xref: /freebsd/sys/kern/kern_sig.c (revision 3823d5e198425b4f5e5a80267d195769d1063773)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 #include "opt_core.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/signalvar.h>
47 #include <sys/vnode.h>
48 #include <sys/acct.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/event.h>
52 #include <sys/fcntl.h>
53 #include <sys/imgact.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/refcount.h>
61 #include <sys/namei.h>
62 #include <sys/proc.h>
63 #include <sys/procdesc.h>
64 #include <sys/posix4.h>
65 #include <sys/pioctl.h>
66 #include <sys/racct.h>
67 #include <sys/resourcevar.h>
68 #include <sys/sdt.h>
69 #include <sys/sbuf.h>
70 #include <sys/sleepqueue.h>
71 #include <sys/smp.h>
72 #include <sys/stat.h>
73 #include <sys/sx.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76 #include <sys/sysent.h>
77 #include <sys/syslog.h>
78 #include <sys/sysproto.h>
79 #include <sys/timers.h>
80 #include <sys/unistd.h>
81 #include <sys/wait.h>
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/uma.h>
85 
86 #include <sys/jail.h>
87 
88 #include <machine/cpu.h>
89 
90 #include <security/audit/audit.h>
91 
92 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
93 
94 SDT_PROVIDER_DECLARE(proc);
95 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, "struct thread *",
96     "struct proc *", "int");
97 SDT_PROBE_DEFINE2(proc, kernel, , signal__clear, "int",
98     "ksiginfo_t *");
99 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
100     "struct thread *", "struct proc *", "int");
101 
102 static int	coredump(struct thread *);
103 static int	killpg1(struct thread *td, int sig, int pgid, int all,
104 		    ksiginfo_t *ksi);
105 static int	issignal(struct thread *td);
106 static int	sigprop(int sig);
107 static void	tdsigwakeup(struct thread *, int, sig_t, int);
108 static void	sig_suspend_threads(struct thread *, struct proc *, int);
109 static int	filt_sigattach(struct knote *kn);
110 static void	filt_sigdetach(struct knote *kn);
111 static int	filt_signal(struct knote *kn, long hint);
112 static struct thread *sigtd(struct proc *p, int sig, int prop);
113 static void	sigqueue_start(void);
114 
115 static uma_zone_t	ksiginfo_zone = NULL;
116 struct filterops sig_filtops = {
117 	.f_isfd = 0,
118 	.f_attach = filt_sigattach,
119 	.f_detach = filt_sigdetach,
120 	.f_event = filt_signal,
121 };
122 
123 static int	kern_logsigexit = 1;
124 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
125     &kern_logsigexit, 0,
126     "Log processes quitting on abnormal signals to syslog(3)");
127 
128 static int	kern_forcesigexit = 1;
129 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
130     &kern_forcesigexit, 0, "Force trap signal to be handled");
131 
132 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
133     "POSIX real time signal");
134 
135 static int	max_pending_per_proc = 128;
136 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
137     &max_pending_per_proc, 0, "Max pending signals per proc");
138 
139 static int	preallocate_siginfo = 1024;
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
141     &preallocate_siginfo, 0, "Preallocated signal memory size");
142 
143 static int	signal_overflow = 0;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
145     &signal_overflow, 0, "Number of signals overflew");
146 
147 static int	signal_alloc_fail = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
149     &signal_alloc_fail, 0, "signals failed to be allocated");
150 
151 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
152 
153 /*
154  * Policy -- Can ucred cr1 send SIGIO to process cr2?
155  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
156  * in the right situations.
157  */
158 #define CANSIGIO(cr1, cr2) \
159 	((cr1)->cr_uid == 0 || \
160 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
161 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
162 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
163 	    (cr1)->cr_uid == (cr2)->cr_uid)
164 
165 static int	sugid_coredump;
166 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
167     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
168 
169 static int	capmode_coredump;
170 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
171     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
172 
173 static int	do_coredump = 1;
174 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
175 	&do_coredump, 0, "Enable/Disable coredumps");
176 
177 static int	set_core_nodump_flag = 0;
178 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
179 	0, "Enable setting the NODUMP flag on coredump files");
180 
181 /*
182  * Signal properties and actions.
183  * The array below categorizes the signals and their default actions
184  * according to the following properties:
185  */
186 #define	SA_KILL		0x01		/* terminates process by default */
187 #define	SA_CORE		0x02		/* ditto and coredumps */
188 #define	SA_STOP		0x04		/* suspend process */
189 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
190 #define	SA_IGNORE	0x10		/* ignore by default */
191 #define	SA_CONT		0x20		/* continue if suspended */
192 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
193 
194 static int sigproptbl[NSIG] = {
195 	SA_KILL,			/* SIGHUP */
196 	SA_KILL,			/* SIGINT */
197 	SA_KILL|SA_CORE,		/* SIGQUIT */
198 	SA_KILL|SA_CORE,		/* SIGILL */
199 	SA_KILL|SA_CORE,		/* SIGTRAP */
200 	SA_KILL|SA_CORE,		/* SIGABRT */
201 	SA_KILL|SA_CORE,		/* SIGEMT */
202 	SA_KILL|SA_CORE,		/* SIGFPE */
203 	SA_KILL,			/* SIGKILL */
204 	SA_KILL|SA_CORE,		/* SIGBUS */
205 	SA_KILL|SA_CORE,		/* SIGSEGV */
206 	SA_KILL|SA_CORE,		/* SIGSYS */
207 	SA_KILL,			/* SIGPIPE */
208 	SA_KILL,			/* SIGALRM */
209 	SA_KILL,			/* SIGTERM */
210 	SA_IGNORE,			/* SIGURG */
211 	SA_STOP,			/* SIGSTOP */
212 	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
213 	SA_IGNORE|SA_CONT,		/* SIGCONT */
214 	SA_IGNORE,			/* SIGCHLD */
215 	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
216 	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
217 	SA_IGNORE,			/* SIGIO */
218 	SA_KILL,			/* SIGXCPU */
219 	SA_KILL,			/* SIGXFSZ */
220 	SA_KILL,			/* SIGVTALRM */
221 	SA_KILL,			/* SIGPROF */
222 	SA_IGNORE,			/* SIGWINCH  */
223 	SA_IGNORE,			/* SIGINFO */
224 	SA_KILL,			/* SIGUSR1 */
225 	SA_KILL,			/* SIGUSR2 */
226 };
227 
228 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
229 
230 static void
231 sigqueue_start(void)
232 {
233 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
234 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
235 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
236 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
237 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
238 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
239 }
240 
241 ksiginfo_t *
242 ksiginfo_alloc(int wait)
243 {
244 	int flags;
245 
246 	flags = M_ZERO;
247 	if (! wait)
248 		flags |= M_NOWAIT;
249 	if (ksiginfo_zone != NULL)
250 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
251 	return (NULL);
252 }
253 
254 void
255 ksiginfo_free(ksiginfo_t *ksi)
256 {
257 	uma_zfree(ksiginfo_zone, ksi);
258 }
259 
260 static __inline int
261 ksiginfo_tryfree(ksiginfo_t *ksi)
262 {
263 	if (!(ksi->ksi_flags & KSI_EXT)) {
264 		uma_zfree(ksiginfo_zone, ksi);
265 		return (1);
266 	}
267 	return (0);
268 }
269 
270 void
271 sigqueue_init(sigqueue_t *list, struct proc *p)
272 {
273 	SIGEMPTYSET(list->sq_signals);
274 	SIGEMPTYSET(list->sq_kill);
275 	TAILQ_INIT(&list->sq_list);
276 	list->sq_proc = p;
277 	list->sq_flags = SQ_INIT;
278 }
279 
280 /*
281  * Get a signal's ksiginfo.
282  * Return:
283  *	0	-	signal not found
284  *	others	-	signal number
285  */
286 static int
287 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
288 {
289 	struct proc *p = sq->sq_proc;
290 	struct ksiginfo *ksi, *next;
291 	int count = 0;
292 
293 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
294 
295 	if (!SIGISMEMBER(sq->sq_signals, signo))
296 		return (0);
297 
298 	if (SIGISMEMBER(sq->sq_kill, signo)) {
299 		count++;
300 		SIGDELSET(sq->sq_kill, signo);
301 	}
302 
303 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
304 		if (ksi->ksi_signo == signo) {
305 			if (count == 0) {
306 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
307 				ksi->ksi_sigq = NULL;
308 				ksiginfo_copy(ksi, si);
309 				if (ksiginfo_tryfree(ksi) && p != NULL)
310 					p->p_pendingcnt--;
311 			}
312 			if (++count > 1)
313 				break;
314 		}
315 	}
316 
317 	if (count <= 1)
318 		SIGDELSET(sq->sq_signals, signo);
319 	si->ksi_signo = signo;
320 	return (signo);
321 }
322 
323 void
324 sigqueue_take(ksiginfo_t *ksi)
325 {
326 	struct ksiginfo *kp;
327 	struct proc	*p;
328 	sigqueue_t	*sq;
329 
330 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
331 		return;
332 
333 	p = sq->sq_proc;
334 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
335 	ksi->ksi_sigq = NULL;
336 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
337 		p->p_pendingcnt--;
338 
339 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
340 	     kp = TAILQ_NEXT(kp, ksi_link)) {
341 		if (kp->ksi_signo == ksi->ksi_signo)
342 			break;
343 	}
344 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
345 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
346 }
347 
348 static int
349 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
350 {
351 	struct proc *p = sq->sq_proc;
352 	struct ksiginfo *ksi;
353 	int ret = 0;
354 
355 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
356 
357 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
358 		SIGADDSET(sq->sq_kill, signo);
359 		goto out_set_bit;
360 	}
361 
362 	/* directly insert the ksi, don't copy it */
363 	if (si->ksi_flags & KSI_INS) {
364 		if (si->ksi_flags & KSI_HEAD)
365 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
366 		else
367 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
368 		si->ksi_sigq = sq;
369 		goto out_set_bit;
370 	}
371 
372 	if (__predict_false(ksiginfo_zone == NULL)) {
373 		SIGADDSET(sq->sq_kill, signo);
374 		goto out_set_bit;
375 	}
376 
377 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
378 		signal_overflow++;
379 		ret = EAGAIN;
380 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
381 		signal_alloc_fail++;
382 		ret = EAGAIN;
383 	} else {
384 		if (p != NULL)
385 			p->p_pendingcnt++;
386 		ksiginfo_copy(si, ksi);
387 		ksi->ksi_signo = signo;
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
392 		ksi->ksi_sigq = sq;
393 	}
394 
395 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
396 	    (si->ksi_flags & KSI_SIGQ) == 0) {
397 		if (ret != 0)
398 			SIGADDSET(sq->sq_kill, signo);
399 		ret = 0;
400 		goto out_set_bit;
401 	}
402 
403 	if (ret != 0)
404 		return (ret);
405 
406 out_set_bit:
407 	SIGADDSET(sq->sq_signals, signo);
408 	return (ret);
409 }
410 
411 void
412 sigqueue_flush(sigqueue_t *sq)
413 {
414 	struct proc *p = sq->sq_proc;
415 	ksiginfo_t *ksi;
416 
417 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
418 
419 	if (p != NULL)
420 		PROC_LOCK_ASSERT(p, MA_OWNED);
421 
422 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
423 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
424 		ksi->ksi_sigq = NULL;
425 		if (ksiginfo_tryfree(ksi) && p != NULL)
426 			p->p_pendingcnt--;
427 	}
428 
429 	SIGEMPTYSET(sq->sq_signals);
430 	SIGEMPTYSET(sq->sq_kill);
431 }
432 
433 static void
434 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
435 {
436 	sigset_t tmp;
437 	struct proc *p1, *p2;
438 	ksiginfo_t *ksi, *next;
439 
440 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
441 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
442 	p1 = src->sq_proc;
443 	p2 = dst->sq_proc;
444 	/* Move siginfo to target list */
445 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
446 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
447 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
448 			if (p1 != NULL)
449 				p1->p_pendingcnt--;
450 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
451 			ksi->ksi_sigq = dst;
452 			if (p2 != NULL)
453 				p2->p_pendingcnt++;
454 		}
455 	}
456 
457 	/* Move pending bits to target list */
458 	tmp = src->sq_kill;
459 	SIGSETAND(tmp, *set);
460 	SIGSETOR(dst->sq_kill, tmp);
461 	SIGSETNAND(src->sq_kill, tmp);
462 
463 	tmp = src->sq_signals;
464 	SIGSETAND(tmp, *set);
465 	SIGSETOR(dst->sq_signals, tmp);
466 	SIGSETNAND(src->sq_signals, tmp);
467 }
468 
469 #if 0
470 static void
471 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
472 {
473 	sigset_t set;
474 
475 	SIGEMPTYSET(set);
476 	SIGADDSET(set, signo);
477 	sigqueue_move_set(src, dst, &set);
478 }
479 #endif
480 
481 static void
482 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
483 {
484 	struct proc *p = sq->sq_proc;
485 	ksiginfo_t *ksi, *next;
486 
487 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
488 
489 	/* Remove siginfo queue */
490 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
491 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
492 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = NULL;
494 			if (ksiginfo_tryfree(ksi) && p != NULL)
495 				p->p_pendingcnt--;
496 		}
497 	}
498 	SIGSETNAND(sq->sq_kill, *set);
499 	SIGSETNAND(sq->sq_signals, *set);
500 }
501 
502 void
503 sigqueue_delete(sigqueue_t *sq, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_delete_set(sq, &set);
510 }
511 
512 /* Remove a set of signals for a process */
513 static void
514 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
515 {
516 	sigqueue_t worklist;
517 	struct thread *td0;
518 
519 	PROC_LOCK_ASSERT(p, MA_OWNED);
520 
521 	sigqueue_init(&worklist, NULL);
522 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
523 
524 	FOREACH_THREAD_IN_PROC(p, td0)
525 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
526 
527 	sigqueue_flush(&worklist);
528 }
529 
530 void
531 sigqueue_delete_proc(struct proc *p, int signo)
532 {
533 	sigset_t set;
534 
535 	SIGEMPTYSET(set);
536 	SIGADDSET(set, signo);
537 	sigqueue_delete_set_proc(p, &set);
538 }
539 
540 static void
541 sigqueue_delete_stopmask_proc(struct proc *p)
542 {
543 	sigset_t set;
544 
545 	SIGEMPTYSET(set);
546 	SIGADDSET(set, SIGSTOP);
547 	SIGADDSET(set, SIGTSTP);
548 	SIGADDSET(set, SIGTTIN);
549 	SIGADDSET(set, SIGTTOU);
550 	sigqueue_delete_set_proc(p, &set);
551 }
552 
553 /*
554  * Determine signal that should be delivered to thread td, the current
555  * thread, 0 if none.  If there is a pending stop signal with default
556  * action, the process stops in issignal().
557  */
558 int
559 cursig(struct thread *td)
560 {
561 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
562 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
563 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
564 	return (SIGPENDING(td) ? issignal(td) : 0);
565 }
566 
567 /*
568  * Arrange for ast() to handle unmasked pending signals on return to user
569  * mode.  This must be called whenever a signal is added to td_sigqueue or
570  * unmasked in td_sigmask.
571  */
572 void
573 signotify(struct thread *td)
574 {
575 	struct proc *p;
576 
577 	p = td->td_proc;
578 
579 	PROC_LOCK_ASSERT(p, MA_OWNED);
580 
581 	if (SIGPENDING(td)) {
582 		thread_lock(td);
583 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
584 		thread_unlock(td);
585 	}
586 }
587 
588 int
589 sigonstack(size_t sp)
590 {
591 	struct thread *td = curthread;
592 
593 	return ((td->td_pflags & TDP_ALTSTACK) ?
594 #if defined(COMPAT_43)
595 	    ((td->td_sigstk.ss_size == 0) ?
596 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
597 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
598 #else
599 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
600 #endif
601 	    : 0);
602 }
603 
604 static __inline int
605 sigprop(int sig)
606 {
607 
608 	if (sig > 0 && sig < NSIG)
609 		return (sigproptbl[_SIG_IDX(sig)]);
610 	return (0);
611 }
612 
613 int
614 sig_ffs(sigset_t *set)
615 {
616 	int i;
617 
618 	for (i = 0; i < _SIG_WORDS; i++)
619 		if (set->__bits[i])
620 			return (ffs(set->__bits[i]) + (i * 32));
621 	return (0);
622 }
623 
624 static bool
625 sigact_flag_test(struct sigaction *act, int flag)
626 {
627 
628 	/*
629 	 * SA_SIGINFO is reset when signal disposition is set to
630 	 * ignore or default.  Other flags are kept according to user
631 	 * settings.
632 	 */
633 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
634 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
635 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
636 }
637 
638 /*
639  * kern_sigaction
640  * sigaction
641  * freebsd4_sigaction
642  * osigaction
643  */
644 int
645 kern_sigaction(td, sig, act, oact, flags)
646 	struct thread *td;
647 	register int sig;
648 	struct sigaction *act, *oact;
649 	int flags;
650 {
651 	struct sigacts *ps;
652 	struct proc *p = td->td_proc;
653 
654 	if (!_SIG_VALID(sig))
655 		return (EINVAL);
656 	if (act != NULL && (act->sa_flags & ~(SA_ONSTACK | SA_RESTART |
657 	    SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER | SA_NOCLDWAIT |
658 	    SA_SIGINFO)) != 0)
659 		return (EINVAL);
660 
661 	PROC_LOCK(p);
662 	ps = p->p_sigacts;
663 	mtx_lock(&ps->ps_mtx);
664 	if (oact) {
665 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
666 		oact->sa_flags = 0;
667 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
668 			oact->sa_flags |= SA_ONSTACK;
669 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
670 			oact->sa_flags |= SA_RESTART;
671 		if (SIGISMEMBER(ps->ps_sigreset, sig))
672 			oact->sa_flags |= SA_RESETHAND;
673 		if (SIGISMEMBER(ps->ps_signodefer, sig))
674 			oact->sa_flags |= SA_NODEFER;
675 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
676 			oact->sa_flags |= SA_SIGINFO;
677 			oact->sa_sigaction =
678 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
679 		} else
680 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
681 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
682 			oact->sa_flags |= SA_NOCLDSTOP;
683 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
684 			oact->sa_flags |= SA_NOCLDWAIT;
685 	}
686 	if (act) {
687 		if ((sig == SIGKILL || sig == SIGSTOP) &&
688 		    act->sa_handler != SIG_DFL) {
689 			mtx_unlock(&ps->ps_mtx);
690 			PROC_UNLOCK(p);
691 			return (EINVAL);
692 		}
693 
694 		/*
695 		 * Change setting atomically.
696 		 */
697 
698 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
699 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
700 		if (sigact_flag_test(act, SA_SIGINFO)) {
701 			ps->ps_sigact[_SIG_IDX(sig)] =
702 			    (__sighandler_t *)act->sa_sigaction;
703 			SIGADDSET(ps->ps_siginfo, sig);
704 		} else {
705 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
706 			SIGDELSET(ps->ps_siginfo, sig);
707 		}
708 		if (!sigact_flag_test(act, SA_RESTART))
709 			SIGADDSET(ps->ps_sigintr, sig);
710 		else
711 			SIGDELSET(ps->ps_sigintr, sig);
712 		if (sigact_flag_test(act, SA_ONSTACK))
713 			SIGADDSET(ps->ps_sigonstack, sig);
714 		else
715 			SIGDELSET(ps->ps_sigonstack, sig);
716 		if (sigact_flag_test(act, SA_RESETHAND))
717 			SIGADDSET(ps->ps_sigreset, sig);
718 		else
719 			SIGDELSET(ps->ps_sigreset, sig);
720 		if (sigact_flag_test(act, SA_NODEFER))
721 			SIGADDSET(ps->ps_signodefer, sig);
722 		else
723 			SIGDELSET(ps->ps_signodefer, sig);
724 		if (sig == SIGCHLD) {
725 			if (act->sa_flags & SA_NOCLDSTOP)
726 				ps->ps_flag |= PS_NOCLDSTOP;
727 			else
728 				ps->ps_flag &= ~PS_NOCLDSTOP;
729 			if (act->sa_flags & SA_NOCLDWAIT) {
730 				/*
731 				 * Paranoia: since SA_NOCLDWAIT is implemented
732 				 * by reparenting the dying child to PID 1 (and
733 				 * trust it to reap the zombie), PID 1 itself
734 				 * is forbidden to set SA_NOCLDWAIT.
735 				 */
736 				if (p->p_pid == 1)
737 					ps->ps_flag &= ~PS_NOCLDWAIT;
738 				else
739 					ps->ps_flag |= PS_NOCLDWAIT;
740 			} else
741 				ps->ps_flag &= ~PS_NOCLDWAIT;
742 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
743 				ps->ps_flag |= PS_CLDSIGIGN;
744 			else
745 				ps->ps_flag &= ~PS_CLDSIGIGN;
746 		}
747 		/*
748 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
749 		 * and for signals set to SIG_DFL where the default is to
750 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
751 		 * have to restart the process.
752 		 */
753 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
754 		    (sigprop(sig) & SA_IGNORE &&
755 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
756 			/* never to be seen again */
757 			sigqueue_delete_proc(p, sig);
758 			if (sig != SIGCONT)
759 				/* easier in psignal */
760 				SIGADDSET(ps->ps_sigignore, sig);
761 			SIGDELSET(ps->ps_sigcatch, sig);
762 		} else {
763 			SIGDELSET(ps->ps_sigignore, sig);
764 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
765 				SIGDELSET(ps->ps_sigcatch, sig);
766 			else
767 				SIGADDSET(ps->ps_sigcatch, sig);
768 		}
769 #ifdef COMPAT_FREEBSD4
770 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
771 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
772 		    (flags & KSA_FREEBSD4) == 0)
773 			SIGDELSET(ps->ps_freebsd4, sig);
774 		else
775 			SIGADDSET(ps->ps_freebsd4, sig);
776 #endif
777 #ifdef COMPAT_43
778 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
779 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
780 		    (flags & KSA_OSIGSET) == 0)
781 			SIGDELSET(ps->ps_osigset, sig);
782 		else
783 			SIGADDSET(ps->ps_osigset, sig);
784 #endif
785 	}
786 	mtx_unlock(&ps->ps_mtx);
787 	PROC_UNLOCK(p);
788 	return (0);
789 }
790 
791 #ifndef _SYS_SYSPROTO_H_
792 struct sigaction_args {
793 	int	sig;
794 	struct	sigaction *act;
795 	struct	sigaction *oact;
796 };
797 #endif
798 int
799 sys_sigaction(td, uap)
800 	struct thread *td;
801 	register struct sigaction_args *uap;
802 {
803 	struct sigaction act, oact;
804 	register struct sigaction *actp, *oactp;
805 	int error;
806 
807 	actp = (uap->act != NULL) ? &act : NULL;
808 	oactp = (uap->oact != NULL) ? &oact : NULL;
809 	if (actp) {
810 		error = copyin(uap->act, actp, sizeof(act));
811 		if (error)
812 			return (error);
813 	}
814 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
815 	if (oactp && !error)
816 		error = copyout(oactp, uap->oact, sizeof(oact));
817 	return (error);
818 }
819 
820 #ifdef COMPAT_FREEBSD4
821 #ifndef _SYS_SYSPROTO_H_
822 struct freebsd4_sigaction_args {
823 	int	sig;
824 	struct	sigaction *act;
825 	struct	sigaction *oact;
826 };
827 #endif
828 int
829 freebsd4_sigaction(td, uap)
830 	struct thread *td;
831 	register struct freebsd4_sigaction_args *uap;
832 {
833 	struct sigaction act, oact;
834 	register struct sigaction *actp, *oactp;
835 	int error;
836 
837 
838 	actp = (uap->act != NULL) ? &act : NULL;
839 	oactp = (uap->oact != NULL) ? &oact : NULL;
840 	if (actp) {
841 		error = copyin(uap->act, actp, sizeof(act));
842 		if (error)
843 			return (error);
844 	}
845 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
846 	if (oactp && !error)
847 		error = copyout(oactp, uap->oact, sizeof(oact));
848 	return (error);
849 }
850 #endif	/* COMAPT_FREEBSD4 */
851 
852 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
853 #ifndef _SYS_SYSPROTO_H_
854 struct osigaction_args {
855 	int	signum;
856 	struct	osigaction *nsa;
857 	struct	osigaction *osa;
858 };
859 #endif
860 int
861 osigaction(td, uap)
862 	struct thread *td;
863 	register struct osigaction_args *uap;
864 {
865 	struct osigaction sa;
866 	struct sigaction nsa, osa;
867 	register struct sigaction *nsap, *osap;
868 	int error;
869 
870 	if (uap->signum <= 0 || uap->signum >= ONSIG)
871 		return (EINVAL);
872 
873 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
874 	osap = (uap->osa != NULL) ? &osa : NULL;
875 
876 	if (nsap) {
877 		error = copyin(uap->nsa, &sa, sizeof(sa));
878 		if (error)
879 			return (error);
880 		nsap->sa_handler = sa.sa_handler;
881 		nsap->sa_flags = sa.sa_flags;
882 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
883 	}
884 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
885 	if (osap && !error) {
886 		sa.sa_handler = osap->sa_handler;
887 		sa.sa_flags = osap->sa_flags;
888 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
889 		error = copyout(&sa, uap->osa, sizeof(sa));
890 	}
891 	return (error);
892 }
893 
894 #if !defined(__i386__)
895 /* Avoid replicating the same stub everywhere */
896 int
897 osigreturn(td, uap)
898 	struct thread *td;
899 	struct osigreturn_args *uap;
900 {
901 
902 	return (nosys(td, (struct nosys_args *)uap));
903 }
904 #endif
905 #endif /* COMPAT_43 */
906 
907 /*
908  * Initialize signal state for process 0;
909  * set to ignore signals that are ignored by default.
910  */
911 void
912 siginit(p)
913 	struct proc *p;
914 {
915 	register int i;
916 	struct sigacts *ps;
917 
918 	PROC_LOCK(p);
919 	ps = p->p_sigacts;
920 	mtx_lock(&ps->ps_mtx);
921 	for (i = 1; i <= NSIG; i++) {
922 		if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
923 			SIGADDSET(ps->ps_sigignore, i);
924 		}
925 	}
926 	mtx_unlock(&ps->ps_mtx);
927 	PROC_UNLOCK(p);
928 }
929 
930 /*
931  * Reset specified signal to the default disposition.
932  */
933 static void
934 sigdflt(struct sigacts *ps, int sig)
935 {
936 
937 	mtx_assert(&ps->ps_mtx, MA_OWNED);
938 	SIGDELSET(ps->ps_sigcatch, sig);
939 	if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
940 		SIGADDSET(ps->ps_sigignore, sig);
941 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
942 	SIGDELSET(ps->ps_siginfo, sig);
943 }
944 
945 /*
946  * Reset signals for an exec of the specified process.
947  */
948 void
949 execsigs(struct proc *p)
950 {
951 	struct sigacts *ps;
952 	int sig;
953 	struct thread *td;
954 
955 	/*
956 	 * Reset caught signals.  Held signals remain held
957 	 * through td_sigmask (unless they were caught,
958 	 * and are now ignored by default).
959 	 */
960 	PROC_LOCK_ASSERT(p, MA_OWNED);
961 	td = FIRST_THREAD_IN_PROC(p);
962 	ps = p->p_sigacts;
963 	mtx_lock(&ps->ps_mtx);
964 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
965 		sig = sig_ffs(&ps->ps_sigcatch);
966 		sigdflt(ps, sig);
967 		if ((sigprop(sig) & SA_IGNORE) != 0)
968 			sigqueue_delete_proc(p, sig);
969 	}
970 	/*
971 	 * Reset stack state to the user stack.
972 	 * Clear set of signals caught on the signal stack.
973 	 */
974 	td->td_sigstk.ss_flags = SS_DISABLE;
975 	td->td_sigstk.ss_size = 0;
976 	td->td_sigstk.ss_sp = 0;
977 	td->td_pflags &= ~TDP_ALTSTACK;
978 	/*
979 	 * Reset no zombies if child dies flag as Solaris does.
980 	 */
981 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
982 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
983 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
984 	mtx_unlock(&ps->ps_mtx);
985 }
986 
987 /*
988  * kern_sigprocmask()
989  *
990  *	Manipulate signal mask.
991  */
992 int
993 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
994     int flags)
995 {
996 	sigset_t new_block, oset1;
997 	struct proc *p;
998 	int error;
999 
1000 	p = td->td_proc;
1001 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1002 		PROC_LOCK(p);
1003 	if (oset != NULL)
1004 		*oset = td->td_sigmask;
1005 
1006 	error = 0;
1007 	if (set != NULL) {
1008 		switch (how) {
1009 		case SIG_BLOCK:
1010 			SIG_CANTMASK(*set);
1011 			oset1 = td->td_sigmask;
1012 			SIGSETOR(td->td_sigmask, *set);
1013 			new_block = td->td_sigmask;
1014 			SIGSETNAND(new_block, oset1);
1015 			break;
1016 		case SIG_UNBLOCK:
1017 			SIGSETNAND(td->td_sigmask, *set);
1018 			signotify(td);
1019 			goto out;
1020 		case SIG_SETMASK:
1021 			SIG_CANTMASK(*set);
1022 			oset1 = td->td_sigmask;
1023 			if (flags & SIGPROCMASK_OLD)
1024 				SIGSETLO(td->td_sigmask, *set);
1025 			else
1026 				td->td_sigmask = *set;
1027 			new_block = td->td_sigmask;
1028 			SIGSETNAND(new_block, oset1);
1029 			signotify(td);
1030 			break;
1031 		default:
1032 			error = EINVAL;
1033 			goto out;
1034 		}
1035 
1036 		/*
1037 		 * The new_block set contains signals that were not previously
1038 		 * blocked, but are blocked now.
1039 		 *
1040 		 * In case we block any signal that was not previously blocked
1041 		 * for td, and process has the signal pending, try to schedule
1042 		 * signal delivery to some thread that does not block the
1043 		 * signal, possibly waking it up.
1044 		 */
1045 		if (p->p_numthreads != 1)
1046 			reschedule_signals(p, new_block, flags);
1047 	}
1048 
1049 out:
1050 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1051 		PROC_UNLOCK(p);
1052 	return (error);
1053 }
1054 
1055 #ifndef _SYS_SYSPROTO_H_
1056 struct sigprocmask_args {
1057 	int	how;
1058 	const sigset_t *set;
1059 	sigset_t *oset;
1060 };
1061 #endif
1062 int
1063 sys_sigprocmask(td, uap)
1064 	register struct thread *td;
1065 	struct sigprocmask_args *uap;
1066 {
1067 	sigset_t set, oset;
1068 	sigset_t *setp, *osetp;
1069 	int error;
1070 
1071 	setp = (uap->set != NULL) ? &set : NULL;
1072 	osetp = (uap->oset != NULL) ? &oset : NULL;
1073 	if (setp) {
1074 		error = copyin(uap->set, setp, sizeof(set));
1075 		if (error)
1076 			return (error);
1077 	}
1078 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1079 	if (osetp && !error) {
1080 		error = copyout(osetp, uap->oset, sizeof(oset));
1081 	}
1082 	return (error);
1083 }
1084 
1085 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1086 #ifndef _SYS_SYSPROTO_H_
1087 struct osigprocmask_args {
1088 	int	how;
1089 	osigset_t mask;
1090 };
1091 #endif
1092 int
1093 osigprocmask(td, uap)
1094 	register struct thread *td;
1095 	struct osigprocmask_args *uap;
1096 {
1097 	sigset_t set, oset;
1098 	int error;
1099 
1100 	OSIG2SIG(uap->mask, set);
1101 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1102 	SIG2OSIG(oset, td->td_retval[0]);
1103 	return (error);
1104 }
1105 #endif /* COMPAT_43 */
1106 
1107 int
1108 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1109 {
1110 	ksiginfo_t ksi;
1111 	sigset_t set;
1112 	int error;
1113 
1114 	error = copyin(uap->set, &set, sizeof(set));
1115 	if (error) {
1116 		td->td_retval[0] = error;
1117 		return (0);
1118 	}
1119 
1120 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1121 	if (error) {
1122 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1123 			error = ERESTART;
1124 		if (error == ERESTART)
1125 			return (error);
1126 		td->td_retval[0] = error;
1127 		return (0);
1128 	}
1129 
1130 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1131 	td->td_retval[0] = error;
1132 	return (0);
1133 }
1134 
1135 int
1136 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1137 {
1138 	struct timespec ts;
1139 	struct timespec *timeout;
1140 	sigset_t set;
1141 	ksiginfo_t ksi;
1142 	int error;
1143 
1144 	if (uap->timeout) {
1145 		error = copyin(uap->timeout, &ts, sizeof(ts));
1146 		if (error)
1147 			return (error);
1148 
1149 		timeout = &ts;
1150 	} else
1151 		timeout = NULL;
1152 
1153 	error = copyin(uap->set, &set, sizeof(set));
1154 	if (error)
1155 		return (error);
1156 
1157 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1158 	if (error)
1159 		return (error);
1160 
1161 	if (uap->info)
1162 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1163 
1164 	if (error == 0)
1165 		td->td_retval[0] = ksi.ksi_signo;
1166 	return (error);
1167 }
1168 
1169 int
1170 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1171 {
1172 	ksiginfo_t ksi;
1173 	sigset_t set;
1174 	int error;
1175 
1176 	error = copyin(uap->set, &set, sizeof(set));
1177 	if (error)
1178 		return (error);
1179 
1180 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1181 	if (error)
1182 		return (error);
1183 
1184 	if (uap->info)
1185 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1186 
1187 	if (error == 0)
1188 		td->td_retval[0] = ksi.ksi_signo;
1189 	return (error);
1190 }
1191 
1192 int
1193 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1194 	struct timespec *timeout)
1195 {
1196 	struct sigacts *ps;
1197 	sigset_t saved_mask, new_block;
1198 	struct proc *p;
1199 	int error, sig, timo, timevalid = 0;
1200 	struct timespec rts, ets, ts;
1201 	struct timeval tv;
1202 
1203 	p = td->td_proc;
1204 	error = 0;
1205 	ets.tv_sec = 0;
1206 	ets.tv_nsec = 0;
1207 
1208 	if (timeout != NULL) {
1209 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1210 			timevalid = 1;
1211 			getnanouptime(&rts);
1212 			ets = rts;
1213 			timespecadd(&ets, timeout);
1214 		}
1215 	}
1216 	ksiginfo_init(ksi);
1217 	/* Some signals can not be waited for. */
1218 	SIG_CANTMASK(waitset);
1219 	ps = p->p_sigacts;
1220 	PROC_LOCK(p);
1221 	saved_mask = td->td_sigmask;
1222 	SIGSETNAND(td->td_sigmask, waitset);
1223 	for (;;) {
1224 		mtx_lock(&ps->ps_mtx);
1225 		sig = cursig(td);
1226 		mtx_unlock(&ps->ps_mtx);
1227 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1228 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1229 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1230 				error = 0;
1231 				break;
1232 			}
1233 		}
1234 
1235 		if (error != 0)
1236 			break;
1237 
1238 		/*
1239 		 * POSIX says this must be checked after looking for pending
1240 		 * signals.
1241 		 */
1242 		if (timeout != NULL) {
1243 			if (!timevalid) {
1244 				error = EINVAL;
1245 				break;
1246 			}
1247 			getnanouptime(&rts);
1248 			if (timespeccmp(&rts, &ets, >=)) {
1249 				error = EAGAIN;
1250 				break;
1251 			}
1252 			ts = ets;
1253 			timespecsub(&ts, &rts);
1254 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1255 			timo = tvtohz(&tv);
1256 		} else {
1257 			timo = 0;
1258 		}
1259 
1260 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1261 
1262 		if (timeout != NULL) {
1263 			if (error == ERESTART) {
1264 				/* Timeout can not be restarted. */
1265 				error = EINTR;
1266 			} else if (error == EAGAIN) {
1267 				/* We will calculate timeout by ourself. */
1268 				error = 0;
1269 			}
1270 		}
1271 	}
1272 
1273 	new_block = saved_mask;
1274 	SIGSETNAND(new_block, td->td_sigmask);
1275 	td->td_sigmask = saved_mask;
1276 	/*
1277 	 * Fewer signals can be delivered to us, reschedule signal
1278 	 * notification.
1279 	 */
1280 	if (p->p_numthreads != 1)
1281 		reschedule_signals(p, new_block, 0);
1282 
1283 	if (error == 0) {
1284 		SDT_PROBE(proc, kernel, , signal__clear, sig, ksi, 0, 0, 0);
1285 
1286 		if (ksi->ksi_code == SI_TIMER)
1287 			itimer_accept(p, ksi->ksi_timerid, ksi);
1288 
1289 #ifdef KTRACE
1290 		if (KTRPOINT(td, KTR_PSIG)) {
1291 			sig_t action;
1292 
1293 			mtx_lock(&ps->ps_mtx);
1294 			action = ps->ps_sigact[_SIG_IDX(sig)];
1295 			mtx_unlock(&ps->ps_mtx);
1296 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1297 		}
1298 #endif
1299 		if (sig == SIGKILL)
1300 			sigexit(td, sig);
1301 	}
1302 	PROC_UNLOCK(p);
1303 	return (error);
1304 }
1305 
1306 #ifndef _SYS_SYSPROTO_H_
1307 struct sigpending_args {
1308 	sigset_t	*set;
1309 };
1310 #endif
1311 int
1312 sys_sigpending(td, uap)
1313 	struct thread *td;
1314 	struct sigpending_args *uap;
1315 {
1316 	struct proc *p = td->td_proc;
1317 	sigset_t pending;
1318 
1319 	PROC_LOCK(p);
1320 	pending = p->p_sigqueue.sq_signals;
1321 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1322 	PROC_UNLOCK(p);
1323 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1324 }
1325 
1326 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1327 #ifndef _SYS_SYSPROTO_H_
1328 struct osigpending_args {
1329 	int	dummy;
1330 };
1331 #endif
1332 int
1333 osigpending(td, uap)
1334 	struct thread *td;
1335 	struct osigpending_args *uap;
1336 {
1337 	struct proc *p = td->td_proc;
1338 	sigset_t pending;
1339 
1340 	PROC_LOCK(p);
1341 	pending = p->p_sigqueue.sq_signals;
1342 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1343 	PROC_UNLOCK(p);
1344 	SIG2OSIG(pending, td->td_retval[0]);
1345 	return (0);
1346 }
1347 #endif /* COMPAT_43 */
1348 
1349 #if defined(COMPAT_43)
1350 /*
1351  * Generalized interface signal handler, 4.3-compatible.
1352  */
1353 #ifndef _SYS_SYSPROTO_H_
1354 struct osigvec_args {
1355 	int	signum;
1356 	struct	sigvec *nsv;
1357 	struct	sigvec *osv;
1358 };
1359 #endif
1360 /* ARGSUSED */
1361 int
1362 osigvec(td, uap)
1363 	struct thread *td;
1364 	register struct osigvec_args *uap;
1365 {
1366 	struct sigvec vec;
1367 	struct sigaction nsa, osa;
1368 	register struct sigaction *nsap, *osap;
1369 	int error;
1370 
1371 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1372 		return (EINVAL);
1373 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1374 	osap = (uap->osv != NULL) ? &osa : NULL;
1375 	if (nsap) {
1376 		error = copyin(uap->nsv, &vec, sizeof(vec));
1377 		if (error)
1378 			return (error);
1379 		nsap->sa_handler = vec.sv_handler;
1380 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1381 		nsap->sa_flags = vec.sv_flags;
1382 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1383 	}
1384 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1385 	if (osap && !error) {
1386 		vec.sv_handler = osap->sa_handler;
1387 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1388 		vec.sv_flags = osap->sa_flags;
1389 		vec.sv_flags &= ~SA_NOCLDWAIT;
1390 		vec.sv_flags ^= SA_RESTART;
1391 		error = copyout(&vec, uap->osv, sizeof(vec));
1392 	}
1393 	return (error);
1394 }
1395 
1396 #ifndef _SYS_SYSPROTO_H_
1397 struct osigblock_args {
1398 	int	mask;
1399 };
1400 #endif
1401 int
1402 osigblock(td, uap)
1403 	register struct thread *td;
1404 	struct osigblock_args *uap;
1405 {
1406 	sigset_t set, oset;
1407 
1408 	OSIG2SIG(uap->mask, set);
1409 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1410 	SIG2OSIG(oset, td->td_retval[0]);
1411 	return (0);
1412 }
1413 
1414 #ifndef _SYS_SYSPROTO_H_
1415 struct osigsetmask_args {
1416 	int	mask;
1417 };
1418 #endif
1419 int
1420 osigsetmask(td, uap)
1421 	struct thread *td;
1422 	struct osigsetmask_args *uap;
1423 {
1424 	sigset_t set, oset;
1425 
1426 	OSIG2SIG(uap->mask, set);
1427 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1428 	SIG2OSIG(oset, td->td_retval[0]);
1429 	return (0);
1430 }
1431 #endif /* COMPAT_43 */
1432 
1433 /*
1434  * Suspend calling thread until signal, providing mask to be set in the
1435  * meantime.
1436  */
1437 #ifndef _SYS_SYSPROTO_H_
1438 struct sigsuspend_args {
1439 	const sigset_t *sigmask;
1440 };
1441 #endif
1442 /* ARGSUSED */
1443 int
1444 sys_sigsuspend(td, uap)
1445 	struct thread *td;
1446 	struct sigsuspend_args *uap;
1447 {
1448 	sigset_t mask;
1449 	int error;
1450 
1451 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1452 	if (error)
1453 		return (error);
1454 	return (kern_sigsuspend(td, mask));
1455 }
1456 
1457 int
1458 kern_sigsuspend(struct thread *td, sigset_t mask)
1459 {
1460 	struct proc *p = td->td_proc;
1461 	int has_sig, sig;
1462 
1463 	/*
1464 	 * When returning from sigsuspend, we want
1465 	 * the old mask to be restored after the
1466 	 * signal handler has finished.  Thus, we
1467 	 * save it here and mark the sigacts structure
1468 	 * to indicate this.
1469 	 */
1470 	PROC_LOCK(p);
1471 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1472 	    SIGPROCMASK_PROC_LOCKED);
1473 	td->td_pflags |= TDP_OLDMASK;
1474 
1475 	/*
1476 	 * Process signals now. Otherwise, we can get spurious wakeup
1477 	 * due to signal entered process queue, but delivered to other
1478 	 * thread. But sigsuspend should return only on signal
1479 	 * delivery.
1480 	 */
1481 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1482 	for (has_sig = 0; !has_sig;) {
1483 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1484 			0) == 0)
1485 			/* void */;
1486 		thread_suspend_check(0);
1487 		mtx_lock(&p->p_sigacts->ps_mtx);
1488 		while ((sig = cursig(td)) != 0)
1489 			has_sig += postsig(sig);
1490 		mtx_unlock(&p->p_sigacts->ps_mtx);
1491 	}
1492 	PROC_UNLOCK(p);
1493 	td->td_errno = EINTR;
1494 	td->td_pflags |= TDP_NERRNO;
1495 	return (EJUSTRETURN);
1496 }
1497 
1498 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1499 /*
1500  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1501  * convention: libc stub passes mask, not pointer, to save a copyin.
1502  */
1503 #ifndef _SYS_SYSPROTO_H_
1504 struct osigsuspend_args {
1505 	osigset_t mask;
1506 };
1507 #endif
1508 /* ARGSUSED */
1509 int
1510 osigsuspend(td, uap)
1511 	struct thread *td;
1512 	struct osigsuspend_args *uap;
1513 {
1514 	sigset_t mask;
1515 
1516 	OSIG2SIG(uap->mask, mask);
1517 	return (kern_sigsuspend(td, mask));
1518 }
1519 #endif /* COMPAT_43 */
1520 
1521 #if defined(COMPAT_43)
1522 #ifndef _SYS_SYSPROTO_H_
1523 struct osigstack_args {
1524 	struct	sigstack *nss;
1525 	struct	sigstack *oss;
1526 };
1527 #endif
1528 /* ARGSUSED */
1529 int
1530 osigstack(td, uap)
1531 	struct thread *td;
1532 	register struct osigstack_args *uap;
1533 {
1534 	struct sigstack nss, oss;
1535 	int error = 0;
1536 
1537 	if (uap->nss != NULL) {
1538 		error = copyin(uap->nss, &nss, sizeof(nss));
1539 		if (error)
1540 			return (error);
1541 	}
1542 	oss.ss_sp = td->td_sigstk.ss_sp;
1543 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1544 	if (uap->nss != NULL) {
1545 		td->td_sigstk.ss_sp = nss.ss_sp;
1546 		td->td_sigstk.ss_size = 0;
1547 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1548 		td->td_pflags |= TDP_ALTSTACK;
1549 	}
1550 	if (uap->oss != NULL)
1551 		error = copyout(&oss, uap->oss, sizeof(oss));
1552 
1553 	return (error);
1554 }
1555 #endif /* COMPAT_43 */
1556 
1557 #ifndef _SYS_SYSPROTO_H_
1558 struct sigaltstack_args {
1559 	stack_t	*ss;
1560 	stack_t	*oss;
1561 };
1562 #endif
1563 /* ARGSUSED */
1564 int
1565 sys_sigaltstack(td, uap)
1566 	struct thread *td;
1567 	register struct sigaltstack_args *uap;
1568 {
1569 	stack_t ss, oss;
1570 	int error;
1571 
1572 	if (uap->ss != NULL) {
1573 		error = copyin(uap->ss, &ss, sizeof(ss));
1574 		if (error)
1575 			return (error);
1576 	}
1577 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1578 	    (uap->oss != NULL) ? &oss : NULL);
1579 	if (error)
1580 		return (error);
1581 	if (uap->oss != NULL)
1582 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1583 	return (error);
1584 }
1585 
1586 int
1587 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1588 {
1589 	struct proc *p = td->td_proc;
1590 	int oonstack;
1591 
1592 	oonstack = sigonstack(cpu_getstack(td));
1593 
1594 	if (oss != NULL) {
1595 		*oss = td->td_sigstk;
1596 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1597 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1598 	}
1599 
1600 	if (ss != NULL) {
1601 		if (oonstack)
1602 			return (EPERM);
1603 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1604 			return (EINVAL);
1605 		if (!(ss->ss_flags & SS_DISABLE)) {
1606 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1607 				return (ENOMEM);
1608 
1609 			td->td_sigstk = *ss;
1610 			td->td_pflags |= TDP_ALTSTACK;
1611 		} else {
1612 			td->td_pflags &= ~TDP_ALTSTACK;
1613 		}
1614 	}
1615 	return (0);
1616 }
1617 
1618 /*
1619  * Common code for kill process group/broadcast kill.
1620  * cp is calling process.
1621  */
1622 static int
1623 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1624 {
1625 	struct proc *p;
1626 	struct pgrp *pgrp;
1627 	int err;
1628 	int ret;
1629 
1630 	ret = ESRCH;
1631 	if (all) {
1632 		/*
1633 		 * broadcast
1634 		 */
1635 		sx_slock(&allproc_lock);
1636 		FOREACH_PROC_IN_SYSTEM(p) {
1637 			PROC_LOCK(p);
1638 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1639 			    p == td->td_proc || p->p_state == PRS_NEW) {
1640 				PROC_UNLOCK(p);
1641 				continue;
1642 			}
1643 			err = p_cansignal(td, p, sig);
1644 			if (err == 0) {
1645 				if (sig)
1646 					pksignal(p, sig, ksi);
1647 				ret = err;
1648 			}
1649 			else if (ret == ESRCH)
1650 				ret = err;
1651 			PROC_UNLOCK(p);
1652 		}
1653 		sx_sunlock(&allproc_lock);
1654 	} else {
1655 		sx_slock(&proctree_lock);
1656 		if (pgid == 0) {
1657 			/*
1658 			 * zero pgid means send to my process group.
1659 			 */
1660 			pgrp = td->td_proc->p_pgrp;
1661 			PGRP_LOCK(pgrp);
1662 		} else {
1663 			pgrp = pgfind(pgid);
1664 			if (pgrp == NULL) {
1665 				sx_sunlock(&proctree_lock);
1666 				return (ESRCH);
1667 			}
1668 		}
1669 		sx_sunlock(&proctree_lock);
1670 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1671 			PROC_LOCK(p);
1672 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1673 			    p->p_state == PRS_NEW) {
1674 				PROC_UNLOCK(p);
1675 				continue;
1676 			}
1677 			err = p_cansignal(td, p, sig);
1678 			if (err == 0) {
1679 				if (sig)
1680 					pksignal(p, sig, ksi);
1681 				ret = err;
1682 			}
1683 			else if (ret == ESRCH)
1684 				ret = err;
1685 			PROC_UNLOCK(p);
1686 		}
1687 		PGRP_UNLOCK(pgrp);
1688 	}
1689 	return (ret);
1690 }
1691 
1692 #ifndef _SYS_SYSPROTO_H_
1693 struct kill_args {
1694 	int	pid;
1695 	int	signum;
1696 };
1697 #endif
1698 /* ARGSUSED */
1699 int
1700 sys_kill(struct thread *td, struct kill_args *uap)
1701 {
1702 	ksiginfo_t ksi;
1703 	struct proc *p;
1704 	int error;
1705 
1706 	/*
1707 	 * A process in capability mode can send signals only to himself.
1708 	 * The main rationale behind this is that abort(3) is implemented as
1709 	 * kill(getpid(), SIGABRT).
1710 	 */
1711 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1712 		return (ECAPMODE);
1713 
1714 	AUDIT_ARG_SIGNUM(uap->signum);
1715 	AUDIT_ARG_PID(uap->pid);
1716 	if ((u_int)uap->signum > _SIG_MAXSIG)
1717 		return (EINVAL);
1718 
1719 	ksiginfo_init(&ksi);
1720 	ksi.ksi_signo = uap->signum;
1721 	ksi.ksi_code = SI_USER;
1722 	ksi.ksi_pid = td->td_proc->p_pid;
1723 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1724 
1725 	if (uap->pid > 0) {
1726 		/* kill single process */
1727 		if ((p = pfind(uap->pid)) == NULL) {
1728 			if ((p = zpfind(uap->pid)) == NULL)
1729 				return (ESRCH);
1730 		}
1731 		AUDIT_ARG_PROCESS(p);
1732 		error = p_cansignal(td, p, uap->signum);
1733 		if (error == 0 && uap->signum)
1734 			pksignal(p, uap->signum, &ksi);
1735 		PROC_UNLOCK(p);
1736 		return (error);
1737 	}
1738 	switch (uap->pid) {
1739 	case -1:		/* broadcast signal */
1740 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1741 	case 0:			/* signal own process group */
1742 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1743 	default:		/* negative explicit process group */
1744 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1745 	}
1746 	/* NOTREACHED */
1747 }
1748 
1749 int
1750 sys_pdkill(td, uap)
1751 	struct thread *td;
1752 	struct pdkill_args *uap;
1753 {
1754 	struct proc *p;
1755 	cap_rights_t rights;
1756 	int error;
1757 
1758 	AUDIT_ARG_SIGNUM(uap->signum);
1759 	AUDIT_ARG_FD(uap->fd);
1760 	if ((u_int)uap->signum > _SIG_MAXSIG)
1761 		return (EINVAL);
1762 
1763 	error = procdesc_find(td, uap->fd,
1764 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1765 	if (error)
1766 		return (error);
1767 	AUDIT_ARG_PROCESS(p);
1768 	error = p_cansignal(td, p, uap->signum);
1769 	if (error == 0 && uap->signum)
1770 		kern_psignal(p, uap->signum);
1771 	PROC_UNLOCK(p);
1772 	return (error);
1773 }
1774 
1775 #if defined(COMPAT_43)
1776 #ifndef _SYS_SYSPROTO_H_
1777 struct okillpg_args {
1778 	int	pgid;
1779 	int	signum;
1780 };
1781 #endif
1782 /* ARGSUSED */
1783 int
1784 okillpg(struct thread *td, struct okillpg_args *uap)
1785 {
1786 	ksiginfo_t ksi;
1787 
1788 	AUDIT_ARG_SIGNUM(uap->signum);
1789 	AUDIT_ARG_PID(uap->pgid);
1790 	if ((u_int)uap->signum > _SIG_MAXSIG)
1791 		return (EINVAL);
1792 
1793 	ksiginfo_init(&ksi);
1794 	ksi.ksi_signo = uap->signum;
1795 	ksi.ksi_code = SI_USER;
1796 	ksi.ksi_pid = td->td_proc->p_pid;
1797 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1798 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1799 }
1800 #endif /* COMPAT_43 */
1801 
1802 #ifndef _SYS_SYSPROTO_H_
1803 struct sigqueue_args {
1804 	pid_t pid;
1805 	int signum;
1806 	/* union sigval */ void *value;
1807 };
1808 #endif
1809 int
1810 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1811 {
1812 	ksiginfo_t ksi;
1813 	struct proc *p;
1814 	int error;
1815 
1816 	if ((u_int)uap->signum > _SIG_MAXSIG)
1817 		return (EINVAL);
1818 
1819 	/*
1820 	 * Specification says sigqueue can only send signal to
1821 	 * single process.
1822 	 */
1823 	if (uap->pid <= 0)
1824 		return (EINVAL);
1825 
1826 	if ((p = pfind(uap->pid)) == NULL) {
1827 		if ((p = zpfind(uap->pid)) == NULL)
1828 			return (ESRCH);
1829 	}
1830 	error = p_cansignal(td, p, uap->signum);
1831 	if (error == 0 && uap->signum != 0) {
1832 		ksiginfo_init(&ksi);
1833 		ksi.ksi_flags = KSI_SIGQ;
1834 		ksi.ksi_signo = uap->signum;
1835 		ksi.ksi_code = SI_QUEUE;
1836 		ksi.ksi_pid = td->td_proc->p_pid;
1837 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1838 		ksi.ksi_value.sival_ptr = uap->value;
1839 		error = pksignal(p, ksi.ksi_signo, &ksi);
1840 	}
1841 	PROC_UNLOCK(p);
1842 	return (error);
1843 }
1844 
1845 /*
1846  * Send a signal to a process group.
1847  */
1848 void
1849 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1850 {
1851 	struct pgrp *pgrp;
1852 
1853 	if (pgid != 0) {
1854 		sx_slock(&proctree_lock);
1855 		pgrp = pgfind(pgid);
1856 		sx_sunlock(&proctree_lock);
1857 		if (pgrp != NULL) {
1858 			pgsignal(pgrp, sig, 0, ksi);
1859 			PGRP_UNLOCK(pgrp);
1860 		}
1861 	}
1862 }
1863 
1864 /*
1865  * Send a signal to a process group.  If checktty is 1,
1866  * limit to members which have a controlling terminal.
1867  */
1868 void
1869 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1870 {
1871 	struct proc *p;
1872 
1873 	if (pgrp) {
1874 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1875 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1876 			PROC_LOCK(p);
1877 			if (p->p_state == PRS_NORMAL &&
1878 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1879 				pksignal(p, sig, ksi);
1880 			PROC_UNLOCK(p);
1881 		}
1882 	}
1883 }
1884 
1885 /*
1886  * Send a signal caused by a trap to the current thread.  If it will be
1887  * caught immediately, deliver it with correct code.  Otherwise, post it
1888  * normally.
1889  */
1890 void
1891 trapsignal(struct thread *td, ksiginfo_t *ksi)
1892 {
1893 	struct sigacts *ps;
1894 	sigset_t mask;
1895 	struct proc *p;
1896 	int sig;
1897 	int code;
1898 
1899 	p = td->td_proc;
1900 	sig = ksi->ksi_signo;
1901 	code = ksi->ksi_code;
1902 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1903 
1904 	PROC_LOCK(p);
1905 	ps = p->p_sigacts;
1906 	mtx_lock(&ps->ps_mtx);
1907 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1908 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1909 		td->td_ru.ru_nsignals++;
1910 #ifdef KTRACE
1911 		if (KTRPOINT(curthread, KTR_PSIG))
1912 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1913 			    &td->td_sigmask, code);
1914 #endif
1915 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1916 				ksi, &td->td_sigmask);
1917 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
1918 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1919 			SIGADDSET(mask, sig);
1920 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1921 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1922 		if (SIGISMEMBER(ps->ps_sigreset, sig))
1923 			sigdflt(ps, sig);
1924 		mtx_unlock(&ps->ps_mtx);
1925 	} else {
1926 		/*
1927 		 * Avoid a possible infinite loop if the thread
1928 		 * masking the signal or process is ignoring the
1929 		 * signal.
1930 		 */
1931 		if (kern_forcesigexit &&
1932 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1933 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1934 			SIGDELSET(td->td_sigmask, sig);
1935 			SIGDELSET(ps->ps_sigcatch, sig);
1936 			SIGDELSET(ps->ps_sigignore, sig);
1937 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1938 		}
1939 		mtx_unlock(&ps->ps_mtx);
1940 		p->p_code = code;	/* XXX for core dump/debugger */
1941 		p->p_sig = sig;		/* XXX to verify code */
1942 		tdsendsignal(p, td, sig, ksi);
1943 	}
1944 	PROC_UNLOCK(p);
1945 }
1946 
1947 static struct thread *
1948 sigtd(struct proc *p, int sig, int prop)
1949 {
1950 	struct thread *td, *signal_td;
1951 
1952 	PROC_LOCK_ASSERT(p, MA_OWNED);
1953 
1954 	/*
1955 	 * Check if current thread can handle the signal without
1956 	 * switching context to another thread.
1957 	 */
1958 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1959 		return (curthread);
1960 	signal_td = NULL;
1961 	FOREACH_THREAD_IN_PROC(p, td) {
1962 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1963 			signal_td = td;
1964 			break;
1965 		}
1966 	}
1967 	if (signal_td == NULL)
1968 		signal_td = FIRST_THREAD_IN_PROC(p);
1969 	return (signal_td);
1970 }
1971 
1972 /*
1973  * Send the signal to the process.  If the signal has an action, the action
1974  * is usually performed by the target process rather than the caller; we add
1975  * the signal to the set of pending signals for the process.
1976  *
1977  * Exceptions:
1978  *   o When a stop signal is sent to a sleeping process that takes the
1979  *     default action, the process is stopped without awakening it.
1980  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1981  *     regardless of the signal action (eg, blocked or ignored).
1982  *
1983  * Other ignored signals are discarded immediately.
1984  *
1985  * NB: This function may be entered from the debugger via the "kill" DDB
1986  * command.  There is little that can be done to mitigate the possibly messy
1987  * side effects of this unwise possibility.
1988  */
1989 void
1990 kern_psignal(struct proc *p, int sig)
1991 {
1992 	ksiginfo_t ksi;
1993 
1994 	ksiginfo_init(&ksi);
1995 	ksi.ksi_signo = sig;
1996 	ksi.ksi_code = SI_KERNEL;
1997 	(void) tdsendsignal(p, NULL, sig, &ksi);
1998 }
1999 
2000 int
2001 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2002 {
2003 
2004 	return (tdsendsignal(p, NULL, sig, ksi));
2005 }
2006 
2007 /* Utility function for finding a thread to send signal event to. */
2008 int
2009 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2010 {
2011 	struct thread *td;
2012 
2013 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2014 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2015 		if (td == NULL)
2016 			return (ESRCH);
2017 		*ttd = td;
2018 	} else {
2019 		*ttd = NULL;
2020 		PROC_LOCK(p);
2021 	}
2022 	return (0);
2023 }
2024 
2025 void
2026 tdsignal(struct thread *td, int sig)
2027 {
2028 	ksiginfo_t ksi;
2029 
2030 	ksiginfo_init(&ksi);
2031 	ksi.ksi_signo = sig;
2032 	ksi.ksi_code = SI_KERNEL;
2033 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2034 }
2035 
2036 void
2037 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2038 {
2039 
2040 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2041 }
2042 
2043 int
2044 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2045 {
2046 	sig_t action;
2047 	sigqueue_t *sigqueue;
2048 	int prop;
2049 	struct sigacts *ps;
2050 	int intrval;
2051 	int ret = 0;
2052 	int wakeup_swapper;
2053 
2054 	MPASS(td == NULL || p == td->td_proc);
2055 	PROC_LOCK_ASSERT(p, MA_OWNED);
2056 
2057 	if (!_SIG_VALID(sig))
2058 		panic("%s(): invalid signal %d", __func__, sig);
2059 
2060 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2061 
2062 	/*
2063 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2064 	 */
2065 	if (p->p_state == PRS_ZOMBIE) {
2066 		if (ksi && (ksi->ksi_flags & KSI_INS))
2067 			ksiginfo_tryfree(ksi);
2068 		return (ret);
2069 	}
2070 
2071 	ps = p->p_sigacts;
2072 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2073 	prop = sigprop(sig);
2074 
2075 	if (td == NULL) {
2076 		td = sigtd(p, sig, prop);
2077 		sigqueue = &p->p_sigqueue;
2078 	} else
2079 		sigqueue = &td->td_sigqueue;
2080 
2081 	SDT_PROBE(proc, kernel, , signal__send, td, p, sig, 0, 0 );
2082 
2083 	/*
2084 	 * If the signal is being ignored,
2085 	 * then we forget about it immediately.
2086 	 * (Note: we don't set SIGCONT in ps_sigignore,
2087 	 * and if it is set to SIG_IGN,
2088 	 * action will be SIG_DFL here.)
2089 	 */
2090 	mtx_lock(&ps->ps_mtx);
2091 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2092 		SDT_PROBE(proc, kernel, , signal__discard, td, p, sig, 0, 0 );
2093 
2094 		mtx_unlock(&ps->ps_mtx);
2095 		if (ksi && (ksi->ksi_flags & KSI_INS))
2096 			ksiginfo_tryfree(ksi);
2097 		return (ret);
2098 	}
2099 	if (SIGISMEMBER(td->td_sigmask, sig))
2100 		action = SIG_HOLD;
2101 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2102 		action = SIG_CATCH;
2103 	else
2104 		action = SIG_DFL;
2105 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2106 		intrval = EINTR;
2107 	else
2108 		intrval = ERESTART;
2109 	mtx_unlock(&ps->ps_mtx);
2110 
2111 	if (prop & SA_CONT)
2112 		sigqueue_delete_stopmask_proc(p);
2113 	else if (prop & SA_STOP) {
2114 		/*
2115 		 * If sending a tty stop signal to a member of an orphaned
2116 		 * process group, discard the signal here if the action
2117 		 * is default; don't stop the process below if sleeping,
2118 		 * and don't clear any pending SIGCONT.
2119 		 */
2120 		if ((prop & SA_TTYSTOP) &&
2121 		    (p->p_pgrp->pg_jobc == 0) &&
2122 		    (action == SIG_DFL)) {
2123 			if (ksi && (ksi->ksi_flags & KSI_INS))
2124 				ksiginfo_tryfree(ksi);
2125 			return (ret);
2126 		}
2127 		sigqueue_delete_proc(p, SIGCONT);
2128 		if (p->p_flag & P_CONTINUED) {
2129 			p->p_flag &= ~P_CONTINUED;
2130 			PROC_LOCK(p->p_pptr);
2131 			sigqueue_take(p->p_ksi);
2132 			PROC_UNLOCK(p->p_pptr);
2133 		}
2134 	}
2135 
2136 	ret = sigqueue_add(sigqueue, sig, ksi);
2137 	if (ret != 0)
2138 		return (ret);
2139 	signotify(td);
2140 	/*
2141 	 * Defer further processing for signals which are held,
2142 	 * except that stopped processes must be continued by SIGCONT.
2143 	 */
2144 	if (action == SIG_HOLD &&
2145 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2146 		return (ret);
2147 	/*
2148 	 * SIGKILL: Remove procfs STOPEVENTs.
2149 	 */
2150 	if (sig == SIGKILL) {
2151 		/* from procfs_ioctl.c: PIOCBIC */
2152 		p->p_stops = 0;
2153 		/* from procfs_ioctl.c: PIOCCONT */
2154 		p->p_step = 0;
2155 		wakeup(&p->p_step);
2156 	}
2157 	/*
2158 	 * Some signals have a process-wide effect and a per-thread
2159 	 * component.  Most processing occurs when the process next
2160 	 * tries to cross the user boundary, however there are some
2161 	 * times when processing needs to be done immediately, such as
2162 	 * waking up threads so that they can cross the user boundary.
2163 	 * We try to do the per-process part here.
2164 	 */
2165 	if (P_SHOULDSTOP(p)) {
2166 		KASSERT(!(p->p_flag & P_WEXIT),
2167 		    ("signal to stopped but exiting process"));
2168 		if (sig == SIGKILL) {
2169 			/*
2170 			 * If traced process is already stopped,
2171 			 * then no further action is necessary.
2172 			 */
2173 			if (p->p_flag & P_TRACED)
2174 				goto out;
2175 			/*
2176 			 * SIGKILL sets process running.
2177 			 * It will die elsewhere.
2178 			 * All threads must be restarted.
2179 			 */
2180 			p->p_flag &= ~P_STOPPED_SIG;
2181 			goto runfast;
2182 		}
2183 
2184 		if (prop & SA_CONT) {
2185 			/*
2186 			 * If traced process is already stopped,
2187 			 * then no further action is necessary.
2188 			 */
2189 			if (p->p_flag & P_TRACED)
2190 				goto out;
2191 			/*
2192 			 * If SIGCONT is default (or ignored), we continue the
2193 			 * process but don't leave the signal in sigqueue as
2194 			 * it has no further action.  If SIGCONT is held, we
2195 			 * continue the process and leave the signal in
2196 			 * sigqueue.  If the process catches SIGCONT, let it
2197 			 * handle the signal itself.  If it isn't waiting on
2198 			 * an event, it goes back to run state.
2199 			 * Otherwise, process goes back to sleep state.
2200 			 */
2201 			p->p_flag &= ~P_STOPPED_SIG;
2202 			PROC_SLOCK(p);
2203 			if (p->p_numthreads == p->p_suspcount) {
2204 				PROC_SUNLOCK(p);
2205 				p->p_flag |= P_CONTINUED;
2206 				p->p_xstat = SIGCONT;
2207 				PROC_LOCK(p->p_pptr);
2208 				childproc_continued(p);
2209 				PROC_UNLOCK(p->p_pptr);
2210 				PROC_SLOCK(p);
2211 			}
2212 			if (action == SIG_DFL) {
2213 				thread_unsuspend(p);
2214 				PROC_SUNLOCK(p);
2215 				sigqueue_delete(sigqueue, sig);
2216 				goto out;
2217 			}
2218 			if (action == SIG_CATCH) {
2219 				/*
2220 				 * The process wants to catch it so it needs
2221 				 * to run at least one thread, but which one?
2222 				 */
2223 				PROC_SUNLOCK(p);
2224 				goto runfast;
2225 			}
2226 			/*
2227 			 * The signal is not ignored or caught.
2228 			 */
2229 			thread_unsuspend(p);
2230 			PROC_SUNLOCK(p);
2231 			goto out;
2232 		}
2233 
2234 		if (prop & SA_STOP) {
2235 			/*
2236 			 * If traced process is already stopped,
2237 			 * then no further action is necessary.
2238 			 */
2239 			if (p->p_flag & P_TRACED)
2240 				goto out;
2241 			/*
2242 			 * Already stopped, don't need to stop again
2243 			 * (If we did the shell could get confused).
2244 			 * Just make sure the signal STOP bit set.
2245 			 */
2246 			p->p_flag |= P_STOPPED_SIG;
2247 			sigqueue_delete(sigqueue, sig);
2248 			goto out;
2249 		}
2250 
2251 		/*
2252 		 * All other kinds of signals:
2253 		 * If a thread is sleeping interruptibly, simulate a
2254 		 * wakeup so that when it is continued it will be made
2255 		 * runnable and can look at the signal.  However, don't make
2256 		 * the PROCESS runnable, leave it stopped.
2257 		 * It may run a bit until it hits a thread_suspend_check().
2258 		 */
2259 		wakeup_swapper = 0;
2260 		PROC_SLOCK(p);
2261 		thread_lock(td);
2262 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2263 			wakeup_swapper = sleepq_abort(td, intrval);
2264 		thread_unlock(td);
2265 		PROC_SUNLOCK(p);
2266 		if (wakeup_swapper)
2267 			kick_proc0();
2268 		goto out;
2269 		/*
2270 		 * Mutexes are short lived. Threads waiting on them will
2271 		 * hit thread_suspend_check() soon.
2272 		 */
2273 	} else if (p->p_state == PRS_NORMAL) {
2274 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2275 			tdsigwakeup(td, sig, action, intrval);
2276 			goto out;
2277 		}
2278 
2279 		MPASS(action == SIG_DFL);
2280 
2281 		if (prop & SA_STOP) {
2282 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2283 				goto out;
2284 			p->p_flag |= P_STOPPED_SIG;
2285 			p->p_xstat = sig;
2286 			PROC_SLOCK(p);
2287 			sig_suspend_threads(td, p, 1);
2288 			if (p->p_numthreads == p->p_suspcount) {
2289 				/*
2290 				 * only thread sending signal to another
2291 				 * process can reach here, if thread is sending
2292 				 * signal to its process, because thread does
2293 				 * not suspend itself here, p_numthreads
2294 				 * should never be equal to p_suspcount.
2295 				 */
2296 				thread_stopped(p);
2297 				PROC_SUNLOCK(p);
2298 				sigqueue_delete_proc(p, p->p_xstat);
2299 			} else
2300 				PROC_SUNLOCK(p);
2301 			goto out;
2302 		}
2303 	} else {
2304 		/* Not in "NORMAL" state. discard the signal. */
2305 		sigqueue_delete(sigqueue, sig);
2306 		goto out;
2307 	}
2308 
2309 	/*
2310 	 * The process is not stopped so we need to apply the signal to all the
2311 	 * running threads.
2312 	 */
2313 runfast:
2314 	tdsigwakeup(td, sig, action, intrval);
2315 	PROC_SLOCK(p);
2316 	thread_unsuspend(p);
2317 	PROC_SUNLOCK(p);
2318 out:
2319 	/* If we jump here, proc slock should not be owned. */
2320 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2321 	return (ret);
2322 }
2323 
2324 /*
2325  * The force of a signal has been directed against a single
2326  * thread.  We need to see what we can do about knocking it
2327  * out of any sleep it may be in etc.
2328  */
2329 static void
2330 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2331 {
2332 	struct proc *p = td->td_proc;
2333 	register int prop;
2334 	int wakeup_swapper;
2335 
2336 	wakeup_swapper = 0;
2337 	PROC_LOCK_ASSERT(p, MA_OWNED);
2338 	prop = sigprop(sig);
2339 
2340 	PROC_SLOCK(p);
2341 	thread_lock(td);
2342 	/*
2343 	 * Bring the priority of a thread up if we want it to get
2344 	 * killed in this lifetime.
2345 	 */
2346 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2347 		sched_prio(td, PUSER);
2348 	if (TD_ON_SLEEPQ(td)) {
2349 		/*
2350 		 * If thread is sleeping uninterruptibly
2351 		 * we can't interrupt the sleep... the signal will
2352 		 * be noticed when the process returns through
2353 		 * trap() or syscall().
2354 		 */
2355 		if ((td->td_flags & TDF_SINTR) == 0)
2356 			goto out;
2357 		/*
2358 		 * If SIGCONT is default (or ignored) and process is
2359 		 * asleep, we are finished; the process should not
2360 		 * be awakened.
2361 		 */
2362 		if ((prop & SA_CONT) && action == SIG_DFL) {
2363 			thread_unlock(td);
2364 			PROC_SUNLOCK(p);
2365 			sigqueue_delete(&p->p_sigqueue, sig);
2366 			/*
2367 			 * It may be on either list in this state.
2368 			 * Remove from both for now.
2369 			 */
2370 			sigqueue_delete(&td->td_sigqueue, sig);
2371 			return;
2372 		}
2373 
2374 		/*
2375 		 * Don't awaken a sleeping thread for SIGSTOP if the
2376 		 * STOP signal is deferred.
2377 		 */
2378 		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2379 			goto out;
2380 
2381 		/*
2382 		 * Give low priority threads a better chance to run.
2383 		 */
2384 		if (td->td_priority > PUSER)
2385 			sched_prio(td, PUSER);
2386 
2387 		wakeup_swapper = sleepq_abort(td, intrval);
2388 	} else {
2389 		/*
2390 		 * Other states do nothing with the signal immediately,
2391 		 * other than kicking ourselves if we are running.
2392 		 * It will either never be noticed, or noticed very soon.
2393 		 */
2394 #ifdef SMP
2395 		if (TD_IS_RUNNING(td) && td != curthread)
2396 			forward_signal(td);
2397 #endif
2398 	}
2399 out:
2400 	PROC_SUNLOCK(p);
2401 	thread_unlock(td);
2402 	if (wakeup_swapper)
2403 		kick_proc0();
2404 }
2405 
2406 static void
2407 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2408 {
2409 	struct thread *td2;
2410 
2411 	PROC_LOCK_ASSERT(p, MA_OWNED);
2412 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2413 
2414 	FOREACH_THREAD_IN_PROC(p, td2) {
2415 		thread_lock(td2);
2416 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2417 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2418 		    (td2->td_flags & TDF_SINTR)) {
2419 			if (td2->td_flags & TDF_SBDRY) {
2420 				/*
2421 				 * Once a thread is asleep with
2422 				 * TDF_SBDRY set, it should never
2423 				 * become suspended due to this check.
2424 				 */
2425 				KASSERT(!TD_IS_SUSPENDED(td2),
2426 				    ("thread with deferred stops suspended"));
2427 			} else if (!TD_IS_SUSPENDED(td2)) {
2428 				thread_suspend_one(td2);
2429 			}
2430 		} else if (!TD_IS_SUSPENDED(td2)) {
2431 			if (sending || td != td2)
2432 				td2->td_flags |= TDF_ASTPENDING;
2433 #ifdef SMP
2434 			if (TD_IS_RUNNING(td2) && td2 != td)
2435 				forward_signal(td2);
2436 #endif
2437 		}
2438 		thread_unlock(td2);
2439 	}
2440 }
2441 
2442 int
2443 ptracestop(struct thread *td, int sig)
2444 {
2445 	struct proc *p = td->td_proc;
2446 
2447 	PROC_LOCK_ASSERT(p, MA_OWNED);
2448 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2449 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2450 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2451 
2452 	td->td_dbgflags |= TDB_XSIG;
2453 	td->td_xsig = sig;
2454 	PROC_SLOCK(p);
2455 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2456 		if (p->p_flag & P_SINGLE_EXIT) {
2457 			td->td_dbgflags &= ~TDB_XSIG;
2458 			PROC_SUNLOCK(p);
2459 			return (sig);
2460 		}
2461 		/*
2462 		 * Just make wait() to work, the last stopped thread
2463 		 * will win.
2464 		 */
2465 		p->p_xstat = sig;
2466 		p->p_xthread = td;
2467 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2468 		sig_suspend_threads(td, p, 0);
2469 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2470 			td->td_dbgflags &= ~TDB_STOPATFORK;
2471 			cv_broadcast(&p->p_dbgwait);
2472 		}
2473 stopme:
2474 		thread_suspend_switch(td);
2475 		if (p->p_xthread == td)
2476 			p->p_xthread = NULL;
2477 		if (!(p->p_flag & P_TRACED))
2478 			break;
2479 		if (td->td_dbgflags & TDB_SUSPEND) {
2480 			if (p->p_flag & P_SINGLE_EXIT)
2481 				break;
2482 			goto stopme;
2483 		}
2484 	}
2485 	PROC_SUNLOCK(p);
2486 	return (td->td_xsig);
2487 }
2488 
2489 static void
2490 reschedule_signals(struct proc *p, sigset_t block, int flags)
2491 {
2492 	struct sigacts *ps;
2493 	struct thread *td;
2494 	int sig;
2495 
2496 	PROC_LOCK_ASSERT(p, MA_OWNED);
2497 	if (SIGISEMPTY(p->p_siglist))
2498 		return;
2499 	ps = p->p_sigacts;
2500 	SIGSETAND(block, p->p_siglist);
2501 	while ((sig = sig_ffs(&block)) != 0) {
2502 		SIGDELSET(block, sig);
2503 		td = sigtd(p, sig, 0);
2504 		signotify(td);
2505 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2506 			mtx_lock(&ps->ps_mtx);
2507 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2508 			tdsigwakeup(td, sig, SIG_CATCH,
2509 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2510 			     ERESTART));
2511 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2512 			mtx_unlock(&ps->ps_mtx);
2513 	}
2514 }
2515 
2516 void
2517 tdsigcleanup(struct thread *td)
2518 {
2519 	struct proc *p;
2520 	sigset_t unblocked;
2521 
2522 	p = td->td_proc;
2523 	PROC_LOCK_ASSERT(p, MA_OWNED);
2524 
2525 	sigqueue_flush(&td->td_sigqueue);
2526 	if (p->p_numthreads == 1)
2527 		return;
2528 
2529 	/*
2530 	 * Since we cannot handle signals, notify signal post code
2531 	 * about this by filling the sigmask.
2532 	 *
2533 	 * Also, if needed, wake up thread(s) that do not block the
2534 	 * same signals as the exiting thread, since the thread might
2535 	 * have been selected for delivery and woken up.
2536 	 */
2537 	SIGFILLSET(unblocked);
2538 	SIGSETNAND(unblocked, td->td_sigmask);
2539 	SIGFILLSET(td->td_sigmask);
2540 	reschedule_signals(p, unblocked, 0);
2541 
2542 }
2543 
2544 /*
2545  * Defer the delivery of SIGSTOP for the current thread.  Returns true
2546  * if stops were deferred and false if they were already deferred.
2547  */
2548 int
2549 sigdeferstop(void)
2550 {
2551 	struct thread *td;
2552 
2553 	td = curthread;
2554 	if (td->td_flags & TDF_SBDRY)
2555 		return (0);
2556 	thread_lock(td);
2557 	td->td_flags |= TDF_SBDRY;
2558 	thread_unlock(td);
2559 	return (1);
2560 }
2561 
2562 /*
2563  * Permit the delivery of SIGSTOP for the current thread.  This does
2564  * not immediately suspend if a stop was posted.  Instead, the thread
2565  * will suspend either via ast() or a subsequent interruptible sleep.
2566  */
2567 void
2568 sigallowstop()
2569 {
2570 	struct thread *td;
2571 
2572 	td = curthread;
2573 	thread_lock(td);
2574 	td->td_flags &= ~TDF_SBDRY;
2575 	thread_unlock(td);
2576 }
2577 
2578 /*
2579  * If the current process has received a signal (should be caught or cause
2580  * termination, should interrupt current syscall), return the signal number.
2581  * Stop signals with default action are processed immediately, then cleared;
2582  * they aren't returned.  This is checked after each entry to the system for
2583  * a syscall or trap (though this can usually be done without calling issignal
2584  * by checking the pending signal masks in cursig.) The normal call
2585  * sequence is
2586  *
2587  *	while (sig = cursig(curthread))
2588  *		postsig(sig);
2589  */
2590 static int
2591 issignal(struct thread *td)
2592 {
2593 	struct proc *p;
2594 	struct sigacts *ps;
2595 	struct sigqueue *queue;
2596 	sigset_t sigpending;
2597 	int sig, prop, newsig;
2598 
2599 	p = td->td_proc;
2600 	ps = p->p_sigacts;
2601 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2602 	PROC_LOCK_ASSERT(p, MA_OWNED);
2603 	for (;;) {
2604 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2605 
2606 		sigpending = td->td_sigqueue.sq_signals;
2607 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2608 		SIGSETNAND(sigpending, td->td_sigmask);
2609 
2610 		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2611 			SIG_STOPSIGMASK(sigpending);
2612 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2613 			return (0);
2614 		sig = sig_ffs(&sigpending);
2615 
2616 		if (p->p_stops & S_SIG) {
2617 			mtx_unlock(&ps->ps_mtx);
2618 			stopevent(p, S_SIG, sig);
2619 			mtx_lock(&ps->ps_mtx);
2620 		}
2621 
2622 		/*
2623 		 * We should see pending but ignored signals
2624 		 * only if P_TRACED was on when they were posted.
2625 		 */
2626 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2627 			sigqueue_delete(&td->td_sigqueue, sig);
2628 			sigqueue_delete(&p->p_sigqueue, sig);
2629 			continue;
2630 		}
2631 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
2632 			/*
2633 			 * If traced, always stop.
2634 			 * Remove old signal from queue before the stop.
2635 			 * XXX shrug off debugger, it causes siginfo to
2636 			 * be thrown away.
2637 			 */
2638 			queue = &td->td_sigqueue;
2639 			td->td_dbgksi.ksi_signo = 0;
2640 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2641 				queue = &p->p_sigqueue;
2642 				sigqueue_get(queue, sig, &td->td_dbgksi);
2643 			}
2644 
2645 			mtx_unlock(&ps->ps_mtx);
2646 			newsig = ptracestop(td, sig);
2647 			mtx_lock(&ps->ps_mtx);
2648 
2649 			if (sig != newsig) {
2650 
2651 				/*
2652 				 * If parent wants us to take the signal,
2653 				 * then it will leave it in p->p_xstat;
2654 				 * otherwise we just look for signals again.
2655 				*/
2656 				if (newsig == 0)
2657 					continue;
2658 				sig = newsig;
2659 
2660 				/*
2661 				 * Put the new signal into td_sigqueue. If the
2662 				 * signal is being masked, look for other
2663 				 * signals.
2664 				 */
2665 				sigqueue_add(queue, sig, NULL);
2666 				if (SIGISMEMBER(td->td_sigmask, sig))
2667 					continue;
2668 				signotify(td);
2669 			} else {
2670 				if (td->td_dbgksi.ksi_signo != 0) {
2671 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2672 					if (sigqueue_add(&td->td_sigqueue, sig,
2673 					    &td->td_dbgksi) != 0)
2674 						td->td_dbgksi.ksi_signo = 0;
2675 				}
2676 				if (td->td_dbgksi.ksi_signo == 0)
2677 					sigqueue_add(&td->td_sigqueue, sig,
2678 					    NULL);
2679 			}
2680 
2681 			/*
2682 			 * If the traced bit got turned off, go back up
2683 			 * to the top to rescan signals.  This ensures
2684 			 * that p_sig* and p_sigact are consistent.
2685 			 */
2686 			if ((p->p_flag & P_TRACED) == 0)
2687 				continue;
2688 		}
2689 
2690 		prop = sigprop(sig);
2691 
2692 		/*
2693 		 * Decide whether the signal should be returned.
2694 		 * Return the signal's number, or fall through
2695 		 * to clear it from the pending mask.
2696 		 */
2697 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2698 
2699 		case (intptr_t)SIG_DFL:
2700 			/*
2701 			 * Don't take default actions on system processes.
2702 			 */
2703 			if (p->p_pid <= 1) {
2704 #ifdef DIAGNOSTIC
2705 				/*
2706 				 * Are you sure you want to ignore SIGSEGV
2707 				 * in init? XXX
2708 				 */
2709 				printf("Process (pid %lu) got signal %d\n",
2710 					(u_long)p->p_pid, sig);
2711 #endif
2712 				break;		/* == ignore */
2713 			}
2714 			/*
2715 			 * If there is a pending stop signal to process
2716 			 * with default action, stop here,
2717 			 * then clear the signal.  However,
2718 			 * if process is member of an orphaned
2719 			 * process group, ignore tty stop signals.
2720 			 */
2721 			if (prop & SA_STOP) {
2722 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2723 				    (p->p_pgrp->pg_jobc == 0 &&
2724 				     prop & SA_TTYSTOP))
2725 					break;	/* == ignore */
2726 				mtx_unlock(&ps->ps_mtx);
2727 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2728 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2729 				p->p_flag |= P_STOPPED_SIG;
2730 				p->p_xstat = sig;
2731 				PROC_SLOCK(p);
2732 				sig_suspend_threads(td, p, 0);
2733 				thread_suspend_switch(td);
2734 				PROC_SUNLOCK(p);
2735 				mtx_lock(&ps->ps_mtx);
2736 				break;
2737 			} else if (prop & SA_IGNORE) {
2738 				/*
2739 				 * Except for SIGCONT, shouldn't get here.
2740 				 * Default action is to ignore; drop it.
2741 				 */
2742 				break;		/* == ignore */
2743 			} else
2744 				return (sig);
2745 			/*NOTREACHED*/
2746 
2747 		case (intptr_t)SIG_IGN:
2748 			/*
2749 			 * Masking above should prevent us ever trying
2750 			 * to take action on an ignored signal other
2751 			 * than SIGCONT, unless process is traced.
2752 			 */
2753 			if ((prop & SA_CONT) == 0 &&
2754 			    (p->p_flag & P_TRACED) == 0)
2755 				printf("issignal\n");
2756 			break;		/* == ignore */
2757 
2758 		default:
2759 			/*
2760 			 * This signal has an action, let
2761 			 * postsig() process it.
2762 			 */
2763 			return (sig);
2764 		}
2765 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2766 		sigqueue_delete(&p->p_sigqueue, sig);
2767 	}
2768 	/* NOTREACHED */
2769 }
2770 
2771 void
2772 thread_stopped(struct proc *p)
2773 {
2774 	int n;
2775 
2776 	PROC_LOCK_ASSERT(p, MA_OWNED);
2777 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2778 	n = p->p_suspcount;
2779 	if (p == curproc)
2780 		n++;
2781 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2782 		PROC_SUNLOCK(p);
2783 		p->p_flag &= ~P_WAITED;
2784 		PROC_LOCK(p->p_pptr);
2785 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2786 			CLD_TRAPPED : CLD_STOPPED);
2787 		PROC_UNLOCK(p->p_pptr);
2788 		PROC_SLOCK(p);
2789 	}
2790 }
2791 
2792 /*
2793  * Take the action for the specified signal
2794  * from the current set of pending signals.
2795  */
2796 int
2797 postsig(sig)
2798 	register int sig;
2799 {
2800 	struct thread *td = curthread;
2801 	register struct proc *p = td->td_proc;
2802 	struct sigacts *ps;
2803 	sig_t action;
2804 	ksiginfo_t ksi;
2805 	sigset_t returnmask, mask;
2806 
2807 	KASSERT(sig != 0, ("postsig"));
2808 
2809 	PROC_LOCK_ASSERT(p, MA_OWNED);
2810 	ps = p->p_sigacts;
2811 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2812 	ksiginfo_init(&ksi);
2813 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2814 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2815 		return (0);
2816 	ksi.ksi_signo = sig;
2817 	if (ksi.ksi_code == SI_TIMER)
2818 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2819 	action = ps->ps_sigact[_SIG_IDX(sig)];
2820 #ifdef KTRACE
2821 	if (KTRPOINT(td, KTR_PSIG))
2822 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2823 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2824 #endif
2825 	if (p->p_stops & S_SIG) {
2826 		mtx_unlock(&ps->ps_mtx);
2827 		stopevent(p, S_SIG, sig);
2828 		mtx_lock(&ps->ps_mtx);
2829 	}
2830 
2831 	if (action == SIG_DFL) {
2832 		/*
2833 		 * Default action, where the default is to kill
2834 		 * the process.  (Other cases were ignored above.)
2835 		 */
2836 		mtx_unlock(&ps->ps_mtx);
2837 		sigexit(td, sig);
2838 		/* NOTREACHED */
2839 	} else {
2840 		/*
2841 		 * If we get here, the signal must be caught.
2842 		 */
2843 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2844 		    ("postsig action"));
2845 		/*
2846 		 * Set the new mask value and also defer further
2847 		 * occurrences of this signal.
2848 		 *
2849 		 * Special case: user has done a sigsuspend.  Here the
2850 		 * current mask is not of interest, but rather the
2851 		 * mask from before the sigsuspend is what we want
2852 		 * restored after the signal processing is completed.
2853 		 */
2854 		if (td->td_pflags & TDP_OLDMASK) {
2855 			returnmask = td->td_oldsigmask;
2856 			td->td_pflags &= ~TDP_OLDMASK;
2857 		} else
2858 			returnmask = td->td_sigmask;
2859 
2860 		mask = ps->ps_catchmask[_SIG_IDX(sig)];
2861 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2862 			SIGADDSET(mask, sig);
2863 		kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
2864 		    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
2865 
2866 		if (SIGISMEMBER(ps->ps_sigreset, sig))
2867 			sigdflt(ps, sig);
2868 		td->td_ru.ru_nsignals++;
2869 		if (p->p_sig == sig) {
2870 			p->p_code = 0;
2871 			p->p_sig = 0;
2872 		}
2873 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2874 	}
2875 	return (1);
2876 }
2877 
2878 /*
2879  * Kill the current process for stated reason.
2880  */
2881 void
2882 killproc(p, why)
2883 	struct proc *p;
2884 	char *why;
2885 {
2886 
2887 	PROC_LOCK_ASSERT(p, MA_OWNED);
2888 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2889 	    p->p_comm);
2890 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2891 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2892 	p->p_flag |= P_WKILLED;
2893 	kern_psignal(p, SIGKILL);
2894 }
2895 
2896 /*
2897  * Force the current process to exit with the specified signal, dumping core
2898  * if appropriate.  We bypass the normal tests for masked and caught signals,
2899  * allowing unrecoverable failures to terminate the process without changing
2900  * signal state.  Mark the accounting record with the signal termination.
2901  * If dumping core, save the signal number for the debugger.  Calls exit and
2902  * does not return.
2903  */
2904 void
2905 sigexit(td, sig)
2906 	struct thread *td;
2907 	int sig;
2908 {
2909 	struct proc *p = td->td_proc;
2910 
2911 	PROC_LOCK_ASSERT(p, MA_OWNED);
2912 	p->p_acflag |= AXSIG;
2913 	/*
2914 	 * We must be single-threading to generate a core dump.  This
2915 	 * ensures that the registers in the core file are up-to-date.
2916 	 * Also, the ELF dump handler assumes that the thread list doesn't
2917 	 * change out from under it.
2918 	 *
2919 	 * XXX If another thread attempts to single-thread before us
2920 	 *     (e.g. via fork()), we won't get a dump at all.
2921 	 */
2922 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2923 		p->p_sig = sig;
2924 		/*
2925 		 * Log signals which would cause core dumps
2926 		 * (Log as LOG_INFO to appease those who don't want
2927 		 * these messages.)
2928 		 * XXX : Todo, as well as euid, write out ruid too
2929 		 * Note that coredump() drops proc lock.
2930 		 */
2931 		if (coredump(td) == 0)
2932 			sig |= WCOREFLAG;
2933 		if (kern_logsigexit)
2934 			log(LOG_INFO,
2935 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2936 			    p->p_pid, p->p_comm,
2937 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2938 			    sig &~ WCOREFLAG,
2939 			    sig & WCOREFLAG ? " (core dumped)" : "");
2940 	} else
2941 		PROC_UNLOCK(p);
2942 	exit1(td, W_EXITCODE(0, sig));
2943 	/* NOTREACHED */
2944 }
2945 
2946 /*
2947  * Send queued SIGCHLD to parent when child process's state
2948  * is changed.
2949  */
2950 static void
2951 sigparent(struct proc *p, int reason, int status)
2952 {
2953 	PROC_LOCK_ASSERT(p, MA_OWNED);
2954 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2955 
2956 	if (p->p_ksi != NULL) {
2957 		p->p_ksi->ksi_signo  = SIGCHLD;
2958 		p->p_ksi->ksi_code   = reason;
2959 		p->p_ksi->ksi_status = status;
2960 		p->p_ksi->ksi_pid    = p->p_pid;
2961 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2962 		if (KSI_ONQ(p->p_ksi))
2963 			return;
2964 	}
2965 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2966 }
2967 
2968 static void
2969 childproc_jobstate(struct proc *p, int reason, int sig)
2970 {
2971 	struct sigacts *ps;
2972 
2973 	PROC_LOCK_ASSERT(p, MA_OWNED);
2974 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2975 
2976 	/*
2977 	 * Wake up parent sleeping in kern_wait(), also send
2978 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2979 	 * that parent will awake, because parent may masked
2980 	 * the signal.
2981 	 */
2982 	p->p_pptr->p_flag |= P_STATCHILD;
2983 	wakeup(p->p_pptr);
2984 
2985 	ps = p->p_pptr->p_sigacts;
2986 	mtx_lock(&ps->ps_mtx);
2987 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2988 		mtx_unlock(&ps->ps_mtx);
2989 		sigparent(p, reason, sig);
2990 	} else
2991 		mtx_unlock(&ps->ps_mtx);
2992 }
2993 
2994 void
2995 childproc_stopped(struct proc *p, int reason)
2996 {
2997 	/* p_xstat is a plain signal number, not a full wait() status here. */
2998 	childproc_jobstate(p, reason, p->p_xstat);
2999 }
3000 
3001 void
3002 childproc_continued(struct proc *p)
3003 {
3004 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3005 }
3006 
3007 void
3008 childproc_exited(struct proc *p)
3009 {
3010 	int reason;
3011 	int xstat = p->p_xstat; /* convert to int */
3012 	int status;
3013 
3014 	if (WCOREDUMP(xstat))
3015 		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3016 	else if (WIFSIGNALED(xstat))
3017 		reason = CLD_KILLED, status = WTERMSIG(xstat);
3018 	else
3019 		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3020 	/*
3021 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3022 	 * done in exit1().
3023 	 */
3024 	sigparent(p, reason, status);
3025 }
3026 
3027 /*
3028  * We only have 1 character for the core count in the format
3029  * string, so the range will be 0-9
3030  */
3031 #define MAX_NUM_CORES 10
3032 static int num_cores = 5;
3033 
3034 static int
3035 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3036 {
3037 	int error;
3038 	int new_val;
3039 
3040 	new_val = num_cores;
3041 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3042 	if (error != 0 || req->newptr == NULL)
3043 		return (error);
3044 	if (new_val > MAX_NUM_CORES)
3045 		new_val = MAX_NUM_CORES;
3046 	if (new_val < 0)
3047 		new_val = 0;
3048 	num_cores = new_val;
3049 	return (0);
3050 }
3051 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3052 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3053 
3054 #if defined(COMPRESS_USER_CORES)
3055 int compress_user_cores = 1;
3056 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3057     &compress_user_cores, 0, "Compression of user corefiles");
3058 
3059 int compress_user_cores_gzlevel = -1; /* default level */
3060 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3061     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3062 
3063 #define GZ_SUFFIX	".gz"
3064 #define GZ_SUFFIX_LEN	3
3065 #endif
3066 
3067 static char corefilename[MAXPATHLEN] = {"%N.core"};
3068 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RWTUN, corefilename,
3069     sizeof(corefilename), "Process corefile name format string");
3070 
3071 /*
3072  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3073  * Expand the name described in corefilename, using name, uid, and pid
3074  * and open/create core file.
3075  * corefilename is a printf-like string, with three format specifiers:
3076  *	%N	name of process ("name")
3077  *	%P	process id (pid)
3078  *	%U	user id (uid)
3079  * For example, "%N.core" is the default; they can be disabled completely
3080  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3081  * This is controlled by the sysctl variable kern.corefile (see above).
3082  */
3083 static int
3084 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3085     int compress, struct vnode **vpp, char **namep)
3086 {
3087 	struct nameidata nd;
3088 	struct sbuf sb;
3089 	const char *format;
3090 	char *hostname, *name;
3091 	int indexpos, i, error, cmode, flags, oflags;
3092 
3093 	hostname = NULL;
3094 	format = corefilename;
3095 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3096 	indexpos = -1;
3097 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3098 	for (i = 0; format[i] != '\0'; i++) {
3099 		switch (format[i]) {
3100 		case '%':	/* Format character */
3101 			i++;
3102 			switch (format[i]) {
3103 			case '%':
3104 				sbuf_putc(&sb, '%');
3105 				break;
3106 			case 'H':	/* hostname */
3107 				if (hostname == NULL) {
3108 					hostname = malloc(MAXHOSTNAMELEN,
3109 					    M_TEMP, M_WAITOK);
3110 				}
3111 				getcredhostname(td->td_ucred, hostname,
3112 				    MAXHOSTNAMELEN);
3113 				sbuf_printf(&sb, "%s", hostname);
3114 				break;
3115 			case 'I':	/* autoincrementing index */
3116 				sbuf_printf(&sb, "0");
3117 				indexpos = sbuf_len(&sb) - 1;
3118 				break;
3119 			case 'N':	/* process name */
3120 				sbuf_printf(&sb, "%s", comm);
3121 				break;
3122 			case 'P':	/* process id */
3123 				sbuf_printf(&sb, "%u", pid);
3124 				break;
3125 			case 'U':	/* user id */
3126 				sbuf_printf(&sb, "%u", uid);
3127 				break;
3128 			default:
3129 				log(LOG_ERR,
3130 				    "Unknown format character %c in "
3131 				    "corename `%s'\n", format[i], format);
3132 				break;
3133 			}
3134 			break;
3135 		default:
3136 			sbuf_putc(&sb, format[i]);
3137 			break;
3138 		}
3139 	}
3140 	free(hostname, M_TEMP);
3141 #ifdef COMPRESS_USER_CORES
3142 	if (compress)
3143 		sbuf_printf(&sb, GZ_SUFFIX);
3144 #endif
3145 	if (sbuf_error(&sb) != 0) {
3146 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3147 		    "long\n", (long)pid, comm, (u_long)uid);
3148 		sbuf_delete(&sb);
3149 		free(name, M_TEMP);
3150 		return (ENOMEM);
3151 	}
3152 	sbuf_finish(&sb);
3153 	sbuf_delete(&sb);
3154 
3155 	cmode = S_IRUSR | S_IWUSR;
3156 	oflags = VN_OPEN_NOAUDIT | (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3157 
3158 	/*
3159 	 * If the core format has a %I in it, then we need to check
3160 	 * for existing corefiles before returning a name.
3161 	 * To do this we iterate over 0..num_cores to find a
3162 	 * non-existing core file name to use.
3163 	 */
3164 	if (indexpos != -1) {
3165 		for (i = 0; i < num_cores; i++) {
3166 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3167 			name[indexpos] = '0' + i;
3168 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3169 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3170 			    td->td_ucred, NULL);
3171 			if (error) {
3172 				if (error == EEXIST)
3173 					continue;
3174 				log(LOG_ERR,
3175 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3176 				    "on initial open test, error = %d\n",
3177 				    pid, comm, uid, name, error);
3178 			}
3179 			goto out;
3180 		}
3181 	}
3182 
3183 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3184 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3185 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3186 out:
3187 	if (error) {
3188 #ifdef AUDIT
3189 		audit_proc_coredump(td, name, error);
3190 #endif
3191 		free(name, M_TEMP);
3192 		return (error);
3193 	}
3194 	NDFREE(&nd, NDF_ONLY_PNBUF);
3195 	*vpp = nd.ni_vp;
3196 	*namep = name;
3197 	return (0);
3198 }
3199 
3200 /*
3201  * Dump a process' core.  The main routine does some
3202  * policy checking, and creates the name of the coredump;
3203  * then it passes on a vnode and a size limit to the process-specific
3204  * coredump routine if there is one; if there _is not_ one, it returns
3205  * ENOSYS; otherwise it returns the error from the process-specific routine.
3206  */
3207 
3208 static int
3209 coredump(struct thread *td)
3210 {
3211 	struct proc *p = td->td_proc;
3212 	struct ucred *cred = td->td_ucred;
3213 	struct vnode *vp;
3214 	struct flock lf;
3215 	struct vattr vattr;
3216 	int error, error1, locked;
3217 	char *name;			/* name of corefile */
3218 	void *rl_cookie;
3219 	off_t limit;
3220 	int compress;
3221 
3222 #ifdef COMPRESS_USER_CORES
3223 	compress = compress_user_cores;
3224 #else
3225 	compress = 0;
3226 #endif
3227 	PROC_LOCK_ASSERT(p, MA_OWNED);
3228 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3229 	_STOPEVENT(p, S_CORE, 0);
3230 
3231 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0)) {
3232 		PROC_UNLOCK(p);
3233 		return (EFAULT);
3234 	}
3235 
3236 	/*
3237 	 * Note that the bulk of limit checking is done after
3238 	 * the corefile is created.  The exception is if the limit
3239 	 * for corefiles is 0, in which case we don't bother
3240 	 * creating the corefile at all.  This layout means that
3241 	 * a corefile is truncated instead of not being created,
3242 	 * if it is larger than the limit.
3243 	 */
3244 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3245 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3246 		PROC_UNLOCK(p);
3247 		return (EFBIG);
3248 	}
3249 	PROC_UNLOCK(p);
3250 
3251 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3252 	    &vp, &name);
3253 	if (error != 0)
3254 		return (error);
3255 
3256 	/*
3257 	 * Don't dump to non-regular files or files with links.
3258 	 * Do not dump into system files.
3259 	 */
3260 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3261 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3262 		VOP_UNLOCK(vp, 0);
3263 		error = EFAULT;
3264 		goto close;
3265 	}
3266 
3267 	VOP_UNLOCK(vp, 0);
3268 
3269 	/* Postpone other writers, including core dumps of other processes. */
3270 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3271 
3272 	lf.l_whence = SEEK_SET;
3273 	lf.l_start = 0;
3274 	lf.l_len = 0;
3275 	lf.l_type = F_WRLCK;
3276 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3277 
3278 	VATTR_NULL(&vattr);
3279 	vattr.va_size = 0;
3280 	if (set_core_nodump_flag)
3281 		vattr.va_flags = UF_NODUMP;
3282 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3283 	VOP_SETATTR(vp, &vattr, cred);
3284 	VOP_UNLOCK(vp, 0);
3285 	PROC_LOCK(p);
3286 	p->p_acflag |= ACORE;
3287 	PROC_UNLOCK(p);
3288 
3289 	if (p->p_sysent->sv_coredump != NULL) {
3290 		error = p->p_sysent->sv_coredump(td, vp, limit,
3291 		    compress ? IMGACT_CORE_COMPRESS : 0);
3292 	} else {
3293 		error = ENOSYS;
3294 	}
3295 
3296 	if (locked) {
3297 		lf.l_type = F_UNLCK;
3298 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3299 	}
3300 	vn_rangelock_unlock(vp, rl_cookie);
3301 close:
3302 	error1 = vn_close(vp, FWRITE, cred, td);
3303 	if (error == 0)
3304 		error = error1;
3305 #ifdef AUDIT
3306 	audit_proc_coredump(td, name, error);
3307 #endif
3308 	free(name, M_TEMP);
3309 	return (error);
3310 }
3311 
3312 /*
3313  * Nonexistent system call-- signal process (may want to handle it).  Flag
3314  * error in case process won't see signal immediately (blocked or ignored).
3315  */
3316 #ifndef _SYS_SYSPROTO_H_
3317 struct nosys_args {
3318 	int	dummy;
3319 };
3320 #endif
3321 /* ARGSUSED */
3322 int
3323 nosys(td, args)
3324 	struct thread *td;
3325 	struct nosys_args *args;
3326 {
3327 	struct proc *p = td->td_proc;
3328 
3329 	PROC_LOCK(p);
3330 	tdsignal(td, SIGSYS);
3331 	PROC_UNLOCK(p);
3332 	return (ENOSYS);
3333 }
3334 
3335 /*
3336  * Send a SIGIO or SIGURG signal to a process or process group using stored
3337  * credentials rather than those of the current process.
3338  */
3339 void
3340 pgsigio(sigiop, sig, checkctty)
3341 	struct sigio **sigiop;
3342 	int sig, checkctty;
3343 {
3344 	ksiginfo_t ksi;
3345 	struct sigio *sigio;
3346 
3347 	ksiginfo_init(&ksi);
3348 	ksi.ksi_signo = sig;
3349 	ksi.ksi_code = SI_KERNEL;
3350 
3351 	SIGIO_LOCK();
3352 	sigio = *sigiop;
3353 	if (sigio == NULL) {
3354 		SIGIO_UNLOCK();
3355 		return;
3356 	}
3357 	if (sigio->sio_pgid > 0) {
3358 		PROC_LOCK(sigio->sio_proc);
3359 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3360 			kern_psignal(sigio->sio_proc, sig);
3361 		PROC_UNLOCK(sigio->sio_proc);
3362 	} else if (sigio->sio_pgid < 0) {
3363 		struct proc *p;
3364 
3365 		PGRP_LOCK(sigio->sio_pgrp);
3366 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3367 			PROC_LOCK(p);
3368 			if (p->p_state == PRS_NORMAL &&
3369 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3370 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3371 				kern_psignal(p, sig);
3372 			PROC_UNLOCK(p);
3373 		}
3374 		PGRP_UNLOCK(sigio->sio_pgrp);
3375 	}
3376 	SIGIO_UNLOCK();
3377 }
3378 
3379 static int
3380 filt_sigattach(struct knote *kn)
3381 {
3382 	struct proc *p = curproc;
3383 
3384 	kn->kn_ptr.p_proc = p;
3385 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3386 
3387 	knlist_add(&p->p_klist, kn, 0);
3388 
3389 	return (0);
3390 }
3391 
3392 static void
3393 filt_sigdetach(struct knote *kn)
3394 {
3395 	struct proc *p = kn->kn_ptr.p_proc;
3396 
3397 	knlist_remove(&p->p_klist, kn, 0);
3398 }
3399 
3400 /*
3401  * signal knotes are shared with proc knotes, so we apply a mask to
3402  * the hint in order to differentiate them from process hints.  This
3403  * could be avoided by using a signal-specific knote list, but probably
3404  * isn't worth the trouble.
3405  */
3406 static int
3407 filt_signal(struct knote *kn, long hint)
3408 {
3409 
3410 	if (hint & NOTE_SIGNAL) {
3411 		hint &= ~NOTE_SIGNAL;
3412 
3413 		if (kn->kn_id == hint)
3414 			kn->kn_data++;
3415 	}
3416 	return (kn->kn_data != 0);
3417 }
3418 
3419 struct sigacts *
3420 sigacts_alloc(void)
3421 {
3422 	struct sigacts *ps;
3423 
3424 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3425 	refcount_init(&ps->ps_refcnt, 1);
3426 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3427 	return (ps);
3428 }
3429 
3430 void
3431 sigacts_free(struct sigacts *ps)
3432 {
3433 
3434 	if (refcount_release(&ps->ps_refcnt) == 0)
3435 		return;
3436 	mtx_destroy(&ps->ps_mtx);
3437 	free(ps, M_SUBPROC);
3438 }
3439 
3440 struct sigacts *
3441 sigacts_hold(struct sigacts *ps)
3442 {
3443 
3444 	refcount_acquire(&ps->ps_refcnt);
3445 	return (ps);
3446 }
3447 
3448 void
3449 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3450 {
3451 
3452 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3453 	mtx_lock(&src->ps_mtx);
3454 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3455 	mtx_unlock(&src->ps_mtx);
3456 }
3457 
3458 int
3459 sigacts_shared(struct sigacts *ps)
3460 {
3461 
3462 	return (ps->ps_refcnt > 1);
3463 }
3464