xref: /freebsd/sys/kern/kern_sig.c (revision 595e514d0df2bac5b813d35f83e32875dbf16a83)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_kdtrace.h"
42 #include "opt_ktrace.h"
43 #include "opt_core.h"
44 #include "opt_procdesc.h"
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/signalvar.h>
49 #include <sys/vnode.h>
50 #include <sys/acct.h>
51 #include <sys/capability.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/procdesc.h>
65 #include <sys/posix4.h>
66 #include <sys/pioctl.h>
67 #include <sys/racct.h>
68 #include <sys/resourcevar.h>
69 #include <sys/sdt.h>
70 #include <sys/sbuf.h>
71 #include <sys/sleepqueue.h>
72 #include <sys/smp.h>
73 #include <sys/stat.h>
74 #include <sys/sx.h>
75 #include <sys/syscallsubr.h>
76 #include <sys/sysctl.h>
77 #include <sys/sysent.h>
78 #include <sys/syslog.h>
79 #include <sys/sysproto.h>
80 #include <sys/timers.h>
81 #include <sys/unistd.h>
82 #include <sys/wait.h>
83 #include <vm/vm.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #include <sys/jail.h>
88 
89 #include <machine/cpu.h>
90 
91 #include <security/audit/audit.h>
92 
93 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
94 
95 SDT_PROVIDER_DECLARE(proc);
96 SDT_PROBE_DEFINE(proc, kernel, , signal_send, signal-send);
97 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 0, "struct thread *");
98 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 1, "struct proc *");
99 SDT_PROBE_ARGTYPE(proc, kernel, , signal_send, 2, "int");
100 SDT_PROBE_DEFINE(proc, kernel, , signal_clear, signal-clear);
101 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 0, "int");
102 SDT_PROBE_ARGTYPE(proc, kernel, , signal_clear, 1, "ksiginfo_t *");
103 SDT_PROBE_DEFINE(proc, kernel, , signal_discard, signal-discard);
104 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 0, "struct thread *");
105 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 1, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, , signal_discard, 2, "int");
107 
108 static int	coredump(struct thread *);
109 static int	killpg1(struct thread *td, int sig, int pgid, int all,
110 		    ksiginfo_t *ksi);
111 static int	issignal(struct thread *td);
112 static int	sigprop(int sig);
113 static void	tdsigwakeup(struct thread *, int, sig_t, int);
114 static void	sig_suspend_threads(struct thread *, struct proc *, int);
115 static int	filt_sigattach(struct knote *kn);
116 static void	filt_sigdetach(struct knote *kn);
117 static int	filt_signal(struct knote *kn, long hint);
118 static struct thread *sigtd(struct proc *p, int sig, int prop);
119 static void	sigqueue_start(void);
120 
121 static uma_zone_t	ksiginfo_zone = NULL;
122 struct filterops sig_filtops = {
123 	.f_isfd = 0,
124 	.f_attach = filt_sigattach,
125 	.f_detach = filt_sigdetach,
126 	.f_event = filt_signal,
127 };
128 
129 static int	kern_logsigexit = 1;
130 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
131     &kern_logsigexit, 0,
132     "Log processes quitting on abnormal signals to syslog(3)");
133 
134 static int	kern_forcesigexit = 1;
135 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
136     &kern_forcesigexit, 0, "Force trap signal to be handled");
137 
138 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
139     "POSIX real time signal");
140 
141 static int	max_pending_per_proc = 128;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
143     &max_pending_per_proc, 0, "Max pending signals per proc");
144 
145 static int	preallocate_siginfo = 1024;
146 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
148     &preallocate_siginfo, 0, "Preallocated signal memory size");
149 
150 static int	signal_overflow = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
152     &signal_overflow, 0, "Number of signals overflew");
153 
154 static int	signal_alloc_fail = 0;
155 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
156     &signal_alloc_fail, 0, "signals failed to be allocated");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 TUNABLE_INT("kern.sugid_coredump", &sugid_coredump);
174 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
175     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
176 
177 static int	capmode_coredump;
178 TUNABLE_INT("kern.capmode_coredump", &capmode_coredump);
179 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RW,
180     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
181 
182 static int	do_coredump = 1;
183 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
184 	&do_coredump, 0, "Enable/Disable coredumps");
185 
186 static int	set_core_nodump_flag = 0;
187 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
188 	0, "Enable setting the NODUMP flag on coredump files");
189 
190 /*
191  * Signal properties and actions.
192  * The array below categorizes the signals and their default actions
193  * according to the following properties:
194  */
195 #define	SA_KILL		0x01		/* terminates process by default */
196 #define	SA_CORE		0x02		/* ditto and coredumps */
197 #define	SA_STOP		0x04		/* suspend process */
198 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
199 #define	SA_IGNORE	0x10		/* ignore by default */
200 #define	SA_CONT		0x20		/* continue if suspended */
201 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
202 
203 static int sigproptbl[NSIG] = {
204 	SA_KILL,			/* SIGHUP */
205 	SA_KILL,			/* SIGINT */
206 	SA_KILL|SA_CORE,		/* SIGQUIT */
207 	SA_KILL|SA_CORE,		/* SIGILL */
208 	SA_KILL|SA_CORE,		/* SIGTRAP */
209 	SA_KILL|SA_CORE,		/* SIGABRT */
210 	SA_KILL|SA_CORE,		/* SIGEMT */
211 	SA_KILL|SA_CORE,		/* SIGFPE */
212 	SA_KILL,			/* SIGKILL */
213 	SA_KILL|SA_CORE,		/* SIGBUS */
214 	SA_KILL|SA_CORE,		/* SIGSEGV */
215 	SA_KILL|SA_CORE,		/* SIGSYS */
216 	SA_KILL,			/* SIGPIPE */
217 	SA_KILL,			/* SIGALRM */
218 	SA_KILL,			/* SIGTERM */
219 	SA_IGNORE,			/* SIGURG */
220 	SA_STOP,			/* SIGSTOP */
221 	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
222 	SA_IGNORE|SA_CONT,		/* SIGCONT */
223 	SA_IGNORE,			/* SIGCHLD */
224 	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
225 	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
226 	SA_IGNORE,			/* SIGIO */
227 	SA_KILL,			/* SIGXCPU */
228 	SA_KILL,			/* SIGXFSZ */
229 	SA_KILL,			/* SIGVTALRM */
230 	SA_KILL,			/* SIGPROF */
231 	SA_IGNORE,			/* SIGWINCH  */
232 	SA_IGNORE,			/* SIGINFO */
233 	SA_KILL,			/* SIGUSR1 */
234 	SA_KILL,			/* SIGUSR2 */
235 };
236 
237 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
238 
239 static void
240 sigqueue_start(void)
241 {
242 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
243 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
244 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
245 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
246 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
247 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
248 }
249 
250 ksiginfo_t *
251 ksiginfo_alloc(int wait)
252 {
253 	int flags;
254 
255 	flags = M_ZERO;
256 	if (! wait)
257 		flags |= M_NOWAIT;
258 	if (ksiginfo_zone != NULL)
259 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
260 	return (NULL);
261 }
262 
263 void
264 ksiginfo_free(ksiginfo_t *ksi)
265 {
266 	uma_zfree(ksiginfo_zone, ksi);
267 }
268 
269 static __inline int
270 ksiginfo_tryfree(ksiginfo_t *ksi)
271 {
272 	if (!(ksi->ksi_flags & KSI_EXT)) {
273 		uma_zfree(ksiginfo_zone, ksi);
274 		return (1);
275 	}
276 	return (0);
277 }
278 
279 void
280 sigqueue_init(sigqueue_t *list, struct proc *p)
281 {
282 	SIGEMPTYSET(list->sq_signals);
283 	SIGEMPTYSET(list->sq_kill);
284 	TAILQ_INIT(&list->sq_list);
285 	list->sq_proc = p;
286 	list->sq_flags = SQ_INIT;
287 }
288 
289 /*
290  * Get a signal's ksiginfo.
291  * Return:
292  *	0	-	signal not found
293  *	others	-	signal number
294  */
295 static int
296 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
297 {
298 	struct proc *p = sq->sq_proc;
299 	struct ksiginfo *ksi, *next;
300 	int count = 0;
301 
302 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
303 
304 	if (!SIGISMEMBER(sq->sq_signals, signo))
305 		return (0);
306 
307 	if (SIGISMEMBER(sq->sq_kill, signo)) {
308 		count++;
309 		SIGDELSET(sq->sq_kill, signo);
310 	}
311 
312 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
313 		if (ksi->ksi_signo == signo) {
314 			if (count == 0) {
315 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
316 				ksi->ksi_sigq = NULL;
317 				ksiginfo_copy(ksi, si);
318 				if (ksiginfo_tryfree(ksi) && p != NULL)
319 					p->p_pendingcnt--;
320 			}
321 			if (++count > 1)
322 				break;
323 		}
324 	}
325 
326 	if (count <= 1)
327 		SIGDELSET(sq->sq_signals, signo);
328 	si->ksi_signo = signo;
329 	return (signo);
330 }
331 
332 void
333 sigqueue_take(ksiginfo_t *ksi)
334 {
335 	struct ksiginfo *kp;
336 	struct proc	*p;
337 	sigqueue_t	*sq;
338 
339 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
340 		return;
341 
342 	p = sq->sq_proc;
343 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
344 	ksi->ksi_sigq = NULL;
345 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
346 		p->p_pendingcnt--;
347 
348 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
349 	     kp = TAILQ_NEXT(kp, ksi_link)) {
350 		if (kp->ksi_signo == ksi->ksi_signo)
351 			break;
352 	}
353 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
354 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
355 }
356 
357 static int
358 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
359 {
360 	struct proc *p = sq->sq_proc;
361 	struct ksiginfo *ksi;
362 	int ret = 0;
363 
364 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
365 
366 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
367 		SIGADDSET(sq->sq_kill, signo);
368 		goto out_set_bit;
369 	}
370 
371 	/* directly insert the ksi, don't copy it */
372 	if (si->ksi_flags & KSI_INS) {
373 		if (si->ksi_flags & KSI_HEAD)
374 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
375 		else
376 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
377 		si->ksi_sigq = sq;
378 		goto out_set_bit;
379 	}
380 
381 	if (__predict_false(ksiginfo_zone == NULL)) {
382 		SIGADDSET(sq->sq_kill, signo);
383 		goto out_set_bit;
384 	}
385 
386 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
387 		signal_overflow++;
388 		ret = EAGAIN;
389 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
390 		signal_alloc_fail++;
391 		ret = EAGAIN;
392 	} else {
393 		if (p != NULL)
394 			p->p_pendingcnt++;
395 		ksiginfo_copy(si, ksi);
396 		ksi->ksi_signo = signo;
397 		if (si->ksi_flags & KSI_HEAD)
398 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
399 		else
400 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
401 		ksi->ksi_sigq = sq;
402 	}
403 
404 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
405 	    (si->ksi_flags & KSI_SIGQ) == 0) {
406 		if (ret != 0)
407 			SIGADDSET(sq->sq_kill, signo);
408 		ret = 0;
409 		goto out_set_bit;
410 	}
411 
412 	if (ret != 0)
413 		return (ret);
414 
415 out_set_bit:
416 	SIGADDSET(sq->sq_signals, signo);
417 	return (ret);
418 }
419 
420 void
421 sigqueue_flush(sigqueue_t *sq)
422 {
423 	struct proc *p = sq->sq_proc;
424 	ksiginfo_t *ksi;
425 
426 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
427 
428 	if (p != NULL)
429 		PROC_LOCK_ASSERT(p, MA_OWNED);
430 
431 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
432 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
433 		ksi->ksi_sigq = NULL;
434 		if (ksiginfo_tryfree(ksi) && p != NULL)
435 			p->p_pendingcnt--;
436 	}
437 
438 	SIGEMPTYSET(sq->sq_signals);
439 	SIGEMPTYSET(sq->sq_kill);
440 }
441 
442 static void
443 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
444 {
445 	sigset_t tmp;
446 	struct proc *p1, *p2;
447 	ksiginfo_t *ksi, *next;
448 
449 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
450 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
451 	p1 = src->sq_proc;
452 	p2 = dst->sq_proc;
453 	/* Move siginfo to target list */
454 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
455 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
456 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
457 			if (p1 != NULL)
458 				p1->p_pendingcnt--;
459 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
460 			ksi->ksi_sigq = dst;
461 			if (p2 != NULL)
462 				p2->p_pendingcnt++;
463 		}
464 	}
465 
466 	/* Move pending bits to target list */
467 	tmp = src->sq_kill;
468 	SIGSETAND(tmp, *set);
469 	SIGSETOR(dst->sq_kill, tmp);
470 	SIGSETNAND(src->sq_kill, tmp);
471 
472 	tmp = src->sq_signals;
473 	SIGSETAND(tmp, *set);
474 	SIGSETOR(dst->sq_signals, tmp);
475 	SIGSETNAND(src->sq_signals, tmp);
476 }
477 
478 #if 0
479 static void
480 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
481 {
482 	sigset_t set;
483 
484 	SIGEMPTYSET(set);
485 	SIGADDSET(set, signo);
486 	sigqueue_move_set(src, dst, &set);
487 }
488 #endif
489 
490 static void
491 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
492 {
493 	struct proc *p = sq->sq_proc;
494 	ksiginfo_t *ksi, *next;
495 
496 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
497 
498 	/* Remove siginfo queue */
499 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
500 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
501 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
502 			ksi->ksi_sigq = NULL;
503 			if (ksiginfo_tryfree(ksi) && p != NULL)
504 				p->p_pendingcnt--;
505 		}
506 	}
507 	SIGSETNAND(sq->sq_kill, *set);
508 	SIGSETNAND(sq->sq_signals, *set);
509 }
510 
511 void
512 sigqueue_delete(sigqueue_t *sq, int signo)
513 {
514 	sigset_t set;
515 
516 	SIGEMPTYSET(set);
517 	SIGADDSET(set, signo);
518 	sigqueue_delete_set(sq, &set);
519 }
520 
521 /* Remove a set of signals for a process */
522 static void
523 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
524 {
525 	sigqueue_t worklist;
526 	struct thread *td0;
527 
528 	PROC_LOCK_ASSERT(p, MA_OWNED);
529 
530 	sigqueue_init(&worklist, NULL);
531 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
532 
533 	FOREACH_THREAD_IN_PROC(p, td0)
534 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
535 
536 	sigqueue_flush(&worklist);
537 }
538 
539 void
540 sigqueue_delete_proc(struct proc *p, int signo)
541 {
542 	sigset_t set;
543 
544 	SIGEMPTYSET(set);
545 	SIGADDSET(set, signo);
546 	sigqueue_delete_set_proc(p, &set);
547 }
548 
549 static void
550 sigqueue_delete_stopmask_proc(struct proc *p)
551 {
552 	sigset_t set;
553 
554 	SIGEMPTYSET(set);
555 	SIGADDSET(set, SIGSTOP);
556 	SIGADDSET(set, SIGTSTP);
557 	SIGADDSET(set, SIGTTIN);
558 	SIGADDSET(set, SIGTTOU);
559 	sigqueue_delete_set_proc(p, &set);
560 }
561 
562 /*
563  * Determine signal that should be delivered to thread td, the current
564  * thread, 0 if none.  If there is a pending stop signal with default
565  * action, the process stops in issignal().
566  */
567 int
568 cursig(struct thread *td)
569 {
570 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
571 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
572 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
573 	return (SIGPENDING(td) ? issignal(td) : 0);
574 }
575 
576 /*
577  * Arrange for ast() to handle unmasked pending signals on return to user
578  * mode.  This must be called whenever a signal is added to td_sigqueue or
579  * unmasked in td_sigmask.
580  */
581 void
582 signotify(struct thread *td)
583 {
584 	struct proc *p;
585 
586 	p = td->td_proc;
587 
588 	PROC_LOCK_ASSERT(p, MA_OWNED);
589 
590 	if (SIGPENDING(td)) {
591 		thread_lock(td);
592 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
593 		thread_unlock(td);
594 	}
595 }
596 
597 int
598 sigonstack(size_t sp)
599 {
600 	struct thread *td = curthread;
601 
602 	return ((td->td_pflags & TDP_ALTSTACK) ?
603 #if defined(COMPAT_43)
604 	    ((td->td_sigstk.ss_size == 0) ?
605 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
606 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
607 #else
608 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
609 #endif
610 	    : 0);
611 }
612 
613 static __inline int
614 sigprop(int sig)
615 {
616 
617 	if (sig > 0 && sig < NSIG)
618 		return (sigproptbl[_SIG_IDX(sig)]);
619 	return (0);
620 }
621 
622 int
623 sig_ffs(sigset_t *set)
624 {
625 	int i;
626 
627 	for (i = 0; i < _SIG_WORDS; i++)
628 		if (set->__bits[i])
629 			return (ffs(set->__bits[i]) + (i * 32));
630 	return (0);
631 }
632 
633 /*
634  * kern_sigaction
635  * sigaction
636  * freebsd4_sigaction
637  * osigaction
638  */
639 int
640 kern_sigaction(td, sig, act, oact, flags)
641 	struct thread *td;
642 	register int sig;
643 	struct sigaction *act, *oact;
644 	int flags;
645 {
646 	struct sigacts *ps;
647 	struct proc *p = td->td_proc;
648 
649 	if (!_SIG_VALID(sig))
650 		return (EINVAL);
651 
652 	PROC_LOCK(p);
653 	ps = p->p_sigacts;
654 	mtx_lock(&ps->ps_mtx);
655 	if (oact) {
656 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
657 		oact->sa_flags = 0;
658 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
659 			oact->sa_flags |= SA_ONSTACK;
660 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
661 			oact->sa_flags |= SA_RESTART;
662 		if (SIGISMEMBER(ps->ps_sigreset, sig))
663 			oact->sa_flags |= SA_RESETHAND;
664 		if (SIGISMEMBER(ps->ps_signodefer, sig))
665 			oact->sa_flags |= SA_NODEFER;
666 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
667 			oact->sa_flags |= SA_SIGINFO;
668 			oact->sa_sigaction =
669 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
670 		} else
671 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
672 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
673 			oact->sa_flags |= SA_NOCLDSTOP;
674 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
675 			oact->sa_flags |= SA_NOCLDWAIT;
676 	}
677 	if (act) {
678 		if ((sig == SIGKILL || sig == SIGSTOP) &&
679 		    act->sa_handler != SIG_DFL) {
680 			mtx_unlock(&ps->ps_mtx);
681 			PROC_UNLOCK(p);
682 			return (EINVAL);
683 		}
684 
685 		/*
686 		 * Change setting atomically.
687 		 */
688 
689 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
690 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
691 		if (act->sa_flags & SA_SIGINFO) {
692 			ps->ps_sigact[_SIG_IDX(sig)] =
693 			    (__sighandler_t *)act->sa_sigaction;
694 			SIGADDSET(ps->ps_siginfo, sig);
695 		} else {
696 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
697 			SIGDELSET(ps->ps_siginfo, sig);
698 		}
699 		if (!(act->sa_flags & SA_RESTART))
700 			SIGADDSET(ps->ps_sigintr, sig);
701 		else
702 			SIGDELSET(ps->ps_sigintr, sig);
703 		if (act->sa_flags & SA_ONSTACK)
704 			SIGADDSET(ps->ps_sigonstack, sig);
705 		else
706 			SIGDELSET(ps->ps_sigonstack, sig);
707 		if (act->sa_flags & SA_RESETHAND)
708 			SIGADDSET(ps->ps_sigreset, sig);
709 		else
710 			SIGDELSET(ps->ps_sigreset, sig);
711 		if (act->sa_flags & SA_NODEFER)
712 			SIGADDSET(ps->ps_signodefer, sig);
713 		else
714 			SIGDELSET(ps->ps_signodefer, sig);
715 		if (sig == SIGCHLD) {
716 			if (act->sa_flags & SA_NOCLDSTOP)
717 				ps->ps_flag |= PS_NOCLDSTOP;
718 			else
719 				ps->ps_flag &= ~PS_NOCLDSTOP;
720 			if (act->sa_flags & SA_NOCLDWAIT) {
721 				/*
722 				 * Paranoia: since SA_NOCLDWAIT is implemented
723 				 * by reparenting the dying child to PID 1 (and
724 				 * trust it to reap the zombie), PID 1 itself
725 				 * is forbidden to set SA_NOCLDWAIT.
726 				 */
727 				if (p->p_pid == 1)
728 					ps->ps_flag &= ~PS_NOCLDWAIT;
729 				else
730 					ps->ps_flag |= PS_NOCLDWAIT;
731 			} else
732 				ps->ps_flag &= ~PS_NOCLDWAIT;
733 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
734 				ps->ps_flag |= PS_CLDSIGIGN;
735 			else
736 				ps->ps_flag &= ~PS_CLDSIGIGN;
737 		}
738 		/*
739 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
740 		 * and for signals set to SIG_DFL where the default is to
741 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
742 		 * have to restart the process.
743 		 */
744 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
745 		    (sigprop(sig) & SA_IGNORE &&
746 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
747 			/* never to be seen again */
748 			sigqueue_delete_proc(p, sig);
749 			if (sig != SIGCONT)
750 				/* easier in psignal */
751 				SIGADDSET(ps->ps_sigignore, sig);
752 			SIGDELSET(ps->ps_sigcatch, sig);
753 		} else {
754 			SIGDELSET(ps->ps_sigignore, sig);
755 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
756 				SIGDELSET(ps->ps_sigcatch, sig);
757 			else
758 				SIGADDSET(ps->ps_sigcatch, sig);
759 		}
760 #ifdef COMPAT_FREEBSD4
761 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
762 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
763 		    (flags & KSA_FREEBSD4) == 0)
764 			SIGDELSET(ps->ps_freebsd4, sig);
765 		else
766 			SIGADDSET(ps->ps_freebsd4, sig);
767 #endif
768 #ifdef COMPAT_43
769 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
770 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
771 		    (flags & KSA_OSIGSET) == 0)
772 			SIGDELSET(ps->ps_osigset, sig);
773 		else
774 			SIGADDSET(ps->ps_osigset, sig);
775 #endif
776 	}
777 	mtx_unlock(&ps->ps_mtx);
778 	PROC_UNLOCK(p);
779 	return (0);
780 }
781 
782 #ifndef _SYS_SYSPROTO_H_
783 struct sigaction_args {
784 	int	sig;
785 	struct	sigaction *act;
786 	struct	sigaction *oact;
787 };
788 #endif
789 int
790 sys_sigaction(td, uap)
791 	struct thread *td;
792 	register struct sigaction_args *uap;
793 {
794 	struct sigaction act, oact;
795 	register struct sigaction *actp, *oactp;
796 	int error;
797 
798 	actp = (uap->act != NULL) ? &act : NULL;
799 	oactp = (uap->oact != NULL) ? &oact : NULL;
800 	if (actp) {
801 		error = copyin(uap->act, actp, sizeof(act));
802 		if (error)
803 			return (error);
804 	}
805 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
806 	if (oactp && !error)
807 		error = copyout(oactp, uap->oact, sizeof(oact));
808 	return (error);
809 }
810 
811 #ifdef COMPAT_FREEBSD4
812 #ifndef _SYS_SYSPROTO_H_
813 struct freebsd4_sigaction_args {
814 	int	sig;
815 	struct	sigaction *act;
816 	struct	sigaction *oact;
817 };
818 #endif
819 int
820 freebsd4_sigaction(td, uap)
821 	struct thread *td;
822 	register struct freebsd4_sigaction_args *uap;
823 {
824 	struct sigaction act, oact;
825 	register struct sigaction *actp, *oactp;
826 	int error;
827 
828 
829 	actp = (uap->act != NULL) ? &act : NULL;
830 	oactp = (uap->oact != NULL) ? &oact : NULL;
831 	if (actp) {
832 		error = copyin(uap->act, actp, sizeof(act));
833 		if (error)
834 			return (error);
835 	}
836 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
837 	if (oactp && !error)
838 		error = copyout(oactp, uap->oact, sizeof(oact));
839 	return (error);
840 }
841 #endif	/* COMAPT_FREEBSD4 */
842 
843 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
844 #ifndef _SYS_SYSPROTO_H_
845 struct osigaction_args {
846 	int	signum;
847 	struct	osigaction *nsa;
848 	struct	osigaction *osa;
849 };
850 #endif
851 int
852 osigaction(td, uap)
853 	struct thread *td;
854 	register struct osigaction_args *uap;
855 {
856 	struct osigaction sa;
857 	struct sigaction nsa, osa;
858 	register struct sigaction *nsap, *osap;
859 	int error;
860 
861 	if (uap->signum <= 0 || uap->signum >= ONSIG)
862 		return (EINVAL);
863 
864 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
865 	osap = (uap->osa != NULL) ? &osa : NULL;
866 
867 	if (nsap) {
868 		error = copyin(uap->nsa, &sa, sizeof(sa));
869 		if (error)
870 			return (error);
871 		nsap->sa_handler = sa.sa_handler;
872 		nsap->sa_flags = sa.sa_flags;
873 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
874 	}
875 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
876 	if (osap && !error) {
877 		sa.sa_handler = osap->sa_handler;
878 		sa.sa_flags = osap->sa_flags;
879 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
880 		error = copyout(&sa, uap->osa, sizeof(sa));
881 	}
882 	return (error);
883 }
884 
885 #if !defined(__i386__)
886 /* Avoid replicating the same stub everywhere */
887 int
888 osigreturn(td, uap)
889 	struct thread *td;
890 	struct osigreturn_args *uap;
891 {
892 
893 	return (nosys(td, (struct nosys_args *)uap));
894 }
895 #endif
896 #endif /* COMPAT_43 */
897 
898 /*
899  * Initialize signal state for process 0;
900  * set to ignore signals that are ignored by default.
901  */
902 void
903 siginit(p)
904 	struct proc *p;
905 {
906 	register int i;
907 	struct sigacts *ps;
908 
909 	PROC_LOCK(p);
910 	ps = p->p_sigacts;
911 	mtx_lock(&ps->ps_mtx);
912 	for (i = 1; i <= NSIG; i++)
913 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
914 			SIGADDSET(ps->ps_sigignore, i);
915 	mtx_unlock(&ps->ps_mtx);
916 	PROC_UNLOCK(p);
917 }
918 
919 /*
920  * Reset signals for an exec of the specified process.
921  */
922 void
923 execsigs(struct proc *p)
924 {
925 	struct sigacts *ps;
926 	int sig;
927 	struct thread *td;
928 
929 	/*
930 	 * Reset caught signals.  Held signals remain held
931 	 * through td_sigmask (unless they were caught,
932 	 * and are now ignored by default).
933 	 */
934 	PROC_LOCK_ASSERT(p, MA_OWNED);
935 	td = FIRST_THREAD_IN_PROC(p);
936 	ps = p->p_sigacts;
937 	mtx_lock(&ps->ps_mtx);
938 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
939 		sig = sig_ffs(&ps->ps_sigcatch);
940 		SIGDELSET(ps->ps_sigcatch, sig);
941 		if (sigprop(sig) & SA_IGNORE) {
942 			if (sig != SIGCONT)
943 				SIGADDSET(ps->ps_sigignore, sig);
944 			sigqueue_delete_proc(p, sig);
945 		}
946 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
947 	}
948 	/*
949 	 * Reset stack state to the user stack.
950 	 * Clear set of signals caught on the signal stack.
951 	 */
952 	td->td_sigstk.ss_flags = SS_DISABLE;
953 	td->td_sigstk.ss_size = 0;
954 	td->td_sigstk.ss_sp = 0;
955 	td->td_pflags &= ~TDP_ALTSTACK;
956 	/*
957 	 * Reset no zombies if child dies flag as Solaris does.
958 	 */
959 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
960 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
961 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
962 	mtx_unlock(&ps->ps_mtx);
963 }
964 
965 /*
966  * kern_sigprocmask()
967  *
968  *	Manipulate signal mask.
969  */
970 int
971 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
972     int flags)
973 {
974 	sigset_t new_block, oset1;
975 	struct proc *p;
976 	int error;
977 
978 	p = td->td_proc;
979 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
980 		PROC_LOCK(p);
981 	if (oset != NULL)
982 		*oset = td->td_sigmask;
983 
984 	error = 0;
985 	if (set != NULL) {
986 		switch (how) {
987 		case SIG_BLOCK:
988 			SIG_CANTMASK(*set);
989 			oset1 = td->td_sigmask;
990 			SIGSETOR(td->td_sigmask, *set);
991 			new_block = td->td_sigmask;
992 			SIGSETNAND(new_block, oset1);
993 			break;
994 		case SIG_UNBLOCK:
995 			SIGSETNAND(td->td_sigmask, *set);
996 			signotify(td);
997 			goto out;
998 		case SIG_SETMASK:
999 			SIG_CANTMASK(*set);
1000 			oset1 = td->td_sigmask;
1001 			if (flags & SIGPROCMASK_OLD)
1002 				SIGSETLO(td->td_sigmask, *set);
1003 			else
1004 				td->td_sigmask = *set;
1005 			new_block = td->td_sigmask;
1006 			SIGSETNAND(new_block, oset1);
1007 			signotify(td);
1008 			break;
1009 		default:
1010 			error = EINVAL;
1011 			goto out;
1012 		}
1013 
1014 		/*
1015 		 * The new_block set contains signals that were not previously
1016 		 * blocked, but are blocked now.
1017 		 *
1018 		 * In case we block any signal that was not previously blocked
1019 		 * for td, and process has the signal pending, try to schedule
1020 		 * signal delivery to some thread that does not block the
1021 		 * signal, possibly waking it up.
1022 		 */
1023 		if (p->p_numthreads != 1)
1024 			reschedule_signals(p, new_block, flags);
1025 	}
1026 
1027 out:
1028 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1029 		PROC_UNLOCK(p);
1030 	return (error);
1031 }
1032 
1033 #ifndef _SYS_SYSPROTO_H_
1034 struct sigprocmask_args {
1035 	int	how;
1036 	const sigset_t *set;
1037 	sigset_t *oset;
1038 };
1039 #endif
1040 int
1041 sys_sigprocmask(td, uap)
1042 	register struct thread *td;
1043 	struct sigprocmask_args *uap;
1044 {
1045 	sigset_t set, oset;
1046 	sigset_t *setp, *osetp;
1047 	int error;
1048 
1049 	setp = (uap->set != NULL) ? &set : NULL;
1050 	osetp = (uap->oset != NULL) ? &oset : NULL;
1051 	if (setp) {
1052 		error = copyin(uap->set, setp, sizeof(set));
1053 		if (error)
1054 			return (error);
1055 	}
1056 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1057 	if (osetp && !error) {
1058 		error = copyout(osetp, uap->oset, sizeof(oset));
1059 	}
1060 	return (error);
1061 }
1062 
1063 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1064 #ifndef _SYS_SYSPROTO_H_
1065 struct osigprocmask_args {
1066 	int	how;
1067 	osigset_t mask;
1068 };
1069 #endif
1070 int
1071 osigprocmask(td, uap)
1072 	register struct thread *td;
1073 	struct osigprocmask_args *uap;
1074 {
1075 	sigset_t set, oset;
1076 	int error;
1077 
1078 	OSIG2SIG(uap->mask, set);
1079 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1080 	SIG2OSIG(oset, td->td_retval[0]);
1081 	return (error);
1082 }
1083 #endif /* COMPAT_43 */
1084 
1085 int
1086 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1087 {
1088 	ksiginfo_t ksi;
1089 	sigset_t set;
1090 	int error;
1091 
1092 	error = copyin(uap->set, &set, sizeof(set));
1093 	if (error) {
1094 		td->td_retval[0] = error;
1095 		return (0);
1096 	}
1097 
1098 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1099 	if (error) {
1100 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1101 			error = ERESTART;
1102 		if (error == ERESTART)
1103 			return (error);
1104 		td->td_retval[0] = error;
1105 		return (0);
1106 	}
1107 
1108 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1109 	td->td_retval[0] = error;
1110 	return (0);
1111 }
1112 
1113 int
1114 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1115 {
1116 	struct timespec ts;
1117 	struct timespec *timeout;
1118 	sigset_t set;
1119 	ksiginfo_t ksi;
1120 	int error;
1121 
1122 	if (uap->timeout) {
1123 		error = copyin(uap->timeout, &ts, sizeof(ts));
1124 		if (error)
1125 			return (error);
1126 
1127 		timeout = &ts;
1128 	} else
1129 		timeout = NULL;
1130 
1131 	error = copyin(uap->set, &set, sizeof(set));
1132 	if (error)
1133 		return (error);
1134 
1135 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1136 	if (error)
1137 		return (error);
1138 
1139 	if (uap->info)
1140 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1141 
1142 	if (error == 0)
1143 		td->td_retval[0] = ksi.ksi_signo;
1144 	return (error);
1145 }
1146 
1147 int
1148 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1149 {
1150 	ksiginfo_t ksi;
1151 	sigset_t set;
1152 	int error;
1153 
1154 	error = copyin(uap->set, &set, sizeof(set));
1155 	if (error)
1156 		return (error);
1157 
1158 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1159 	if (error)
1160 		return (error);
1161 
1162 	if (uap->info)
1163 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1164 
1165 	if (error == 0)
1166 		td->td_retval[0] = ksi.ksi_signo;
1167 	return (error);
1168 }
1169 
1170 int
1171 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1172 	struct timespec *timeout)
1173 {
1174 	struct sigacts *ps;
1175 	sigset_t saved_mask, new_block;
1176 	struct proc *p;
1177 	int error, sig, timo, timevalid = 0;
1178 	struct timespec rts, ets, ts;
1179 	struct timeval tv;
1180 
1181 	p = td->td_proc;
1182 	error = 0;
1183 	ets.tv_sec = 0;
1184 	ets.tv_nsec = 0;
1185 
1186 	if (timeout != NULL) {
1187 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1188 			timevalid = 1;
1189 			getnanouptime(&rts);
1190 			ets = rts;
1191 			timespecadd(&ets, timeout);
1192 		}
1193 	}
1194 	ksiginfo_init(ksi);
1195 	/* Some signals can not be waited for. */
1196 	SIG_CANTMASK(waitset);
1197 	ps = p->p_sigacts;
1198 	PROC_LOCK(p);
1199 	saved_mask = td->td_sigmask;
1200 	SIGSETNAND(td->td_sigmask, waitset);
1201 	for (;;) {
1202 		mtx_lock(&ps->ps_mtx);
1203 		sig = cursig(td);
1204 		mtx_unlock(&ps->ps_mtx);
1205 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1206 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1207 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1208 				error = 0;
1209 				break;
1210 			}
1211 		}
1212 
1213 		if (error != 0)
1214 			break;
1215 
1216 		/*
1217 		 * POSIX says this must be checked after looking for pending
1218 		 * signals.
1219 		 */
1220 		if (timeout != NULL) {
1221 			if (!timevalid) {
1222 				error = EINVAL;
1223 				break;
1224 			}
1225 			getnanouptime(&rts);
1226 			if (timespeccmp(&rts, &ets, >=)) {
1227 				error = EAGAIN;
1228 				break;
1229 			}
1230 			ts = ets;
1231 			timespecsub(&ts, &rts);
1232 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1233 			timo = tvtohz(&tv);
1234 		} else {
1235 			timo = 0;
1236 		}
1237 
1238 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1239 
1240 		if (timeout != NULL) {
1241 			if (error == ERESTART) {
1242 				/* Timeout can not be restarted. */
1243 				error = EINTR;
1244 			} else if (error == EAGAIN) {
1245 				/* We will calculate timeout by ourself. */
1246 				error = 0;
1247 			}
1248 		}
1249 	}
1250 
1251 	new_block = saved_mask;
1252 	SIGSETNAND(new_block, td->td_sigmask);
1253 	td->td_sigmask = saved_mask;
1254 	/*
1255 	 * Fewer signals can be delivered to us, reschedule signal
1256 	 * notification.
1257 	 */
1258 	if (p->p_numthreads != 1)
1259 		reschedule_signals(p, new_block, 0);
1260 
1261 	if (error == 0) {
1262 		SDT_PROBE(proc, kernel, , signal_clear, sig, ksi, 0, 0, 0);
1263 
1264 		if (ksi->ksi_code == SI_TIMER)
1265 			itimer_accept(p, ksi->ksi_timerid, ksi);
1266 
1267 #ifdef KTRACE
1268 		if (KTRPOINT(td, KTR_PSIG)) {
1269 			sig_t action;
1270 
1271 			mtx_lock(&ps->ps_mtx);
1272 			action = ps->ps_sigact[_SIG_IDX(sig)];
1273 			mtx_unlock(&ps->ps_mtx);
1274 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1275 		}
1276 #endif
1277 		if (sig == SIGKILL)
1278 			sigexit(td, sig);
1279 	}
1280 	PROC_UNLOCK(p);
1281 	return (error);
1282 }
1283 
1284 #ifndef _SYS_SYSPROTO_H_
1285 struct sigpending_args {
1286 	sigset_t	*set;
1287 };
1288 #endif
1289 int
1290 sys_sigpending(td, uap)
1291 	struct thread *td;
1292 	struct sigpending_args *uap;
1293 {
1294 	struct proc *p = td->td_proc;
1295 	sigset_t pending;
1296 
1297 	PROC_LOCK(p);
1298 	pending = p->p_sigqueue.sq_signals;
1299 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1300 	PROC_UNLOCK(p);
1301 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1302 }
1303 
1304 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1305 #ifndef _SYS_SYSPROTO_H_
1306 struct osigpending_args {
1307 	int	dummy;
1308 };
1309 #endif
1310 int
1311 osigpending(td, uap)
1312 	struct thread *td;
1313 	struct osigpending_args *uap;
1314 {
1315 	struct proc *p = td->td_proc;
1316 	sigset_t pending;
1317 
1318 	PROC_LOCK(p);
1319 	pending = p->p_sigqueue.sq_signals;
1320 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1321 	PROC_UNLOCK(p);
1322 	SIG2OSIG(pending, td->td_retval[0]);
1323 	return (0);
1324 }
1325 #endif /* COMPAT_43 */
1326 
1327 #if defined(COMPAT_43)
1328 /*
1329  * Generalized interface signal handler, 4.3-compatible.
1330  */
1331 #ifndef _SYS_SYSPROTO_H_
1332 struct osigvec_args {
1333 	int	signum;
1334 	struct	sigvec *nsv;
1335 	struct	sigvec *osv;
1336 };
1337 #endif
1338 /* ARGSUSED */
1339 int
1340 osigvec(td, uap)
1341 	struct thread *td;
1342 	register struct osigvec_args *uap;
1343 {
1344 	struct sigvec vec;
1345 	struct sigaction nsa, osa;
1346 	register struct sigaction *nsap, *osap;
1347 	int error;
1348 
1349 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1350 		return (EINVAL);
1351 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1352 	osap = (uap->osv != NULL) ? &osa : NULL;
1353 	if (nsap) {
1354 		error = copyin(uap->nsv, &vec, sizeof(vec));
1355 		if (error)
1356 			return (error);
1357 		nsap->sa_handler = vec.sv_handler;
1358 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1359 		nsap->sa_flags = vec.sv_flags;
1360 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1361 	}
1362 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1363 	if (osap && !error) {
1364 		vec.sv_handler = osap->sa_handler;
1365 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1366 		vec.sv_flags = osap->sa_flags;
1367 		vec.sv_flags &= ~SA_NOCLDWAIT;
1368 		vec.sv_flags ^= SA_RESTART;
1369 		error = copyout(&vec, uap->osv, sizeof(vec));
1370 	}
1371 	return (error);
1372 }
1373 
1374 #ifndef _SYS_SYSPROTO_H_
1375 struct osigblock_args {
1376 	int	mask;
1377 };
1378 #endif
1379 int
1380 osigblock(td, uap)
1381 	register struct thread *td;
1382 	struct osigblock_args *uap;
1383 {
1384 	sigset_t set, oset;
1385 
1386 	OSIG2SIG(uap->mask, set);
1387 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1388 	SIG2OSIG(oset, td->td_retval[0]);
1389 	return (0);
1390 }
1391 
1392 #ifndef _SYS_SYSPROTO_H_
1393 struct osigsetmask_args {
1394 	int	mask;
1395 };
1396 #endif
1397 int
1398 osigsetmask(td, uap)
1399 	struct thread *td;
1400 	struct osigsetmask_args *uap;
1401 {
1402 	sigset_t set, oset;
1403 
1404 	OSIG2SIG(uap->mask, set);
1405 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1406 	SIG2OSIG(oset, td->td_retval[0]);
1407 	return (0);
1408 }
1409 #endif /* COMPAT_43 */
1410 
1411 /*
1412  * Suspend calling thread until signal, providing mask to be set in the
1413  * meantime.
1414  */
1415 #ifndef _SYS_SYSPROTO_H_
1416 struct sigsuspend_args {
1417 	const sigset_t *sigmask;
1418 };
1419 #endif
1420 /* ARGSUSED */
1421 int
1422 sys_sigsuspend(td, uap)
1423 	struct thread *td;
1424 	struct sigsuspend_args *uap;
1425 {
1426 	sigset_t mask;
1427 	int error;
1428 
1429 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1430 	if (error)
1431 		return (error);
1432 	return (kern_sigsuspend(td, mask));
1433 }
1434 
1435 int
1436 kern_sigsuspend(struct thread *td, sigset_t mask)
1437 {
1438 	struct proc *p = td->td_proc;
1439 	int has_sig, sig;
1440 
1441 	/*
1442 	 * When returning from sigsuspend, we want
1443 	 * the old mask to be restored after the
1444 	 * signal handler has finished.  Thus, we
1445 	 * save it here and mark the sigacts structure
1446 	 * to indicate this.
1447 	 */
1448 	PROC_LOCK(p);
1449 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1450 	    SIGPROCMASK_PROC_LOCKED);
1451 	td->td_pflags |= TDP_OLDMASK;
1452 
1453 	/*
1454 	 * Process signals now. Otherwise, we can get spurious wakeup
1455 	 * due to signal entered process queue, but delivered to other
1456 	 * thread. But sigsuspend should return only on signal
1457 	 * delivery.
1458 	 */
1459 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1460 	for (has_sig = 0; !has_sig;) {
1461 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1462 			0) == 0)
1463 			/* void */;
1464 		thread_suspend_check(0);
1465 		mtx_lock(&p->p_sigacts->ps_mtx);
1466 		while ((sig = cursig(td)) != 0)
1467 			has_sig += postsig(sig);
1468 		mtx_unlock(&p->p_sigacts->ps_mtx);
1469 	}
1470 	PROC_UNLOCK(p);
1471 	td->td_errno = EINTR;
1472 	td->td_pflags |= TDP_NERRNO;
1473 	return (EJUSTRETURN);
1474 }
1475 
1476 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1477 /*
1478  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1479  * convention: libc stub passes mask, not pointer, to save a copyin.
1480  */
1481 #ifndef _SYS_SYSPROTO_H_
1482 struct osigsuspend_args {
1483 	osigset_t mask;
1484 };
1485 #endif
1486 /* ARGSUSED */
1487 int
1488 osigsuspend(td, uap)
1489 	struct thread *td;
1490 	struct osigsuspend_args *uap;
1491 {
1492 	sigset_t mask;
1493 
1494 	OSIG2SIG(uap->mask, mask);
1495 	return (kern_sigsuspend(td, mask));
1496 }
1497 #endif /* COMPAT_43 */
1498 
1499 #if defined(COMPAT_43)
1500 #ifndef _SYS_SYSPROTO_H_
1501 struct osigstack_args {
1502 	struct	sigstack *nss;
1503 	struct	sigstack *oss;
1504 };
1505 #endif
1506 /* ARGSUSED */
1507 int
1508 osigstack(td, uap)
1509 	struct thread *td;
1510 	register struct osigstack_args *uap;
1511 {
1512 	struct sigstack nss, oss;
1513 	int error = 0;
1514 
1515 	if (uap->nss != NULL) {
1516 		error = copyin(uap->nss, &nss, sizeof(nss));
1517 		if (error)
1518 			return (error);
1519 	}
1520 	oss.ss_sp = td->td_sigstk.ss_sp;
1521 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1522 	if (uap->nss != NULL) {
1523 		td->td_sigstk.ss_sp = nss.ss_sp;
1524 		td->td_sigstk.ss_size = 0;
1525 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1526 		td->td_pflags |= TDP_ALTSTACK;
1527 	}
1528 	if (uap->oss != NULL)
1529 		error = copyout(&oss, uap->oss, sizeof(oss));
1530 
1531 	return (error);
1532 }
1533 #endif /* COMPAT_43 */
1534 
1535 #ifndef _SYS_SYSPROTO_H_
1536 struct sigaltstack_args {
1537 	stack_t	*ss;
1538 	stack_t	*oss;
1539 };
1540 #endif
1541 /* ARGSUSED */
1542 int
1543 sys_sigaltstack(td, uap)
1544 	struct thread *td;
1545 	register struct sigaltstack_args *uap;
1546 {
1547 	stack_t ss, oss;
1548 	int error;
1549 
1550 	if (uap->ss != NULL) {
1551 		error = copyin(uap->ss, &ss, sizeof(ss));
1552 		if (error)
1553 			return (error);
1554 	}
1555 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1556 	    (uap->oss != NULL) ? &oss : NULL);
1557 	if (error)
1558 		return (error);
1559 	if (uap->oss != NULL)
1560 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1561 	return (error);
1562 }
1563 
1564 int
1565 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1566 {
1567 	struct proc *p = td->td_proc;
1568 	int oonstack;
1569 
1570 	oonstack = sigonstack(cpu_getstack(td));
1571 
1572 	if (oss != NULL) {
1573 		*oss = td->td_sigstk;
1574 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1575 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1576 	}
1577 
1578 	if (ss != NULL) {
1579 		if (oonstack)
1580 			return (EPERM);
1581 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1582 			return (EINVAL);
1583 		if (!(ss->ss_flags & SS_DISABLE)) {
1584 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1585 				return (ENOMEM);
1586 
1587 			td->td_sigstk = *ss;
1588 			td->td_pflags |= TDP_ALTSTACK;
1589 		} else {
1590 			td->td_pflags &= ~TDP_ALTSTACK;
1591 		}
1592 	}
1593 	return (0);
1594 }
1595 
1596 /*
1597  * Common code for kill process group/broadcast kill.
1598  * cp is calling process.
1599  */
1600 static int
1601 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1602 {
1603 	struct proc *p;
1604 	struct pgrp *pgrp;
1605 	int err;
1606 	int ret;
1607 
1608 	ret = ESRCH;
1609 	if (all) {
1610 		/*
1611 		 * broadcast
1612 		 */
1613 		sx_slock(&allproc_lock);
1614 		FOREACH_PROC_IN_SYSTEM(p) {
1615 			PROC_LOCK(p);
1616 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1617 			    p == td->td_proc || p->p_state == PRS_NEW) {
1618 				PROC_UNLOCK(p);
1619 				continue;
1620 			}
1621 			err = p_cansignal(td, p, sig);
1622 			if (err == 0) {
1623 				if (sig)
1624 					pksignal(p, sig, ksi);
1625 				ret = err;
1626 			}
1627 			else if (ret == ESRCH)
1628 				ret = err;
1629 			PROC_UNLOCK(p);
1630 		}
1631 		sx_sunlock(&allproc_lock);
1632 	} else {
1633 		sx_slock(&proctree_lock);
1634 		if (pgid == 0) {
1635 			/*
1636 			 * zero pgid means send to my process group.
1637 			 */
1638 			pgrp = td->td_proc->p_pgrp;
1639 			PGRP_LOCK(pgrp);
1640 		} else {
1641 			pgrp = pgfind(pgid);
1642 			if (pgrp == NULL) {
1643 				sx_sunlock(&proctree_lock);
1644 				return (ESRCH);
1645 			}
1646 		}
1647 		sx_sunlock(&proctree_lock);
1648 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1649 			PROC_LOCK(p);
1650 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1651 			    p->p_state == PRS_NEW) {
1652 				PROC_UNLOCK(p);
1653 				continue;
1654 			}
1655 			err = p_cansignal(td, p, sig);
1656 			if (err == 0) {
1657 				if (sig)
1658 					pksignal(p, sig, ksi);
1659 				ret = err;
1660 			}
1661 			else if (ret == ESRCH)
1662 				ret = err;
1663 			PROC_UNLOCK(p);
1664 		}
1665 		PGRP_UNLOCK(pgrp);
1666 	}
1667 	return (ret);
1668 }
1669 
1670 #ifndef _SYS_SYSPROTO_H_
1671 struct kill_args {
1672 	int	pid;
1673 	int	signum;
1674 };
1675 #endif
1676 /* ARGSUSED */
1677 int
1678 sys_kill(struct thread *td, struct kill_args *uap)
1679 {
1680 	ksiginfo_t ksi;
1681 	struct proc *p;
1682 	int error;
1683 
1684 	/*
1685 	 * A process in capability mode can send signals only to himself.
1686 	 * The main rationale behind this is that abort(3) is implemented as
1687 	 * kill(getpid(), SIGABRT).
1688 	 */
1689 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1690 		return (ECAPMODE);
1691 
1692 	AUDIT_ARG_SIGNUM(uap->signum);
1693 	AUDIT_ARG_PID(uap->pid);
1694 	if ((u_int)uap->signum > _SIG_MAXSIG)
1695 		return (EINVAL);
1696 
1697 	ksiginfo_init(&ksi);
1698 	ksi.ksi_signo = uap->signum;
1699 	ksi.ksi_code = SI_USER;
1700 	ksi.ksi_pid = td->td_proc->p_pid;
1701 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1702 
1703 	if (uap->pid > 0) {
1704 		/* kill single process */
1705 		if ((p = pfind(uap->pid)) == NULL) {
1706 			if ((p = zpfind(uap->pid)) == NULL)
1707 				return (ESRCH);
1708 		}
1709 		AUDIT_ARG_PROCESS(p);
1710 		error = p_cansignal(td, p, uap->signum);
1711 		if (error == 0 && uap->signum)
1712 			pksignal(p, uap->signum, &ksi);
1713 		PROC_UNLOCK(p);
1714 		return (error);
1715 	}
1716 	switch (uap->pid) {
1717 	case -1:		/* broadcast signal */
1718 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1719 	case 0:			/* signal own process group */
1720 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1721 	default:		/* negative explicit process group */
1722 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1723 	}
1724 	/* NOTREACHED */
1725 }
1726 
1727 int
1728 sys_pdkill(td, uap)
1729 	struct thread *td;
1730 	struct pdkill_args *uap;
1731 {
1732 #ifdef PROCDESC
1733 	struct proc *p;
1734 	int error;
1735 
1736 	AUDIT_ARG_SIGNUM(uap->signum);
1737 	AUDIT_ARG_FD(uap->fd);
1738 	if ((u_int)uap->signum > _SIG_MAXSIG)
1739 		return (EINVAL);
1740 
1741 	error = procdesc_find(td, uap->fd, CAP_PDKILL, &p);
1742 	if (error)
1743 		return (error);
1744 	AUDIT_ARG_PROCESS(p);
1745 	error = p_cansignal(td, p, uap->signum);
1746 	if (error == 0 && uap->signum)
1747 		kern_psignal(p, uap->signum);
1748 	PROC_UNLOCK(p);
1749 	return (error);
1750 #else
1751 	return (ENOSYS);
1752 #endif
1753 }
1754 
1755 #if defined(COMPAT_43)
1756 #ifndef _SYS_SYSPROTO_H_
1757 struct okillpg_args {
1758 	int	pgid;
1759 	int	signum;
1760 };
1761 #endif
1762 /* ARGSUSED */
1763 int
1764 okillpg(struct thread *td, struct okillpg_args *uap)
1765 {
1766 	ksiginfo_t ksi;
1767 
1768 	AUDIT_ARG_SIGNUM(uap->signum);
1769 	AUDIT_ARG_PID(uap->pgid);
1770 	if ((u_int)uap->signum > _SIG_MAXSIG)
1771 		return (EINVAL);
1772 
1773 	ksiginfo_init(&ksi);
1774 	ksi.ksi_signo = uap->signum;
1775 	ksi.ksi_code = SI_USER;
1776 	ksi.ksi_pid = td->td_proc->p_pid;
1777 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1778 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1779 }
1780 #endif /* COMPAT_43 */
1781 
1782 #ifndef _SYS_SYSPROTO_H_
1783 struct sigqueue_args {
1784 	pid_t pid;
1785 	int signum;
1786 	/* union sigval */ void *value;
1787 };
1788 #endif
1789 int
1790 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1791 {
1792 	ksiginfo_t ksi;
1793 	struct proc *p;
1794 	int error;
1795 
1796 	if ((u_int)uap->signum > _SIG_MAXSIG)
1797 		return (EINVAL);
1798 
1799 	/*
1800 	 * Specification says sigqueue can only send signal to
1801 	 * single process.
1802 	 */
1803 	if (uap->pid <= 0)
1804 		return (EINVAL);
1805 
1806 	if ((p = pfind(uap->pid)) == NULL) {
1807 		if ((p = zpfind(uap->pid)) == NULL)
1808 			return (ESRCH);
1809 	}
1810 	error = p_cansignal(td, p, uap->signum);
1811 	if (error == 0 && uap->signum != 0) {
1812 		ksiginfo_init(&ksi);
1813 		ksi.ksi_flags = KSI_SIGQ;
1814 		ksi.ksi_signo = uap->signum;
1815 		ksi.ksi_code = SI_QUEUE;
1816 		ksi.ksi_pid = td->td_proc->p_pid;
1817 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1818 		ksi.ksi_value.sival_ptr = uap->value;
1819 		error = pksignal(p, ksi.ksi_signo, &ksi);
1820 	}
1821 	PROC_UNLOCK(p);
1822 	return (error);
1823 }
1824 
1825 /*
1826  * Send a signal to a process group.
1827  */
1828 void
1829 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1830 {
1831 	struct pgrp *pgrp;
1832 
1833 	if (pgid != 0) {
1834 		sx_slock(&proctree_lock);
1835 		pgrp = pgfind(pgid);
1836 		sx_sunlock(&proctree_lock);
1837 		if (pgrp != NULL) {
1838 			pgsignal(pgrp, sig, 0, ksi);
1839 			PGRP_UNLOCK(pgrp);
1840 		}
1841 	}
1842 }
1843 
1844 /*
1845  * Send a signal to a process group.  If checktty is 1,
1846  * limit to members which have a controlling terminal.
1847  */
1848 void
1849 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1850 {
1851 	struct proc *p;
1852 
1853 	if (pgrp) {
1854 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1855 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1856 			PROC_LOCK(p);
1857 			if (p->p_state == PRS_NORMAL &&
1858 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1859 				pksignal(p, sig, ksi);
1860 			PROC_UNLOCK(p);
1861 		}
1862 	}
1863 }
1864 
1865 /*
1866  * Send a signal caused by a trap to the current thread.  If it will be
1867  * caught immediately, deliver it with correct code.  Otherwise, post it
1868  * normally.
1869  */
1870 void
1871 trapsignal(struct thread *td, ksiginfo_t *ksi)
1872 {
1873 	struct sigacts *ps;
1874 	sigset_t mask;
1875 	struct proc *p;
1876 	int sig;
1877 	int code;
1878 
1879 	p = td->td_proc;
1880 	sig = ksi->ksi_signo;
1881 	code = ksi->ksi_code;
1882 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1883 
1884 	PROC_LOCK(p);
1885 	ps = p->p_sigacts;
1886 	mtx_lock(&ps->ps_mtx);
1887 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1888 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1889 		td->td_ru.ru_nsignals++;
1890 #ifdef KTRACE
1891 		if (KTRPOINT(curthread, KTR_PSIG))
1892 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1893 			    &td->td_sigmask, code);
1894 #endif
1895 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1896 				ksi, &td->td_sigmask);
1897 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1898 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1899 			SIGADDSET(mask, sig);
1900 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1901 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1902 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1903 			/*
1904 			 * See kern_sigaction() for origin of this code.
1905 			 */
1906 			SIGDELSET(ps->ps_sigcatch, sig);
1907 			if (sig != SIGCONT &&
1908 			    sigprop(sig) & SA_IGNORE)
1909 				SIGADDSET(ps->ps_sigignore, sig);
1910 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1911 		}
1912 		mtx_unlock(&ps->ps_mtx);
1913 	} else {
1914 		/*
1915 		 * Avoid a possible infinite loop if the thread
1916 		 * masking the signal or process is ignoring the
1917 		 * signal.
1918 		 */
1919 		if (kern_forcesigexit &&
1920 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1921 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1922 			SIGDELSET(td->td_sigmask, sig);
1923 			SIGDELSET(ps->ps_sigcatch, sig);
1924 			SIGDELSET(ps->ps_sigignore, sig);
1925 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1926 		}
1927 		mtx_unlock(&ps->ps_mtx);
1928 		p->p_code = code;	/* XXX for core dump/debugger */
1929 		p->p_sig = sig;		/* XXX to verify code */
1930 		tdsendsignal(p, td, sig, ksi);
1931 	}
1932 	PROC_UNLOCK(p);
1933 }
1934 
1935 static struct thread *
1936 sigtd(struct proc *p, int sig, int prop)
1937 {
1938 	struct thread *td, *signal_td;
1939 
1940 	PROC_LOCK_ASSERT(p, MA_OWNED);
1941 
1942 	/*
1943 	 * Check if current thread can handle the signal without
1944 	 * switching context to another thread.
1945 	 */
1946 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1947 		return (curthread);
1948 	signal_td = NULL;
1949 	FOREACH_THREAD_IN_PROC(p, td) {
1950 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1951 			signal_td = td;
1952 			break;
1953 		}
1954 	}
1955 	if (signal_td == NULL)
1956 		signal_td = FIRST_THREAD_IN_PROC(p);
1957 	return (signal_td);
1958 }
1959 
1960 /*
1961  * Send the signal to the process.  If the signal has an action, the action
1962  * is usually performed by the target process rather than the caller; we add
1963  * the signal to the set of pending signals for the process.
1964  *
1965  * Exceptions:
1966  *   o When a stop signal is sent to a sleeping process that takes the
1967  *     default action, the process is stopped without awakening it.
1968  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1969  *     regardless of the signal action (eg, blocked or ignored).
1970  *
1971  * Other ignored signals are discarded immediately.
1972  *
1973  * NB: This function may be entered from the debugger via the "kill" DDB
1974  * command.  There is little that can be done to mitigate the possibly messy
1975  * side effects of this unwise possibility.
1976  */
1977 void
1978 kern_psignal(struct proc *p, int sig)
1979 {
1980 	ksiginfo_t ksi;
1981 
1982 	ksiginfo_init(&ksi);
1983 	ksi.ksi_signo = sig;
1984 	ksi.ksi_code = SI_KERNEL;
1985 	(void) tdsendsignal(p, NULL, sig, &ksi);
1986 }
1987 
1988 int
1989 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
1990 {
1991 
1992 	return (tdsendsignal(p, NULL, sig, ksi));
1993 }
1994 
1995 /* Utility function for finding a thread to send signal event to. */
1996 int
1997 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
1998 {
1999 	struct thread *td;
2000 
2001 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2002 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2003 		if (td == NULL)
2004 			return (ESRCH);
2005 		*ttd = td;
2006 	} else {
2007 		*ttd = NULL;
2008 		PROC_LOCK(p);
2009 	}
2010 	return (0);
2011 }
2012 
2013 void
2014 tdsignal(struct thread *td, int sig)
2015 {
2016 	ksiginfo_t ksi;
2017 
2018 	ksiginfo_init(&ksi);
2019 	ksi.ksi_signo = sig;
2020 	ksi.ksi_code = SI_KERNEL;
2021 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2022 }
2023 
2024 void
2025 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2026 {
2027 
2028 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2029 }
2030 
2031 int
2032 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2033 {
2034 	sig_t action;
2035 	sigqueue_t *sigqueue;
2036 	int prop;
2037 	struct sigacts *ps;
2038 	int intrval;
2039 	int ret = 0;
2040 	int wakeup_swapper;
2041 
2042 	MPASS(td == NULL || p == td->td_proc);
2043 	PROC_LOCK_ASSERT(p, MA_OWNED);
2044 
2045 	if (!_SIG_VALID(sig))
2046 		panic("%s(): invalid signal %d", __func__, sig);
2047 
2048 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2049 
2050 	/*
2051 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2052 	 */
2053 	if (p->p_state == PRS_ZOMBIE) {
2054 		if (ksi && (ksi->ksi_flags & KSI_INS))
2055 			ksiginfo_tryfree(ksi);
2056 		return (ret);
2057 	}
2058 
2059 	ps = p->p_sigacts;
2060 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2061 	prop = sigprop(sig);
2062 
2063 	if (td == NULL) {
2064 		td = sigtd(p, sig, prop);
2065 		sigqueue = &p->p_sigqueue;
2066 	} else {
2067 		KASSERT(td->td_proc == p, ("invalid thread"));
2068 		sigqueue = &td->td_sigqueue;
2069 	}
2070 
2071 	SDT_PROBE(proc, kernel, , signal_send, td, p, sig, 0, 0 );
2072 
2073 	/*
2074 	 * If the signal is being ignored,
2075 	 * then we forget about it immediately.
2076 	 * (Note: we don't set SIGCONT in ps_sigignore,
2077 	 * and if it is set to SIG_IGN,
2078 	 * action will be SIG_DFL here.)
2079 	 */
2080 	mtx_lock(&ps->ps_mtx);
2081 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2082 		SDT_PROBE(proc, kernel, , signal_discard, td, p, sig, 0, 0 );
2083 
2084 		mtx_unlock(&ps->ps_mtx);
2085 		if (ksi && (ksi->ksi_flags & KSI_INS))
2086 			ksiginfo_tryfree(ksi);
2087 		return (ret);
2088 	}
2089 	if (SIGISMEMBER(td->td_sigmask, sig))
2090 		action = SIG_HOLD;
2091 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2092 		action = SIG_CATCH;
2093 	else
2094 		action = SIG_DFL;
2095 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2096 		intrval = EINTR;
2097 	else
2098 		intrval = ERESTART;
2099 	mtx_unlock(&ps->ps_mtx);
2100 
2101 	if (prop & SA_CONT)
2102 		sigqueue_delete_stopmask_proc(p);
2103 	else if (prop & SA_STOP) {
2104 		/*
2105 		 * If sending a tty stop signal to a member of an orphaned
2106 		 * process group, discard the signal here if the action
2107 		 * is default; don't stop the process below if sleeping,
2108 		 * and don't clear any pending SIGCONT.
2109 		 */
2110 		if ((prop & SA_TTYSTOP) &&
2111 		    (p->p_pgrp->pg_jobc == 0) &&
2112 		    (action == SIG_DFL)) {
2113 			if (ksi && (ksi->ksi_flags & KSI_INS))
2114 				ksiginfo_tryfree(ksi);
2115 			return (ret);
2116 		}
2117 		sigqueue_delete_proc(p, SIGCONT);
2118 		if (p->p_flag & P_CONTINUED) {
2119 			p->p_flag &= ~P_CONTINUED;
2120 			PROC_LOCK(p->p_pptr);
2121 			sigqueue_take(p->p_ksi);
2122 			PROC_UNLOCK(p->p_pptr);
2123 		}
2124 	}
2125 
2126 	ret = sigqueue_add(sigqueue, sig, ksi);
2127 	if (ret != 0)
2128 		return (ret);
2129 	signotify(td);
2130 	/*
2131 	 * Defer further processing for signals which are held,
2132 	 * except that stopped processes must be continued by SIGCONT.
2133 	 */
2134 	if (action == SIG_HOLD &&
2135 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2136 		return (ret);
2137 	/*
2138 	 * SIGKILL: Remove procfs STOPEVENTs.
2139 	 */
2140 	if (sig == SIGKILL) {
2141 		/* from procfs_ioctl.c: PIOCBIC */
2142 		p->p_stops = 0;
2143 		/* from procfs_ioctl.c: PIOCCONT */
2144 		p->p_step = 0;
2145 		wakeup(&p->p_step);
2146 	}
2147 	/*
2148 	 * Some signals have a process-wide effect and a per-thread
2149 	 * component.  Most processing occurs when the process next
2150 	 * tries to cross the user boundary, however there are some
2151 	 * times when processing needs to be done immediately, such as
2152 	 * waking up threads so that they can cross the user boundary.
2153 	 * We try to do the per-process part here.
2154 	 */
2155 	if (P_SHOULDSTOP(p)) {
2156 		KASSERT(!(p->p_flag & P_WEXIT),
2157 		    ("signal to stopped but exiting process"));
2158 		if (sig == SIGKILL) {
2159 			/*
2160 			 * If traced process is already stopped,
2161 			 * then no further action is necessary.
2162 			 */
2163 			if (p->p_flag & P_TRACED)
2164 				goto out;
2165 			/*
2166 			 * SIGKILL sets process running.
2167 			 * It will die elsewhere.
2168 			 * All threads must be restarted.
2169 			 */
2170 			p->p_flag &= ~P_STOPPED_SIG;
2171 			goto runfast;
2172 		}
2173 
2174 		if (prop & SA_CONT) {
2175 			/*
2176 			 * If traced process is already stopped,
2177 			 * then no further action is necessary.
2178 			 */
2179 			if (p->p_flag & P_TRACED)
2180 				goto out;
2181 			/*
2182 			 * If SIGCONT is default (or ignored), we continue the
2183 			 * process but don't leave the signal in sigqueue as
2184 			 * it has no further action.  If SIGCONT is held, we
2185 			 * continue the process and leave the signal in
2186 			 * sigqueue.  If the process catches SIGCONT, let it
2187 			 * handle the signal itself.  If it isn't waiting on
2188 			 * an event, it goes back to run state.
2189 			 * Otherwise, process goes back to sleep state.
2190 			 */
2191 			p->p_flag &= ~P_STOPPED_SIG;
2192 			PROC_SLOCK(p);
2193 			if (p->p_numthreads == p->p_suspcount) {
2194 				PROC_SUNLOCK(p);
2195 				p->p_flag |= P_CONTINUED;
2196 				p->p_xstat = SIGCONT;
2197 				PROC_LOCK(p->p_pptr);
2198 				childproc_continued(p);
2199 				PROC_UNLOCK(p->p_pptr);
2200 				PROC_SLOCK(p);
2201 			}
2202 			if (action == SIG_DFL) {
2203 				thread_unsuspend(p);
2204 				PROC_SUNLOCK(p);
2205 				sigqueue_delete(sigqueue, sig);
2206 				goto out;
2207 			}
2208 			if (action == SIG_CATCH) {
2209 				/*
2210 				 * The process wants to catch it so it needs
2211 				 * to run at least one thread, but which one?
2212 				 */
2213 				PROC_SUNLOCK(p);
2214 				goto runfast;
2215 			}
2216 			/*
2217 			 * The signal is not ignored or caught.
2218 			 */
2219 			thread_unsuspend(p);
2220 			PROC_SUNLOCK(p);
2221 			goto out;
2222 		}
2223 
2224 		if (prop & SA_STOP) {
2225 			/*
2226 			 * If traced process is already stopped,
2227 			 * then no further action is necessary.
2228 			 */
2229 			if (p->p_flag & P_TRACED)
2230 				goto out;
2231 			/*
2232 			 * Already stopped, don't need to stop again
2233 			 * (If we did the shell could get confused).
2234 			 * Just make sure the signal STOP bit set.
2235 			 */
2236 			p->p_flag |= P_STOPPED_SIG;
2237 			sigqueue_delete(sigqueue, sig);
2238 			goto out;
2239 		}
2240 
2241 		/*
2242 		 * All other kinds of signals:
2243 		 * If a thread is sleeping interruptibly, simulate a
2244 		 * wakeup so that when it is continued it will be made
2245 		 * runnable and can look at the signal.  However, don't make
2246 		 * the PROCESS runnable, leave it stopped.
2247 		 * It may run a bit until it hits a thread_suspend_check().
2248 		 */
2249 		wakeup_swapper = 0;
2250 		PROC_SLOCK(p);
2251 		thread_lock(td);
2252 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2253 			wakeup_swapper = sleepq_abort(td, intrval);
2254 		thread_unlock(td);
2255 		PROC_SUNLOCK(p);
2256 		if (wakeup_swapper)
2257 			kick_proc0();
2258 		goto out;
2259 		/*
2260 		 * Mutexes are short lived. Threads waiting on them will
2261 		 * hit thread_suspend_check() soon.
2262 		 */
2263 	} else if (p->p_state == PRS_NORMAL) {
2264 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2265 			tdsigwakeup(td, sig, action, intrval);
2266 			goto out;
2267 		}
2268 
2269 		MPASS(action == SIG_DFL);
2270 
2271 		if (prop & SA_STOP) {
2272 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2273 				goto out;
2274 			p->p_flag |= P_STOPPED_SIG;
2275 			p->p_xstat = sig;
2276 			PROC_SLOCK(p);
2277 			sig_suspend_threads(td, p, 1);
2278 			if (p->p_numthreads == p->p_suspcount) {
2279 				/*
2280 				 * only thread sending signal to another
2281 				 * process can reach here, if thread is sending
2282 				 * signal to its process, because thread does
2283 				 * not suspend itself here, p_numthreads
2284 				 * should never be equal to p_suspcount.
2285 				 */
2286 				thread_stopped(p);
2287 				PROC_SUNLOCK(p);
2288 				sigqueue_delete_proc(p, p->p_xstat);
2289 			} else
2290 				PROC_SUNLOCK(p);
2291 			goto out;
2292 		}
2293 	} else {
2294 		/* Not in "NORMAL" state. discard the signal. */
2295 		sigqueue_delete(sigqueue, sig);
2296 		goto out;
2297 	}
2298 
2299 	/*
2300 	 * The process is not stopped so we need to apply the signal to all the
2301 	 * running threads.
2302 	 */
2303 runfast:
2304 	tdsigwakeup(td, sig, action, intrval);
2305 	PROC_SLOCK(p);
2306 	thread_unsuspend(p);
2307 	PROC_SUNLOCK(p);
2308 out:
2309 	/* If we jump here, proc slock should not be owned. */
2310 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2311 	return (ret);
2312 }
2313 
2314 /*
2315  * The force of a signal has been directed against a single
2316  * thread.  We need to see what we can do about knocking it
2317  * out of any sleep it may be in etc.
2318  */
2319 static void
2320 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2321 {
2322 	struct proc *p = td->td_proc;
2323 	register int prop;
2324 	int wakeup_swapper;
2325 
2326 	wakeup_swapper = 0;
2327 	PROC_LOCK_ASSERT(p, MA_OWNED);
2328 	prop = sigprop(sig);
2329 
2330 	PROC_SLOCK(p);
2331 	thread_lock(td);
2332 	/*
2333 	 * Bring the priority of a thread up if we want it to get
2334 	 * killed in this lifetime.
2335 	 */
2336 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2337 		sched_prio(td, PUSER);
2338 	if (TD_ON_SLEEPQ(td)) {
2339 		/*
2340 		 * If thread is sleeping uninterruptibly
2341 		 * we can't interrupt the sleep... the signal will
2342 		 * be noticed when the process returns through
2343 		 * trap() or syscall().
2344 		 */
2345 		if ((td->td_flags & TDF_SINTR) == 0)
2346 			goto out;
2347 		/*
2348 		 * If SIGCONT is default (or ignored) and process is
2349 		 * asleep, we are finished; the process should not
2350 		 * be awakened.
2351 		 */
2352 		if ((prop & SA_CONT) && action == SIG_DFL) {
2353 			thread_unlock(td);
2354 			PROC_SUNLOCK(p);
2355 			sigqueue_delete(&p->p_sigqueue, sig);
2356 			/*
2357 			 * It may be on either list in this state.
2358 			 * Remove from both for now.
2359 			 */
2360 			sigqueue_delete(&td->td_sigqueue, sig);
2361 			return;
2362 		}
2363 
2364 		/*
2365 		 * Don't awaken a sleeping thread for SIGSTOP if the
2366 		 * STOP signal is deferred.
2367 		 */
2368 		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2369 			goto out;
2370 
2371 		/*
2372 		 * Give low priority threads a better chance to run.
2373 		 */
2374 		if (td->td_priority > PUSER)
2375 			sched_prio(td, PUSER);
2376 
2377 		wakeup_swapper = sleepq_abort(td, intrval);
2378 	} else {
2379 		/*
2380 		 * Other states do nothing with the signal immediately,
2381 		 * other than kicking ourselves if we are running.
2382 		 * It will either never be noticed, or noticed very soon.
2383 		 */
2384 #ifdef SMP
2385 		if (TD_IS_RUNNING(td) && td != curthread)
2386 			forward_signal(td);
2387 #endif
2388 	}
2389 out:
2390 	PROC_SUNLOCK(p);
2391 	thread_unlock(td);
2392 	if (wakeup_swapper)
2393 		kick_proc0();
2394 }
2395 
2396 static void
2397 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2398 {
2399 	struct thread *td2;
2400 
2401 	PROC_LOCK_ASSERT(p, MA_OWNED);
2402 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2403 
2404 	FOREACH_THREAD_IN_PROC(p, td2) {
2405 		thread_lock(td2);
2406 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2407 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2408 		    (td2->td_flags & TDF_SINTR)) {
2409 			if (td2->td_flags & TDF_SBDRY) {
2410 				/*
2411 				 * Once a thread is asleep with
2412 				 * TDF_SBDRY set, it should never
2413 				 * become suspended due to this check.
2414 				 */
2415 				KASSERT(!TD_IS_SUSPENDED(td2),
2416 				    ("thread with deferred stops suspended"));
2417 			} else if (!TD_IS_SUSPENDED(td2)) {
2418 				thread_suspend_one(td2);
2419 			}
2420 		} else if (!TD_IS_SUSPENDED(td2)) {
2421 			if (sending || td != td2)
2422 				td2->td_flags |= TDF_ASTPENDING;
2423 #ifdef SMP
2424 			if (TD_IS_RUNNING(td2) && td2 != td)
2425 				forward_signal(td2);
2426 #endif
2427 		}
2428 		thread_unlock(td2);
2429 	}
2430 }
2431 
2432 int
2433 ptracestop(struct thread *td, int sig)
2434 {
2435 	struct proc *p = td->td_proc;
2436 
2437 	PROC_LOCK_ASSERT(p, MA_OWNED);
2438 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2439 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2440 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2441 
2442 	td->td_dbgflags |= TDB_XSIG;
2443 	td->td_xsig = sig;
2444 	PROC_SLOCK(p);
2445 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2446 		if (p->p_flag & P_SINGLE_EXIT) {
2447 			td->td_dbgflags &= ~TDB_XSIG;
2448 			PROC_SUNLOCK(p);
2449 			return (sig);
2450 		}
2451 		/*
2452 		 * Just make wait() to work, the last stopped thread
2453 		 * will win.
2454 		 */
2455 		p->p_xstat = sig;
2456 		p->p_xthread = td;
2457 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2458 		sig_suspend_threads(td, p, 0);
2459 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2460 			td->td_dbgflags &= ~TDB_STOPATFORK;
2461 			cv_broadcast(&p->p_dbgwait);
2462 		}
2463 stopme:
2464 		thread_suspend_switch(td);
2465 		if (p->p_xthread == td)
2466 			p->p_xthread = NULL;
2467 		if (!(p->p_flag & P_TRACED))
2468 			break;
2469 		if (td->td_dbgflags & TDB_SUSPEND) {
2470 			if (p->p_flag & P_SINGLE_EXIT)
2471 				break;
2472 			goto stopme;
2473 		}
2474 	}
2475 	PROC_SUNLOCK(p);
2476 	return (td->td_xsig);
2477 }
2478 
2479 static void
2480 reschedule_signals(struct proc *p, sigset_t block, int flags)
2481 {
2482 	struct sigacts *ps;
2483 	struct thread *td;
2484 	int sig;
2485 
2486 	PROC_LOCK_ASSERT(p, MA_OWNED);
2487 	if (SIGISEMPTY(p->p_siglist))
2488 		return;
2489 	ps = p->p_sigacts;
2490 	SIGSETAND(block, p->p_siglist);
2491 	while ((sig = sig_ffs(&block)) != 0) {
2492 		SIGDELSET(block, sig);
2493 		td = sigtd(p, sig, 0);
2494 		signotify(td);
2495 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2496 			mtx_lock(&ps->ps_mtx);
2497 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2498 			tdsigwakeup(td, sig, SIG_CATCH,
2499 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2500 			     ERESTART));
2501 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2502 			mtx_unlock(&ps->ps_mtx);
2503 	}
2504 }
2505 
2506 void
2507 tdsigcleanup(struct thread *td)
2508 {
2509 	struct proc *p;
2510 	sigset_t unblocked;
2511 
2512 	p = td->td_proc;
2513 	PROC_LOCK_ASSERT(p, MA_OWNED);
2514 
2515 	sigqueue_flush(&td->td_sigqueue);
2516 	if (p->p_numthreads == 1)
2517 		return;
2518 
2519 	/*
2520 	 * Since we cannot handle signals, notify signal post code
2521 	 * about this by filling the sigmask.
2522 	 *
2523 	 * Also, if needed, wake up thread(s) that do not block the
2524 	 * same signals as the exiting thread, since the thread might
2525 	 * have been selected for delivery and woken up.
2526 	 */
2527 	SIGFILLSET(unblocked);
2528 	SIGSETNAND(unblocked, td->td_sigmask);
2529 	SIGFILLSET(td->td_sigmask);
2530 	reschedule_signals(p, unblocked, 0);
2531 
2532 }
2533 
2534 /*
2535  * Defer the delivery of SIGSTOP for the current thread.  Returns true
2536  * if stops were deferred and false if they were already deferred.
2537  */
2538 int
2539 sigdeferstop(void)
2540 {
2541 	struct thread *td;
2542 
2543 	td = curthread;
2544 	if (td->td_flags & TDF_SBDRY)
2545 		return (0);
2546 	thread_lock(td);
2547 	td->td_flags |= TDF_SBDRY;
2548 	thread_unlock(td);
2549 	return (1);
2550 }
2551 
2552 /*
2553  * Permit the delivery of SIGSTOP for the current thread.  This does
2554  * not immediately suspend if a stop was posted.  Instead, the thread
2555  * will suspend either via ast() or a subsequent interruptible sleep.
2556  */
2557 void
2558 sigallowstop()
2559 {
2560 	struct thread *td;
2561 
2562 	td = curthread;
2563 	thread_lock(td);
2564 	td->td_flags &= ~TDF_SBDRY;
2565 	thread_unlock(td);
2566 }
2567 
2568 /*
2569  * If the current process has received a signal (should be caught or cause
2570  * termination, should interrupt current syscall), return the signal number.
2571  * Stop signals with default action are processed immediately, then cleared;
2572  * they aren't returned.  This is checked after each entry to the system for
2573  * a syscall or trap (though this can usually be done without calling issignal
2574  * by checking the pending signal masks in cursig.) The normal call
2575  * sequence is
2576  *
2577  *	while (sig = cursig(curthread))
2578  *		postsig(sig);
2579  */
2580 static int
2581 issignal(struct thread *td)
2582 {
2583 	struct proc *p;
2584 	struct sigacts *ps;
2585 	struct sigqueue *queue;
2586 	sigset_t sigpending;
2587 	int sig, prop, newsig;
2588 
2589 	p = td->td_proc;
2590 	ps = p->p_sigacts;
2591 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2592 	PROC_LOCK_ASSERT(p, MA_OWNED);
2593 	for (;;) {
2594 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2595 
2596 		sigpending = td->td_sigqueue.sq_signals;
2597 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2598 		SIGSETNAND(sigpending, td->td_sigmask);
2599 
2600 		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2601 			SIG_STOPSIGMASK(sigpending);
2602 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2603 			return (0);
2604 		sig = sig_ffs(&sigpending);
2605 
2606 		if (p->p_stops & S_SIG) {
2607 			mtx_unlock(&ps->ps_mtx);
2608 			stopevent(p, S_SIG, sig);
2609 			mtx_lock(&ps->ps_mtx);
2610 		}
2611 
2612 		/*
2613 		 * We should see pending but ignored signals
2614 		 * only if P_TRACED was on when they were posted.
2615 		 */
2616 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2617 			sigqueue_delete(&td->td_sigqueue, sig);
2618 			sigqueue_delete(&p->p_sigqueue, sig);
2619 			continue;
2620 		}
2621 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
2622 			/*
2623 			 * If traced, always stop.
2624 			 * Remove old signal from queue before the stop.
2625 			 * XXX shrug off debugger, it causes siginfo to
2626 			 * be thrown away.
2627 			 */
2628 			queue = &td->td_sigqueue;
2629 			td->td_dbgksi.ksi_signo = 0;
2630 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2631 				queue = &p->p_sigqueue;
2632 				sigqueue_get(queue, sig, &td->td_dbgksi);
2633 			}
2634 
2635 			mtx_unlock(&ps->ps_mtx);
2636 			newsig = ptracestop(td, sig);
2637 			mtx_lock(&ps->ps_mtx);
2638 
2639 			if (sig != newsig) {
2640 
2641 				/*
2642 				 * If parent wants us to take the signal,
2643 				 * then it will leave it in p->p_xstat;
2644 				 * otherwise we just look for signals again.
2645 				*/
2646 				if (newsig == 0)
2647 					continue;
2648 				sig = newsig;
2649 
2650 				/*
2651 				 * Put the new signal into td_sigqueue. If the
2652 				 * signal is being masked, look for other
2653 				 * signals.
2654 				 */
2655 				sigqueue_add(queue, sig, NULL);
2656 				if (SIGISMEMBER(td->td_sigmask, sig))
2657 					continue;
2658 				signotify(td);
2659 			} else {
2660 				if (td->td_dbgksi.ksi_signo != 0) {
2661 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2662 					if (sigqueue_add(&td->td_sigqueue, sig,
2663 					    &td->td_dbgksi) != 0)
2664 						td->td_dbgksi.ksi_signo = 0;
2665 				}
2666 				if (td->td_dbgksi.ksi_signo == 0)
2667 					sigqueue_add(&td->td_sigqueue, sig,
2668 					    NULL);
2669 			}
2670 
2671 			/*
2672 			 * If the traced bit got turned off, go back up
2673 			 * to the top to rescan signals.  This ensures
2674 			 * that p_sig* and p_sigact are consistent.
2675 			 */
2676 			if ((p->p_flag & P_TRACED) == 0)
2677 				continue;
2678 		}
2679 
2680 		prop = sigprop(sig);
2681 
2682 		/*
2683 		 * Decide whether the signal should be returned.
2684 		 * Return the signal's number, or fall through
2685 		 * to clear it from the pending mask.
2686 		 */
2687 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2688 
2689 		case (intptr_t)SIG_DFL:
2690 			/*
2691 			 * Don't take default actions on system processes.
2692 			 */
2693 			if (p->p_pid <= 1) {
2694 #ifdef DIAGNOSTIC
2695 				/*
2696 				 * Are you sure you want to ignore SIGSEGV
2697 				 * in init? XXX
2698 				 */
2699 				printf("Process (pid %lu) got signal %d\n",
2700 					(u_long)p->p_pid, sig);
2701 #endif
2702 				break;		/* == ignore */
2703 			}
2704 			/*
2705 			 * If there is a pending stop signal to process
2706 			 * with default action, stop here,
2707 			 * then clear the signal.  However,
2708 			 * if process is member of an orphaned
2709 			 * process group, ignore tty stop signals.
2710 			 */
2711 			if (prop & SA_STOP) {
2712 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2713 				    (p->p_pgrp->pg_jobc == 0 &&
2714 				     prop & SA_TTYSTOP))
2715 					break;	/* == ignore */
2716 				mtx_unlock(&ps->ps_mtx);
2717 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2718 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2719 				p->p_flag |= P_STOPPED_SIG;
2720 				p->p_xstat = sig;
2721 				PROC_SLOCK(p);
2722 				sig_suspend_threads(td, p, 0);
2723 				thread_suspend_switch(td);
2724 				PROC_SUNLOCK(p);
2725 				mtx_lock(&ps->ps_mtx);
2726 				break;
2727 			} else if (prop & SA_IGNORE) {
2728 				/*
2729 				 * Except for SIGCONT, shouldn't get here.
2730 				 * Default action is to ignore; drop it.
2731 				 */
2732 				break;		/* == ignore */
2733 			} else
2734 				return (sig);
2735 			/*NOTREACHED*/
2736 
2737 		case (intptr_t)SIG_IGN:
2738 			/*
2739 			 * Masking above should prevent us ever trying
2740 			 * to take action on an ignored signal other
2741 			 * than SIGCONT, unless process is traced.
2742 			 */
2743 			if ((prop & SA_CONT) == 0 &&
2744 			    (p->p_flag & P_TRACED) == 0)
2745 				printf("issignal\n");
2746 			break;		/* == ignore */
2747 
2748 		default:
2749 			/*
2750 			 * This signal has an action, let
2751 			 * postsig() process it.
2752 			 */
2753 			return (sig);
2754 		}
2755 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2756 		sigqueue_delete(&p->p_sigqueue, sig);
2757 	}
2758 	/* NOTREACHED */
2759 }
2760 
2761 void
2762 thread_stopped(struct proc *p)
2763 {
2764 	int n;
2765 
2766 	PROC_LOCK_ASSERT(p, MA_OWNED);
2767 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2768 	n = p->p_suspcount;
2769 	if (p == curproc)
2770 		n++;
2771 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2772 		PROC_SUNLOCK(p);
2773 		p->p_flag &= ~P_WAITED;
2774 		PROC_LOCK(p->p_pptr);
2775 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2776 			CLD_TRAPPED : CLD_STOPPED);
2777 		PROC_UNLOCK(p->p_pptr);
2778 		PROC_SLOCK(p);
2779 	}
2780 }
2781 
2782 /*
2783  * Take the action for the specified signal
2784  * from the current set of pending signals.
2785  */
2786 int
2787 postsig(sig)
2788 	register int sig;
2789 {
2790 	struct thread *td = curthread;
2791 	register struct proc *p = td->td_proc;
2792 	struct sigacts *ps;
2793 	sig_t action;
2794 	ksiginfo_t ksi;
2795 	sigset_t returnmask, mask;
2796 
2797 	KASSERT(sig != 0, ("postsig"));
2798 
2799 	PROC_LOCK_ASSERT(p, MA_OWNED);
2800 	ps = p->p_sigacts;
2801 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2802 	ksiginfo_init(&ksi);
2803 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2804 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2805 		return (0);
2806 	ksi.ksi_signo = sig;
2807 	if (ksi.ksi_code == SI_TIMER)
2808 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2809 	action = ps->ps_sigact[_SIG_IDX(sig)];
2810 #ifdef KTRACE
2811 	if (KTRPOINT(td, KTR_PSIG))
2812 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2813 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2814 #endif
2815 	if (p->p_stops & S_SIG) {
2816 		mtx_unlock(&ps->ps_mtx);
2817 		stopevent(p, S_SIG, sig);
2818 		mtx_lock(&ps->ps_mtx);
2819 	}
2820 
2821 	if (action == SIG_DFL) {
2822 		/*
2823 		 * Default action, where the default is to kill
2824 		 * the process.  (Other cases were ignored above.)
2825 		 */
2826 		mtx_unlock(&ps->ps_mtx);
2827 		sigexit(td, sig);
2828 		/* NOTREACHED */
2829 	} else {
2830 		/*
2831 		 * If we get here, the signal must be caught.
2832 		 */
2833 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2834 		    ("postsig action"));
2835 		/*
2836 		 * Set the new mask value and also defer further
2837 		 * occurrences of this signal.
2838 		 *
2839 		 * Special case: user has done a sigsuspend.  Here the
2840 		 * current mask is not of interest, but rather the
2841 		 * mask from before the sigsuspend is what we want
2842 		 * restored after the signal processing is completed.
2843 		 */
2844 		if (td->td_pflags & TDP_OLDMASK) {
2845 			returnmask = td->td_oldsigmask;
2846 			td->td_pflags &= ~TDP_OLDMASK;
2847 		} else
2848 			returnmask = td->td_sigmask;
2849 
2850 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2851 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2852 			SIGADDSET(mask, sig);
2853 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2854 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2855 
2856 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2857 			/*
2858 			 * See kern_sigaction() for origin of this code.
2859 			 */
2860 			SIGDELSET(ps->ps_sigcatch, sig);
2861 			if (sig != SIGCONT &&
2862 			    sigprop(sig) & SA_IGNORE)
2863 				SIGADDSET(ps->ps_sigignore, sig);
2864 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2865 		}
2866 		td->td_ru.ru_nsignals++;
2867 		if (p->p_sig == sig) {
2868 			p->p_code = 0;
2869 			p->p_sig = 0;
2870 		}
2871 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2872 	}
2873 	return (1);
2874 }
2875 
2876 /*
2877  * Kill the current process for stated reason.
2878  */
2879 void
2880 killproc(p, why)
2881 	struct proc *p;
2882 	char *why;
2883 {
2884 
2885 	PROC_LOCK_ASSERT(p, MA_OWNED);
2886 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2887 	    p->p_comm);
2888 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2889 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2890 	p->p_flag |= P_WKILLED;
2891 	kern_psignal(p, SIGKILL);
2892 }
2893 
2894 /*
2895  * Force the current process to exit with the specified signal, dumping core
2896  * if appropriate.  We bypass the normal tests for masked and caught signals,
2897  * allowing unrecoverable failures to terminate the process without changing
2898  * signal state.  Mark the accounting record with the signal termination.
2899  * If dumping core, save the signal number for the debugger.  Calls exit and
2900  * does not return.
2901  */
2902 void
2903 sigexit(td, sig)
2904 	struct thread *td;
2905 	int sig;
2906 {
2907 	struct proc *p = td->td_proc;
2908 
2909 	PROC_LOCK_ASSERT(p, MA_OWNED);
2910 	p->p_acflag |= AXSIG;
2911 	/*
2912 	 * We must be single-threading to generate a core dump.  This
2913 	 * ensures that the registers in the core file are up-to-date.
2914 	 * Also, the ELF dump handler assumes that the thread list doesn't
2915 	 * change out from under it.
2916 	 *
2917 	 * XXX If another thread attempts to single-thread before us
2918 	 *     (e.g. via fork()), we won't get a dump at all.
2919 	 */
2920 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2921 		p->p_sig = sig;
2922 		/*
2923 		 * Log signals which would cause core dumps
2924 		 * (Log as LOG_INFO to appease those who don't want
2925 		 * these messages.)
2926 		 * XXX : Todo, as well as euid, write out ruid too
2927 		 * Note that coredump() drops proc lock.
2928 		 */
2929 		if (coredump(td) == 0)
2930 			sig |= WCOREFLAG;
2931 		if (kern_logsigexit)
2932 			log(LOG_INFO,
2933 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2934 			    p->p_pid, p->p_comm,
2935 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2936 			    sig &~ WCOREFLAG,
2937 			    sig & WCOREFLAG ? " (core dumped)" : "");
2938 	} else
2939 		PROC_UNLOCK(p);
2940 	exit1(td, W_EXITCODE(0, sig));
2941 	/* NOTREACHED */
2942 }
2943 
2944 /*
2945  * Send queued SIGCHLD to parent when child process's state
2946  * is changed.
2947  */
2948 static void
2949 sigparent(struct proc *p, int reason, int status)
2950 {
2951 	PROC_LOCK_ASSERT(p, MA_OWNED);
2952 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2953 
2954 	if (p->p_ksi != NULL) {
2955 		p->p_ksi->ksi_signo  = SIGCHLD;
2956 		p->p_ksi->ksi_code   = reason;
2957 		p->p_ksi->ksi_status = status;
2958 		p->p_ksi->ksi_pid    = p->p_pid;
2959 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2960 		if (KSI_ONQ(p->p_ksi))
2961 			return;
2962 	}
2963 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2964 }
2965 
2966 static void
2967 childproc_jobstate(struct proc *p, int reason, int status)
2968 {
2969 	struct sigacts *ps;
2970 
2971 	PROC_LOCK_ASSERT(p, MA_OWNED);
2972 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2973 
2974 	/*
2975 	 * Wake up parent sleeping in kern_wait(), also send
2976 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2977 	 * that parent will awake, because parent may masked
2978 	 * the signal.
2979 	 */
2980 	p->p_pptr->p_flag |= P_STATCHILD;
2981 	wakeup(p->p_pptr);
2982 
2983 	ps = p->p_pptr->p_sigacts;
2984 	mtx_lock(&ps->ps_mtx);
2985 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2986 		mtx_unlock(&ps->ps_mtx);
2987 		sigparent(p, reason, status);
2988 	} else
2989 		mtx_unlock(&ps->ps_mtx);
2990 }
2991 
2992 void
2993 childproc_stopped(struct proc *p, int reason)
2994 {
2995 	childproc_jobstate(p, reason, p->p_xstat);
2996 }
2997 
2998 void
2999 childproc_continued(struct proc *p)
3000 {
3001 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3002 }
3003 
3004 void
3005 childproc_exited(struct proc *p)
3006 {
3007 	int reason;
3008 	int status = p->p_xstat; /* convert to int */
3009 
3010 	reason = CLD_EXITED;
3011 	if (WCOREDUMP(status))
3012 		reason = CLD_DUMPED;
3013 	else if (WIFSIGNALED(status))
3014 		reason = CLD_KILLED;
3015 	/*
3016 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3017 	 * done in exit1().
3018 	 */
3019 	sigparent(p, reason, status);
3020 }
3021 
3022 /*
3023  * We only have 1 character for the core count in the format
3024  * string, so the range will be 0-9
3025  */
3026 #define MAX_NUM_CORES 10
3027 static int num_cores = 5;
3028 
3029 static int
3030 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3031 {
3032 	int error;
3033 	int new_val;
3034 
3035 	new_val = num_cores;
3036 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3037 	if (error != 0 || req->newptr == NULL)
3038 		return (error);
3039 	if (new_val > MAX_NUM_CORES)
3040 		new_val = MAX_NUM_CORES;
3041 	if (new_val < 0)
3042 		new_val = 0;
3043 	num_cores = new_val;
3044 	return (0);
3045 }
3046 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3047 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3048 
3049 #if defined(COMPRESS_USER_CORES)
3050 int compress_user_cores = 1;
3051 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3052     &compress_user_cores, 0, "Compression of user corefiles");
3053 
3054 int compress_user_cores_gzlevel = -1; /* default level */
3055 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3056     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3057 
3058 #define GZ_SUFFIX	".gz"
3059 #define GZ_SUFFIX_LEN	3
3060 #endif
3061 
3062 static char corefilename[MAXPATHLEN] = {"%N.core"};
3063 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3064 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3065     sizeof(corefilename), "Process corefile name format string");
3066 
3067 /*
3068  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3069  * Expand the name described in corefilename, using name, uid, and pid
3070  * and open/create core file.
3071  * corefilename is a printf-like string, with three format specifiers:
3072  *	%N	name of process ("name")
3073  *	%P	process id (pid)
3074  *	%U	user id (uid)
3075  * For example, "%N.core" is the default; they can be disabled completely
3076  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3077  * This is controlled by the sysctl variable kern.corefile (see above).
3078  */
3079 static int
3080 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3081     int compress, struct vnode **vpp, char **namep)
3082 {
3083 	struct nameidata nd;
3084 	struct sbuf sb;
3085 	const char *format;
3086 	char *hostname, *name;
3087 	int indexpos, i, error, cmode, flags, oflags;
3088 
3089 	hostname = NULL;
3090 	format = corefilename;
3091 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3092 	indexpos = -1;
3093 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3094 	for (i = 0; format[i] != '\0'; i++) {
3095 		switch (format[i]) {
3096 		case '%':	/* Format character */
3097 			i++;
3098 			switch (format[i]) {
3099 			case '%':
3100 				sbuf_putc(&sb, '%');
3101 				break;
3102 			case 'H':	/* hostname */
3103 				if (hostname == NULL) {
3104 					hostname = malloc(MAXHOSTNAMELEN,
3105 					    M_TEMP, M_WAITOK);
3106 				}
3107 				getcredhostname(td->td_ucred, hostname,
3108 				    MAXHOSTNAMELEN);
3109 				sbuf_printf(&sb, "%s", hostname);
3110 				break;
3111 			case 'I':	/* autoincrementing index */
3112 				sbuf_printf(&sb, "0");
3113 				indexpos = sbuf_len(&sb) - 1;
3114 				break;
3115 			case 'N':	/* process name */
3116 				sbuf_printf(&sb, "%s", comm);
3117 				break;
3118 			case 'P':	/* process id */
3119 				sbuf_printf(&sb, "%u", pid);
3120 				break;
3121 			case 'U':	/* user id */
3122 				sbuf_printf(&sb, "%u", uid);
3123 				break;
3124 			default:
3125 				log(LOG_ERR,
3126 				    "Unknown format character %c in "
3127 				    "corename `%s'\n", format[i], format);
3128 				break;
3129 			}
3130 			break;
3131 		default:
3132 			sbuf_putc(&sb, format[i]);
3133 			break;
3134 		}
3135 	}
3136 	free(hostname, M_TEMP);
3137 #ifdef COMPRESS_USER_CORES
3138 	if (compress)
3139 		sbuf_printf(&sb, GZ_SUFFIX);
3140 #endif
3141 	if (sbuf_error(&sb) != 0) {
3142 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3143 		    "long\n", (long)pid, comm, (u_long)uid);
3144 		sbuf_delete(&sb);
3145 		free(name, M_TEMP);
3146 		return (ENOMEM);
3147 	}
3148 	sbuf_finish(&sb);
3149 	sbuf_delete(&sb);
3150 
3151 	cmode = S_IRUSR | S_IWUSR;
3152 	oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3153 
3154 	/*
3155 	 * If the core format has a %I in it, then we need to check
3156 	 * for existing corefiles before returning a name.
3157 	 * To do this we iterate over 0..num_cores to find a
3158 	 * non-existing core file name to use.
3159 	 */
3160 	if (indexpos != -1) {
3161 		for (i = 0; i < num_cores; i++) {
3162 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3163 			name[indexpos] = '0' + i;
3164 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3165 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3166 			    td->td_ucred, NULL);
3167 			if (error) {
3168 				if (error == EEXIST)
3169 					continue;
3170 				log(LOG_ERR,
3171 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3172 				    "on initial open test, error = %d\n",
3173 				    pid, comm, uid, name, error);
3174 			}
3175 			goto out;
3176 		}
3177 	}
3178 
3179 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3180 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3181 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3182 out:
3183 	if (error) {
3184 #ifdef AUDIT
3185 		audit_proc_coredump(td, name, error);
3186 #endif
3187 		free(name, M_TEMP);
3188 		return (error);
3189 	}
3190 	NDFREE(&nd, NDF_ONLY_PNBUF);
3191 	*vpp = nd.ni_vp;
3192 	*namep = name;
3193 	return (0);
3194 }
3195 
3196 /*
3197  * Dump a process' core.  The main routine does some
3198  * policy checking, and creates the name of the coredump;
3199  * then it passes on a vnode and a size limit to the process-specific
3200  * coredump routine if there is one; if there _is not_ one, it returns
3201  * ENOSYS; otherwise it returns the error from the process-specific routine.
3202  */
3203 
3204 static int
3205 coredump(struct thread *td)
3206 {
3207 	struct proc *p = td->td_proc;
3208 	struct ucred *cred = td->td_ucred;
3209 	struct vnode *vp;
3210 	struct flock lf;
3211 	struct vattr vattr;
3212 	int error, error1, locked;
3213 	struct mount *mp;
3214 	char *name;			/* name of corefile */
3215 	off_t limit;
3216 	int compress;
3217 
3218 #ifdef COMPRESS_USER_CORES
3219 	compress = compress_user_cores;
3220 #else
3221 	compress = 0;
3222 #endif
3223 	PROC_LOCK_ASSERT(p, MA_OWNED);
3224 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3225 	_STOPEVENT(p, S_CORE, 0);
3226 
3227 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
3228 		PROC_UNLOCK(p);
3229 		return (EFAULT);
3230 	}
3231 
3232 	/*
3233 	 * Note that the bulk of limit checking is done after
3234 	 * the corefile is created.  The exception is if the limit
3235 	 * for corefiles is 0, in which case we don't bother
3236 	 * creating the corefile at all.  This layout means that
3237 	 * a corefile is truncated instead of not being created,
3238 	 * if it is larger than the limit.
3239 	 */
3240 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3241 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3242 		PROC_UNLOCK(p);
3243 		return (EFBIG);
3244 	}
3245 	PROC_UNLOCK(p);
3246 
3247 restart:
3248 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3249 	    &vp, &name);
3250 	if (error != 0)
3251 		return (error);
3252 
3253 	/* Don't dump to non-regular files or files with links. */
3254 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3255 	    vattr.va_nlink != 1) {
3256 		VOP_UNLOCK(vp, 0);
3257 		error = EFAULT;
3258 		goto close;
3259 	}
3260 
3261 	VOP_UNLOCK(vp, 0);
3262 	lf.l_whence = SEEK_SET;
3263 	lf.l_start = 0;
3264 	lf.l_len = 0;
3265 	lf.l_type = F_WRLCK;
3266 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3267 
3268 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3269 		lf.l_type = F_UNLCK;
3270 		if (locked)
3271 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3272 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3273 			goto out;
3274 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3275 			goto out;
3276 		free(name, M_TEMP);
3277 		goto restart;
3278 	}
3279 
3280 	VATTR_NULL(&vattr);
3281 	vattr.va_size = 0;
3282 	if (set_core_nodump_flag)
3283 		vattr.va_flags = UF_NODUMP;
3284 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3285 	VOP_SETATTR(vp, &vattr, cred);
3286 	VOP_UNLOCK(vp, 0);
3287 	vn_finished_write(mp);
3288 	PROC_LOCK(p);
3289 	p->p_acflag |= ACORE;
3290 	PROC_UNLOCK(p);
3291 
3292 	if (p->p_sysent->sv_coredump != NULL) {
3293 		error = p->p_sysent->sv_coredump(td, vp, limit,
3294 		    compress ? IMGACT_CORE_COMPRESS : 0);
3295 	} else {
3296 		error = ENOSYS;
3297 	}
3298 
3299 	if (locked) {
3300 		lf.l_type = F_UNLCK;
3301 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3302 	}
3303 close:
3304 	error1 = vn_close(vp, FWRITE, cred, td);
3305 	if (error == 0)
3306 		error = error1;
3307 out:
3308 #ifdef AUDIT
3309 	audit_proc_coredump(td, name, error);
3310 #endif
3311 	free(name, M_TEMP);
3312 	return (error);
3313 }
3314 
3315 /*
3316  * Nonexistent system call-- signal process (may want to handle it).  Flag
3317  * error in case process won't see signal immediately (blocked or ignored).
3318  */
3319 #ifndef _SYS_SYSPROTO_H_
3320 struct nosys_args {
3321 	int	dummy;
3322 };
3323 #endif
3324 /* ARGSUSED */
3325 int
3326 nosys(td, args)
3327 	struct thread *td;
3328 	struct nosys_args *args;
3329 {
3330 	struct proc *p = td->td_proc;
3331 
3332 	PROC_LOCK(p);
3333 	tdsignal(td, SIGSYS);
3334 	PROC_UNLOCK(p);
3335 	return (ENOSYS);
3336 }
3337 
3338 /*
3339  * Send a SIGIO or SIGURG signal to a process or process group using stored
3340  * credentials rather than those of the current process.
3341  */
3342 void
3343 pgsigio(sigiop, sig, checkctty)
3344 	struct sigio **sigiop;
3345 	int sig, checkctty;
3346 {
3347 	ksiginfo_t ksi;
3348 	struct sigio *sigio;
3349 
3350 	ksiginfo_init(&ksi);
3351 	ksi.ksi_signo = sig;
3352 	ksi.ksi_code = SI_KERNEL;
3353 
3354 	SIGIO_LOCK();
3355 	sigio = *sigiop;
3356 	if (sigio == NULL) {
3357 		SIGIO_UNLOCK();
3358 		return;
3359 	}
3360 	if (sigio->sio_pgid > 0) {
3361 		PROC_LOCK(sigio->sio_proc);
3362 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3363 			kern_psignal(sigio->sio_proc, sig);
3364 		PROC_UNLOCK(sigio->sio_proc);
3365 	} else if (sigio->sio_pgid < 0) {
3366 		struct proc *p;
3367 
3368 		PGRP_LOCK(sigio->sio_pgrp);
3369 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3370 			PROC_LOCK(p);
3371 			if (p->p_state == PRS_NORMAL &&
3372 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3373 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3374 				kern_psignal(p, sig);
3375 			PROC_UNLOCK(p);
3376 		}
3377 		PGRP_UNLOCK(sigio->sio_pgrp);
3378 	}
3379 	SIGIO_UNLOCK();
3380 }
3381 
3382 static int
3383 filt_sigattach(struct knote *kn)
3384 {
3385 	struct proc *p = curproc;
3386 
3387 	kn->kn_ptr.p_proc = p;
3388 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3389 
3390 	knlist_add(&p->p_klist, kn, 0);
3391 
3392 	return (0);
3393 }
3394 
3395 static void
3396 filt_sigdetach(struct knote *kn)
3397 {
3398 	struct proc *p = kn->kn_ptr.p_proc;
3399 
3400 	knlist_remove(&p->p_klist, kn, 0);
3401 }
3402 
3403 /*
3404  * signal knotes are shared with proc knotes, so we apply a mask to
3405  * the hint in order to differentiate them from process hints.  This
3406  * could be avoided by using a signal-specific knote list, but probably
3407  * isn't worth the trouble.
3408  */
3409 static int
3410 filt_signal(struct knote *kn, long hint)
3411 {
3412 
3413 	if (hint & NOTE_SIGNAL) {
3414 		hint &= ~NOTE_SIGNAL;
3415 
3416 		if (kn->kn_id == hint)
3417 			kn->kn_data++;
3418 	}
3419 	return (kn->kn_data != 0);
3420 }
3421 
3422 struct sigacts *
3423 sigacts_alloc(void)
3424 {
3425 	struct sigacts *ps;
3426 
3427 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3428 	ps->ps_refcnt = 1;
3429 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3430 	return (ps);
3431 }
3432 
3433 void
3434 sigacts_free(struct sigacts *ps)
3435 {
3436 
3437 	mtx_lock(&ps->ps_mtx);
3438 	ps->ps_refcnt--;
3439 	if (ps->ps_refcnt == 0) {
3440 		mtx_destroy(&ps->ps_mtx);
3441 		free(ps, M_SUBPROC);
3442 	} else
3443 		mtx_unlock(&ps->ps_mtx);
3444 }
3445 
3446 struct sigacts *
3447 sigacts_hold(struct sigacts *ps)
3448 {
3449 	mtx_lock(&ps->ps_mtx);
3450 	ps->ps_refcnt++;
3451 	mtx_unlock(&ps->ps_mtx);
3452 	return (ps);
3453 }
3454 
3455 void
3456 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3457 {
3458 
3459 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3460 	mtx_lock(&src->ps_mtx);
3461 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3462 	mtx_unlock(&src->ps_mtx);
3463 }
3464 
3465 int
3466 sigacts_shared(struct sigacts *ps)
3467 {
3468 	int shared;
3469 
3470 	mtx_lock(&ps->ps_mtx);
3471 	shared = ps->ps_refcnt > 1;
3472 	mtx_unlock(&ps->ps_mtx);
3473 	return (shared);
3474 }
3475