587 				sig_suspend_threads(td, p, 0);
2588 			}
2589 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2590 				td->td_dbgflags &= ~TDB_STOPATFORK;
2591 				cv_broadcast(&p->p_dbgwait);
2592 			}
2593 stopme:
2594 			thread_suspend_switch(td, p);
2595 			if (p->p_xthread == td)
2596 				p->p_xthread = NULL;
2597 			if (!(p->p_flag & P_TRACED))
2598 				break;
2599 			if (td->td_dbgflags & TDB_SUSPEND) {
2600 				if (p->p_flag & P_SINGLE_EXIT)
2601 					break;
2602 				goto stopme;
2603 			}
2604 		}
2605 		PROC_SUNLOCK(p);
2606 	}
2607 
2608 	if (si != NULL && sig == td->td_xsig) {
2609 		/* Parent wants us to take the original signal unchanged. */
2610 		si->ksi_flags |= KSI_HEAD;
2611 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2612 			si->ksi_signo = 0;
2613 	} else if (td->td_xsig != 0) {
2614 		/*
2615 		 * If parent wants us to take a new signal, then it will leave
2616 		 * it in td->td_xsig; otherwise we just look for signals again.
2617 		 */
2618 		ksiginfo_init(&ksi);
2619 		ksi.ksi_signo = td->td_xsig;
2620 		ksi.ksi_flags |= KSI_PTRACE;
2621 		prop = sigprop(td->td_xsig);
2622 		td2 = sigtd(p, td->td_xsig, prop);
2623 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2624 		if (td != td2)
2625 			return (0);
2626 	}
2627 
2628 	return (td->td_xsig);
2629 }
2630 
2631 static void
2632 reschedule_signals(struct proc *p, sigset_t block, int flags)
2633 {
2634 	struct sigacts *ps;
2635 	struct thread *td;
2636 	int sig;
2637 
2638 	PROC_LOCK_ASSERT(p, MA_OWNED);
2639 	ps = p->p_sigacts;
2640 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2641 	    MA_OWNED : MA_NOTOWNED);
2642 	if (SIGISEMPTY(p->p_siglist))
2643 		return;
2644 	SIGSETAND(block, p->p_siglist);
2645 	while ((sig = sig_ffs(&block)) != 0) {
2646 		SIGDELSET(block, sig);
2647 		td = sigtd(p, sig, 0);
2648 		signotify(td);
2649 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2650 			mtx_lock(&ps->ps_mtx);
2651 		if (p->p_flag & P_TRACED ||
2652 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2653 		    !SIGISMEMBER(td->td_sigmask, sig)))
2654 			tdsigwakeup(td, sig, SIG_CATCH,
2655 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2656 			     ERESTART));
2657 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2658 			mtx_unlock(&ps->ps_mtx);
2659 	}
2660 }
2661 
2662 void
2663 tdsigcleanup(struct thread *td)
2664 {
2665 	struct proc *p;
2666 	sigset_t unblocked;
2667 
2668 	p = td->td_proc;
2669 	PROC_LOCK_ASSERT(p, MA_OWNED);
2670 
2671 	sigqueue_flush(&td->td_sigqueue);
2672 	if (p->p_numthreads == 1)
2673 		return;
2674 
2675 	/*
2676 	 * Since we cannot handle signals, notify signal post code
2677 	 * about this by filling the sigmask.
2678 	 *
2679 	 * Also, if needed, wake up thread(s) that do not block the
2680 	 * same signals as the exiting thread, since the thread might
2681 	 * have been selected for delivery and woken up.
2682 	 */
2683 	SIGFILLSET(unblocked);
2684 	SIGSETNAND(unblocked, td->td_sigmask);
2685 	SIGFILLSET(td->td_sigmask);
2686 	reschedule_signals(p, unblocked, 0);
2687 
2688 }
2689 
2690 static int
2691 sigdeferstop_curr_flags(int cflags)
2692 {
2693 
2694 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2695 	    (cflags & TDF_SBDRY) != 0);
2696 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2697 }
2698 
2699 /*
2700  * Defer the delivery of SIGSTOP for the current thread, according to
2701  * the requested mode.  Returns previous flags, which must be restored
2702  * by sigallowstop().
2703  *
2704  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2705  * cleared by the current thread, which allow the lock-less read-only
2706  * accesses below.
2707  */
2708 int
2709 sigdeferstop_impl(int mode)
2710 {
2711 	struct thread *td;
2712 	int cflags, nflags;
2713 
2714 	td = curthread;
2715 	cflags = sigdeferstop_curr_flags(td->td_flags);
2716 	switch (mode) {
2717 	case SIGDEFERSTOP_NOP:
2718 		nflags = cflags;
2719 		break;
2720 	case SIGDEFERSTOP_OFF:
2721 		nflags = 0;
2722 		break;
2723 	case SIGDEFERSTOP_SILENT:
2724 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2725 		break;
2726 	case SIGDEFERSTOP_EINTR:
2727 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2728 		break;
2729 	case SIGDEFERSTOP_ERESTART:
2730 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2731 		break;
2732 	default:
2733 		panic("sigdeferstop: invalid mode %x", mode);
2734 		break;
2735 	}
2736 	if (cflags == nflags)
2737 		return (SIGDEFERSTOP_VAL_NCHG);
2738 	thread_lock(td);
2739 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2740 	thread_unlock(td);
2741 	return (cflags);
2742 }
2743 
2744 /*
2745  * Restores the STOP handling mode, typically permitting the delivery
2746  * of SIGSTOP for the current thread.  This does not immediately
2747  * suspend if a stop was posted.  Instead, the thread will suspend
2748  * either via ast() or a subsequent interruptible sleep.
2749  */
2750 void
2751 sigallowstop_impl(int prev)
2752 {
2753 	struct thread *td;
2754 	int cflags;
2755 
2756 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2757 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2758 	    ("sigallowstop: incorrect previous mode %x", prev));
2759 	td = curthread;
2760 	cflags = sigdeferstop_curr_flags(td->td_flags);
2761 	if (cflags != prev) {
2762 		thread_lock(td);
2763 		td->td_flags = (td->td_flags & ~cflags) | prev;
2764 		thread_unlock(td);
2765 	}
2766 }
2767 
2768 /*
2769  * If the current process has received a signal (should be caught or cause
2770  * termination, should interrupt current syscall), return the signal number.
2771  * Stop signals with default action are processed immediately, then cleared;
2772  * they aren't returned.  This is checked after each entry to the system for
2773  * a syscall or trap (though this can usually be done without calling issignal
2774  * by checking the pending signal masks in cursig.) The normal call
2775  * sequence is
2776  *
2777  *	while (sig = cursig(curthread))
2778  *		postsig(sig);
2779  */
2780 static int
2781 issignal(struct thread *td)
2782 {
2783 	struct proc *p;
2784 	struct sigacts *ps;
2785 	struct sigqueue *queue;
2786 	sigset_t sigpending;
2787 	ksiginfo_t ksi;
2788 	int prop, sig, traced;
2789 
2790 	p = td->td_proc;
2791 	ps = p->p_sigacts;
2792 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2793 	PROC_LOCK_ASSERT(p, MA_OWNED);
2794 	for (;;) {
2795 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2796 
2797 		sigpending = td->td_sigqueue.sq_signals;
2798 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2799 		SIGSETNAND(sigpending, td->td_sigmask);
2800 
2801 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2802 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2803 			SIG_STOPSIGMASK(sigpending);
2804 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2805 			return (0);
2806 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2807 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2808 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2809 			/*
2810 			 * If debugger just attached, always consume
2811 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2812 			 * execute the debugger attach ritual in
2813 			 * order.
2814 			 */
2815 			sig = SIGSTOP;
2816 			td->td_dbgflags |= TDB_FSTP;
2817 		} else {
2818 			sig = sig_ffs(&sigpending);
2819 		}
2820 
2821 		if (p->p_stops & S_SIG) {
2822 			mtx_unlock(&ps->ps_mtx);
2823 			stopevent(p, S_SIG, sig);
2824 			mtx_lock(&ps->ps_mtx);
2825 		}
2826 
2827 		/*
2828 		 * We should see pending but ignored signals
2829 		 * only if P_TRACED was on when they were posted.
2830 		 */
2831 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2832 			sigqueue_delete(&td->td_sigqueue, sig);
2833 			sigqueue_delete(&p->p_sigqueue, sig);
2834 			continue;
2835 		}
2836 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2837 			/*
2838 			 * If traced, always stop.
2839 			 * Remove old signal from queue before the stop.
2840 			 * XXX shrug off debugger, it causes siginfo to
2841 			 * be thrown away.
2842 			 */
2843 			queue = &td->td_sigqueue;
2844 			ksiginfo_init(&ksi);
2845 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2846 				queue = &p->p_sigqueue;
2847 				sigqueue_get(queue, sig, &ksi);
2848 			}
2849 			td->td_si = ksi.ksi_info;
2850 
2851 			mtx_unlock(&ps->ps_mtx);
2852 			sig = ptracestop(td, sig, &ksi);
2853 			mtx_lock(&ps->ps_mtx);
2854 
2855 			/*
2856 			 * Keep looking if the debugger discarded or
2857 			 * replaced the signal.
2858 			 */
2859 			if (sig == 0)
2860 				continue;
2861 
2862 			/*
2863 			 * If the signal became masked, re-queue it.
2864 			 */
2865 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2866 				ksi.ksi_flags |= KSI_HEAD;
2867 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2868 				continue;
2869 			}
2870 
2871 			/*
2872 			 * If the traced bit got turned off, requeue
2873 			 * the signal and go back up to the top to
2874 			 * rescan signals.  This ensures that p_sig*
2875 			 * and p_sigact are consistent.
2876 			 */
2877 			if ((p->p_flag & P_TRACED) == 0) {
2878 				ksi.ksi_flags |= KSI_HEAD;
2879 				sigqueue_add(queue, sig, &ksi);
2880 				continue;
2881 			}
2882 		}
2883 
2884 		prop = sigprop(sig);
2885 
2886 		/*
2887 		 * Decide whether the signal should be returned.
2888 		 * Return the signal's number, or fall through
2889 		 * to clear it from the pending mask.
2890 		 */
2891 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2892 
2893 		case (intptr_t)SIG_DFL:
2894 			/*
2895 			 * Don't take default actions on system processes.
2896 			 */
2897 			if (p->p_pid <= 1) {
2898 #ifdef DIAGNOSTIC
2899 				/*
2900 				 * Are you sure you want to ignore SIGSEGV
2901 				 * in init? XXX
2902 				 */
2903 				printf("Process (pid %lu) got signal %d\n",
2904 					(u_long)p->p_pid, sig);
2905 #endif
2906 				break;		/* == ignore */
2907 			}
2908 			/*
2909 			 * If there is a pending stop signal to process with
2910 			 * default action, stop here, then clear the signal.
2911 			 * Traced or exiting processes should ignore stops.
2912 			 * Additionally, a member of an orphaned process group
2913 			 * should ignore tty stops.
2914 			 */
2915 			if (prop & SIGPROP_STOP) {
2916 				if (p->p_flag &
2917 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2918 				    (p->p_pgrp->pg_jobc == 0 &&
2919 				     prop & SIGPROP_TTYSTOP))
2920 					break;	/* == ignore */
2921 				if (TD_SBDRY_INTR(td)) {
2922 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2923 					    ("lost TDF_SBDRY"));
2924 					return (-1);
2925 				}
2926 				mtx_unlock(&ps->ps_mtx);
2927 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2928 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2929 				sigqueue_delete(&td->td_sigqueue, sig);
2930 				sigqueue_delete(&p->p_sigqueue, sig);
2931 				p->p_flag |= P_STOPPED_SIG;
2932 				p->p_xsig = sig;
2933 				PROC_SLOCK(p);
2934 				sig_suspend_threads(td, p, 0);
2935 				thread_suspend_switch(td, p);
2936 				PROC_SUNLOCK(p);
2937 				mtx_lock(&ps->ps_mtx);
2938 				goto next;
2939 			} else if (prop & SIGPROP_IGNORE) {
2940 				/*
2941 				 * Except for SIGCONT, shouldn't get here.
2942 				 * Default action is to ignore; drop it.
2943 				 */
2944 				break;		/* == ignore */
2945 			} else
2946 				return (sig);
2947 			/*NOTREACHED*/
2948 
2949 		case (intptr_t)SIG_IGN:
2950 			/*
2951 			 * Masking above should prevent us ever trying
2952 			 * to take action on an ignored signal other
2953 			 * than SIGCONT, unless process is traced.
2954 			 */
2955 			if ((prop & SIGPROP_CONT) == 0 &&
2956 			    (p->p_flag & P_TRACED) == 0)
2957 				printf("issignal\n");
2958 			break;		/* == ignore */
2959 
2960 		default:
2961 			/*
2962 			 * This signal has an action, let
2963 			 * postsig() process it.
2964 			 */
2965 			return (sig);
2966 		}
2967 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2968 		sigqueue_delete(&p->p_sigqueue, sig);
2969 next:;
2970 	}
2971 	/* NOTREACHED */
2972 }
2973 
2974 void
2975 thread_stopped(struct proc *p)
2976 {
2977 	int n;
2978 
2979 	PROC_LOCK_ASSERT(p, MA_OWNED);
2980 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2981 	n = p->p_suspcount;
2982 	if (p == curproc)
2983 		n++;
2984 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2985 		PROC_SUNLOCK(p);
2986 		p->p_flag &= ~P_WAITED;
2987 		PROC_LOCK(p->p_pptr);
2988 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2989 			CLD_TRAPPED : CLD_STOPPED);
2990 		PROC_UNLOCK(p->p_pptr);
2991 		PROC_SLOCK(p);
2992 	}
2993 }
2994 
2995 /*
2996  * Take the action for the specified signal
2997  * from the current set of pending signals.
2998  */
2999 int
3000 postsig(int sig)
3001 {
3002 	struct thread *td;
3003 	struct proc *p;
3004 	struct sigacts *ps;
3005 	sig_t action;
3006 	ksiginfo_t ksi;
3007 	sigset_t returnmask;
3008 
3009 	KASSERT(sig != 0, ("postsig"));
3010 
3011 	td = curthread;
3012 	p = td->td_proc;
3013 	PROC_LOCK_ASSERT(p, MA_OWNED);
3014 	ps = p->p_sigacts;
3015 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3016 	ksiginfo_init(&ksi);
3017 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3018 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3019 		return (0);
3020 	ksi.ksi_signo = sig;
3021 	if (ksi.ksi_code == SI_TIMER)
3022 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3023 	action = ps->ps_sigact[_SIG_IDX(sig)];
3024 #ifdef KTRACE
3025 	if (KTRPOINT(td, KTR_PSIG))
3026 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3027 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3028 #endif
3029 	if ((p->p_stops & S_SIG) != 0) {
3030 		mtx_unlock(&ps->ps_mtx);
3031 		stopevent(p, S_SIG, sig);
3032 		mtx_lock(&ps->ps_mtx);
3033 	}
3034 
3035 	if (action == SIG_DFL) {
3036 		/*
3037 		 * Default action, where the default is to kill
3038 		 * the process.  (Other cases were ignored above.)
3039 		 */
3040 		mtx_unlock(&ps->ps_mtx);
3041 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3042 		sigexit(td, sig);
3043 		/* NOTREACHED */
3044 	} else {
3045 		/*
3046 		 * If we get here, the signal must be caught.
3047 		 */
3048 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3049 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3050 		    ("postsig action: blocked sig %d", sig));
3051 
3052 		/*
3053 		 * Set the new mask value and also defer further
3054 		 * occurrences of this signal.
3055 		 *
3056 		 * Special case: user has done a sigsuspend.  Here the
3057 		 * current mask is not of interest, but rather the
3058 		 * mask from before the sigsuspend is what we want
3059 		 * restored after the signal processing is completed.
3060 		 */
3061 		if (td->td_pflags & TDP_OLDMASK) {
3062 			returnmask = td->td_oldsigmask;
3063 			td->td_pflags &= ~TDP_OLDMASK;
3064 		} else
3065 			returnmask = td->td_sigmask;
3066 
3067 		if (p->p_sig == sig) {
3068 			p->p_code = 0;
3069 			p->p_sig = 0;
3070 		}
3071 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3072 		postsig_done(sig, td, ps);
3073 	}
3074 	return (1);
3075 }
3076 
3077 /*
3078  * Kill the current process for stated reason.
3079  */
3080 void
3081 killproc(struct proc *p, char *why)
3082 {
3083 
3084 	PROC_LOCK_ASSERT(p, MA_OWNED);
3085 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3086 	    p->p_comm);
3087 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3088 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3089 	p->p_flag |= P_WKILLED;
3090 	kern_psignal(p, SIGKILL);
3091 }
3092 
3093 /*
3094  * Force the current process to exit with the specified signal, dumping core
3095  * if appropriate.  We bypass the normal tests for masked and caught signals,
3096  * allowing unrecoverable failures to terminate the process without changing
3097  * signal state.  Mark the accounting record with the signal termination.
3098  * If dumping core, save the signal number for the debugger.  Calls exit and
3099  * does not return.
3100  */
3101 void
3102 sigexit(struct thread *td, int sig)
3103 {
3104 	struct proc *p = td->td_proc;
3105 
3106 	PROC_LOCK_ASSERT(p, MA_OWNED);
3107 	p->p_acflag |= AXSIG;
3108 	/*
3109 	 * We must be single-threading to generate a core dump.  This
3110 	 * ensures that the registers in the core file are up-to-date.
3111 	 * Also, the ELF dump handler assumes that the thread list doesn't
3112 	 * change out from under it.
3113 	 *
3114 	 * XXX If another thread attempts to single-thread before us
3115 	 *     (e.g. via fork()), we won't get a dump at all.
3116 	 */
3117 	if ((sigprop(sig) & SIGPROP_CORE) &&
3118 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3119 		p->p_sig = sig;
3120 		/*
3121 		 * Log signals which would cause core dumps
3122 		 * (Log as LOG_INFO to appease those who don't want
3123 		 * these messages.)
3124 		 * XXX : Todo, as well as euid, write out ruid too
3125 		 * Note that coredump() drops proc lock.
3126 		 */
3127 		if (coredump(td) == 0)
3128 			sig |= WCOREFLAG;
3129 		if (kern_logsigexit)
3130 			log(LOG_INFO,
3131 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3132 			    p->p_pid, p->p_comm,
3133 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3134 			    sig &~ WCOREFLAG,
3135 			    sig & WCOREFLAG ? " (core dumped)" : "");
3136 	} else
3137 		PROC_UNLOCK(p);
3138 	exit1(td, 0, sig);
3139 	/* NOTREACHED */
3140 }
3141 
3142 /*
3143  * Send queued SIGCHLD to parent when child process's state
3144  * is changed.
3145  */
3146 static void
3147 sigparent(struct proc *p, int reason, int status)
3148 {
3149 	PROC_LOCK_ASSERT(p, MA_OWNED);
3150 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3151 
3152 	if (p->p_ksi != NULL) {
3153 		p->p_ksi->ksi_signo  = SIGCHLD;
3154 		p->p_ksi->ksi_code   = reason;
3155 		p->p_ksi->ksi_status = status;
3156 		p->p_ksi->ksi_pid    = p->p_pid;
3157 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3158 		if (KSI_ONQ(p->p_ksi))
3159 			return;
3160 	}
3161 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3162 }
3163 
3164 static void
3165 childproc_jobstate(struct proc *p, int reason, int sig)
3166 {
3167 	struct sigacts *ps;
3168 
3169 	PROC_LOCK_ASSERT(p, MA_OWNED);
3170 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3171 
3172 	/*
3173 	 * Wake up parent sleeping in kern_wait(), also send
3174 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3175 	 * that parent will awake, because parent may masked
3176 	 * the signal.
3177 	 */
3178 	p->p_pptr->p_flag |= P_STATCHILD;
3179 	wakeup(p->p_pptr);
3180 
3181 	ps = p->p_pptr->p_sigacts;
3182 	mtx_lock(&ps->ps_mtx);
3183 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3184 		mtx_unlock(&ps->ps_mtx);
3185 		sigparent(p, reason, sig);
3186 	} else
3187 		mtx_unlock(&ps->ps_mtx);
3188 }
3189 
3190 void
3191 childproc_stopped(struct proc *p, int reason)
3192 {
3193 
3194 	childproc_jobstate(p, reason, p->p_xsig);
3195 }
3196 
3197 void
3198 childproc_continued(struct proc *p)
3199 {
3200 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3201 }
3202 
3203 void
3204 childproc_exited(struct proc *p)
3205 {
3206 	int reason, status;
3207 
3208 	if (WCOREDUMP(p->p_xsig)) {
3209 		reason = CLD_DUMPED;
3210 		status = WTERMSIG(p->p_xsig);
3211 	} else if (WIFSIGNALED(p->p_xsig)) {
3212 		reason = CLD_KILLED;
3213 		status = WTERMSIG(p->p_xsig);
3214 	} else {
3215 		reason = CLD_EXITED;
3216 		status = p->p_xexit;
3217 	}
3218 	/*
3219 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3220 	 * done in exit1().
3221 	 */
3222 	sigparent(p, reason, status);
3223 }
3224 
3225 /*
3226  * We only have 1 character for the core count in the format
3227  * string, so the range will be 0-9
3228  */
3229 #define	MAX_NUM_CORE_FILES 10
3230 #ifndef NUM_CORE_FILES
3231 #define	NUM_CORE_FILES 5
3232 #endif
3233 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3234 static int num_cores = NUM_CORE_FILES;
3235 
3236 static int
3237 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3238 {
3239 	int error;
3240 	int new_val;
3241 
3242 	new_val = num_cores;
3243 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3244 	if (error != 0 || req->newptr == NULL)
3245 		return (error);
3246 	if (new_val > MAX_NUM_CORE_FILES)
3247 		new_val = MAX_NUM_CORE_FILES;
3248 	if (new_val < 0)
3249 		new_val = 0;
3250 	num_cores = new_val;
3251 	return (0);
3252 }
3253 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3254 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3255 
3256 #define	GZIP_SUFFIX	".gz"
3257 #define	ZSTD_SUFFIX	".zst"
3258 
3259 int compress_user_cores = 0;
3260 
3261 static int
3262 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3263 {
3264 	int error, val;
3265 
3266 	val = compress_user_cores;
3267 	error = sysctl_handle_int(oidp, &val, 0, req);
3268 	if (error != 0 || req->newptr == NULL)
3269 		return (error);
3270 	if (val != 0 && !compressor_avail(val))
3271 		return (EINVAL);
3272 	compress_user_cores = val;
3273 	return (error);
3274 }
3275 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3276     0, sizeof(int), sysctl_compress_user_cores, "I",
3277     "Enable compression of user corefiles ("
3278     __XSTRING(COMPRESS_GZIP) " = gzip, "
3279     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3280 
3281 int compress_user_cores_level = 6;
3282 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3283     &compress_user_cores_level, 0,
3284     "Corefile compression level");
3285 
3286 /*
3287  * Protect the access to corefilename[] by allproc_lock.
3288  */
3289 #define	corefilename_lock	allproc_lock
3290 
3291 static char corefilename[MAXPATHLEN] = {"%N.core"};
3292 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3293 
3294 static int
3295 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3296 {
3297 	int error;
3298 
3299 	sx_xlock(&corefilename_lock);
3300 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3301 	    req);
3302 	sx_xunlock(&corefilename_lock);
3303 
3304 	return (error);
3305 }
3306 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3307     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3308     "Process corefile name format string");
3309 
3310 /*
3311  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3312  * Expand the name described in corefilename, using name, uid, and pid
3313  * and open/create core file.
3314  * corefilename is a printf-like string, with three format specifiers:
3315  *	%N	name of process ("name")
3316  *	%P	process id (pid)
3317  *	%U	user id (uid)
3318  * For example, "%N.core" is the default; they can be disabled completely
3319  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3320  * This is controlled by the sysctl variable kern.corefile (see above).
3321  */
3322 static int
3323 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3324     int compress, struct vnode **vpp, char **namep)
3325 {
3326 	struct nameidata nd;
3327 	struct sbuf sb;
3328 	const char *format;
3329 	char *hostname, *name;
3330 	int indexpos, i, error, cmode, flags, oflags;
3331 
3332 	hostname = NULL;
3333 	format = corefilename;
3334 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3335 	indexpos = -1;
3336 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3337 	sx_slock(&corefilename_lock);
3338 	for (i = 0; format[i] != '\0'; i++) {
3339 		switch (format[i]) {
3340 		case '%':	/* Format character */
3341 			i++;
3342 			switch (format[i]) {
3343 			case '%':
3344 				sbuf_putc(&sb, '%');
3345 				break;
3346 			case 'H':	/* hostname */
3347 				if (hostname == NULL) {
3348 					hostname = malloc(MAXHOSTNAMELEN,
3349 					    M_TEMP, M_WAITOK);
3350 				}
3351 				getcredhostname(td->td_ucred, hostname,
3352 				    MAXHOSTNAMELEN);
3353 				sbuf_printf(&sb, "%s", hostname);
3354 				break;
3355 			case 'I':	/* autoincrementing index */
3356 				sbuf_printf(&sb, "0");
3357 				indexpos = sbuf_len(&sb) - 1;
3358 				break;
3359 			case 'N':	/* process name */
3360 				sbuf_printf(&sb, "%s", comm);
3361 				break;
3362 			case 'P':	/* process id */
3363 				sbuf_printf(&sb, "%u", pid);
3364 				break;
3365 			case 'U':	/* user id */
3366 				sbuf_printf(&sb, "%u", uid);
3367 				break;
3368 			default:
3369 				log(LOG_ERR,
3370 				    "Unknown format character %c in "
3371 				    "corename `%s'\n", format[i], format);
3372 				break;
3373 			}
3374 			break;
3375 		default:
3376 			sbuf_putc(&sb, format[i]);
3377 			break;
3378 		}
3379 	}
3380 	sx_sunlock(&corefilename_lock);
3381 	free(hostname, M_TEMP);
3382 	if (compress == COMPRESS_GZIP)
3383 		sbuf_printf(&sb, GZIP_SUFFIX);
3384 	else if (compress == COMPRESS_ZSTD)
3385 		sbuf_printf(&sb, ZSTD_SUFFIX);
3386 	if (sbuf_error(&sb) != 0) {
3387 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3388 		    "long\n", (long)pid, comm, (u_long)uid);
3389 		sbuf_delete(&sb);
3390 		free(name, M_TEMP);
3391 		return (ENOMEM);
3392 	}
3393 	sbuf_finish(&sb);
3394 	sbuf_delete(&sb);
3395 
3396 	cmode = S_IRUSR | S_IWUSR;
3397 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3398 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3399 
3400 	/*
3401 	 * If the core format has a %I in it, then we need to check
3402 	 * for existing corefiles before returning a name.
3403 	 * To do this we iterate over 0..num_cores to find a
3404 	 * non-existing core file name to use.
3405 	 */
3406 	if (indexpos != -1) {
3407 		for (i = 0; i < num_cores; i++) {
3408 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3409 			name[indexpos] = '0' + i;
3410 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3411 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3412 			    td->td_ucred, NULL);
3413 			if (error) {
3414 				if (error == EEXIST)
3415 					continue;
3416 				log(LOG_ERR,
3417 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3418 				    "on initial open test, error = %d\n",
3419 				    pid, comm, uid, name, error);
3420 			}
3421 			goto out;
3422 		}
3423 	}
3424 
3425 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3426 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3427 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3428 out:
3429 	if (error) {
3430 #ifdef AUDIT
3431 		audit_proc_coredump(td, name, error);
3432 #endif
3433 		free(name, M_TEMP);
3434 		return (error);
3435 	}
3436 	NDFREE(&nd, NDF_ONLY_PNBUF);
3437 	*vpp = nd.ni_vp;
3438 	*namep = name;
3439 	return (0);
3440 }
3441 
3442 static int
3443 coredump_sanitise_path(const char *path)
3444 {
3445 	size_t i;
3446 
3447 	/*
3448 	 * Only send a subset of ASCII to devd(8) because it
3449 	 * might pass these strings to sh -c.
3450 	 */
3451 	for (i = 0; path[i]; i++)
3452 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3453 		    path[i] != '/' && path[i] != '.' &&
3454 		    path[i] != '-')
3455 			return (0);
3456 
3457 	return (1);
3458 }
3459 
3460 /*
3461  * Dump a process' core.  The main routine does some
3462  * policy checking, and creates the name of the coredump;
3463  * then it passes on a vnode and a size limit to the process-specific
3464  * coredump routine if there is one; if there _is not_ one, it returns
3465  * ENOSYS; otherwise it returns the error from the process-specific routine.
3466  */
3467 
3468 static int
3469 coredump(struct thread *td)
3470 {
3471 	struct proc *p = td->td_proc;
3472 	struct ucred *cred = td->td_ucred;
3473 	struct vnode *vp;
3474 	struct flock lf;
3475 	struct vattr vattr;
3476 	int error, error1, locked;
3477 	char *name;			/* name of corefile */
3478 	void *rl_cookie;
3479 	off_t limit;
3480 	char *data = NULL;
3481 	char *fullpath, *freepath = NULL;
3482 	size_t len;
3483 	static const char comm_name[] = "comm=";
3484 	static const char core_name[] = "core=";
3485 
3486 	PROC_LOCK_ASSERT(p, MA_OWNED);
3487 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3488 	_STOPEVENT(p, S_CORE, 0);
3489 
3490 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3491 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3492 		PROC_UNLOCK(p);
3493 		return (EFAULT);
3494 	}
3495 
3496 	/*
3497 	 * Note that the bulk of limit checking is done after
3498 	 * the corefile is created.  The exception is if the limit
3499 	 * for corefiles is 0, in which case we don't bother
3500 	 * creating the corefile at all.  This layout means that
3501 	 * a corefile is truncated instead of not being created,
3502 	 * if it is larger than the limit.
3503 	 */
3504 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3505 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3506 		PROC_UNLOCK(p);
3507 		return (EFBIG);
3508 	}
3509 	PROC_UNLOCK(p);
3510 
3511 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3512 	    compress_user_cores, &vp, &name);
3513 	if (error != 0)
3514 		return (error);
3515 
3516 	/*
3517 	 * Don't dump to non-regular files or files with links.
3518 	 * Do not dump into system files.
3519 	 */
3520 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3521 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3522 		VOP_UNLOCK(vp, 0);
3523 		error = EFAULT;
3524 		goto out;
3525 	}
3526 
3527 	VOP_UNLOCK(vp, 0);
3528 
3529 	/* Postpone other writers, including core dumps of other processes. */
3530 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3531 
3532 	lf.l_whence = SEEK_SET;
3533 	lf.l_start = 0;
3534 	lf.l_len = 0;
3535 	lf.l_type = F_WRLCK;
3536 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3537 
3538 	VATTR_NULL(&vattr);
3539 	vattr.va_size = 0;
3540 	if (set_core_nodump_flag)
3541 		vattr.va_flags = UF_NODUMP;
3542 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3543 	VOP_SETATTR(vp, &vattr, cred);
3544 	VOP_UNLOCK(vp, 0);
3545 	PROC_LOCK(p);
3546 	p->p_acflag |= ACORE;
3547 	PROC_UNLOCK(p);
3548 
3549 	if (p->p_sysent->sv_coredump != NULL) {
3550 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3551 	} else {
3552 		error = ENOSYS;
3553 	}
3554 
3555 	if (locked) {
3556 		lf.l_type = F_UNLCK;
3557 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3558 	}
3559 	vn_rangelock_unlock(vp, rl_cookie);
3560 
3561 	/*
3562 	 * Notify the userland helper that a process triggered a core dump.
3563 	 * This allows the helper to run an automated debugging session.
3564 	 */
3565 	if (error != 0 || coredump_devctl == 0)
3566 		goto out;
3567 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3568 	    sizeof(' ') + sizeof(core_name) - 1;
3569 	data = malloc(len, M_TEMP, M_WAITOK);
3570 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3571 		goto out;
3572 	if (!coredump_sanitise_path(fullpath))
3573 		goto out;
3574 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3575 	free(freepath, M_TEMP);
3576 	freepath = NULL;
3577 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3578 		goto out;
3579 	if (!coredump_sanitise_path(fullpath))
3580 		goto out;
3581 	strlcat(data, core_name, len);
3582 	strlcat(data, fullpath, len);
3583 	devctl_notify("kernel", "signal", "coredump", data);
3584 out:
3585 	error1 = vn_close(vp, FWRITE, cred, td);
3586 	if (error == 0)
3587 		error = error1;
3588 #ifdef AUDIT
3589 	audit_proc_coredump(td, name, error);
3590 #endif
3591 	free(freepath, M_TEMP);
3592 	free(data, M_TEMP);
3593 	free(name, M_TEMP);
3594 	return (error);
3595 }
3596 
3597 /*
3598  * Nonexistent system call-- signal process (may want to handle it).  Flag
3599  * error in case process won't see signal immediately (blocked or ignored).
3600  */
3601 #ifndef _SYS_SYSPROTO_H_
3602 struct nosys_args {
3603 	int	dummy;
3604 };
3605 #endif
3606 /* ARGSUSED */
3607 int
3608 nosys(struct thread *td, struct nosys_args *args)
3609 {
3610 	struct proc *p;
3611 
3612 	p = td->td_proc;
3613 
3614 	PROC_LOCK(p);
3615 	tdsignal(td, SIGSYS);
3616 	PROC_UNLOCK(p);
3617 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3618 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3619 		    td->td_sa.code);
3620 	}
3621 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3622 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3623 		    td->td_sa.code);
3624 	}
3625 	return (ENOSYS);
3626 }
3627 
3628 /*
3629  * Send a SIGIO or SIGURG signal to a process or process group using stored
3630  * credentials rather than those of the current process.
3631  */
3632 void
3633 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3634 {
3635 	ksiginfo_t ksi;
3636 	struct sigio *sigio;
3637 
3638 	ksiginfo_init(&ksi);
3639 	ksi.ksi_signo = sig;
3640 	ksi.ksi_code = SI_KERNEL;
3641 
3642 	SIGIO_LOCK();
3643 	sigio = *sigiop;
3644 	if (sigio == NULL) {
3645 		SIGIO_UNLOCK();
3646 		return;
3647 	}
3648 	if (sigio->sio_pgid > 0) {
3649 		PROC_LOCK(sigio->sio_proc);
3650 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3651 			kern_psignal(sigio->sio_proc, sig);
3652 		PROC_UNLOCK(sigio->sio_proc);
3653 	} else if (sigio->sio_pgid < 0) {
3654 		struct proc *p;
3655 
3656 		PGRP_LOCK(sigio->sio_pgrp);
3657 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3658 			PROC_LOCK(p);
3659 			if (p->p_state == PRS_NORMAL &&
3660 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3661 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3662 				kern_psignal(p, sig);
3663 			PROC_UNLOCK(p);
3664 		}
3665 		PGRP_UNLOCK(sigio->sio_pgrp);
3666 	}
3667 	SIGIO_UNLOCK();
3668 }
3669 
3670 static int
3671 filt_sigattach(struct knote *kn)
3672 {
3673 	struct proc *p = curproc;
3674 
3675 	kn->kn_ptr.p_proc = p;
3676 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3677 
3678 	knlist_add(p->p_klist, kn, 0);
3679 
3680 	return (0);
3681 }
3682 
3683 static void
3684 filt_sigdetach(struct knote *kn)
3685 {
3686 	struct proc *p = kn->kn_ptr.p_proc;
3687 
3688 	knlist_remove(p->p_klist, kn, 0);
3689 }
3690 
3691 /*
3692  * signal knotes are shared with proc knotes, so we apply a mask to
3693  * the hint in order to differentiate them from process hints.  This
3694  * could be avoided by using a signal-specific knote list, but probably
3695  * isn't worth the trouble.
3696  */
3697 static int
3698 filt_signal(struct knote *kn, long hint)
3699 {
3700 
3701 	if (hint & NOTE_SIGNAL) {
3702 		hint &= ~NOTE_SIGNAL;
3703 
3704 		if (kn->kn_id == hint)
3705 			kn->kn_data++;
3706 	}
3707 	return (kn->kn_data != 0);
3708 }
3709 
3710 struct sigacts *
3711 sigacts_alloc(void)
3712 {
3713 	struct sigacts *ps;
3714 
3715 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3716 	refcount_init(&ps->ps_refcnt, 1);
3717 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3718 	return (ps);
3719 }
3720 
3721 void
3722 sigacts_free(struct sigacts *ps)
3723 {
3724 
3725 	if (refcount_release(&ps->ps_refcnt) == 0)
3726 		return;
3727 	mtx_destroy(&ps->ps_mtx);
3728 	free(ps, M_SUBPROC);
3729 }
3730 
3731 struct sigacts *
3732 sigacts_hold(struct sigacts *ps)
3733 {
3734 
3735 	refcount_acquire(&ps->ps_refcnt);
3736 	return (ps);
3737 }
3738 
3739 void
3740 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3741 {
3742 
3743 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3744 	mtx_lock(&src->ps_mtx);
3745 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3746 	mtx_unlock(&src->ps_mtx);
3747 }
3748 
3749 int
3750 sigacts_shared(struct sigacts *ps)
3751 {
3752 
3753 	return (ps->ps_refcnt > 1);
3754 }
3755