xref: /freebsd/sys/kern/kern_sig.c (revision 47dd1d1b619cc035b82b49a91a25544309ff95ae)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/lock.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/refcount.h>
64 #include <sys/namei.h>
65 #include <sys/proc.h>
66 #include <sys/procdesc.h>
67 #include <sys/posix4.h>
68 #include <sys/pioctl.h>
69 #include <sys/racct.h>
70 #include <sys/resourcevar.h>
71 #include <sys/sdt.h>
72 #include <sys/sbuf.h>
73 #include <sys/sleepqueue.h>
74 #include <sys/smp.h>
75 #include <sys/stat.h>
76 #include <sys/sx.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysent.h>
80 #include <sys/syslog.h>
81 #include <sys/sysproto.h>
82 #include <sys/timers.h>
83 #include <sys/unistd.h>
84 #include <sys/wait.h>
85 #include <vm/vm.h>
86 #include <vm/vm_extern.h>
87 #include <vm/uma.h>
88 
89 #include <sys/jail.h>
90 
91 #include <machine/cpu.h>
92 
93 #include <security/audit/audit.h>
94 
95 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
96 
97 SDT_PROVIDER_DECLARE(proc);
98 SDT_PROBE_DEFINE3(proc, , , signal__send,
99     "struct thread *", "struct proc *", "int");
100 SDT_PROBE_DEFINE2(proc, , , signal__clear,
101     "int", "ksiginfo_t *");
102 SDT_PROBE_DEFINE3(proc, , , signal__discard,
103     "struct thread *", "struct proc *", "int");
104 
105 static int	coredump(struct thread *);
106 static int	killpg1(struct thread *td, int sig, int pgid, int all,
107 		    ksiginfo_t *ksi);
108 static int	issignal(struct thread *td);
109 static int	sigprop(int sig);
110 static void	tdsigwakeup(struct thread *, int, sig_t, int);
111 static int	sig_suspend_threads(struct thread *, struct proc *, int);
112 static int	filt_sigattach(struct knote *kn);
113 static void	filt_sigdetach(struct knote *kn);
114 static int	filt_signal(struct knote *kn, long hint);
115 static struct thread *sigtd(struct proc *p, int sig, int prop);
116 static void	sigqueue_start(void);
117 
118 static uma_zone_t	ksiginfo_zone = NULL;
119 struct filterops sig_filtops = {
120 	.f_isfd = 0,
121 	.f_attach = filt_sigattach,
122 	.f_detach = filt_sigdetach,
123 	.f_event = filt_signal,
124 };
125 
126 static int	kern_logsigexit = 1;
127 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
128     &kern_logsigexit, 0,
129     "Log processes quitting on abnormal signals to syslog(3)");
130 
131 static int	kern_forcesigexit = 1;
132 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
133     &kern_forcesigexit, 0, "Force trap signal to be handled");
134 
135 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
136     "POSIX real time signal");
137 
138 static int	max_pending_per_proc = 128;
139 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
140     &max_pending_per_proc, 0, "Max pending signals per proc");
141 
142 static int	preallocate_siginfo = 1024;
143 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
144     &preallocate_siginfo, 0, "Preallocated signal memory size");
145 
146 static int	signal_overflow = 0;
147 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
148     &signal_overflow, 0, "Number of signals overflew");
149 
150 static int	signal_alloc_fail = 0;
151 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
152     &signal_alloc_fail, 0, "signals failed to be allocated");
153 
154 static int	kern_lognosys = 0;
155 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
156     "Log invalid syscalls");
157 
158 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
159 
160 /*
161  * Policy -- Can ucred cr1 send SIGIO to process cr2?
162  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
163  * in the right situations.
164  */
165 #define CANSIGIO(cr1, cr2) \
166 	((cr1)->cr_uid == 0 || \
167 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
168 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
169 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
170 	    (cr1)->cr_uid == (cr2)->cr_uid)
171 
172 static int	sugid_coredump;
173 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
174     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
175 
176 static int	capmode_coredump;
177 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
178     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
179 
180 static int	do_coredump = 1;
181 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
182 	&do_coredump, 0, "Enable/Disable coredumps");
183 
184 static int	set_core_nodump_flag = 0;
185 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
186 	0, "Enable setting the NODUMP flag on coredump files");
187 
188 static int	coredump_devctl = 0;
189 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
190 	0, "Generate a devctl notification when processes coredump");
191 
192 /*
193  * Signal properties and actions.
194  * The array below categorizes the signals and their default actions
195  * according to the following properties:
196  */
197 #define	SIGPROP_KILL		0x01	/* terminates process by default */
198 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
199 #define	SIGPROP_STOP		0x04	/* suspend process */
200 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
201 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
202 #define	SIGPROP_CONT		0x20	/* continue if suspended */
203 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
204 
205 static int sigproptbl[NSIG] = {
206 	[SIGHUP] =	SIGPROP_KILL,
207 	[SIGINT] =	SIGPROP_KILL,
208 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
209 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
210 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGKILL] =	SIGPROP_KILL,
215 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
217 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGPIPE] =	SIGPROP_KILL,
219 	[SIGALRM] =	SIGPROP_KILL,
220 	[SIGTERM] =	SIGPROP_KILL,
221 	[SIGURG] =	SIGPROP_IGNORE,
222 	[SIGSTOP] =	SIGPROP_STOP,
223 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
224 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
225 	[SIGCHLD] =	SIGPROP_IGNORE,
226 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
227 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
228 	[SIGIO] =	SIGPROP_IGNORE,
229 	[SIGXCPU] =	SIGPROP_KILL,
230 	[SIGXFSZ] =	SIGPROP_KILL,
231 	[SIGVTALRM] =	SIGPROP_KILL,
232 	[SIGPROF] =	SIGPROP_KILL,
233 	[SIGWINCH] =	SIGPROP_IGNORE,
234 	[SIGINFO] =	SIGPROP_IGNORE,
235 	[SIGUSR1] =	SIGPROP_KILL,
236 	[SIGUSR2] =	SIGPROP_KILL,
237 };
238 
239 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
240 
241 static void
242 sigqueue_start(void)
243 {
244 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
245 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
246 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
247 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
248 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
249 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
250 }
251 
252 ksiginfo_t *
253 ksiginfo_alloc(int wait)
254 {
255 	int flags;
256 
257 	flags = M_ZERO;
258 	if (! wait)
259 		flags |= M_NOWAIT;
260 	if (ksiginfo_zone != NULL)
261 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
262 	return (NULL);
263 }
264 
265 void
266 ksiginfo_free(ksiginfo_t *ksi)
267 {
268 	uma_zfree(ksiginfo_zone, ksi);
269 }
270 
271 static __inline int
272 ksiginfo_tryfree(ksiginfo_t *ksi)
273 {
274 	if (!(ksi->ksi_flags & KSI_EXT)) {
275 		uma_zfree(ksiginfo_zone, ksi);
276 		return (1);
277 	}
278 	return (0);
279 }
280 
281 void
282 sigqueue_init(sigqueue_t *list, struct proc *p)
283 {
284 	SIGEMPTYSET(list->sq_signals);
285 	SIGEMPTYSET(list->sq_kill);
286 	SIGEMPTYSET(list->sq_ptrace);
287 	TAILQ_INIT(&list->sq_list);
288 	list->sq_proc = p;
289 	list->sq_flags = SQ_INIT;
290 }
291 
292 /*
293  * Get a signal's ksiginfo.
294  * Return:
295  *	0	-	signal not found
296  *	others	-	signal number
297  */
298 static int
299 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
300 {
301 	struct proc *p = sq->sq_proc;
302 	struct ksiginfo *ksi, *next;
303 	int count = 0;
304 
305 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
306 
307 	if (!SIGISMEMBER(sq->sq_signals, signo))
308 		return (0);
309 
310 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
311 		count++;
312 		SIGDELSET(sq->sq_ptrace, signo);
313 		si->ksi_flags |= KSI_PTRACE;
314 	}
315 	if (SIGISMEMBER(sq->sq_kill, signo)) {
316 		count++;
317 		if (count == 1)
318 			SIGDELSET(sq->sq_kill, signo);
319 	}
320 
321 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
322 		if (ksi->ksi_signo == signo) {
323 			if (count == 0) {
324 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
325 				ksi->ksi_sigq = NULL;
326 				ksiginfo_copy(ksi, si);
327 				if (ksiginfo_tryfree(ksi) && p != NULL)
328 					p->p_pendingcnt--;
329 			}
330 			if (++count > 1)
331 				break;
332 		}
333 	}
334 
335 	if (count <= 1)
336 		SIGDELSET(sq->sq_signals, signo);
337 	si->ksi_signo = signo;
338 	return (signo);
339 }
340 
341 void
342 sigqueue_take(ksiginfo_t *ksi)
343 {
344 	struct ksiginfo *kp;
345 	struct proc	*p;
346 	sigqueue_t	*sq;
347 
348 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
349 		return;
350 
351 	p = sq->sq_proc;
352 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
353 	ksi->ksi_sigq = NULL;
354 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
355 		p->p_pendingcnt--;
356 
357 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
358 	     kp = TAILQ_NEXT(kp, ksi_link)) {
359 		if (kp->ksi_signo == ksi->ksi_signo)
360 			break;
361 	}
362 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
363 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
364 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
365 }
366 
367 static int
368 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
369 {
370 	struct proc *p = sq->sq_proc;
371 	struct ksiginfo *ksi;
372 	int ret = 0;
373 
374 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
375 
376 	/*
377 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
378 	 * for these signals.
379 	 */
380 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
381 		SIGADDSET(sq->sq_kill, signo);
382 		goto out_set_bit;
383 	}
384 
385 	/* directly insert the ksi, don't copy it */
386 	if (si->ksi_flags & KSI_INS) {
387 		if (si->ksi_flags & KSI_HEAD)
388 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
389 		else
390 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
391 		si->ksi_sigq = sq;
392 		goto out_set_bit;
393 	}
394 
395 	if (__predict_false(ksiginfo_zone == NULL)) {
396 		SIGADDSET(sq->sq_kill, signo);
397 		goto out_set_bit;
398 	}
399 
400 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
401 		signal_overflow++;
402 		ret = EAGAIN;
403 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
404 		signal_alloc_fail++;
405 		ret = EAGAIN;
406 	} else {
407 		if (p != NULL)
408 			p->p_pendingcnt++;
409 		ksiginfo_copy(si, ksi);
410 		ksi->ksi_signo = signo;
411 		if (si->ksi_flags & KSI_HEAD)
412 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
413 		else
414 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
415 		ksi->ksi_sigq = sq;
416 	}
417 
418 	if (ret != 0) {
419 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
420 			SIGADDSET(sq->sq_ptrace, signo);
421 			ret = 0;
422 			goto out_set_bit;
423 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
424 		    (si->ksi_flags & KSI_SIGQ) == 0) {
425 			SIGADDSET(sq->sq_kill, signo);
426 			ret = 0;
427 			goto out_set_bit;
428 		}
429 		return (ret);
430 	}
431 
432 out_set_bit:
433 	SIGADDSET(sq->sq_signals, signo);
434 	return (ret);
435 }
436 
437 void
438 sigqueue_flush(sigqueue_t *sq)
439 {
440 	struct proc *p = sq->sq_proc;
441 	ksiginfo_t *ksi;
442 
443 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
444 
445 	if (p != NULL)
446 		PROC_LOCK_ASSERT(p, MA_OWNED);
447 
448 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
449 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
450 		ksi->ksi_sigq = NULL;
451 		if (ksiginfo_tryfree(ksi) && p != NULL)
452 			p->p_pendingcnt--;
453 	}
454 
455 	SIGEMPTYSET(sq->sq_signals);
456 	SIGEMPTYSET(sq->sq_kill);
457 	SIGEMPTYSET(sq->sq_ptrace);
458 }
459 
460 static void
461 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
462 {
463 	sigset_t tmp;
464 	struct proc *p1, *p2;
465 	ksiginfo_t *ksi, *next;
466 
467 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
468 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
469 	p1 = src->sq_proc;
470 	p2 = dst->sq_proc;
471 	/* Move siginfo to target list */
472 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
473 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
474 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
475 			if (p1 != NULL)
476 				p1->p_pendingcnt--;
477 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = dst;
479 			if (p2 != NULL)
480 				p2->p_pendingcnt++;
481 		}
482 	}
483 
484 	/* Move pending bits to target list */
485 	tmp = src->sq_kill;
486 	SIGSETAND(tmp, *set);
487 	SIGSETOR(dst->sq_kill, tmp);
488 	SIGSETNAND(src->sq_kill, tmp);
489 
490 	tmp = src->sq_ptrace;
491 	SIGSETAND(tmp, *set);
492 	SIGSETOR(dst->sq_ptrace, tmp);
493 	SIGSETNAND(src->sq_ptrace, tmp);
494 
495 	tmp = src->sq_signals;
496 	SIGSETAND(tmp, *set);
497 	SIGSETOR(dst->sq_signals, tmp);
498 	SIGSETNAND(src->sq_signals, tmp);
499 }
500 
501 #if 0
502 static void
503 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_move_set(src, dst, &set);
510 }
511 #endif
512 
513 static void
514 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
515 {
516 	struct proc *p = sq->sq_proc;
517 	ksiginfo_t *ksi, *next;
518 
519 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
520 
521 	/* Remove siginfo queue */
522 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
523 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
524 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
525 			ksi->ksi_sigq = NULL;
526 			if (ksiginfo_tryfree(ksi) && p != NULL)
527 				p->p_pendingcnt--;
528 		}
529 	}
530 	SIGSETNAND(sq->sq_kill, *set);
531 	SIGSETNAND(sq->sq_ptrace, *set);
532 	SIGSETNAND(sq->sq_signals, *set);
533 }
534 
535 void
536 sigqueue_delete(sigqueue_t *sq, int signo)
537 {
538 	sigset_t set;
539 
540 	SIGEMPTYSET(set);
541 	SIGADDSET(set, signo);
542 	sigqueue_delete_set(sq, &set);
543 }
544 
545 /* Remove a set of signals for a process */
546 static void
547 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
548 {
549 	sigqueue_t worklist;
550 	struct thread *td0;
551 
552 	PROC_LOCK_ASSERT(p, MA_OWNED);
553 
554 	sigqueue_init(&worklist, NULL);
555 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
556 
557 	FOREACH_THREAD_IN_PROC(p, td0)
558 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
559 
560 	sigqueue_flush(&worklist);
561 }
562 
563 void
564 sigqueue_delete_proc(struct proc *p, int signo)
565 {
566 	sigset_t set;
567 
568 	SIGEMPTYSET(set);
569 	SIGADDSET(set, signo);
570 	sigqueue_delete_set_proc(p, &set);
571 }
572 
573 static void
574 sigqueue_delete_stopmask_proc(struct proc *p)
575 {
576 	sigset_t set;
577 
578 	SIGEMPTYSET(set);
579 	SIGADDSET(set, SIGSTOP);
580 	SIGADDSET(set, SIGTSTP);
581 	SIGADDSET(set, SIGTTIN);
582 	SIGADDSET(set, SIGTTOU);
583 	sigqueue_delete_set_proc(p, &set);
584 }
585 
586 /*
587  * Determine signal that should be delivered to thread td, the current
588  * thread, 0 if none.  If there is a pending stop signal with default
589  * action, the process stops in issignal().
590  */
591 int
592 cursig(struct thread *td)
593 {
594 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
595 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
596 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
597 	return (SIGPENDING(td) ? issignal(td) : 0);
598 }
599 
600 /*
601  * Arrange for ast() to handle unmasked pending signals on return to user
602  * mode.  This must be called whenever a signal is added to td_sigqueue or
603  * unmasked in td_sigmask.
604  */
605 void
606 signotify(struct thread *td)
607 {
608 	struct proc *p;
609 
610 	p = td->td_proc;
611 
612 	PROC_LOCK_ASSERT(p, MA_OWNED);
613 
614 	if (SIGPENDING(td)) {
615 		thread_lock(td);
616 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
617 		thread_unlock(td);
618 	}
619 }
620 
621 int
622 sigonstack(size_t sp)
623 {
624 	struct thread *td = curthread;
625 
626 	return ((td->td_pflags & TDP_ALTSTACK) ?
627 #if defined(COMPAT_43)
628 	    ((td->td_sigstk.ss_size == 0) ?
629 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
630 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
631 #else
632 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
633 #endif
634 	    : 0);
635 }
636 
637 static __inline int
638 sigprop(int sig)
639 {
640 
641 	if (sig > 0 && sig < nitems(sigproptbl))
642 		return (sigproptbl[sig]);
643 	return (0);
644 }
645 
646 int
647 sig_ffs(sigset_t *set)
648 {
649 	int i;
650 
651 	for (i = 0; i < _SIG_WORDS; i++)
652 		if (set->__bits[i])
653 			return (ffs(set->__bits[i]) + (i * 32));
654 	return (0);
655 }
656 
657 static bool
658 sigact_flag_test(const struct sigaction *act, int flag)
659 {
660 
661 	/*
662 	 * SA_SIGINFO is reset when signal disposition is set to
663 	 * ignore or default.  Other flags are kept according to user
664 	 * settings.
665 	 */
666 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
667 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
668 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
669 }
670 
671 /*
672  * kern_sigaction
673  * sigaction
674  * freebsd4_sigaction
675  * osigaction
676  */
677 int
678 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
679     struct sigaction *oact, int flags)
680 {
681 	struct sigacts *ps;
682 	struct proc *p = td->td_proc;
683 
684 	if (!_SIG_VALID(sig))
685 		return (EINVAL);
686 	if (act != NULL && act->sa_handler != SIG_DFL &&
687 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
688 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
689 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
690 		return (EINVAL);
691 
692 	PROC_LOCK(p);
693 	ps = p->p_sigacts;
694 	mtx_lock(&ps->ps_mtx);
695 	if (oact) {
696 		memset(oact, 0, sizeof(*oact));
697 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
698 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
699 			oact->sa_flags |= SA_ONSTACK;
700 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
701 			oact->sa_flags |= SA_RESTART;
702 		if (SIGISMEMBER(ps->ps_sigreset, sig))
703 			oact->sa_flags |= SA_RESETHAND;
704 		if (SIGISMEMBER(ps->ps_signodefer, sig))
705 			oact->sa_flags |= SA_NODEFER;
706 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
707 			oact->sa_flags |= SA_SIGINFO;
708 			oact->sa_sigaction =
709 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
710 		} else
711 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
712 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
713 			oact->sa_flags |= SA_NOCLDSTOP;
714 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
715 			oact->sa_flags |= SA_NOCLDWAIT;
716 	}
717 	if (act) {
718 		if ((sig == SIGKILL || sig == SIGSTOP) &&
719 		    act->sa_handler != SIG_DFL) {
720 			mtx_unlock(&ps->ps_mtx);
721 			PROC_UNLOCK(p);
722 			return (EINVAL);
723 		}
724 
725 		/*
726 		 * Change setting atomically.
727 		 */
728 
729 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
730 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
731 		if (sigact_flag_test(act, SA_SIGINFO)) {
732 			ps->ps_sigact[_SIG_IDX(sig)] =
733 			    (__sighandler_t *)act->sa_sigaction;
734 			SIGADDSET(ps->ps_siginfo, sig);
735 		} else {
736 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
737 			SIGDELSET(ps->ps_siginfo, sig);
738 		}
739 		if (!sigact_flag_test(act, SA_RESTART))
740 			SIGADDSET(ps->ps_sigintr, sig);
741 		else
742 			SIGDELSET(ps->ps_sigintr, sig);
743 		if (sigact_flag_test(act, SA_ONSTACK))
744 			SIGADDSET(ps->ps_sigonstack, sig);
745 		else
746 			SIGDELSET(ps->ps_sigonstack, sig);
747 		if (sigact_flag_test(act, SA_RESETHAND))
748 			SIGADDSET(ps->ps_sigreset, sig);
749 		else
750 			SIGDELSET(ps->ps_sigreset, sig);
751 		if (sigact_flag_test(act, SA_NODEFER))
752 			SIGADDSET(ps->ps_signodefer, sig);
753 		else
754 			SIGDELSET(ps->ps_signodefer, sig);
755 		if (sig == SIGCHLD) {
756 			if (act->sa_flags & SA_NOCLDSTOP)
757 				ps->ps_flag |= PS_NOCLDSTOP;
758 			else
759 				ps->ps_flag &= ~PS_NOCLDSTOP;
760 			if (act->sa_flags & SA_NOCLDWAIT) {
761 				/*
762 				 * Paranoia: since SA_NOCLDWAIT is implemented
763 				 * by reparenting the dying child to PID 1 (and
764 				 * trust it to reap the zombie), PID 1 itself
765 				 * is forbidden to set SA_NOCLDWAIT.
766 				 */
767 				if (p->p_pid == 1)
768 					ps->ps_flag &= ~PS_NOCLDWAIT;
769 				else
770 					ps->ps_flag |= PS_NOCLDWAIT;
771 			} else
772 				ps->ps_flag &= ~PS_NOCLDWAIT;
773 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
774 				ps->ps_flag |= PS_CLDSIGIGN;
775 			else
776 				ps->ps_flag &= ~PS_CLDSIGIGN;
777 		}
778 		/*
779 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
780 		 * and for signals set to SIG_DFL where the default is to
781 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
782 		 * have to restart the process.
783 		 */
784 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
785 		    (sigprop(sig) & SIGPROP_IGNORE &&
786 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
787 			/* never to be seen again */
788 			sigqueue_delete_proc(p, sig);
789 			if (sig != SIGCONT)
790 				/* easier in psignal */
791 				SIGADDSET(ps->ps_sigignore, sig);
792 			SIGDELSET(ps->ps_sigcatch, sig);
793 		} else {
794 			SIGDELSET(ps->ps_sigignore, sig);
795 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
796 				SIGDELSET(ps->ps_sigcatch, sig);
797 			else
798 				SIGADDSET(ps->ps_sigcatch, sig);
799 		}
800 #ifdef COMPAT_FREEBSD4
801 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
802 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
803 		    (flags & KSA_FREEBSD4) == 0)
804 			SIGDELSET(ps->ps_freebsd4, sig);
805 		else
806 			SIGADDSET(ps->ps_freebsd4, sig);
807 #endif
808 #ifdef COMPAT_43
809 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
810 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
811 		    (flags & KSA_OSIGSET) == 0)
812 			SIGDELSET(ps->ps_osigset, sig);
813 		else
814 			SIGADDSET(ps->ps_osigset, sig);
815 #endif
816 	}
817 	mtx_unlock(&ps->ps_mtx);
818 	PROC_UNLOCK(p);
819 	return (0);
820 }
821 
822 #ifndef _SYS_SYSPROTO_H_
823 struct sigaction_args {
824 	int	sig;
825 	struct	sigaction *act;
826 	struct	sigaction *oact;
827 };
828 #endif
829 int
830 sys_sigaction(struct thread *td, struct sigaction_args *uap)
831 {
832 	struct sigaction act, oact;
833 	struct sigaction *actp, *oactp;
834 	int error;
835 
836 	actp = (uap->act != NULL) ? &act : NULL;
837 	oactp = (uap->oact != NULL) ? &oact : NULL;
838 	if (actp) {
839 		error = copyin(uap->act, actp, sizeof(act));
840 		if (error)
841 			return (error);
842 	}
843 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
844 	if (oactp && !error)
845 		error = copyout(oactp, uap->oact, sizeof(oact));
846 	return (error);
847 }
848 
849 #ifdef COMPAT_FREEBSD4
850 #ifndef _SYS_SYSPROTO_H_
851 struct freebsd4_sigaction_args {
852 	int	sig;
853 	struct	sigaction *act;
854 	struct	sigaction *oact;
855 };
856 #endif
857 int
858 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
859 {
860 	struct sigaction act, oact;
861 	struct sigaction *actp, *oactp;
862 	int error;
863 
864 
865 	actp = (uap->act != NULL) ? &act : NULL;
866 	oactp = (uap->oact != NULL) ? &oact : NULL;
867 	if (actp) {
868 		error = copyin(uap->act, actp, sizeof(act));
869 		if (error)
870 			return (error);
871 	}
872 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
873 	if (oactp && !error)
874 		error = copyout(oactp, uap->oact, sizeof(oact));
875 	return (error);
876 }
877 #endif	/* COMAPT_FREEBSD4 */
878 
879 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
880 #ifndef _SYS_SYSPROTO_H_
881 struct osigaction_args {
882 	int	signum;
883 	struct	osigaction *nsa;
884 	struct	osigaction *osa;
885 };
886 #endif
887 int
888 osigaction(struct thread *td, struct osigaction_args *uap)
889 {
890 	struct osigaction sa;
891 	struct sigaction nsa, osa;
892 	struct sigaction *nsap, *osap;
893 	int error;
894 
895 	if (uap->signum <= 0 || uap->signum >= ONSIG)
896 		return (EINVAL);
897 
898 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
899 	osap = (uap->osa != NULL) ? &osa : NULL;
900 
901 	if (nsap) {
902 		error = copyin(uap->nsa, &sa, sizeof(sa));
903 		if (error)
904 			return (error);
905 		nsap->sa_handler = sa.sa_handler;
906 		nsap->sa_flags = sa.sa_flags;
907 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
908 	}
909 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
910 	if (osap && !error) {
911 		sa.sa_handler = osap->sa_handler;
912 		sa.sa_flags = osap->sa_flags;
913 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
914 		error = copyout(&sa, uap->osa, sizeof(sa));
915 	}
916 	return (error);
917 }
918 
919 #if !defined(__i386__)
920 /* Avoid replicating the same stub everywhere */
921 int
922 osigreturn(struct thread *td, struct osigreturn_args *uap)
923 {
924 
925 	return (nosys(td, (struct nosys_args *)uap));
926 }
927 #endif
928 #endif /* COMPAT_43 */
929 
930 /*
931  * Initialize signal state for process 0;
932  * set to ignore signals that are ignored by default.
933  */
934 void
935 siginit(struct proc *p)
936 {
937 	int i;
938 	struct sigacts *ps;
939 
940 	PROC_LOCK(p);
941 	ps = p->p_sigacts;
942 	mtx_lock(&ps->ps_mtx);
943 	for (i = 1; i <= NSIG; i++) {
944 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
945 			SIGADDSET(ps->ps_sigignore, i);
946 		}
947 	}
948 	mtx_unlock(&ps->ps_mtx);
949 	PROC_UNLOCK(p);
950 }
951 
952 /*
953  * Reset specified signal to the default disposition.
954  */
955 static void
956 sigdflt(struct sigacts *ps, int sig)
957 {
958 
959 	mtx_assert(&ps->ps_mtx, MA_OWNED);
960 	SIGDELSET(ps->ps_sigcatch, sig);
961 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
962 		SIGADDSET(ps->ps_sigignore, sig);
963 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
964 	SIGDELSET(ps->ps_siginfo, sig);
965 }
966 
967 /*
968  * Reset signals for an exec of the specified process.
969  */
970 void
971 execsigs(struct proc *p)
972 {
973 	sigset_t osigignore;
974 	struct sigacts *ps;
975 	int sig;
976 	struct thread *td;
977 
978 	/*
979 	 * Reset caught signals.  Held signals remain held
980 	 * through td_sigmask (unless they were caught,
981 	 * and are now ignored by default).
982 	 */
983 	PROC_LOCK_ASSERT(p, MA_OWNED);
984 	ps = p->p_sigacts;
985 	mtx_lock(&ps->ps_mtx);
986 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
987 		sig = sig_ffs(&ps->ps_sigcatch);
988 		sigdflt(ps, sig);
989 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
990 			sigqueue_delete_proc(p, sig);
991 	}
992 
993 	/*
994 	 * As CloudABI processes cannot modify signal handlers, fully
995 	 * reset all signals to their default behavior. Do ignore
996 	 * SIGPIPE, as it would otherwise be impossible to recover from
997 	 * writes to broken pipes and sockets.
998 	 */
999 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
1000 		osigignore = ps->ps_sigignore;
1001 		while (SIGNOTEMPTY(osigignore)) {
1002 			sig = sig_ffs(&osigignore);
1003 			SIGDELSET(osigignore, sig);
1004 			if (sig != SIGPIPE)
1005 				sigdflt(ps, sig);
1006 		}
1007 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1008 	}
1009 
1010 	/*
1011 	 * Reset stack state to the user stack.
1012 	 * Clear set of signals caught on the signal stack.
1013 	 */
1014 	td = curthread;
1015 	MPASS(td->td_proc == p);
1016 	td->td_sigstk.ss_flags = SS_DISABLE;
1017 	td->td_sigstk.ss_size = 0;
1018 	td->td_sigstk.ss_sp = 0;
1019 	td->td_pflags &= ~TDP_ALTSTACK;
1020 	/*
1021 	 * Reset no zombies if child dies flag as Solaris does.
1022 	 */
1023 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1024 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1025 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1026 	mtx_unlock(&ps->ps_mtx);
1027 }
1028 
1029 /*
1030  * kern_sigprocmask()
1031  *
1032  *	Manipulate signal mask.
1033  */
1034 int
1035 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1036     int flags)
1037 {
1038 	sigset_t new_block, oset1;
1039 	struct proc *p;
1040 	int error;
1041 
1042 	p = td->td_proc;
1043 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1044 		PROC_LOCK_ASSERT(p, MA_OWNED);
1045 	else
1046 		PROC_LOCK(p);
1047 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1048 	    ? MA_OWNED : MA_NOTOWNED);
1049 	if (oset != NULL)
1050 		*oset = td->td_sigmask;
1051 
1052 	error = 0;
1053 	if (set != NULL) {
1054 		switch (how) {
1055 		case SIG_BLOCK:
1056 			SIG_CANTMASK(*set);
1057 			oset1 = td->td_sigmask;
1058 			SIGSETOR(td->td_sigmask, *set);
1059 			new_block = td->td_sigmask;
1060 			SIGSETNAND(new_block, oset1);
1061 			break;
1062 		case SIG_UNBLOCK:
1063 			SIGSETNAND(td->td_sigmask, *set);
1064 			signotify(td);
1065 			goto out;
1066 		case SIG_SETMASK:
1067 			SIG_CANTMASK(*set);
1068 			oset1 = td->td_sigmask;
1069 			if (flags & SIGPROCMASK_OLD)
1070 				SIGSETLO(td->td_sigmask, *set);
1071 			else
1072 				td->td_sigmask = *set;
1073 			new_block = td->td_sigmask;
1074 			SIGSETNAND(new_block, oset1);
1075 			signotify(td);
1076 			break;
1077 		default:
1078 			error = EINVAL;
1079 			goto out;
1080 		}
1081 
1082 		/*
1083 		 * The new_block set contains signals that were not previously
1084 		 * blocked, but are blocked now.
1085 		 *
1086 		 * In case we block any signal that was not previously blocked
1087 		 * for td, and process has the signal pending, try to schedule
1088 		 * signal delivery to some thread that does not block the
1089 		 * signal, possibly waking it up.
1090 		 */
1091 		if (p->p_numthreads != 1)
1092 			reschedule_signals(p, new_block, flags);
1093 	}
1094 
1095 out:
1096 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1097 		PROC_UNLOCK(p);
1098 	return (error);
1099 }
1100 
1101 #ifndef _SYS_SYSPROTO_H_
1102 struct sigprocmask_args {
1103 	int	how;
1104 	const sigset_t *set;
1105 	sigset_t *oset;
1106 };
1107 #endif
1108 int
1109 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1110 {
1111 	sigset_t set, oset;
1112 	sigset_t *setp, *osetp;
1113 	int error;
1114 
1115 	setp = (uap->set != NULL) ? &set : NULL;
1116 	osetp = (uap->oset != NULL) ? &oset : NULL;
1117 	if (setp) {
1118 		error = copyin(uap->set, setp, sizeof(set));
1119 		if (error)
1120 			return (error);
1121 	}
1122 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1123 	if (osetp && !error) {
1124 		error = copyout(osetp, uap->oset, sizeof(oset));
1125 	}
1126 	return (error);
1127 }
1128 
1129 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1130 #ifndef _SYS_SYSPROTO_H_
1131 struct osigprocmask_args {
1132 	int	how;
1133 	osigset_t mask;
1134 };
1135 #endif
1136 int
1137 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1138 {
1139 	sigset_t set, oset;
1140 	int error;
1141 
1142 	OSIG2SIG(uap->mask, set);
1143 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1144 	SIG2OSIG(oset, td->td_retval[0]);
1145 	return (error);
1146 }
1147 #endif /* COMPAT_43 */
1148 
1149 int
1150 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1151 {
1152 	ksiginfo_t ksi;
1153 	sigset_t set;
1154 	int error;
1155 
1156 	error = copyin(uap->set, &set, sizeof(set));
1157 	if (error) {
1158 		td->td_retval[0] = error;
1159 		return (0);
1160 	}
1161 
1162 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1163 	if (error) {
1164 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1165 			error = ERESTART;
1166 		if (error == ERESTART)
1167 			return (error);
1168 		td->td_retval[0] = error;
1169 		return (0);
1170 	}
1171 
1172 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1173 	td->td_retval[0] = error;
1174 	return (0);
1175 }
1176 
1177 int
1178 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1179 {
1180 	struct timespec ts;
1181 	struct timespec *timeout;
1182 	sigset_t set;
1183 	ksiginfo_t ksi;
1184 	int error;
1185 
1186 	if (uap->timeout) {
1187 		error = copyin(uap->timeout, &ts, sizeof(ts));
1188 		if (error)
1189 			return (error);
1190 
1191 		timeout = &ts;
1192 	} else
1193 		timeout = NULL;
1194 
1195 	error = copyin(uap->set, &set, sizeof(set));
1196 	if (error)
1197 		return (error);
1198 
1199 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1200 	if (error)
1201 		return (error);
1202 
1203 	if (uap->info)
1204 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1205 
1206 	if (error == 0)
1207 		td->td_retval[0] = ksi.ksi_signo;
1208 	return (error);
1209 }
1210 
1211 int
1212 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1213 {
1214 	ksiginfo_t ksi;
1215 	sigset_t set;
1216 	int error;
1217 
1218 	error = copyin(uap->set, &set, sizeof(set));
1219 	if (error)
1220 		return (error);
1221 
1222 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1223 	if (error)
1224 		return (error);
1225 
1226 	if (uap->info)
1227 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1228 
1229 	if (error == 0)
1230 		td->td_retval[0] = ksi.ksi_signo;
1231 	return (error);
1232 }
1233 
1234 static void
1235 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1236 {
1237 	struct thread *thr;
1238 
1239 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1240 		if (thr == td)
1241 			thr->td_si = *si;
1242 		else
1243 			thr->td_si.si_signo = 0;
1244 	}
1245 }
1246 
1247 int
1248 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1249 	struct timespec *timeout)
1250 {
1251 	struct sigacts *ps;
1252 	sigset_t saved_mask, new_block;
1253 	struct proc *p;
1254 	int error, sig, timo, timevalid = 0;
1255 	struct timespec rts, ets, ts;
1256 	struct timeval tv;
1257 
1258 	p = td->td_proc;
1259 	error = 0;
1260 	ets.tv_sec = 0;
1261 	ets.tv_nsec = 0;
1262 
1263 	if (timeout != NULL) {
1264 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1265 			timevalid = 1;
1266 			getnanouptime(&rts);
1267 			ets = rts;
1268 			timespecadd(&ets, timeout);
1269 		}
1270 	}
1271 	ksiginfo_init(ksi);
1272 	/* Some signals can not be waited for. */
1273 	SIG_CANTMASK(waitset);
1274 	ps = p->p_sigacts;
1275 	PROC_LOCK(p);
1276 	saved_mask = td->td_sigmask;
1277 	SIGSETNAND(td->td_sigmask, waitset);
1278 	for (;;) {
1279 		mtx_lock(&ps->ps_mtx);
1280 		sig = cursig(td);
1281 		mtx_unlock(&ps->ps_mtx);
1282 		KASSERT(sig >= 0, ("sig %d", sig));
1283 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1284 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1285 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1286 				error = 0;
1287 				break;
1288 			}
1289 		}
1290 
1291 		if (error != 0)
1292 			break;
1293 
1294 		/*
1295 		 * POSIX says this must be checked after looking for pending
1296 		 * signals.
1297 		 */
1298 		if (timeout != NULL) {
1299 			if (!timevalid) {
1300 				error = EINVAL;
1301 				break;
1302 			}
1303 			getnanouptime(&rts);
1304 			if (timespeccmp(&rts, &ets, >=)) {
1305 				error = EAGAIN;
1306 				break;
1307 			}
1308 			ts = ets;
1309 			timespecsub(&ts, &rts);
1310 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1311 			timo = tvtohz(&tv);
1312 		} else {
1313 			timo = 0;
1314 		}
1315 
1316 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1317 
1318 		if (timeout != NULL) {
1319 			if (error == ERESTART) {
1320 				/* Timeout can not be restarted. */
1321 				error = EINTR;
1322 			} else if (error == EAGAIN) {
1323 				/* We will calculate timeout by ourself. */
1324 				error = 0;
1325 			}
1326 		}
1327 	}
1328 
1329 	new_block = saved_mask;
1330 	SIGSETNAND(new_block, td->td_sigmask);
1331 	td->td_sigmask = saved_mask;
1332 	/*
1333 	 * Fewer signals can be delivered to us, reschedule signal
1334 	 * notification.
1335 	 */
1336 	if (p->p_numthreads != 1)
1337 		reschedule_signals(p, new_block, 0);
1338 
1339 	if (error == 0) {
1340 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1341 
1342 		if (ksi->ksi_code == SI_TIMER)
1343 			itimer_accept(p, ksi->ksi_timerid, ksi);
1344 
1345 #ifdef KTRACE
1346 		if (KTRPOINT(td, KTR_PSIG)) {
1347 			sig_t action;
1348 
1349 			mtx_lock(&ps->ps_mtx);
1350 			action = ps->ps_sigact[_SIG_IDX(sig)];
1351 			mtx_unlock(&ps->ps_mtx);
1352 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1353 		}
1354 #endif
1355 		if (sig == SIGKILL) {
1356 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1357 			sigexit(td, sig);
1358 		}
1359 	}
1360 	PROC_UNLOCK(p);
1361 	return (error);
1362 }
1363 
1364 #ifndef _SYS_SYSPROTO_H_
1365 struct sigpending_args {
1366 	sigset_t	*set;
1367 };
1368 #endif
1369 int
1370 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1371 {
1372 	struct proc *p = td->td_proc;
1373 	sigset_t pending;
1374 
1375 	PROC_LOCK(p);
1376 	pending = p->p_sigqueue.sq_signals;
1377 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1378 	PROC_UNLOCK(p);
1379 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1380 }
1381 
1382 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct osigpending_args {
1385 	int	dummy;
1386 };
1387 #endif
1388 int
1389 osigpending(struct thread *td, struct osigpending_args *uap)
1390 {
1391 	struct proc *p = td->td_proc;
1392 	sigset_t pending;
1393 
1394 	PROC_LOCK(p);
1395 	pending = p->p_sigqueue.sq_signals;
1396 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1397 	PROC_UNLOCK(p);
1398 	SIG2OSIG(pending, td->td_retval[0]);
1399 	return (0);
1400 }
1401 #endif /* COMPAT_43 */
1402 
1403 #if defined(COMPAT_43)
1404 /*
1405  * Generalized interface signal handler, 4.3-compatible.
1406  */
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigvec_args {
1409 	int	signum;
1410 	struct	sigvec *nsv;
1411 	struct	sigvec *osv;
1412 };
1413 #endif
1414 /* ARGSUSED */
1415 int
1416 osigvec(struct thread *td, struct osigvec_args *uap)
1417 {
1418 	struct sigvec vec;
1419 	struct sigaction nsa, osa;
1420 	struct sigaction *nsap, *osap;
1421 	int error;
1422 
1423 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1424 		return (EINVAL);
1425 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1426 	osap = (uap->osv != NULL) ? &osa : NULL;
1427 	if (nsap) {
1428 		error = copyin(uap->nsv, &vec, sizeof(vec));
1429 		if (error)
1430 			return (error);
1431 		nsap->sa_handler = vec.sv_handler;
1432 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1433 		nsap->sa_flags = vec.sv_flags;
1434 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1435 	}
1436 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1437 	if (osap && !error) {
1438 		vec.sv_handler = osap->sa_handler;
1439 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1440 		vec.sv_flags = osap->sa_flags;
1441 		vec.sv_flags &= ~SA_NOCLDWAIT;
1442 		vec.sv_flags ^= SA_RESTART;
1443 		error = copyout(&vec, uap->osv, sizeof(vec));
1444 	}
1445 	return (error);
1446 }
1447 
1448 #ifndef _SYS_SYSPROTO_H_
1449 struct osigblock_args {
1450 	int	mask;
1451 };
1452 #endif
1453 int
1454 osigblock(struct thread *td, struct osigblock_args *uap)
1455 {
1456 	sigset_t set, oset;
1457 
1458 	OSIG2SIG(uap->mask, set);
1459 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1460 	SIG2OSIG(oset, td->td_retval[0]);
1461 	return (0);
1462 }
1463 
1464 #ifndef _SYS_SYSPROTO_H_
1465 struct osigsetmask_args {
1466 	int	mask;
1467 };
1468 #endif
1469 int
1470 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1471 {
1472 	sigset_t set, oset;
1473 
1474 	OSIG2SIG(uap->mask, set);
1475 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1476 	SIG2OSIG(oset, td->td_retval[0]);
1477 	return (0);
1478 }
1479 #endif /* COMPAT_43 */
1480 
1481 /*
1482  * Suspend calling thread until signal, providing mask to be set in the
1483  * meantime.
1484  */
1485 #ifndef _SYS_SYSPROTO_H_
1486 struct sigsuspend_args {
1487 	const sigset_t *sigmask;
1488 };
1489 #endif
1490 /* ARGSUSED */
1491 int
1492 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1493 {
1494 	sigset_t mask;
1495 	int error;
1496 
1497 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1498 	if (error)
1499 		return (error);
1500 	return (kern_sigsuspend(td, mask));
1501 }
1502 
1503 int
1504 kern_sigsuspend(struct thread *td, sigset_t mask)
1505 {
1506 	struct proc *p = td->td_proc;
1507 	int has_sig, sig;
1508 
1509 	/*
1510 	 * When returning from sigsuspend, we want
1511 	 * the old mask to be restored after the
1512 	 * signal handler has finished.  Thus, we
1513 	 * save it here and mark the sigacts structure
1514 	 * to indicate this.
1515 	 */
1516 	PROC_LOCK(p);
1517 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1518 	    SIGPROCMASK_PROC_LOCKED);
1519 	td->td_pflags |= TDP_OLDMASK;
1520 
1521 	/*
1522 	 * Process signals now. Otherwise, we can get spurious wakeup
1523 	 * due to signal entered process queue, but delivered to other
1524 	 * thread. But sigsuspend should return only on signal
1525 	 * delivery.
1526 	 */
1527 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1528 	for (has_sig = 0; !has_sig;) {
1529 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1530 			0) == 0)
1531 			/* void */;
1532 		thread_suspend_check(0);
1533 		mtx_lock(&p->p_sigacts->ps_mtx);
1534 		while ((sig = cursig(td)) != 0) {
1535 			KASSERT(sig >= 0, ("sig %d", sig));
1536 			has_sig += postsig(sig);
1537 		}
1538 		mtx_unlock(&p->p_sigacts->ps_mtx);
1539 	}
1540 	PROC_UNLOCK(p);
1541 	td->td_errno = EINTR;
1542 	td->td_pflags |= TDP_NERRNO;
1543 	return (EJUSTRETURN);
1544 }
1545 
1546 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1547 /*
1548  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1549  * convention: libc stub passes mask, not pointer, to save a copyin.
1550  */
1551 #ifndef _SYS_SYSPROTO_H_
1552 struct osigsuspend_args {
1553 	osigset_t mask;
1554 };
1555 #endif
1556 /* ARGSUSED */
1557 int
1558 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1559 {
1560 	sigset_t mask;
1561 
1562 	OSIG2SIG(uap->mask, mask);
1563 	return (kern_sigsuspend(td, mask));
1564 }
1565 #endif /* COMPAT_43 */
1566 
1567 #if defined(COMPAT_43)
1568 #ifndef _SYS_SYSPROTO_H_
1569 struct osigstack_args {
1570 	struct	sigstack *nss;
1571 	struct	sigstack *oss;
1572 };
1573 #endif
1574 /* ARGSUSED */
1575 int
1576 osigstack(struct thread *td, struct osigstack_args *uap)
1577 {
1578 	struct sigstack nss, oss;
1579 	int error = 0;
1580 
1581 	if (uap->nss != NULL) {
1582 		error = copyin(uap->nss, &nss, sizeof(nss));
1583 		if (error)
1584 			return (error);
1585 	}
1586 	oss.ss_sp = td->td_sigstk.ss_sp;
1587 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1588 	if (uap->nss != NULL) {
1589 		td->td_sigstk.ss_sp = nss.ss_sp;
1590 		td->td_sigstk.ss_size = 0;
1591 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1592 		td->td_pflags |= TDP_ALTSTACK;
1593 	}
1594 	if (uap->oss != NULL)
1595 		error = copyout(&oss, uap->oss, sizeof(oss));
1596 
1597 	return (error);
1598 }
1599 #endif /* COMPAT_43 */
1600 
1601 #ifndef _SYS_SYSPROTO_H_
1602 struct sigaltstack_args {
1603 	stack_t	*ss;
1604 	stack_t	*oss;
1605 };
1606 #endif
1607 /* ARGSUSED */
1608 int
1609 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1610 {
1611 	stack_t ss, oss;
1612 	int error;
1613 
1614 	if (uap->ss != NULL) {
1615 		error = copyin(uap->ss, &ss, sizeof(ss));
1616 		if (error)
1617 			return (error);
1618 	}
1619 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1620 	    (uap->oss != NULL) ? &oss : NULL);
1621 	if (error)
1622 		return (error);
1623 	if (uap->oss != NULL)
1624 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1625 	return (error);
1626 }
1627 
1628 int
1629 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1630 {
1631 	struct proc *p = td->td_proc;
1632 	int oonstack;
1633 
1634 	oonstack = sigonstack(cpu_getstack(td));
1635 
1636 	if (oss != NULL) {
1637 		*oss = td->td_sigstk;
1638 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1639 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1640 	}
1641 
1642 	if (ss != NULL) {
1643 		if (oonstack)
1644 			return (EPERM);
1645 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1646 			return (EINVAL);
1647 		if (!(ss->ss_flags & SS_DISABLE)) {
1648 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1649 				return (ENOMEM);
1650 
1651 			td->td_sigstk = *ss;
1652 			td->td_pflags |= TDP_ALTSTACK;
1653 		} else {
1654 			td->td_pflags &= ~TDP_ALTSTACK;
1655 		}
1656 	}
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Common code for kill process group/broadcast kill.
1662  * cp is calling process.
1663  */
1664 static int
1665 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1666 {
1667 	struct proc *p;
1668 	struct pgrp *pgrp;
1669 	int err;
1670 	int ret;
1671 
1672 	ret = ESRCH;
1673 	if (all) {
1674 		/*
1675 		 * broadcast
1676 		 */
1677 		sx_slock(&allproc_lock);
1678 		FOREACH_PROC_IN_SYSTEM(p) {
1679 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1680 			    p == td->td_proc || p->p_state == PRS_NEW) {
1681 				continue;
1682 			}
1683 			PROC_LOCK(p);
1684 			err = p_cansignal(td, p, sig);
1685 			if (err == 0) {
1686 				if (sig)
1687 					pksignal(p, sig, ksi);
1688 				ret = err;
1689 			}
1690 			else if (ret == ESRCH)
1691 				ret = err;
1692 			PROC_UNLOCK(p);
1693 		}
1694 		sx_sunlock(&allproc_lock);
1695 	} else {
1696 		sx_slock(&proctree_lock);
1697 		if (pgid == 0) {
1698 			/*
1699 			 * zero pgid means send to my process group.
1700 			 */
1701 			pgrp = td->td_proc->p_pgrp;
1702 			PGRP_LOCK(pgrp);
1703 		} else {
1704 			pgrp = pgfind(pgid);
1705 			if (pgrp == NULL) {
1706 				sx_sunlock(&proctree_lock);
1707 				return (ESRCH);
1708 			}
1709 		}
1710 		sx_sunlock(&proctree_lock);
1711 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1712 			PROC_LOCK(p);
1713 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1714 			    p->p_state == PRS_NEW) {
1715 				PROC_UNLOCK(p);
1716 				continue;
1717 			}
1718 			err = p_cansignal(td, p, sig);
1719 			if (err == 0) {
1720 				if (sig)
1721 					pksignal(p, sig, ksi);
1722 				ret = err;
1723 			}
1724 			else if (ret == ESRCH)
1725 				ret = err;
1726 			PROC_UNLOCK(p);
1727 		}
1728 		PGRP_UNLOCK(pgrp);
1729 	}
1730 	return (ret);
1731 }
1732 
1733 #ifndef _SYS_SYSPROTO_H_
1734 struct kill_args {
1735 	int	pid;
1736 	int	signum;
1737 };
1738 #endif
1739 /* ARGSUSED */
1740 int
1741 sys_kill(struct thread *td, struct kill_args *uap)
1742 {
1743 	ksiginfo_t ksi;
1744 	struct proc *p;
1745 	int error;
1746 
1747 	/*
1748 	 * A process in capability mode can send signals only to himself.
1749 	 * The main rationale behind this is that abort(3) is implemented as
1750 	 * kill(getpid(), SIGABRT).
1751 	 */
1752 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1753 		return (ECAPMODE);
1754 
1755 	AUDIT_ARG_SIGNUM(uap->signum);
1756 	AUDIT_ARG_PID(uap->pid);
1757 	if ((u_int)uap->signum > _SIG_MAXSIG)
1758 		return (EINVAL);
1759 
1760 	ksiginfo_init(&ksi);
1761 	ksi.ksi_signo = uap->signum;
1762 	ksi.ksi_code = SI_USER;
1763 	ksi.ksi_pid = td->td_proc->p_pid;
1764 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1765 
1766 	if (uap->pid > 0) {
1767 		/* kill single process */
1768 		if ((p = pfind_any(uap->pid)) == NULL)
1769 			return (ESRCH);
1770 		AUDIT_ARG_PROCESS(p);
1771 		error = p_cansignal(td, p, uap->signum);
1772 		if (error == 0 && uap->signum)
1773 			pksignal(p, uap->signum, &ksi);
1774 		PROC_UNLOCK(p);
1775 		return (error);
1776 	}
1777 	switch (uap->pid) {
1778 	case -1:		/* broadcast signal */
1779 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1780 	case 0:			/* signal own process group */
1781 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1782 	default:		/* negative explicit process group */
1783 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1784 	}
1785 	/* NOTREACHED */
1786 }
1787 
1788 int
1789 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1790 {
1791 	struct proc *p;
1792 	int error;
1793 
1794 	AUDIT_ARG_SIGNUM(uap->signum);
1795 	AUDIT_ARG_FD(uap->fd);
1796 	if ((u_int)uap->signum > _SIG_MAXSIG)
1797 		return (EINVAL);
1798 
1799 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1800 	if (error)
1801 		return (error);
1802 	AUDIT_ARG_PROCESS(p);
1803 	error = p_cansignal(td, p, uap->signum);
1804 	if (error == 0 && uap->signum)
1805 		kern_psignal(p, uap->signum);
1806 	PROC_UNLOCK(p);
1807 	return (error);
1808 }
1809 
1810 #if defined(COMPAT_43)
1811 #ifndef _SYS_SYSPROTO_H_
1812 struct okillpg_args {
1813 	int	pgid;
1814 	int	signum;
1815 };
1816 #endif
1817 /* ARGSUSED */
1818 int
1819 okillpg(struct thread *td, struct okillpg_args *uap)
1820 {
1821 	ksiginfo_t ksi;
1822 
1823 	AUDIT_ARG_SIGNUM(uap->signum);
1824 	AUDIT_ARG_PID(uap->pgid);
1825 	if ((u_int)uap->signum > _SIG_MAXSIG)
1826 		return (EINVAL);
1827 
1828 	ksiginfo_init(&ksi);
1829 	ksi.ksi_signo = uap->signum;
1830 	ksi.ksi_code = SI_USER;
1831 	ksi.ksi_pid = td->td_proc->p_pid;
1832 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1833 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1834 }
1835 #endif /* COMPAT_43 */
1836 
1837 #ifndef _SYS_SYSPROTO_H_
1838 struct sigqueue_args {
1839 	pid_t pid;
1840 	int signum;
1841 	/* union sigval */ void *value;
1842 };
1843 #endif
1844 int
1845 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1846 {
1847 	union sigval sv;
1848 
1849 	sv.sival_ptr = uap->value;
1850 
1851 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1852 }
1853 
1854 int
1855 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1856 {
1857 	ksiginfo_t ksi;
1858 	struct proc *p;
1859 	int error;
1860 
1861 	if ((u_int)signum > _SIG_MAXSIG)
1862 		return (EINVAL);
1863 
1864 	/*
1865 	 * Specification says sigqueue can only send signal to
1866 	 * single process.
1867 	 */
1868 	if (pid <= 0)
1869 		return (EINVAL);
1870 
1871 	if ((p = pfind_any(pid)) == NULL)
1872 		return (ESRCH);
1873 	error = p_cansignal(td, p, signum);
1874 	if (error == 0 && signum != 0) {
1875 		ksiginfo_init(&ksi);
1876 		ksi.ksi_flags = KSI_SIGQ;
1877 		ksi.ksi_signo = signum;
1878 		ksi.ksi_code = SI_QUEUE;
1879 		ksi.ksi_pid = td->td_proc->p_pid;
1880 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1881 		ksi.ksi_value = *value;
1882 		error = pksignal(p, ksi.ksi_signo, &ksi);
1883 	}
1884 	PROC_UNLOCK(p);
1885 	return (error);
1886 }
1887 
1888 /*
1889  * Send a signal to a process group.
1890  */
1891 void
1892 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1893 {
1894 	struct pgrp *pgrp;
1895 
1896 	if (pgid != 0) {
1897 		sx_slock(&proctree_lock);
1898 		pgrp = pgfind(pgid);
1899 		sx_sunlock(&proctree_lock);
1900 		if (pgrp != NULL) {
1901 			pgsignal(pgrp, sig, 0, ksi);
1902 			PGRP_UNLOCK(pgrp);
1903 		}
1904 	}
1905 }
1906 
1907 /*
1908  * Send a signal to a process group.  If checktty is 1,
1909  * limit to members which have a controlling terminal.
1910  */
1911 void
1912 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1913 {
1914 	struct proc *p;
1915 
1916 	if (pgrp) {
1917 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1918 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1919 			PROC_LOCK(p);
1920 			if (p->p_state == PRS_NORMAL &&
1921 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1922 				pksignal(p, sig, ksi);
1923 			PROC_UNLOCK(p);
1924 		}
1925 	}
1926 }
1927 
1928 
1929 /*
1930  * Recalculate the signal mask and reset the signal disposition after
1931  * usermode frame for delivery is formed.  Should be called after
1932  * mach-specific routine, because sysent->sv_sendsig() needs correct
1933  * ps_siginfo and signal mask.
1934  */
1935 static void
1936 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1937 {
1938 	sigset_t mask;
1939 
1940 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1941 	td->td_ru.ru_nsignals++;
1942 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1943 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1944 		SIGADDSET(mask, sig);
1945 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1946 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1947 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1948 		sigdflt(ps, sig);
1949 }
1950 
1951 
1952 /*
1953  * Send a signal caused by a trap to the current thread.  If it will be
1954  * caught immediately, deliver it with correct code.  Otherwise, post it
1955  * normally.
1956  */
1957 void
1958 trapsignal(struct thread *td, ksiginfo_t *ksi)
1959 {
1960 	struct sigacts *ps;
1961 	struct proc *p;
1962 	int sig;
1963 	int code;
1964 
1965 	p = td->td_proc;
1966 	sig = ksi->ksi_signo;
1967 	code = ksi->ksi_code;
1968 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1969 
1970 	PROC_LOCK(p);
1971 	ps = p->p_sigacts;
1972 	mtx_lock(&ps->ps_mtx);
1973 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1974 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1975 #ifdef KTRACE
1976 		if (KTRPOINT(curthread, KTR_PSIG))
1977 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1978 			    &td->td_sigmask, code);
1979 #endif
1980 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1981 				ksi, &td->td_sigmask);
1982 		postsig_done(sig, td, ps);
1983 		mtx_unlock(&ps->ps_mtx);
1984 	} else {
1985 		/*
1986 		 * Avoid a possible infinite loop if the thread
1987 		 * masking the signal or process is ignoring the
1988 		 * signal.
1989 		 */
1990 		if (kern_forcesigexit &&
1991 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1992 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1993 			SIGDELSET(td->td_sigmask, sig);
1994 			SIGDELSET(ps->ps_sigcatch, sig);
1995 			SIGDELSET(ps->ps_sigignore, sig);
1996 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1997 		}
1998 		mtx_unlock(&ps->ps_mtx);
1999 		p->p_code = code;	/* XXX for core dump/debugger */
2000 		p->p_sig = sig;		/* XXX to verify code */
2001 		tdsendsignal(p, td, sig, ksi);
2002 	}
2003 	PROC_UNLOCK(p);
2004 }
2005 
2006 static struct thread *
2007 sigtd(struct proc *p, int sig, int prop)
2008 {
2009 	struct thread *td, *signal_td;
2010 
2011 	PROC_LOCK_ASSERT(p, MA_OWNED);
2012 
2013 	/*
2014 	 * Check if current thread can handle the signal without
2015 	 * switching context to another thread.
2016 	 */
2017 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2018 		return (curthread);
2019 	signal_td = NULL;
2020 	FOREACH_THREAD_IN_PROC(p, td) {
2021 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2022 			signal_td = td;
2023 			break;
2024 		}
2025 	}
2026 	if (signal_td == NULL)
2027 		signal_td = FIRST_THREAD_IN_PROC(p);
2028 	return (signal_td);
2029 }
2030 
2031 /*
2032  * Send the signal to the process.  If the signal has an action, the action
2033  * is usually performed by the target process rather than the caller; we add
2034  * the signal to the set of pending signals for the process.
2035  *
2036  * Exceptions:
2037  *   o When a stop signal is sent to a sleeping process that takes the
2038  *     default action, the process is stopped without awakening it.
2039  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2040  *     regardless of the signal action (eg, blocked or ignored).
2041  *
2042  * Other ignored signals are discarded immediately.
2043  *
2044  * NB: This function may be entered from the debugger via the "kill" DDB
2045  * command.  There is little that can be done to mitigate the possibly messy
2046  * side effects of this unwise possibility.
2047  */
2048 void
2049 kern_psignal(struct proc *p, int sig)
2050 {
2051 	ksiginfo_t ksi;
2052 
2053 	ksiginfo_init(&ksi);
2054 	ksi.ksi_signo = sig;
2055 	ksi.ksi_code = SI_KERNEL;
2056 	(void) tdsendsignal(p, NULL, sig, &ksi);
2057 }
2058 
2059 int
2060 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2061 {
2062 
2063 	return (tdsendsignal(p, NULL, sig, ksi));
2064 }
2065 
2066 /* Utility function for finding a thread to send signal event to. */
2067 int
2068 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2069 {
2070 	struct thread *td;
2071 
2072 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2073 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2074 		if (td == NULL)
2075 			return (ESRCH);
2076 		*ttd = td;
2077 	} else {
2078 		*ttd = NULL;
2079 		PROC_LOCK(p);
2080 	}
2081 	return (0);
2082 }
2083 
2084 void
2085 tdsignal(struct thread *td, int sig)
2086 {
2087 	ksiginfo_t ksi;
2088 
2089 	ksiginfo_init(&ksi);
2090 	ksi.ksi_signo = sig;
2091 	ksi.ksi_code = SI_KERNEL;
2092 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2093 }
2094 
2095 void
2096 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2097 {
2098 
2099 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2100 }
2101 
2102 int
2103 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2104 {
2105 	sig_t action;
2106 	sigqueue_t *sigqueue;
2107 	int prop;
2108 	struct sigacts *ps;
2109 	int intrval;
2110 	int ret = 0;
2111 	int wakeup_swapper;
2112 
2113 	MPASS(td == NULL || p == td->td_proc);
2114 	PROC_LOCK_ASSERT(p, MA_OWNED);
2115 
2116 	if (!_SIG_VALID(sig))
2117 		panic("%s(): invalid signal %d", __func__, sig);
2118 
2119 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2120 
2121 	/*
2122 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2123 	 */
2124 	if (p->p_state == PRS_ZOMBIE) {
2125 		if (ksi && (ksi->ksi_flags & KSI_INS))
2126 			ksiginfo_tryfree(ksi);
2127 		return (ret);
2128 	}
2129 
2130 	ps = p->p_sigacts;
2131 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2132 	prop = sigprop(sig);
2133 
2134 	if (td == NULL) {
2135 		td = sigtd(p, sig, prop);
2136 		sigqueue = &p->p_sigqueue;
2137 	} else
2138 		sigqueue = &td->td_sigqueue;
2139 
2140 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2141 
2142 	/*
2143 	 * If the signal is being ignored,
2144 	 * then we forget about it immediately.
2145 	 * (Note: we don't set SIGCONT in ps_sigignore,
2146 	 * and if it is set to SIG_IGN,
2147 	 * action will be SIG_DFL here.)
2148 	 */
2149 	mtx_lock(&ps->ps_mtx);
2150 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2151 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2152 
2153 		mtx_unlock(&ps->ps_mtx);
2154 		if (ksi && (ksi->ksi_flags & KSI_INS))
2155 			ksiginfo_tryfree(ksi);
2156 		return (ret);
2157 	}
2158 	if (SIGISMEMBER(td->td_sigmask, sig))
2159 		action = SIG_HOLD;
2160 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2161 		action = SIG_CATCH;
2162 	else
2163 		action = SIG_DFL;
2164 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2165 		intrval = EINTR;
2166 	else
2167 		intrval = ERESTART;
2168 	mtx_unlock(&ps->ps_mtx);
2169 
2170 	if (prop & SIGPROP_CONT)
2171 		sigqueue_delete_stopmask_proc(p);
2172 	else if (prop & SIGPROP_STOP) {
2173 		/*
2174 		 * If sending a tty stop signal to a member of an orphaned
2175 		 * process group, discard the signal here if the action
2176 		 * is default; don't stop the process below if sleeping,
2177 		 * and don't clear any pending SIGCONT.
2178 		 */
2179 		if ((prop & SIGPROP_TTYSTOP) &&
2180 		    (p->p_pgrp->pg_jobc == 0) &&
2181 		    (action == SIG_DFL)) {
2182 			if (ksi && (ksi->ksi_flags & KSI_INS))
2183 				ksiginfo_tryfree(ksi);
2184 			return (ret);
2185 		}
2186 		sigqueue_delete_proc(p, SIGCONT);
2187 		if (p->p_flag & P_CONTINUED) {
2188 			p->p_flag &= ~P_CONTINUED;
2189 			PROC_LOCK(p->p_pptr);
2190 			sigqueue_take(p->p_ksi);
2191 			PROC_UNLOCK(p->p_pptr);
2192 		}
2193 	}
2194 
2195 	ret = sigqueue_add(sigqueue, sig, ksi);
2196 	if (ret != 0)
2197 		return (ret);
2198 	signotify(td);
2199 	/*
2200 	 * Defer further processing for signals which are held,
2201 	 * except that stopped processes must be continued by SIGCONT.
2202 	 */
2203 	if (action == SIG_HOLD &&
2204 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2205 		return (ret);
2206 
2207 	/* SIGKILL: Remove procfs STOPEVENTs. */
2208 	if (sig == SIGKILL) {
2209 		/* from procfs_ioctl.c: PIOCBIC */
2210 		p->p_stops = 0;
2211 		/* from procfs_ioctl.c: PIOCCONT */
2212 		p->p_step = 0;
2213 		wakeup(&p->p_step);
2214 	}
2215 	/*
2216 	 * Some signals have a process-wide effect and a per-thread
2217 	 * component.  Most processing occurs when the process next
2218 	 * tries to cross the user boundary, however there are some
2219 	 * times when processing needs to be done immediately, such as
2220 	 * waking up threads so that they can cross the user boundary.
2221 	 * We try to do the per-process part here.
2222 	 */
2223 	if (P_SHOULDSTOP(p)) {
2224 		KASSERT(!(p->p_flag & P_WEXIT),
2225 		    ("signal to stopped but exiting process"));
2226 		if (sig == SIGKILL) {
2227 			/*
2228 			 * If traced process is already stopped,
2229 			 * then no further action is necessary.
2230 			 */
2231 			if (p->p_flag & P_TRACED)
2232 				goto out;
2233 			/*
2234 			 * SIGKILL sets process running.
2235 			 * It will die elsewhere.
2236 			 * All threads must be restarted.
2237 			 */
2238 			p->p_flag &= ~P_STOPPED_SIG;
2239 			goto runfast;
2240 		}
2241 
2242 		if (prop & SIGPROP_CONT) {
2243 			/*
2244 			 * If traced process is already stopped,
2245 			 * then no further action is necessary.
2246 			 */
2247 			if (p->p_flag & P_TRACED)
2248 				goto out;
2249 			/*
2250 			 * If SIGCONT is default (or ignored), we continue the
2251 			 * process but don't leave the signal in sigqueue as
2252 			 * it has no further action.  If SIGCONT is held, we
2253 			 * continue the process and leave the signal in
2254 			 * sigqueue.  If the process catches SIGCONT, let it
2255 			 * handle the signal itself.  If it isn't waiting on
2256 			 * an event, it goes back to run state.
2257 			 * Otherwise, process goes back to sleep state.
2258 			 */
2259 			p->p_flag &= ~P_STOPPED_SIG;
2260 			PROC_SLOCK(p);
2261 			if (p->p_numthreads == p->p_suspcount) {
2262 				PROC_SUNLOCK(p);
2263 				p->p_flag |= P_CONTINUED;
2264 				p->p_xsig = SIGCONT;
2265 				PROC_LOCK(p->p_pptr);
2266 				childproc_continued(p);
2267 				PROC_UNLOCK(p->p_pptr);
2268 				PROC_SLOCK(p);
2269 			}
2270 			if (action == SIG_DFL) {
2271 				thread_unsuspend(p);
2272 				PROC_SUNLOCK(p);
2273 				sigqueue_delete(sigqueue, sig);
2274 				goto out;
2275 			}
2276 			if (action == SIG_CATCH) {
2277 				/*
2278 				 * The process wants to catch it so it needs
2279 				 * to run at least one thread, but which one?
2280 				 */
2281 				PROC_SUNLOCK(p);
2282 				goto runfast;
2283 			}
2284 			/*
2285 			 * The signal is not ignored or caught.
2286 			 */
2287 			thread_unsuspend(p);
2288 			PROC_SUNLOCK(p);
2289 			goto out;
2290 		}
2291 
2292 		if (prop & SIGPROP_STOP) {
2293 			/*
2294 			 * If traced process is already stopped,
2295 			 * then no further action is necessary.
2296 			 */
2297 			if (p->p_flag & P_TRACED)
2298 				goto out;
2299 			/*
2300 			 * Already stopped, don't need to stop again
2301 			 * (If we did the shell could get confused).
2302 			 * Just make sure the signal STOP bit set.
2303 			 */
2304 			p->p_flag |= P_STOPPED_SIG;
2305 			sigqueue_delete(sigqueue, sig);
2306 			goto out;
2307 		}
2308 
2309 		/*
2310 		 * All other kinds of signals:
2311 		 * If a thread is sleeping interruptibly, simulate a
2312 		 * wakeup so that when it is continued it will be made
2313 		 * runnable and can look at the signal.  However, don't make
2314 		 * the PROCESS runnable, leave it stopped.
2315 		 * It may run a bit until it hits a thread_suspend_check().
2316 		 */
2317 		wakeup_swapper = 0;
2318 		PROC_SLOCK(p);
2319 		thread_lock(td);
2320 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2321 			wakeup_swapper = sleepq_abort(td, intrval);
2322 		thread_unlock(td);
2323 		PROC_SUNLOCK(p);
2324 		if (wakeup_swapper)
2325 			kick_proc0();
2326 		goto out;
2327 		/*
2328 		 * Mutexes are short lived. Threads waiting on them will
2329 		 * hit thread_suspend_check() soon.
2330 		 */
2331 	} else if (p->p_state == PRS_NORMAL) {
2332 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2333 			tdsigwakeup(td, sig, action, intrval);
2334 			goto out;
2335 		}
2336 
2337 		MPASS(action == SIG_DFL);
2338 
2339 		if (prop & SIGPROP_STOP) {
2340 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2341 				goto out;
2342 			p->p_flag |= P_STOPPED_SIG;
2343 			p->p_xsig = sig;
2344 			PROC_SLOCK(p);
2345 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2346 			if (p->p_numthreads == p->p_suspcount) {
2347 				/*
2348 				 * only thread sending signal to another
2349 				 * process can reach here, if thread is sending
2350 				 * signal to its process, because thread does
2351 				 * not suspend itself here, p_numthreads
2352 				 * should never be equal to p_suspcount.
2353 				 */
2354 				thread_stopped(p);
2355 				PROC_SUNLOCK(p);
2356 				sigqueue_delete_proc(p, p->p_xsig);
2357 			} else
2358 				PROC_SUNLOCK(p);
2359 			if (wakeup_swapper)
2360 				kick_proc0();
2361 			goto out;
2362 		}
2363 	} else {
2364 		/* Not in "NORMAL" state. discard the signal. */
2365 		sigqueue_delete(sigqueue, sig);
2366 		goto out;
2367 	}
2368 
2369 	/*
2370 	 * The process is not stopped so we need to apply the signal to all the
2371 	 * running threads.
2372 	 */
2373 runfast:
2374 	tdsigwakeup(td, sig, action, intrval);
2375 	PROC_SLOCK(p);
2376 	thread_unsuspend(p);
2377 	PROC_SUNLOCK(p);
2378 out:
2379 	/* If we jump here, proc slock should not be owned. */
2380 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2381 	return (ret);
2382 }
2383 
2384 /*
2385  * The force of a signal has been directed against a single
2386  * thread.  We need to see what we can do about knocking it
2387  * out of any sleep it may be in etc.
2388  */
2389 static void
2390 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2391 {
2392 	struct proc *p = td->td_proc;
2393 	int prop;
2394 	int wakeup_swapper;
2395 
2396 	wakeup_swapper = 0;
2397 	PROC_LOCK_ASSERT(p, MA_OWNED);
2398 	prop = sigprop(sig);
2399 
2400 	PROC_SLOCK(p);
2401 	thread_lock(td);
2402 	/*
2403 	 * Bring the priority of a thread up if we want it to get
2404 	 * killed in this lifetime.  Be careful to avoid bumping the
2405 	 * priority of the idle thread, since we still allow to signal
2406 	 * kernel processes.
2407 	 */
2408 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2409 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2410 		sched_prio(td, PUSER);
2411 	if (TD_ON_SLEEPQ(td)) {
2412 		/*
2413 		 * If thread is sleeping uninterruptibly
2414 		 * we can't interrupt the sleep... the signal will
2415 		 * be noticed when the process returns through
2416 		 * trap() or syscall().
2417 		 */
2418 		if ((td->td_flags & TDF_SINTR) == 0)
2419 			goto out;
2420 		/*
2421 		 * If SIGCONT is default (or ignored) and process is
2422 		 * asleep, we are finished; the process should not
2423 		 * be awakened.
2424 		 */
2425 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2426 			thread_unlock(td);
2427 			PROC_SUNLOCK(p);
2428 			sigqueue_delete(&p->p_sigqueue, sig);
2429 			/*
2430 			 * It may be on either list in this state.
2431 			 * Remove from both for now.
2432 			 */
2433 			sigqueue_delete(&td->td_sigqueue, sig);
2434 			return;
2435 		}
2436 
2437 		/*
2438 		 * Don't awaken a sleeping thread for SIGSTOP if the
2439 		 * STOP signal is deferred.
2440 		 */
2441 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2442 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2443 			goto out;
2444 
2445 		/*
2446 		 * Give low priority threads a better chance to run.
2447 		 */
2448 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2449 			sched_prio(td, PUSER);
2450 
2451 		wakeup_swapper = sleepq_abort(td, intrval);
2452 	} else {
2453 		/*
2454 		 * Other states do nothing with the signal immediately,
2455 		 * other than kicking ourselves if we are running.
2456 		 * It will either never be noticed, or noticed very soon.
2457 		 */
2458 #ifdef SMP
2459 		if (TD_IS_RUNNING(td) && td != curthread)
2460 			forward_signal(td);
2461 #endif
2462 	}
2463 out:
2464 	PROC_SUNLOCK(p);
2465 	thread_unlock(td);
2466 	if (wakeup_swapper)
2467 		kick_proc0();
2468 }
2469 
2470 static int
2471 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2472 {
2473 	struct thread *td2;
2474 	int wakeup_swapper;
2475 
2476 	PROC_LOCK_ASSERT(p, MA_OWNED);
2477 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2478 	MPASS(sending || td == curthread);
2479 
2480 	wakeup_swapper = 0;
2481 	FOREACH_THREAD_IN_PROC(p, td2) {
2482 		thread_lock(td2);
2483 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2484 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2485 		    (td2->td_flags & TDF_SINTR)) {
2486 			if (td2->td_flags & TDF_SBDRY) {
2487 				/*
2488 				 * Once a thread is asleep with
2489 				 * TDF_SBDRY and without TDF_SERESTART
2490 				 * or TDF_SEINTR set, it should never
2491 				 * become suspended due to this check.
2492 				 */
2493 				KASSERT(!TD_IS_SUSPENDED(td2),
2494 				    ("thread with deferred stops suspended"));
2495 				if (TD_SBDRY_INTR(td2))
2496 					wakeup_swapper |= sleepq_abort(td2,
2497 					    TD_SBDRY_ERRNO(td2));
2498 			} else if (!TD_IS_SUSPENDED(td2)) {
2499 				thread_suspend_one(td2);
2500 			}
2501 		} else if (!TD_IS_SUSPENDED(td2)) {
2502 			if (sending || td != td2)
2503 				td2->td_flags |= TDF_ASTPENDING;
2504 #ifdef SMP
2505 			if (TD_IS_RUNNING(td2) && td2 != td)
2506 				forward_signal(td2);
2507 #endif
2508 		}
2509 		thread_unlock(td2);
2510 	}
2511 	return (wakeup_swapper);
2512 }
2513 
2514 /*
2515  * Stop the process for an event deemed interesting to the debugger. If si is
2516  * non-NULL, this is a signal exchange; the new signal requested by the
2517  * debugger will be returned for handling. If si is NULL, this is some other
2518  * type of interesting event. The debugger may request a signal be delivered in
2519  * that case as well, however it will be deferred until it can be handled.
2520  */
2521 int
2522 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2523 {
2524 	struct proc *p = td->td_proc;
2525 	struct thread *td2;
2526 	ksiginfo_t ksi;
2527 	int prop;
2528 
2529 	PROC_LOCK_ASSERT(p, MA_OWNED);
2530 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2531 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2532 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2533 
2534 	td->td_xsig = sig;
2535 
2536 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2537 		td->td_dbgflags |= TDB_XSIG;
2538 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2539 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2540 		PROC_SLOCK(p);
2541 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2542 			if (P_KILLED(p)) {
2543 				/*
2544 				 * Ensure that, if we've been PT_KILLed, the
2545 				 * exit status reflects that. Another thread
2546 				 * may also be in ptracestop(), having just
2547 				 * received the SIGKILL, but this thread was
2548 				 * unsuspended first.
2549 				 */
2550 				td->td_dbgflags &= ~TDB_XSIG;
2551 				td->td_xsig = SIGKILL;
2552 				p->p_ptevents = 0;
2553 				break;
2554 			}
2555 			if (p->p_flag & P_SINGLE_EXIT &&
2556 			    !(td->td_dbgflags & TDB_EXIT)) {
2557 				/*
2558 				 * Ignore ptrace stops except for thread exit
2559 				 * events when the process exits.
2560 				 */
2561 				td->td_dbgflags &= ~TDB_XSIG;
2562 				PROC_SUNLOCK(p);
2563 				return (0);
2564 			}
2565 
2566 			/*
2567 			 * Make wait(2) work.  Ensure that right after the
2568 			 * attach, the thread which was decided to become the
2569 			 * leader of attach gets reported to the waiter.
2570 			 * Otherwise, just avoid overwriting another thread's
2571 			 * assignment to p_xthread.  If another thread has
2572 			 * already set p_xthread, the current thread will get
2573 			 * a chance to report itself upon the next iteration.
2574 			 */
2575 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2576 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2577 			    p->p_xthread == NULL)) {
2578 				p->p_xsig = sig;
2579 				p->p_xthread = td;
2580 				td->td_dbgflags &= ~TDB_FSTP;
2581 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2582 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2583 				sig_suspend_threads(td, p, 0);
2584 			}
2585 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2586 				td->td_dbgflags &= ~TDB_STOPATFORK;
2587 				cv_broadcast(&p->p_dbgwait);
2588 			}
2589 stopme:
2590 			thread_suspend_switch(td, p);
2591 			if (p->p_xthread == td)
2592 				p->p_xthread = NULL;
2593 			if (!(p->p_flag & P_TRACED))
2594 				break;
2595 			if (td->td_dbgflags & TDB_SUSPEND) {
2596 				if (p->p_flag & P_SINGLE_EXIT)
2597 					break;
2598 				goto stopme;
2599 			}
2600 		}
2601 		PROC_SUNLOCK(p);
2602 	}
2603 
2604 	if (si != NULL && sig == td->td_xsig) {
2605 		/* Parent wants us to take the original signal unchanged. */
2606 		si->ksi_flags |= KSI_HEAD;
2607 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2608 			si->ksi_signo = 0;
2609 	} else if (td->td_xsig != 0) {
2610 		/*
2611 		 * If parent wants us to take a new signal, then it will leave
2612 		 * it in td->td_xsig; otherwise we just look for signals again.
2613 		 */
2614 		ksiginfo_init(&ksi);
2615 		ksi.ksi_signo = td->td_xsig;
2616 		ksi.ksi_flags |= KSI_PTRACE;
2617 		prop = sigprop(td->td_xsig);
2618 		td2 = sigtd(p, td->td_xsig, prop);
2619 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2620 		if (td != td2)
2621 			return (0);
2622 	}
2623 
2624 	return (td->td_xsig);
2625 }
2626 
2627 static void
2628 reschedule_signals(struct proc *p, sigset_t block, int flags)
2629 {
2630 	struct sigacts *ps;
2631 	struct thread *td;
2632 	int sig;
2633 
2634 	PROC_LOCK_ASSERT(p, MA_OWNED);
2635 	ps = p->p_sigacts;
2636 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2637 	    MA_OWNED : MA_NOTOWNED);
2638 	if (SIGISEMPTY(p->p_siglist))
2639 		return;
2640 	SIGSETAND(block, p->p_siglist);
2641 	while ((sig = sig_ffs(&block)) != 0) {
2642 		SIGDELSET(block, sig);
2643 		td = sigtd(p, sig, 0);
2644 		signotify(td);
2645 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2646 			mtx_lock(&ps->ps_mtx);
2647 		if (p->p_flag & P_TRACED ||
2648 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2649 		    !SIGISMEMBER(td->td_sigmask, sig)))
2650 			tdsigwakeup(td, sig, SIG_CATCH,
2651 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2652 			     ERESTART));
2653 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2654 			mtx_unlock(&ps->ps_mtx);
2655 	}
2656 }
2657 
2658 void
2659 tdsigcleanup(struct thread *td)
2660 {
2661 	struct proc *p;
2662 	sigset_t unblocked;
2663 
2664 	p = td->td_proc;
2665 	PROC_LOCK_ASSERT(p, MA_OWNED);
2666 
2667 	sigqueue_flush(&td->td_sigqueue);
2668 	if (p->p_numthreads == 1)
2669 		return;
2670 
2671 	/*
2672 	 * Since we cannot handle signals, notify signal post code
2673 	 * about this by filling the sigmask.
2674 	 *
2675 	 * Also, if needed, wake up thread(s) that do not block the
2676 	 * same signals as the exiting thread, since the thread might
2677 	 * have been selected for delivery and woken up.
2678 	 */
2679 	SIGFILLSET(unblocked);
2680 	SIGSETNAND(unblocked, td->td_sigmask);
2681 	SIGFILLSET(td->td_sigmask);
2682 	reschedule_signals(p, unblocked, 0);
2683 
2684 }
2685 
2686 static int
2687 sigdeferstop_curr_flags(int cflags)
2688 {
2689 
2690 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2691 	    (cflags & TDF_SBDRY) != 0);
2692 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2693 }
2694 
2695 /*
2696  * Defer the delivery of SIGSTOP for the current thread, according to
2697  * the requested mode.  Returns previous flags, which must be restored
2698  * by sigallowstop().
2699  *
2700  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2701  * cleared by the current thread, which allow the lock-less read-only
2702  * accesses below.
2703  */
2704 int
2705 sigdeferstop_impl(int mode)
2706 {
2707 	struct thread *td;
2708 	int cflags, nflags;
2709 
2710 	td = curthread;
2711 	cflags = sigdeferstop_curr_flags(td->td_flags);
2712 	switch (mode) {
2713 	case SIGDEFERSTOP_NOP:
2714 		nflags = cflags;
2715 		break;
2716 	case SIGDEFERSTOP_OFF:
2717 		nflags = 0;
2718 		break;
2719 	case SIGDEFERSTOP_SILENT:
2720 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2721 		break;
2722 	case SIGDEFERSTOP_EINTR:
2723 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2724 		break;
2725 	case SIGDEFERSTOP_ERESTART:
2726 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2727 		break;
2728 	default:
2729 		panic("sigdeferstop: invalid mode %x", mode);
2730 		break;
2731 	}
2732 	if (cflags == nflags)
2733 		return (SIGDEFERSTOP_VAL_NCHG);
2734 	thread_lock(td);
2735 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2736 	thread_unlock(td);
2737 	return (cflags);
2738 }
2739 
2740 /*
2741  * Restores the STOP handling mode, typically permitting the delivery
2742  * of SIGSTOP for the current thread.  This does not immediately
2743  * suspend if a stop was posted.  Instead, the thread will suspend
2744  * either via ast() or a subsequent interruptible sleep.
2745  */
2746 void
2747 sigallowstop_impl(int prev)
2748 {
2749 	struct thread *td;
2750 	int cflags;
2751 
2752 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2753 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2754 	    ("sigallowstop: incorrect previous mode %x", prev));
2755 	td = curthread;
2756 	cflags = sigdeferstop_curr_flags(td->td_flags);
2757 	if (cflags != prev) {
2758 		thread_lock(td);
2759 		td->td_flags = (td->td_flags & ~cflags) | prev;
2760 		thread_unlock(td);
2761 	}
2762 }
2763 
2764 /*
2765  * If the current process has received a signal (should be caught or cause
2766  * termination, should interrupt current syscall), return the signal number.
2767  * Stop signals with default action are processed immediately, then cleared;
2768  * they aren't returned.  This is checked after each entry to the system for
2769  * a syscall or trap (though this can usually be done without calling issignal
2770  * by checking the pending signal masks in cursig.) The normal call
2771  * sequence is
2772  *
2773  *	while (sig = cursig(curthread))
2774  *		postsig(sig);
2775  */
2776 static int
2777 issignal(struct thread *td)
2778 {
2779 	struct proc *p;
2780 	struct sigacts *ps;
2781 	struct sigqueue *queue;
2782 	sigset_t sigpending;
2783 	ksiginfo_t ksi;
2784 	int prop, sig, traced;
2785 
2786 	p = td->td_proc;
2787 	ps = p->p_sigacts;
2788 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2789 	PROC_LOCK_ASSERT(p, MA_OWNED);
2790 	for (;;) {
2791 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2792 
2793 		sigpending = td->td_sigqueue.sq_signals;
2794 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2795 		SIGSETNAND(sigpending, td->td_sigmask);
2796 
2797 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2798 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2799 			SIG_STOPSIGMASK(sigpending);
2800 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2801 			return (0);
2802 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2803 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2804 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2805 			/*
2806 			 * If debugger just attached, always consume
2807 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2808 			 * execute the debugger attach ritual in
2809 			 * order.
2810 			 */
2811 			sig = SIGSTOP;
2812 			td->td_dbgflags |= TDB_FSTP;
2813 		} else {
2814 			sig = sig_ffs(&sigpending);
2815 		}
2816 
2817 		if (p->p_stops & S_SIG) {
2818 			mtx_unlock(&ps->ps_mtx);
2819 			stopevent(p, S_SIG, sig);
2820 			mtx_lock(&ps->ps_mtx);
2821 		}
2822 
2823 		/*
2824 		 * We should see pending but ignored signals
2825 		 * only if P_TRACED was on when they were posted.
2826 		 */
2827 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2828 			sigqueue_delete(&td->td_sigqueue, sig);
2829 			sigqueue_delete(&p->p_sigqueue, sig);
2830 			continue;
2831 		}
2832 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2833 			/*
2834 			 * If traced, always stop.
2835 			 * Remove old signal from queue before the stop.
2836 			 * XXX shrug off debugger, it causes siginfo to
2837 			 * be thrown away.
2838 			 */
2839 			queue = &td->td_sigqueue;
2840 			ksiginfo_init(&ksi);
2841 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2842 				queue = &p->p_sigqueue;
2843 				sigqueue_get(queue, sig, &ksi);
2844 			}
2845 			td->td_si = ksi.ksi_info;
2846 
2847 			mtx_unlock(&ps->ps_mtx);
2848 			sig = ptracestop(td, sig, &ksi);
2849 			mtx_lock(&ps->ps_mtx);
2850 
2851 			/*
2852 			 * Keep looking if the debugger discarded or
2853 			 * replaced the signal.
2854 			 */
2855 			if (sig == 0)
2856 				continue;
2857 
2858 			/*
2859 			 * If the signal became masked, re-queue it.
2860 			 */
2861 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2862 				ksi.ksi_flags |= KSI_HEAD;
2863 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2864 				continue;
2865 			}
2866 
2867 			/*
2868 			 * If the traced bit got turned off, requeue
2869 			 * the signal and go back up to the top to
2870 			 * rescan signals.  This ensures that p_sig*
2871 			 * and p_sigact are consistent.
2872 			 */
2873 			if ((p->p_flag & P_TRACED) == 0) {
2874 				ksi.ksi_flags |= KSI_HEAD;
2875 				sigqueue_add(queue, sig, &ksi);
2876 				continue;
2877 			}
2878 		}
2879 
2880 		prop = sigprop(sig);
2881 
2882 		/*
2883 		 * Decide whether the signal should be returned.
2884 		 * Return the signal's number, or fall through
2885 		 * to clear it from the pending mask.
2886 		 */
2887 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2888 
2889 		case (intptr_t)SIG_DFL:
2890 			/*
2891 			 * Don't take default actions on system processes.
2892 			 */
2893 			if (p->p_pid <= 1) {
2894 #ifdef DIAGNOSTIC
2895 				/*
2896 				 * Are you sure you want to ignore SIGSEGV
2897 				 * in init? XXX
2898 				 */
2899 				printf("Process (pid %lu) got signal %d\n",
2900 					(u_long)p->p_pid, sig);
2901 #endif
2902 				break;		/* == ignore */
2903 			}
2904 			/*
2905 			 * If there is a pending stop signal to process with
2906 			 * default action, stop here, then clear the signal.
2907 			 * Traced or exiting processes should ignore stops.
2908 			 * Additionally, a member of an orphaned process group
2909 			 * should ignore tty stops.
2910 			 */
2911 			if (prop & SIGPROP_STOP) {
2912 				if (p->p_flag &
2913 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2914 				    (p->p_pgrp->pg_jobc == 0 &&
2915 				     prop & SIGPROP_TTYSTOP))
2916 					break;	/* == ignore */
2917 				if (TD_SBDRY_INTR(td)) {
2918 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2919 					    ("lost TDF_SBDRY"));
2920 					return (-1);
2921 				}
2922 				mtx_unlock(&ps->ps_mtx);
2923 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2924 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2925 				sigqueue_delete(&td->td_sigqueue, sig);
2926 				sigqueue_delete(&p->p_sigqueue, sig);
2927 				p->p_flag |= P_STOPPED_SIG;
2928 				p->p_xsig = sig;
2929 				PROC_SLOCK(p);
2930 				sig_suspend_threads(td, p, 0);
2931 				thread_suspend_switch(td, p);
2932 				PROC_SUNLOCK(p);
2933 				mtx_lock(&ps->ps_mtx);
2934 				goto next;
2935 			} else if (prop & SIGPROP_IGNORE) {
2936 				/*
2937 				 * Except for SIGCONT, shouldn't get here.
2938 				 * Default action is to ignore; drop it.
2939 				 */
2940 				break;		/* == ignore */
2941 			} else
2942 				return (sig);
2943 			/*NOTREACHED*/
2944 
2945 		case (intptr_t)SIG_IGN:
2946 			/*
2947 			 * Masking above should prevent us ever trying
2948 			 * to take action on an ignored signal other
2949 			 * than SIGCONT, unless process is traced.
2950 			 */
2951 			if ((prop & SIGPROP_CONT) == 0 &&
2952 			    (p->p_flag & P_TRACED) == 0)
2953 				printf("issignal\n");
2954 			break;		/* == ignore */
2955 
2956 		default:
2957 			/*
2958 			 * This signal has an action, let
2959 			 * postsig() process it.
2960 			 */
2961 			return (sig);
2962 		}
2963 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2964 		sigqueue_delete(&p->p_sigqueue, sig);
2965 next:;
2966 	}
2967 	/* NOTREACHED */
2968 }
2969 
2970 void
2971 thread_stopped(struct proc *p)
2972 {
2973 	int n;
2974 
2975 	PROC_LOCK_ASSERT(p, MA_OWNED);
2976 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2977 	n = p->p_suspcount;
2978 	if (p == curproc)
2979 		n++;
2980 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2981 		PROC_SUNLOCK(p);
2982 		p->p_flag &= ~P_WAITED;
2983 		PROC_LOCK(p->p_pptr);
2984 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2985 			CLD_TRAPPED : CLD_STOPPED);
2986 		PROC_UNLOCK(p->p_pptr);
2987 		PROC_SLOCK(p);
2988 	}
2989 }
2990 
2991 /*
2992  * Take the action for the specified signal
2993  * from the current set of pending signals.
2994  */
2995 int
2996 postsig(int sig)
2997 {
2998 	struct thread *td;
2999 	struct proc *p;
3000 	struct sigacts *ps;
3001 	sig_t action;
3002 	ksiginfo_t ksi;
3003 	sigset_t returnmask;
3004 
3005 	KASSERT(sig != 0, ("postsig"));
3006 
3007 	td = curthread;
3008 	p = td->td_proc;
3009 	PROC_LOCK_ASSERT(p, MA_OWNED);
3010 	ps = p->p_sigacts;
3011 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3012 	ksiginfo_init(&ksi);
3013 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3014 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3015 		return (0);
3016 	ksi.ksi_signo = sig;
3017 	if (ksi.ksi_code == SI_TIMER)
3018 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3019 	action = ps->ps_sigact[_SIG_IDX(sig)];
3020 #ifdef KTRACE
3021 	if (KTRPOINT(td, KTR_PSIG))
3022 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3023 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3024 #endif
3025 	if ((p->p_stops & S_SIG) != 0) {
3026 		mtx_unlock(&ps->ps_mtx);
3027 		stopevent(p, S_SIG, sig);
3028 		mtx_lock(&ps->ps_mtx);
3029 	}
3030 
3031 	if (action == SIG_DFL) {
3032 		/*
3033 		 * Default action, where the default is to kill
3034 		 * the process.  (Other cases were ignored above.)
3035 		 */
3036 		mtx_unlock(&ps->ps_mtx);
3037 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3038 		sigexit(td, sig);
3039 		/* NOTREACHED */
3040 	} else {
3041 		/*
3042 		 * If we get here, the signal must be caught.
3043 		 */
3044 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3045 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3046 		    ("postsig action: blocked sig %d", sig));
3047 
3048 		/*
3049 		 * Set the new mask value and also defer further
3050 		 * occurrences of this signal.
3051 		 *
3052 		 * Special case: user has done a sigsuspend.  Here the
3053 		 * current mask is not of interest, but rather the
3054 		 * mask from before the sigsuspend is what we want
3055 		 * restored after the signal processing is completed.
3056 		 */
3057 		if (td->td_pflags & TDP_OLDMASK) {
3058 			returnmask = td->td_oldsigmask;
3059 			td->td_pflags &= ~TDP_OLDMASK;
3060 		} else
3061 			returnmask = td->td_sigmask;
3062 
3063 		if (p->p_sig == sig) {
3064 			p->p_code = 0;
3065 			p->p_sig = 0;
3066 		}
3067 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3068 		postsig_done(sig, td, ps);
3069 	}
3070 	return (1);
3071 }
3072 
3073 /*
3074  * Kill the current process for stated reason.
3075  */
3076 void
3077 killproc(struct proc *p, char *why)
3078 {
3079 
3080 	PROC_LOCK_ASSERT(p, MA_OWNED);
3081 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3082 	    p->p_comm);
3083 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3084 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3085 	p->p_flag |= P_WKILLED;
3086 	kern_psignal(p, SIGKILL);
3087 }
3088 
3089 /*
3090  * Force the current process to exit with the specified signal, dumping core
3091  * if appropriate.  We bypass the normal tests for masked and caught signals,
3092  * allowing unrecoverable failures to terminate the process without changing
3093  * signal state.  Mark the accounting record with the signal termination.
3094  * If dumping core, save the signal number for the debugger.  Calls exit and
3095  * does not return.
3096  */
3097 void
3098 sigexit(struct thread *td, int sig)
3099 {
3100 	struct proc *p = td->td_proc;
3101 
3102 	PROC_LOCK_ASSERT(p, MA_OWNED);
3103 	p->p_acflag |= AXSIG;
3104 	/*
3105 	 * We must be single-threading to generate a core dump.  This
3106 	 * ensures that the registers in the core file are up-to-date.
3107 	 * Also, the ELF dump handler assumes that the thread list doesn't
3108 	 * change out from under it.
3109 	 *
3110 	 * XXX If another thread attempts to single-thread before us
3111 	 *     (e.g. via fork()), we won't get a dump at all.
3112 	 */
3113 	if ((sigprop(sig) & SIGPROP_CORE) &&
3114 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3115 		p->p_sig = sig;
3116 		/*
3117 		 * Log signals which would cause core dumps
3118 		 * (Log as LOG_INFO to appease those who don't want
3119 		 * these messages.)
3120 		 * XXX : Todo, as well as euid, write out ruid too
3121 		 * Note that coredump() drops proc lock.
3122 		 */
3123 		if (coredump(td) == 0)
3124 			sig |= WCOREFLAG;
3125 		if (kern_logsigexit)
3126 			log(LOG_INFO,
3127 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
3128 			    p->p_pid, p->p_comm,
3129 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
3130 			    sig &~ WCOREFLAG,
3131 			    sig & WCOREFLAG ? " (core dumped)" : "");
3132 	} else
3133 		PROC_UNLOCK(p);
3134 	exit1(td, 0, sig);
3135 	/* NOTREACHED */
3136 }
3137 
3138 /*
3139  * Send queued SIGCHLD to parent when child process's state
3140  * is changed.
3141  */
3142 static void
3143 sigparent(struct proc *p, int reason, int status)
3144 {
3145 	PROC_LOCK_ASSERT(p, MA_OWNED);
3146 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3147 
3148 	if (p->p_ksi != NULL) {
3149 		p->p_ksi->ksi_signo  = SIGCHLD;
3150 		p->p_ksi->ksi_code   = reason;
3151 		p->p_ksi->ksi_status = status;
3152 		p->p_ksi->ksi_pid    = p->p_pid;
3153 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3154 		if (KSI_ONQ(p->p_ksi))
3155 			return;
3156 	}
3157 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3158 }
3159 
3160 static void
3161 childproc_jobstate(struct proc *p, int reason, int sig)
3162 {
3163 	struct sigacts *ps;
3164 
3165 	PROC_LOCK_ASSERT(p, MA_OWNED);
3166 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3167 
3168 	/*
3169 	 * Wake up parent sleeping in kern_wait(), also send
3170 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3171 	 * that parent will awake, because parent may masked
3172 	 * the signal.
3173 	 */
3174 	p->p_pptr->p_flag |= P_STATCHILD;
3175 	wakeup(p->p_pptr);
3176 
3177 	ps = p->p_pptr->p_sigacts;
3178 	mtx_lock(&ps->ps_mtx);
3179 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3180 		mtx_unlock(&ps->ps_mtx);
3181 		sigparent(p, reason, sig);
3182 	} else
3183 		mtx_unlock(&ps->ps_mtx);
3184 }
3185 
3186 void
3187 childproc_stopped(struct proc *p, int reason)
3188 {
3189 
3190 	childproc_jobstate(p, reason, p->p_xsig);
3191 }
3192 
3193 void
3194 childproc_continued(struct proc *p)
3195 {
3196 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3197 }
3198 
3199 void
3200 childproc_exited(struct proc *p)
3201 {
3202 	int reason, status;
3203 
3204 	if (WCOREDUMP(p->p_xsig)) {
3205 		reason = CLD_DUMPED;
3206 		status = WTERMSIG(p->p_xsig);
3207 	} else if (WIFSIGNALED(p->p_xsig)) {
3208 		reason = CLD_KILLED;
3209 		status = WTERMSIG(p->p_xsig);
3210 	} else {
3211 		reason = CLD_EXITED;
3212 		status = p->p_xexit;
3213 	}
3214 	/*
3215 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3216 	 * done in exit1().
3217 	 */
3218 	sigparent(p, reason, status);
3219 }
3220 
3221 /*
3222  * We only have 1 character for the core count in the format
3223  * string, so the range will be 0-9
3224  */
3225 #define	MAX_NUM_CORE_FILES 10
3226 #ifndef NUM_CORE_FILES
3227 #define	NUM_CORE_FILES 5
3228 #endif
3229 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3230 static int num_cores = NUM_CORE_FILES;
3231 
3232 static int
3233 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3234 {
3235 	int error;
3236 	int new_val;
3237 
3238 	new_val = num_cores;
3239 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3240 	if (error != 0 || req->newptr == NULL)
3241 		return (error);
3242 	if (new_val > MAX_NUM_CORE_FILES)
3243 		new_val = MAX_NUM_CORE_FILES;
3244 	if (new_val < 0)
3245 		new_val = 0;
3246 	num_cores = new_val;
3247 	return (0);
3248 }
3249 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3250 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3251 
3252 #define	GZIP_SUFFIX	".gz"
3253 #define	ZSTD_SUFFIX	".zst"
3254 
3255 int compress_user_cores = 0;
3256 
3257 static int
3258 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3259 {
3260 	int error, val;
3261 
3262 	val = compress_user_cores;
3263 	error = sysctl_handle_int(oidp, &val, 0, req);
3264 	if (error != 0 || req->newptr == NULL)
3265 		return (error);
3266 	if (val != 0 && !compressor_avail(val))
3267 		return (EINVAL);
3268 	compress_user_cores = val;
3269 	return (error);
3270 }
3271 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3272     0, sizeof(int), sysctl_compress_user_cores, "I",
3273     "Enable compression of user corefiles ("
3274     __XSTRING(COMPRESS_GZIP) " = gzip, "
3275     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3276 
3277 int compress_user_cores_level = 6;
3278 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3279     &compress_user_cores_level, 0,
3280     "Corefile compression level");
3281 
3282 /*
3283  * Protect the access to corefilename[] by allproc_lock.
3284  */
3285 #define	corefilename_lock	allproc_lock
3286 
3287 static char corefilename[MAXPATHLEN] = {"%N.core"};
3288 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3289 
3290 static int
3291 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3292 {
3293 	int error;
3294 
3295 	sx_xlock(&corefilename_lock);
3296 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3297 	    req);
3298 	sx_xunlock(&corefilename_lock);
3299 
3300 	return (error);
3301 }
3302 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3303     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3304     "Process corefile name format string");
3305 
3306 /*
3307  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3308  * Expand the name described in corefilename, using name, uid, and pid
3309  * and open/create core file.
3310  * corefilename is a printf-like string, with three format specifiers:
3311  *	%N	name of process ("name")
3312  *	%P	process id (pid)
3313  *	%U	user id (uid)
3314  * For example, "%N.core" is the default; they can be disabled completely
3315  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3316  * This is controlled by the sysctl variable kern.corefile (see above).
3317  */
3318 static int
3319 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3320     int compress, struct vnode **vpp, char **namep)
3321 {
3322 	struct nameidata nd;
3323 	struct sbuf sb;
3324 	const char *format;
3325 	char *hostname, *name;
3326 	int indexpos, i, error, cmode, flags, oflags;
3327 
3328 	hostname = NULL;
3329 	format = corefilename;
3330 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3331 	indexpos = -1;
3332 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3333 	sx_slock(&corefilename_lock);
3334 	for (i = 0; format[i] != '\0'; i++) {
3335 		switch (format[i]) {
3336 		case '%':	/* Format character */
3337 			i++;
3338 			switch (format[i]) {
3339 			case '%':
3340 				sbuf_putc(&sb, '%');
3341 				break;
3342 			case 'H':	/* hostname */
3343 				if (hostname == NULL) {
3344 					hostname = malloc(MAXHOSTNAMELEN,
3345 					    M_TEMP, M_WAITOK);
3346 				}
3347 				getcredhostname(td->td_ucred, hostname,
3348 				    MAXHOSTNAMELEN);
3349 				sbuf_printf(&sb, "%s", hostname);
3350 				break;
3351 			case 'I':	/* autoincrementing index */
3352 				sbuf_printf(&sb, "0");
3353 				indexpos = sbuf_len(&sb) - 1;
3354 				break;
3355 			case 'N':	/* process name */
3356 				sbuf_printf(&sb, "%s", comm);
3357 				break;
3358 			case 'P':	/* process id */
3359 				sbuf_printf(&sb, "%u", pid);
3360 				break;
3361 			case 'U':	/* user id */
3362 				sbuf_printf(&sb, "%u", uid);
3363 				break;
3364 			default:
3365 				log(LOG_ERR,
3366 				    "Unknown format character %c in "
3367 				    "corename `%s'\n", format[i], format);
3368 				break;
3369 			}
3370 			break;
3371 		default:
3372 			sbuf_putc(&sb, format[i]);
3373 			break;
3374 		}
3375 	}
3376 	sx_sunlock(&corefilename_lock);
3377 	free(hostname, M_TEMP);
3378 	if (compress == COMPRESS_GZIP)
3379 		sbuf_printf(&sb, GZIP_SUFFIX);
3380 	else if (compress == COMPRESS_ZSTD)
3381 		sbuf_printf(&sb, ZSTD_SUFFIX);
3382 	if (sbuf_error(&sb) != 0) {
3383 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3384 		    "long\n", (long)pid, comm, (u_long)uid);
3385 		sbuf_delete(&sb);
3386 		free(name, M_TEMP);
3387 		return (ENOMEM);
3388 	}
3389 	sbuf_finish(&sb);
3390 	sbuf_delete(&sb);
3391 
3392 	cmode = S_IRUSR | S_IWUSR;
3393 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3394 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3395 
3396 	/*
3397 	 * If the core format has a %I in it, then we need to check
3398 	 * for existing corefiles before returning a name.
3399 	 * To do this we iterate over 0..num_cores to find a
3400 	 * non-existing core file name to use.
3401 	 */
3402 	if (indexpos != -1) {
3403 		for (i = 0; i < num_cores; i++) {
3404 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3405 			name[indexpos] = '0' + i;
3406 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3407 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3408 			    td->td_ucred, NULL);
3409 			if (error) {
3410 				if (error == EEXIST)
3411 					continue;
3412 				log(LOG_ERR,
3413 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3414 				    "on initial open test, error = %d\n",
3415 				    pid, comm, uid, name, error);
3416 			}
3417 			goto out;
3418 		}
3419 	}
3420 
3421 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3422 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3423 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3424 out:
3425 	if (error) {
3426 #ifdef AUDIT
3427 		audit_proc_coredump(td, name, error);
3428 #endif
3429 		free(name, M_TEMP);
3430 		return (error);
3431 	}
3432 	NDFREE(&nd, NDF_ONLY_PNBUF);
3433 	*vpp = nd.ni_vp;
3434 	*namep = name;
3435 	return (0);
3436 }
3437 
3438 static int
3439 coredump_sanitise_path(const char *path)
3440 {
3441 	size_t i;
3442 
3443 	/*
3444 	 * Only send a subset of ASCII to devd(8) because it
3445 	 * might pass these strings to sh -c.
3446 	 */
3447 	for (i = 0; path[i]; i++)
3448 		if (!(isalpha(path[i]) || isdigit(path[i])) &&
3449 		    path[i] != '/' && path[i] != '.' &&
3450 		    path[i] != '-')
3451 			return (0);
3452 
3453 	return (1);
3454 }
3455 
3456 /*
3457  * Dump a process' core.  The main routine does some
3458  * policy checking, and creates the name of the coredump;
3459  * then it passes on a vnode and a size limit to the process-specific
3460  * coredump routine if there is one; if there _is not_ one, it returns
3461  * ENOSYS; otherwise it returns the error from the process-specific routine.
3462  */
3463 
3464 static int
3465 coredump(struct thread *td)
3466 {
3467 	struct proc *p = td->td_proc;
3468 	struct ucred *cred = td->td_ucred;
3469 	struct vnode *vp;
3470 	struct flock lf;
3471 	struct vattr vattr;
3472 	int error, error1, locked;
3473 	char *name;			/* name of corefile */
3474 	void *rl_cookie;
3475 	off_t limit;
3476 	char *data = NULL;
3477 	char *fullpath, *freepath = NULL;
3478 	size_t len;
3479 	static const char comm_name[] = "comm=";
3480 	static const char core_name[] = "core=";
3481 
3482 	PROC_LOCK_ASSERT(p, MA_OWNED);
3483 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3484 	_STOPEVENT(p, S_CORE, 0);
3485 
3486 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3487 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3488 		PROC_UNLOCK(p);
3489 		return (EFAULT);
3490 	}
3491 
3492 	/*
3493 	 * Note that the bulk of limit checking is done after
3494 	 * the corefile is created.  The exception is if the limit
3495 	 * for corefiles is 0, in which case we don't bother
3496 	 * creating the corefile at all.  This layout means that
3497 	 * a corefile is truncated instead of not being created,
3498 	 * if it is larger than the limit.
3499 	 */
3500 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3501 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3502 		PROC_UNLOCK(p);
3503 		return (EFBIG);
3504 	}
3505 	PROC_UNLOCK(p);
3506 
3507 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3508 	    compress_user_cores, &vp, &name);
3509 	if (error != 0)
3510 		return (error);
3511 
3512 	/*
3513 	 * Don't dump to non-regular files or files with links.
3514 	 * Do not dump into system files.
3515 	 */
3516 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3517 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3518 		VOP_UNLOCK(vp, 0);
3519 		error = EFAULT;
3520 		goto out;
3521 	}
3522 
3523 	VOP_UNLOCK(vp, 0);
3524 
3525 	/* Postpone other writers, including core dumps of other processes. */
3526 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3527 
3528 	lf.l_whence = SEEK_SET;
3529 	lf.l_start = 0;
3530 	lf.l_len = 0;
3531 	lf.l_type = F_WRLCK;
3532 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3533 
3534 	VATTR_NULL(&vattr);
3535 	vattr.va_size = 0;
3536 	if (set_core_nodump_flag)
3537 		vattr.va_flags = UF_NODUMP;
3538 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3539 	VOP_SETATTR(vp, &vattr, cred);
3540 	VOP_UNLOCK(vp, 0);
3541 	PROC_LOCK(p);
3542 	p->p_acflag |= ACORE;
3543 	PROC_UNLOCK(p);
3544 
3545 	if (p->p_sysent->sv_coredump != NULL) {
3546 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3547 	} else {
3548 		error = ENOSYS;
3549 	}
3550 
3551 	if (locked) {
3552 		lf.l_type = F_UNLCK;
3553 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3554 	}
3555 	vn_rangelock_unlock(vp, rl_cookie);
3556 
3557 	/*
3558 	 * Notify the userland helper that a process triggered a core dump.
3559 	 * This allows the helper to run an automated debugging session.
3560 	 */
3561 	if (error != 0 || coredump_devctl == 0)
3562 		goto out;
3563 	len = MAXPATHLEN * 2 + sizeof(comm_name) - 1 +
3564 	    sizeof(' ') + sizeof(core_name) - 1;
3565 	data = malloc(len, M_TEMP, M_WAITOK);
3566 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3567 		goto out;
3568 	if (!coredump_sanitise_path(fullpath))
3569 		goto out;
3570 	snprintf(data, len, "%s%s ", comm_name, fullpath);
3571 	free(freepath, M_TEMP);
3572 	freepath = NULL;
3573 	if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3574 		goto out;
3575 	if (!coredump_sanitise_path(fullpath))
3576 		goto out;
3577 	strlcat(data, core_name, len);
3578 	strlcat(data, fullpath, len);
3579 	devctl_notify("kernel", "signal", "coredump", data);
3580 out:
3581 	error1 = vn_close(vp, FWRITE, cred, td);
3582 	if (error == 0)
3583 		error = error1;
3584 #ifdef AUDIT
3585 	audit_proc_coredump(td, name, error);
3586 #endif
3587 	free(freepath, M_TEMP);
3588 	free(data, M_TEMP);
3589 	free(name, M_TEMP);
3590 	return (error);
3591 }
3592 
3593 /*
3594  * Nonexistent system call-- signal process (may want to handle it).  Flag
3595  * error in case process won't see signal immediately (blocked or ignored).
3596  */
3597 #ifndef _SYS_SYSPROTO_H_
3598 struct nosys_args {
3599 	int	dummy;
3600 };
3601 #endif
3602 /* ARGSUSED */
3603 int
3604 nosys(struct thread *td, struct nosys_args *args)
3605 {
3606 	struct proc *p;
3607 
3608 	p = td->td_proc;
3609 
3610 	PROC_LOCK(p);
3611 	tdsignal(td, SIGSYS);
3612 	PROC_UNLOCK(p);
3613 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3614 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3615 		    td->td_sa.code);
3616 	}
3617 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3618 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3619 		    td->td_sa.code);
3620 	}
3621 	return (ENOSYS);
3622 }
3623 
3624 /*
3625  * Send a SIGIO or SIGURG signal to a process or process group using stored
3626  * credentials rather than those of the current process.
3627  */
3628 void
3629 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3630 {
3631 	ksiginfo_t ksi;
3632 	struct sigio *sigio;
3633 
3634 	ksiginfo_init(&ksi);
3635 	ksi.ksi_signo = sig;
3636 	ksi.ksi_code = SI_KERNEL;
3637 
3638 	SIGIO_LOCK();
3639 	sigio = *sigiop;
3640 	if (sigio == NULL) {
3641 		SIGIO_UNLOCK();
3642 		return;
3643 	}
3644 	if (sigio->sio_pgid > 0) {
3645 		PROC_LOCK(sigio->sio_proc);
3646 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3647 			kern_psignal(sigio->sio_proc, sig);
3648 		PROC_UNLOCK(sigio->sio_proc);
3649 	} else if (sigio->sio_pgid < 0) {
3650 		struct proc *p;
3651 
3652 		PGRP_LOCK(sigio->sio_pgrp);
3653 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3654 			PROC_LOCK(p);
3655 			if (p->p_state == PRS_NORMAL &&
3656 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3657 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3658 				kern_psignal(p, sig);
3659 			PROC_UNLOCK(p);
3660 		}
3661 		PGRP_UNLOCK(sigio->sio_pgrp);
3662 	}
3663 	SIGIO_UNLOCK();
3664 }
3665 
3666 static int
3667 filt_sigattach(struct knote *kn)
3668 {
3669 	struct proc *p = curproc;
3670 
3671 	kn->kn_ptr.p_proc = p;
3672 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3673 
3674 	knlist_add(p->p_klist, kn, 0);
3675 
3676 	return (0);
3677 }
3678 
3679 static void
3680 filt_sigdetach(struct knote *kn)
3681 {
3682 	struct proc *p = kn->kn_ptr.p_proc;
3683 
3684 	knlist_remove(p->p_klist, kn, 0);
3685 }
3686 
3687 /*
3688  * signal knotes are shared with proc knotes, so we apply a mask to
3689  * the hint in order to differentiate them from process hints.  This
3690  * could be avoided by using a signal-specific knote list, but probably
3691  * isn't worth the trouble.
3692  */
3693 static int
3694 filt_signal(struct knote *kn, long hint)
3695 {
3696 
3697 	if (hint & NOTE_SIGNAL) {
3698 		hint &= ~NOTE_SIGNAL;
3699 
3700 		if (kn->kn_id == hint)
3701 			kn->kn_data++;
3702 	}
3703 	return (kn->kn_data != 0);
3704 }
3705 
3706 struct sigacts *
3707 sigacts_alloc(void)
3708 {
3709 	struct sigacts *ps;
3710 
3711 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3712 	refcount_init(&ps->ps_refcnt, 1);
3713 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3714 	return (ps);
3715 }
3716 
3717 void
3718 sigacts_free(struct sigacts *ps)
3719 {
3720 
3721 	if (refcount_release(&ps->ps_refcnt) == 0)
3722 		return;
3723 	mtx_destroy(&ps->ps_mtx);
3724 	free(ps, M_SUBPROC);
3725 }
3726 
3727 struct sigacts *
3728 sigacts_hold(struct sigacts *ps)
3729 {
3730 
3731 	refcount_acquire(&ps->ps_refcnt);
3732 	return (ps);
3733 }
3734 
3735 void
3736 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3737 {
3738 
3739 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3740 	mtx_lock(&src->ps_mtx);
3741 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3742 	mtx_unlock(&src->ps_mtx);
3743 }
3744 
3745 int
3746 sigacts_shared(struct sigacts *ps)
3747 {
3748 
3749 	return (ps->ps_refcnt > 1);
3750 }
3751