xref: /freebsd/sys/kern/kern_sig.c (revision 4232b8b1341f8d46987e09760eb36e2b052b29a9)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <posix4/posix4.h>
80 #include <machine/cpu.h>
81 
82 #if defined (__alpha__) && !defined(COMPAT_43)
83 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
84 #endif
85 
86 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
87 
88 static int	coredump(struct thread *);
89 static char	*expand_name(const char *, uid_t, pid_t);
90 static int	killpg1(struct thread *td, int sig, int pgid, int all);
91 static int	issignal(struct thread *p);
92 static int	sigprop(int sig);
93 static void	tdsigwakeup(struct thread *, int, sig_t);
94 static void	sig_suspend_threads(struct thread *, struct proc *, int);
95 static int	filt_sigattach(struct knote *kn);
96 static void	filt_sigdetach(struct knote *kn);
97 static int	filt_signal(struct knote *kn, long hint);
98 static struct thread *sigtd(struct proc *p, int sig, int prop);
99 static int	kern_sigtimedwait(struct thread *, sigset_t,
100 			ksiginfo_t *, struct timespec *);
101 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
102 static void	sigqueue_start(void);
103 
104 static uma_zone_t	ksiginfo_zone = NULL;
105 struct filterops sig_filtops =
106 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
107 
108 static int	kern_logsigexit = 1;
109 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
110     &kern_logsigexit, 0,
111     "Log processes quitting on abnormal signals to syslog(3)");
112 
113 static int	kern_forcesigexit = 1;
114 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
115     &kern_forcesigexit, 0, "Force trap signal to be handled");
116 
117 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
118 
119 static int	max_pending_per_proc = 128;
120 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
121     &max_pending_per_proc, 0, "Max pending signals per proc");
122 
123 static int	preallocate_siginfo = 1024;
124 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
125 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
126     &preallocate_siginfo, 0, "Preallocated signal memory size");
127 
128 static int	signal_overflow = 0;
129 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
130     &signal_overflow, 0, "Number of signals overflew");
131 
132 static int	signal_alloc_fail = 0;
133 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
134     &signal_alloc_fail, 0, "signals failed to be allocated");
135 
136 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
137 
138 /*
139  * Policy -- Can ucred cr1 send SIGIO to process cr2?
140  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
141  * in the right situations.
142  */
143 #define CANSIGIO(cr1, cr2) \
144 	((cr1)->cr_uid == 0 || \
145 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
146 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
147 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
148 	    (cr1)->cr_uid == (cr2)->cr_uid)
149 
150 int sugid_coredump;
151 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
152     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
153 
154 static int	do_coredump = 1;
155 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
156 	&do_coredump, 0, "Enable/Disable coredumps");
157 
158 static int	set_core_nodump_flag = 0;
159 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
160 	0, "Enable setting the NODUMP flag on coredump files");
161 
162 /*
163  * Signal properties and actions.
164  * The array below categorizes the signals and their default actions
165  * according to the following properties:
166  */
167 #define	SA_KILL		0x01		/* terminates process by default */
168 #define	SA_CORE		0x02		/* ditto and coredumps */
169 #define	SA_STOP		0x04		/* suspend process */
170 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
171 #define	SA_IGNORE	0x10		/* ignore by default */
172 #define	SA_CONT		0x20		/* continue if suspended */
173 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
174 #define	SA_PROC		0x80		/* deliverable to any thread */
175 
176 static int sigproptbl[NSIG] = {
177         SA_KILL|SA_PROC,		/* SIGHUP */
178         SA_KILL|SA_PROC,		/* SIGINT */
179         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
180         SA_KILL|SA_CORE,		/* SIGILL */
181         SA_KILL|SA_CORE,		/* SIGTRAP */
182         SA_KILL|SA_CORE,		/* SIGABRT */
183         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
184         SA_KILL|SA_CORE,		/* SIGFPE */
185         SA_KILL|SA_PROC,		/* SIGKILL */
186         SA_KILL|SA_CORE,		/* SIGBUS */
187         SA_KILL|SA_CORE,		/* SIGSEGV */
188         SA_KILL|SA_CORE,		/* SIGSYS */
189         SA_KILL|SA_PROC,		/* SIGPIPE */
190         SA_KILL|SA_PROC,		/* SIGALRM */
191         SA_KILL|SA_PROC,		/* SIGTERM */
192         SA_IGNORE|SA_PROC,		/* SIGURG */
193         SA_STOP|SA_PROC,		/* SIGSTOP */
194         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
195         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
196         SA_IGNORE|SA_PROC,		/* SIGCHLD */
197         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
198         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
199         SA_IGNORE|SA_PROC,		/* SIGIO */
200         SA_KILL,			/* SIGXCPU */
201         SA_KILL,			/* SIGXFSZ */
202         SA_KILL|SA_PROC,		/* SIGVTALRM */
203         SA_KILL|SA_PROC,		/* SIGPROF */
204         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
205         SA_IGNORE|SA_PROC,		/* SIGINFO */
206         SA_KILL|SA_PROC,		/* SIGUSR1 */
207         SA_KILL|SA_PROC,		/* SIGUSR2 */
208 };
209 
210 static void
211 sigqueue_start(void)
212 {
213 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
214 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
216 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
217 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
218 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
219 }
220 
221 ksiginfo_t *
222 ksiginfo_alloc(int wait)
223 {
224 	int flags;
225 
226 	flags = M_ZERO;
227 	if (! wait)
228 		flags |= M_NOWAIT;
229 	if (ksiginfo_zone != NULL)
230 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
231 	return (NULL);
232 }
233 
234 void
235 ksiginfo_free(ksiginfo_t *ksi)
236 {
237 	uma_zfree(ksiginfo_zone, ksi);
238 }
239 
240 static __inline int
241 ksiginfo_tryfree(ksiginfo_t *ksi)
242 {
243 	if (!(ksi->ksi_flags & KSI_EXT)) {
244 		uma_zfree(ksiginfo_zone, ksi);
245 		return (1);
246 	}
247 	return (0);
248 }
249 
250 void
251 sigqueue_init(sigqueue_t *list, struct proc *p)
252 {
253 	SIGEMPTYSET(list->sq_signals);
254 	TAILQ_INIT(&list->sq_list);
255 	list->sq_proc = p;
256 	list->sq_flags = SQ_INIT;
257 }
258 
259 /*
260  * Get a signal's ksiginfo.
261  * Return:
262  * 	0	-	signal not found
263  *	others	-	signal number
264  */
265 int
266 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
267 {
268 	struct proc *p = sq->sq_proc;
269 	struct ksiginfo *ksi, *next;
270 	int count = 0;
271 
272 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
273 
274 	if (!SIGISMEMBER(sq->sq_signals, signo))
275 		return (0);
276 
277 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
278 		next = TAILQ_NEXT(ksi, ksi_link);
279 		if (ksi->ksi_signo == signo) {
280 			if (count == 0) {
281 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
282 				ksi->ksi_sigq = NULL;
283 				ksiginfo_copy(ksi, si);
284 				if (ksiginfo_tryfree(ksi) && p != NULL)
285 					p->p_pendingcnt--;
286 			}
287 			count++;
288 		}
289 	}
290 
291 	if (count <= 1)
292 		SIGDELSET(sq->sq_signals, signo);
293 	si->ksi_signo = signo;
294 	return (signo);
295 }
296 
297 void
298 sigqueue_take(ksiginfo_t *ksi)
299 {
300 	struct ksiginfo *kp;
301 	struct proc	*p;
302 	sigqueue_t	*sq;
303 
304 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
305 		return;
306 
307 	p = sq->sq_proc;
308 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
309 	ksi->ksi_sigq = NULL;
310 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
311 		p->p_pendingcnt--;
312 
313 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
314 	     kp = TAILQ_NEXT(kp, ksi_link)) {
315 		if (kp->ksi_signo == ksi->ksi_signo)
316 			break;
317 	}
318 	if (kp == NULL)
319 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
320 }
321 
322 int
323 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
324 {
325 	struct proc *p = sq->sq_proc;
326 	struct ksiginfo *ksi;
327 	int ret = 0;
328 
329 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
330 
331 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL)
332 		goto out_set_bit;
333 
334 	/* directly insert the ksi, don't copy it */
335 	if (si->ksi_flags & KSI_INS) {
336 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
337 		si->ksi_sigq = sq;
338 		goto out_set_bit;
339 	}
340 
341 	if (__predict_false(ksiginfo_zone == NULL))
342 		goto out_set_bit;
343 
344 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
345 		signal_overflow++;
346 		ret = EAGAIN;
347 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
348 		signal_alloc_fail++;
349 		ret = EAGAIN;
350 	} else {
351 		if (p != NULL)
352 			p->p_pendingcnt++;
353 		ksiginfo_copy(si, ksi);
354 		ksi->ksi_signo = signo;
355 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
356 		ksi->ksi_sigq = sq;
357 	}
358 
359 	if ((si->ksi_flags & KSI_TRAP) != 0) {
360 		ret = 0;
361 		goto out_set_bit;
362 	}
363 
364 	if (ret != 0)
365 		return (ret);
366 
367 out_set_bit:
368 	SIGADDSET(sq->sq_signals, signo);
369 	return (ret);
370 }
371 
372 void
373 sigqueue_flush(sigqueue_t *sq)
374 {
375 	struct proc *p = sq->sq_proc;
376 	ksiginfo_t *ksi;
377 
378 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
379 
380 	if (p != NULL)
381 		PROC_LOCK_ASSERT(p, MA_OWNED);
382 
383 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
384 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
385 		ksi->ksi_sigq = NULL;
386 		if (ksiginfo_tryfree(ksi) && p != NULL)
387 			p->p_pendingcnt--;
388 	}
389 
390 	SIGEMPTYSET(sq->sq_signals);
391 }
392 
393 void
394 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
395 {
396 	ksiginfo_t *ksi;
397 
398 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
399 
400 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
401 		SIGADDSET(*set, ksi->ksi_signo);
402 }
403 
404 void
405 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
406 {
407 	sigset_t tmp, set;
408 	struct proc *p1, *p2;
409 	ksiginfo_t *ksi, *next;
410 
411 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
412 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
413 	/*
414 	 * make a copy, this allows setp to point to src or dst
415 	 * sq_signals without trouble.
416 	 */
417 	set = *setp;
418 	p1 = src->sq_proc;
419 	p2 = dst->sq_proc;
420 	/* Move siginfo to target list */
421 	for (ksi = TAILQ_FIRST(&src->sq_list); ksi != NULL; ksi = next) {
422 		next = TAILQ_NEXT(ksi, ksi_link);
423 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
424 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
425 			if (p1 != NULL)
426 				p1->p_pendingcnt--;
427 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
428 			ksi->ksi_sigq = dst;
429 			if (p2 != NULL)
430 				p2->p_pendingcnt++;
431 		}
432 	}
433 
434 	/* Move pending bits to target list */
435 	tmp = src->sq_signals;
436 	SIGSETAND(tmp, set);
437 	SIGSETOR(dst->sq_signals, tmp);
438 	SIGSETNAND(src->sq_signals, tmp);
439 
440 	/* Finally, rescan src queue and set pending bits for it */
441 	sigqueue_collect_set(src, &src->sq_signals);
442 }
443 
444 void
445 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
446 {
447 	sigset_t set;
448 
449 	SIGEMPTYSET(set);
450 	SIGADDSET(set, signo);
451 	sigqueue_move_set(src, dst, &set);
452 }
453 
454 void
455 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
456 {
457 	struct proc *p = sq->sq_proc;
458 	ksiginfo_t *ksi, *next;
459 
460 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
461 
462 	/* Remove siginfo queue */
463 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
464 		next = TAILQ_NEXT(ksi, ksi_link);
465 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
466 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
467 			ksi->ksi_sigq = NULL;
468 			if (ksiginfo_tryfree(ksi) && p != NULL)
469 				p->p_pendingcnt--;
470 		}
471 	}
472 	SIGSETNAND(sq->sq_signals, *set);
473 	/* Finally, rescan queue and set pending bits for it */
474 	sigqueue_collect_set(sq, &sq->sq_signals);
475 }
476 
477 void
478 sigqueue_delete(sigqueue_t *sq, int signo)
479 {
480 	sigset_t set;
481 
482 	SIGEMPTYSET(set);
483 	SIGADDSET(set, signo);
484 	sigqueue_delete_set(sq, &set);
485 }
486 
487 /* Remove a set of signals for a process */
488 void
489 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
490 {
491 	sigqueue_t worklist;
492 	struct thread *td0;
493 
494 	PROC_LOCK_ASSERT(p, MA_OWNED);
495 
496 	sigqueue_init(&worklist, NULL);
497 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
498 
499 	mtx_lock_spin(&sched_lock);
500 	FOREACH_THREAD_IN_PROC(p, td0)
501 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
502 	mtx_unlock_spin(&sched_lock);
503 
504 	sigqueue_flush(&worklist);
505 }
506 
507 void
508 sigqueue_delete_proc(struct proc *p, int signo)
509 {
510 	sigset_t set;
511 
512 	SIGEMPTYSET(set);
513 	SIGADDSET(set, signo);
514 	sigqueue_delete_set_proc(p, &set);
515 }
516 
517 void
518 sigqueue_delete_stopmask_proc(struct proc *p)
519 {
520 	sigset_t set;
521 
522 	SIGEMPTYSET(set);
523 	SIGADDSET(set, SIGSTOP);
524 	SIGADDSET(set, SIGTSTP);
525 	SIGADDSET(set, SIGTTIN);
526 	SIGADDSET(set, SIGTTOU);
527 	sigqueue_delete_set_proc(p, &set);
528 }
529 
530 /*
531  * Determine signal that should be delivered to process p, the current
532  * process, 0 if none.  If there is a pending stop signal with default
533  * action, the process stops in issignal().
534  *
535  * MP SAFE.
536  */
537 int
538 cursig(struct thread *td)
539 {
540 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
541 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
542 	mtx_assert(&sched_lock, MA_NOTOWNED);
543 	return (SIGPENDING(td) ? issignal(td) : 0);
544 }
545 
546 /*
547  * Arrange for ast() to handle unmasked pending signals on return to user
548  * mode.  This must be called whenever a signal is added to td_sigqueue or
549  * unmasked in td_sigmask.
550  */
551 void
552 signotify(struct thread *td)
553 {
554 	struct proc *p;
555 	sigset_t set, saved;
556 
557 	p = td->td_proc;
558 
559 	PROC_LOCK_ASSERT(p, MA_OWNED);
560 
561 	/*
562 	 * If our mask changed we may have to move signal that were
563 	 * previously masked by all threads to our sigqueue.
564 	 */
565 	set = p->p_sigqueue.sq_signals;
566 	if (p->p_flag & P_SA)
567 		saved = p->p_sigqueue.sq_signals;
568 	SIGSETNAND(set, td->td_sigmask);
569 	if (! SIGISEMPTY(set))
570 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
571 	if (SIGPENDING(td)) {
572 		mtx_lock_spin(&sched_lock);
573 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
574 		mtx_unlock_spin(&sched_lock);
575 	}
576 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
577 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
578 			/* pending set changed */
579 			p->p_flag |= P_SIGEVENT;
580 			wakeup(&p->p_siglist);
581 		}
582 	}
583 }
584 
585 int
586 sigonstack(size_t sp)
587 {
588 	struct thread *td = curthread;
589 
590 	return ((td->td_pflags & TDP_ALTSTACK) ?
591 #if defined(COMPAT_43)
592 	    ((td->td_sigstk.ss_size == 0) ?
593 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
594 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
595 #else
596 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
597 #endif
598 	    : 0);
599 }
600 
601 static __inline int
602 sigprop(int sig)
603 {
604 
605 	if (sig > 0 && sig < NSIG)
606 		return (sigproptbl[_SIG_IDX(sig)]);
607 	return (0);
608 }
609 
610 int
611 sig_ffs(sigset_t *set)
612 {
613 	int i;
614 
615 	for (i = 0; i < _SIG_WORDS; i++)
616 		if (set->__bits[i])
617 			return (ffs(set->__bits[i]) + (i * 32));
618 	return (0);
619 }
620 
621 /*
622  * kern_sigaction
623  * sigaction
624  * freebsd4_sigaction
625  * osigaction
626  *
627  * MPSAFE
628  */
629 int
630 kern_sigaction(td, sig, act, oact, flags)
631 	struct thread *td;
632 	register int sig;
633 	struct sigaction *act, *oact;
634 	int flags;
635 {
636 	struct sigacts *ps;
637 	struct proc *p = td->td_proc;
638 
639 	if (!_SIG_VALID(sig))
640 		return (EINVAL);
641 
642 	PROC_LOCK(p);
643 	ps = p->p_sigacts;
644 	mtx_lock(&ps->ps_mtx);
645 	if (oact) {
646 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
647 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
648 		oact->sa_flags = 0;
649 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
650 			oact->sa_flags |= SA_ONSTACK;
651 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
652 			oact->sa_flags |= SA_RESTART;
653 		if (SIGISMEMBER(ps->ps_sigreset, sig))
654 			oact->sa_flags |= SA_RESETHAND;
655 		if (SIGISMEMBER(ps->ps_signodefer, sig))
656 			oact->sa_flags |= SA_NODEFER;
657 		if (SIGISMEMBER(ps->ps_siginfo, sig))
658 			oact->sa_flags |= SA_SIGINFO;
659 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
660 			oact->sa_flags |= SA_NOCLDSTOP;
661 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
662 			oact->sa_flags |= SA_NOCLDWAIT;
663 	}
664 	if (act) {
665 		if ((sig == SIGKILL || sig == SIGSTOP) &&
666 		    act->sa_handler != SIG_DFL) {
667 			mtx_unlock(&ps->ps_mtx);
668 			PROC_UNLOCK(p);
669 			return (EINVAL);
670 		}
671 
672 		/*
673 		 * Change setting atomically.
674 		 */
675 
676 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
677 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
678 		if (act->sa_flags & SA_SIGINFO) {
679 			ps->ps_sigact[_SIG_IDX(sig)] =
680 			    (__sighandler_t *)act->sa_sigaction;
681 			SIGADDSET(ps->ps_siginfo, sig);
682 		} else {
683 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
684 			SIGDELSET(ps->ps_siginfo, sig);
685 		}
686 		if (!(act->sa_flags & SA_RESTART))
687 			SIGADDSET(ps->ps_sigintr, sig);
688 		else
689 			SIGDELSET(ps->ps_sigintr, sig);
690 		if (act->sa_flags & SA_ONSTACK)
691 			SIGADDSET(ps->ps_sigonstack, sig);
692 		else
693 			SIGDELSET(ps->ps_sigonstack, sig);
694 		if (act->sa_flags & SA_RESETHAND)
695 			SIGADDSET(ps->ps_sigreset, sig);
696 		else
697 			SIGDELSET(ps->ps_sigreset, sig);
698 		if (act->sa_flags & SA_NODEFER)
699 			SIGADDSET(ps->ps_signodefer, sig);
700 		else
701 			SIGDELSET(ps->ps_signodefer, sig);
702 		if (sig == SIGCHLD) {
703 			if (act->sa_flags & SA_NOCLDSTOP)
704 				ps->ps_flag |= PS_NOCLDSTOP;
705 			else
706 				ps->ps_flag &= ~PS_NOCLDSTOP;
707 			if (act->sa_flags & SA_NOCLDWAIT) {
708 				/*
709 				 * Paranoia: since SA_NOCLDWAIT is implemented
710 				 * by reparenting the dying child to PID 1 (and
711 				 * trust it to reap the zombie), PID 1 itself
712 				 * is forbidden to set SA_NOCLDWAIT.
713 				 */
714 				if (p->p_pid == 1)
715 					ps->ps_flag &= ~PS_NOCLDWAIT;
716 				else
717 					ps->ps_flag |= PS_NOCLDWAIT;
718 			} else
719 				ps->ps_flag &= ~PS_NOCLDWAIT;
720 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
721 				ps->ps_flag |= PS_CLDSIGIGN;
722 			else
723 				ps->ps_flag &= ~PS_CLDSIGIGN;
724 		}
725 		/*
726 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
727 		 * and for signals set to SIG_DFL where the default is to
728 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
729 		 * have to restart the process.
730 		 */
731 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
732 		    (sigprop(sig) & SA_IGNORE &&
733 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
734 			if ((p->p_flag & P_SA) &&
735 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
736 				p->p_flag |= P_SIGEVENT;
737 				wakeup(&p->p_siglist);
738 			}
739 			/* never to be seen again */
740 			sigqueue_delete_proc(p, sig);
741 			if (sig != SIGCONT)
742 				/* easier in psignal */
743 				SIGADDSET(ps->ps_sigignore, sig);
744 			SIGDELSET(ps->ps_sigcatch, sig);
745 		} else {
746 			SIGDELSET(ps->ps_sigignore, sig);
747 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
748 				SIGDELSET(ps->ps_sigcatch, sig);
749 			else
750 				SIGADDSET(ps->ps_sigcatch, sig);
751 		}
752 #ifdef COMPAT_FREEBSD4
753 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
754 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
755 		    (flags & KSA_FREEBSD4) == 0)
756 			SIGDELSET(ps->ps_freebsd4, sig);
757 		else
758 			SIGADDSET(ps->ps_freebsd4, sig);
759 #endif
760 #ifdef COMPAT_43
761 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
762 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
763 		    (flags & KSA_OSIGSET) == 0)
764 			SIGDELSET(ps->ps_osigset, sig);
765 		else
766 			SIGADDSET(ps->ps_osigset, sig);
767 #endif
768 	}
769 	mtx_unlock(&ps->ps_mtx);
770 	PROC_UNLOCK(p);
771 	return (0);
772 }
773 
774 #ifndef _SYS_SYSPROTO_H_
775 struct sigaction_args {
776 	int	sig;
777 	struct	sigaction *act;
778 	struct	sigaction *oact;
779 };
780 #endif
781 /*
782  * MPSAFE
783  */
784 int
785 sigaction(td, uap)
786 	struct thread *td;
787 	register struct sigaction_args *uap;
788 {
789 	struct sigaction act, oact;
790 	register struct sigaction *actp, *oactp;
791 	int error;
792 
793 	actp = (uap->act != NULL) ? &act : NULL;
794 	oactp = (uap->oact != NULL) ? &oact : NULL;
795 	if (actp) {
796 		error = copyin(uap->act, actp, sizeof(act));
797 		if (error)
798 			return (error);
799 	}
800 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
801 	if (oactp && !error)
802 		error = copyout(oactp, uap->oact, sizeof(oact));
803 	return (error);
804 }
805 
806 #ifdef COMPAT_FREEBSD4
807 #ifndef _SYS_SYSPROTO_H_
808 struct freebsd4_sigaction_args {
809 	int	sig;
810 	struct	sigaction *act;
811 	struct	sigaction *oact;
812 };
813 #endif
814 /*
815  * MPSAFE
816  */
817 int
818 freebsd4_sigaction(td, uap)
819 	struct thread *td;
820 	register struct freebsd4_sigaction_args *uap;
821 {
822 	struct sigaction act, oact;
823 	register struct sigaction *actp, *oactp;
824 	int error;
825 
826 
827 	actp = (uap->act != NULL) ? &act : NULL;
828 	oactp = (uap->oact != NULL) ? &oact : NULL;
829 	if (actp) {
830 		error = copyin(uap->act, actp, sizeof(act));
831 		if (error)
832 			return (error);
833 	}
834 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
835 	if (oactp && !error)
836 		error = copyout(oactp, uap->oact, sizeof(oact));
837 	return (error);
838 }
839 #endif	/* COMAPT_FREEBSD4 */
840 
841 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
842 #ifndef _SYS_SYSPROTO_H_
843 struct osigaction_args {
844 	int	signum;
845 	struct	osigaction *nsa;
846 	struct	osigaction *osa;
847 };
848 #endif
849 /*
850  * MPSAFE
851  */
852 int
853 osigaction(td, uap)
854 	struct thread *td;
855 	register struct osigaction_args *uap;
856 {
857 	struct osigaction sa;
858 	struct sigaction nsa, osa;
859 	register struct sigaction *nsap, *osap;
860 	int error;
861 
862 	if (uap->signum <= 0 || uap->signum >= ONSIG)
863 		return (EINVAL);
864 
865 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
866 	osap = (uap->osa != NULL) ? &osa : NULL;
867 
868 	if (nsap) {
869 		error = copyin(uap->nsa, &sa, sizeof(sa));
870 		if (error)
871 			return (error);
872 		nsap->sa_handler = sa.sa_handler;
873 		nsap->sa_flags = sa.sa_flags;
874 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
875 	}
876 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
877 	if (osap && !error) {
878 		sa.sa_handler = osap->sa_handler;
879 		sa.sa_flags = osap->sa_flags;
880 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
881 		error = copyout(&sa, uap->osa, sizeof(sa));
882 	}
883 	return (error);
884 }
885 
886 #if !defined(__i386__) && !defined(__alpha__)
887 /* Avoid replicating the same stub everywhere */
888 int
889 osigreturn(td, uap)
890 	struct thread *td;
891 	struct osigreturn_args *uap;
892 {
893 
894 	return (nosys(td, (struct nosys_args *)uap));
895 }
896 #endif
897 #endif /* COMPAT_43 */
898 
899 /*
900  * Initialize signal state for process 0;
901  * set to ignore signals that are ignored by default.
902  */
903 void
904 siginit(p)
905 	struct proc *p;
906 {
907 	register int i;
908 	struct sigacts *ps;
909 
910 	PROC_LOCK(p);
911 	ps = p->p_sigacts;
912 	mtx_lock(&ps->ps_mtx);
913 	for (i = 1; i <= NSIG; i++)
914 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
915 			SIGADDSET(ps->ps_sigignore, i);
916 	mtx_unlock(&ps->ps_mtx);
917 	PROC_UNLOCK(p);
918 }
919 
920 /*
921  * Reset signals for an exec of the specified process.
922  */
923 void
924 execsigs(struct proc *p)
925 {
926 	struct sigacts *ps;
927 	int sig;
928 	struct thread *td;
929 
930 	/*
931 	 * Reset caught signals.  Held signals remain held
932 	 * through td_sigmask (unless they were caught,
933 	 * and are now ignored by default).
934 	 */
935 	PROC_LOCK_ASSERT(p, MA_OWNED);
936 	td = FIRST_THREAD_IN_PROC(p);
937 	ps = p->p_sigacts;
938 	mtx_lock(&ps->ps_mtx);
939 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
940 		sig = sig_ffs(&ps->ps_sigcatch);
941 		SIGDELSET(ps->ps_sigcatch, sig);
942 		if (sigprop(sig) & SA_IGNORE) {
943 			if (sig != SIGCONT)
944 				SIGADDSET(ps->ps_sigignore, sig);
945 			sigqueue_delete_proc(p, sig);
946 		}
947 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
948 	}
949 	/*
950 	 * Reset stack state to the user stack.
951 	 * Clear set of signals caught on the signal stack.
952 	 */
953 	td->td_sigstk.ss_flags = SS_DISABLE;
954 	td->td_sigstk.ss_size = 0;
955 	td->td_sigstk.ss_sp = 0;
956 	td->td_pflags &= ~TDP_ALTSTACK;
957 	/*
958 	 * Reset no zombies if child dies flag as Solaris does.
959 	 */
960 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
961 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
962 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
963 	mtx_unlock(&ps->ps_mtx);
964 }
965 
966 /*
967  * kern_sigprocmask()
968  *
969  *	Manipulate signal mask.
970  */
971 int
972 kern_sigprocmask(td, how, set, oset, old)
973 	struct thread *td;
974 	int how;
975 	sigset_t *set, *oset;
976 	int old;
977 {
978 	int error;
979 
980 	PROC_LOCK(td->td_proc);
981 	if (oset != NULL)
982 		*oset = td->td_sigmask;
983 
984 	error = 0;
985 	if (set != NULL) {
986 		switch (how) {
987 		case SIG_BLOCK:
988 			SIG_CANTMASK(*set);
989 			SIGSETOR(td->td_sigmask, *set);
990 			break;
991 		case SIG_UNBLOCK:
992 			SIGSETNAND(td->td_sigmask, *set);
993 			signotify(td);
994 			break;
995 		case SIG_SETMASK:
996 			SIG_CANTMASK(*set);
997 			if (old)
998 				SIGSETLO(td->td_sigmask, *set);
999 			else
1000 				td->td_sigmask = *set;
1001 			signotify(td);
1002 			break;
1003 		default:
1004 			error = EINVAL;
1005 			break;
1006 		}
1007 	}
1008 	PROC_UNLOCK(td->td_proc);
1009 	return (error);
1010 }
1011 
1012 /*
1013  * sigprocmask() - MP SAFE
1014  */
1015 
1016 #ifndef _SYS_SYSPROTO_H_
1017 struct sigprocmask_args {
1018 	int	how;
1019 	const sigset_t *set;
1020 	sigset_t *oset;
1021 };
1022 #endif
1023 int
1024 sigprocmask(td, uap)
1025 	register struct thread *td;
1026 	struct sigprocmask_args *uap;
1027 {
1028 	sigset_t set, oset;
1029 	sigset_t *setp, *osetp;
1030 	int error;
1031 
1032 	setp = (uap->set != NULL) ? &set : NULL;
1033 	osetp = (uap->oset != NULL) ? &oset : NULL;
1034 	if (setp) {
1035 		error = copyin(uap->set, setp, sizeof(set));
1036 		if (error)
1037 			return (error);
1038 	}
1039 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1040 	if (osetp && !error) {
1041 		error = copyout(osetp, uap->oset, sizeof(oset));
1042 	}
1043 	return (error);
1044 }
1045 
1046 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1047 /*
1048  * osigprocmask() - MP SAFE
1049  */
1050 #ifndef _SYS_SYSPROTO_H_
1051 struct osigprocmask_args {
1052 	int	how;
1053 	osigset_t mask;
1054 };
1055 #endif
1056 int
1057 osigprocmask(td, uap)
1058 	register struct thread *td;
1059 	struct osigprocmask_args *uap;
1060 {
1061 	sigset_t set, oset;
1062 	int error;
1063 
1064 	OSIG2SIG(uap->mask, set);
1065 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1066 	SIG2OSIG(oset, td->td_retval[0]);
1067 	return (error);
1068 }
1069 #endif /* COMPAT_43 */
1070 
1071 /*
1072  * MPSAFE
1073  */
1074 int
1075 sigwait(struct thread *td, struct sigwait_args *uap)
1076 {
1077 	ksiginfo_t ksi;
1078 	sigset_t set;
1079 	int error;
1080 
1081 	error = copyin(uap->set, &set, sizeof(set));
1082 	if (error) {
1083 		td->td_retval[0] = error;
1084 		return (0);
1085 	}
1086 
1087 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1088 	if (error) {
1089 		if (error == ERESTART)
1090 			return (error);
1091 		td->td_retval[0] = error;
1092 		return (0);
1093 	}
1094 
1095 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1096 	td->td_retval[0] = error;
1097 	return (0);
1098 }
1099 /*
1100  * MPSAFE
1101  */
1102 int
1103 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1104 {
1105 	struct timespec ts;
1106 	struct timespec *timeout;
1107 	sigset_t set;
1108 	ksiginfo_t ksi;
1109 	int error;
1110 
1111 	if (uap->timeout) {
1112 		error = copyin(uap->timeout, &ts, sizeof(ts));
1113 		if (error)
1114 			return (error);
1115 
1116 		timeout = &ts;
1117 	} else
1118 		timeout = NULL;
1119 
1120 	error = copyin(uap->set, &set, sizeof(set));
1121 	if (error)
1122 		return (error);
1123 
1124 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1125 	if (error)
1126 		return (error);
1127 
1128 	if (uap->info)
1129 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1130 
1131 	if (error == 0)
1132 		td->td_retval[0] = ksi.ksi_signo;
1133 	return (error);
1134 }
1135 
1136 /*
1137  * MPSAFE
1138  */
1139 int
1140 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1141 {
1142 	ksiginfo_t ksi;
1143 	sigset_t set;
1144 	int error;
1145 
1146 	error = copyin(uap->set, &set, sizeof(set));
1147 	if (error)
1148 		return (error);
1149 
1150 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1151 	if (error)
1152 		return (error);
1153 
1154 	if (uap->info)
1155 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1156 
1157 	if (error == 0)
1158 		td->td_retval[0] = ksi.ksi_signo;
1159 	return (error);
1160 }
1161 
1162 static int
1163 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1164 	struct timespec *timeout)
1165 {
1166 	struct sigacts *ps;
1167 	sigset_t savedmask;
1168 	struct proc *p;
1169 	int error, sig, hz, i, timevalid = 0;
1170 	struct timespec rts, ets, ts;
1171 	struct timeval tv;
1172 
1173 	p = td->td_proc;
1174 	error = 0;
1175 	sig = 0;
1176 	SIG_CANTMASK(waitset);
1177 
1178 	PROC_LOCK(p);
1179 	ps = p->p_sigacts;
1180 	savedmask = td->td_sigmask;
1181 	if (timeout) {
1182 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1183 			timevalid = 1;
1184 			getnanouptime(&rts);
1185 		 	ets = rts;
1186 			timespecadd(&ets, timeout);
1187 		}
1188 	}
1189 
1190 again:
1191 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1192 		if (!SIGISMEMBER(waitset, i))
1193 			continue;
1194 		if (SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1195 			SIGFILLSET(td->td_sigmask);
1196 			SIG_CANTMASK(td->td_sigmask);
1197 			SIGDELSET(td->td_sigmask, i);
1198 			mtx_lock(&ps->ps_mtx);
1199 			sig = cursig(td);
1200 			i = 0;
1201 			mtx_unlock(&ps->ps_mtx);
1202 		} else if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1203 			if (p->p_flag & P_SA) {
1204 				p->p_flag |= P_SIGEVENT;
1205 				wakeup(&p->p_siglist);
1206 			}
1207 			sigqueue_move(&p->p_sigqueue, &td->td_sigqueue, i);
1208 			SIGFILLSET(td->td_sigmask);
1209 			SIG_CANTMASK(td->td_sigmask);
1210 			SIGDELSET(td->td_sigmask, i);
1211 			mtx_lock(&ps->ps_mtx);
1212 			sig = cursig(td);
1213 			i = 0;
1214 			mtx_unlock(&ps->ps_mtx);
1215 		}
1216 		if (sig)
1217 			goto out;
1218 	}
1219 	if (error)
1220 		goto out;
1221 
1222 	/*
1223 	 * POSIX says this must be checked after looking for pending
1224 	 * signals.
1225 	 */
1226 	if (timeout) {
1227 		if (!timevalid) {
1228 			error = EINVAL;
1229 			goto out;
1230 		}
1231 		getnanouptime(&rts);
1232 		if (timespeccmp(&rts, &ets, >=)) {
1233 			error = EAGAIN;
1234 			goto out;
1235 		}
1236 		ts = ets;
1237 		timespecsub(&ts, &rts);
1238 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1239 		hz = tvtohz(&tv);
1240 	} else
1241 		hz = 0;
1242 
1243 	td->td_sigmask = savedmask;
1244 	SIGSETNAND(td->td_sigmask, waitset);
1245 	signotify(td);
1246 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1247 	if (timeout) {
1248 		if (error == ERESTART) {
1249 			/* timeout can not be restarted. */
1250 			error = EINTR;
1251 		} else if (error == EAGAIN) {
1252 			/* will calculate timeout by ourself. */
1253 			error = 0;
1254 		}
1255 	}
1256 	goto again;
1257 
1258 out:
1259 	if (sig) {
1260 		sig_t action;
1261 
1262 		ksiginfo_init(ksi);
1263 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1264 		ksi->ksi_signo = sig;
1265 		if (ksi->ksi_code == SI_TIMER)
1266 			itimer_accept(p, ksi->ksi_timerid, ksi);
1267 		error = 0;
1268 		mtx_lock(&ps->ps_mtx);
1269 		action = ps->ps_sigact[_SIG_IDX(sig)];
1270 		mtx_unlock(&ps->ps_mtx);
1271 #ifdef KTRACE
1272 		if (KTRPOINT(td, KTR_PSIG))
1273 			ktrpsig(sig, action, &td->td_sigmask, 0);
1274 #endif
1275 		_STOPEVENT(p, S_SIG, sig);
1276 
1277 	}
1278 	td->td_sigmask = savedmask;
1279 	signotify(td);
1280 	PROC_UNLOCK(p);
1281 	return (error);
1282 }
1283 
1284 #ifndef _SYS_SYSPROTO_H_
1285 struct sigpending_args {
1286 	sigset_t	*set;
1287 };
1288 #endif
1289 /*
1290  * MPSAFE
1291  */
1292 int
1293 sigpending(td, uap)
1294 	struct thread *td;
1295 	struct sigpending_args *uap;
1296 {
1297 	struct proc *p = td->td_proc;
1298 	sigset_t pending;
1299 
1300 	PROC_LOCK(p);
1301 	pending = p->p_sigqueue.sq_signals;
1302 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1303 	PROC_UNLOCK(p);
1304 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1305 }
1306 
1307 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1308 #ifndef _SYS_SYSPROTO_H_
1309 struct osigpending_args {
1310 	int	dummy;
1311 };
1312 #endif
1313 /*
1314  * MPSAFE
1315  */
1316 int
1317 osigpending(td, uap)
1318 	struct thread *td;
1319 	struct osigpending_args *uap;
1320 {
1321 	struct proc *p = td->td_proc;
1322 	sigset_t pending;
1323 
1324 	PROC_LOCK(p);
1325 	pending = p->p_sigqueue.sq_signals;
1326 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1327 	PROC_UNLOCK(p);
1328 	SIG2OSIG(pending, td->td_retval[0]);
1329 	return (0);
1330 }
1331 #endif /* COMPAT_43 */
1332 
1333 #if defined(COMPAT_43)
1334 /*
1335  * Generalized interface signal handler, 4.3-compatible.
1336  */
1337 #ifndef _SYS_SYSPROTO_H_
1338 struct osigvec_args {
1339 	int	signum;
1340 	struct	sigvec *nsv;
1341 	struct	sigvec *osv;
1342 };
1343 #endif
1344 /*
1345  * MPSAFE
1346  */
1347 /* ARGSUSED */
1348 int
1349 osigvec(td, uap)
1350 	struct thread *td;
1351 	register struct osigvec_args *uap;
1352 {
1353 	struct sigvec vec;
1354 	struct sigaction nsa, osa;
1355 	register struct sigaction *nsap, *osap;
1356 	int error;
1357 
1358 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1359 		return (EINVAL);
1360 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1361 	osap = (uap->osv != NULL) ? &osa : NULL;
1362 	if (nsap) {
1363 		error = copyin(uap->nsv, &vec, sizeof(vec));
1364 		if (error)
1365 			return (error);
1366 		nsap->sa_handler = vec.sv_handler;
1367 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1368 		nsap->sa_flags = vec.sv_flags;
1369 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1370 	}
1371 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1372 	if (osap && !error) {
1373 		vec.sv_handler = osap->sa_handler;
1374 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1375 		vec.sv_flags = osap->sa_flags;
1376 		vec.sv_flags &= ~SA_NOCLDWAIT;
1377 		vec.sv_flags ^= SA_RESTART;
1378 		error = copyout(&vec, uap->osv, sizeof(vec));
1379 	}
1380 	return (error);
1381 }
1382 
1383 #ifndef _SYS_SYSPROTO_H_
1384 struct osigblock_args {
1385 	int	mask;
1386 };
1387 #endif
1388 /*
1389  * MPSAFE
1390  */
1391 int
1392 osigblock(td, uap)
1393 	register struct thread *td;
1394 	struct osigblock_args *uap;
1395 {
1396 	struct proc *p = td->td_proc;
1397 	sigset_t set;
1398 
1399 	OSIG2SIG(uap->mask, set);
1400 	SIG_CANTMASK(set);
1401 	PROC_LOCK(p);
1402 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1403 	SIGSETOR(td->td_sigmask, set);
1404 	PROC_UNLOCK(p);
1405 	return (0);
1406 }
1407 
1408 #ifndef _SYS_SYSPROTO_H_
1409 struct osigsetmask_args {
1410 	int	mask;
1411 };
1412 #endif
1413 /*
1414  * MPSAFE
1415  */
1416 int
1417 osigsetmask(td, uap)
1418 	struct thread *td;
1419 	struct osigsetmask_args *uap;
1420 {
1421 	struct proc *p = td->td_proc;
1422 	sigset_t set;
1423 
1424 	OSIG2SIG(uap->mask, set);
1425 	SIG_CANTMASK(set);
1426 	PROC_LOCK(p);
1427 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1428 	SIGSETLO(td->td_sigmask, set);
1429 	signotify(td);
1430 	PROC_UNLOCK(p);
1431 	return (0);
1432 }
1433 #endif /* COMPAT_43 */
1434 
1435 /*
1436  * Suspend calling thread until signal, providing mask to be set
1437  * in the meantime.
1438  */
1439 #ifndef _SYS_SYSPROTO_H_
1440 struct sigsuspend_args {
1441 	const sigset_t *sigmask;
1442 };
1443 #endif
1444 /*
1445  * MPSAFE
1446  */
1447 /* ARGSUSED */
1448 int
1449 sigsuspend(td, uap)
1450 	struct thread *td;
1451 	struct sigsuspend_args *uap;
1452 {
1453 	sigset_t mask;
1454 	int error;
1455 
1456 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1457 	if (error)
1458 		return (error);
1459 	return (kern_sigsuspend(td, mask));
1460 }
1461 
1462 int
1463 kern_sigsuspend(struct thread *td, sigset_t mask)
1464 {
1465 	struct proc *p = td->td_proc;
1466 
1467 	/*
1468 	 * When returning from sigsuspend, we want
1469 	 * the old mask to be restored after the
1470 	 * signal handler has finished.  Thus, we
1471 	 * save it here and mark the sigacts structure
1472 	 * to indicate this.
1473 	 */
1474 	PROC_LOCK(p);
1475 	td->td_oldsigmask = td->td_sigmask;
1476 	td->td_pflags |= TDP_OLDMASK;
1477 	SIG_CANTMASK(mask);
1478 	td->td_sigmask = mask;
1479 	signotify(td);
1480 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1481 		/* void */;
1482 	PROC_UNLOCK(p);
1483 	/* always return EINTR rather than ERESTART... */
1484 	return (EINTR);
1485 }
1486 
1487 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1488 /*
1489  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1490  * convention: libc stub passes mask, not pointer, to save a copyin.
1491  */
1492 #ifndef _SYS_SYSPROTO_H_
1493 struct osigsuspend_args {
1494 	osigset_t mask;
1495 };
1496 #endif
1497 /*
1498  * MPSAFE
1499  */
1500 /* ARGSUSED */
1501 int
1502 osigsuspend(td, uap)
1503 	struct thread *td;
1504 	struct osigsuspend_args *uap;
1505 {
1506 	struct proc *p = td->td_proc;
1507 	sigset_t mask;
1508 
1509 	PROC_LOCK(p);
1510 	td->td_oldsigmask = td->td_sigmask;
1511 	td->td_pflags |= TDP_OLDMASK;
1512 	OSIG2SIG(uap->mask, mask);
1513 	SIG_CANTMASK(mask);
1514 	SIGSETLO(td->td_sigmask, mask);
1515 	signotify(td);
1516 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1517 		/* void */;
1518 	PROC_UNLOCK(p);
1519 	/* always return EINTR rather than ERESTART... */
1520 	return (EINTR);
1521 }
1522 #endif /* COMPAT_43 */
1523 
1524 #if defined(COMPAT_43)
1525 #ifndef _SYS_SYSPROTO_H_
1526 struct osigstack_args {
1527 	struct	sigstack *nss;
1528 	struct	sigstack *oss;
1529 };
1530 #endif
1531 /*
1532  * MPSAFE
1533  */
1534 /* ARGSUSED */
1535 int
1536 osigstack(td, uap)
1537 	struct thread *td;
1538 	register struct osigstack_args *uap;
1539 {
1540 	struct sigstack nss, oss;
1541 	int error = 0;
1542 
1543 	if (uap->nss != NULL) {
1544 		error = copyin(uap->nss, &nss, sizeof(nss));
1545 		if (error)
1546 			return (error);
1547 	}
1548 	oss.ss_sp = td->td_sigstk.ss_sp;
1549 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1550 	if (uap->nss != NULL) {
1551 		td->td_sigstk.ss_sp = nss.ss_sp;
1552 		td->td_sigstk.ss_size = 0;
1553 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1554 		td->td_pflags |= TDP_ALTSTACK;
1555 	}
1556 	if (uap->oss != NULL)
1557 		error = copyout(&oss, uap->oss, sizeof(oss));
1558 
1559 	return (error);
1560 }
1561 #endif /* COMPAT_43 */
1562 
1563 #ifndef _SYS_SYSPROTO_H_
1564 struct sigaltstack_args {
1565 	stack_t	*ss;
1566 	stack_t	*oss;
1567 };
1568 #endif
1569 /*
1570  * MPSAFE
1571  */
1572 /* ARGSUSED */
1573 int
1574 sigaltstack(td, uap)
1575 	struct thread *td;
1576 	register struct sigaltstack_args *uap;
1577 {
1578 	stack_t ss, oss;
1579 	int error;
1580 
1581 	if (uap->ss != NULL) {
1582 		error = copyin(uap->ss, &ss, sizeof(ss));
1583 		if (error)
1584 			return (error);
1585 	}
1586 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1587 	    (uap->oss != NULL) ? &oss : NULL);
1588 	if (error)
1589 		return (error);
1590 	if (uap->oss != NULL)
1591 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1592 	return (error);
1593 }
1594 
1595 int
1596 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1597 {
1598 	struct proc *p = td->td_proc;
1599 	int oonstack;
1600 
1601 	oonstack = sigonstack(cpu_getstack(td));
1602 
1603 	if (oss != NULL) {
1604 		*oss = td->td_sigstk;
1605 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1606 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1607 	}
1608 
1609 	if (ss != NULL) {
1610 		if (oonstack)
1611 			return (EPERM);
1612 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1613 			return (EINVAL);
1614 		if (!(ss->ss_flags & SS_DISABLE)) {
1615 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1616 				return (ENOMEM);
1617 
1618 			td->td_sigstk = *ss;
1619 			td->td_pflags |= TDP_ALTSTACK;
1620 		} else {
1621 			td->td_pflags &= ~TDP_ALTSTACK;
1622 		}
1623 	}
1624 	return (0);
1625 }
1626 
1627 /*
1628  * Common code for kill process group/broadcast kill.
1629  * cp is calling process.
1630  */
1631 static int
1632 killpg1(td, sig, pgid, all)
1633 	register struct thread *td;
1634 	int sig, pgid, all;
1635 {
1636 	register struct proc *p;
1637 	struct pgrp *pgrp;
1638 	int nfound = 0;
1639 
1640 	if (all) {
1641 		/*
1642 		 * broadcast
1643 		 */
1644 		sx_slock(&allproc_lock);
1645 		LIST_FOREACH(p, &allproc, p_list) {
1646 			PROC_LOCK(p);
1647 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1648 			    p == td->td_proc) {
1649 				PROC_UNLOCK(p);
1650 				continue;
1651 			}
1652 			if (p_cansignal(td, p, sig) == 0) {
1653 				nfound++;
1654 				if (sig)
1655 					psignal(p, sig);
1656 			}
1657 			PROC_UNLOCK(p);
1658 		}
1659 		sx_sunlock(&allproc_lock);
1660 	} else {
1661 		sx_slock(&proctree_lock);
1662 		if (pgid == 0) {
1663 			/*
1664 			 * zero pgid means send to my process group.
1665 			 */
1666 			pgrp = td->td_proc->p_pgrp;
1667 			PGRP_LOCK(pgrp);
1668 		} else {
1669 			pgrp = pgfind(pgid);
1670 			if (pgrp == NULL) {
1671 				sx_sunlock(&proctree_lock);
1672 				return (ESRCH);
1673 			}
1674 		}
1675 		sx_sunlock(&proctree_lock);
1676 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1677 			PROC_LOCK(p);
1678 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1679 				PROC_UNLOCK(p);
1680 				continue;
1681 			}
1682 			if (p_cansignal(td, p, sig) == 0) {
1683 				nfound++;
1684 				if (sig)
1685 					psignal(p, sig);
1686 			}
1687 			PROC_UNLOCK(p);
1688 		}
1689 		PGRP_UNLOCK(pgrp);
1690 	}
1691 	return (nfound ? 0 : ESRCH);
1692 }
1693 
1694 #ifndef _SYS_SYSPROTO_H_
1695 struct kill_args {
1696 	int	pid;
1697 	int	signum;
1698 };
1699 #endif
1700 /*
1701  * MPSAFE
1702  */
1703 /* ARGSUSED */
1704 int
1705 kill(td, uap)
1706 	register struct thread *td;
1707 	register struct kill_args *uap;
1708 {
1709 	register struct proc *p;
1710 	int error;
1711 
1712 	if ((u_int)uap->signum > _SIG_MAXSIG)
1713 		return (EINVAL);
1714 
1715 	if (uap->pid > 0) {
1716 		/* kill single process */
1717 		if ((p = pfind(uap->pid)) == NULL) {
1718 			if ((p = zpfind(uap->pid)) == NULL)
1719 				return (ESRCH);
1720 		}
1721 		error = p_cansignal(td, p, uap->signum);
1722 		if (error == 0 && uap->signum)
1723 			psignal(p, uap->signum);
1724 		PROC_UNLOCK(p);
1725 		return (error);
1726 	}
1727 	switch (uap->pid) {
1728 	case -1:		/* broadcast signal */
1729 		return (killpg1(td, uap->signum, 0, 1));
1730 	case 0:			/* signal own process group */
1731 		return (killpg1(td, uap->signum, 0, 0));
1732 	default:		/* negative explicit process group */
1733 		return (killpg1(td, uap->signum, -uap->pid, 0));
1734 	}
1735 	/* NOTREACHED */
1736 }
1737 
1738 #if defined(COMPAT_43)
1739 #ifndef _SYS_SYSPROTO_H_
1740 struct okillpg_args {
1741 	int	pgid;
1742 	int	signum;
1743 };
1744 #endif
1745 /*
1746  * MPSAFE
1747  */
1748 /* ARGSUSED */
1749 int
1750 okillpg(td, uap)
1751 	struct thread *td;
1752 	register struct okillpg_args *uap;
1753 {
1754 
1755 	if ((u_int)uap->signum > _SIG_MAXSIG)
1756 		return (EINVAL);
1757 
1758 	return (killpg1(td, uap->signum, uap->pgid, 0));
1759 }
1760 #endif /* COMPAT_43 */
1761 
1762 #ifndef _SYS_SYSPROTO_H_
1763 struct sigqueue_args {
1764 	pid_t pid;
1765 	int signum;
1766 	/* union sigval */ void *value;
1767 };
1768 #endif
1769 
1770 int
1771 sigqueue(struct thread *td, struct sigqueue_args *uap)
1772 {
1773 	ksiginfo_t ksi;
1774 	struct proc *p;
1775 	int error;
1776 
1777 	if ((u_int)uap->signum > _SIG_MAXSIG)
1778 		return (EINVAL);
1779 
1780 	/*
1781 	 * Specification says sigqueue can only send signal to
1782 	 * single process.
1783 	 */
1784 	if (uap->pid <= 0)
1785 		return (EINVAL);
1786 
1787 	if ((p = pfind(uap->pid)) == NULL) {
1788 		if ((p = zpfind(uap->pid)) == NULL)
1789 			return (ESRCH);
1790 	}
1791 	error = p_cansignal(td, p, uap->signum);
1792 	if (error == 0 && uap->signum != 0) {
1793 		ksiginfo_init(&ksi);
1794 		ksi.ksi_signo = uap->signum;
1795 		ksi.ksi_code = SI_QUEUE;
1796 		ksi.ksi_pid = td->td_proc->p_pid;
1797 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1798 		ksi.ksi_value.sival_ptr = uap->value;
1799 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1800 	}
1801 	PROC_UNLOCK(p);
1802 	return (error);
1803 }
1804 
1805 /*
1806  * Send a signal to a process group.
1807  */
1808 void
1809 gsignal(pgid, sig)
1810 	int pgid, sig;
1811 {
1812 	struct pgrp *pgrp;
1813 
1814 	if (pgid != 0) {
1815 		sx_slock(&proctree_lock);
1816 		pgrp = pgfind(pgid);
1817 		sx_sunlock(&proctree_lock);
1818 		if (pgrp != NULL) {
1819 			pgsignal(pgrp, sig, 0);
1820 			PGRP_UNLOCK(pgrp);
1821 		}
1822 	}
1823 }
1824 
1825 /*
1826  * Send a signal to a process group.  If checktty is 1,
1827  * limit to members which have a controlling terminal.
1828  */
1829 void
1830 pgsignal(pgrp, sig, checkctty)
1831 	struct pgrp *pgrp;
1832 	int sig, checkctty;
1833 {
1834 	register struct proc *p;
1835 
1836 	if (pgrp) {
1837 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1838 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1839 			PROC_LOCK(p);
1840 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1841 				psignal(p, sig);
1842 			PROC_UNLOCK(p);
1843 		}
1844 	}
1845 }
1846 
1847 /*
1848  * Send a signal caused by a trap to the current thread.
1849  * If it will be caught immediately, deliver it with correct code.
1850  * Otherwise, post it normally.
1851  *
1852  * MPSAFE
1853  */
1854 void
1855 trapsignal(struct thread *td, ksiginfo_t *ksi)
1856 {
1857 	struct sigacts *ps;
1858 	struct proc *p;
1859 	int error;
1860 	int sig;
1861 	int code;
1862 
1863 	p = td->td_proc;
1864 	sig = ksi->ksi_signo;
1865 	code = ksi->ksi_code;
1866 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1867 
1868 	if (td->td_pflags & TDP_SA) {
1869 		if (td->td_mailbox == NULL)
1870 			thread_user_enter(td);
1871 		PROC_LOCK(p);
1872 		SIGDELSET(td->td_sigmask, sig);
1873 		mtx_lock_spin(&sched_lock);
1874 		/*
1875 		 * Force scheduling an upcall, so UTS has chance to
1876 		 * process the signal before thread runs again in
1877 		 * userland.
1878 		 */
1879 		if (td->td_upcall)
1880 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1881 		mtx_unlock_spin(&sched_lock);
1882 	} else {
1883 		PROC_LOCK(p);
1884 	}
1885 	ps = p->p_sigacts;
1886 	mtx_lock(&ps->ps_mtx);
1887 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1888 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1889 		p->p_stats->p_ru.ru_nsignals++;
1890 #ifdef KTRACE
1891 		if (KTRPOINT(curthread, KTR_PSIG))
1892 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1893 			    &td->td_sigmask, code);
1894 #endif
1895 		if (!(td->td_pflags & TDP_SA))
1896 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1897 				ksi, &td->td_sigmask);
1898 		else if (td->td_mailbox == NULL) {
1899 			mtx_unlock(&ps->ps_mtx);
1900 			/* UTS caused a sync signal */
1901 			p->p_code = code;	/* XXX for core dump/debugger */
1902 			p->p_sig = sig;		/* XXX to verify code */
1903 			sigexit(td, sig);
1904 		} else {
1905 			mtx_unlock(&ps->ps_mtx);
1906 			SIGADDSET(td->td_sigmask, sig);
1907 			PROC_UNLOCK(p);
1908 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1909 			    sizeof(siginfo_t));
1910 			PROC_LOCK(p);
1911 			/* UTS memory corrupted */
1912 			if (error)
1913 				sigexit(td, SIGSEGV);
1914 			mtx_lock(&ps->ps_mtx);
1915 		}
1916 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1917 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1918 			SIGADDSET(td->td_sigmask, sig);
1919 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1920 			/*
1921 			 * See kern_sigaction() for origin of this code.
1922 			 */
1923 			SIGDELSET(ps->ps_sigcatch, sig);
1924 			if (sig != SIGCONT &&
1925 			    sigprop(sig) & SA_IGNORE)
1926 				SIGADDSET(ps->ps_sigignore, sig);
1927 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1928 		}
1929 		mtx_unlock(&ps->ps_mtx);
1930 	} else {
1931 		/*
1932 		 * Avoid a possible infinite loop if the thread
1933 		 * masking the signal or process is ignoring the
1934 		 * signal.
1935 		 */
1936 		if (kern_forcesigexit &&
1937 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1938 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1939 			SIGDELSET(td->td_sigmask, sig);
1940 			SIGDELSET(ps->ps_sigcatch, sig);
1941 			SIGDELSET(ps->ps_sigignore, sig);
1942 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1943 		}
1944 		mtx_unlock(&ps->ps_mtx);
1945 		p->p_code = code;	/* XXX for core dump/debugger */
1946 		p->p_sig = sig;		/* XXX to verify code */
1947 		tdsignal(p, td, sig, ksi);
1948 	}
1949 	PROC_UNLOCK(p);
1950 }
1951 
1952 static struct thread *
1953 sigtd(struct proc *p, int sig, int prop)
1954 {
1955 	struct thread *td, *signal_td;
1956 
1957 	PROC_LOCK_ASSERT(p, MA_OWNED);
1958 
1959 	/*
1960 	 * Check if current thread can handle the signal without
1961 	 * switching conetxt to another thread.
1962 	 */
1963 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1964 		return (curthread);
1965 	signal_td = NULL;
1966 	mtx_lock_spin(&sched_lock);
1967 	FOREACH_THREAD_IN_PROC(p, td) {
1968 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1969 			signal_td = td;
1970 			break;
1971 		}
1972 	}
1973 	if (signal_td == NULL)
1974 		signal_td = FIRST_THREAD_IN_PROC(p);
1975 	mtx_unlock_spin(&sched_lock);
1976 	return (signal_td);
1977 }
1978 
1979 /*
1980  * Send the signal to the process.  If the signal has an action, the action
1981  * is usually performed by the target process rather than the caller; we add
1982  * the signal to the set of pending signals for the process.
1983  *
1984  * Exceptions:
1985  *   o When a stop signal is sent to a sleeping process that takes the
1986  *     default action, the process is stopped without awakening it.
1987  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1988  *     regardless of the signal action (eg, blocked or ignored).
1989  *
1990  * Other ignored signals are discarded immediately.
1991  *
1992  * MPSAFE
1993  */
1994 void
1995 psignal(struct proc *p, int sig)
1996 {
1997 	(void) tdsignal(p, NULL, sig, NULL);
1998 }
1999 
2000 int
2001 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2002 {
2003 	struct thread *td = NULL;
2004 
2005 	PROC_LOCK_ASSERT(p, MA_OWNED);
2006 
2007 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2008 
2009 	/*
2010 	 * ksi_code and other fields should be set before
2011 	 * calling this function.
2012 	 */
2013 	ksi->ksi_signo = sigev->sigev_signo;
2014 	ksi->ksi_value = sigev->sigev_value;
2015 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2016 		td = thread_find(p, sigev->sigev_notify_thread_id);
2017 		if (td == NULL)
2018 			return (ESRCH);
2019 	}
2020 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2021 }
2022 
2023 /*
2024  * MPSAFE
2025  */
2026 int
2027 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2028 {
2029 	sigset_t saved;
2030 	int ret;
2031 
2032 	if (p->p_flag & P_SA)
2033 		saved = p->p_sigqueue.sq_signals;
2034 	ret = do_tdsignal(p, td, sig, ksi);
2035 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2036 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2037 			/* pending set changed */
2038 			p->p_flag |= P_SIGEVENT;
2039 			wakeup(&p->p_siglist);
2040 		}
2041 	}
2042 	return (ret);
2043 }
2044 
2045 static int
2046 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2047 {
2048 	sig_t action;
2049 	sigqueue_t *sigqueue;
2050 	int prop;
2051 	struct sigacts *ps;
2052 	int ret = 0;
2053 
2054 	PROC_LOCK_ASSERT(p, MA_OWNED);
2055 
2056 	if (!_SIG_VALID(sig))
2057 		panic("do_tdsignal(): invalid signal");
2058 
2059 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2060 
2061 	/*
2062 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2063 	 */
2064 	if (p->p_state == PRS_ZOMBIE) {
2065 		if (ksi && (ksi->ksi_flags & KSI_INS))
2066 			ksiginfo_tryfree(ksi);
2067 		return (ret);
2068 	}
2069 
2070 	ps = p->p_sigacts;
2071 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2072 	prop = sigprop(sig);
2073 
2074 	/*
2075 	 * If the signal is blocked and not destined for this thread, then
2076 	 * assign it to the process so that we can find it later in the first
2077 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2078 	 */
2079 	if (td == NULL) {
2080 		td = sigtd(p, sig, prop);
2081 		if (SIGISMEMBER(td->td_sigmask, sig))
2082 			sigqueue = &p->p_sigqueue;
2083 		else
2084 			sigqueue = &td->td_sigqueue;
2085 	} else {
2086 		KASSERT(td->td_proc == p, ("invalid thread"));
2087 		sigqueue = &td->td_sigqueue;
2088 	}
2089 
2090 	/*
2091 	 * If the signal is being ignored,
2092 	 * or process is exiting or thread is exiting,
2093 	 * then we forget about it immediately.
2094 	 * (Note: we don't set SIGCONT in ps_sigignore,
2095 	 * and if it is set to SIG_IGN,
2096 	 * action will be SIG_DFL here.)
2097 	 */
2098 	mtx_lock(&ps->ps_mtx);
2099 	if (SIGISMEMBER(ps->ps_sigignore, sig) ||
2100 	    (p->p_flag & P_WEXIT)) {
2101 		mtx_unlock(&ps->ps_mtx);
2102 		if (ksi && (ksi->ksi_flags & KSI_INS))
2103 			ksiginfo_tryfree(ksi);
2104 		return (ret);
2105 	}
2106 	if (SIGISMEMBER(td->td_sigmask, sig))
2107 		action = SIG_HOLD;
2108 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2109 		action = SIG_CATCH;
2110 	else
2111 		action = SIG_DFL;
2112 	mtx_unlock(&ps->ps_mtx);
2113 
2114 	if (prop & SA_CONT)
2115 		sigqueue_delete_stopmask_proc(p);
2116 	else if (prop & SA_STOP) {
2117 		/*
2118 		 * If sending a tty stop signal to a member of an orphaned
2119 		 * process group, discard the signal here if the action
2120 		 * is default; don't stop the process below if sleeping,
2121 		 * and don't clear any pending SIGCONT.
2122 		 */
2123 		if ((prop & SA_TTYSTOP) &&
2124 		    (p->p_pgrp->pg_jobc == 0) &&
2125 		    (action == SIG_DFL)) {
2126 			if (ksi && (ksi->ksi_flags & KSI_INS))
2127 				ksiginfo_tryfree(ksi);
2128 			return (ret);
2129 		}
2130 		sigqueue_delete_proc(p, SIGCONT);
2131 		if (p->p_flag & P_CONTINUED) {
2132 			p->p_flag &= ~P_CONTINUED;
2133 			PROC_LOCK(p->p_pptr);
2134 			sigqueue_take(p->p_ksi);
2135 			PROC_UNLOCK(p->p_pptr);
2136 		}
2137 	}
2138 
2139 	ret = sigqueue_add(sigqueue, sig, ksi);
2140 	if (ret != 0)
2141 		return (ret);
2142 	signotify(td);
2143 	/*
2144 	 * Defer further processing for signals which are held,
2145 	 * except that stopped processes must be continued by SIGCONT.
2146 	 */
2147 	if (action == SIG_HOLD &&
2148 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2149 		return (ret);
2150 	/*
2151 	 * SIGKILL: Remove procfs STOPEVENTs.
2152 	 */
2153 	if (sig == SIGKILL) {
2154 		/* from procfs_ioctl.c: PIOCBIC */
2155 		p->p_stops = 0;
2156 		/* from procfs_ioctl.c: PIOCCONT */
2157 		p->p_step = 0;
2158 		wakeup(&p->p_step);
2159 	}
2160 	/*
2161 	 * Some signals have a process-wide effect and a per-thread
2162 	 * component.  Most processing occurs when the process next
2163 	 * tries to cross the user boundary, however there are some
2164 	 * times when processing needs to be done immediatly, such as
2165 	 * waking up threads so that they can cross the user boundary.
2166 	 * We try do the per-process part here.
2167 	 */
2168 	if (P_SHOULDSTOP(p)) {
2169 		/*
2170 		 * The process is in stopped mode. All the threads should be
2171 		 * either winding down or already on the suspended queue.
2172 		 */
2173 		if (p->p_flag & P_TRACED) {
2174 			/*
2175 			 * The traced process is already stopped,
2176 			 * so no further action is necessary.
2177 			 * No signal can restart us.
2178 			 */
2179 			goto out;
2180 		}
2181 
2182 		if (sig == SIGKILL) {
2183 			/*
2184 			 * SIGKILL sets process running.
2185 			 * It will die elsewhere.
2186 			 * All threads must be restarted.
2187 			 */
2188 			p->p_flag &= ~P_STOPPED_SIG;
2189 			goto runfast;
2190 		}
2191 
2192 		if (prop & SA_CONT) {
2193 			/*
2194 			 * If SIGCONT is default (or ignored), we continue the
2195 			 * process but don't leave the signal in sigqueue as
2196 			 * it has no further action.  If SIGCONT is held, we
2197 			 * continue the process and leave the signal in
2198 			 * sigqueue.  If the process catches SIGCONT, let it
2199 			 * handle the signal itself.  If it isn't waiting on
2200 			 * an event, it goes back to run state.
2201 			 * Otherwise, process goes back to sleep state.
2202 			 */
2203 			p->p_flag &= ~P_STOPPED_SIG;
2204 			if (p->p_numthreads == p->p_suspcount) {
2205 				p->p_flag |= P_CONTINUED;
2206 				p->p_xstat = SIGCONT;
2207 				PROC_LOCK(p->p_pptr);
2208 				childproc_continued(p);
2209 				PROC_UNLOCK(p->p_pptr);
2210 			}
2211 			if (action == SIG_DFL) {
2212 				sigqueue_delete(sigqueue, sig);
2213 			} else if (action == SIG_CATCH) {
2214 				/*
2215 				 * The process wants to catch it so it needs
2216 				 * to run at least one thread, but which one?
2217 				 * It would seem that the answer would be to
2218 				 * run an upcall in the next KSE to run, and
2219 				 * deliver the signal that way. In a NON KSE
2220 				 * process, we need to make sure that the
2221 				 * single thread is runnable asap.
2222 				 * XXXKSE for now however, make them all run.
2223 				 */
2224 				goto runfast;
2225 			}
2226 			/*
2227 			 * The signal is not ignored or caught.
2228 			 */
2229 			mtx_lock_spin(&sched_lock);
2230 			thread_unsuspend(p);
2231 			mtx_unlock_spin(&sched_lock);
2232 			goto out;
2233 		}
2234 
2235 		if (prop & SA_STOP) {
2236 			/*
2237 			 * Already stopped, don't need to stop again
2238 			 * (If we did the shell could get confused).
2239 			 * Just make sure the signal STOP bit set.
2240 			 */
2241 			p->p_flag |= P_STOPPED_SIG;
2242 			sigqueue_delete(sigqueue, sig);
2243 			goto out;
2244 		}
2245 
2246 		/*
2247 		 * All other kinds of signals:
2248 		 * If a thread is sleeping interruptibly, simulate a
2249 		 * wakeup so that when it is continued it will be made
2250 		 * runnable and can look at the signal.  However, don't make
2251 		 * the PROCESS runnable, leave it stopped.
2252 		 * It may run a bit until it hits a thread_suspend_check().
2253 		 */
2254 		mtx_lock_spin(&sched_lock);
2255 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2256 			sleepq_abort(td);
2257 		mtx_unlock_spin(&sched_lock);
2258 		goto out;
2259 		/*
2260 		 * Mutexes are short lived. Threads waiting on them will
2261 		 * hit thread_suspend_check() soon.
2262 		 */
2263 	} else if (p->p_state == PRS_NORMAL) {
2264 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2265 			mtx_lock_spin(&sched_lock);
2266 			tdsigwakeup(td, sig, action);
2267 			mtx_unlock_spin(&sched_lock);
2268 			goto out;
2269 		}
2270 
2271 		MPASS(action == SIG_DFL);
2272 
2273 		if (prop & SA_STOP) {
2274 			if (p->p_flag & P_PPWAIT)
2275 				goto out;
2276 			p->p_flag |= P_STOPPED_SIG;
2277 			p->p_xstat = sig;
2278 			mtx_lock_spin(&sched_lock);
2279 			sig_suspend_threads(td, p, 1);
2280 			if (p->p_numthreads == p->p_suspcount) {
2281 				/*
2282 				 * only thread sending signal to another
2283 				 * process can reach here, if thread is sending
2284 				 * signal to its process, because thread does
2285 				 * not suspend itself here, p_numthreads
2286 				 * should never be equal to p_suspcount.
2287 				 */
2288 				thread_stopped(p);
2289 				mtx_unlock_spin(&sched_lock);
2290 				sigqueue_delete_proc(p, p->p_xstat);
2291 			} else
2292 				mtx_unlock_spin(&sched_lock);
2293 			goto out;
2294 		}
2295 		else
2296 			goto runfast;
2297 		/* NOTREACHED */
2298 	} else {
2299 		/* Not in "NORMAL" state. discard the signal. */
2300 		sigqueue_delete(sigqueue, sig);
2301 		goto out;
2302 	}
2303 
2304 	/*
2305 	 * The process is not stopped so we need to apply the signal to all the
2306 	 * running threads.
2307 	 */
2308 
2309 runfast:
2310 	mtx_lock_spin(&sched_lock);
2311 	tdsigwakeup(td, sig, action);
2312 	thread_unsuspend(p);
2313 	mtx_unlock_spin(&sched_lock);
2314 out:
2315 	/* If we jump here, sched_lock should not be owned. */
2316 	mtx_assert(&sched_lock, MA_NOTOWNED);
2317 	return (ret);
2318 }
2319 
2320 /*
2321  * The force of a signal has been directed against a single
2322  * thread.  We need to see what we can do about knocking it
2323  * out of any sleep it may be in etc.
2324  */
2325 static void
2326 tdsigwakeup(struct thread *td, int sig, sig_t action)
2327 {
2328 	struct proc *p = td->td_proc;
2329 	register int prop;
2330 
2331 	PROC_LOCK_ASSERT(p, MA_OWNED);
2332 	mtx_assert(&sched_lock, MA_OWNED);
2333 	prop = sigprop(sig);
2334 
2335 	/*
2336 	 * Bring the priority of a thread up if we want it to get
2337 	 * killed in this lifetime.
2338 	 */
2339 	if (action == SIG_DFL && (prop & SA_KILL)) {
2340 		if (p->p_nice > 0)
2341 			sched_nice(td->td_proc, 0);
2342 		if (td->td_priority > PUSER)
2343 			sched_prio(td, PUSER);
2344 	}
2345 
2346 	if (TD_ON_SLEEPQ(td)) {
2347 		/*
2348 		 * If thread is sleeping uninterruptibly
2349 		 * we can't interrupt the sleep... the signal will
2350 		 * be noticed when the process returns through
2351 		 * trap() or syscall().
2352 		 */
2353 		if ((td->td_flags & TDF_SINTR) == 0)
2354 			return;
2355 		/*
2356 		 * If SIGCONT is default (or ignored) and process is
2357 		 * asleep, we are finished; the process should not
2358 		 * be awakened.
2359 		 */
2360 		if ((prop & SA_CONT) && action == SIG_DFL) {
2361 			mtx_unlock_spin(&sched_lock);
2362 			sigqueue_delete(&p->p_sigqueue, sig);
2363 			/*
2364 			 * It may be on either list in this state.
2365 			 * Remove from both for now.
2366 			 */
2367 			sigqueue_delete(&td->td_sigqueue, sig);
2368 			mtx_lock_spin(&sched_lock);
2369 			return;
2370 		}
2371 
2372 		/*
2373 		 * Give low priority threads a better chance to run.
2374 		 */
2375 		if (td->td_priority > PUSER)
2376 			sched_prio(td, PUSER);
2377 
2378 		sleepq_abort(td);
2379 	} else {
2380 		/*
2381 		 * Other states do nothing with the signal immediately,
2382 		 * other than kicking ourselves if we are running.
2383 		 * It will either never be noticed, or noticed very soon.
2384 		 */
2385 #ifdef SMP
2386 		if (TD_IS_RUNNING(td) && td != curthread)
2387 			forward_signal(td);
2388 #endif
2389 	}
2390 }
2391 
2392 static void
2393 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2394 {
2395 	struct thread *td2;
2396 
2397 	PROC_LOCK_ASSERT(p, MA_OWNED);
2398 	mtx_assert(&sched_lock, MA_OWNED);
2399 
2400 	FOREACH_THREAD_IN_PROC(p, td2) {
2401 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2402 		    (td2->td_flags & TDF_SINTR) &&
2403 		    !TD_IS_SUSPENDED(td2)) {
2404 			thread_suspend_one(td2);
2405 		} else {
2406 			if (sending || td != td2)
2407 				td2->td_flags |= TDF_ASTPENDING;
2408 #ifdef SMP
2409 			if (TD_IS_RUNNING(td2) && td2 != td)
2410 				forward_signal(td2);
2411 #endif
2412 		}
2413 	}
2414 }
2415 
2416 int
2417 ptracestop(struct thread *td, int sig)
2418 {
2419 	struct proc *p = td->td_proc;
2420 
2421 	PROC_LOCK_ASSERT(p, MA_OWNED);
2422 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2423 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2424 
2425 	mtx_lock_spin(&sched_lock);
2426 	td->td_flags |= TDF_XSIG;
2427 	mtx_unlock_spin(&sched_lock);
2428 	td->td_xsig = sig;
2429 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2430 		if (p->p_flag & P_SINGLE_EXIT) {
2431 			mtx_lock_spin(&sched_lock);
2432 			td->td_flags &= ~TDF_XSIG;
2433 			mtx_unlock_spin(&sched_lock);
2434 			return (sig);
2435 		}
2436 		/*
2437 		 * Just make wait() to work, the last stopped thread
2438 		 * will win.
2439 		 */
2440 		p->p_xstat = sig;
2441 		p->p_xthread = td;
2442 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2443 		mtx_lock_spin(&sched_lock);
2444 		sig_suspend_threads(td, p, 0);
2445 stopme:
2446 		thread_stopped(p);
2447 		thread_suspend_one(td);
2448 		PROC_UNLOCK(p);
2449 		DROP_GIANT();
2450 		mi_switch(SW_VOL, NULL);
2451 		mtx_unlock_spin(&sched_lock);
2452 		PICKUP_GIANT();
2453 		PROC_LOCK(p);
2454 		if (!(p->p_flag & P_TRACED))
2455 			break;
2456 		if (td->td_flags & TDF_DBSUSPEND) {
2457 			if (p->p_flag & P_SINGLE_EXIT)
2458 				break;
2459 			mtx_lock_spin(&sched_lock);
2460 			goto stopme;
2461 		}
2462 	}
2463 	return (td->td_xsig);
2464 }
2465 
2466 /*
2467  * If the current process has received a signal (should be caught or cause
2468  * termination, should interrupt current syscall), return the signal number.
2469  * Stop signals with default action are processed immediately, then cleared;
2470  * they aren't returned.  This is checked after each entry to the system for
2471  * a syscall or trap (though this can usually be done without calling issignal
2472  * by checking the pending signal masks in cursig.) The normal call
2473  * sequence is
2474  *
2475  *	while (sig = cursig(curthread))
2476  *		postsig(sig);
2477  */
2478 static int
2479 issignal(td)
2480 	struct thread *td;
2481 {
2482 	struct proc *p;
2483 	struct sigacts *ps;
2484 	sigset_t sigpending;
2485 	int sig, prop, newsig;
2486 
2487 	p = td->td_proc;
2488 	ps = p->p_sigacts;
2489 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2490 	PROC_LOCK_ASSERT(p, MA_OWNED);
2491 	for (;;) {
2492 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2493 
2494 		sigpending = td->td_sigqueue.sq_signals;
2495 		SIGSETNAND(sigpending, td->td_sigmask);
2496 
2497 		if (p->p_flag & P_PPWAIT)
2498 			SIG_STOPSIGMASK(sigpending);
2499 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2500 			return (0);
2501 		sig = sig_ffs(&sigpending);
2502 
2503 		if (p->p_stops & S_SIG) {
2504 			mtx_unlock(&ps->ps_mtx);
2505 			stopevent(p, S_SIG, sig);
2506 			mtx_lock(&ps->ps_mtx);
2507 		}
2508 
2509 		/*
2510 		 * We should see pending but ignored signals
2511 		 * only if P_TRACED was on when they were posted.
2512 		 */
2513 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2514 			sigqueue_delete(&td->td_sigqueue, sig);
2515 			if (td->td_pflags & TDP_SA)
2516 				SIGADDSET(td->td_sigmask, sig);
2517 			continue;
2518 		}
2519 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2520 			/*
2521 			 * If traced, always stop.
2522 			 */
2523 			mtx_unlock(&ps->ps_mtx);
2524 			newsig = ptracestop(td, sig);
2525 			mtx_lock(&ps->ps_mtx);
2526 
2527 			if (td->td_pflags & TDP_SA)
2528 				SIGADDSET(td->td_sigmask, sig);
2529 
2530 			if (sig != newsig) {
2531 				ksiginfo_t ksi;
2532 				/*
2533 				 * clear old signal.
2534 				 * XXX shrug off debugger, it causes siginfo to
2535 				 * be thrown away.
2536 				 */
2537 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2538 
2539 				/*
2540 				 * If parent wants us to take the signal,
2541 				 * then it will leave it in p->p_xstat;
2542 				 * otherwise we just look for signals again.
2543 			 	*/
2544 				if (newsig == 0)
2545 					continue;
2546 				sig = newsig;
2547 
2548 				/*
2549 				 * Put the new signal into td_sigqueue. If the
2550 				 * signal is being masked, look for other signals.
2551 				 */
2552 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2553 				if (td->td_pflags & TDP_SA)
2554 					SIGDELSET(td->td_sigmask, sig);
2555 				if (SIGISMEMBER(td->td_sigmask, sig))
2556 					continue;
2557 				signotify(td);
2558 			}
2559 
2560 			/*
2561 			 * If the traced bit got turned off, go back up
2562 			 * to the top to rescan signals.  This ensures
2563 			 * that p_sig* and p_sigact are consistent.
2564 			 */
2565 			if ((p->p_flag & P_TRACED) == 0)
2566 				continue;
2567 		}
2568 
2569 		prop = sigprop(sig);
2570 
2571 		/*
2572 		 * Decide whether the signal should be returned.
2573 		 * Return the signal's number, or fall through
2574 		 * to clear it from the pending mask.
2575 		 */
2576 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2577 
2578 		case (intptr_t)SIG_DFL:
2579 			/*
2580 			 * Don't take default actions on system processes.
2581 			 */
2582 			if (p->p_pid <= 1) {
2583 #ifdef DIAGNOSTIC
2584 				/*
2585 				 * Are you sure you want to ignore SIGSEGV
2586 				 * in init? XXX
2587 				 */
2588 				printf("Process (pid %lu) got signal %d\n",
2589 					(u_long)p->p_pid, sig);
2590 #endif
2591 				break;		/* == ignore */
2592 			}
2593 			/*
2594 			 * If there is a pending stop signal to process
2595 			 * with default action, stop here,
2596 			 * then clear the signal.  However,
2597 			 * if process is member of an orphaned
2598 			 * process group, ignore tty stop signals.
2599 			 */
2600 			if (prop & SA_STOP) {
2601 				if (p->p_flag & P_TRACED ||
2602 		    		    (p->p_pgrp->pg_jobc == 0 &&
2603 				     prop & SA_TTYSTOP))
2604 					break;	/* == ignore */
2605 				mtx_unlock(&ps->ps_mtx);
2606 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2607 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2608 				p->p_flag |= P_STOPPED_SIG;
2609 				p->p_xstat = sig;
2610 				mtx_lock_spin(&sched_lock);
2611 				sig_suspend_threads(td, p, 0);
2612 				thread_stopped(p);
2613 				thread_suspend_one(td);
2614 				PROC_UNLOCK(p);
2615 				DROP_GIANT();
2616 				mi_switch(SW_INVOL, NULL);
2617 				mtx_unlock_spin(&sched_lock);
2618 				PICKUP_GIANT();
2619 				PROC_LOCK(p);
2620 				mtx_lock(&ps->ps_mtx);
2621 				break;
2622 			} else if (prop & SA_IGNORE) {
2623 				/*
2624 				 * Except for SIGCONT, shouldn't get here.
2625 				 * Default action is to ignore; drop it.
2626 				 */
2627 				break;		/* == ignore */
2628 			} else
2629 				return (sig);
2630 			/*NOTREACHED*/
2631 
2632 		case (intptr_t)SIG_IGN:
2633 			/*
2634 			 * Masking above should prevent us ever trying
2635 			 * to take action on an ignored signal other
2636 			 * than SIGCONT, unless process is traced.
2637 			 */
2638 			if ((prop & SA_CONT) == 0 &&
2639 			    (p->p_flag & P_TRACED) == 0)
2640 				printf("issignal\n");
2641 			break;		/* == ignore */
2642 
2643 		default:
2644 			/*
2645 			 * This signal has an action, let
2646 			 * postsig() process it.
2647 			 */
2648 			return (sig);
2649 		}
2650 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2651 	}
2652 	/* NOTREACHED */
2653 }
2654 
2655 /*
2656  * MPSAFE
2657  */
2658 void
2659 thread_stopped(struct proc *p)
2660 {
2661 	struct proc *p1 = curthread->td_proc;
2662 	int n;
2663 
2664 	PROC_LOCK_ASSERT(p, MA_OWNED);
2665 	mtx_assert(&sched_lock, MA_OWNED);
2666 	n = p->p_suspcount;
2667 	if (p == p1)
2668 		n++;
2669 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2670 		mtx_unlock_spin(&sched_lock);
2671 		p->p_flag &= ~P_WAITED;
2672 		PROC_LOCK(p->p_pptr);
2673 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2674 			CLD_TRAPPED : CLD_STOPPED);
2675 		PROC_UNLOCK(p->p_pptr);
2676 		mtx_lock_spin(&sched_lock);
2677 	}
2678 }
2679 
2680 /*
2681  * Take the action for the specified signal
2682  * from the current set of pending signals.
2683  */
2684 void
2685 postsig(sig)
2686 	register int sig;
2687 {
2688 	struct thread *td = curthread;
2689 	register struct proc *p = td->td_proc;
2690 	struct sigacts *ps;
2691 	sig_t action;
2692 	ksiginfo_t ksi;
2693 	sigset_t returnmask;
2694 	int code;
2695 
2696 	KASSERT(sig != 0, ("postsig"));
2697 
2698 	PROC_LOCK_ASSERT(p, MA_OWNED);
2699 	ps = p->p_sigacts;
2700 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2701 	ksiginfo_init(&ksi);
2702 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2703 	ksi.ksi_signo = sig;
2704 	if (ksi.ksi_code == SI_TIMER)
2705 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2706 	action = ps->ps_sigact[_SIG_IDX(sig)];
2707 #ifdef KTRACE
2708 	if (KTRPOINT(td, KTR_PSIG))
2709 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2710 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2711 #endif
2712 	if (p->p_stops & S_SIG) {
2713 		mtx_unlock(&ps->ps_mtx);
2714 		stopevent(p, S_SIG, sig);
2715 		mtx_lock(&ps->ps_mtx);
2716 	}
2717 
2718 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2719 		/*
2720 		 * Default action, where the default is to kill
2721 		 * the process.  (Other cases were ignored above.)
2722 		 */
2723 		mtx_unlock(&ps->ps_mtx);
2724 		sigexit(td, sig);
2725 		/* NOTREACHED */
2726 	} else {
2727 		if (td->td_pflags & TDP_SA) {
2728 			if (sig == SIGKILL) {
2729 				mtx_unlock(&ps->ps_mtx);
2730 				sigexit(td, sig);
2731 			}
2732 		}
2733 
2734 		/*
2735 		 * If we get here, the signal must be caught.
2736 		 */
2737 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2738 		    ("postsig action"));
2739 		/*
2740 		 * Set the new mask value and also defer further
2741 		 * occurrences of this signal.
2742 		 *
2743 		 * Special case: user has done a sigsuspend.  Here the
2744 		 * current mask is not of interest, but rather the
2745 		 * mask from before the sigsuspend is what we want
2746 		 * restored after the signal processing is completed.
2747 		 */
2748 		if (td->td_pflags & TDP_OLDMASK) {
2749 			returnmask = td->td_oldsigmask;
2750 			td->td_pflags &= ~TDP_OLDMASK;
2751 		} else
2752 			returnmask = td->td_sigmask;
2753 
2754 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2755 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2756 			SIGADDSET(td->td_sigmask, sig);
2757 
2758 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2759 			/*
2760 			 * See kern_sigaction() for origin of this code.
2761 			 */
2762 			SIGDELSET(ps->ps_sigcatch, sig);
2763 			if (sig != SIGCONT &&
2764 			    sigprop(sig) & SA_IGNORE)
2765 				SIGADDSET(ps->ps_sigignore, sig);
2766 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2767 		}
2768 		p->p_stats->p_ru.ru_nsignals++;
2769 		if (p->p_sig != sig) {
2770 			code = 0;
2771 		} else {
2772 			code = p->p_code;
2773 			p->p_code = 0;
2774 			p->p_sig = 0;
2775 		}
2776 		if (td->td_pflags & TDP_SA)
2777 			thread_signal_add(curthread, &ksi);
2778 		else
2779 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2780 	}
2781 }
2782 
2783 /*
2784  * Kill the current process for stated reason.
2785  */
2786 void
2787 killproc(p, why)
2788 	struct proc *p;
2789 	char *why;
2790 {
2791 
2792 	PROC_LOCK_ASSERT(p, MA_OWNED);
2793 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2794 		p, p->p_pid, p->p_comm);
2795 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2796 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2797 	psignal(p, SIGKILL);
2798 }
2799 
2800 /*
2801  * Force the current process to exit with the specified signal, dumping core
2802  * if appropriate.  We bypass the normal tests for masked and caught signals,
2803  * allowing unrecoverable failures to terminate the process without changing
2804  * signal state.  Mark the accounting record with the signal termination.
2805  * If dumping core, save the signal number for the debugger.  Calls exit and
2806  * does not return.
2807  *
2808  * MPSAFE
2809  */
2810 void
2811 sigexit(td, sig)
2812 	struct thread *td;
2813 	int sig;
2814 {
2815 	struct proc *p = td->td_proc;
2816 
2817 	PROC_LOCK_ASSERT(p, MA_OWNED);
2818 	p->p_acflag |= AXSIG;
2819 	/*
2820 	 * We must be single-threading to generate a core dump.  This
2821 	 * ensures that the registers in the core file are up-to-date.
2822 	 * Also, the ELF dump handler assumes that the thread list doesn't
2823 	 * change out from under it.
2824 	 *
2825 	 * XXX If another thread attempts to single-thread before us
2826 	 *     (e.g. via fork()), we won't get a dump at all.
2827 	 */
2828 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2829 		p->p_sig = sig;
2830 		/*
2831 		 * Log signals which would cause core dumps
2832 		 * (Log as LOG_INFO to appease those who don't want
2833 		 * these messages.)
2834 		 * XXX : Todo, as well as euid, write out ruid too
2835 		 * Note that coredump() drops proc lock.
2836 		 */
2837 		if (coredump(td) == 0)
2838 			sig |= WCOREFLAG;
2839 		if (kern_logsigexit)
2840 			log(LOG_INFO,
2841 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2842 			    p->p_pid, p->p_comm,
2843 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2844 			    sig &~ WCOREFLAG,
2845 			    sig & WCOREFLAG ? " (core dumped)" : "");
2846 	} else
2847 		PROC_UNLOCK(p);
2848 	exit1(td, W_EXITCODE(0, sig));
2849 	/* NOTREACHED */
2850 }
2851 
2852 /*
2853  * Send queued SIGCHLD to parent when child process's state
2854  * is changed.
2855  */
2856 static void
2857 sigparent(struct proc *p, int reason, int status)
2858 {
2859 	PROC_LOCK_ASSERT(p, MA_OWNED);
2860 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2861 
2862 	if (p->p_ksi != NULL) {
2863 		p->p_ksi->ksi_signo  = SIGCHLD;
2864 		p->p_ksi->ksi_code   = reason;
2865 		p->p_ksi->ksi_status = status;
2866 		p->p_ksi->ksi_pid    = p->p_pid;
2867 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2868 		if (KSI_ONQ(p->p_ksi))
2869 			return;
2870 	}
2871 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2872 }
2873 
2874 static void
2875 childproc_jobstate(struct proc *p, int reason, int status)
2876 {
2877 	struct sigacts *ps;
2878 
2879 	PROC_LOCK_ASSERT(p, MA_OWNED);
2880 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2881 
2882 	/*
2883 	 * Wake up parent sleeping in kern_wait(), also send
2884 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2885 	 * that parent will awake, because parent may masked
2886 	 * the signal.
2887 	 */
2888 	p->p_pptr->p_flag |= P_STATCHILD;
2889 	wakeup(p->p_pptr);
2890 
2891 	ps = p->p_pptr->p_sigacts;
2892 	mtx_lock(&ps->ps_mtx);
2893 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2894 		mtx_unlock(&ps->ps_mtx);
2895 		sigparent(p, reason, status);
2896 	} else
2897 		mtx_unlock(&ps->ps_mtx);
2898 }
2899 
2900 void
2901 childproc_stopped(struct proc *p, int reason)
2902 {
2903 	childproc_jobstate(p, reason, p->p_xstat);
2904 }
2905 
2906 void
2907 childproc_continued(struct proc *p)
2908 {
2909 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2910 }
2911 
2912 void
2913 childproc_exited(struct proc *p)
2914 {
2915 	int reason;
2916 	int status = p->p_xstat; /* convert to int */
2917 
2918 	reason = CLD_EXITED;
2919 	if (WCOREDUMP(status))
2920 		reason = CLD_DUMPED;
2921 	else if (WIFSIGNALED(status))
2922 		reason = CLD_KILLED;
2923 	/*
2924 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2925 	 * done in exit1().
2926 	 */
2927 	sigparent(p, reason, status);
2928 }
2929 
2930 static char corefilename[MAXPATHLEN] = {"%N.core"};
2931 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2932 	      sizeof(corefilename), "process corefile name format string");
2933 
2934 /*
2935  * expand_name(name, uid, pid)
2936  * Expand the name described in corefilename, using name, uid, and pid.
2937  * corefilename is a printf-like string, with three format specifiers:
2938  *	%N	name of process ("name")
2939  *	%P	process id (pid)
2940  *	%U	user id (uid)
2941  * For example, "%N.core" is the default; they can be disabled completely
2942  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2943  * This is controlled by the sysctl variable kern.corefile (see above).
2944  */
2945 
2946 static char *
2947 expand_name(name, uid, pid)
2948 	const char *name;
2949 	uid_t uid;
2950 	pid_t pid;
2951 {
2952 	const char *format, *appendstr;
2953 	char *temp;
2954 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2955 	size_t i, l, n;
2956 
2957 	format = corefilename;
2958 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2959 	if (temp == NULL)
2960 		return (NULL);
2961 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2962 		switch (format[i]) {
2963 		case '%':	/* Format character */
2964 			i++;
2965 			switch (format[i]) {
2966 			case '%':
2967 				appendstr = "%";
2968 				break;
2969 			case 'N':	/* process name */
2970 				appendstr = name;
2971 				break;
2972 			case 'P':	/* process id */
2973 				sprintf(buf, "%u", pid);
2974 				appendstr = buf;
2975 				break;
2976 			case 'U':	/* user id */
2977 				sprintf(buf, "%u", uid);
2978 				appendstr = buf;
2979 				break;
2980 			default:
2981 				appendstr = "";
2982 			  	log(LOG_ERR,
2983 				    "Unknown format character %c in `%s'\n",
2984 				    format[i], format);
2985 			}
2986 			l = strlen(appendstr);
2987 			if ((n + l) >= MAXPATHLEN)
2988 				goto toolong;
2989 			memcpy(temp + n, appendstr, l);
2990 			n += l;
2991 			break;
2992 		default:
2993 			temp[n++] = format[i];
2994 		}
2995 	}
2996 	if (format[i] != '\0')
2997 		goto toolong;
2998 	return (temp);
2999 toolong:
3000 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3001 	    (long)pid, name, (u_long)uid);
3002 	free(temp, M_TEMP);
3003 	return (NULL);
3004 }
3005 
3006 /*
3007  * Dump a process' core.  The main routine does some
3008  * policy checking, and creates the name of the coredump;
3009  * then it passes on a vnode and a size limit to the process-specific
3010  * coredump routine if there is one; if there _is not_ one, it returns
3011  * ENOSYS; otherwise it returns the error from the process-specific routine.
3012  */
3013 
3014 static int
3015 coredump(struct thread *td)
3016 {
3017 	struct proc *p = td->td_proc;
3018 	register struct vnode *vp;
3019 	register struct ucred *cred = td->td_ucred;
3020 	struct flock lf;
3021 	struct nameidata nd;
3022 	struct vattr vattr;
3023 	int error, error1, flags, locked;
3024 	struct mount *mp;
3025 	char *name;			/* name of corefile */
3026 	off_t limit;
3027 
3028 	PROC_LOCK_ASSERT(p, MA_OWNED);
3029 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3030 	_STOPEVENT(p, S_CORE, 0);
3031 
3032 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3033 		PROC_UNLOCK(p);
3034 		return (EFAULT);
3035 	}
3036 
3037 	/*
3038 	 * Note that the bulk of limit checking is done after
3039 	 * the corefile is created.  The exception is if the limit
3040 	 * for corefiles is 0, in which case we don't bother
3041 	 * creating the corefile at all.  This layout means that
3042 	 * a corefile is truncated instead of not being created,
3043 	 * if it is larger than the limit.
3044 	 */
3045 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3046 	PROC_UNLOCK(p);
3047 	if (limit == 0)
3048 		return (EFBIG);
3049 
3050 	mtx_lock(&Giant);
3051 restart:
3052 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3053 	if (name == NULL) {
3054 		mtx_unlock(&Giant);
3055 		return (EINVAL);
3056 	}
3057 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
3058 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3059 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3060 	free(name, M_TEMP);
3061 	if (error) {
3062 		mtx_unlock(&Giant);
3063 		return (error);
3064 	}
3065 	NDFREE(&nd, NDF_ONLY_PNBUF);
3066 	vp = nd.ni_vp;
3067 
3068 	/* Don't dump to non-regular files or files with links. */
3069 	if (vp->v_type != VREG ||
3070 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3071 		VOP_UNLOCK(vp, 0, td);
3072 		error = EFAULT;
3073 		goto out;
3074 	}
3075 
3076 	VOP_UNLOCK(vp, 0, td);
3077 	lf.l_whence = SEEK_SET;
3078 	lf.l_start = 0;
3079 	lf.l_len = 0;
3080 	lf.l_type = F_WRLCK;
3081 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3082 
3083 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3084 		lf.l_type = F_UNLCK;
3085 		if (locked)
3086 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3087 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3088 			return (error);
3089 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3090 			return (error);
3091 		goto restart;
3092 	}
3093 
3094 	VATTR_NULL(&vattr);
3095 	vattr.va_size = 0;
3096 	if (set_core_nodump_flag)
3097 		vattr.va_flags = UF_NODUMP;
3098 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3099 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3100 	VOP_SETATTR(vp, &vattr, cred, td);
3101 	VOP_UNLOCK(vp, 0, td);
3102 	PROC_LOCK(p);
3103 	p->p_acflag |= ACORE;
3104 	PROC_UNLOCK(p);
3105 
3106 	error = p->p_sysent->sv_coredump ?
3107 	  p->p_sysent->sv_coredump(td, vp, limit) :
3108 	  ENOSYS;
3109 
3110 	if (locked) {
3111 		lf.l_type = F_UNLCK;
3112 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3113 	}
3114 	vn_finished_write(mp);
3115 out:
3116 	error1 = vn_close(vp, FWRITE, cred, td);
3117 	mtx_unlock(&Giant);
3118 	if (error == 0)
3119 		error = error1;
3120 	return (error);
3121 }
3122 
3123 /*
3124  * Nonexistent system call-- signal process (may want to handle it).
3125  * Flag error in case process won't see signal immediately (blocked or ignored).
3126  */
3127 #ifndef _SYS_SYSPROTO_H_
3128 struct nosys_args {
3129 	int	dummy;
3130 };
3131 #endif
3132 /*
3133  * MPSAFE
3134  */
3135 /* ARGSUSED */
3136 int
3137 nosys(td, args)
3138 	struct thread *td;
3139 	struct nosys_args *args;
3140 {
3141 	struct proc *p = td->td_proc;
3142 
3143 	PROC_LOCK(p);
3144 	psignal(p, SIGSYS);
3145 	PROC_UNLOCK(p);
3146 	return (ENOSYS);
3147 }
3148 
3149 /*
3150  * Send a SIGIO or SIGURG signal to a process or process group using
3151  * stored credentials rather than those of the current process.
3152  */
3153 void
3154 pgsigio(sigiop, sig, checkctty)
3155 	struct sigio **sigiop;
3156 	int sig, checkctty;
3157 {
3158 	struct sigio *sigio;
3159 
3160 	SIGIO_LOCK();
3161 	sigio = *sigiop;
3162 	if (sigio == NULL) {
3163 		SIGIO_UNLOCK();
3164 		return;
3165 	}
3166 	if (sigio->sio_pgid > 0) {
3167 		PROC_LOCK(sigio->sio_proc);
3168 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3169 			psignal(sigio->sio_proc, sig);
3170 		PROC_UNLOCK(sigio->sio_proc);
3171 	} else if (sigio->sio_pgid < 0) {
3172 		struct proc *p;
3173 
3174 		PGRP_LOCK(sigio->sio_pgrp);
3175 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3176 			PROC_LOCK(p);
3177 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3178 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3179 				psignal(p, sig);
3180 			PROC_UNLOCK(p);
3181 		}
3182 		PGRP_UNLOCK(sigio->sio_pgrp);
3183 	}
3184 	SIGIO_UNLOCK();
3185 }
3186 
3187 static int
3188 filt_sigattach(struct knote *kn)
3189 {
3190 	struct proc *p = curproc;
3191 
3192 	kn->kn_ptr.p_proc = p;
3193 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3194 
3195 	knlist_add(&p->p_klist, kn, 0);
3196 
3197 	return (0);
3198 }
3199 
3200 static void
3201 filt_sigdetach(struct knote *kn)
3202 {
3203 	struct proc *p = kn->kn_ptr.p_proc;
3204 
3205 	knlist_remove(&p->p_klist, kn, 0);
3206 }
3207 
3208 /*
3209  * signal knotes are shared with proc knotes, so we apply a mask to
3210  * the hint in order to differentiate them from process hints.  This
3211  * could be avoided by using a signal-specific knote list, but probably
3212  * isn't worth the trouble.
3213  */
3214 static int
3215 filt_signal(struct knote *kn, long hint)
3216 {
3217 
3218 	if (hint & NOTE_SIGNAL) {
3219 		hint &= ~NOTE_SIGNAL;
3220 
3221 		if (kn->kn_id == hint)
3222 			kn->kn_data++;
3223 	}
3224 	return (kn->kn_data != 0);
3225 }
3226 
3227 struct sigacts *
3228 sigacts_alloc(void)
3229 {
3230 	struct sigacts *ps;
3231 
3232 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3233 	ps->ps_refcnt = 1;
3234 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3235 	return (ps);
3236 }
3237 
3238 void
3239 sigacts_free(struct sigacts *ps)
3240 {
3241 
3242 	mtx_lock(&ps->ps_mtx);
3243 	ps->ps_refcnt--;
3244 	if (ps->ps_refcnt == 0) {
3245 		mtx_destroy(&ps->ps_mtx);
3246 		free(ps, M_SUBPROC);
3247 	} else
3248 		mtx_unlock(&ps->ps_mtx);
3249 }
3250 
3251 struct sigacts *
3252 sigacts_hold(struct sigacts *ps)
3253 {
3254 	mtx_lock(&ps->ps_mtx);
3255 	ps->ps_refcnt++;
3256 	mtx_unlock(&ps->ps_mtx);
3257 	return (ps);
3258 }
3259 
3260 void
3261 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3262 {
3263 
3264 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3265 	mtx_lock(&src->ps_mtx);
3266 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3267 	mtx_unlock(&src->ps_mtx);
3268 }
3269 
3270 int
3271 sigacts_shared(struct sigacts *ps)
3272 {
3273 	int shared;
3274 
3275 	mtx_lock(&ps->ps_mtx);
3276 	shared = ps->ps_refcnt > 1;
3277 	mtx_unlock(&ps->ps_mtx);
3278 	return (shared);
3279 }
3280