xref: /freebsd/sys/kern/kern_sig.c (revision 5944f899a2519c6321bac3c17cc076418643a088)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_gzio.h"
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/imgact.h>
56 #include <sys/kernel.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/refcount.h>
63 #include <sys/namei.h>
64 #include <sys/proc.h>
65 #include <sys/procdesc.h>
66 #include <sys/posix4.h>
67 #include <sys/pioctl.h>
68 #include <sys/racct.h>
69 #include <sys/resourcevar.h>
70 #include <sys/sdt.h>
71 #include <sys/sbuf.h>
72 #include <sys/sleepqueue.h>
73 #include <sys/smp.h>
74 #include <sys/stat.h>
75 #include <sys/sx.h>
76 #include <sys/syscallsubr.h>
77 #include <sys/sysctl.h>
78 #include <sys/sysent.h>
79 #include <sys/syslog.h>
80 #include <sys/sysproto.h>
81 #include <sys/timers.h>
82 #include <sys/unistd.h>
83 #include <sys/wait.h>
84 #include <vm/vm.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #include <sys/jail.h>
89 
90 #include <machine/cpu.h>
91 
92 #include <security/audit/audit.h>
93 
94 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
95 
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE3(proc, , , signal__send,
98     "struct thread *", "struct proc *", "int");
99 SDT_PROBE_DEFINE2(proc, , , signal__clear,
100     "int", "ksiginfo_t *");
101 SDT_PROBE_DEFINE3(proc, , , signal__discard,
102     "struct thread *", "struct proc *", "int");
103 
104 static int	coredump(struct thread *);
105 static int	killpg1(struct thread *td, int sig, int pgid, int all,
106 		    ksiginfo_t *ksi);
107 static int	issignal(struct thread *td);
108 static int	sigprop(int sig);
109 static void	tdsigwakeup(struct thread *, int, sig_t, int);
110 static int	sig_suspend_threads(struct thread *, struct proc *, int);
111 static int	filt_sigattach(struct knote *kn);
112 static void	filt_sigdetach(struct knote *kn);
113 static int	filt_signal(struct knote *kn, long hint);
114 static struct thread *sigtd(struct proc *p, int sig, int prop);
115 static void	sigqueue_start(void);
116 
117 static uma_zone_t	ksiginfo_zone = NULL;
118 struct filterops sig_filtops = {
119 	.f_isfd = 0,
120 	.f_attach = filt_sigattach,
121 	.f_detach = filt_sigdetach,
122 	.f_event = filt_signal,
123 };
124 
125 static int	kern_logsigexit = 1;
126 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
127     &kern_logsigexit, 0,
128     "Log processes quitting on abnormal signals to syslog(3)");
129 
130 static int	kern_forcesigexit = 1;
131 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
132     &kern_forcesigexit, 0, "Force trap signal to be handled");
133 
134 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
135     "POSIX real time signal");
136 
137 static int	max_pending_per_proc = 128;
138 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
139     &max_pending_per_proc, 0, "Max pending signals per proc");
140 
141 static int	preallocate_siginfo = 1024;
142 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
143     &preallocate_siginfo, 0, "Preallocated signal memory size");
144 
145 static int	signal_overflow = 0;
146 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
147     &signal_overflow, 0, "Number of signals overflew");
148 
149 static int	signal_alloc_fail = 0;
150 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
151     &signal_alloc_fail, 0, "signals failed to be allocated");
152 
153 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
154 
155 /*
156  * Policy -- Can ucred cr1 send SIGIO to process cr2?
157  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
158  * in the right situations.
159  */
160 #define CANSIGIO(cr1, cr2) \
161 	((cr1)->cr_uid == 0 || \
162 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
163 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
164 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
165 	    (cr1)->cr_uid == (cr2)->cr_uid)
166 
167 static int	sugid_coredump;
168 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
169     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
170 
171 static int	capmode_coredump;
172 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
173     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
174 
175 static int	do_coredump = 1;
176 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
177 	&do_coredump, 0, "Enable/Disable coredumps");
178 
179 static int	set_core_nodump_flag = 0;
180 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
181 	0, "Enable setting the NODUMP flag on coredump files");
182 
183 static int	coredump_devctl = 0;
184 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
185 	0, "Generate a devctl notification when processes coredump");
186 
187 /*
188  * Signal properties and actions.
189  * The array below categorizes the signals and their default actions
190  * according to the following properties:
191  */
192 #define	SIGPROP_KILL		0x01	/* terminates process by default */
193 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
194 #define	SIGPROP_STOP		0x04	/* suspend process */
195 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
196 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
197 #define	SIGPROP_CONT		0x20	/* continue if suspended */
198 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
199 
200 static int sigproptbl[NSIG] = {
201 	[SIGHUP] =	SIGPROP_KILL,
202 	[SIGINT] =	SIGPROP_KILL,
203 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
204 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
205 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
206 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
207 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
208 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGKILL] =	SIGPROP_KILL,
210 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGPIPE] =	SIGPROP_KILL,
214 	[SIGALRM] =	SIGPROP_KILL,
215 	[SIGTERM] =	SIGPROP_KILL,
216 	[SIGURG] =	SIGPROP_IGNORE,
217 	[SIGSTOP] =	SIGPROP_STOP,
218 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
219 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
220 	[SIGCHLD] =	SIGPROP_IGNORE,
221 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
222 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
223 	[SIGIO] =	SIGPROP_IGNORE,
224 	[SIGXCPU] =	SIGPROP_KILL,
225 	[SIGXFSZ] =	SIGPROP_KILL,
226 	[SIGVTALRM] =	SIGPROP_KILL,
227 	[SIGPROF] =	SIGPROP_KILL,
228 	[SIGWINCH] =	SIGPROP_IGNORE,
229 	[SIGINFO] =	SIGPROP_IGNORE,
230 	[SIGUSR1] =	SIGPROP_KILL,
231 	[SIGUSR2] =	SIGPROP_KILL,
232 };
233 
234 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
235 
236 static void
237 sigqueue_start(void)
238 {
239 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
240 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
241 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
242 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
243 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
244 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
245 }
246 
247 ksiginfo_t *
248 ksiginfo_alloc(int wait)
249 {
250 	int flags;
251 
252 	flags = M_ZERO;
253 	if (! wait)
254 		flags |= M_NOWAIT;
255 	if (ksiginfo_zone != NULL)
256 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
257 	return (NULL);
258 }
259 
260 void
261 ksiginfo_free(ksiginfo_t *ksi)
262 {
263 	uma_zfree(ksiginfo_zone, ksi);
264 }
265 
266 static __inline int
267 ksiginfo_tryfree(ksiginfo_t *ksi)
268 {
269 	if (!(ksi->ksi_flags & KSI_EXT)) {
270 		uma_zfree(ksiginfo_zone, ksi);
271 		return (1);
272 	}
273 	return (0);
274 }
275 
276 void
277 sigqueue_init(sigqueue_t *list, struct proc *p)
278 {
279 	SIGEMPTYSET(list->sq_signals);
280 	SIGEMPTYSET(list->sq_kill);
281 	SIGEMPTYSET(list->sq_ptrace);
282 	TAILQ_INIT(&list->sq_list);
283 	list->sq_proc = p;
284 	list->sq_flags = SQ_INIT;
285 }
286 
287 /*
288  * Get a signal's ksiginfo.
289  * Return:
290  *	0	-	signal not found
291  *	others	-	signal number
292  */
293 static int
294 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
295 {
296 	struct proc *p = sq->sq_proc;
297 	struct ksiginfo *ksi, *next;
298 	int count = 0;
299 
300 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
301 
302 	if (!SIGISMEMBER(sq->sq_signals, signo))
303 		return (0);
304 
305 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
306 		count++;
307 		SIGDELSET(sq->sq_ptrace, signo);
308 		si->ksi_flags |= KSI_PTRACE;
309 	}
310 	if (SIGISMEMBER(sq->sq_kill, signo)) {
311 		count++;
312 		if (count == 1)
313 			SIGDELSET(sq->sq_kill, signo);
314 	}
315 
316 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
317 		if (ksi->ksi_signo == signo) {
318 			if (count == 0) {
319 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
320 				ksi->ksi_sigq = NULL;
321 				ksiginfo_copy(ksi, si);
322 				if (ksiginfo_tryfree(ksi) && p != NULL)
323 					p->p_pendingcnt--;
324 			}
325 			if (++count > 1)
326 				break;
327 		}
328 	}
329 
330 	if (count <= 1)
331 		SIGDELSET(sq->sq_signals, signo);
332 	si->ksi_signo = signo;
333 	return (signo);
334 }
335 
336 void
337 sigqueue_take(ksiginfo_t *ksi)
338 {
339 	struct ksiginfo *kp;
340 	struct proc	*p;
341 	sigqueue_t	*sq;
342 
343 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
344 		return;
345 
346 	p = sq->sq_proc;
347 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
348 	ksi->ksi_sigq = NULL;
349 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
350 		p->p_pendingcnt--;
351 
352 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
353 	     kp = TAILQ_NEXT(kp, ksi_link)) {
354 		if (kp->ksi_signo == ksi->ksi_signo)
355 			break;
356 	}
357 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
358 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
359 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
360 }
361 
362 static int
363 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
364 {
365 	struct proc *p = sq->sq_proc;
366 	struct ksiginfo *ksi;
367 	int ret = 0;
368 
369 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
370 
371 	/*
372 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
373 	 * for these signals.
374 	 */
375 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
376 		SIGADDSET(sq->sq_kill, signo);
377 		goto out_set_bit;
378 	}
379 
380 	/* directly insert the ksi, don't copy it */
381 	if (si->ksi_flags & KSI_INS) {
382 		if (si->ksi_flags & KSI_HEAD)
383 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
384 		else
385 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
386 		si->ksi_sigq = sq;
387 		goto out_set_bit;
388 	}
389 
390 	if (__predict_false(ksiginfo_zone == NULL)) {
391 		SIGADDSET(sq->sq_kill, signo);
392 		goto out_set_bit;
393 	}
394 
395 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
396 		signal_overflow++;
397 		ret = EAGAIN;
398 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
399 		signal_alloc_fail++;
400 		ret = EAGAIN;
401 	} else {
402 		if (p != NULL)
403 			p->p_pendingcnt++;
404 		ksiginfo_copy(si, ksi);
405 		ksi->ksi_signo = signo;
406 		if (si->ksi_flags & KSI_HEAD)
407 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
408 		else
409 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
410 		ksi->ksi_sigq = sq;
411 	}
412 
413 	if (ret != 0) {
414 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
415 			SIGADDSET(sq->sq_ptrace, signo);
416 			ret = 0;
417 			goto out_set_bit;
418 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
419 		    (si->ksi_flags & KSI_SIGQ) == 0) {
420 			SIGADDSET(sq->sq_kill, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		}
424 		return (ret);
425 	}
426 
427 out_set_bit:
428 	SIGADDSET(sq->sq_signals, signo);
429 	return (ret);
430 }
431 
432 void
433 sigqueue_flush(sigqueue_t *sq)
434 {
435 	struct proc *p = sq->sq_proc;
436 	ksiginfo_t *ksi;
437 
438 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
439 
440 	if (p != NULL)
441 		PROC_LOCK_ASSERT(p, MA_OWNED);
442 
443 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
444 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
445 		ksi->ksi_sigq = NULL;
446 		if (ksiginfo_tryfree(ksi) && p != NULL)
447 			p->p_pendingcnt--;
448 	}
449 
450 	SIGEMPTYSET(sq->sq_signals);
451 	SIGEMPTYSET(sq->sq_kill);
452 	SIGEMPTYSET(sq->sq_ptrace);
453 }
454 
455 static void
456 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
457 {
458 	sigset_t tmp;
459 	struct proc *p1, *p2;
460 	ksiginfo_t *ksi, *next;
461 
462 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
463 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
464 	p1 = src->sq_proc;
465 	p2 = dst->sq_proc;
466 	/* Move siginfo to target list */
467 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
468 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
469 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
470 			if (p1 != NULL)
471 				p1->p_pendingcnt--;
472 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
473 			ksi->ksi_sigq = dst;
474 			if (p2 != NULL)
475 				p2->p_pendingcnt++;
476 		}
477 	}
478 
479 	/* Move pending bits to target list */
480 	tmp = src->sq_kill;
481 	SIGSETAND(tmp, *set);
482 	SIGSETOR(dst->sq_kill, tmp);
483 	SIGSETNAND(src->sq_kill, tmp);
484 
485 	tmp = src->sq_ptrace;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_ptrace, tmp);
488 	SIGSETNAND(src->sq_ptrace, tmp);
489 
490 	tmp = src->sq_signals;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_signals, tmp);
493 	SIGSETNAND(src->sq_signals, tmp);
494 }
495 
496 #if 0
497 static void
498 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
499 {
500 	sigset_t set;
501 
502 	SIGEMPTYSET(set);
503 	SIGADDSET(set, signo);
504 	sigqueue_move_set(src, dst, &set);
505 }
506 #endif
507 
508 static void
509 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
510 {
511 	struct proc *p = sq->sq_proc;
512 	ksiginfo_t *ksi, *next;
513 
514 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
515 
516 	/* Remove siginfo queue */
517 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
518 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
519 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
520 			ksi->ksi_sigq = NULL;
521 			if (ksiginfo_tryfree(ksi) && p != NULL)
522 				p->p_pendingcnt--;
523 		}
524 	}
525 	SIGSETNAND(sq->sq_kill, *set);
526 	SIGSETNAND(sq->sq_ptrace, *set);
527 	SIGSETNAND(sq->sq_signals, *set);
528 }
529 
530 void
531 sigqueue_delete(sigqueue_t *sq, int signo)
532 {
533 	sigset_t set;
534 
535 	SIGEMPTYSET(set);
536 	SIGADDSET(set, signo);
537 	sigqueue_delete_set(sq, &set);
538 }
539 
540 /* Remove a set of signals for a process */
541 static void
542 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
543 {
544 	sigqueue_t worklist;
545 	struct thread *td0;
546 
547 	PROC_LOCK_ASSERT(p, MA_OWNED);
548 
549 	sigqueue_init(&worklist, NULL);
550 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
551 
552 	FOREACH_THREAD_IN_PROC(p, td0)
553 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
554 
555 	sigqueue_flush(&worklist);
556 }
557 
558 void
559 sigqueue_delete_proc(struct proc *p, int signo)
560 {
561 	sigset_t set;
562 
563 	SIGEMPTYSET(set);
564 	SIGADDSET(set, signo);
565 	sigqueue_delete_set_proc(p, &set);
566 }
567 
568 static void
569 sigqueue_delete_stopmask_proc(struct proc *p)
570 {
571 	sigset_t set;
572 
573 	SIGEMPTYSET(set);
574 	SIGADDSET(set, SIGSTOP);
575 	SIGADDSET(set, SIGTSTP);
576 	SIGADDSET(set, SIGTTIN);
577 	SIGADDSET(set, SIGTTOU);
578 	sigqueue_delete_set_proc(p, &set);
579 }
580 
581 /*
582  * Determine signal that should be delivered to thread td, the current
583  * thread, 0 if none.  If there is a pending stop signal with default
584  * action, the process stops in issignal().
585  */
586 int
587 cursig(struct thread *td)
588 {
589 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
590 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
591 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
592 	return (SIGPENDING(td) ? issignal(td) : 0);
593 }
594 
595 /*
596  * Arrange for ast() to handle unmasked pending signals on return to user
597  * mode.  This must be called whenever a signal is added to td_sigqueue or
598  * unmasked in td_sigmask.
599  */
600 void
601 signotify(struct thread *td)
602 {
603 	struct proc *p;
604 
605 	p = td->td_proc;
606 
607 	PROC_LOCK_ASSERT(p, MA_OWNED);
608 
609 	if (SIGPENDING(td)) {
610 		thread_lock(td);
611 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
612 		thread_unlock(td);
613 	}
614 }
615 
616 int
617 sigonstack(size_t sp)
618 {
619 	struct thread *td = curthread;
620 
621 	return ((td->td_pflags & TDP_ALTSTACK) ?
622 #if defined(COMPAT_43)
623 	    ((td->td_sigstk.ss_size == 0) ?
624 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
625 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
626 #else
627 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
628 #endif
629 	    : 0);
630 }
631 
632 static __inline int
633 sigprop(int sig)
634 {
635 
636 	if (sig > 0 && sig < nitems(sigproptbl))
637 		return (sigproptbl[sig]);
638 	return (0);
639 }
640 
641 int
642 sig_ffs(sigset_t *set)
643 {
644 	int i;
645 
646 	for (i = 0; i < _SIG_WORDS; i++)
647 		if (set->__bits[i])
648 			return (ffs(set->__bits[i]) + (i * 32));
649 	return (0);
650 }
651 
652 static bool
653 sigact_flag_test(const struct sigaction *act, int flag)
654 {
655 
656 	/*
657 	 * SA_SIGINFO is reset when signal disposition is set to
658 	 * ignore or default.  Other flags are kept according to user
659 	 * settings.
660 	 */
661 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
662 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
663 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
664 }
665 
666 /*
667  * kern_sigaction
668  * sigaction
669  * freebsd4_sigaction
670  * osigaction
671  */
672 int
673 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
674     struct sigaction *oact, int flags)
675 {
676 	struct sigacts *ps;
677 	struct proc *p = td->td_proc;
678 
679 	if (!_SIG_VALID(sig))
680 		return (EINVAL);
681 	if (act != NULL && act->sa_handler != SIG_DFL &&
682 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
683 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
684 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
685 		return (EINVAL);
686 
687 	PROC_LOCK(p);
688 	ps = p->p_sigacts;
689 	mtx_lock(&ps->ps_mtx);
690 	if (oact) {
691 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
692 		oact->sa_flags = 0;
693 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
694 			oact->sa_flags |= SA_ONSTACK;
695 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
696 			oact->sa_flags |= SA_RESTART;
697 		if (SIGISMEMBER(ps->ps_sigreset, sig))
698 			oact->sa_flags |= SA_RESETHAND;
699 		if (SIGISMEMBER(ps->ps_signodefer, sig))
700 			oact->sa_flags |= SA_NODEFER;
701 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
702 			oact->sa_flags |= SA_SIGINFO;
703 			oact->sa_sigaction =
704 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
705 		} else
706 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
707 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
708 			oact->sa_flags |= SA_NOCLDSTOP;
709 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
710 			oact->sa_flags |= SA_NOCLDWAIT;
711 	}
712 	if (act) {
713 		if ((sig == SIGKILL || sig == SIGSTOP) &&
714 		    act->sa_handler != SIG_DFL) {
715 			mtx_unlock(&ps->ps_mtx);
716 			PROC_UNLOCK(p);
717 			return (EINVAL);
718 		}
719 
720 		/*
721 		 * Change setting atomically.
722 		 */
723 
724 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
725 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
726 		if (sigact_flag_test(act, SA_SIGINFO)) {
727 			ps->ps_sigact[_SIG_IDX(sig)] =
728 			    (__sighandler_t *)act->sa_sigaction;
729 			SIGADDSET(ps->ps_siginfo, sig);
730 		} else {
731 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
732 			SIGDELSET(ps->ps_siginfo, sig);
733 		}
734 		if (!sigact_flag_test(act, SA_RESTART))
735 			SIGADDSET(ps->ps_sigintr, sig);
736 		else
737 			SIGDELSET(ps->ps_sigintr, sig);
738 		if (sigact_flag_test(act, SA_ONSTACK))
739 			SIGADDSET(ps->ps_sigonstack, sig);
740 		else
741 			SIGDELSET(ps->ps_sigonstack, sig);
742 		if (sigact_flag_test(act, SA_RESETHAND))
743 			SIGADDSET(ps->ps_sigreset, sig);
744 		else
745 			SIGDELSET(ps->ps_sigreset, sig);
746 		if (sigact_flag_test(act, SA_NODEFER))
747 			SIGADDSET(ps->ps_signodefer, sig);
748 		else
749 			SIGDELSET(ps->ps_signodefer, sig);
750 		if (sig == SIGCHLD) {
751 			if (act->sa_flags & SA_NOCLDSTOP)
752 				ps->ps_flag |= PS_NOCLDSTOP;
753 			else
754 				ps->ps_flag &= ~PS_NOCLDSTOP;
755 			if (act->sa_flags & SA_NOCLDWAIT) {
756 				/*
757 				 * Paranoia: since SA_NOCLDWAIT is implemented
758 				 * by reparenting the dying child to PID 1 (and
759 				 * trust it to reap the zombie), PID 1 itself
760 				 * is forbidden to set SA_NOCLDWAIT.
761 				 */
762 				if (p->p_pid == 1)
763 					ps->ps_flag &= ~PS_NOCLDWAIT;
764 				else
765 					ps->ps_flag |= PS_NOCLDWAIT;
766 			} else
767 				ps->ps_flag &= ~PS_NOCLDWAIT;
768 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
769 				ps->ps_flag |= PS_CLDSIGIGN;
770 			else
771 				ps->ps_flag &= ~PS_CLDSIGIGN;
772 		}
773 		/*
774 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
775 		 * and for signals set to SIG_DFL where the default is to
776 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
777 		 * have to restart the process.
778 		 */
779 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
780 		    (sigprop(sig) & SIGPROP_IGNORE &&
781 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
782 			/* never to be seen again */
783 			sigqueue_delete_proc(p, sig);
784 			if (sig != SIGCONT)
785 				/* easier in psignal */
786 				SIGADDSET(ps->ps_sigignore, sig);
787 			SIGDELSET(ps->ps_sigcatch, sig);
788 		} else {
789 			SIGDELSET(ps->ps_sigignore, sig);
790 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
791 				SIGDELSET(ps->ps_sigcatch, sig);
792 			else
793 				SIGADDSET(ps->ps_sigcatch, sig);
794 		}
795 #ifdef COMPAT_FREEBSD4
796 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
797 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
798 		    (flags & KSA_FREEBSD4) == 0)
799 			SIGDELSET(ps->ps_freebsd4, sig);
800 		else
801 			SIGADDSET(ps->ps_freebsd4, sig);
802 #endif
803 #ifdef COMPAT_43
804 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
805 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
806 		    (flags & KSA_OSIGSET) == 0)
807 			SIGDELSET(ps->ps_osigset, sig);
808 		else
809 			SIGADDSET(ps->ps_osigset, sig);
810 #endif
811 	}
812 	mtx_unlock(&ps->ps_mtx);
813 	PROC_UNLOCK(p);
814 	return (0);
815 }
816 
817 #ifndef _SYS_SYSPROTO_H_
818 struct sigaction_args {
819 	int	sig;
820 	struct	sigaction *act;
821 	struct	sigaction *oact;
822 };
823 #endif
824 int
825 sys_sigaction(struct thread *td, struct sigaction_args *uap)
826 {
827 	struct sigaction act, oact;
828 	struct sigaction *actp, *oactp;
829 	int error;
830 
831 	actp = (uap->act != NULL) ? &act : NULL;
832 	oactp = (uap->oact != NULL) ? &oact : NULL;
833 	if (actp) {
834 		error = copyin(uap->act, actp, sizeof(act));
835 		if (error)
836 			return (error);
837 	}
838 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
839 	if (oactp && !error)
840 		error = copyout(oactp, uap->oact, sizeof(oact));
841 	return (error);
842 }
843 
844 #ifdef COMPAT_FREEBSD4
845 #ifndef _SYS_SYSPROTO_H_
846 struct freebsd4_sigaction_args {
847 	int	sig;
848 	struct	sigaction *act;
849 	struct	sigaction *oact;
850 };
851 #endif
852 int
853 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
854 {
855 	struct sigaction act, oact;
856 	struct sigaction *actp, *oactp;
857 	int error;
858 
859 
860 	actp = (uap->act != NULL) ? &act : NULL;
861 	oactp = (uap->oact != NULL) ? &oact : NULL;
862 	if (actp) {
863 		error = copyin(uap->act, actp, sizeof(act));
864 		if (error)
865 			return (error);
866 	}
867 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
868 	if (oactp && !error)
869 		error = copyout(oactp, uap->oact, sizeof(oact));
870 	return (error);
871 }
872 #endif	/* COMAPT_FREEBSD4 */
873 
874 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
875 #ifndef _SYS_SYSPROTO_H_
876 struct osigaction_args {
877 	int	signum;
878 	struct	osigaction *nsa;
879 	struct	osigaction *osa;
880 };
881 #endif
882 int
883 osigaction(struct thread *td, struct osigaction_args *uap)
884 {
885 	struct osigaction sa;
886 	struct sigaction nsa, osa;
887 	struct sigaction *nsap, *osap;
888 	int error;
889 
890 	if (uap->signum <= 0 || uap->signum >= ONSIG)
891 		return (EINVAL);
892 
893 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
894 	osap = (uap->osa != NULL) ? &osa : NULL;
895 
896 	if (nsap) {
897 		error = copyin(uap->nsa, &sa, sizeof(sa));
898 		if (error)
899 			return (error);
900 		nsap->sa_handler = sa.sa_handler;
901 		nsap->sa_flags = sa.sa_flags;
902 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
903 	}
904 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
905 	if (osap && !error) {
906 		sa.sa_handler = osap->sa_handler;
907 		sa.sa_flags = osap->sa_flags;
908 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
909 		error = copyout(&sa, uap->osa, sizeof(sa));
910 	}
911 	return (error);
912 }
913 
914 #if !defined(__i386__)
915 /* Avoid replicating the same stub everywhere */
916 int
917 osigreturn(struct thread *td, struct osigreturn_args *uap)
918 {
919 
920 	return (nosys(td, (struct nosys_args *)uap));
921 }
922 #endif
923 #endif /* COMPAT_43 */
924 
925 /*
926  * Initialize signal state for process 0;
927  * set to ignore signals that are ignored by default.
928  */
929 void
930 siginit(struct proc *p)
931 {
932 	register int i;
933 	struct sigacts *ps;
934 
935 	PROC_LOCK(p);
936 	ps = p->p_sigacts;
937 	mtx_lock(&ps->ps_mtx);
938 	for (i = 1; i <= NSIG; i++) {
939 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
940 			SIGADDSET(ps->ps_sigignore, i);
941 		}
942 	}
943 	mtx_unlock(&ps->ps_mtx);
944 	PROC_UNLOCK(p);
945 }
946 
947 /*
948  * Reset specified signal to the default disposition.
949  */
950 static void
951 sigdflt(struct sigacts *ps, int sig)
952 {
953 
954 	mtx_assert(&ps->ps_mtx, MA_OWNED);
955 	SIGDELSET(ps->ps_sigcatch, sig);
956 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
957 		SIGADDSET(ps->ps_sigignore, sig);
958 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
959 	SIGDELSET(ps->ps_siginfo, sig);
960 }
961 
962 /*
963  * Reset signals for an exec of the specified process.
964  */
965 void
966 execsigs(struct proc *p)
967 {
968 	sigset_t osigignore;
969 	struct sigacts *ps;
970 	int sig;
971 	struct thread *td;
972 
973 	/*
974 	 * Reset caught signals.  Held signals remain held
975 	 * through td_sigmask (unless they were caught,
976 	 * and are now ignored by default).
977 	 */
978 	PROC_LOCK_ASSERT(p, MA_OWNED);
979 	ps = p->p_sigacts;
980 	mtx_lock(&ps->ps_mtx);
981 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
982 		sig = sig_ffs(&ps->ps_sigcatch);
983 		sigdflt(ps, sig);
984 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
985 			sigqueue_delete_proc(p, sig);
986 	}
987 
988 	/*
989 	 * As CloudABI processes cannot modify signal handlers, fully
990 	 * reset all signals to their default behavior. Do ignore
991 	 * SIGPIPE, as it would otherwise be impossible to recover from
992 	 * writes to broken pipes and sockets.
993 	 */
994 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
995 		osigignore = ps->ps_sigignore;
996 		while (SIGNOTEMPTY(osigignore)) {
997 			sig = sig_ffs(&osigignore);
998 			SIGDELSET(osigignore, sig);
999 			if (sig != SIGPIPE)
1000 				sigdflt(ps, sig);
1001 		}
1002 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1003 	}
1004 
1005 	/*
1006 	 * Reset stack state to the user stack.
1007 	 * Clear set of signals caught on the signal stack.
1008 	 */
1009 	td = curthread;
1010 	MPASS(td->td_proc == p);
1011 	td->td_sigstk.ss_flags = SS_DISABLE;
1012 	td->td_sigstk.ss_size = 0;
1013 	td->td_sigstk.ss_sp = 0;
1014 	td->td_pflags &= ~TDP_ALTSTACK;
1015 	/*
1016 	 * Reset no zombies if child dies flag as Solaris does.
1017 	 */
1018 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1019 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1020 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1021 	mtx_unlock(&ps->ps_mtx);
1022 }
1023 
1024 /*
1025  * kern_sigprocmask()
1026  *
1027  *	Manipulate signal mask.
1028  */
1029 int
1030 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1031     int flags)
1032 {
1033 	sigset_t new_block, oset1;
1034 	struct proc *p;
1035 	int error;
1036 
1037 	p = td->td_proc;
1038 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1039 		PROC_LOCK_ASSERT(p, MA_OWNED);
1040 	else
1041 		PROC_LOCK(p);
1042 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1043 	    ? MA_OWNED : MA_NOTOWNED);
1044 	if (oset != NULL)
1045 		*oset = td->td_sigmask;
1046 
1047 	error = 0;
1048 	if (set != NULL) {
1049 		switch (how) {
1050 		case SIG_BLOCK:
1051 			SIG_CANTMASK(*set);
1052 			oset1 = td->td_sigmask;
1053 			SIGSETOR(td->td_sigmask, *set);
1054 			new_block = td->td_sigmask;
1055 			SIGSETNAND(new_block, oset1);
1056 			break;
1057 		case SIG_UNBLOCK:
1058 			SIGSETNAND(td->td_sigmask, *set);
1059 			signotify(td);
1060 			goto out;
1061 		case SIG_SETMASK:
1062 			SIG_CANTMASK(*set);
1063 			oset1 = td->td_sigmask;
1064 			if (flags & SIGPROCMASK_OLD)
1065 				SIGSETLO(td->td_sigmask, *set);
1066 			else
1067 				td->td_sigmask = *set;
1068 			new_block = td->td_sigmask;
1069 			SIGSETNAND(new_block, oset1);
1070 			signotify(td);
1071 			break;
1072 		default:
1073 			error = EINVAL;
1074 			goto out;
1075 		}
1076 
1077 		/*
1078 		 * The new_block set contains signals that were not previously
1079 		 * blocked, but are blocked now.
1080 		 *
1081 		 * In case we block any signal that was not previously blocked
1082 		 * for td, and process has the signal pending, try to schedule
1083 		 * signal delivery to some thread that does not block the
1084 		 * signal, possibly waking it up.
1085 		 */
1086 		if (p->p_numthreads != 1)
1087 			reschedule_signals(p, new_block, flags);
1088 	}
1089 
1090 out:
1091 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1092 		PROC_UNLOCK(p);
1093 	return (error);
1094 }
1095 
1096 #ifndef _SYS_SYSPROTO_H_
1097 struct sigprocmask_args {
1098 	int	how;
1099 	const sigset_t *set;
1100 	sigset_t *oset;
1101 };
1102 #endif
1103 int
1104 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1105 {
1106 	sigset_t set, oset;
1107 	sigset_t *setp, *osetp;
1108 	int error;
1109 
1110 	setp = (uap->set != NULL) ? &set : NULL;
1111 	osetp = (uap->oset != NULL) ? &oset : NULL;
1112 	if (setp) {
1113 		error = copyin(uap->set, setp, sizeof(set));
1114 		if (error)
1115 			return (error);
1116 	}
1117 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1118 	if (osetp && !error) {
1119 		error = copyout(osetp, uap->oset, sizeof(oset));
1120 	}
1121 	return (error);
1122 }
1123 
1124 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1125 #ifndef _SYS_SYSPROTO_H_
1126 struct osigprocmask_args {
1127 	int	how;
1128 	osigset_t mask;
1129 };
1130 #endif
1131 int
1132 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1133 {
1134 	sigset_t set, oset;
1135 	int error;
1136 
1137 	OSIG2SIG(uap->mask, set);
1138 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1139 	SIG2OSIG(oset, td->td_retval[0]);
1140 	return (error);
1141 }
1142 #endif /* COMPAT_43 */
1143 
1144 int
1145 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1146 {
1147 	ksiginfo_t ksi;
1148 	sigset_t set;
1149 	int error;
1150 
1151 	error = copyin(uap->set, &set, sizeof(set));
1152 	if (error) {
1153 		td->td_retval[0] = error;
1154 		return (0);
1155 	}
1156 
1157 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1158 	if (error) {
1159 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1160 			error = ERESTART;
1161 		if (error == ERESTART)
1162 			return (error);
1163 		td->td_retval[0] = error;
1164 		return (0);
1165 	}
1166 
1167 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1168 	td->td_retval[0] = error;
1169 	return (0);
1170 }
1171 
1172 int
1173 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1174 {
1175 	struct timespec ts;
1176 	struct timespec *timeout;
1177 	sigset_t set;
1178 	ksiginfo_t ksi;
1179 	int error;
1180 
1181 	if (uap->timeout) {
1182 		error = copyin(uap->timeout, &ts, sizeof(ts));
1183 		if (error)
1184 			return (error);
1185 
1186 		timeout = &ts;
1187 	} else
1188 		timeout = NULL;
1189 
1190 	error = copyin(uap->set, &set, sizeof(set));
1191 	if (error)
1192 		return (error);
1193 
1194 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1195 	if (error)
1196 		return (error);
1197 
1198 	if (uap->info)
1199 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1200 
1201 	if (error == 0)
1202 		td->td_retval[0] = ksi.ksi_signo;
1203 	return (error);
1204 }
1205 
1206 int
1207 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1208 {
1209 	ksiginfo_t ksi;
1210 	sigset_t set;
1211 	int error;
1212 
1213 	error = copyin(uap->set, &set, sizeof(set));
1214 	if (error)
1215 		return (error);
1216 
1217 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1218 	if (error)
1219 		return (error);
1220 
1221 	if (uap->info)
1222 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1223 
1224 	if (error == 0)
1225 		td->td_retval[0] = ksi.ksi_signo;
1226 	return (error);
1227 }
1228 
1229 static void
1230 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1231 {
1232 	struct thread *thr;
1233 
1234 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1235 		if (thr == td)
1236 			thr->td_si = *si;
1237 		else
1238 			thr->td_si.si_signo = 0;
1239 	}
1240 }
1241 
1242 int
1243 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1244 	struct timespec *timeout)
1245 {
1246 	struct sigacts *ps;
1247 	sigset_t saved_mask, new_block;
1248 	struct proc *p;
1249 	int error, sig, timo, timevalid = 0;
1250 	struct timespec rts, ets, ts;
1251 	struct timeval tv;
1252 
1253 	p = td->td_proc;
1254 	error = 0;
1255 	ets.tv_sec = 0;
1256 	ets.tv_nsec = 0;
1257 
1258 	if (timeout != NULL) {
1259 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1260 			timevalid = 1;
1261 			getnanouptime(&rts);
1262 			ets = rts;
1263 			timespecadd(&ets, timeout);
1264 		}
1265 	}
1266 	ksiginfo_init(ksi);
1267 	/* Some signals can not be waited for. */
1268 	SIG_CANTMASK(waitset);
1269 	ps = p->p_sigacts;
1270 	PROC_LOCK(p);
1271 	saved_mask = td->td_sigmask;
1272 	SIGSETNAND(td->td_sigmask, waitset);
1273 	for (;;) {
1274 		mtx_lock(&ps->ps_mtx);
1275 		sig = cursig(td);
1276 		mtx_unlock(&ps->ps_mtx);
1277 		KASSERT(sig >= 0, ("sig %d", sig));
1278 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1279 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1280 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1281 				error = 0;
1282 				break;
1283 			}
1284 		}
1285 
1286 		if (error != 0)
1287 			break;
1288 
1289 		/*
1290 		 * POSIX says this must be checked after looking for pending
1291 		 * signals.
1292 		 */
1293 		if (timeout != NULL) {
1294 			if (!timevalid) {
1295 				error = EINVAL;
1296 				break;
1297 			}
1298 			getnanouptime(&rts);
1299 			if (timespeccmp(&rts, &ets, >=)) {
1300 				error = EAGAIN;
1301 				break;
1302 			}
1303 			ts = ets;
1304 			timespecsub(&ts, &rts);
1305 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1306 			timo = tvtohz(&tv);
1307 		} else {
1308 			timo = 0;
1309 		}
1310 
1311 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1312 
1313 		if (timeout != NULL) {
1314 			if (error == ERESTART) {
1315 				/* Timeout can not be restarted. */
1316 				error = EINTR;
1317 			} else if (error == EAGAIN) {
1318 				/* We will calculate timeout by ourself. */
1319 				error = 0;
1320 			}
1321 		}
1322 	}
1323 
1324 	new_block = saved_mask;
1325 	SIGSETNAND(new_block, td->td_sigmask);
1326 	td->td_sigmask = saved_mask;
1327 	/*
1328 	 * Fewer signals can be delivered to us, reschedule signal
1329 	 * notification.
1330 	 */
1331 	if (p->p_numthreads != 1)
1332 		reschedule_signals(p, new_block, 0);
1333 
1334 	if (error == 0) {
1335 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1336 
1337 		if (ksi->ksi_code == SI_TIMER)
1338 			itimer_accept(p, ksi->ksi_timerid, ksi);
1339 
1340 #ifdef KTRACE
1341 		if (KTRPOINT(td, KTR_PSIG)) {
1342 			sig_t action;
1343 
1344 			mtx_lock(&ps->ps_mtx);
1345 			action = ps->ps_sigact[_SIG_IDX(sig)];
1346 			mtx_unlock(&ps->ps_mtx);
1347 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1348 		}
1349 #endif
1350 		if (sig == SIGKILL) {
1351 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1352 			sigexit(td, sig);
1353 		}
1354 	}
1355 	PROC_UNLOCK(p);
1356 	return (error);
1357 }
1358 
1359 #ifndef _SYS_SYSPROTO_H_
1360 struct sigpending_args {
1361 	sigset_t	*set;
1362 };
1363 #endif
1364 int
1365 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1366 {
1367 	struct proc *p = td->td_proc;
1368 	sigset_t pending;
1369 
1370 	PROC_LOCK(p);
1371 	pending = p->p_sigqueue.sq_signals;
1372 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1373 	PROC_UNLOCK(p);
1374 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1375 }
1376 
1377 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1378 #ifndef _SYS_SYSPROTO_H_
1379 struct osigpending_args {
1380 	int	dummy;
1381 };
1382 #endif
1383 int
1384 osigpending(struct thread *td, struct osigpending_args *uap)
1385 {
1386 	struct proc *p = td->td_proc;
1387 	sigset_t pending;
1388 
1389 	PROC_LOCK(p);
1390 	pending = p->p_sigqueue.sq_signals;
1391 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1392 	PROC_UNLOCK(p);
1393 	SIG2OSIG(pending, td->td_retval[0]);
1394 	return (0);
1395 }
1396 #endif /* COMPAT_43 */
1397 
1398 #if defined(COMPAT_43)
1399 /*
1400  * Generalized interface signal handler, 4.3-compatible.
1401  */
1402 #ifndef _SYS_SYSPROTO_H_
1403 struct osigvec_args {
1404 	int	signum;
1405 	struct	sigvec *nsv;
1406 	struct	sigvec *osv;
1407 };
1408 #endif
1409 /* ARGSUSED */
1410 int
1411 osigvec(struct thread *td, struct osigvec_args *uap)
1412 {
1413 	struct sigvec vec;
1414 	struct sigaction nsa, osa;
1415 	struct sigaction *nsap, *osap;
1416 	int error;
1417 
1418 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1419 		return (EINVAL);
1420 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1421 	osap = (uap->osv != NULL) ? &osa : NULL;
1422 	if (nsap) {
1423 		error = copyin(uap->nsv, &vec, sizeof(vec));
1424 		if (error)
1425 			return (error);
1426 		nsap->sa_handler = vec.sv_handler;
1427 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1428 		nsap->sa_flags = vec.sv_flags;
1429 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1430 	}
1431 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1432 	if (osap && !error) {
1433 		vec.sv_handler = osap->sa_handler;
1434 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1435 		vec.sv_flags = osap->sa_flags;
1436 		vec.sv_flags &= ~SA_NOCLDWAIT;
1437 		vec.sv_flags ^= SA_RESTART;
1438 		error = copyout(&vec, uap->osv, sizeof(vec));
1439 	}
1440 	return (error);
1441 }
1442 
1443 #ifndef _SYS_SYSPROTO_H_
1444 struct osigblock_args {
1445 	int	mask;
1446 };
1447 #endif
1448 int
1449 osigblock(struct thread *td, struct osigblock_args *uap)
1450 {
1451 	sigset_t set, oset;
1452 
1453 	OSIG2SIG(uap->mask, set);
1454 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1455 	SIG2OSIG(oset, td->td_retval[0]);
1456 	return (0);
1457 }
1458 
1459 #ifndef _SYS_SYSPROTO_H_
1460 struct osigsetmask_args {
1461 	int	mask;
1462 };
1463 #endif
1464 int
1465 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1466 {
1467 	sigset_t set, oset;
1468 
1469 	OSIG2SIG(uap->mask, set);
1470 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1471 	SIG2OSIG(oset, td->td_retval[0]);
1472 	return (0);
1473 }
1474 #endif /* COMPAT_43 */
1475 
1476 /*
1477  * Suspend calling thread until signal, providing mask to be set in the
1478  * meantime.
1479  */
1480 #ifndef _SYS_SYSPROTO_H_
1481 struct sigsuspend_args {
1482 	const sigset_t *sigmask;
1483 };
1484 #endif
1485 /* ARGSUSED */
1486 int
1487 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1488 {
1489 	sigset_t mask;
1490 	int error;
1491 
1492 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1493 	if (error)
1494 		return (error);
1495 	return (kern_sigsuspend(td, mask));
1496 }
1497 
1498 int
1499 kern_sigsuspend(struct thread *td, sigset_t mask)
1500 {
1501 	struct proc *p = td->td_proc;
1502 	int has_sig, sig;
1503 
1504 	/*
1505 	 * When returning from sigsuspend, we want
1506 	 * the old mask to be restored after the
1507 	 * signal handler has finished.  Thus, we
1508 	 * save it here and mark the sigacts structure
1509 	 * to indicate this.
1510 	 */
1511 	PROC_LOCK(p);
1512 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1513 	    SIGPROCMASK_PROC_LOCKED);
1514 	td->td_pflags |= TDP_OLDMASK;
1515 
1516 	/*
1517 	 * Process signals now. Otherwise, we can get spurious wakeup
1518 	 * due to signal entered process queue, but delivered to other
1519 	 * thread. But sigsuspend should return only on signal
1520 	 * delivery.
1521 	 */
1522 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1523 	for (has_sig = 0; !has_sig;) {
1524 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1525 			0) == 0)
1526 			/* void */;
1527 		thread_suspend_check(0);
1528 		mtx_lock(&p->p_sigacts->ps_mtx);
1529 		while ((sig = cursig(td)) != 0) {
1530 			KASSERT(sig >= 0, ("sig %d", sig));
1531 			has_sig += postsig(sig);
1532 		}
1533 		mtx_unlock(&p->p_sigacts->ps_mtx);
1534 	}
1535 	PROC_UNLOCK(p);
1536 	td->td_errno = EINTR;
1537 	td->td_pflags |= TDP_NERRNO;
1538 	return (EJUSTRETURN);
1539 }
1540 
1541 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1542 /*
1543  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1544  * convention: libc stub passes mask, not pointer, to save a copyin.
1545  */
1546 #ifndef _SYS_SYSPROTO_H_
1547 struct osigsuspend_args {
1548 	osigset_t mask;
1549 };
1550 #endif
1551 /* ARGSUSED */
1552 int
1553 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1554 {
1555 	sigset_t mask;
1556 
1557 	OSIG2SIG(uap->mask, mask);
1558 	return (kern_sigsuspend(td, mask));
1559 }
1560 #endif /* COMPAT_43 */
1561 
1562 #if defined(COMPAT_43)
1563 #ifndef _SYS_SYSPROTO_H_
1564 struct osigstack_args {
1565 	struct	sigstack *nss;
1566 	struct	sigstack *oss;
1567 };
1568 #endif
1569 /* ARGSUSED */
1570 int
1571 osigstack(struct thread *td, struct osigstack_args *uap)
1572 {
1573 	struct sigstack nss, oss;
1574 	int error = 0;
1575 
1576 	if (uap->nss != NULL) {
1577 		error = copyin(uap->nss, &nss, sizeof(nss));
1578 		if (error)
1579 			return (error);
1580 	}
1581 	oss.ss_sp = td->td_sigstk.ss_sp;
1582 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1583 	if (uap->nss != NULL) {
1584 		td->td_sigstk.ss_sp = nss.ss_sp;
1585 		td->td_sigstk.ss_size = 0;
1586 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1587 		td->td_pflags |= TDP_ALTSTACK;
1588 	}
1589 	if (uap->oss != NULL)
1590 		error = copyout(&oss, uap->oss, sizeof(oss));
1591 
1592 	return (error);
1593 }
1594 #endif /* COMPAT_43 */
1595 
1596 #ifndef _SYS_SYSPROTO_H_
1597 struct sigaltstack_args {
1598 	stack_t	*ss;
1599 	stack_t	*oss;
1600 };
1601 #endif
1602 /* ARGSUSED */
1603 int
1604 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1605 {
1606 	stack_t ss, oss;
1607 	int error;
1608 
1609 	if (uap->ss != NULL) {
1610 		error = copyin(uap->ss, &ss, sizeof(ss));
1611 		if (error)
1612 			return (error);
1613 	}
1614 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1615 	    (uap->oss != NULL) ? &oss : NULL);
1616 	if (error)
1617 		return (error);
1618 	if (uap->oss != NULL)
1619 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1620 	return (error);
1621 }
1622 
1623 int
1624 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1625 {
1626 	struct proc *p = td->td_proc;
1627 	int oonstack;
1628 
1629 	oonstack = sigonstack(cpu_getstack(td));
1630 
1631 	if (oss != NULL) {
1632 		*oss = td->td_sigstk;
1633 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1634 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1635 	}
1636 
1637 	if (ss != NULL) {
1638 		if (oonstack)
1639 			return (EPERM);
1640 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1641 			return (EINVAL);
1642 		if (!(ss->ss_flags & SS_DISABLE)) {
1643 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1644 				return (ENOMEM);
1645 
1646 			td->td_sigstk = *ss;
1647 			td->td_pflags |= TDP_ALTSTACK;
1648 		} else {
1649 			td->td_pflags &= ~TDP_ALTSTACK;
1650 		}
1651 	}
1652 	return (0);
1653 }
1654 
1655 /*
1656  * Common code for kill process group/broadcast kill.
1657  * cp is calling process.
1658  */
1659 static int
1660 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1661 {
1662 	struct proc *p;
1663 	struct pgrp *pgrp;
1664 	int err;
1665 	int ret;
1666 
1667 	ret = ESRCH;
1668 	if (all) {
1669 		/*
1670 		 * broadcast
1671 		 */
1672 		sx_slock(&allproc_lock);
1673 		FOREACH_PROC_IN_SYSTEM(p) {
1674 			PROC_LOCK(p);
1675 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1676 			    p == td->td_proc || p->p_state == PRS_NEW) {
1677 				PROC_UNLOCK(p);
1678 				continue;
1679 			}
1680 			err = p_cansignal(td, p, sig);
1681 			if (err == 0) {
1682 				if (sig)
1683 					pksignal(p, sig, ksi);
1684 				ret = err;
1685 			}
1686 			else if (ret == ESRCH)
1687 				ret = err;
1688 			PROC_UNLOCK(p);
1689 		}
1690 		sx_sunlock(&allproc_lock);
1691 	} else {
1692 		sx_slock(&proctree_lock);
1693 		if (pgid == 0) {
1694 			/*
1695 			 * zero pgid means send to my process group.
1696 			 */
1697 			pgrp = td->td_proc->p_pgrp;
1698 			PGRP_LOCK(pgrp);
1699 		} else {
1700 			pgrp = pgfind(pgid);
1701 			if (pgrp == NULL) {
1702 				sx_sunlock(&proctree_lock);
1703 				return (ESRCH);
1704 			}
1705 		}
1706 		sx_sunlock(&proctree_lock);
1707 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1708 			PROC_LOCK(p);
1709 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1710 			    p->p_state == PRS_NEW) {
1711 				PROC_UNLOCK(p);
1712 				continue;
1713 			}
1714 			err = p_cansignal(td, p, sig);
1715 			if (err == 0) {
1716 				if (sig)
1717 					pksignal(p, sig, ksi);
1718 				ret = err;
1719 			}
1720 			else if (ret == ESRCH)
1721 				ret = err;
1722 			PROC_UNLOCK(p);
1723 		}
1724 		PGRP_UNLOCK(pgrp);
1725 	}
1726 	return (ret);
1727 }
1728 
1729 #ifndef _SYS_SYSPROTO_H_
1730 struct kill_args {
1731 	int	pid;
1732 	int	signum;
1733 };
1734 #endif
1735 /* ARGSUSED */
1736 int
1737 sys_kill(struct thread *td, struct kill_args *uap)
1738 {
1739 	ksiginfo_t ksi;
1740 	struct proc *p;
1741 	int error;
1742 
1743 	/*
1744 	 * A process in capability mode can send signals only to himself.
1745 	 * The main rationale behind this is that abort(3) is implemented as
1746 	 * kill(getpid(), SIGABRT).
1747 	 */
1748 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1749 		return (ECAPMODE);
1750 
1751 	AUDIT_ARG_SIGNUM(uap->signum);
1752 	AUDIT_ARG_PID(uap->pid);
1753 	if ((u_int)uap->signum > _SIG_MAXSIG)
1754 		return (EINVAL);
1755 
1756 	ksiginfo_init(&ksi);
1757 	ksi.ksi_signo = uap->signum;
1758 	ksi.ksi_code = SI_USER;
1759 	ksi.ksi_pid = td->td_proc->p_pid;
1760 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1761 
1762 	if (uap->pid > 0) {
1763 		/* kill single process */
1764 		if ((p = pfind(uap->pid)) == NULL) {
1765 			if ((p = zpfind(uap->pid)) == NULL)
1766 				return (ESRCH);
1767 		}
1768 		AUDIT_ARG_PROCESS(p);
1769 		error = p_cansignal(td, p, uap->signum);
1770 		if (error == 0 && uap->signum)
1771 			pksignal(p, uap->signum, &ksi);
1772 		PROC_UNLOCK(p);
1773 		return (error);
1774 	}
1775 	switch (uap->pid) {
1776 	case -1:		/* broadcast signal */
1777 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1778 	case 0:			/* signal own process group */
1779 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1780 	default:		/* negative explicit process group */
1781 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1782 	}
1783 	/* NOTREACHED */
1784 }
1785 
1786 int
1787 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1788 {
1789 	struct proc *p;
1790 	cap_rights_t rights;
1791 	int error;
1792 
1793 	AUDIT_ARG_SIGNUM(uap->signum);
1794 	AUDIT_ARG_FD(uap->fd);
1795 	if ((u_int)uap->signum > _SIG_MAXSIG)
1796 		return (EINVAL);
1797 
1798 	error = procdesc_find(td, uap->fd,
1799 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1800 	if (error)
1801 		return (error);
1802 	AUDIT_ARG_PROCESS(p);
1803 	error = p_cansignal(td, p, uap->signum);
1804 	if (error == 0 && uap->signum)
1805 		kern_psignal(p, uap->signum);
1806 	PROC_UNLOCK(p);
1807 	return (error);
1808 }
1809 
1810 #if defined(COMPAT_43)
1811 #ifndef _SYS_SYSPROTO_H_
1812 struct okillpg_args {
1813 	int	pgid;
1814 	int	signum;
1815 };
1816 #endif
1817 /* ARGSUSED */
1818 int
1819 okillpg(struct thread *td, struct okillpg_args *uap)
1820 {
1821 	ksiginfo_t ksi;
1822 
1823 	AUDIT_ARG_SIGNUM(uap->signum);
1824 	AUDIT_ARG_PID(uap->pgid);
1825 	if ((u_int)uap->signum > _SIG_MAXSIG)
1826 		return (EINVAL);
1827 
1828 	ksiginfo_init(&ksi);
1829 	ksi.ksi_signo = uap->signum;
1830 	ksi.ksi_code = SI_USER;
1831 	ksi.ksi_pid = td->td_proc->p_pid;
1832 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1833 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1834 }
1835 #endif /* COMPAT_43 */
1836 
1837 #ifndef _SYS_SYSPROTO_H_
1838 struct sigqueue_args {
1839 	pid_t pid;
1840 	int signum;
1841 	/* union sigval */ void *value;
1842 };
1843 #endif
1844 int
1845 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1846 {
1847 	ksiginfo_t ksi;
1848 	struct proc *p;
1849 	int error;
1850 
1851 	if ((u_int)uap->signum > _SIG_MAXSIG)
1852 		return (EINVAL);
1853 
1854 	/*
1855 	 * Specification says sigqueue can only send signal to
1856 	 * single process.
1857 	 */
1858 	if (uap->pid <= 0)
1859 		return (EINVAL);
1860 
1861 	if ((p = pfind(uap->pid)) == NULL) {
1862 		if ((p = zpfind(uap->pid)) == NULL)
1863 			return (ESRCH);
1864 	}
1865 	error = p_cansignal(td, p, uap->signum);
1866 	if (error == 0 && uap->signum != 0) {
1867 		ksiginfo_init(&ksi);
1868 		ksi.ksi_flags = KSI_SIGQ;
1869 		ksi.ksi_signo = uap->signum;
1870 		ksi.ksi_code = SI_QUEUE;
1871 		ksi.ksi_pid = td->td_proc->p_pid;
1872 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1873 		ksi.ksi_value.sival_ptr = uap->value;
1874 		error = pksignal(p, ksi.ksi_signo, &ksi);
1875 	}
1876 	PROC_UNLOCK(p);
1877 	return (error);
1878 }
1879 
1880 /*
1881  * Send a signal to a process group.
1882  */
1883 void
1884 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1885 {
1886 	struct pgrp *pgrp;
1887 
1888 	if (pgid != 0) {
1889 		sx_slock(&proctree_lock);
1890 		pgrp = pgfind(pgid);
1891 		sx_sunlock(&proctree_lock);
1892 		if (pgrp != NULL) {
1893 			pgsignal(pgrp, sig, 0, ksi);
1894 			PGRP_UNLOCK(pgrp);
1895 		}
1896 	}
1897 }
1898 
1899 /*
1900  * Send a signal to a process group.  If checktty is 1,
1901  * limit to members which have a controlling terminal.
1902  */
1903 void
1904 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1905 {
1906 	struct proc *p;
1907 
1908 	if (pgrp) {
1909 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1910 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1911 			PROC_LOCK(p);
1912 			if (p->p_state == PRS_NORMAL &&
1913 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1914 				pksignal(p, sig, ksi);
1915 			PROC_UNLOCK(p);
1916 		}
1917 	}
1918 }
1919 
1920 
1921 /*
1922  * Recalculate the signal mask and reset the signal disposition after
1923  * usermode frame for delivery is formed.  Should be called after
1924  * mach-specific routine, because sysent->sv_sendsig() needs correct
1925  * ps_siginfo and signal mask.
1926  */
1927 static void
1928 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1929 {
1930 	sigset_t mask;
1931 
1932 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1933 	td->td_ru.ru_nsignals++;
1934 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1935 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1936 		SIGADDSET(mask, sig);
1937 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1938 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1939 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1940 		sigdflt(ps, sig);
1941 }
1942 
1943 
1944 /*
1945  * Send a signal caused by a trap to the current thread.  If it will be
1946  * caught immediately, deliver it with correct code.  Otherwise, post it
1947  * normally.
1948  */
1949 void
1950 trapsignal(struct thread *td, ksiginfo_t *ksi)
1951 {
1952 	struct sigacts *ps;
1953 	struct proc *p;
1954 	int sig;
1955 	int code;
1956 
1957 	p = td->td_proc;
1958 	sig = ksi->ksi_signo;
1959 	code = ksi->ksi_code;
1960 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1961 
1962 	PROC_LOCK(p);
1963 	ps = p->p_sigacts;
1964 	mtx_lock(&ps->ps_mtx);
1965 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1966 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1967 #ifdef KTRACE
1968 		if (KTRPOINT(curthread, KTR_PSIG))
1969 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1970 			    &td->td_sigmask, code);
1971 #endif
1972 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1973 				ksi, &td->td_sigmask);
1974 		postsig_done(sig, td, ps);
1975 		mtx_unlock(&ps->ps_mtx);
1976 	} else {
1977 		/*
1978 		 * Avoid a possible infinite loop if the thread
1979 		 * masking the signal or process is ignoring the
1980 		 * signal.
1981 		 */
1982 		if (kern_forcesigexit &&
1983 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1984 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1985 			SIGDELSET(td->td_sigmask, sig);
1986 			SIGDELSET(ps->ps_sigcatch, sig);
1987 			SIGDELSET(ps->ps_sigignore, sig);
1988 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1989 		}
1990 		mtx_unlock(&ps->ps_mtx);
1991 		p->p_code = code;	/* XXX for core dump/debugger */
1992 		p->p_sig = sig;		/* XXX to verify code */
1993 		tdsendsignal(p, td, sig, ksi);
1994 	}
1995 	PROC_UNLOCK(p);
1996 }
1997 
1998 static struct thread *
1999 sigtd(struct proc *p, int sig, int prop)
2000 {
2001 	struct thread *td, *signal_td;
2002 
2003 	PROC_LOCK_ASSERT(p, MA_OWNED);
2004 
2005 	/*
2006 	 * Check if current thread can handle the signal without
2007 	 * switching context to another thread.
2008 	 */
2009 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2010 		return (curthread);
2011 	signal_td = NULL;
2012 	FOREACH_THREAD_IN_PROC(p, td) {
2013 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2014 			signal_td = td;
2015 			break;
2016 		}
2017 	}
2018 	if (signal_td == NULL)
2019 		signal_td = FIRST_THREAD_IN_PROC(p);
2020 	return (signal_td);
2021 }
2022 
2023 /*
2024  * Send the signal to the process.  If the signal has an action, the action
2025  * is usually performed by the target process rather than the caller; we add
2026  * the signal to the set of pending signals for the process.
2027  *
2028  * Exceptions:
2029  *   o When a stop signal is sent to a sleeping process that takes the
2030  *     default action, the process is stopped without awakening it.
2031  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2032  *     regardless of the signal action (eg, blocked or ignored).
2033  *
2034  * Other ignored signals are discarded immediately.
2035  *
2036  * NB: This function may be entered from the debugger via the "kill" DDB
2037  * command.  There is little that can be done to mitigate the possibly messy
2038  * side effects of this unwise possibility.
2039  */
2040 void
2041 kern_psignal(struct proc *p, int sig)
2042 {
2043 	ksiginfo_t ksi;
2044 
2045 	ksiginfo_init(&ksi);
2046 	ksi.ksi_signo = sig;
2047 	ksi.ksi_code = SI_KERNEL;
2048 	(void) tdsendsignal(p, NULL, sig, &ksi);
2049 }
2050 
2051 int
2052 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2053 {
2054 
2055 	return (tdsendsignal(p, NULL, sig, ksi));
2056 }
2057 
2058 /* Utility function for finding a thread to send signal event to. */
2059 int
2060 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2061 {
2062 	struct thread *td;
2063 
2064 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2065 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2066 		if (td == NULL)
2067 			return (ESRCH);
2068 		*ttd = td;
2069 	} else {
2070 		*ttd = NULL;
2071 		PROC_LOCK(p);
2072 	}
2073 	return (0);
2074 }
2075 
2076 void
2077 tdsignal(struct thread *td, int sig)
2078 {
2079 	ksiginfo_t ksi;
2080 
2081 	ksiginfo_init(&ksi);
2082 	ksi.ksi_signo = sig;
2083 	ksi.ksi_code = SI_KERNEL;
2084 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2085 }
2086 
2087 void
2088 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2089 {
2090 
2091 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2092 }
2093 
2094 int
2095 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2096 {
2097 	sig_t action;
2098 	sigqueue_t *sigqueue;
2099 	int prop;
2100 	struct sigacts *ps;
2101 	int intrval;
2102 	int ret = 0;
2103 	int wakeup_swapper;
2104 
2105 	MPASS(td == NULL || p == td->td_proc);
2106 	PROC_LOCK_ASSERT(p, MA_OWNED);
2107 
2108 	if (!_SIG_VALID(sig))
2109 		panic("%s(): invalid signal %d", __func__, sig);
2110 
2111 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2112 
2113 	/*
2114 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2115 	 */
2116 	if (p->p_state == PRS_ZOMBIE) {
2117 		if (ksi && (ksi->ksi_flags & KSI_INS))
2118 			ksiginfo_tryfree(ksi);
2119 		return (ret);
2120 	}
2121 
2122 	ps = p->p_sigacts;
2123 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2124 	prop = sigprop(sig);
2125 
2126 	if (td == NULL) {
2127 		td = sigtd(p, sig, prop);
2128 		sigqueue = &p->p_sigqueue;
2129 	} else
2130 		sigqueue = &td->td_sigqueue;
2131 
2132 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2133 
2134 	/*
2135 	 * If the signal is being ignored,
2136 	 * then we forget about it immediately.
2137 	 * (Note: we don't set SIGCONT in ps_sigignore,
2138 	 * and if it is set to SIG_IGN,
2139 	 * action will be SIG_DFL here.)
2140 	 */
2141 	mtx_lock(&ps->ps_mtx);
2142 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2143 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2144 
2145 		mtx_unlock(&ps->ps_mtx);
2146 		if (ksi && (ksi->ksi_flags & KSI_INS))
2147 			ksiginfo_tryfree(ksi);
2148 		return (ret);
2149 	}
2150 	if (SIGISMEMBER(td->td_sigmask, sig))
2151 		action = SIG_HOLD;
2152 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2153 		action = SIG_CATCH;
2154 	else
2155 		action = SIG_DFL;
2156 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2157 		intrval = EINTR;
2158 	else
2159 		intrval = ERESTART;
2160 	mtx_unlock(&ps->ps_mtx);
2161 
2162 	if (prop & SIGPROP_CONT)
2163 		sigqueue_delete_stopmask_proc(p);
2164 	else if (prop & SIGPROP_STOP) {
2165 		/*
2166 		 * If sending a tty stop signal to a member of an orphaned
2167 		 * process group, discard the signal here if the action
2168 		 * is default; don't stop the process below if sleeping,
2169 		 * and don't clear any pending SIGCONT.
2170 		 */
2171 		if ((prop & SIGPROP_TTYSTOP) &&
2172 		    (p->p_pgrp->pg_jobc == 0) &&
2173 		    (action == SIG_DFL)) {
2174 			if (ksi && (ksi->ksi_flags & KSI_INS))
2175 				ksiginfo_tryfree(ksi);
2176 			return (ret);
2177 		}
2178 		sigqueue_delete_proc(p, SIGCONT);
2179 		if (p->p_flag & P_CONTINUED) {
2180 			p->p_flag &= ~P_CONTINUED;
2181 			PROC_LOCK(p->p_pptr);
2182 			sigqueue_take(p->p_ksi);
2183 			PROC_UNLOCK(p->p_pptr);
2184 		}
2185 	}
2186 
2187 	ret = sigqueue_add(sigqueue, sig, ksi);
2188 	if (ret != 0)
2189 		return (ret);
2190 	signotify(td);
2191 	/*
2192 	 * Defer further processing for signals which are held,
2193 	 * except that stopped processes must be continued by SIGCONT.
2194 	 */
2195 	if (action == SIG_HOLD &&
2196 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2197 		return (ret);
2198 
2199 	/* SIGKILL: Remove procfs STOPEVENTs. */
2200 	if (sig == SIGKILL) {
2201 		/* from procfs_ioctl.c: PIOCBIC */
2202 		p->p_stops = 0;
2203 		/* from procfs_ioctl.c: PIOCCONT */
2204 		p->p_step = 0;
2205 		wakeup(&p->p_step);
2206 	}
2207 	/*
2208 	 * Some signals have a process-wide effect and a per-thread
2209 	 * component.  Most processing occurs when the process next
2210 	 * tries to cross the user boundary, however there are some
2211 	 * times when processing needs to be done immediately, such as
2212 	 * waking up threads so that they can cross the user boundary.
2213 	 * We try to do the per-process part here.
2214 	 */
2215 	if (P_SHOULDSTOP(p)) {
2216 		KASSERT(!(p->p_flag & P_WEXIT),
2217 		    ("signal to stopped but exiting process"));
2218 		if (sig == SIGKILL) {
2219 			/*
2220 			 * If traced process is already stopped,
2221 			 * then no further action is necessary.
2222 			 */
2223 			if (p->p_flag & P_TRACED)
2224 				goto out;
2225 			/*
2226 			 * SIGKILL sets process running.
2227 			 * It will die elsewhere.
2228 			 * All threads must be restarted.
2229 			 */
2230 			p->p_flag &= ~P_STOPPED_SIG;
2231 			goto runfast;
2232 		}
2233 
2234 		if (prop & SIGPROP_CONT) {
2235 			/*
2236 			 * If traced process is already stopped,
2237 			 * then no further action is necessary.
2238 			 */
2239 			if (p->p_flag & P_TRACED)
2240 				goto out;
2241 			/*
2242 			 * If SIGCONT is default (or ignored), we continue the
2243 			 * process but don't leave the signal in sigqueue as
2244 			 * it has no further action.  If SIGCONT is held, we
2245 			 * continue the process and leave the signal in
2246 			 * sigqueue.  If the process catches SIGCONT, let it
2247 			 * handle the signal itself.  If it isn't waiting on
2248 			 * an event, it goes back to run state.
2249 			 * Otherwise, process goes back to sleep state.
2250 			 */
2251 			p->p_flag &= ~P_STOPPED_SIG;
2252 			PROC_SLOCK(p);
2253 			if (p->p_numthreads == p->p_suspcount) {
2254 				PROC_SUNLOCK(p);
2255 				p->p_flag |= P_CONTINUED;
2256 				p->p_xsig = SIGCONT;
2257 				PROC_LOCK(p->p_pptr);
2258 				childproc_continued(p);
2259 				PROC_UNLOCK(p->p_pptr);
2260 				PROC_SLOCK(p);
2261 			}
2262 			if (action == SIG_DFL) {
2263 				thread_unsuspend(p);
2264 				PROC_SUNLOCK(p);
2265 				sigqueue_delete(sigqueue, sig);
2266 				goto out;
2267 			}
2268 			if (action == SIG_CATCH) {
2269 				/*
2270 				 * The process wants to catch it so it needs
2271 				 * to run at least one thread, but which one?
2272 				 */
2273 				PROC_SUNLOCK(p);
2274 				goto runfast;
2275 			}
2276 			/*
2277 			 * The signal is not ignored or caught.
2278 			 */
2279 			thread_unsuspend(p);
2280 			PROC_SUNLOCK(p);
2281 			goto out;
2282 		}
2283 
2284 		if (prop & SIGPROP_STOP) {
2285 			/*
2286 			 * If traced process is already stopped,
2287 			 * then no further action is necessary.
2288 			 */
2289 			if (p->p_flag & P_TRACED)
2290 				goto out;
2291 			/*
2292 			 * Already stopped, don't need to stop again
2293 			 * (If we did the shell could get confused).
2294 			 * Just make sure the signal STOP bit set.
2295 			 */
2296 			p->p_flag |= P_STOPPED_SIG;
2297 			sigqueue_delete(sigqueue, sig);
2298 			goto out;
2299 		}
2300 
2301 		/*
2302 		 * All other kinds of signals:
2303 		 * If a thread is sleeping interruptibly, simulate a
2304 		 * wakeup so that when it is continued it will be made
2305 		 * runnable and can look at the signal.  However, don't make
2306 		 * the PROCESS runnable, leave it stopped.
2307 		 * It may run a bit until it hits a thread_suspend_check().
2308 		 */
2309 		wakeup_swapper = 0;
2310 		PROC_SLOCK(p);
2311 		thread_lock(td);
2312 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2313 			wakeup_swapper = sleepq_abort(td, intrval);
2314 		thread_unlock(td);
2315 		PROC_SUNLOCK(p);
2316 		if (wakeup_swapper)
2317 			kick_proc0();
2318 		goto out;
2319 		/*
2320 		 * Mutexes are short lived. Threads waiting on them will
2321 		 * hit thread_suspend_check() soon.
2322 		 */
2323 	} else if (p->p_state == PRS_NORMAL) {
2324 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2325 			tdsigwakeup(td, sig, action, intrval);
2326 			goto out;
2327 		}
2328 
2329 		MPASS(action == SIG_DFL);
2330 
2331 		if (prop & SIGPROP_STOP) {
2332 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2333 				goto out;
2334 			p->p_flag |= P_STOPPED_SIG;
2335 			p->p_xsig = sig;
2336 			PROC_SLOCK(p);
2337 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2338 			if (p->p_numthreads == p->p_suspcount) {
2339 				/*
2340 				 * only thread sending signal to another
2341 				 * process can reach here, if thread is sending
2342 				 * signal to its process, because thread does
2343 				 * not suspend itself here, p_numthreads
2344 				 * should never be equal to p_suspcount.
2345 				 */
2346 				thread_stopped(p);
2347 				PROC_SUNLOCK(p);
2348 				sigqueue_delete_proc(p, p->p_xsig);
2349 			} else
2350 				PROC_SUNLOCK(p);
2351 			if (wakeup_swapper)
2352 				kick_proc0();
2353 			goto out;
2354 		}
2355 	} else {
2356 		/* Not in "NORMAL" state. discard the signal. */
2357 		sigqueue_delete(sigqueue, sig);
2358 		goto out;
2359 	}
2360 
2361 	/*
2362 	 * The process is not stopped so we need to apply the signal to all the
2363 	 * running threads.
2364 	 */
2365 runfast:
2366 	tdsigwakeup(td, sig, action, intrval);
2367 	PROC_SLOCK(p);
2368 	thread_unsuspend(p);
2369 	PROC_SUNLOCK(p);
2370 out:
2371 	/* If we jump here, proc slock should not be owned. */
2372 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2373 	return (ret);
2374 }
2375 
2376 /*
2377  * The force of a signal has been directed against a single
2378  * thread.  We need to see what we can do about knocking it
2379  * out of any sleep it may be in etc.
2380  */
2381 static void
2382 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2383 {
2384 	struct proc *p = td->td_proc;
2385 	register int prop;
2386 	int wakeup_swapper;
2387 
2388 	wakeup_swapper = 0;
2389 	PROC_LOCK_ASSERT(p, MA_OWNED);
2390 	prop = sigprop(sig);
2391 
2392 	PROC_SLOCK(p);
2393 	thread_lock(td);
2394 	/*
2395 	 * Bring the priority of a thread up if we want it to get
2396 	 * killed in this lifetime.  Be careful to avoid bumping the
2397 	 * priority of the idle thread, since we still allow to signal
2398 	 * kernel processes.
2399 	 */
2400 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2401 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2402 		sched_prio(td, PUSER);
2403 	if (TD_ON_SLEEPQ(td)) {
2404 		/*
2405 		 * If thread is sleeping uninterruptibly
2406 		 * we can't interrupt the sleep... the signal will
2407 		 * be noticed when the process returns through
2408 		 * trap() or syscall().
2409 		 */
2410 		if ((td->td_flags & TDF_SINTR) == 0)
2411 			goto out;
2412 		/*
2413 		 * If SIGCONT is default (or ignored) and process is
2414 		 * asleep, we are finished; the process should not
2415 		 * be awakened.
2416 		 */
2417 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2418 			thread_unlock(td);
2419 			PROC_SUNLOCK(p);
2420 			sigqueue_delete(&p->p_sigqueue, sig);
2421 			/*
2422 			 * It may be on either list in this state.
2423 			 * Remove from both for now.
2424 			 */
2425 			sigqueue_delete(&td->td_sigqueue, sig);
2426 			return;
2427 		}
2428 
2429 		/*
2430 		 * Don't awaken a sleeping thread for SIGSTOP if the
2431 		 * STOP signal is deferred.
2432 		 */
2433 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2434 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2435 			goto out;
2436 
2437 		/*
2438 		 * Give low priority threads a better chance to run.
2439 		 */
2440 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2441 			sched_prio(td, PUSER);
2442 
2443 		wakeup_swapper = sleepq_abort(td, intrval);
2444 	} else {
2445 		/*
2446 		 * Other states do nothing with the signal immediately,
2447 		 * other than kicking ourselves if we are running.
2448 		 * It will either never be noticed, or noticed very soon.
2449 		 */
2450 #ifdef SMP
2451 		if (TD_IS_RUNNING(td) && td != curthread)
2452 			forward_signal(td);
2453 #endif
2454 	}
2455 out:
2456 	PROC_SUNLOCK(p);
2457 	thread_unlock(td);
2458 	if (wakeup_swapper)
2459 		kick_proc0();
2460 }
2461 
2462 static int
2463 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2464 {
2465 	struct thread *td2;
2466 	int wakeup_swapper;
2467 
2468 	PROC_LOCK_ASSERT(p, MA_OWNED);
2469 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2470 
2471 	wakeup_swapper = 0;
2472 	FOREACH_THREAD_IN_PROC(p, td2) {
2473 		thread_lock(td2);
2474 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2475 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2476 		    (td2->td_flags & TDF_SINTR)) {
2477 			if (td2->td_flags & TDF_SBDRY) {
2478 				/*
2479 				 * Once a thread is asleep with
2480 				 * TDF_SBDRY and without TDF_SERESTART
2481 				 * or TDF_SEINTR set, it should never
2482 				 * become suspended due to this check.
2483 				 */
2484 				KASSERT(!TD_IS_SUSPENDED(td2),
2485 				    ("thread with deferred stops suspended"));
2486 				if (TD_SBDRY_INTR(td2) && sending) {
2487 					wakeup_swapper |= sleepq_abort(td2,
2488 					    TD_SBDRY_ERRNO(td2));
2489 				}
2490 			} else if (!TD_IS_SUSPENDED(td2)) {
2491 				thread_suspend_one(td2);
2492 			}
2493 		} else if (!TD_IS_SUSPENDED(td2)) {
2494 			if (sending || td != td2)
2495 				td2->td_flags |= TDF_ASTPENDING;
2496 #ifdef SMP
2497 			if (TD_IS_RUNNING(td2) && td2 != td)
2498 				forward_signal(td2);
2499 #endif
2500 		}
2501 		thread_unlock(td2);
2502 	}
2503 	return (wakeup_swapper);
2504 }
2505 
2506 /*
2507  * Stop the process for an event deemed interesting to the debugger. If si is
2508  * non-NULL, this is a signal exchange; the new signal requested by the
2509  * debugger will be returned for handling. If si is NULL, this is some other
2510  * type of interesting event. The debugger may request a signal be delivered in
2511  * that case as well, however it will be deferred until it can be handled.
2512  */
2513 int
2514 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2515 {
2516 	struct proc *p = td->td_proc;
2517 	struct thread *td2;
2518 	ksiginfo_t ksi;
2519 	int prop;
2520 
2521 	PROC_LOCK_ASSERT(p, MA_OWNED);
2522 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2523 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2524 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2525 
2526 	td->td_xsig = sig;
2527 
2528 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2529 		td->td_dbgflags |= TDB_XSIG;
2530 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2531 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2532 		PROC_SLOCK(p);
2533 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2534 			if (P_KILLED(p)) {
2535 				/*
2536 				 * Ensure that, if we've been PT_KILLed, the
2537 				 * exit status reflects that. Another thread
2538 				 * may also be in ptracestop(), having just
2539 				 * received the SIGKILL, but this thread was
2540 				 * unsuspended first.
2541 				 */
2542 				td->td_dbgflags &= ~TDB_XSIG;
2543 				td->td_xsig = SIGKILL;
2544 				p->p_ptevents = 0;
2545 				break;
2546 			}
2547 			if (p->p_flag & P_SINGLE_EXIT &&
2548 			    !(td->td_dbgflags & TDB_EXIT)) {
2549 				/*
2550 				 * Ignore ptrace stops except for thread exit
2551 				 * events when the process exits.
2552 				 */
2553 				td->td_dbgflags &= ~TDB_XSIG;
2554 				PROC_SUNLOCK(p);
2555 				return (0);
2556 			}
2557 
2558 			/*
2559 			 * Make wait(2) work.  Ensure that right after the
2560 			 * attach, the thread which was decided to become the
2561 			 * leader of attach gets reported to the waiter.
2562 			 * Otherwise, just avoid overwriting another thread's
2563 			 * assignment to p_xthread.  If another thread has
2564 			 * already set p_xthread, the current thread will get
2565 			 * a chance to report itself upon the next iteration.
2566 			 */
2567 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2568 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2569 			    p->p_xthread == NULL)) {
2570 				p->p_xsig = sig;
2571 				p->p_xthread = td;
2572 				td->td_dbgflags &= ~TDB_FSTP;
2573 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2574 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2575 				sig_suspend_threads(td, p, 0);
2576 			}
2577 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2578 				td->td_dbgflags &= ~TDB_STOPATFORK;
2579 				cv_broadcast(&p->p_dbgwait);
2580 			}
2581 stopme:
2582 			thread_suspend_switch(td, p);
2583 			if (p->p_xthread == td)
2584 				p->p_xthread = NULL;
2585 			if (!(p->p_flag & P_TRACED))
2586 				break;
2587 			if (td->td_dbgflags & TDB_SUSPEND) {
2588 				if (p->p_flag & P_SINGLE_EXIT)
2589 					break;
2590 				goto stopme;
2591 			}
2592 		}
2593 		PROC_SUNLOCK(p);
2594 	}
2595 
2596 	if (si != NULL && sig == td->td_xsig) {
2597 		/* Parent wants us to take the original signal unchanged. */
2598 		si->ksi_flags |= KSI_HEAD;
2599 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2600 			si->ksi_signo = 0;
2601 	} else if (td->td_xsig != 0) {
2602 		/*
2603 		 * If parent wants us to take a new signal, then it will leave
2604 		 * it in td->td_xsig; otherwise we just look for signals again.
2605 		 */
2606 		ksiginfo_init(&ksi);
2607 		ksi.ksi_signo = td->td_xsig;
2608 		ksi.ksi_flags |= KSI_PTRACE;
2609 		prop = sigprop(td->td_xsig);
2610 		td2 = sigtd(p, td->td_xsig, prop);
2611 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2612 		if (td != td2)
2613 			return (0);
2614 	}
2615 
2616 	return (td->td_xsig);
2617 }
2618 
2619 static void
2620 reschedule_signals(struct proc *p, sigset_t block, int flags)
2621 {
2622 	struct sigacts *ps;
2623 	struct thread *td;
2624 	int sig;
2625 
2626 	PROC_LOCK_ASSERT(p, MA_OWNED);
2627 	ps = p->p_sigacts;
2628 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2629 	    MA_OWNED : MA_NOTOWNED);
2630 	if (SIGISEMPTY(p->p_siglist))
2631 		return;
2632 	SIGSETAND(block, p->p_siglist);
2633 	while ((sig = sig_ffs(&block)) != 0) {
2634 		SIGDELSET(block, sig);
2635 		td = sigtd(p, sig, 0);
2636 		signotify(td);
2637 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2638 			mtx_lock(&ps->ps_mtx);
2639 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2640 			tdsigwakeup(td, sig, SIG_CATCH,
2641 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2642 			     ERESTART));
2643 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2644 			mtx_unlock(&ps->ps_mtx);
2645 	}
2646 }
2647 
2648 void
2649 tdsigcleanup(struct thread *td)
2650 {
2651 	struct proc *p;
2652 	sigset_t unblocked;
2653 
2654 	p = td->td_proc;
2655 	PROC_LOCK_ASSERT(p, MA_OWNED);
2656 
2657 	sigqueue_flush(&td->td_sigqueue);
2658 	if (p->p_numthreads == 1)
2659 		return;
2660 
2661 	/*
2662 	 * Since we cannot handle signals, notify signal post code
2663 	 * about this by filling the sigmask.
2664 	 *
2665 	 * Also, if needed, wake up thread(s) that do not block the
2666 	 * same signals as the exiting thread, since the thread might
2667 	 * have been selected for delivery and woken up.
2668 	 */
2669 	SIGFILLSET(unblocked);
2670 	SIGSETNAND(unblocked, td->td_sigmask);
2671 	SIGFILLSET(td->td_sigmask);
2672 	reschedule_signals(p, unblocked, 0);
2673 
2674 }
2675 
2676 static int
2677 sigdeferstop_curr_flags(int cflags)
2678 {
2679 
2680 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2681 	    (cflags & TDF_SBDRY) != 0);
2682 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2683 }
2684 
2685 /*
2686  * Defer the delivery of SIGSTOP for the current thread, according to
2687  * the requested mode.  Returns previous flags, which must be restored
2688  * by sigallowstop().
2689  *
2690  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2691  * cleared by the current thread, which allow the lock-less read-only
2692  * accesses below.
2693  */
2694 int
2695 sigdeferstop_impl(int mode)
2696 {
2697 	struct thread *td;
2698 	int cflags, nflags;
2699 
2700 	td = curthread;
2701 	cflags = sigdeferstop_curr_flags(td->td_flags);
2702 	switch (mode) {
2703 	case SIGDEFERSTOP_NOP:
2704 		nflags = cflags;
2705 		break;
2706 	case SIGDEFERSTOP_OFF:
2707 		nflags = 0;
2708 		break;
2709 	case SIGDEFERSTOP_SILENT:
2710 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2711 		break;
2712 	case SIGDEFERSTOP_EINTR:
2713 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2714 		break;
2715 	case SIGDEFERSTOP_ERESTART:
2716 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2717 		break;
2718 	default:
2719 		panic("sigdeferstop: invalid mode %x", mode);
2720 		break;
2721 	}
2722 	if (cflags == nflags)
2723 		return (SIGDEFERSTOP_VAL_NCHG);
2724 	thread_lock(td);
2725 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2726 	thread_unlock(td);
2727 	return (cflags);
2728 }
2729 
2730 /*
2731  * Restores the STOP handling mode, typically permitting the delivery
2732  * of SIGSTOP for the current thread.  This does not immediately
2733  * suspend if a stop was posted.  Instead, the thread will suspend
2734  * either via ast() or a subsequent interruptible sleep.
2735  */
2736 void
2737 sigallowstop_impl(int prev)
2738 {
2739 	struct thread *td;
2740 	int cflags;
2741 
2742 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2743 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2744 	    ("sigallowstop: incorrect previous mode %x", prev));
2745 	td = curthread;
2746 	cflags = sigdeferstop_curr_flags(td->td_flags);
2747 	if (cflags != prev) {
2748 		thread_lock(td);
2749 		td->td_flags = (td->td_flags & ~cflags) | prev;
2750 		thread_unlock(td);
2751 	}
2752 }
2753 
2754 /*
2755  * If the current process has received a signal (should be caught or cause
2756  * termination, should interrupt current syscall), return the signal number.
2757  * Stop signals with default action are processed immediately, then cleared;
2758  * they aren't returned.  This is checked after each entry to the system for
2759  * a syscall or trap (though this can usually be done without calling issignal
2760  * by checking the pending signal masks in cursig.) The normal call
2761  * sequence is
2762  *
2763  *	while (sig = cursig(curthread))
2764  *		postsig(sig);
2765  */
2766 static int
2767 issignal(struct thread *td)
2768 {
2769 	struct proc *p;
2770 	struct sigacts *ps;
2771 	struct sigqueue *queue;
2772 	sigset_t sigpending;
2773 	int sig, prop;
2774 	ksiginfo_t ksi;
2775 
2776 	p = td->td_proc;
2777 	ps = p->p_sigacts;
2778 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2779 	PROC_LOCK_ASSERT(p, MA_OWNED);
2780 	for (;;) {
2781 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2782 
2783 		sigpending = td->td_sigqueue.sq_signals;
2784 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2785 		SIGSETNAND(sigpending, td->td_sigmask);
2786 
2787 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2788 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2789 			SIG_STOPSIGMASK(sigpending);
2790 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2791 			return (0);
2792 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2793 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2794 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2795 			/*
2796 			 * If debugger just attached, always consume
2797 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2798 			 * execute the debugger attach ritual in
2799 			 * order.
2800 			 */
2801 			sig = SIGSTOP;
2802 			td->td_dbgflags |= TDB_FSTP;
2803 		} else {
2804 			sig = sig_ffs(&sigpending);
2805 		}
2806 
2807 		if (p->p_stops & S_SIG) {
2808 			mtx_unlock(&ps->ps_mtx);
2809 			stopevent(p, S_SIG, sig);
2810 			mtx_lock(&ps->ps_mtx);
2811 		}
2812 
2813 		/*
2814 		 * We should see pending but ignored signals
2815 		 * only if P_TRACED was on when they were posted.
2816 		 */
2817 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2818 			sigqueue_delete(&td->td_sigqueue, sig);
2819 			sigqueue_delete(&p->p_sigqueue, sig);
2820 			continue;
2821 		}
2822 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2823 			/*
2824 			 * If traced, always stop.
2825 			 * Remove old signal from queue before the stop.
2826 			 * XXX shrug off debugger, it causes siginfo to
2827 			 * be thrown away.
2828 			 */
2829 			queue = &td->td_sigqueue;
2830 			ksiginfo_init(&ksi);
2831 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2832 				queue = &p->p_sigqueue;
2833 				sigqueue_get(queue, sig, &ksi);
2834 			}
2835 			td->td_si = ksi.ksi_info;
2836 
2837 			mtx_unlock(&ps->ps_mtx);
2838 			sig = ptracestop(td, sig, &ksi);
2839 			mtx_lock(&ps->ps_mtx);
2840 
2841 			/*
2842 			 * Keep looking if the debugger discarded the signal
2843 			 * or replaced it with a masked signal.
2844 			 *
2845 			 * If the traced bit got turned off, go back up
2846 			 * to the top to rescan signals.  This ensures
2847 			 * that p_sig* and p_sigact are consistent.
2848 			 */
2849 			if (sig == 0 || (p->p_flag & P_TRACED) == 0)
2850 				continue;
2851 		}
2852 
2853 		prop = sigprop(sig);
2854 
2855 		/*
2856 		 * Decide whether the signal should be returned.
2857 		 * Return the signal's number, or fall through
2858 		 * to clear it from the pending mask.
2859 		 */
2860 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2861 
2862 		case (intptr_t)SIG_DFL:
2863 			/*
2864 			 * Don't take default actions on system processes.
2865 			 */
2866 			if (p->p_pid <= 1) {
2867 #ifdef DIAGNOSTIC
2868 				/*
2869 				 * Are you sure you want to ignore SIGSEGV
2870 				 * in init? XXX
2871 				 */
2872 				printf("Process (pid %lu) got signal %d\n",
2873 					(u_long)p->p_pid, sig);
2874 #endif
2875 				break;		/* == ignore */
2876 			}
2877 			/*
2878 			 * If there is a pending stop signal to process with
2879 			 * default action, stop here, then clear the signal.
2880 			 * Traced or exiting processes should ignore stops.
2881 			 * Additionally, a member of an orphaned process group
2882 			 * should ignore tty stops.
2883 			 */
2884 			if (prop & SIGPROP_STOP) {
2885 				if (p->p_flag &
2886 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2887 				    (p->p_pgrp->pg_jobc == 0 &&
2888 				     prop & SIGPROP_TTYSTOP))
2889 					break;	/* == ignore */
2890 				if (TD_SBDRY_INTR(td)) {
2891 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2892 					    ("lost TDF_SBDRY"));
2893 					return (-1);
2894 				}
2895 				mtx_unlock(&ps->ps_mtx);
2896 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2897 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2898 				sigqueue_delete(&td->td_sigqueue, sig);
2899 				sigqueue_delete(&p->p_sigqueue, sig);
2900 				p->p_flag |= P_STOPPED_SIG;
2901 				p->p_xsig = sig;
2902 				PROC_SLOCK(p);
2903 				sig_suspend_threads(td, p, 0);
2904 				thread_suspend_switch(td, p);
2905 				PROC_SUNLOCK(p);
2906 				mtx_lock(&ps->ps_mtx);
2907 				goto next;
2908 			} else if (prop & SIGPROP_IGNORE) {
2909 				/*
2910 				 * Except for SIGCONT, shouldn't get here.
2911 				 * Default action is to ignore; drop it.
2912 				 */
2913 				break;		/* == ignore */
2914 			} else
2915 				return (sig);
2916 			/*NOTREACHED*/
2917 
2918 		case (intptr_t)SIG_IGN:
2919 			/*
2920 			 * Masking above should prevent us ever trying
2921 			 * to take action on an ignored signal other
2922 			 * than SIGCONT, unless process is traced.
2923 			 */
2924 			if ((prop & SIGPROP_CONT) == 0 &&
2925 			    (p->p_flag & P_TRACED) == 0)
2926 				printf("issignal\n");
2927 			break;		/* == ignore */
2928 
2929 		default:
2930 			/*
2931 			 * This signal has an action, let
2932 			 * postsig() process it.
2933 			 */
2934 			return (sig);
2935 		}
2936 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2937 		sigqueue_delete(&p->p_sigqueue, sig);
2938 next:;
2939 	}
2940 	/* NOTREACHED */
2941 }
2942 
2943 void
2944 thread_stopped(struct proc *p)
2945 {
2946 	int n;
2947 
2948 	PROC_LOCK_ASSERT(p, MA_OWNED);
2949 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2950 	n = p->p_suspcount;
2951 	if (p == curproc)
2952 		n++;
2953 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2954 		PROC_SUNLOCK(p);
2955 		p->p_flag &= ~P_WAITED;
2956 		PROC_LOCK(p->p_pptr);
2957 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2958 			CLD_TRAPPED : CLD_STOPPED);
2959 		PROC_UNLOCK(p->p_pptr);
2960 		PROC_SLOCK(p);
2961 	}
2962 }
2963 
2964 /*
2965  * Take the action for the specified signal
2966  * from the current set of pending signals.
2967  */
2968 int
2969 postsig(sig)
2970 	register int sig;
2971 {
2972 	struct thread *td = curthread;
2973 	struct proc *p = td->td_proc;
2974 	struct sigacts *ps;
2975 	sig_t action;
2976 	ksiginfo_t ksi;
2977 	sigset_t returnmask;
2978 
2979 	KASSERT(sig != 0, ("postsig"));
2980 
2981 	PROC_LOCK_ASSERT(p, MA_OWNED);
2982 	ps = p->p_sigacts;
2983 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2984 	ksiginfo_init(&ksi);
2985 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2986 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2987 		return (0);
2988 	ksi.ksi_signo = sig;
2989 	if (ksi.ksi_code == SI_TIMER)
2990 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2991 	action = ps->ps_sigact[_SIG_IDX(sig)];
2992 #ifdef KTRACE
2993 	if (KTRPOINT(td, KTR_PSIG))
2994 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2995 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2996 #endif
2997 	if (p->p_stops & S_SIG) {
2998 		mtx_unlock(&ps->ps_mtx);
2999 		stopevent(p, S_SIG, sig);
3000 		mtx_lock(&ps->ps_mtx);
3001 	}
3002 
3003 	if (action == SIG_DFL) {
3004 		/*
3005 		 * Default action, where the default is to kill
3006 		 * the process.  (Other cases were ignored above.)
3007 		 */
3008 		mtx_unlock(&ps->ps_mtx);
3009 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3010 		sigexit(td, sig);
3011 		/* NOTREACHED */
3012 	} else {
3013 		/*
3014 		 * If we get here, the signal must be caught.
3015 		 */
3016 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
3017 		    ("postsig action"));
3018 		/*
3019 		 * Set the new mask value and also defer further
3020 		 * occurrences of this signal.
3021 		 *
3022 		 * Special case: user has done a sigsuspend.  Here the
3023 		 * current mask is not of interest, but rather the
3024 		 * mask from before the sigsuspend is what we want
3025 		 * restored after the signal processing is completed.
3026 		 */
3027 		if (td->td_pflags & TDP_OLDMASK) {
3028 			returnmask = td->td_oldsigmask;
3029 			td->td_pflags &= ~TDP_OLDMASK;
3030 		} else
3031 			returnmask = td->td_sigmask;
3032 
3033 		if (p->p_sig == sig) {
3034 			p->p_code = 0;
3035 			p->p_sig = 0;
3036 		}
3037 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3038 		postsig_done(sig, td, ps);
3039 	}
3040 	return (1);
3041 }
3042 
3043 /*
3044  * Kill the current process for stated reason.
3045  */
3046 void
3047 killproc(struct proc *p, char *why)
3048 {
3049 
3050 	PROC_LOCK_ASSERT(p, MA_OWNED);
3051 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3052 	    p->p_comm);
3053 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3054 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3055 	p->p_flag |= P_WKILLED;
3056 	kern_psignal(p, SIGKILL);
3057 }
3058 
3059 /*
3060  * Force the current process to exit with the specified signal, dumping core
3061  * if appropriate.  We bypass the normal tests for masked and caught signals,
3062  * allowing unrecoverable failures to terminate the process without changing
3063  * signal state.  Mark the accounting record with the signal termination.
3064  * If dumping core, save the signal number for the debugger.  Calls exit and
3065  * does not return.
3066  */
3067 void
3068 sigexit(struct thread *td, int sig)
3069 {
3070 	struct proc *p = td->td_proc;
3071 
3072 	PROC_LOCK_ASSERT(p, MA_OWNED);
3073 	p->p_acflag |= AXSIG;
3074 	/*
3075 	 * We must be single-threading to generate a core dump.  This
3076 	 * ensures that the registers in the core file are up-to-date.
3077 	 * Also, the ELF dump handler assumes that the thread list doesn't
3078 	 * change out from under it.
3079 	 *
3080 	 * XXX If another thread attempts to single-thread before us
3081 	 *     (e.g. via fork()), we won't get a dump at all.
3082 	 */
3083 	if ((sigprop(sig) & SIGPROP_CORE) &&
3084 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3085 		p->p_sig = sig;
3086 		/*
3087 		 * Log signals which would cause core dumps
3088 		 * (Log as LOG_INFO to appease those who don't want
3089 		 * these messages.)
3090 		 * XXX : Todo, as well as euid, write out ruid too
3091 		 * Note that coredump() drops proc lock.
3092 		 */
3093 		if (coredump(td) == 0)
3094 			sig |= WCOREFLAG;
3095 		if (kern_logsigexit)
3096 			log(LOG_INFO,
3097 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3098 			    p->p_pid, p->p_comm,
3099 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3100 			    sig &~ WCOREFLAG,
3101 			    sig & WCOREFLAG ? " (core dumped)" : "");
3102 	} else
3103 		PROC_UNLOCK(p);
3104 	exit1(td, 0, sig);
3105 	/* NOTREACHED */
3106 }
3107 
3108 /*
3109  * Send queued SIGCHLD to parent when child process's state
3110  * is changed.
3111  */
3112 static void
3113 sigparent(struct proc *p, int reason, int status)
3114 {
3115 	PROC_LOCK_ASSERT(p, MA_OWNED);
3116 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3117 
3118 	if (p->p_ksi != NULL) {
3119 		p->p_ksi->ksi_signo  = SIGCHLD;
3120 		p->p_ksi->ksi_code   = reason;
3121 		p->p_ksi->ksi_status = status;
3122 		p->p_ksi->ksi_pid    = p->p_pid;
3123 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3124 		if (KSI_ONQ(p->p_ksi))
3125 			return;
3126 	}
3127 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3128 }
3129 
3130 static void
3131 childproc_jobstate(struct proc *p, int reason, int sig)
3132 {
3133 	struct sigacts *ps;
3134 
3135 	PROC_LOCK_ASSERT(p, MA_OWNED);
3136 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3137 
3138 	/*
3139 	 * Wake up parent sleeping in kern_wait(), also send
3140 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3141 	 * that parent will awake, because parent may masked
3142 	 * the signal.
3143 	 */
3144 	p->p_pptr->p_flag |= P_STATCHILD;
3145 	wakeup(p->p_pptr);
3146 
3147 	ps = p->p_pptr->p_sigacts;
3148 	mtx_lock(&ps->ps_mtx);
3149 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3150 		mtx_unlock(&ps->ps_mtx);
3151 		sigparent(p, reason, sig);
3152 	} else
3153 		mtx_unlock(&ps->ps_mtx);
3154 }
3155 
3156 void
3157 childproc_stopped(struct proc *p, int reason)
3158 {
3159 
3160 	childproc_jobstate(p, reason, p->p_xsig);
3161 }
3162 
3163 void
3164 childproc_continued(struct proc *p)
3165 {
3166 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3167 }
3168 
3169 void
3170 childproc_exited(struct proc *p)
3171 {
3172 	int reason, status;
3173 
3174 	if (WCOREDUMP(p->p_xsig)) {
3175 		reason = CLD_DUMPED;
3176 		status = WTERMSIG(p->p_xsig);
3177 	} else if (WIFSIGNALED(p->p_xsig)) {
3178 		reason = CLD_KILLED;
3179 		status = WTERMSIG(p->p_xsig);
3180 	} else {
3181 		reason = CLD_EXITED;
3182 		status = p->p_xexit;
3183 	}
3184 	/*
3185 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3186 	 * done in exit1().
3187 	 */
3188 	sigparent(p, reason, status);
3189 }
3190 
3191 /*
3192  * We only have 1 character for the core count in the format
3193  * string, so the range will be 0-9
3194  */
3195 #define	MAX_NUM_CORE_FILES 10
3196 #ifndef NUM_CORE_FILES
3197 #define	NUM_CORE_FILES 5
3198 #endif
3199 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3200 static int num_cores = NUM_CORE_FILES;
3201 
3202 static int
3203 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3204 {
3205 	int error;
3206 	int new_val;
3207 
3208 	new_val = num_cores;
3209 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3210 	if (error != 0 || req->newptr == NULL)
3211 		return (error);
3212 	if (new_val > MAX_NUM_CORE_FILES)
3213 		new_val = MAX_NUM_CORE_FILES;
3214 	if (new_val < 0)
3215 		new_val = 0;
3216 	num_cores = new_val;
3217 	return (0);
3218 }
3219 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3220 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3221 
3222 #define	GZ_SUFFIX	".gz"
3223 
3224 #ifdef GZIO
3225 static int compress_user_cores = 1;
3226 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN,
3227     &compress_user_cores, 0, "Compression of user corefiles");
3228 
3229 int compress_user_cores_gzlevel = 6;
3230 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN,
3231     &compress_user_cores_gzlevel, 0, "Corefile gzip compression level");
3232 #else
3233 static int compress_user_cores = 0;
3234 #endif
3235 
3236 /*
3237  * Protect the access to corefilename[] by allproc_lock.
3238  */
3239 #define	corefilename_lock	allproc_lock
3240 
3241 static char corefilename[MAXPATHLEN] = {"%N.core"};
3242 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3243 
3244 static int
3245 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3246 {
3247 	int error;
3248 
3249 	sx_xlock(&corefilename_lock);
3250 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3251 	    req);
3252 	sx_xunlock(&corefilename_lock);
3253 
3254 	return (error);
3255 }
3256 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3257     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3258     "Process corefile name format string");
3259 
3260 /*
3261  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3262  * Expand the name described in corefilename, using name, uid, and pid
3263  * and open/create core file.
3264  * corefilename is a printf-like string, with three format specifiers:
3265  *	%N	name of process ("name")
3266  *	%P	process id (pid)
3267  *	%U	user id (uid)
3268  * For example, "%N.core" is the default; they can be disabled completely
3269  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3270  * This is controlled by the sysctl variable kern.corefile (see above).
3271  */
3272 static int
3273 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3274     int compress, struct vnode **vpp, char **namep)
3275 {
3276 	struct nameidata nd;
3277 	struct sbuf sb;
3278 	const char *format;
3279 	char *hostname, *name;
3280 	int indexpos, i, error, cmode, flags, oflags;
3281 
3282 	hostname = NULL;
3283 	format = corefilename;
3284 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3285 	indexpos = -1;
3286 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3287 	sx_slock(&corefilename_lock);
3288 	for (i = 0; format[i] != '\0'; i++) {
3289 		switch (format[i]) {
3290 		case '%':	/* Format character */
3291 			i++;
3292 			switch (format[i]) {
3293 			case '%':
3294 				sbuf_putc(&sb, '%');
3295 				break;
3296 			case 'H':	/* hostname */
3297 				if (hostname == NULL) {
3298 					hostname = malloc(MAXHOSTNAMELEN,
3299 					    M_TEMP, M_WAITOK);
3300 				}
3301 				getcredhostname(td->td_ucred, hostname,
3302 				    MAXHOSTNAMELEN);
3303 				sbuf_printf(&sb, "%s", hostname);
3304 				break;
3305 			case 'I':	/* autoincrementing index */
3306 				sbuf_printf(&sb, "0");
3307 				indexpos = sbuf_len(&sb) - 1;
3308 				break;
3309 			case 'N':	/* process name */
3310 				sbuf_printf(&sb, "%s", comm);
3311 				break;
3312 			case 'P':	/* process id */
3313 				sbuf_printf(&sb, "%u", pid);
3314 				break;
3315 			case 'U':	/* user id */
3316 				sbuf_printf(&sb, "%u", uid);
3317 				break;
3318 			default:
3319 				log(LOG_ERR,
3320 				    "Unknown format character %c in "
3321 				    "corename `%s'\n", format[i], format);
3322 				break;
3323 			}
3324 			break;
3325 		default:
3326 			sbuf_putc(&sb, format[i]);
3327 			break;
3328 		}
3329 	}
3330 	sx_sunlock(&corefilename_lock);
3331 	free(hostname, M_TEMP);
3332 	if (compress)
3333 		sbuf_printf(&sb, GZ_SUFFIX);
3334 	if (sbuf_error(&sb) != 0) {
3335 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3336 		    "long\n", (long)pid, comm, (u_long)uid);
3337 		sbuf_delete(&sb);
3338 		free(name, M_TEMP);
3339 		return (ENOMEM);
3340 	}
3341 	sbuf_finish(&sb);
3342 	sbuf_delete(&sb);
3343 
3344 	cmode = S_IRUSR | S_IWUSR;
3345 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3346 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3347 
3348 	/*
3349 	 * If the core format has a %I in it, then we need to check
3350 	 * for existing corefiles before returning a name.
3351 	 * To do this we iterate over 0..num_cores to find a
3352 	 * non-existing core file name to use.
3353 	 */
3354 	if (indexpos != -1) {
3355 		for (i = 0; i < num_cores; i++) {
3356 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3357 			name[indexpos] = '0' + i;
3358 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3359 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3360 			    td->td_ucred, NULL);
3361 			if (error) {
3362 				if (error == EEXIST)
3363 					continue;
3364 				log(LOG_ERR,
3365 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3366 				    "on initial open test, error = %d\n",
3367 				    pid, comm, uid, name, error);
3368 			}
3369 			goto out;
3370 		}
3371 	}
3372 
3373 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3374 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3375 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3376 out:
3377 	if (error) {
3378 #ifdef AUDIT
3379 		audit_proc_coredump(td, name, error);
3380 #endif
3381 		free(name, M_TEMP);
3382 		return (error);
3383 	}
3384 	NDFREE(&nd, NDF_ONLY_PNBUF);
3385 	*vpp = nd.ni_vp;
3386 	*namep = name;
3387 	return (0);
3388 }
3389 
3390 static int
3391 coredump_sanitise_path(const char *path)
3392 {
3393 	size_t i;
3394 
3395 	/*
3396 	 * Only send a subset of ASCII to devd(8) because it
3397 	 * might pass these strings to sh -c.
3398 	 */
3399 	for (i = 0; path[i]; i++)
3400 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3401 		    path[i] != '/' && path[i] != '.' &&
3402 		    path[i] != '-')
3403 			return (0);
3404 
3405 	return (1);
3406 }
3407 
3408 /*
3409  * Dump a process' core.  The main routine does some
3410  * policy checking, and creates the name of the coredump;
3411  * then it passes on a vnode and a size limit to the process-specific
3412  * coredump routine if there is one; if there _is not_ one, it returns
3413  * ENOSYS; otherwise it returns the error from the process-specific routine.
3414  */
3415 
3416 static int
3417 coredump(struct thread *td)
3418 {
3419 	struct proc *p = td->td_proc;
3420 	struct ucred *cred = td->td_ucred;
3421 	struct vnode *vp;
3422 	struct flock lf;
3423 	struct vattr vattr;
3424 	int error, error1, locked;
3425 	char *name;			/* name of corefile */
3426 	void *rl_cookie;
3427 	off_t limit;
3428 	char *data = NULL;
3429 	char *fullpath, *freepath = NULL;
3430 	size_t len;
3431 	static const char comm_name[] = "comm=";
3432 	static const char core_name[] = "core=";
3433 
3434 	PROC_LOCK_ASSERT(p, MA_OWNED);
3435 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3436 	_STOPEVENT(p, S_CORE, 0);
3437 
3438 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3439 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3440 		PROC_UNLOCK(p);
3441 		return (EFAULT);
3442 	}
3443 
3444 	/*
3445 	 * Note that the bulk of limit checking is done after
3446 	 * the corefile is created.  The exception is if the limit
3447 	 * for corefiles is 0, in which case we don't bother
3448 	 * creating the corefile at all.  This layout means that
3449 	 * a corefile is truncated instead of not being created,
3450 	 * if it is larger than the limit.
3451 	 */
3452 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3453 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3454 		PROC_UNLOCK(p);
3455 		return (EFBIG);
3456 	}
3457 	PROC_UNLOCK(p);
3458 
3459 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3460 	    compress_user_cores, &vp, &name);
3461 	if (error != 0)
3462 		return (error);
3463 
3464 	/*
3465 	 * Don't dump to non-regular files or files with links.
3466 	 * Do not dump into system files.
3467 	 */
3468 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3469 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3470 		VOP_UNLOCK(vp, 0);
3471 		error = EFAULT;
3472 		goto out;
3473 	}
3474 
3475 	VOP_UNLOCK(vp, 0);
3476 
3477 	/* Postpone other writers, including core dumps of other processes. */
3478 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3479 
3480 	lf.l_whence = SEEK_SET;
3481 	lf.l_start = 0;
3482 	lf.l_len = 0;
3483 	lf.l_type = F_WRLCK;
3484 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3485 
3486 	VATTR_NULL(&vattr);
3487 	vattr.va_size = 0;
3488 	if (set_core_nodump_flag)
3489 		vattr.va_flags = UF_NODUMP;
3490 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3491 	VOP_SETATTR(vp, &vattr, cred);
3492 	VOP_UNLOCK(vp, 0);
3493 	PROC_LOCK(p);
3494 	p->p_acflag |= ACORE;
3495 	PROC_UNLOCK(p);
3496 
3497 	if (p->p_sysent->sv_coredump != NULL) {
3498 		error = p->p_sysent->sv_coredump(td, vp, limit,
3499 		    compress_user_cores ? IMGACT_CORE_COMPRESS : 0);
3500 	} else {
3501 		error = ENOSYS;
3502 	}
3503 
3504 	if (locked) {
3505 		lf.l_type = F_UNLCK;
3506 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3507 	}
3508 	vn_rangelock_unlock(vp, rl_cookie);
3509 
3510 	/*
3511 	 * Notify the userland helper that a process triggered a core dump.
3512 	 * This allows the helper to run an automated debugging session.
3513 	 */
3514 	if (error != 0 || coredump_devctl == 0)
3515 		goto out;
3516 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3517 	    sizeof(' ') + sizeof(core_name) - 1;
3518 	data = malloc(len, M_TEMP, M_WAITOK);
3519 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3520 		goto out;
3521 	if (!coredump_sanitise_path(fullpath))
3522 		goto out;
3523 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3524 	free(freepath, M_TEMP);
3525 	freepath = NULL;
3526 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3527 		goto out;
3528 	if (!coredump_sanitise_path(fullpath))
3529 		goto out;
3530 	strlcat(data, core_name, len);
3531 	strlcat(data, fullpath, len);
3532 	devctl_notify("kernel", "signal", "coredump", data);
3533 out:
3534 	error1 = vn_close(vp, FWRITE, cred, td);
3535 	if (error == 0)
3536 		error = error1;
3537 #ifdef AUDIT
3538 	audit_proc_coredump(td, name, error);
3539 #endif
3540 	free(freepath, M_TEMP);
3541 	free(data, M_TEMP);
3542 	free(name, M_TEMP);
3543 	return (error);
3544 }
3545 
3546 /*
3547  * Nonexistent system call-- signal process (may want to handle it).  Flag
3548  * error in case process won't see signal immediately (blocked or ignored).
3549  */
3550 #ifndef _SYS_SYSPROTO_H_
3551 struct nosys_args {
3552 	int	dummy;
3553 };
3554 #endif
3555 /* ARGSUSED */
3556 int
3557 nosys(struct thread *td, struct nosys_args *args)
3558 {
3559 	struct proc *p = td->td_proc;
3560 
3561 	PROC_LOCK(p);
3562 	tdsignal(td, SIGSYS);
3563 	PROC_UNLOCK(p);
3564 	return (ENOSYS);
3565 }
3566 
3567 /*
3568  * Send a SIGIO or SIGURG signal to a process or process group using stored
3569  * credentials rather than those of the current process.
3570  */
3571 void
3572 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3573 {
3574 	ksiginfo_t ksi;
3575 	struct sigio *sigio;
3576 
3577 	ksiginfo_init(&ksi);
3578 	ksi.ksi_signo = sig;
3579 	ksi.ksi_code = SI_KERNEL;
3580 
3581 	SIGIO_LOCK();
3582 	sigio = *sigiop;
3583 	if (sigio == NULL) {
3584 		SIGIO_UNLOCK();
3585 		return;
3586 	}
3587 	if (sigio->sio_pgid > 0) {
3588 		PROC_LOCK(sigio->sio_proc);
3589 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3590 			kern_psignal(sigio->sio_proc, sig);
3591 		PROC_UNLOCK(sigio->sio_proc);
3592 	} else if (sigio->sio_pgid < 0) {
3593 		struct proc *p;
3594 
3595 		PGRP_LOCK(sigio->sio_pgrp);
3596 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3597 			PROC_LOCK(p);
3598 			if (p->p_state == PRS_NORMAL &&
3599 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3600 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3601 				kern_psignal(p, sig);
3602 			PROC_UNLOCK(p);
3603 		}
3604 		PGRP_UNLOCK(sigio->sio_pgrp);
3605 	}
3606 	SIGIO_UNLOCK();
3607 }
3608 
3609 static int
3610 filt_sigattach(struct knote *kn)
3611 {
3612 	struct proc *p = curproc;
3613 
3614 	kn->kn_ptr.p_proc = p;
3615 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3616 
3617 	knlist_add(p->p_klist, kn, 0);
3618 
3619 	return (0);
3620 }
3621 
3622 static void
3623 filt_sigdetach(struct knote *kn)
3624 {
3625 	struct proc *p = kn->kn_ptr.p_proc;
3626 
3627 	knlist_remove(p->p_klist, kn, 0);
3628 }
3629 
3630 /*
3631  * signal knotes are shared with proc knotes, so we apply a mask to
3632  * the hint in order to differentiate them from process hints.  This
3633  * could be avoided by using a signal-specific knote list, but probably
3634  * isn't worth the trouble.
3635  */
3636 static int
3637 filt_signal(struct knote *kn, long hint)
3638 {
3639 
3640 	if (hint & NOTE_SIGNAL) {
3641 		hint &= ~NOTE_SIGNAL;
3642 
3643 		if (kn->kn_id == hint)
3644 			kn->kn_data++;
3645 	}
3646 	return (kn->kn_data != 0);
3647 }
3648 
3649 struct sigacts *
3650 sigacts_alloc(void)
3651 {
3652 	struct sigacts *ps;
3653 
3654 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3655 	refcount_init(&ps->ps_refcnt, 1);
3656 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3657 	return (ps);
3658 }
3659 
3660 void
3661 sigacts_free(struct sigacts *ps)
3662 {
3663 
3664 	if (refcount_release(&ps->ps_refcnt) == 0)
3665 		return;
3666 	mtx_destroy(&ps->ps_mtx);
3667 	free(ps, M_SUBPROC);
3668 }
3669 
3670 struct sigacts *
3671 sigacts_hold(struct sigacts *ps)
3672 {
3673 
3674 	refcount_acquire(&ps->ps_refcnt);
3675 	return (ps);
3676 }
3677 
3678 void
3679 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3680 {
3681 
3682 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3683 	mtx_lock(&src->ps_mtx);
3684 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3685 	mtx_unlock(&src->ps_mtx);
3686 }
3687 
3688 int
3689 sigacts_shared(struct sigacts *ps)
3690 {
3691 
3692 	return (ps->ps_refcnt > 1);
3693 }
3694