xref: /freebsd/sys/kern/kern_sig.c (revision 45dd2eaac379e5576f745380260470204c49beac)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/capsicum.h>
51 #include <sys/compressor.h>
52 #include <sys/condvar.h>
53 #include <sys/devctl.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/racct.h>
71 #include <sys/resourcevar.h>
72 #include <sys/sdt.h>
73 #include <sys/sbuf.h>
74 #include <sys/sleepqueue.h>
75 #include <sys/smp.h>
76 #include <sys/stat.h>
77 #include <sys/sx.h>
78 #include <sys/syscallsubr.h>
79 #include <sys/sysctl.h>
80 #include <sys/sysent.h>
81 #include <sys/syslog.h>
82 #include <sys/sysproto.h>
83 #include <sys/timers.h>
84 #include <sys/unistd.h>
85 #include <sys/wait.h>
86 #include <vm/vm.h>
87 #include <vm/vm_extern.h>
88 #include <vm/uma.h>
89 
90 #include <sys/jail.h>
91 
92 #include <machine/cpu.h>
93 
94 #include <security/audit/audit.h>
95 
96 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
97 
98 SDT_PROVIDER_DECLARE(proc);
99 SDT_PROBE_DEFINE3(proc, , , signal__send,
100     "struct thread *", "struct proc *", "int");
101 SDT_PROBE_DEFINE2(proc, , , signal__clear,
102     "int", "ksiginfo_t *");
103 SDT_PROBE_DEFINE3(proc, , , signal__discard,
104     "struct thread *", "struct proc *", "int");
105 
106 static int	coredump(struct thread *);
107 static int	killpg1(struct thread *td, int sig, int pgid, int all,
108 		    ksiginfo_t *ksi);
109 static int	issignal(struct thread *td);
110 static void	reschedule_signals(struct proc *p, sigset_t block, int flags);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, bool fast_sigblock);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 __read_frequently bool sigfastblock_fetch_always = false;
161 SYSCTL_BOOL(_kern, OID_AUTO, sigfastblock_fetch_always, CTLFLAG_RWTUN,
162     &sigfastblock_fetch_always, 0,
163     "Fetch sigfastblock word on each syscall entry for proper "
164     "blocking semantic");
165 
166 static bool	kern_sig_discard_ign = true;
167 SYSCTL_BOOL(_kern, OID_AUTO, sig_discard_ign, CTLFLAG_RWTUN,
168     &kern_sig_discard_ign, 0,
169     "Discard ignored signals on delivery, otherwise queue them to "
170     "the target queue");
171 
172 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
173 
174 /*
175  * Policy -- Can ucred cr1 send SIGIO to process cr2?
176  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
177  * in the right situations.
178  */
179 #define CANSIGIO(cr1, cr2) \
180 	((cr1)->cr_uid == 0 || \
181 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
182 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
183 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
184 	    (cr1)->cr_uid == (cr2)->cr_uid)
185 
186 static int	sugid_coredump;
187 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
188     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
189 
190 static int	capmode_coredump;
191 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
192     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
193 
194 static int	do_coredump = 1;
195 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
196 	&do_coredump, 0, "Enable/Disable coredumps");
197 
198 static int	set_core_nodump_flag = 0;
199 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
200 	0, "Enable setting the NODUMP flag on coredump files");
201 
202 static int	coredump_devctl = 0;
203 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
204 	0, "Generate a devctl notification when processes coredump");
205 
206 /*
207  * Signal properties and actions.
208  * The array below categorizes the signals and their default actions
209  * according to the following properties:
210  */
211 #define	SIGPROP_KILL		0x01	/* terminates process by default */
212 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
213 #define	SIGPROP_STOP		0x04	/* suspend process */
214 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
215 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
216 #define	SIGPROP_CONT		0x20	/* continue if suspended */
217 
218 static int sigproptbl[NSIG] = {
219 	[SIGHUP] =	SIGPROP_KILL,
220 	[SIGINT] =	SIGPROP_KILL,
221 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
222 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
223 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
224 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
225 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
226 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
227 	[SIGKILL] =	SIGPROP_KILL,
228 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
229 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
230 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
231 	[SIGPIPE] =	SIGPROP_KILL,
232 	[SIGALRM] =	SIGPROP_KILL,
233 	[SIGTERM] =	SIGPROP_KILL,
234 	[SIGURG] =	SIGPROP_IGNORE,
235 	[SIGSTOP] =	SIGPROP_STOP,
236 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
237 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
238 	[SIGCHLD] =	SIGPROP_IGNORE,
239 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
240 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
241 	[SIGIO] =	SIGPROP_IGNORE,
242 	[SIGXCPU] =	SIGPROP_KILL,
243 	[SIGXFSZ] =	SIGPROP_KILL,
244 	[SIGVTALRM] =	SIGPROP_KILL,
245 	[SIGPROF] =	SIGPROP_KILL,
246 	[SIGWINCH] =	SIGPROP_IGNORE,
247 	[SIGINFO] =	SIGPROP_IGNORE,
248 	[SIGUSR1] =	SIGPROP_KILL,
249 	[SIGUSR2] =	SIGPROP_KILL,
250 };
251 
252 #define	_SIG_FOREACH_ADVANCE(i, set) ({					\
253 	int __found;							\
254 	for (;;) {							\
255 		if (__bits != 0) {					\
256 			int __sig = ffs(__bits);			\
257 			__bits &= ~(1u << (__sig - 1));			\
258 			sig = __i * sizeof((set)->__bits[0]) * NBBY + __sig; \
259 			__found = 1;					\
260 			break;						\
261 		}							\
262 		if (++__i == _SIG_WORDS) {				\
263 			__found = 0;					\
264 			break;						\
265 		}							\
266 		__bits = (set)->__bits[__i];				\
267 	}								\
268 	__found != 0;							\
269 })
270 
271 #define	SIG_FOREACH(i, set)						\
272 	for (int32_t __i = -1, __bits = 0;				\
273 	    _SIG_FOREACH_ADVANCE(i, set); )				\
274 
275 sigset_t fastblock_mask;
276 
277 static void
278 sigqueue_start(void)
279 {
280 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
281 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
282 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
283 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
284 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
285 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
286 	SIGFILLSET(fastblock_mask);
287 	SIG_CANTMASK(fastblock_mask);
288 }
289 
290 ksiginfo_t *
291 ksiginfo_alloc(int wait)
292 {
293 	int flags;
294 
295 	flags = M_ZERO | (wait ? M_WAITOK : M_NOWAIT);
296 	if (ksiginfo_zone != NULL)
297 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
298 	return (NULL);
299 }
300 
301 void
302 ksiginfo_free(ksiginfo_t *ksi)
303 {
304 	uma_zfree(ksiginfo_zone, ksi);
305 }
306 
307 static __inline int
308 ksiginfo_tryfree(ksiginfo_t *ksi)
309 {
310 	if (!(ksi->ksi_flags & KSI_EXT)) {
311 		uma_zfree(ksiginfo_zone, ksi);
312 		return (1);
313 	}
314 	return (0);
315 }
316 
317 void
318 sigqueue_init(sigqueue_t *list, struct proc *p)
319 {
320 	SIGEMPTYSET(list->sq_signals);
321 	SIGEMPTYSET(list->sq_kill);
322 	SIGEMPTYSET(list->sq_ptrace);
323 	TAILQ_INIT(&list->sq_list);
324 	list->sq_proc = p;
325 	list->sq_flags = SQ_INIT;
326 }
327 
328 /*
329  * Get a signal's ksiginfo.
330  * Return:
331  *	0	-	signal not found
332  *	others	-	signal number
333  */
334 static int
335 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
336 {
337 	struct proc *p = sq->sq_proc;
338 	struct ksiginfo *ksi, *next;
339 	int count = 0;
340 
341 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
342 
343 	if (!SIGISMEMBER(sq->sq_signals, signo))
344 		return (0);
345 
346 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
347 		count++;
348 		SIGDELSET(sq->sq_ptrace, signo);
349 		si->ksi_flags |= KSI_PTRACE;
350 	}
351 	if (SIGISMEMBER(sq->sq_kill, signo)) {
352 		count++;
353 		if (count == 1)
354 			SIGDELSET(sq->sq_kill, signo);
355 	}
356 
357 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
358 		if (ksi->ksi_signo == signo) {
359 			if (count == 0) {
360 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
361 				ksi->ksi_sigq = NULL;
362 				ksiginfo_copy(ksi, si);
363 				if (ksiginfo_tryfree(ksi) && p != NULL)
364 					p->p_pendingcnt--;
365 			}
366 			if (++count > 1)
367 				break;
368 		}
369 	}
370 
371 	if (count <= 1)
372 		SIGDELSET(sq->sq_signals, signo);
373 	si->ksi_signo = signo;
374 	return (signo);
375 }
376 
377 void
378 sigqueue_take(ksiginfo_t *ksi)
379 {
380 	struct ksiginfo *kp;
381 	struct proc	*p;
382 	sigqueue_t	*sq;
383 
384 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
385 		return;
386 
387 	p = sq->sq_proc;
388 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
389 	ksi->ksi_sigq = NULL;
390 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
391 		p->p_pendingcnt--;
392 
393 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
394 	     kp = TAILQ_NEXT(kp, ksi_link)) {
395 		if (kp->ksi_signo == ksi->ksi_signo)
396 			break;
397 	}
398 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
399 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
400 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
401 }
402 
403 static int
404 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
405 {
406 	struct proc *p = sq->sq_proc;
407 	struct ksiginfo *ksi;
408 	int ret = 0;
409 
410 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
411 
412 	/*
413 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
414 	 * for these signals.
415 	 */
416 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
417 		SIGADDSET(sq->sq_kill, signo);
418 		goto out_set_bit;
419 	}
420 
421 	/* directly insert the ksi, don't copy it */
422 	if (si->ksi_flags & KSI_INS) {
423 		if (si->ksi_flags & KSI_HEAD)
424 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
425 		else
426 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
427 		si->ksi_sigq = sq;
428 		goto out_set_bit;
429 	}
430 
431 	if (__predict_false(ksiginfo_zone == NULL)) {
432 		SIGADDSET(sq->sq_kill, signo);
433 		goto out_set_bit;
434 	}
435 
436 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
437 		signal_overflow++;
438 		ret = EAGAIN;
439 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
440 		signal_alloc_fail++;
441 		ret = EAGAIN;
442 	} else {
443 		if (p != NULL)
444 			p->p_pendingcnt++;
445 		ksiginfo_copy(si, ksi);
446 		ksi->ksi_signo = signo;
447 		if (si->ksi_flags & KSI_HEAD)
448 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
449 		else
450 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
451 		ksi->ksi_sigq = sq;
452 	}
453 
454 	if (ret != 0) {
455 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
456 			SIGADDSET(sq->sq_ptrace, signo);
457 			ret = 0;
458 			goto out_set_bit;
459 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
460 		    (si->ksi_flags & KSI_SIGQ) == 0) {
461 			SIGADDSET(sq->sq_kill, signo);
462 			ret = 0;
463 			goto out_set_bit;
464 		}
465 		return (ret);
466 	}
467 
468 out_set_bit:
469 	SIGADDSET(sq->sq_signals, signo);
470 	return (ret);
471 }
472 
473 void
474 sigqueue_flush(sigqueue_t *sq)
475 {
476 	struct proc *p = sq->sq_proc;
477 	ksiginfo_t *ksi;
478 
479 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
480 
481 	if (p != NULL)
482 		PROC_LOCK_ASSERT(p, MA_OWNED);
483 
484 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
485 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
486 		ksi->ksi_sigq = NULL;
487 		if (ksiginfo_tryfree(ksi) && p != NULL)
488 			p->p_pendingcnt--;
489 	}
490 
491 	SIGEMPTYSET(sq->sq_signals);
492 	SIGEMPTYSET(sq->sq_kill);
493 	SIGEMPTYSET(sq->sq_ptrace);
494 }
495 
496 static void
497 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
498 {
499 	sigset_t tmp;
500 	struct proc *p1, *p2;
501 	ksiginfo_t *ksi, *next;
502 
503 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
504 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
505 	p1 = src->sq_proc;
506 	p2 = dst->sq_proc;
507 	/* Move siginfo to target list */
508 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
509 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
510 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
511 			if (p1 != NULL)
512 				p1->p_pendingcnt--;
513 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
514 			ksi->ksi_sigq = dst;
515 			if (p2 != NULL)
516 				p2->p_pendingcnt++;
517 		}
518 	}
519 
520 	/* Move pending bits to target list */
521 	tmp = src->sq_kill;
522 	SIGSETAND(tmp, *set);
523 	SIGSETOR(dst->sq_kill, tmp);
524 	SIGSETNAND(src->sq_kill, tmp);
525 
526 	tmp = src->sq_ptrace;
527 	SIGSETAND(tmp, *set);
528 	SIGSETOR(dst->sq_ptrace, tmp);
529 	SIGSETNAND(src->sq_ptrace, tmp);
530 
531 	tmp = src->sq_signals;
532 	SIGSETAND(tmp, *set);
533 	SIGSETOR(dst->sq_signals, tmp);
534 	SIGSETNAND(src->sq_signals, tmp);
535 }
536 
537 #if 0
538 static void
539 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
540 {
541 	sigset_t set;
542 
543 	SIGEMPTYSET(set);
544 	SIGADDSET(set, signo);
545 	sigqueue_move_set(src, dst, &set);
546 }
547 #endif
548 
549 static void
550 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
551 {
552 	struct proc *p = sq->sq_proc;
553 	ksiginfo_t *ksi, *next;
554 
555 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
556 
557 	/* Remove siginfo queue */
558 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
559 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
560 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
561 			ksi->ksi_sigq = NULL;
562 			if (ksiginfo_tryfree(ksi) && p != NULL)
563 				p->p_pendingcnt--;
564 		}
565 	}
566 	SIGSETNAND(sq->sq_kill, *set);
567 	SIGSETNAND(sq->sq_ptrace, *set);
568 	SIGSETNAND(sq->sq_signals, *set);
569 }
570 
571 void
572 sigqueue_delete(sigqueue_t *sq, int signo)
573 {
574 	sigset_t set;
575 
576 	SIGEMPTYSET(set);
577 	SIGADDSET(set, signo);
578 	sigqueue_delete_set(sq, &set);
579 }
580 
581 /* Remove a set of signals for a process */
582 static void
583 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
584 {
585 	sigqueue_t worklist;
586 	struct thread *td0;
587 
588 	PROC_LOCK_ASSERT(p, MA_OWNED);
589 
590 	sigqueue_init(&worklist, NULL);
591 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
592 
593 	FOREACH_THREAD_IN_PROC(p, td0)
594 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
595 
596 	sigqueue_flush(&worklist);
597 }
598 
599 void
600 sigqueue_delete_proc(struct proc *p, int signo)
601 {
602 	sigset_t set;
603 
604 	SIGEMPTYSET(set);
605 	SIGADDSET(set, signo);
606 	sigqueue_delete_set_proc(p, &set);
607 }
608 
609 static void
610 sigqueue_delete_stopmask_proc(struct proc *p)
611 {
612 	sigset_t set;
613 
614 	SIGEMPTYSET(set);
615 	SIGADDSET(set, SIGSTOP);
616 	SIGADDSET(set, SIGTSTP);
617 	SIGADDSET(set, SIGTTIN);
618 	SIGADDSET(set, SIGTTOU);
619 	sigqueue_delete_set_proc(p, &set);
620 }
621 
622 /*
623  * Determine signal that should be delivered to thread td, the current
624  * thread, 0 if none.  If there is a pending stop signal with default
625  * action, the process stops in issignal().
626  */
627 int
628 cursig(struct thread *td)
629 {
630 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
631 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
632 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
633 	return (SIGPENDING(td) ? issignal(td) : 0);
634 }
635 
636 /*
637  * Arrange for ast() to handle unmasked pending signals on return to user
638  * mode.  This must be called whenever a signal is added to td_sigqueue or
639  * unmasked in td_sigmask.
640  */
641 void
642 signotify(struct thread *td)
643 {
644 
645 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
646 
647 	if (SIGPENDING(td)) {
648 		thread_lock(td);
649 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
650 		thread_unlock(td);
651 	}
652 }
653 
654 /*
655  * Returns 1 (true) if altstack is configured for the thread, and the
656  * passed stack bottom address falls into the altstack range.  Handles
657  * the 43 compat special case where the alt stack size is zero.
658  */
659 int
660 sigonstack(size_t sp)
661 {
662 	struct thread *td;
663 
664 	td = curthread;
665 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
666 		return (0);
667 #if defined(COMPAT_43)
668 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
669 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
670 #endif
671 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
672 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
673 }
674 
675 static __inline int
676 sigprop(int sig)
677 {
678 
679 	if (sig > 0 && sig < nitems(sigproptbl))
680 		return (sigproptbl[sig]);
681 	return (0);
682 }
683 
684 static bool
685 sigact_flag_test(const struct sigaction *act, int flag)
686 {
687 
688 	/*
689 	 * SA_SIGINFO is reset when signal disposition is set to
690 	 * ignore or default.  Other flags are kept according to user
691 	 * settings.
692 	 */
693 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
694 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
695 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
696 }
697 
698 /*
699  * kern_sigaction
700  * sigaction
701  * freebsd4_sigaction
702  * osigaction
703  */
704 int
705 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
706     struct sigaction *oact, int flags)
707 {
708 	struct sigacts *ps;
709 	struct proc *p = td->td_proc;
710 
711 	if (!_SIG_VALID(sig))
712 		return (EINVAL);
713 	if (act != NULL && act->sa_handler != SIG_DFL &&
714 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
715 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
716 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
717 		return (EINVAL);
718 
719 	PROC_LOCK(p);
720 	ps = p->p_sigacts;
721 	mtx_lock(&ps->ps_mtx);
722 	if (oact) {
723 		memset(oact, 0, sizeof(*oact));
724 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
725 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
726 			oact->sa_flags |= SA_ONSTACK;
727 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
728 			oact->sa_flags |= SA_RESTART;
729 		if (SIGISMEMBER(ps->ps_sigreset, sig))
730 			oact->sa_flags |= SA_RESETHAND;
731 		if (SIGISMEMBER(ps->ps_signodefer, sig))
732 			oact->sa_flags |= SA_NODEFER;
733 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
734 			oact->sa_flags |= SA_SIGINFO;
735 			oact->sa_sigaction =
736 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
737 		} else
738 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
739 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
740 			oact->sa_flags |= SA_NOCLDSTOP;
741 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
742 			oact->sa_flags |= SA_NOCLDWAIT;
743 	}
744 	if (act) {
745 		if ((sig == SIGKILL || sig == SIGSTOP) &&
746 		    act->sa_handler != SIG_DFL) {
747 			mtx_unlock(&ps->ps_mtx);
748 			PROC_UNLOCK(p);
749 			return (EINVAL);
750 		}
751 
752 		/*
753 		 * Change setting atomically.
754 		 */
755 
756 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
757 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
758 		if (sigact_flag_test(act, SA_SIGINFO)) {
759 			ps->ps_sigact[_SIG_IDX(sig)] =
760 			    (__sighandler_t *)act->sa_sigaction;
761 			SIGADDSET(ps->ps_siginfo, sig);
762 		} else {
763 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
764 			SIGDELSET(ps->ps_siginfo, sig);
765 		}
766 		if (!sigact_flag_test(act, SA_RESTART))
767 			SIGADDSET(ps->ps_sigintr, sig);
768 		else
769 			SIGDELSET(ps->ps_sigintr, sig);
770 		if (sigact_flag_test(act, SA_ONSTACK))
771 			SIGADDSET(ps->ps_sigonstack, sig);
772 		else
773 			SIGDELSET(ps->ps_sigonstack, sig);
774 		if (sigact_flag_test(act, SA_RESETHAND))
775 			SIGADDSET(ps->ps_sigreset, sig);
776 		else
777 			SIGDELSET(ps->ps_sigreset, sig);
778 		if (sigact_flag_test(act, SA_NODEFER))
779 			SIGADDSET(ps->ps_signodefer, sig);
780 		else
781 			SIGDELSET(ps->ps_signodefer, sig);
782 		if (sig == SIGCHLD) {
783 			if (act->sa_flags & SA_NOCLDSTOP)
784 				ps->ps_flag |= PS_NOCLDSTOP;
785 			else
786 				ps->ps_flag &= ~PS_NOCLDSTOP;
787 			if (act->sa_flags & SA_NOCLDWAIT) {
788 				/*
789 				 * Paranoia: since SA_NOCLDWAIT is implemented
790 				 * by reparenting the dying child to PID 1 (and
791 				 * trust it to reap the zombie), PID 1 itself
792 				 * is forbidden to set SA_NOCLDWAIT.
793 				 */
794 				if (p->p_pid == 1)
795 					ps->ps_flag &= ~PS_NOCLDWAIT;
796 				else
797 					ps->ps_flag |= PS_NOCLDWAIT;
798 			} else
799 				ps->ps_flag &= ~PS_NOCLDWAIT;
800 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
801 				ps->ps_flag |= PS_CLDSIGIGN;
802 			else
803 				ps->ps_flag &= ~PS_CLDSIGIGN;
804 		}
805 		/*
806 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
807 		 * and for signals set to SIG_DFL where the default is to
808 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
809 		 * have to restart the process.
810 		 */
811 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
812 		    (sigprop(sig) & SIGPROP_IGNORE &&
813 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
814 			/* never to be seen again */
815 			sigqueue_delete_proc(p, sig);
816 			if (sig != SIGCONT)
817 				/* easier in psignal */
818 				SIGADDSET(ps->ps_sigignore, sig);
819 			SIGDELSET(ps->ps_sigcatch, sig);
820 		} else {
821 			SIGDELSET(ps->ps_sigignore, sig);
822 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
823 				SIGDELSET(ps->ps_sigcatch, sig);
824 			else
825 				SIGADDSET(ps->ps_sigcatch, sig);
826 		}
827 #ifdef COMPAT_FREEBSD4
828 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
829 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
830 		    (flags & KSA_FREEBSD4) == 0)
831 			SIGDELSET(ps->ps_freebsd4, sig);
832 		else
833 			SIGADDSET(ps->ps_freebsd4, sig);
834 #endif
835 #ifdef COMPAT_43
836 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
837 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
838 		    (flags & KSA_OSIGSET) == 0)
839 			SIGDELSET(ps->ps_osigset, sig);
840 		else
841 			SIGADDSET(ps->ps_osigset, sig);
842 #endif
843 	}
844 	mtx_unlock(&ps->ps_mtx);
845 	PROC_UNLOCK(p);
846 	return (0);
847 }
848 
849 #ifndef _SYS_SYSPROTO_H_
850 struct sigaction_args {
851 	int	sig;
852 	struct	sigaction *act;
853 	struct	sigaction *oact;
854 };
855 #endif
856 int
857 sys_sigaction(struct thread *td, struct sigaction_args *uap)
858 {
859 	struct sigaction act, oact;
860 	struct sigaction *actp, *oactp;
861 	int error;
862 
863 	actp = (uap->act != NULL) ? &act : NULL;
864 	oactp = (uap->oact != NULL) ? &oact : NULL;
865 	if (actp) {
866 		error = copyin(uap->act, actp, sizeof(act));
867 		if (error)
868 			return (error);
869 	}
870 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
871 	if (oactp && !error)
872 		error = copyout(oactp, uap->oact, sizeof(oact));
873 	return (error);
874 }
875 
876 #ifdef COMPAT_FREEBSD4
877 #ifndef _SYS_SYSPROTO_H_
878 struct freebsd4_sigaction_args {
879 	int	sig;
880 	struct	sigaction *act;
881 	struct	sigaction *oact;
882 };
883 #endif
884 int
885 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
886 {
887 	struct sigaction act, oact;
888 	struct sigaction *actp, *oactp;
889 	int error;
890 
891 	actp = (uap->act != NULL) ? &act : NULL;
892 	oactp = (uap->oact != NULL) ? &oact : NULL;
893 	if (actp) {
894 		error = copyin(uap->act, actp, sizeof(act));
895 		if (error)
896 			return (error);
897 	}
898 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
899 	if (oactp && !error)
900 		error = copyout(oactp, uap->oact, sizeof(oact));
901 	return (error);
902 }
903 #endif	/* COMAPT_FREEBSD4 */
904 
905 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
906 #ifndef _SYS_SYSPROTO_H_
907 struct osigaction_args {
908 	int	signum;
909 	struct	osigaction *nsa;
910 	struct	osigaction *osa;
911 };
912 #endif
913 int
914 osigaction(struct thread *td, struct osigaction_args *uap)
915 {
916 	struct osigaction sa;
917 	struct sigaction nsa, osa;
918 	struct sigaction *nsap, *osap;
919 	int error;
920 
921 	if (uap->signum <= 0 || uap->signum >= ONSIG)
922 		return (EINVAL);
923 
924 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
925 	osap = (uap->osa != NULL) ? &osa : NULL;
926 
927 	if (nsap) {
928 		error = copyin(uap->nsa, &sa, sizeof(sa));
929 		if (error)
930 			return (error);
931 		nsap->sa_handler = sa.sa_handler;
932 		nsap->sa_flags = sa.sa_flags;
933 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
934 	}
935 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
936 	if (osap && !error) {
937 		sa.sa_handler = osap->sa_handler;
938 		sa.sa_flags = osap->sa_flags;
939 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
940 		error = copyout(&sa, uap->osa, sizeof(sa));
941 	}
942 	return (error);
943 }
944 
945 #if !defined(__i386__)
946 /* Avoid replicating the same stub everywhere */
947 int
948 osigreturn(struct thread *td, struct osigreturn_args *uap)
949 {
950 
951 	return (nosys(td, (struct nosys_args *)uap));
952 }
953 #endif
954 #endif /* COMPAT_43 */
955 
956 /*
957  * Initialize signal state for process 0;
958  * set to ignore signals that are ignored by default.
959  */
960 void
961 siginit(struct proc *p)
962 {
963 	int i;
964 	struct sigacts *ps;
965 
966 	PROC_LOCK(p);
967 	ps = p->p_sigacts;
968 	mtx_lock(&ps->ps_mtx);
969 	for (i = 1; i <= NSIG; i++) {
970 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
971 			SIGADDSET(ps->ps_sigignore, i);
972 		}
973 	}
974 	mtx_unlock(&ps->ps_mtx);
975 	PROC_UNLOCK(p);
976 }
977 
978 /*
979  * Reset specified signal to the default disposition.
980  */
981 static void
982 sigdflt(struct sigacts *ps, int sig)
983 {
984 
985 	mtx_assert(&ps->ps_mtx, MA_OWNED);
986 	SIGDELSET(ps->ps_sigcatch, sig);
987 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
988 		SIGADDSET(ps->ps_sigignore, sig);
989 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
990 	SIGDELSET(ps->ps_siginfo, sig);
991 }
992 
993 /*
994  * Reset signals for an exec of the specified process.
995  */
996 void
997 execsigs(struct proc *p)
998 {
999 	struct sigacts *ps;
1000 	struct thread *td;
1001 
1002 	/*
1003 	 * Reset caught signals.  Held signals remain held
1004 	 * through td_sigmask (unless they were caught,
1005 	 * and are now ignored by default).
1006 	 */
1007 	PROC_LOCK_ASSERT(p, MA_OWNED);
1008 	ps = p->p_sigacts;
1009 	mtx_lock(&ps->ps_mtx);
1010 	sig_drop_caught(p);
1011 
1012 	/*
1013 	 * Reset stack state to the user stack.
1014 	 * Clear set of signals caught on the signal stack.
1015 	 */
1016 	td = curthread;
1017 	MPASS(td->td_proc == p);
1018 	td->td_sigstk.ss_flags = SS_DISABLE;
1019 	td->td_sigstk.ss_size = 0;
1020 	td->td_sigstk.ss_sp = 0;
1021 	td->td_pflags &= ~TDP_ALTSTACK;
1022 	/*
1023 	 * Reset no zombies if child dies flag as Solaris does.
1024 	 */
1025 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1026 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1027 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1028 	mtx_unlock(&ps->ps_mtx);
1029 }
1030 
1031 /*
1032  * kern_sigprocmask()
1033  *
1034  *	Manipulate signal mask.
1035  */
1036 int
1037 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1038     int flags)
1039 {
1040 	sigset_t new_block, oset1;
1041 	struct proc *p;
1042 	int error;
1043 
1044 	p = td->td_proc;
1045 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1046 		PROC_LOCK_ASSERT(p, MA_OWNED);
1047 	else
1048 		PROC_LOCK(p);
1049 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1050 	    ? MA_OWNED : MA_NOTOWNED);
1051 	if (oset != NULL)
1052 		*oset = td->td_sigmask;
1053 
1054 	error = 0;
1055 	if (set != NULL) {
1056 		switch (how) {
1057 		case SIG_BLOCK:
1058 			SIG_CANTMASK(*set);
1059 			oset1 = td->td_sigmask;
1060 			SIGSETOR(td->td_sigmask, *set);
1061 			new_block = td->td_sigmask;
1062 			SIGSETNAND(new_block, oset1);
1063 			break;
1064 		case SIG_UNBLOCK:
1065 			SIGSETNAND(td->td_sigmask, *set);
1066 			signotify(td);
1067 			goto out;
1068 		case SIG_SETMASK:
1069 			SIG_CANTMASK(*set);
1070 			oset1 = td->td_sigmask;
1071 			if (flags & SIGPROCMASK_OLD)
1072 				SIGSETLO(td->td_sigmask, *set);
1073 			else
1074 				td->td_sigmask = *set;
1075 			new_block = td->td_sigmask;
1076 			SIGSETNAND(new_block, oset1);
1077 			signotify(td);
1078 			break;
1079 		default:
1080 			error = EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		/*
1085 		 * The new_block set contains signals that were not previously
1086 		 * blocked, but are blocked now.
1087 		 *
1088 		 * In case we block any signal that was not previously blocked
1089 		 * for td, and process has the signal pending, try to schedule
1090 		 * signal delivery to some thread that does not block the
1091 		 * signal, possibly waking it up.
1092 		 */
1093 		if (p->p_numthreads != 1)
1094 			reschedule_signals(p, new_block, flags);
1095 	}
1096 
1097 out:
1098 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1099 		PROC_UNLOCK(p);
1100 	return (error);
1101 }
1102 
1103 #ifndef _SYS_SYSPROTO_H_
1104 struct sigprocmask_args {
1105 	int	how;
1106 	const sigset_t *set;
1107 	sigset_t *oset;
1108 };
1109 #endif
1110 int
1111 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1112 {
1113 	sigset_t set, oset;
1114 	sigset_t *setp, *osetp;
1115 	int error;
1116 
1117 	setp = (uap->set != NULL) ? &set : NULL;
1118 	osetp = (uap->oset != NULL) ? &oset : NULL;
1119 	if (setp) {
1120 		error = copyin(uap->set, setp, sizeof(set));
1121 		if (error)
1122 			return (error);
1123 	}
1124 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1125 	if (osetp && !error) {
1126 		error = copyout(osetp, uap->oset, sizeof(oset));
1127 	}
1128 	return (error);
1129 }
1130 
1131 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1132 #ifndef _SYS_SYSPROTO_H_
1133 struct osigprocmask_args {
1134 	int	how;
1135 	osigset_t mask;
1136 };
1137 #endif
1138 int
1139 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1140 {
1141 	sigset_t set, oset;
1142 	int error;
1143 
1144 	OSIG2SIG(uap->mask, set);
1145 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1146 	SIG2OSIG(oset, td->td_retval[0]);
1147 	return (error);
1148 }
1149 #endif /* COMPAT_43 */
1150 
1151 int
1152 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1153 {
1154 	ksiginfo_t ksi;
1155 	sigset_t set;
1156 	int error;
1157 
1158 	error = copyin(uap->set, &set, sizeof(set));
1159 	if (error) {
1160 		td->td_retval[0] = error;
1161 		return (0);
1162 	}
1163 
1164 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1165 	if (error) {
1166 		/*
1167 		 * sigwait() function shall not return EINTR, but
1168 		 * the syscall does.  Non-ancient libc provides the
1169 		 * wrapper which hides EINTR.  Otherwise, EINTR return
1170 		 * is used by libthr to handle required cancellation
1171 		 * point in the sigwait().
1172 		 */
1173 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1174 			return (ERESTART);
1175 		td->td_retval[0] = error;
1176 		return (0);
1177 	}
1178 
1179 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1180 	td->td_retval[0] = error;
1181 	return (0);
1182 }
1183 
1184 int
1185 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1186 {
1187 	struct timespec ts;
1188 	struct timespec *timeout;
1189 	sigset_t set;
1190 	ksiginfo_t ksi;
1191 	int error;
1192 
1193 	if (uap->timeout) {
1194 		error = copyin(uap->timeout, &ts, sizeof(ts));
1195 		if (error)
1196 			return (error);
1197 
1198 		timeout = &ts;
1199 	} else
1200 		timeout = NULL;
1201 
1202 	error = copyin(uap->set, &set, sizeof(set));
1203 	if (error)
1204 		return (error);
1205 
1206 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1207 	if (error)
1208 		return (error);
1209 
1210 	if (uap->info)
1211 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1212 
1213 	if (error == 0)
1214 		td->td_retval[0] = ksi.ksi_signo;
1215 	return (error);
1216 }
1217 
1218 int
1219 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1220 {
1221 	ksiginfo_t ksi;
1222 	sigset_t set;
1223 	int error;
1224 
1225 	error = copyin(uap->set, &set, sizeof(set));
1226 	if (error)
1227 		return (error);
1228 
1229 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1230 	if (error)
1231 		return (error);
1232 
1233 	if (uap->info)
1234 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1235 
1236 	if (error == 0)
1237 		td->td_retval[0] = ksi.ksi_signo;
1238 	return (error);
1239 }
1240 
1241 static void
1242 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1243 {
1244 	struct thread *thr;
1245 
1246 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1247 		if (thr == td)
1248 			thr->td_si = *si;
1249 		else
1250 			thr->td_si.si_signo = 0;
1251 	}
1252 }
1253 
1254 int
1255 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1256 	struct timespec *timeout)
1257 {
1258 	struct sigacts *ps;
1259 	sigset_t saved_mask, new_block;
1260 	struct proc *p;
1261 	int error, sig, timo, timevalid = 0;
1262 	struct timespec rts, ets, ts;
1263 	struct timeval tv;
1264 	bool traced;
1265 
1266 	p = td->td_proc;
1267 	error = 0;
1268 	ets.tv_sec = 0;
1269 	ets.tv_nsec = 0;
1270 	traced = false;
1271 
1272 	/* Ensure the sigfastblock value is up to date. */
1273 	sigfastblock_fetch(td);
1274 
1275 	if (timeout != NULL) {
1276 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1277 			timevalid = 1;
1278 			getnanouptime(&rts);
1279 			timespecadd(&rts, timeout, &ets);
1280 		}
1281 	}
1282 	ksiginfo_init(ksi);
1283 	/* Some signals can not be waited for. */
1284 	SIG_CANTMASK(waitset);
1285 	ps = p->p_sigacts;
1286 	PROC_LOCK(p);
1287 	saved_mask = td->td_sigmask;
1288 	SIGSETNAND(td->td_sigmask, waitset);
1289 	if ((p->p_sysent->sv_flags & SV_SIG_DISCIGN) != 0 ||
1290 	    !kern_sig_discard_ign) {
1291 		thread_lock(td);
1292 		td->td_flags |= TDF_SIGWAIT;
1293 		thread_unlock(td);
1294 	}
1295 	for (;;) {
1296 		mtx_lock(&ps->ps_mtx);
1297 		sig = cursig(td);
1298 		mtx_unlock(&ps->ps_mtx);
1299 		KASSERT(sig >= 0, ("sig %d", sig));
1300 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1301 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1302 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1303 				error = 0;
1304 				break;
1305 			}
1306 		}
1307 
1308 		if (error != 0)
1309 			break;
1310 
1311 		/*
1312 		 * POSIX says this must be checked after looking for pending
1313 		 * signals.
1314 		 */
1315 		if (timeout != NULL) {
1316 			if (!timevalid) {
1317 				error = EINVAL;
1318 				break;
1319 			}
1320 			getnanouptime(&rts);
1321 			if (timespeccmp(&rts, &ets, >=)) {
1322 				error = EAGAIN;
1323 				break;
1324 			}
1325 			timespecsub(&ets, &rts, &ts);
1326 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1327 			timo = tvtohz(&tv);
1328 		} else {
1329 			timo = 0;
1330 		}
1331 
1332 		if (traced) {
1333 			error = EINTR;
1334 			break;
1335 		}
1336 
1337 		error = msleep(&p->p_sigacts, &p->p_mtx, PPAUSE | PCATCH,
1338 		    "sigwait", timo);
1339 
1340 		/* The syscalls can not be restarted. */
1341 		if (error == ERESTART)
1342 			error = EINTR;
1343 
1344 		/* We will calculate timeout by ourself. */
1345 		if (timeout != NULL && error == EAGAIN)
1346 			error = 0;
1347 
1348 		/*
1349 		 * If PTRACE_SCE or PTRACE_SCX were set after
1350 		 * userspace entered the syscall, return spurious
1351 		 * EINTR after wait was done.  Only do this as last
1352 		 * resort after rechecking for possible queued signals
1353 		 * and expired timeouts.
1354 		 */
1355 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1356 			traced = true;
1357 	}
1358 	thread_lock(td);
1359 	td->td_flags &= ~TDF_SIGWAIT;
1360 	thread_unlock(td);
1361 
1362 	new_block = saved_mask;
1363 	SIGSETNAND(new_block, td->td_sigmask);
1364 	td->td_sigmask = saved_mask;
1365 	/*
1366 	 * Fewer signals can be delivered to us, reschedule signal
1367 	 * notification.
1368 	 */
1369 	if (p->p_numthreads != 1)
1370 		reschedule_signals(p, new_block, 0);
1371 
1372 	if (error == 0) {
1373 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1374 
1375 		if (ksi->ksi_code == SI_TIMER)
1376 			itimer_accept(p, ksi->ksi_timerid, ksi);
1377 
1378 #ifdef KTRACE
1379 		if (KTRPOINT(td, KTR_PSIG)) {
1380 			sig_t action;
1381 
1382 			mtx_lock(&ps->ps_mtx);
1383 			action = ps->ps_sigact[_SIG_IDX(sig)];
1384 			mtx_unlock(&ps->ps_mtx);
1385 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1386 		}
1387 #endif
1388 		if (sig == SIGKILL) {
1389 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1390 			sigexit(td, sig);
1391 		}
1392 	}
1393 	PROC_UNLOCK(p);
1394 	return (error);
1395 }
1396 
1397 #ifndef _SYS_SYSPROTO_H_
1398 struct sigpending_args {
1399 	sigset_t	*set;
1400 };
1401 #endif
1402 int
1403 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1404 {
1405 	struct proc *p = td->td_proc;
1406 	sigset_t pending;
1407 
1408 	PROC_LOCK(p);
1409 	pending = p->p_sigqueue.sq_signals;
1410 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1411 	PROC_UNLOCK(p);
1412 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1413 }
1414 
1415 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1416 #ifndef _SYS_SYSPROTO_H_
1417 struct osigpending_args {
1418 	int	dummy;
1419 };
1420 #endif
1421 int
1422 osigpending(struct thread *td, struct osigpending_args *uap)
1423 {
1424 	struct proc *p = td->td_proc;
1425 	sigset_t pending;
1426 
1427 	PROC_LOCK(p);
1428 	pending = p->p_sigqueue.sq_signals;
1429 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1430 	PROC_UNLOCK(p);
1431 	SIG2OSIG(pending, td->td_retval[0]);
1432 	return (0);
1433 }
1434 #endif /* COMPAT_43 */
1435 
1436 #if defined(COMPAT_43)
1437 /*
1438  * Generalized interface signal handler, 4.3-compatible.
1439  */
1440 #ifndef _SYS_SYSPROTO_H_
1441 struct osigvec_args {
1442 	int	signum;
1443 	struct	sigvec *nsv;
1444 	struct	sigvec *osv;
1445 };
1446 #endif
1447 /* ARGSUSED */
1448 int
1449 osigvec(struct thread *td, struct osigvec_args *uap)
1450 {
1451 	struct sigvec vec;
1452 	struct sigaction nsa, osa;
1453 	struct sigaction *nsap, *osap;
1454 	int error;
1455 
1456 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1457 		return (EINVAL);
1458 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1459 	osap = (uap->osv != NULL) ? &osa : NULL;
1460 	if (nsap) {
1461 		error = copyin(uap->nsv, &vec, sizeof(vec));
1462 		if (error)
1463 			return (error);
1464 		nsap->sa_handler = vec.sv_handler;
1465 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1466 		nsap->sa_flags = vec.sv_flags;
1467 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1468 	}
1469 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1470 	if (osap && !error) {
1471 		vec.sv_handler = osap->sa_handler;
1472 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1473 		vec.sv_flags = osap->sa_flags;
1474 		vec.sv_flags &= ~SA_NOCLDWAIT;
1475 		vec.sv_flags ^= SA_RESTART;
1476 		error = copyout(&vec, uap->osv, sizeof(vec));
1477 	}
1478 	return (error);
1479 }
1480 
1481 #ifndef _SYS_SYSPROTO_H_
1482 struct osigblock_args {
1483 	int	mask;
1484 };
1485 #endif
1486 int
1487 osigblock(struct thread *td, struct osigblock_args *uap)
1488 {
1489 	sigset_t set, oset;
1490 
1491 	OSIG2SIG(uap->mask, set);
1492 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1493 	SIG2OSIG(oset, td->td_retval[0]);
1494 	return (0);
1495 }
1496 
1497 #ifndef _SYS_SYSPROTO_H_
1498 struct osigsetmask_args {
1499 	int	mask;
1500 };
1501 #endif
1502 int
1503 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1504 {
1505 	sigset_t set, oset;
1506 
1507 	OSIG2SIG(uap->mask, set);
1508 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1509 	SIG2OSIG(oset, td->td_retval[0]);
1510 	return (0);
1511 }
1512 #endif /* COMPAT_43 */
1513 
1514 /*
1515  * Suspend calling thread until signal, providing mask to be set in the
1516  * meantime.
1517  */
1518 #ifndef _SYS_SYSPROTO_H_
1519 struct sigsuspend_args {
1520 	const sigset_t *sigmask;
1521 };
1522 #endif
1523 /* ARGSUSED */
1524 int
1525 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1526 {
1527 	sigset_t mask;
1528 	int error;
1529 
1530 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1531 	if (error)
1532 		return (error);
1533 	return (kern_sigsuspend(td, mask));
1534 }
1535 
1536 int
1537 kern_sigsuspend(struct thread *td, sigset_t mask)
1538 {
1539 	struct proc *p = td->td_proc;
1540 	int has_sig, sig;
1541 
1542 	/* Ensure the sigfastblock value is up to date. */
1543 	sigfastblock_fetch(td);
1544 
1545 	/*
1546 	 * When returning from sigsuspend, we want
1547 	 * the old mask to be restored after the
1548 	 * signal handler has finished.  Thus, we
1549 	 * save it here and mark the sigacts structure
1550 	 * to indicate this.
1551 	 */
1552 	PROC_LOCK(p);
1553 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1554 	    SIGPROCMASK_PROC_LOCKED);
1555 	td->td_pflags |= TDP_OLDMASK;
1556 
1557 	/*
1558 	 * Process signals now. Otherwise, we can get spurious wakeup
1559 	 * due to signal entered process queue, but delivered to other
1560 	 * thread. But sigsuspend should return only on signal
1561 	 * delivery.
1562 	 */
1563 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1564 	for (has_sig = 0; !has_sig;) {
1565 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1566 			0) == 0)
1567 			/* void */;
1568 		thread_suspend_check(0);
1569 		mtx_lock(&p->p_sigacts->ps_mtx);
1570 		while ((sig = cursig(td)) != 0) {
1571 			KASSERT(sig >= 0, ("sig %d", sig));
1572 			has_sig += postsig(sig);
1573 		}
1574 		mtx_unlock(&p->p_sigacts->ps_mtx);
1575 
1576 		/*
1577 		 * If PTRACE_SCE or PTRACE_SCX were set after
1578 		 * userspace entered the syscall, return spurious
1579 		 * EINTR.
1580 		 */
1581 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1582 			has_sig += 1;
1583 	}
1584 	PROC_UNLOCK(p);
1585 	td->td_errno = EINTR;
1586 	td->td_pflags |= TDP_NERRNO;
1587 	return (EJUSTRETURN);
1588 }
1589 
1590 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1591 /*
1592  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1593  * convention: libc stub passes mask, not pointer, to save a copyin.
1594  */
1595 #ifndef _SYS_SYSPROTO_H_
1596 struct osigsuspend_args {
1597 	osigset_t mask;
1598 };
1599 #endif
1600 /* ARGSUSED */
1601 int
1602 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1603 {
1604 	sigset_t mask;
1605 
1606 	OSIG2SIG(uap->mask, mask);
1607 	return (kern_sigsuspend(td, mask));
1608 }
1609 #endif /* COMPAT_43 */
1610 
1611 #if defined(COMPAT_43)
1612 #ifndef _SYS_SYSPROTO_H_
1613 struct osigstack_args {
1614 	struct	sigstack *nss;
1615 	struct	sigstack *oss;
1616 };
1617 #endif
1618 /* ARGSUSED */
1619 int
1620 osigstack(struct thread *td, struct osigstack_args *uap)
1621 {
1622 	struct sigstack nss, oss;
1623 	int error = 0;
1624 
1625 	if (uap->nss != NULL) {
1626 		error = copyin(uap->nss, &nss, sizeof(nss));
1627 		if (error)
1628 			return (error);
1629 	}
1630 	oss.ss_sp = td->td_sigstk.ss_sp;
1631 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1632 	if (uap->nss != NULL) {
1633 		td->td_sigstk.ss_sp = nss.ss_sp;
1634 		td->td_sigstk.ss_size = 0;
1635 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1636 		td->td_pflags |= TDP_ALTSTACK;
1637 	}
1638 	if (uap->oss != NULL)
1639 		error = copyout(&oss, uap->oss, sizeof(oss));
1640 
1641 	return (error);
1642 }
1643 #endif /* COMPAT_43 */
1644 
1645 #ifndef _SYS_SYSPROTO_H_
1646 struct sigaltstack_args {
1647 	stack_t	*ss;
1648 	stack_t	*oss;
1649 };
1650 #endif
1651 /* ARGSUSED */
1652 int
1653 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1654 {
1655 	stack_t ss, oss;
1656 	int error;
1657 
1658 	if (uap->ss != NULL) {
1659 		error = copyin(uap->ss, &ss, sizeof(ss));
1660 		if (error)
1661 			return (error);
1662 	}
1663 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1664 	    (uap->oss != NULL) ? &oss : NULL);
1665 	if (error)
1666 		return (error);
1667 	if (uap->oss != NULL)
1668 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1669 	return (error);
1670 }
1671 
1672 int
1673 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1674 {
1675 	struct proc *p = td->td_proc;
1676 	int oonstack;
1677 
1678 	oonstack = sigonstack(cpu_getstack(td));
1679 
1680 	if (oss != NULL) {
1681 		*oss = td->td_sigstk;
1682 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1683 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1684 	}
1685 
1686 	if (ss != NULL) {
1687 		if (oonstack)
1688 			return (EPERM);
1689 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1690 			return (EINVAL);
1691 		if (!(ss->ss_flags & SS_DISABLE)) {
1692 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1693 				return (ENOMEM);
1694 
1695 			td->td_sigstk = *ss;
1696 			td->td_pflags |= TDP_ALTSTACK;
1697 		} else {
1698 			td->td_pflags &= ~TDP_ALTSTACK;
1699 		}
1700 	}
1701 	return (0);
1702 }
1703 
1704 struct killpg1_ctx {
1705 	struct thread *td;
1706 	ksiginfo_t *ksi;
1707 	int sig;
1708 	bool sent;
1709 	bool found;
1710 	int ret;
1711 };
1712 
1713 static void
1714 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1715 {
1716 	int err;
1717 
1718 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1719 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1720 		return;
1721 	PROC_LOCK(p);
1722 	err = p_cansignal(arg->td, p, arg->sig);
1723 	if (err == 0 && arg->sig != 0)
1724 		pksignal(p, arg->sig, arg->ksi);
1725 	PROC_UNLOCK(p);
1726 	if (err != ESRCH)
1727 		arg->found = true;
1728 	if (err == 0)
1729 		arg->sent = true;
1730 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1731 		arg->ret = err;
1732 }
1733 
1734 /*
1735  * Common code for kill process group/broadcast kill.
1736  * cp is calling process.
1737  */
1738 static int
1739 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1740 {
1741 	struct proc *p;
1742 	struct pgrp *pgrp;
1743 	struct killpg1_ctx arg;
1744 
1745 	arg.td = td;
1746 	arg.ksi = ksi;
1747 	arg.sig = sig;
1748 	arg.sent = false;
1749 	arg.found = false;
1750 	arg.ret = 0;
1751 	if (all) {
1752 		/*
1753 		 * broadcast
1754 		 */
1755 		sx_slock(&allproc_lock);
1756 		FOREACH_PROC_IN_SYSTEM(p) {
1757 			killpg1_sendsig(p, true, &arg);
1758 		}
1759 		sx_sunlock(&allproc_lock);
1760 	} else {
1761 		sx_slock(&proctree_lock);
1762 		if (pgid == 0) {
1763 			/*
1764 			 * zero pgid means send to my process group.
1765 			 */
1766 			pgrp = td->td_proc->p_pgrp;
1767 			PGRP_LOCK(pgrp);
1768 		} else {
1769 			pgrp = pgfind(pgid);
1770 			if (pgrp == NULL) {
1771 				sx_sunlock(&proctree_lock);
1772 				return (ESRCH);
1773 			}
1774 		}
1775 		sx_sunlock(&proctree_lock);
1776 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1777 			killpg1_sendsig(p, false, &arg);
1778 		}
1779 		PGRP_UNLOCK(pgrp);
1780 	}
1781 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1782 	if (arg.ret == 0 && !arg.sent)
1783 		arg.ret = arg.found ? EPERM : ESRCH;
1784 	return (arg.ret);
1785 }
1786 
1787 #ifndef _SYS_SYSPROTO_H_
1788 struct kill_args {
1789 	int	pid;
1790 	int	signum;
1791 };
1792 #endif
1793 /* ARGSUSED */
1794 int
1795 sys_kill(struct thread *td, struct kill_args *uap)
1796 {
1797 
1798 	return (kern_kill(td, uap->pid, uap->signum));
1799 }
1800 
1801 int
1802 kern_kill(struct thread *td, pid_t pid, int signum)
1803 {
1804 	ksiginfo_t ksi;
1805 	struct proc *p;
1806 	int error;
1807 
1808 	/*
1809 	 * A process in capability mode can send signals only to himself.
1810 	 * The main rationale behind this is that abort(3) is implemented as
1811 	 * kill(getpid(), SIGABRT).
1812 	 */
1813 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1814 		return (ECAPMODE);
1815 
1816 	AUDIT_ARG_SIGNUM(signum);
1817 	AUDIT_ARG_PID(pid);
1818 	if ((u_int)signum > _SIG_MAXSIG)
1819 		return (EINVAL);
1820 
1821 	ksiginfo_init(&ksi);
1822 	ksi.ksi_signo = signum;
1823 	ksi.ksi_code = SI_USER;
1824 	ksi.ksi_pid = td->td_proc->p_pid;
1825 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1826 
1827 	if (pid > 0) {
1828 		/* kill single process */
1829 		if ((p = pfind_any(pid)) == NULL)
1830 			return (ESRCH);
1831 		AUDIT_ARG_PROCESS(p);
1832 		error = p_cansignal(td, p, signum);
1833 		if (error == 0 && signum)
1834 			pksignal(p, signum, &ksi);
1835 		PROC_UNLOCK(p);
1836 		return (error);
1837 	}
1838 	switch (pid) {
1839 	case -1:		/* broadcast signal */
1840 		return (killpg1(td, signum, 0, 1, &ksi));
1841 	case 0:			/* signal own process group */
1842 		return (killpg1(td, signum, 0, 0, &ksi));
1843 	default:		/* negative explicit process group */
1844 		return (killpg1(td, signum, -pid, 0, &ksi));
1845 	}
1846 	/* NOTREACHED */
1847 }
1848 
1849 int
1850 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1851 {
1852 	struct proc *p;
1853 	int error;
1854 
1855 	AUDIT_ARG_SIGNUM(uap->signum);
1856 	AUDIT_ARG_FD(uap->fd);
1857 	if ((u_int)uap->signum > _SIG_MAXSIG)
1858 		return (EINVAL);
1859 
1860 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1861 	if (error)
1862 		return (error);
1863 	AUDIT_ARG_PROCESS(p);
1864 	error = p_cansignal(td, p, uap->signum);
1865 	if (error == 0 && uap->signum)
1866 		kern_psignal(p, uap->signum);
1867 	PROC_UNLOCK(p);
1868 	return (error);
1869 }
1870 
1871 #if defined(COMPAT_43)
1872 #ifndef _SYS_SYSPROTO_H_
1873 struct okillpg_args {
1874 	int	pgid;
1875 	int	signum;
1876 };
1877 #endif
1878 /* ARGSUSED */
1879 int
1880 okillpg(struct thread *td, struct okillpg_args *uap)
1881 {
1882 	ksiginfo_t ksi;
1883 
1884 	AUDIT_ARG_SIGNUM(uap->signum);
1885 	AUDIT_ARG_PID(uap->pgid);
1886 	if ((u_int)uap->signum > _SIG_MAXSIG)
1887 		return (EINVAL);
1888 
1889 	ksiginfo_init(&ksi);
1890 	ksi.ksi_signo = uap->signum;
1891 	ksi.ksi_code = SI_USER;
1892 	ksi.ksi_pid = td->td_proc->p_pid;
1893 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1894 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1895 }
1896 #endif /* COMPAT_43 */
1897 
1898 #ifndef _SYS_SYSPROTO_H_
1899 struct sigqueue_args {
1900 	pid_t pid;
1901 	int signum;
1902 	/* union sigval */ void *value;
1903 };
1904 #endif
1905 int
1906 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1907 {
1908 	union sigval sv;
1909 
1910 	sv.sival_ptr = uap->value;
1911 
1912 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1913 }
1914 
1915 int
1916 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1917 {
1918 	ksiginfo_t ksi;
1919 	struct proc *p;
1920 	int error;
1921 
1922 	if ((u_int)signum > _SIG_MAXSIG)
1923 		return (EINVAL);
1924 
1925 	/*
1926 	 * Specification says sigqueue can only send signal to
1927 	 * single process.
1928 	 */
1929 	if (pid <= 0)
1930 		return (EINVAL);
1931 
1932 	if ((p = pfind_any(pid)) == NULL)
1933 		return (ESRCH);
1934 	error = p_cansignal(td, p, signum);
1935 	if (error == 0 && signum != 0) {
1936 		ksiginfo_init(&ksi);
1937 		ksi.ksi_flags = KSI_SIGQ;
1938 		ksi.ksi_signo = signum;
1939 		ksi.ksi_code = SI_QUEUE;
1940 		ksi.ksi_pid = td->td_proc->p_pid;
1941 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1942 		ksi.ksi_value = *value;
1943 		error = pksignal(p, ksi.ksi_signo, &ksi);
1944 	}
1945 	PROC_UNLOCK(p);
1946 	return (error);
1947 }
1948 
1949 /*
1950  * Send a signal to a process group.
1951  */
1952 void
1953 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1954 {
1955 	struct pgrp *pgrp;
1956 
1957 	if (pgid != 0) {
1958 		sx_slock(&proctree_lock);
1959 		pgrp = pgfind(pgid);
1960 		sx_sunlock(&proctree_lock);
1961 		if (pgrp != NULL) {
1962 			pgsignal(pgrp, sig, 0, ksi);
1963 			PGRP_UNLOCK(pgrp);
1964 		}
1965 	}
1966 }
1967 
1968 /*
1969  * Send a signal to a process group.  If checktty is 1,
1970  * limit to members which have a controlling terminal.
1971  */
1972 void
1973 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1974 {
1975 	struct proc *p;
1976 
1977 	if (pgrp) {
1978 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1979 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1980 			PROC_LOCK(p);
1981 			if (p->p_state == PRS_NORMAL &&
1982 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1983 				pksignal(p, sig, ksi);
1984 			PROC_UNLOCK(p);
1985 		}
1986 	}
1987 }
1988 
1989 /*
1990  * Recalculate the signal mask and reset the signal disposition after
1991  * usermode frame for delivery is formed.  Should be called after
1992  * mach-specific routine, because sysent->sv_sendsig() needs correct
1993  * ps_siginfo and signal mask.
1994  */
1995 static void
1996 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1997 {
1998 	sigset_t mask;
1999 
2000 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2001 	td->td_ru.ru_nsignals++;
2002 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
2003 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
2004 		SIGADDSET(mask, sig);
2005 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2006 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2007 	if (SIGISMEMBER(ps->ps_sigreset, sig))
2008 		sigdflt(ps, sig);
2009 }
2010 
2011 /*
2012  * Send a signal caused by a trap to the current thread.  If it will be
2013  * caught immediately, deliver it with correct code.  Otherwise, post it
2014  * normally.
2015  */
2016 void
2017 trapsignal(struct thread *td, ksiginfo_t *ksi)
2018 {
2019 	struct sigacts *ps;
2020 	struct proc *p;
2021 	sigset_t sigmask;
2022 	int sig;
2023 
2024 	p = td->td_proc;
2025 	sig = ksi->ksi_signo;
2026 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2027 
2028 	sigfastblock_fetch(td);
2029 	PROC_LOCK(p);
2030 	ps = p->p_sigacts;
2031 	mtx_lock(&ps->ps_mtx);
2032 	sigmask = td->td_sigmask;
2033 	if (td->td_sigblock_val != 0)
2034 		SIGSETOR(sigmask, fastblock_mask);
2035 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2036 	    !SIGISMEMBER(sigmask, sig)) {
2037 #ifdef KTRACE
2038 		if (KTRPOINT(curthread, KTR_PSIG))
2039 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2040 			    &td->td_sigmask, ksi->ksi_code);
2041 #endif
2042 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2043 		    ksi, &td->td_sigmask);
2044 		postsig_done(sig, td, ps);
2045 		mtx_unlock(&ps->ps_mtx);
2046 	} else {
2047 		/*
2048 		 * Avoid a possible infinite loop if the thread
2049 		 * masking the signal or process is ignoring the
2050 		 * signal.
2051 		 */
2052 		if (kern_forcesigexit && (SIGISMEMBER(sigmask, sig) ||
2053 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2054 			SIGDELSET(td->td_sigmask, sig);
2055 			SIGDELSET(ps->ps_sigcatch, sig);
2056 			SIGDELSET(ps->ps_sigignore, sig);
2057 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2058 			td->td_pflags &= ~TDP_SIGFASTBLOCK;
2059 			td->td_sigblock_val = 0;
2060 		}
2061 		mtx_unlock(&ps->ps_mtx);
2062 		p->p_sig = sig;		/* XXX to verify code */
2063 		tdsendsignal(p, td, sig, ksi);
2064 	}
2065 	PROC_UNLOCK(p);
2066 }
2067 
2068 static struct thread *
2069 sigtd(struct proc *p, int sig, bool fast_sigblock)
2070 {
2071 	struct thread *td, *signal_td;
2072 
2073 	PROC_LOCK_ASSERT(p, MA_OWNED);
2074 	MPASS(!fast_sigblock || p == curproc);
2075 
2076 	/*
2077 	 * Check if current thread can handle the signal without
2078 	 * switching context to another thread.
2079 	 */
2080 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig) &&
2081 	    (!fast_sigblock || curthread->td_sigblock_val == 0))
2082 		return (curthread);
2083 	signal_td = NULL;
2084 	FOREACH_THREAD_IN_PROC(p, td) {
2085 		if (!SIGISMEMBER(td->td_sigmask, sig) && (!fast_sigblock ||
2086 		    td != curthread || td->td_sigblock_val == 0)) {
2087 			signal_td = td;
2088 			break;
2089 		}
2090 	}
2091 	if (signal_td == NULL)
2092 		signal_td = FIRST_THREAD_IN_PROC(p);
2093 	return (signal_td);
2094 }
2095 
2096 /*
2097  * Send the signal to the process.  If the signal has an action, the action
2098  * is usually performed by the target process rather than the caller; we add
2099  * the signal to the set of pending signals for the process.
2100  *
2101  * Exceptions:
2102  *   o When a stop signal is sent to a sleeping process that takes the
2103  *     default action, the process is stopped without awakening it.
2104  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2105  *     regardless of the signal action (eg, blocked or ignored).
2106  *
2107  * Other ignored signals are discarded immediately.
2108  *
2109  * NB: This function may be entered from the debugger via the "kill" DDB
2110  * command.  There is little that can be done to mitigate the possibly messy
2111  * side effects of this unwise possibility.
2112  */
2113 void
2114 kern_psignal(struct proc *p, int sig)
2115 {
2116 	ksiginfo_t ksi;
2117 
2118 	ksiginfo_init(&ksi);
2119 	ksi.ksi_signo = sig;
2120 	ksi.ksi_code = SI_KERNEL;
2121 	(void) tdsendsignal(p, NULL, sig, &ksi);
2122 }
2123 
2124 int
2125 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2126 {
2127 
2128 	return (tdsendsignal(p, NULL, sig, ksi));
2129 }
2130 
2131 /* Utility function for finding a thread to send signal event to. */
2132 int
2133 sigev_findtd(struct proc *p, struct sigevent *sigev, struct thread **ttd)
2134 {
2135 	struct thread *td;
2136 
2137 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2138 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2139 		if (td == NULL)
2140 			return (ESRCH);
2141 		*ttd = td;
2142 	} else {
2143 		*ttd = NULL;
2144 		PROC_LOCK(p);
2145 	}
2146 	return (0);
2147 }
2148 
2149 void
2150 tdsignal(struct thread *td, int sig)
2151 {
2152 	ksiginfo_t ksi;
2153 
2154 	ksiginfo_init(&ksi);
2155 	ksi.ksi_signo = sig;
2156 	ksi.ksi_code = SI_KERNEL;
2157 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2158 }
2159 
2160 void
2161 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2162 {
2163 
2164 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2165 }
2166 
2167 static int
2168 sig_sleepq_abort(struct thread *td, int intrval)
2169 {
2170 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2171 
2172 	if (intrval == 0 && (td->td_flags & TDF_SIGWAIT) == 0) {
2173 		thread_unlock(td);
2174 		return (0);
2175 	}
2176 	return (sleepq_abort(td, intrval));
2177 }
2178 
2179 int
2180 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2181 {
2182 	sig_t action;
2183 	sigqueue_t *sigqueue;
2184 	int prop;
2185 	struct sigacts *ps;
2186 	int intrval;
2187 	int ret = 0;
2188 	int wakeup_swapper;
2189 
2190 	MPASS(td == NULL || p == td->td_proc);
2191 	PROC_LOCK_ASSERT(p, MA_OWNED);
2192 
2193 	if (!_SIG_VALID(sig))
2194 		panic("%s(): invalid signal %d", __func__, sig);
2195 
2196 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2197 
2198 	/*
2199 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2200 	 */
2201 	if (p->p_state == PRS_ZOMBIE) {
2202 		if (ksi && (ksi->ksi_flags & KSI_INS))
2203 			ksiginfo_tryfree(ksi);
2204 		return (ret);
2205 	}
2206 
2207 	ps = p->p_sigacts;
2208 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2209 	prop = sigprop(sig);
2210 
2211 	if (td == NULL) {
2212 		td = sigtd(p, sig, false);
2213 		sigqueue = &p->p_sigqueue;
2214 	} else
2215 		sigqueue = &td->td_sigqueue;
2216 
2217 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2218 
2219 	/*
2220 	 * If the signal is being ignored, then we forget about it
2221 	 * immediately, except when the target process executes
2222 	 * sigwait().  (Note: we don't set SIGCONT in ps_sigignore,
2223 	 * and if it is set to SIG_IGN, action will be SIG_DFL here.)
2224 	 */
2225 	mtx_lock(&ps->ps_mtx);
2226 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2227 		if (kern_sig_discard_ign &&
2228 		    (p->p_sysent->sv_flags & SV_SIG_DISCIGN) == 0) {
2229 			SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2230 
2231 			mtx_unlock(&ps->ps_mtx);
2232 			if (ksi && (ksi->ksi_flags & KSI_INS))
2233 				ksiginfo_tryfree(ksi);
2234 			return (ret);
2235 		} else {
2236 			action = SIG_CATCH;
2237 			intrval = 0;
2238 		}
2239 	} else {
2240 		if (SIGISMEMBER(td->td_sigmask, sig))
2241 			action = SIG_HOLD;
2242 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2243 			action = SIG_CATCH;
2244 		else
2245 			action = SIG_DFL;
2246 		if (SIGISMEMBER(ps->ps_sigintr, sig))
2247 			intrval = EINTR;
2248 		else
2249 			intrval = ERESTART;
2250 	}
2251 	mtx_unlock(&ps->ps_mtx);
2252 
2253 	if (prop & SIGPROP_CONT)
2254 		sigqueue_delete_stopmask_proc(p);
2255 	else if (prop & SIGPROP_STOP) {
2256 		/*
2257 		 * If sending a tty stop signal to a member of an orphaned
2258 		 * process group, discard the signal here if the action
2259 		 * is default; don't stop the process below if sleeping,
2260 		 * and don't clear any pending SIGCONT.
2261 		 */
2262 		if ((prop & SIGPROP_TTYSTOP) != 0 &&
2263 		    (p->p_pgrp->pg_flags & PGRP_ORPHANED) != 0 &&
2264 		    action == SIG_DFL) {
2265 			if (ksi && (ksi->ksi_flags & KSI_INS))
2266 				ksiginfo_tryfree(ksi);
2267 			return (ret);
2268 		}
2269 		sigqueue_delete_proc(p, SIGCONT);
2270 		if (p->p_flag & P_CONTINUED) {
2271 			p->p_flag &= ~P_CONTINUED;
2272 			PROC_LOCK(p->p_pptr);
2273 			sigqueue_take(p->p_ksi);
2274 			PROC_UNLOCK(p->p_pptr);
2275 		}
2276 	}
2277 
2278 	ret = sigqueue_add(sigqueue, sig, ksi);
2279 	if (ret != 0)
2280 		return (ret);
2281 	signotify(td);
2282 	/*
2283 	 * Defer further processing for signals which are held,
2284 	 * except that stopped processes must be continued by SIGCONT.
2285 	 */
2286 	if (action == SIG_HOLD &&
2287 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2288 		return (ret);
2289 
2290 	wakeup_swapper = 0;
2291 
2292 	/*
2293 	 * Some signals have a process-wide effect and a per-thread
2294 	 * component.  Most processing occurs when the process next
2295 	 * tries to cross the user boundary, however there are some
2296 	 * times when processing needs to be done immediately, such as
2297 	 * waking up threads so that they can cross the user boundary.
2298 	 * We try to do the per-process part here.
2299 	 */
2300 	if (P_SHOULDSTOP(p)) {
2301 		KASSERT(!(p->p_flag & P_WEXIT),
2302 		    ("signal to stopped but exiting process"));
2303 		if (sig == SIGKILL) {
2304 			/*
2305 			 * If traced process is already stopped,
2306 			 * then no further action is necessary.
2307 			 */
2308 			if (p->p_flag & P_TRACED)
2309 				goto out;
2310 			/*
2311 			 * SIGKILL sets process running.
2312 			 * It will die elsewhere.
2313 			 * All threads must be restarted.
2314 			 */
2315 			p->p_flag &= ~P_STOPPED_SIG;
2316 			goto runfast;
2317 		}
2318 
2319 		if (prop & SIGPROP_CONT) {
2320 			/*
2321 			 * If traced process is already stopped,
2322 			 * then no further action is necessary.
2323 			 */
2324 			if (p->p_flag & P_TRACED)
2325 				goto out;
2326 			/*
2327 			 * If SIGCONT is default (or ignored), we continue the
2328 			 * process but don't leave the signal in sigqueue as
2329 			 * it has no further action.  If SIGCONT is held, we
2330 			 * continue the process and leave the signal in
2331 			 * sigqueue.  If the process catches SIGCONT, let it
2332 			 * handle the signal itself.  If it isn't waiting on
2333 			 * an event, it goes back to run state.
2334 			 * Otherwise, process goes back to sleep state.
2335 			 */
2336 			p->p_flag &= ~P_STOPPED_SIG;
2337 			PROC_SLOCK(p);
2338 			if (p->p_numthreads == p->p_suspcount) {
2339 				PROC_SUNLOCK(p);
2340 				p->p_flag |= P_CONTINUED;
2341 				p->p_xsig = SIGCONT;
2342 				PROC_LOCK(p->p_pptr);
2343 				childproc_continued(p);
2344 				PROC_UNLOCK(p->p_pptr);
2345 				PROC_SLOCK(p);
2346 			}
2347 			if (action == SIG_DFL) {
2348 				thread_unsuspend(p);
2349 				PROC_SUNLOCK(p);
2350 				sigqueue_delete(sigqueue, sig);
2351 				goto out_cont;
2352 			}
2353 			if (action == SIG_CATCH) {
2354 				/*
2355 				 * The process wants to catch it so it needs
2356 				 * to run at least one thread, but which one?
2357 				 */
2358 				PROC_SUNLOCK(p);
2359 				goto runfast;
2360 			}
2361 			/*
2362 			 * The signal is not ignored or caught.
2363 			 */
2364 			thread_unsuspend(p);
2365 			PROC_SUNLOCK(p);
2366 			goto out_cont;
2367 		}
2368 
2369 		if (prop & SIGPROP_STOP) {
2370 			/*
2371 			 * If traced process is already stopped,
2372 			 * then no further action is necessary.
2373 			 */
2374 			if (p->p_flag & P_TRACED)
2375 				goto out;
2376 			/*
2377 			 * Already stopped, don't need to stop again
2378 			 * (If we did the shell could get confused).
2379 			 * Just make sure the signal STOP bit set.
2380 			 */
2381 			p->p_flag |= P_STOPPED_SIG;
2382 			sigqueue_delete(sigqueue, sig);
2383 			goto out;
2384 		}
2385 
2386 		/*
2387 		 * All other kinds of signals:
2388 		 * If a thread is sleeping interruptibly, simulate a
2389 		 * wakeup so that when it is continued it will be made
2390 		 * runnable and can look at the signal.  However, don't make
2391 		 * the PROCESS runnable, leave it stopped.
2392 		 * It may run a bit until it hits a thread_suspend_check().
2393 		 */
2394 		PROC_SLOCK(p);
2395 		thread_lock(td);
2396 		if (TD_CAN_ABORT(td))
2397 			wakeup_swapper = sig_sleepq_abort(td, intrval);
2398 		else
2399 			thread_unlock(td);
2400 		PROC_SUNLOCK(p);
2401 		goto out;
2402 		/*
2403 		 * Mutexes are short lived. Threads waiting on them will
2404 		 * hit thread_suspend_check() soon.
2405 		 */
2406 	} else if (p->p_state == PRS_NORMAL) {
2407 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2408 			tdsigwakeup(td, sig, action, intrval);
2409 			goto out;
2410 		}
2411 
2412 		MPASS(action == SIG_DFL);
2413 
2414 		if (prop & SIGPROP_STOP) {
2415 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2416 				goto out;
2417 			p->p_flag |= P_STOPPED_SIG;
2418 			p->p_xsig = sig;
2419 			PROC_SLOCK(p);
2420 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2421 			if (p->p_numthreads == p->p_suspcount) {
2422 				/*
2423 				 * only thread sending signal to another
2424 				 * process can reach here, if thread is sending
2425 				 * signal to its process, because thread does
2426 				 * not suspend itself here, p_numthreads
2427 				 * should never be equal to p_suspcount.
2428 				 */
2429 				thread_stopped(p);
2430 				PROC_SUNLOCK(p);
2431 				sigqueue_delete_proc(p, p->p_xsig);
2432 			} else
2433 				PROC_SUNLOCK(p);
2434 			goto out;
2435 		}
2436 	} else {
2437 		/* Not in "NORMAL" state. discard the signal. */
2438 		sigqueue_delete(sigqueue, sig);
2439 		goto out;
2440 	}
2441 
2442 	/*
2443 	 * The process is not stopped so we need to apply the signal to all the
2444 	 * running threads.
2445 	 */
2446 runfast:
2447 	tdsigwakeup(td, sig, action, intrval);
2448 	PROC_SLOCK(p);
2449 	thread_unsuspend(p);
2450 	PROC_SUNLOCK(p);
2451 out_cont:
2452 	itimer_proc_continue(p);
2453 	kqtimer_proc_continue(p);
2454 out:
2455 	/* If we jump here, proc slock should not be owned. */
2456 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2457 	if (wakeup_swapper)
2458 		kick_proc0();
2459 
2460 	return (ret);
2461 }
2462 
2463 /*
2464  * The force of a signal has been directed against a single
2465  * thread.  We need to see what we can do about knocking it
2466  * out of any sleep it may be in etc.
2467  */
2468 static void
2469 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2470 {
2471 	struct proc *p = td->td_proc;
2472 	int prop, wakeup_swapper;
2473 
2474 	PROC_LOCK_ASSERT(p, MA_OWNED);
2475 	prop = sigprop(sig);
2476 
2477 	PROC_SLOCK(p);
2478 	thread_lock(td);
2479 	/*
2480 	 * Bring the priority of a thread up if we want it to get
2481 	 * killed in this lifetime.  Be careful to avoid bumping the
2482 	 * priority of the idle thread, since we still allow to signal
2483 	 * kernel processes.
2484 	 */
2485 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2486 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2487 		sched_prio(td, PUSER);
2488 	if (TD_ON_SLEEPQ(td)) {
2489 		/*
2490 		 * If thread is sleeping uninterruptibly
2491 		 * we can't interrupt the sleep... the signal will
2492 		 * be noticed when the process returns through
2493 		 * trap() or syscall().
2494 		 */
2495 		if ((td->td_flags & TDF_SINTR) == 0)
2496 			goto out;
2497 		/*
2498 		 * If SIGCONT is default (or ignored) and process is
2499 		 * asleep, we are finished; the process should not
2500 		 * be awakened.
2501 		 */
2502 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2503 			thread_unlock(td);
2504 			PROC_SUNLOCK(p);
2505 			sigqueue_delete(&p->p_sigqueue, sig);
2506 			/*
2507 			 * It may be on either list in this state.
2508 			 * Remove from both for now.
2509 			 */
2510 			sigqueue_delete(&td->td_sigqueue, sig);
2511 			return;
2512 		}
2513 
2514 		/*
2515 		 * Don't awaken a sleeping thread for SIGSTOP if the
2516 		 * STOP signal is deferred.
2517 		 */
2518 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2519 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2520 			goto out;
2521 
2522 		/*
2523 		 * Give low priority threads a better chance to run.
2524 		 */
2525 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2526 			sched_prio(td, PUSER);
2527 
2528 		wakeup_swapper = sig_sleepq_abort(td, intrval);
2529 		PROC_SUNLOCK(p);
2530 		if (wakeup_swapper)
2531 			kick_proc0();
2532 		return;
2533 	}
2534 
2535 	/*
2536 	 * Other states do nothing with the signal immediately,
2537 	 * other than kicking ourselves if we are running.
2538 	 * It will either never be noticed, or noticed very soon.
2539 	 */
2540 #ifdef SMP
2541 	if (TD_IS_RUNNING(td) && td != curthread)
2542 		forward_signal(td);
2543 #endif
2544 
2545 out:
2546 	PROC_SUNLOCK(p);
2547 	thread_unlock(td);
2548 }
2549 
2550 static void
2551 ptrace_coredump(struct thread *td)
2552 {
2553 	struct proc *p;
2554 	struct thr_coredump_req *tcq;
2555 	void *rl_cookie;
2556 
2557 	MPASS(td == curthread);
2558 	p = td->td_proc;
2559 	PROC_LOCK_ASSERT(p, MA_OWNED);
2560 	if ((td->td_dbgflags & TDB_COREDUMPRQ) == 0)
2561 		return;
2562 	KASSERT((p->p_flag & P_STOPPED_TRACE) != 0, ("not stopped"));
2563 
2564 	tcq = td->td_coredump;
2565 	KASSERT(tcq != NULL, ("td_coredump is NULL"));
2566 
2567 	if (p->p_sysent->sv_coredump == NULL) {
2568 		tcq->tc_error = ENOSYS;
2569 		goto wake;
2570 	}
2571 
2572 	PROC_UNLOCK(p);
2573 	rl_cookie = vn_rangelock_wlock(tcq->tc_vp, 0, OFF_MAX);
2574 
2575 	tcq->tc_error = p->p_sysent->sv_coredump(td, tcq->tc_vp,
2576 	    tcq->tc_limit, tcq->tc_flags);
2577 
2578 	vn_rangelock_unlock(tcq->tc_vp, rl_cookie);
2579 	PROC_LOCK(p);
2580 wake:
2581 	td->td_dbgflags &= ~TDB_COREDUMPRQ;
2582 	td->td_coredump = NULL;
2583 	wakeup(p);
2584 }
2585 
2586 static int
2587 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2588 {
2589 	struct thread *td2;
2590 	int wakeup_swapper;
2591 
2592 	PROC_LOCK_ASSERT(p, MA_OWNED);
2593 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2594 	MPASS(sending || td == curthread);
2595 
2596 	wakeup_swapper = 0;
2597 	FOREACH_THREAD_IN_PROC(p, td2) {
2598 		thread_lock(td2);
2599 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2600 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2601 		    (td2->td_flags & TDF_SINTR)) {
2602 			if (td2->td_flags & TDF_SBDRY) {
2603 				/*
2604 				 * Once a thread is asleep with
2605 				 * TDF_SBDRY and without TDF_SERESTART
2606 				 * or TDF_SEINTR set, it should never
2607 				 * become suspended due to this check.
2608 				 */
2609 				KASSERT(!TD_IS_SUSPENDED(td2),
2610 				    ("thread with deferred stops suspended"));
2611 				if (TD_SBDRY_INTR(td2)) {
2612 					wakeup_swapper |= sleepq_abort(td2,
2613 					    TD_SBDRY_ERRNO(td2));
2614 					continue;
2615 				}
2616 			} else if (!TD_IS_SUSPENDED(td2))
2617 				thread_suspend_one(td2);
2618 		} else if (!TD_IS_SUSPENDED(td2)) {
2619 			if (sending || td != td2)
2620 				td2->td_flags |= TDF_ASTPENDING;
2621 #ifdef SMP
2622 			if (TD_IS_RUNNING(td2) && td2 != td)
2623 				forward_signal(td2);
2624 #endif
2625 		}
2626 		thread_unlock(td2);
2627 	}
2628 	return (wakeup_swapper);
2629 }
2630 
2631 /*
2632  * Stop the process for an event deemed interesting to the debugger. If si is
2633  * non-NULL, this is a signal exchange; the new signal requested by the
2634  * debugger will be returned for handling. If si is NULL, this is some other
2635  * type of interesting event. The debugger may request a signal be delivered in
2636  * that case as well, however it will be deferred until it can be handled.
2637  */
2638 int
2639 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2640 {
2641 	struct proc *p = td->td_proc;
2642 	struct thread *td2;
2643 	ksiginfo_t ksi;
2644 
2645 	PROC_LOCK_ASSERT(p, MA_OWNED);
2646 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2647 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2648 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2649 
2650 	td->td_xsig = sig;
2651 
2652 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2653 		td->td_dbgflags |= TDB_XSIG;
2654 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2655 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2656 		PROC_SLOCK(p);
2657 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2658 			if (P_KILLED(p)) {
2659 				/*
2660 				 * Ensure that, if we've been PT_KILLed, the
2661 				 * exit status reflects that. Another thread
2662 				 * may also be in ptracestop(), having just
2663 				 * received the SIGKILL, but this thread was
2664 				 * unsuspended first.
2665 				 */
2666 				td->td_dbgflags &= ~TDB_XSIG;
2667 				td->td_xsig = SIGKILL;
2668 				p->p_ptevents = 0;
2669 				break;
2670 			}
2671 			if (p->p_flag & P_SINGLE_EXIT &&
2672 			    !(td->td_dbgflags & TDB_EXIT)) {
2673 				/*
2674 				 * Ignore ptrace stops except for thread exit
2675 				 * events when the process exits.
2676 				 */
2677 				td->td_dbgflags &= ~TDB_XSIG;
2678 				PROC_SUNLOCK(p);
2679 				return (0);
2680 			}
2681 
2682 			/*
2683 			 * Make wait(2) work.  Ensure that right after the
2684 			 * attach, the thread which was decided to become the
2685 			 * leader of attach gets reported to the waiter.
2686 			 * Otherwise, just avoid overwriting another thread's
2687 			 * assignment to p_xthread.  If another thread has
2688 			 * already set p_xthread, the current thread will get
2689 			 * a chance to report itself upon the next iteration.
2690 			 */
2691 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2692 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2693 			    p->p_xthread == NULL)) {
2694 				p->p_xsig = sig;
2695 				p->p_xthread = td;
2696 
2697 				/*
2698 				 * If we are on sleepqueue already,
2699 				 * let sleepqueue code decide if it
2700 				 * needs to go sleep after attach.
2701 				 */
2702 				if (td->td_wchan == NULL)
2703 					td->td_dbgflags &= ~TDB_FSTP;
2704 
2705 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2706 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2707 				sig_suspend_threads(td, p, 0);
2708 			}
2709 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2710 				td->td_dbgflags &= ~TDB_STOPATFORK;
2711 			}
2712 stopme:
2713 			td->td_dbgflags |= TDB_SSWITCH;
2714 			thread_suspend_switch(td, p);
2715 			td->td_dbgflags &= ~TDB_SSWITCH;
2716 			if ((td->td_dbgflags & TDB_COREDUMPRQ) != 0) {
2717 				PROC_SUNLOCK(p);
2718 				ptrace_coredump(td);
2719 				PROC_SLOCK(p);
2720 				goto stopme;
2721 			}
2722 			if (p->p_xthread == td)
2723 				p->p_xthread = NULL;
2724 			if (!(p->p_flag & P_TRACED))
2725 				break;
2726 			if (td->td_dbgflags & TDB_SUSPEND) {
2727 				if (p->p_flag & P_SINGLE_EXIT)
2728 					break;
2729 				goto stopme;
2730 			}
2731 		}
2732 		PROC_SUNLOCK(p);
2733 	}
2734 
2735 	if (si != NULL && sig == td->td_xsig) {
2736 		/* Parent wants us to take the original signal unchanged. */
2737 		si->ksi_flags |= KSI_HEAD;
2738 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2739 			si->ksi_signo = 0;
2740 	} else if (td->td_xsig != 0) {
2741 		/*
2742 		 * If parent wants us to take a new signal, then it will leave
2743 		 * it in td->td_xsig; otherwise we just look for signals again.
2744 		 */
2745 		ksiginfo_init(&ksi);
2746 		ksi.ksi_signo = td->td_xsig;
2747 		ksi.ksi_flags |= KSI_PTRACE;
2748 		td2 = sigtd(p, td->td_xsig, false);
2749 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2750 		if (td != td2)
2751 			return (0);
2752 	}
2753 
2754 	return (td->td_xsig);
2755 }
2756 
2757 static void
2758 reschedule_signals(struct proc *p, sigset_t block, int flags)
2759 {
2760 	struct sigacts *ps;
2761 	struct thread *td;
2762 	int sig;
2763 	bool fastblk, pslocked;
2764 
2765 	PROC_LOCK_ASSERT(p, MA_OWNED);
2766 	ps = p->p_sigacts;
2767 	pslocked = (flags & SIGPROCMASK_PS_LOCKED) != 0;
2768 	mtx_assert(&ps->ps_mtx, pslocked ? MA_OWNED : MA_NOTOWNED);
2769 	if (SIGISEMPTY(p->p_siglist))
2770 		return;
2771 	SIGSETAND(block, p->p_siglist);
2772 	fastblk = (flags & SIGPROCMASK_FASTBLK) != 0;
2773 	SIG_FOREACH(sig, &block) {
2774 		td = sigtd(p, sig, fastblk);
2775 
2776 		/*
2777 		 * If sigtd() selected us despite sigfastblock is
2778 		 * blocking, do not activate AST or wake us, to avoid
2779 		 * loop in AST handler.
2780 		 */
2781 		if (fastblk && td == curthread)
2782 			continue;
2783 
2784 		signotify(td);
2785 		if (!pslocked)
2786 			mtx_lock(&ps->ps_mtx);
2787 		if (p->p_flag & P_TRACED ||
2788 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2789 		    !SIGISMEMBER(td->td_sigmask, sig))) {
2790 			tdsigwakeup(td, sig, SIG_CATCH,
2791 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2792 			    ERESTART));
2793 		}
2794 		if (!pslocked)
2795 			mtx_unlock(&ps->ps_mtx);
2796 	}
2797 }
2798 
2799 void
2800 tdsigcleanup(struct thread *td)
2801 {
2802 	struct proc *p;
2803 	sigset_t unblocked;
2804 
2805 	p = td->td_proc;
2806 	PROC_LOCK_ASSERT(p, MA_OWNED);
2807 
2808 	sigqueue_flush(&td->td_sigqueue);
2809 	if (p->p_numthreads == 1)
2810 		return;
2811 
2812 	/*
2813 	 * Since we cannot handle signals, notify signal post code
2814 	 * about this by filling the sigmask.
2815 	 *
2816 	 * Also, if needed, wake up thread(s) that do not block the
2817 	 * same signals as the exiting thread, since the thread might
2818 	 * have been selected for delivery and woken up.
2819 	 */
2820 	SIGFILLSET(unblocked);
2821 	SIGSETNAND(unblocked, td->td_sigmask);
2822 	SIGFILLSET(td->td_sigmask);
2823 	reschedule_signals(p, unblocked, 0);
2824 
2825 }
2826 
2827 static int
2828 sigdeferstop_curr_flags(int cflags)
2829 {
2830 
2831 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2832 	    (cflags & TDF_SBDRY) != 0);
2833 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2834 }
2835 
2836 /*
2837  * Defer the delivery of SIGSTOP for the current thread, according to
2838  * the requested mode.  Returns previous flags, which must be restored
2839  * by sigallowstop().
2840  *
2841  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2842  * cleared by the current thread, which allow the lock-less read-only
2843  * accesses below.
2844  */
2845 int
2846 sigdeferstop_impl(int mode)
2847 {
2848 	struct thread *td;
2849 	int cflags, nflags;
2850 
2851 	td = curthread;
2852 	cflags = sigdeferstop_curr_flags(td->td_flags);
2853 	switch (mode) {
2854 	case SIGDEFERSTOP_NOP:
2855 		nflags = cflags;
2856 		break;
2857 	case SIGDEFERSTOP_OFF:
2858 		nflags = 0;
2859 		break;
2860 	case SIGDEFERSTOP_SILENT:
2861 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2862 		break;
2863 	case SIGDEFERSTOP_EINTR:
2864 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2865 		break;
2866 	case SIGDEFERSTOP_ERESTART:
2867 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2868 		break;
2869 	default:
2870 		panic("sigdeferstop: invalid mode %x", mode);
2871 		break;
2872 	}
2873 	if (cflags == nflags)
2874 		return (SIGDEFERSTOP_VAL_NCHG);
2875 	thread_lock(td);
2876 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2877 	thread_unlock(td);
2878 	return (cflags);
2879 }
2880 
2881 /*
2882  * Restores the STOP handling mode, typically permitting the delivery
2883  * of SIGSTOP for the current thread.  This does not immediately
2884  * suspend if a stop was posted.  Instead, the thread will suspend
2885  * either via ast() or a subsequent interruptible sleep.
2886  */
2887 void
2888 sigallowstop_impl(int prev)
2889 {
2890 	struct thread *td;
2891 	int cflags;
2892 
2893 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2894 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2895 	    ("sigallowstop: incorrect previous mode %x", prev));
2896 	td = curthread;
2897 	cflags = sigdeferstop_curr_flags(td->td_flags);
2898 	if (cflags != prev) {
2899 		thread_lock(td);
2900 		td->td_flags = (td->td_flags & ~cflags) | prev;
2901 		thread_unlock(td);
2902 	}
2903 }
2904 
2905 enum sigstatus {
2906 	SIGSTATUS_HANDLE,
2907 	SIGSTATUS_HANDLED,
2908 	SIGSTATUS_IGNORE,
2909 	SIGSTATUS_SBDRY_STOP,
2910 };
2911 
2912 /*
2913  * The thread has signal "sig" pending.  Figure out what to do with it:
2914  *
2915  * _HANDLE     -> the caller should handle the signal
2916  * _HANDLED    -> handled internally, reload pending signal set
2917  * _IGNORE     -> ignored, remove from the set of pending signals and try the
2918  *                next pending signal
2919  * _SBDRY_STOP -> the signal should stop the thread but this is not
2920  *                permitted in the current context
2921  */
2922 static enum sigstatus
2923 sigprocess(struct thread *td, int sig)
2924 {
2925 	struct proc *p;
2926 	struct sigacts *ps;
2927 	struct sigqueue *queue;
2928 	ksiginfo_t ksi;
2929 	int prop;
2930 
2931 	KASSERT(_SIG_VALID(sig), ("%s: invalid signal %d", __func__, sig));
2932 
2933 	p = td->td_proc;
2934 	ps = p->p_sigacts;
2935 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2936 	PROC_LOCK_ASSERT(p, MA_OWNED);
2937 
2938 	/*
2939 	 * We should allow pending but ignored signals below
2940 	 * only if there is sigwait() active, or P_TRACED was
2941 	 * on when they were posted.
2942 	 */
2943 	if (SIGISMEMBER(ps->ps_sigignore, sig) &&
2944 	    (p->p_flag & P_TRACED) == 0 &&
2945 	    (td->td_flags & TDF_SIGWAIT) == 0) {
2946 		return (SIGSTATUS_IGNORE);
2947 	}
2948 
2949 	if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2950 		/*
2951 		 * If traced, always stop.
2952 		 * Remove old signal from queue before the stop.
2953 		 * XXX shrug off debugger, it causes siginfo to
2954 		 * be thrown away.
2955 		 */
2956 		queue = &td->td_sigqueue;
2957 		ksiginfo_init(&ksi);
2958 		if (sigqueue_get(queue, sig, &ksi) == 0) {
2959 			queue = &p->p_sigqueue;
2960 			sigqueue_get(queue, sig, &ksi);
2961 		}
2962 		td->td_si = ksi.ksi_info;
2963 
2964 		mtx_unlock(&ps->ps_mtx);
2965 		sig = ptracestop(td, sig, &ksi);
2966 		mtx_lock(&ps->ps_mtx);
2967 
2968 		td->td_si.si_signo = 0;
2969 
2970 		/*
2971 		 * Keep looking if the debugger discarded or
2972 		 * replaced the signal.
2973 		 */
2974 		if (sig == 0)
2975 			return (SIGSTATUS_HANDLED);
2976 
2977 		/*
2978 		 * If the signal became masked, re-queue it.
2979 		 */
2980 		if (SIGISMEMBER(td->td_sigmask, sig)) {
2981 			ksi.ksi_flags |= KSI_HEAD;
2982 			sigqueue_add(&p->p_sigqueue, sig, &ksi);
2983 			return (SIGSTATUS_HANDLED);
2984 		}
2985 
2986 		/*
2987 		 * If the traced bit got turned off, requeue the signal and
2988 		 * reload the set of pending signals.  This ensures that p_sig*
2989 		 * and p_sigact are consistent.
2990 		 */
2991 		if ((p->p_flag & P_TRACED) == 0) {
2992 			if ((ksi.ksi_flags & KSI_PTRACE) == 0) {
2993 				ksi.ksi_flags |= KSI_HEAD;
2994 				sigqueue_add(queue, sig, &ksi);
2995 			}
2996 			return (SIGSTATUS_HANDLED);
2997 		}
2998 	}
2999 
3000 	/*
3001 	 * Decide whether the signal should be returned.
3002 	 * Return the signal's number, or fall through
3003 	 * to clear it from the pending mask.
3004 	 */
3005 	switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
3006 	case (intptr_t)SIG_DFL:
3007 		/*
3008 		 * Don't take default actions on system processes.
3009 		 */
3010 		if (p->p_pid <= 1) {
3011 #ifdef DIAGNOSTIC
3012 			/*
3013 			 * Are you sure you want to ignore SIGSEGV
3014 			 * in init? XXX
3015 			 */
3016 			printf("Process (pid %lu) got signal %d\n",
3017 				(u_long)p->p_pid, sig);
3018 #endif
3019 			return (SIGSTATUS_IGNORE);
3020 		}
3021 
3022 		/*
3023 		 * If there is a pending stop signal to process with
3024 		 * default action, stop here, then clear the signal.
3025 		 * Traced or exiting processes should ignore stops.
3026 		 * Additionally, a member of an orphaned process group
3027 		 * should ignore tty stops.
3028 		 */
3029 		prop = sigprop(sig);
3030 		if (prop & SIGPROP_STOP) {
3031 			mtx_unlock(&ps->ps_mtx);
3032 			if ((p->p_flag & (P_TRACED | P_WEXIT |
3033 			    P_SINGLE_EXIT)) != 0 || ((p->p_pgrp->
3034 			    pg_flags & PGRP_ORPHANED) != 0 &&
3035 			    (prop & SIGPROP_TTYSTOP) != 0)) {
3036 				mtx_lock(&ps->ps_mtx);
3037 				return (SIGSTATUS_IGNORE);
3038 			}
3039 			if (TD_SBDRY_INTR(td)) {
3040 				KASSERT((td->td_flags & TDF_SBDRY) != 0,
3041 				    ("lost TDF_SBDRY"));
3042 				mtx_lock(&ps->ps_mtx);
3043 				return (SIGSTATUS_SBDRY_STOP);
3044 			}
3045 			WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
3046 			    &p->p_mtx.lock_object, "Catching SIGSTOP");
3047 			sigqueue_delete(&td->td_sigqueue, sig);
3048 			sigqueue_delete(&p->p_sigqueue, sig);
3049 			p->p_flag |= P_STOPPED_SIG;
3050 			p->p_xsig = sig;
3051 			PROC_SLOCK(p);
3052 			sig_suspend_threads(td, p, 0);
3053 			thread_suspend_switch(td, p);
3054 			PROC_SUNLOCK(p);
3055 			mtx_lock(&ps->ps_mtx);
3056 			return (SIGSTATUS_HANDLED);
3057 		} else if ((prop & SIGPROP_IGNORE) != 0 &&
3058 		    (td->td_flags & TDF_SIGWAIT) == 0) {
3059 			/*
3060 			 * Default action is to ignore; drop it if
3061 			 * not in kern_sigtimedwait().
3062 			 */
3063 			return (SIGSTATUS_IGNORE);
3064 		} else {
3065 			return (SIGSTATUS_HANDLE);
3066 		}
3067 
3068 	case (intptr_t)SIG_IGN:
3069 		if ((td->td_flags & TDF_SIGWAIT) == 0)
3070 			return (SIGSTATUS_IGNORE);
3071 		else
3072 			return (SIGSTATUS_HANDLE);
3073 
3074 	default:
3075 		/*
3076 		 * This signal has an action, let postsig() process it.
3077 		 */
3078 		return (SIGSTATUS_HANDLE);
3079 	}
3080 }
3081 
3082 /*
3083  * If the current process has received a signal (should be caught or cause
3084  * termination, should interrupt current syscall), return the signal number.
3085  * Stop signals with default action are processed immediately, then cleared;
3086  * they aren't returned.  This is checked after each entry to the system for
3087  * a syscall or trap (though this can usually be done without calling
3088  * issignal by checking the pending signal masks in cursig.) The normal call
3089  * sequence is
3090  *
3091  *	while (sig = cursig(curthread))
3092  *		postsig(sig);
3093  */
3094 static int
3095 issignal(struct thread *td)
3096 {
3097 	struct proc *p;
3098 	sigset_t sigpending;
3099 	int sig;
3100 
3101 	p = td->td_proc;
3102 	PROC_LOCK_ASSERT(p, MA_OWNED);
3103 
3104 	for (;;) {
3105 		sigpending = td->td_sigqueue.sq_signals;
3106 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
3107 		SIGSETNAND(sigpending, td->td_sigmask);
3108 
3109 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
3110 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
3111 			SIG_STOPSIGMASK(sigpending);
3112 		if (SIGISEMPTY(sigpending))	/* no signal to send */
3113 			return (0);
3114 
3115 		/*
3116 		 * Do fast sigblock if requested by usermode.  Since
3117 		 * we do know that there was a signal pending at this
3118 		 * point, set the FAST_SIGBLOCK_PEND as indicator for
3119 		 * usermode to perform a dummy call to
3120 		 * FAST_SIGBLOCK_UNBLOCK, which causes immediate
3121 		 * delivery of postponed pending signal.
3122 		 */
3123 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
3124 			if (td->td_sigblock_val != 0)
3125 				SIGSETNAND(sigpending, fastblock_mask);
3126 			if (SIGISEMPTY(sigpending)) {
3127 				td->td_pflags |= TDP_SIGFASTPENDING;
3128 				return (0);
3129 			}
3130 		}
3131 
3132 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
3133 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
3134 		    SIGISMEMBER(sigpending, SIGSTOP)) {
3135 			/*
3136 			 * If debugger just attached, always consume
3137 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
3138 			 * execute the debugger attach ritual in
3139 			 * order.
3140 			 */
3141 			td->td_dbgflags |= TDB_FSTP;
3142 			SIGEMPTYSET(sigpending);
3143 			SIGADDSET(sigpending, SIGSTOP);
3144 		}
3145 
3146 		SIG_FOREACH(sig, &sigpending) {
3147 			switch (sigprocess(td, sig)) {
3148 			case SIGSTATUS_HANDLE:
3149 				return (sig);
3150 			case SIGSTATUS_HANDLED:
3151 				goto next;
3152 			case SIGSTATUS_IGNORE:
3153 				sigqueue_delete(&td->td_sigqueue, sig);
3154 				sigqueue_delete(&p->p_sigqueue, sig);
3155 				break;
3156 			case SIGSTATUS_SBDRY_STOP:
3157 				return (-1);
3158 			}
3159 		}
3160 next:;
3161 	}
3162 }
3163 
3164 void
3165 thread_stopped(struct proc *p)
3166 {
3167 	int n;
3168 
3169 	PROC_LOCK_ASSERT(p, MA_OWNED);
3170 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3171 	n = p->p_suspcount;
3172 	if (p == curproc)
3173 		n++;
3174 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3175 		PROC_SUNLOCK(p);
3176 		p->p_flag &= ~P_WAITED;
3177 		PROC_LOCK(p->p_pptr);
3178 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3179 			CLD_TRAPPED : CLD_STOPPED);
3180 		PROC_UNLOCK(p->p_pptr);
3181 		PROC_SLOCK(p);
3182 	}
3183 }
3184 
3185 /*
3186  * Take the action for the specified signal
3187  * from the current set of pending signals.
3188  */
3189 int
3190 postsig(int sig)
3191 {
3192 	struct thread *td;
3193 	struct proc *p;
3194 	struct sigacts *ps;
3195 	sig_t action;
3196 	ksiginfo_t ksi;
3197 	sigset_t returnmask;
3198 
3199 	KASSERT(sig != 0, ("postsig"));
3200 
3201 	td = curthread;
3202 	p = td->td_proc;
3203 	PROC_LOCK_ASSERT(p, MA_OWNED);
3204 	ps = p->p_sigacts;
3205 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3206 	ksiginfo_init(&ksi);
3207 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3208 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3209 		return (0);
3210 	ksi.ksi_signo = sig;
3211 	if (ksi.ksi_code == SI_TIMER)
3212 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3213 	action = ps->ps_sigact[_SIG_IDX(sig)];
3214 #ifdef KTRACE
3215 	if (KTRPOINT(td, KTR_PSIG))
3216 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3217 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3218 #endif
3219 
3220 	if (action == SIG_DFL) {
3221 		/*
3222 		 * Default action, where the default is to kill
3223 		 * the process.  (Other cases were ignored above.)
3224 		 */
3225 		mtx_unlock(&ps->ps_mtx);
3226 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3227 		sigexit(td, sig);
3228 		/* NOTREACHED */
3229 	} else {
3230 		/*
3231 		 * If we get here, the signal must be caught.
3232 		 */
3233 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3234 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3235 		    ("postsig action: blocked sig %d", sig));
3236 
3237 		/*
3238 		 * Set the new mask value and also defer further
3239 		 * occurrences of this signal.
3240 		 *
3241 		 * Special case: user has done a sigsuspend.  Here the
3242 		 * current mask is not of interest, but rather the
3243 		 * mask from before the sigsuspend is what we want
3244 		 * restored after the signal processing is completed.
3245 		 */
3246 		if (td->td_pflags & TDP_OLDMASK) {
3247 			returnmask = td->td_oldsigmask;
3248 			td->td_pflags &= ~TDP_OLDMASK;
3249 		} else
3250 			returnmask = td->td_sigmask;
3251 
3252 		if (p->p_sig == sig) {
3253 			p->p_sig = 0;
3254 		}
3255 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3256 		postsig_done(sig, td, ps);
3257 	}
3258 	return (1);
3259 }
3260 
3261 int
3262 sig_ast_checksusp(struct thread *td)
3263 {
3264 	struct proc *p __diagused;
3265 	int ret;
3266 
3267 	p = td->td_proc;
3268 	PROC_LOCK_ASSERT(p, MA_OWNED);
3269 
3270 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
3271 		return (0);
3272 
3273 	ret = thread_suspend_check(1);
3274 	MPASS(ret == 0 || ret == EINTR || ret == ERESTART);
3275 	return (ret);
3276 }
3277 
3278 int
3279 sig_ast_needsigchk(struct thread *td)
3280 {
3281 	struct proc *p;
3282 	struct sigacts *ps;
3283 	int ret, sig;
3284 
3285 	p = td->td_proc;
3286 	PROC_LOCK_ASSERT(p, MA_OWNED);
3287 
3288 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3289 		return (0);
3290 
3291 	ps = p->p_sigacts;
3292 	mtx_lock(&ps->ps_mtx);
3293 	sig = cursig(td);
3294 	if (sig == -1) {
3295 		mtx_unlock(&ps->ps_mtx);
3296 		KASSERT((td->td_flags & TDF_SBDRY) != 0, ("lost TDF_SBDRY"));
3297 		KASSERT(TD_SBDRY_INTR(td),
3298 		    ("lost TDF_SERESTART of TDF_SEINTR"));
3299 		KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
3300 		    (TDF_SEINTR | TDF_SERESTART),
3301 		    ("both TDF_SEINTR and TDF_SERESTART"));
3302 		ret = TD_SBDRY_ERRNO(td);
3303 	} else if (sig != 0) {
3304 		ret = SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR : ERESTART;
3305 		mtx_unlock(&ps->ps_mtx);
3306 	} else {
3307 		mtx_unlock(&ps->ps_mtx);
3308 		ret = 0;
3309 	}
3310 
3311 	/*
3312 	 * Do not go into sleep if this thread was the ptrace(2)
3313 	 * attach leader.  cursig() consumed SIGSTOP from PT_ATTACH,
3314 	 * but we usually act on the signal by interrupting sleep, and
3315 	 * should do that here as well.
3316 	 */
3317 	if ((td->td_dbgflags & TDB_FSTP) != 0) {
3318 		if (ret == 0)
3319 			ret = EINTR;
3320 		td->td_dbgflags &= ~TDB_FSTP;
3321 	}
3322 
3323 	return (ret);
3324 }
3325 
3326 int
3327 sig_intr(void)
3328 {
3329 	struct thread *td;
3330 	struct proc *p;
3331 	int ret;
3332 
3333 	td = curthread;
3334 	if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0)
3335 		return (0);
3336 
3337 	p = td->td_proc;
3338 
3339 	PROC_LOCK(p);
3340 	ret = sig_ast_checksusp(td);
3341 	if (ret == 0)
3342 		ret = sig_ast_needsigchk(td);
3343 	PROC_UNLOCK(p);
3344 	return (ret);
3345 }
3346 
3347 bool
3348 curproc_sigkilled(void)
3349 {
3350 	struct thread *td;
3351 	struct proc *p;
3352 	struct sigacts *ps;
3353 	bool res;
3354 
3355 	td = curthread;
3356 	if ((td->td_flags & TDF_NEEDSIGCHK) == 0)
3357 		return (false);
3358 
3359 	p = td->td_proc;
3360 	PROC_LOCK(p);
3361 	ps = p->p_sigacts;
3362 	mtx_lock(&ps->ps_mtx);
3363 	res = SIGISMEMBER(td->td_sigqueue.sq_signals, SIGKILL) ||
3364 	    SIGISMEMBER(p->p_sigqueue.sq_signals, SIGKILL);
3365 	mtx_unlock(&ps->ps_mtx);
3366 	PROC_UNLOCK(p);
3367 	return (res);
3368 }
3369 
3370 void
3371 proc_wkilled(struct proc *p)
3372 {
3373 
3374 	PROC_LOCK_ASSERT(p, MA_OWNED);
3375 	if ((p->p_flag & P_WKILLED) == 0) {
3376 		p->p_flag |= P_WKILLED;
3377 		/*
3378 		 * Notify swapper that there is a process to swap in.
3379 		 * The notification is racy, at worst it would take 10
3380 		 * seconds for the swapper process to notice.
3381 		 */
3382 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3383 			wakeup(&proc0);
3384 	}
3385 }
3386 
3387 /*
3388  * Kill the current process for stated reason.
3389  */
3390 void
3391 killproc(struct proc *p, const char *why)
3392 {
3393 
3394 	PROC_LOCK_ASSERT(p, MA_OWNED);
3395 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3396 	    p->p_comm);
3397 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3398 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3399 	    p->p_ucred->cr_uid, why);
3400 	proc_wkilled(p);
3401 	kern_psignal(p, SIGKILL);
3402 }
3403 
3404 /*
3405  * Force the current process to exit with the specified signal, dumping core
3406  * if appropriate.  We bypass the normal tests for masked and caught signals,
3407  * allowing unrecoverable failures to terminate the process without changing
3408  * signal state.  Mark the accounting record with the signal termination.
3409  * If dumping core, save the signal number for the debugger.  Calls exit and
3410  * does not return.
3411  */
3412 void
3413 sigexit(struct thread *td, int sig)
3414 {
3415 	struct proc *p = td->td_proc;
3416 
3417 	PROC_LOCK_ASSERT(p, MA_OWNED);
3418 	p->p_acflag |= AXSIG;
3419 	/*
3420 	 * We must be single-threading to generate a core dump.  This
3421 	 * ensures that the registers in the core file are up-to-date.
3422 	 * Also, the ELF dump handler assumes that the thread list doesn't
3423 	 * change out from under it.
3424 	 *
3425 	 * XXX If another thread attempts to single-thread before us
3426 	 *     (e.g. via fork()), we won't get a dump at all.
3427 	 */
3428 	if ((sigprop(sig) & SIGPROP_CORE) &&
3429 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3430 		p->p_sig = sig;
3431 		/*
3432 		 * Log signals which would cause core dumps
3433 		 * (Log as LOG_INFO to appease those who don't want
3434 		 * these messages.)
3435 		 * XXX : Todo, as well as euid, write out ruid too
3436 		 * Note that coredump() drops proc lock.
3437 		 */
3438 		if (coredump(td) == 0)
3439 			sig |= WCOREFLAG;
3440 		if (kern_logsigexit)
3441 			log(LOG_INFO,
3442 			    "pid %d (%s), jid %d, uid %d: exited on "
3443 			    "signal %d%s\n", p->p_pid, p->p_comm,
3444 			    p->p_ucred->cr_prison->pr_id,
3445 			    td->td_ucred->cr_uid,
3446 			    sig &~ WCOREFLAG,
3447 			    sig & WCOREFLAG ? " (core dumped)" : "");
3448 	} else
3449 		PROC_UNLOCK(p);
3450 	exit1(td, 0, sig);
3451 	/* NOTREACHED */
3452 }
3453 
3454 /*
3455  * Send queued SIGCHLD to parent when child process's state
3456  * is changed.
3457  */
3458 static void
3459 sigparent(struct proc *p, int reason, int status)
3460 {
3461 	PROC_LOCK_ASSERT(p, MA_OWNED);
3462 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3463 
3464 	if (p->p_ksi != NULL) {
3465 		p->p_ksi->ksi_signo  = SIGCHLD;
3466 		p->p_ksi->ksi_code   = reason;
3467 		p->p_ksi->ksi_status = status;
3468 		p->p_ksi->ksi_pid    = p->p_pid;
3469 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3470 		if (KSI_ONQ(p->p_ksi))
3471 			return;
3472 	}
3473 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3474 }
3475 
3476 static void
3477 childproc_jobstate(struct proc *p, int reason, int sig)
3478 {
3479 	struct sigacts *ps;
3480 
3481 	PROC_LOCK_ASSERT(p, MA_OWNED);
3482 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3483 
3484 	/*
3485 	 * Wake up parent sleeping in kern_wait(), also send
3486 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3487 	 * that parent will awake, because parent may masked
3488 	 * the signal.
3489 	 */
3490 	p->p_pptr->p_flag |= P_STATCHILD;
3491 	wakeup(p->p_pptr);
3492 
3493 	ps = p->p_pptr->p_sigacts;
3494 	mtx_lock(&ps->ps_mtx);
3495 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3496 		mtx_unlock(&ps->ps_mtx);
3497 		sigparent(p, reason, sig);
3498 	} else
3499 		mtx_unlock(&ps->ps_mtx);
3500 }
3501 
3502 void
3503 childproc_stopped(struct proc *p, int reason)
3504 {
3505 
3506 	childproc_jobstate(p, reason, p->p_xsig);
3507 }
3508 
3509 void
3510 childproc_continued(struct proc *p)
3511 {
3512 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3513 }
3514 
3515 void
3516 childproc_exited(struct proc *p)
3517 {
3518 	int reason, status;
3519 
3520 	if (WCOREDUMP(p->p_xsig)) {
3521 		reason = CLD_DUMPED;
3522 		status = WTERMSIG(p->p_xsig);
3523 	} else if (WIFSIGNALED(p->p_xsig)) {
3524 		reason = CLD_KILLED;
3525 		status = WTERMSIG(p->p_xsig);
3526 	} else {
3527 		reason = CLD_EXITED;
3528 		status = p->p_xexit;
3529 	}
3530 	/*
3531 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3532 	 * done in exit1().
3533 	 */
3534 	sigparent(p, reason, status);
3535 }
3536 
3537 #define	MAX_NUM_CORE_FILES 100000
3538 #ifndef NUM_CORE_FILES
3539 #define	NUM_CORE_FILES 5
3540 #endif
3541 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3542 static int num_cores = NUM_CORE_FILES;
3543 
3544 static int
3545 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3546 {
3547 	int error;
3548 	int new_val;
3549 
3550 	new_val = num_cores;
3551 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3552 	if (error != 0 || req->newptr == NULL)
3553 		return (error);
3554 	if (new_val > MAX_NUM_CORE_FILES)
3555 		new_val = MAX_NUM_CORE_FILES;
3556 	if (new_val < 0)
3557 		new_val = 0;
3558 	num_cores = new_val;
3559 	return (0);
3560 }
3561 SYSCTL_PROC(_debug, OID_AUTO, ncores,
3562     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, sizeof(int),
3563     sysctl_debug_num_cores_check, "I",
3564     "Maximum number of generated process corefiles while using index format");
3565 
3566 #define	GZIP_SUFFIX	".gz"
3567 #define	ZSTD_SUFFIX	".zst"
3568 
3569 int compress_user_cores = 0;
3570 
3571 static int
3572 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3573 {
3574 	int error, val;
3575 
3576 	val = compress_user_cores;
3577 	error = sysctl_handle_int(oidp, &val, 0, req);
3578 	if (error != 0 || req->newptr == NULL)
3579 		return (error);
3580 	if (val != 0 && !compressor_avail(val))
3581 		return (EINVAL);
3582 	compress_user_cores = val;
3583 	return (error);
3584 }
3585 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores,
3586     CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NEEDGIANT, 0, sizeof(int),
3587     sysctl_compress_user_cores, "I",
3588     "Enable compression of user corefiles ("
3589     __XSTRING(COMPRESS_GZIP) " = gzip, "
3590     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3591 
3592 int compress_user_cores_level = 6;
3593 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3594     &compress_user_cores_level, 0,
3595     "Corefile compression level");
3596 
3597 /*
3598  * Protect the access to corefilename[] by allproc_lock.
3599  */
3600 #define	corefilename_lock	allproc_lock
3601 
3602 static char corefilename[MAXPATHLEN] = {"%N.core"};
3603 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3604 
3605 static int
3606 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3607 {
3608 	int error;
3609 
3610 	sx_xlock(&corefilename_lock);
3611 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3612 	    req);
3613 	sx_xunlock(&corefilename_lock);
3614 
3615 	return (error);
3616 }
3617 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3618     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3619     "Process corefile name format string");
3620 
3621 static void
3622 vnode_close_locked(struct thread *td, struct vnode *vp)
3623 {
3624 
3625 	VOP_UNLOCK(vp);
3626 	vn_close(vp, FWRITE, td->td_ucred, td);
3627 }
3628 
3629 /*
3630  * If the core format has a %I in it, then we need to check
3631  * for existing corefiles before defining a name.
3632  * To do this we iterate over 0..ncores to find a
3633  * non-existing core file name to use. If all core files are
3634  * already used we choose the oldest one.
3635  */
3636 static int
3637 corefile_open_last(struct thread *td, char *name, int indexpos,
3638     int indexlen, int ncores, struct vnode **vpp)
3639 {
3640 	struct vnode *oldvp, *nextvp, *vp;
3641 	struct vattr vattr;
3642 	struct nameidata nd;
3643 	int error, i, flags, oflags, cmode;
3644 	char ch;
3645 	struct timespec lasttime;
3646 
3647 	nextvp = oldvp = NULL;
3648 	cmode = S_IRUSR | S_IWUSR;
3649 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3650 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3651 
3652 	for (i = 0; i < ncores; i++) {
3653 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3654 
3655 		ch = name[indexpos + indexlen];
3656 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3657 		    i);
3658 		name[indexpos + indexlen] = ch;
3659 
3660 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
3661 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3662 		    NULL);
3663 		if (error != 0)
3664 			break;
3665 
3666 		vp = nd.ni_vp;
3667 		NDFREE_PNBUF(&nd);
3668 		if ((flags & O_CREAT) == O_CREAT) {
3669 			nextvp = vp;
3670 			break;
3671 		}
3672 
3673 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3674 		if (error != 0) {
3675 			vnode_close_locked(td, vp);
3676 			break;
3677 		}
3678 
3679 		if (oldvp == NULL ||
3680 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3681 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3682 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3683 			if (oldvp != NULL)
3684 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3685 			oldvp = vp;
3686 			VOP_UNLOCK(oldvp);
3687 			lasttime = vattr.va_mtime;
3688 		} else {
3689 			vnode_close_locked(td, vp);
3690 		}
3691 	}
3692 
3693 	if (oldvp != NULL) {
3694 		if (nextvp == NULL) {
3695 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3696 				error = EFAULT;
3697 				vn_close(oldvp, FWRITE, td->td_ucred, td);
3698 			} else {
3699 				nextvp = oldvp;
3700 				error = vn_lock(nextvp, LK_EXCLUSIVE);
3701 				if (error != 0) {
3702 					vn_close(nextvp, FWRITE, td->td_ucred,
3703 					    td);
3704 					nextvp = NULL;
3705 				}
3706 			}
3707 		} else {
3708 			vn_close(oldvp, FWRITE, td->td_ucred, td);
3709 		}
3710 	}
3711 	if (error != 0) {
3712 		if (nextvp != NULL)
3713 			vnode_close_locked(td, oldvp);
3714 	} else {
3715 		*vpp = nextvp;
3716 	}
3717 
3718 	return (error);
3719 }
3720 
3721 /*
3722  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3723  * Expand the name described in corefilename, using name, uid, and pid
3724  * and open/create core file.
3725  * corefilename is a printf-like string, with three format specifiers:
3726  *	%N	name of process ("name")
3727  *	%P	process id (pid)
3728  *	%U	user id (uid)
3729  * For example, "%N.core" is the default; they can be disabled completely
3730  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3731  * This is controlled by the sysctl variable kern.corefile (see above).
3732  */
3733 static int
3734 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3735     int compress, int signum, struct vnode **vpp, char **namep)
3736 {
3737 	struct sbuf sb;
3738 	struct nameidata nd;
3739 	const char *format;
3740 	char *hostname, *name;
3741 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3742 
3743 	hostname = NULL;
3744 	format = corefilename;
3745 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3746 	indexlen = 0;
3747 	indexpos = -1;
3748 	ncores = num_cores;
3749 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3750 	sx_slock(&corefilename_lock);
3751 	for (i = 0; format[i] != '\0'; i++) {
3752 		switch (format[i]) {
3753 		case '%':	/* Format character */
3754 			i++;
3755 			switch (format[i]) {
3756 			case '%':
3757 				sbuf_putc(&sb, '%');
3758 				break;
3759 			case 'H':	/* hostname */
3760 				if (hostname == NULL) {
3761 					hostname = malloc(MAXHOSTNAMELEN,
3762 					    M_TEMP, M_WAITOK);
3763 				}
3764 				getcredhostname(td->td_ucred, hostname,
3765 				    MAXHOSTNAMELEN);
3766 				sbuf_printf(&sb, "%s", hostname);
3767 				break;
3768 			case 'I':	/* autoincrementing index */
3769 				if (indexpos != -1) {
3770 					sbuf_printf(&sb, "%%I");
3771 					break;
3772 				}
3773 
3774 				indexpos = sbuf_len(&sb);
3775 				sbuf_printf(&sb, "%u", ncores - 1);
3776 				indexlen = sbuf_len(&sb) - indexpos;
3777 				break;
3778 			case 'N':	/* process name */
3779 				sbuf_printf(&sb, "%s", comm);
3780 				break;
3781 			case 'P':	/* process id */
3782 				sbuf_printf(&sb, "%u", pid);
3783 				break;
3784 			case 'S':	/* signal number */
3785 				sbuf_printf(&sb, "%i", signum);
3786 				break;
3787 			case 'U':	/* user id */
3788 				sbuf_printf(&sb, "%u", uid);
3789 				break;
3790 			default:
3791 				log(LOG_ERR,
3792 				    "Unknown format character %c in "
3793 				    "corename `%s'\n", format[i], format);
3794 				break;
3795 			}
3796 			break;
3797 		default:
3798 			sbuf_putc(&sb, format[i]);
3799 			break;
3800 		}
3801 	}
3802 	sx_sunlock(&corefilename_lock);
3803 	free(hostname, M_TEMP);
3804 	if (compress == COMPRESS_GZIP)
3805 		sbuf_printf(&sb, GZIP_SUFFIX);
3806 	else if (compress == COMPRESS_ZSTD)
3807 		sbuf_printf(&sb, ZSTD_SUFFIX);
3808 	if (sbuf_error(&sb) != 0) {
3809 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3810 		    "long\n", (long)pid, comm, (u_long)uid);
3811 		sbuf_delete(&sb);
3812 		free(name, M_TEMP);
3813 		return (ENOMEM);
3814 	}
3815 	sbuf_finish(&sb);
3816 	sbuf_delete(&sb);
3817 
3818 	if (indexpos != -1) {
3819 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3820 		    vpp);
3821 		if (error != 0) {
3822 			log(LOG_ERR,
3823 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3824 			    "on initial open test, error = %d\n",
3825 			    pid, comm, uid, name, error);
3826 		}
3827 	} else {
3828 		cmode = S_IRUSR | S_IWUSR;
3829 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3830 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3831 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3832 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3833 			flags |= O_EXCL;
3834 
3835 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name);
3836 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3837 		    NULL);
3838 		if (error == 0) {
3839 			*vpp = nd.ni_vp;
3840 			NDFREE_PNBUF(&nd);
3841 		}
3842 	}
3843 
3844 	if (error != 0) {
3845 #ifdef AUDIT
3846 		audit_proc_coredump(td, name, error);
3847 #endif
3848 		free(name, M_TEMP);
3849 		return (error);
3850 	}
3851 	*namep = name;
3852 	return (0);
3853 }
3854 
3855 /*
3856  * Dump a process' core.  The main routine does some
3857  * policy checking, and creates the name of the coredump;
3858  * then it passes on a vnode and a size limit to the process-specific
3859  * coredump routine if there is one; if there _is not_ one, it returns
3860  * ENOSYS; otherwise it returns the error from the process-specific routine.
3861  */
3862 
3863 static int
3864 coredump(struct thread *td)
3865 {
3866 	struct proc *p = td->td_proc;
3867 	struct ucred *cred = td->td_ucred;
3868 	struct vnode *vp;
3869 	struct flock lf;
3870 	struct vattr vattr;
3871 	size_t fullpathsize;
3872 	int error, error1, locked;
3873 	char *name;			/* name of corefile */
3874 	void *rl_cookie;
3875 	off_t limit;
3876 	char *fullpath, *freepath = NULL;
3877 	struct sbuf *sb;
3878 
3879 	PROC_LOCK_ASSERT(p, MA_OWNED);
3880 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3881 
3882 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3883 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3884 		PROC_UNLOCK(p);
3885 		return (EFAULT);
3886 	}
3887 
3888 	/*
3889 	 * Note that the bulk of limit checking is done after
3890 	 * the corefile is created.  The exception is if the limit
3891 	 * for corefiles is 0, in which case we don't bother
3892 	 * creating the corefile at all.  This layout means that
3893 	 * a corefile is truncated instead of not being created,
3894 	 * if it is larger than the limit.
3895 	 */
3896 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3897 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3898 		PROC_UNLOCK(p);
3899 		return (EFBIG);
3900 	}
3901 	PROC_UNLOCK(p);
3902 
3903 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3904 	    compress_user_cores, p->p_sig, &vp, &name);
3905 	if (error != 0)
3906 		return (error);
3907 
3908 	/*
3909 	 * Don't dump to non-regular files or files with links.
3910 	 * Do not dump into system files. Effective user must own the corefile.
3911 	 */
3912 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3913 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3914 	    vattr.va_uid != cred->cr_uid) {
3915 		VOP_UNLOCK(vp);
3916 		error = EFAULT;
3917 		goto out;
3918 	}
3919 
3920 	VOP_UNLOCK(vp);
3921 
3922 	/* Postpone other writers, including core dumps of other processes. */
3923 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3924 
3925 	lf.l_whence = SEEK_SET;
3926 	lf.l_start = 0;
3927 	lf.l_len = 0;
3928 	lf.l_type = F_WRLCK;
3929 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3930 
3931 	VATTR_NULL(&vattr);
3932 	vattr.va_size = 0;
3933 	if (set_core_nodump_flag)
3934 		vattr.va_flags = UF_NODUMP;
3935 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3936 	VOP_SETATTR(vp, &vattr, cred);
3937 	VOP_UNLOCK(vp);
3938 	PROC_LOCK(p);
3939 	p->p_acflag |= ACORE;
3940 	PROC_UNLOCK(p);
3941 
3942 	if (p->p_sysent->sv_coredump != NULL) {
3943 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3944 	} else {
3945 		error = ENOSYS;
3946 	}
3947 
3948 	if (locked) {
3949 		lf.l_type = F_UNLCK;
3950 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3951 	}
3952 	vn_rangelock_unlock(vp, rl_cookie);
3953 
3954 	/*
3955 	 * Notify the userland helper that a process triggered a core dump.
3956 	 * This allows the helper to run an automated debugging session.
3957 	 */
3958 	if (error != 0 || coredump_devctl == 0)
3959 		goto out;
3960 	sb = sbuf_new_auto();
3961 	if (vn_fullpath_global(p->p_textvp, &fullpath, &freepath) != 0)
3962 		goto out2;
3963 	sbuf_printf(sb, "comm=\"");
3964 	devctl_safe_quote_sb(sb, fullpath);
3965 	free(freepath, M_TEMP);
3966 	sbuf_printf(sb, "\" core=\"");
3967 
3968 	/*
3969 	 * We can't lookup core file vp directly. When we're replacing a core, and
3970 	 * other random times, we flush the name cache, so it will fail. Instead,
3971 	 * if the path of the core is relative, add the current dir in front if it.
3972 	 */
3973 	if (name[0] != '/') {
3974 		fullpathsize = MAXPATHLEN;
3975 		freepath = malloc(fullpathsize, M_TEMP, M_WAITOK);
3976 		if (vn_getcwd(freepath, &fullpath, &fullpathsize) != 0) {
3977 			free(freepath, M_TEMP);
3978 			goto out2;
3979 		}
3980 		devctl_safe_quote_sb(sb, fullpath);
3981 		free(freepath, M_TEMP);
3982 		sbuf_putc(sb, '/');
3983 	}
3984 	devctl_safe_quote_sb(sb, name);
3985 	sbuf_printf(sb, "\"");
3986 	if (sbuf_finish(sb) == 0)
3987 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3988 out2:
3989 	sbuf_delete(sb);
3990 out:
3991 	error1 = vn_close(vp, FWRITE, cred, td);
3992 	if (error == 0)
3993 		error = error1;
3994 #ifdef AUDIT
3995 	audit_proc_coredump(td, name, error);
3996 #endif
3997 	free(name, M_TEMP);
3998 	return (error);
3999 }
4000 
4001 /*
4002  * Nonexistent system call-- signal process (may want to handle it).  Flag
4003  * error in case process won't see signal immediately (blocked or ignored).
4004  */
4005 #ifndef _SYS_SYSPROTO_H_
4006 struct nosys_args {
4007 	int	dummy;
4008 };
4009 #endif
4010 /* ARGSUSED */
4011 int
4012 nosys(struct thread *td, struct nosys_args *args)
4013 {
4014 	struct proc *p;
4015 
4016 	p = td->td_proc;
4017 
4018 	PROC_LOCK(p);
4019 	tdsignal(td, SIGSYS);
4020 	PROC_UNLOCK(p);
4021 	if (kern_lognosys == 1 || kern_lognosys == 3) {
4022 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4023 		    td->td_sa.code);
4024 	}
4025 	if (kern_lognosys == 2 || kern_lognosys == 3 ||
4026 	    (p->p_pid == 1 && (kern_lognosys & 3) == 0)) {
4027 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
4028 		    td->td_sa.code);
4029 	}
4030 	return (ENOSYS);
4031 }
4032 
4033 /*
4034  * Send a SIGIO or SIGURG signal to a process or process group using stored
4035  * credentials rather than those of the current process.
4036  */
4037 void
4038 pgsigio(struct sigio **sigiop, int sig, int checkctty)
4039 {
4040 	ksiginfo_t ksi;
4041 	struct sigio *sigio;
4042 
4043 	ksiginfo_init(&ksi);
4044 	ksi.ksi_signo = sig;
4045 	ksi.ksi_code = SI_KERNEL;
4046 
4047 	SIGIO_LOCK();
4048 	sigio = *sigiop;
4049 	if (sigio == NULL) {
4050 		SIGIO_UNLOCK();
4051 		return;
4052 	}
4053 	if (sigio->sio_pgid > 0) {
4054 		PROC_LOCK(sigio->sio_proc);
4055 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
4056 			kern_psignal(sigio->sio_proc, sig);
4057 		PROC_UNLOCK(sigio->sio_proc);
4058 	} else if (sigio->sio_pgid < 0) {
4059 		struct proc *p;
4060 
4061 		PGRP_LOCK(sigio->sio_pgrp);
4062 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
4063 			PROC_LOCK(p);
4064 			if (p->p_state == PRS_NORMAL &&
4065 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
4066 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
4067 				kern_psignal(p, sig);
4068 			PROC_UNLOCK(p);
4069 		}
4070 		PGRP_UNLOCK(sigio->sio_pgrp);
4071 	}
4072 	SIGIO_UNLOCK();
4073 }
4074 
4075 static int
4076 filt_sigattach(struct knote *kn)
4077 {
4078 	struct proc *p = curproc;
4079 
4080 	kn->kn_ptr.p_proc = p;
4081 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
4082 
4083 	knlist_add(p->p_klist, kn, 0);
4084 
4085 	return (0);
4086 }
4087 
4088 static void
4089 filt_sigdetach(struct knote *kn)
4090 {
4091 	struct proc *p = kn->kn_ptr.p_proc;
4092 
4093 	knlist_remove(p->p_klist, kn, 0);
4094 }
4095 
4096 /*
4097  * signal knotes are shared with proc knotes, so we apply a mask to
4098  * the hint in order to differentiate them from process hints.  This
4099  * could be avoided by using a signal-specific knote list, but probably
4100  * isn't worth the trouble.
4101  */
4102 static int
4103 filt_signal(struct knote *kn, long hint)
4104 {
4105 
4106 	if (hint & NOTE_SIGNAL) {
4107 		hint &= ~NOTE_SIGNAL;
4108 
4109 		if (kn->kn_id == hint)
4110 			kn->kn_data++;
4111 	}
4112 	return (kn->kn_data != 0);
4113 }
4114 
4115 struct sigacts *
4116 sigacts_alloc(void)
4117 {
4118 	struct sigacts *ps;
4119 
4120 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
4121 	refcount_init(&ps->ps_refcnt, 1);
4122 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
4123 	return (ps);
4124 }
4125 
4126 void
4127 sigacts_free(struct sigacts *ps)
4128 {
4129 
4130 	if (refcount_release(&ps->ps_refcnt) == 0)
4131 		return;
4132 	mtx_destroy(&ps->ps_mtx);
4133 	free(ps, M_SUBPROC);
4134 }
4135 
4136 struct sigacts *
4137 sigacts_hold(struct sigacts *ps)
4138 {
4139 
4140 	refcount_acquire(&ps->ps_refcnt);
4141 	return (ps);
4142 }
4143 
4144 void
4145 sigacts_copy(struct sigacts *dest, struct sigacts *src)
4146 {
4147 
4148 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
4149 	mtx_lock(&src->ps_mtx);
4150 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
4151 	mtx_unlock(&src->ps_mtx);
4152 }
4153 
4154 int
4155 sigacts_shared(struct sigacts *ps)
4156 {
4157 
4158 	return (ps->ps_refcnt > 1);
4159 }
4160 
4161 void
4162 sig_drop_caught(struct proc *p)
4163 {
4164 	int sig;
4165 	struct sigacts *ps;
4166 
4167 	ps = p->p_sigacts;
4168 	PROC_LOCK_ASSERT(p, MA_OWNED);
4169 	mtx_assert(&ps->ps_mtx, MA_OWNED);
4170 	SIG_FOREACH(sig, &ps->ps_sigcatch) {
4171 		sigdflt(ps, sig);
4172 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
4173 			sigqueue_delete_proc(p, sig);
4174 	}
4175 }
4176 
4177 static void
4178 sigfastblock_failed(struct thread *td, bool sendsig, bool write)
4179 {
4180 	ksiginfo_t ksi;
4181 
4182 	/*
4183 	 * Prevent further fetches and SIGSEGVs, allowing thread to
4184 	 * issue syscalls despite corruption.
4185 	 */
4186 	sigfastblock_clear(td);
4187 
4188 	if (!sendsig)
4189 		return;
4190 	ksiginfo_init_trap(&ksi);
4191 	ksi.ksi_signo = SIGSEGV;
4192 	ksi.ksi_code = write ? SEGV_ACCERR : SEGV_MAPERR;
4193 	ksi.ksi_addr = td->td_sigblock_ptr;
4194 	trapsignal(td, &ksi);
4195 }
4196 
4197 static bool
4198 sigfastblock_fetch_sig(struct thread *td, bool sendsig, uint32_t *valp)
4199 {
4200 	uint32_t res;
4201 
4202 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4203 		return (true);
4204 	if (fueword32((void *)td->td_sigblock_ptr, &res) == -1) {
4205 		sigfastblock_failed(td, sendsig, false);
4206 		return (false);
4207 	}
4208 	*valp = res;
4209 	td->td_sigblock_val = res & ~SIGFASTBLOCK_FLAGS;
4210 	return (true);
4211 }
4212 
4213 static void
4214 sigfastblock_resched(struct thread *td, bool resched)
4215 {
4216 	struct proc *p;
4217 
4218 	if (resched) {
4219 		p = td->td_proc;
4220 		PROC_LOCK(p);
4221 		reschedule_signals(p, td->td_sigmask, 0);
4222 		PROC_UNLOCK(p);
4223 	}
4224 	thread_lock(td);
4225 	td->td_flags |= TDF_ASTPENDING | TDF_NEEDSIGCHK;
4226 	thread_unlock(td);
4227 }
4228 
4229 int
4230 sys_sigfastblock(struct thread *td, struct sigfastblock_args *uap)
4231 {
4232 	struct proc *p;
4233 	int error, res;
4234 	uint32_t oldval;
4235 
4236 	error = 0;
4237 	p = td->td_proc;
4238 	switch (uap->cmd) {
4239 	case SIGFASTBLOCK_SETPTR:
4240 		if ((td->td_pflags & TDP_SIGFASTBLOCK) != 0) {
4241 			error = EBUSY;
4242 			break;
4243 		}
4244 		if (((uintptr_t)(uap->ptr) & (sizeof(uint32_t) - 1)) != 0) {
4245 			error = EINVAL;
4246 			break;
4247 		}
4248 		td->td_pflags |= TDP_SIGFASTBLOCK;
4249 		td->td_sigblock_ptr = uap->ptr;
4250 		break;
4251 
4252 	case SIGFASTBLOCK_UNBLOCK:
4253 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4254 			error = EINVAL;
4255 			break;
4256 		}
4257 
4258 		for (;;) {
4259 			res = casueword32(td->td_sigblock_ptr,
4260 			    SIGFASTBLOCK_PEND, &oldval, 0);
4261 			if (res == -1) {
4262 				error = EFAULT;
4263 				sigfastblock_failed(td, false, true);
4264 				break;
4265 			}
4266 			if (res == 0)
4267 				break;
4268 			MPASS(res == 1);
4269 			if (oldval != SIGFASTBLOCK_PEND) {
4270 				error = EBUSY;
4271 				break;
4272 			}
4273 			error = thread_check_susp(td, false);
4274 			if (error != 0)
4275 				break;
4276 		}
4277 		if (error != 0)
4278 			break;
4279 
4280 		/*
4281 		 * td_sigblock_val is cleared there, but not on a
4282 		 * syscall exit.  The end effect is that a single
4283 		 * interruptible sleep, while user sigblock word is
4284 		 * set, might return EINTR or ERESTART to usermode
4285 		 * without delivering signal.  All further sleeps,
4286 		 * until userspace clears the word and does
4287 		 * sigfastblock(UNBLOCK), observe current word and no
4288 		 * longer get interrupted.  It is slight
4289 		 * non-conformance, with alternative to have read the
4290 		 * sigblock word on each syscall entry.
4291 		 */
4292 		td->td_sigblock_val = 0;
4293 
4294 		/*
4295 		 * Rely on normal ast mechanism to deliver pending
4296 		 * signals to current thread.  But notify others about
4297 		 * fake unblock.
4298 		 */
4299 		sigfastblock_resched(td, error == 0 && p->p_numthreads != 1);
4300 
4301 		break;
4302 
4303 	case SIGFASTBLOCK_UNSETPTR:
4304 		if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0) {
4305 			error = EINVAL;
4306 			break;
4307 		}
4308 		if (!sigfastblock_fetch_sig(td, false, &oldval)) {
4309 			error = EFAULT;
4310 			break;
4311 		}
4312 		if (oldval != 0 && oldval != SIGFASTBLOCK_PEND) {
4313 			error = EBUSY;
4314 			break;
4315 		}
4316 		sigfastblock_clear(td);
4317 		break;
4318 
4319 	default:
4320 		error = EINVAL;
4321 		break;
4322 	}
4323 	return (error);
4324 }
4325 
4326 void
4327 sigfastblock_clear(struct thread *td)
4328 {
4329 	bool resched;
4330 
4331 	if ((td->td_pflags & TDP_SIGFASTBLOCK) == 0)
4332 		return;
4333 	td->td_sigblock_val = 0;
4334 	resched = (td->td_pflags & TDP_SIGFASTPENDING) != 0 ||
4335 	    SIGPENDING(td);
4336 	td->td_pflags &= ~(TDP_SIGFASTBLOCK | TDP_SIGFASTPENDING);
4337 	sigfastblock_resched(td, resched);
4338 }
4339 
4340 void
4341 sigfastblock_fetch(struct thread *td)
4342 {
4343 	uint32_t val;
4344 
4345 	(void)sigfastblock_fetch_sig(td, true, &val);
4346 }
4347 
4348 static void
4349 sigfastblock_setpend1(struct thread *td)
4350 {
4351 	int res;
4352 	uint32_t oldval;
4353 
4354 	if ((td->td_pflags & TDP_SIGFASTPENDING) == 0)
4355 		return;
4356 	res = fueword32((void *)td->td_sigblock_ptr, &oldval);
4357 	if (res == -1) {
4358 		sigfastblock_failed(td, true, false);
4359 		return;
4360 	}
4361 	for (;;) {
4362 		res = casueword32(td->td_sigblock_ptr, oldval, &oldval,
4363 		    oldval | SIGFASTBLOCK_PEND);
4364 		if (res == -1) {
4365 			sigfastblock_failed(td, true, true);
4366 			return;
4367 		}
4368 		if (res == 0) {
4369 			td->td_sigblock_val = oldval & ~SIGFASTBLOCK_FLAGS;
4370 			td->td_pflags &= ~TDP_SIGFASTPENDING;
4371 			break;
4372 		}
4373 		MPASS(res == 1);
4374 		if (thread_check_susp(td, false) != 0)
4375 			break;
4376 	}
4377 }
4378 
4379 void
4380 sigfastblock_setpend(struct thread *td, bool resched)
4381 {
4382 	struct proc *p;
4383 
4384 	sigfastblock_setpend1(td);
4385 	if (resched) {
4386 		p = td->td_proc;
4387 		PROC_LOCK(p);
4388 		reschedule_signals(p, fastblock_mask, SIGPROCMASK_FASTBLK);
4389 		PROC_UNLOCK(p);
4390 	}
4391 }
4392