xref: /freebsd/sys/kern/kern_sig.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43 
44 #include "opt_compat.h"
45 #include "opt_ktrace.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/acct.h>
52 #include <sys/condvar.h>
53 #include <sys/event.h>
54 #include <sys/fcntl.h>
55 #include <sys/kernel.h>
56 #include <sys/kse.h>
57 #include <sys/ktr.h>
58 #include <sys/ktrace.h>
59 #include <sys/lock.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/namei.h>
63 #include <sys/proc.h>
64 #include <sys/pioctl.h>
65 #include <sys/resourcevar.h>
66 #include <sys/smp.h>
67 #include <sys/stat.h>
68 #include <sys/sx.h>
69 #include <sys/syscallsubr.h>
70 #include <sys/sysctl.h>
71 #include <sys/sysent.h>
72 #include <sys/syslog.h>
73 #include <sys/sysproto.h>
74 #include <sys/unistd.h>
75 #include <sys/wait.h>
76 
77 #include <machine/cpu.h>
78 
79 #if defined (__alpha__) && !defined(COMPAT_43)
80 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
81 #endif
82 
83 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
84 
85 static int	coredump(struct thread *);
86 static char	*expand_name(const char *, uid_t, pid_t);
87 static int	killpg1(struct thread *td, int sig, int pgid, int all);
88 static int	issignal(struct thread *p);
89 static int	sigprop(int sig);
90 static void	stop(struct proc *);
91 static void	tdsigwakeup(struct thread *td, int sig, sig_t action);
92 static int	filt_sigattach(struct knote *kn);
93 static void	filt_sigdetach(struct knote *kn);
94 static int	filt_signal(struct knote *kn, long hint);
95 static struct thread *sigtd(struct proc *p, int sig, int prop);
96 static int	kern_sigtimedwait(struct thread *td, sigset_t set,
97 				siginfo_t *info, struct timespec *timeout);
98 static void	do_tdsignal(struct thread *td, int sig, sigtarget_t target);
99 
100 struct filterops sig_filtops =
101 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
102 
103 static int	kern_logsigexit = 1;
104 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
105     &kern_logsigexit, 0,
106     "Log processes quitting on abnormal signals to syslog(3)");
107 
108 /*
109  * Policy -- Can ucred cr1 send SIGIO to process cr2?
110  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
111  * in the right situations.
112  */
113 #define CANSIGIO(cr1, cr2) \
114 	((cr1)->cr_uid == 0 || \
115 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
116 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
117 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
118 	    (cr1)->cr_uid == (cr2)->cr_uid)
119 
120 int sugid_coredump;
121 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
122     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
123 
124 static int	do_coredump = 1;
125 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
126 	&do_coredump, 0, "Enable/Disable coredumps");
127 
128 /*
129  * Signal properties and actions.
130  * The array below categorizes the signals and their default actions
131  * according to the following properties:
132  */
133 #define	SA_KILL		0x01		/* terminates process by default */
134 #define	SA_CORE		0x02		/* ditto and coredumps */
135 #define	SA_STOP		0x04		/* suspend process */
136 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
137 #define	SA_IGNORE	0x10		/* ignore by default */
138 #define	SA_CONT		0x20		/* continue if suspended */
139 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
140 #define	SA_PROC		0x80		/* deliverable to any thread */
141 
142 static int sigproptbl[NSIG] = {
143         SA_KILL|SA_PROC,		/* SIGHUP */
144         SA_KILL|SA_PROC,		/* SIGINT */
145         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
146         SA_KILL|SA_CORE,		/* SIGILL */
147         SA_KILL|SA_CORE,		/* SIGTRAP */
148         SA_KILL|SA_CORE,		/* SIGABRT */
149         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
150         SA_KILL|SA_CORE,		/* SIGFPE */
151         SA_KILL|SA_PROC,		/* SIGKILL */
152         SA_KILL|SA_CORE,		/* SIGBUS */
153         SA_KILL|SA_CORE,		/* SIGSEGV */
154         SA_KILL|SA_CORE,		/* SIGSYS */
155         SA_KILL|SA_PROC,		/* SIGPIPE */
156         SA_KILL|SA_PROC,		/* SIGALRM */
157         SA_KILL|SA_PROC,		/* SIGTERM */
158         SA_IGNORE|SA_PROC,		/* SIGURG */
159         SA_STOP|SA_PROC,		/* SIGSTOP */
160         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
161         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
162         SA_IGNORE|SA_PROC,		/* SIGCHLD */
163         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
164         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
165         SA_IGNORE|SA_PROC,		/* SIGIO */
166         SA_KILL,			/* SIGXCPU */
167         SA_KILL,			/* SIGXFSZ */
168         SA_KILL|SA_PROC,		/* SIGVTALRM */
169         SA_KILL|SA_PROC,		/* SIGPROF */
170         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
171         SA_IGNORE|SA_PROC,		/* SIGINFO */
172         SA_KILL|SA_PROC,		/* SIGUSR1 */
173         SA_KILL|SA_PROC,		/* SIGUSR2 */
174 };
175 
176 /*
177  * Determine signal that should be delivered to process p, the current
178  * process, 0 if none.  If there is a pending stop signal with default
179  * action, the process stops in issignal().
180  * XXXKSE   the check for a pending stop is not done under KSE
181  *
182  * MP SAFE.
183  */
184 int
185 cursig(struct thread *td)
186 {
187 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
188 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
189 	mtx_assert(&sched_lock, MA_NOTOWNED);
190 	return (SIGPENDING(td) ? issignal(td) : 0);
191 }
192 
193 /*
194  * Arrange for ast() to handle unmasked pending signals on return to user
195  * mode.  This must be called whenever a signal is added to td_siglist or
196  * unmasked in td_sigmask.
197  */
198 void
199 signotify(struct thread *td)
200 {
201 	struct proc *p;
202 	sigset_t set, saved;
203 
204 	p = td->td_proc;
205 
206 	PROC_LOCK_ASSERT(p, MA_OWNED);
207 
208 	/*
209 	 * If our mask changed we may have to move signal that were
210 	 * previously masked by all threads to our siglist.
211 	 */
212 	set = p->p_siglist;
213 	if (p->p_flag & P_SA)
214 		saved = p->p_siglist;
215 	SIGSETNAND(set, td->td_sigmask);
216 	SIGSETNAND(p->p_siglist, set);
217 	SIGSETOR(td->td_siglist, set);
218 
219 	if (SIGPENDING(td)) {
220 		mtx_lock_spin(&sched_lock);
221 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
222 		mtx_unlock_spin(&sched_lock);
223 	}
224 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
225 		if (SIGSETEQ(saved, p->p_siglist))
226 			return;
227 		else {
228 			/* pending set changed */
229 			p->p_flag |= P_SIGEVENT;
230 			wakeup(&p->p_siglist);
231 		}
232 	}
233 }
234 
235 int
236 sigonstack(size_t sp)
237 {
238 	struct proc *p = curthread->td_proc;
239 
240 	PROC_LOCK_ASSERT(p, MA_OWNED);
241 	return ((p->p_flag & P_ALTSTACK) ?
242 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
243 	    ((p->p_sigstk.ss_size == 0) ? (p->p_sigstk.ss_flags & SS_ONSTACK) :
244 		((sp - (size_t)p->p_sigstk.ss_sp) < p->p_sigstk.ss_size))
245 #else
246 	    ((sp - (size_t)p->p_sigstk.ss_sp) < p->p_sigstk.ss_size)
247 #endif
248 	    : 0);
249 }
250 
251 static __inline int
252 sigprop(int sig)
253 {
254 
255 	if (sig > 0 && sig < NSIG)
256 		return (sigproptbl[_SIG_IDX(sig)]);
257 	return (0);
258 }
259 
260 int
261 sig_ffs(sigset_t *set)
262 {
263 	int i;
264 
265 	for (i = 0; i < _SIG_WORDS; i++)
266 		if (set->__bits[i])
267 			return (ffs(set->__bits[i]) + (i * 32));
268 	return (0);
269 }
270 
271 /*
272  * kern_sigaction
273  * sigaction
274  * freebsd4_sigaction
275  * osigaction
276  *
277  * MPSAFE
278  */
279 int
280 kern_sigaction(td, sig, act, oact, flags)
281 	struct thread *td;
282 	register int sig;
283 	struct sigaction *act, *oact;
284 	int flags;
285 {
286 	struct sigacts *ps;
287 	struct thread *td0;
288 	struct proc *p = td->td_proc;
289 
290 	if (!_SIG_VALID(sig))
291 		return (EINVAL);
292 
293 	PROC_LOCK(p);
294 	ps = p->p_sigacts;
295 	mtx_lock(&ps->ps_mtx);
296 	if (oact) {
297 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
298 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
299 		oact->sa_flags = 0;
300 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
301 			oact->sa_flags |= SA_ONSTACK;
302 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
303 			oact->sa_flags |= SA_RESTART;
304 		if (SIGISMEMBER(ps->ps_sigreset, sig))
305 			oact->sa_flags |= SA_RESETHAND;
306 		if (SIGISMEMBER(ps->ps_signodefer, sig))
307 			oact->sa_flags |= SA_NODEFER;
308 		if (SIGISMEMBER(ps->ps_siginfo, sig))
309 			oact->sa_flags |= SA_SIGINFO;
310 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
311 			oact->sa_flags |= SA_NOCLDSTOP;
312 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
313 			oact->sa_flags |= SA_NOCLDWAIT;
314 	}
315 	if (act) {
316 		if ((sig == SIGKILL || sig == SIGSTOP) &&
317 		    act->sa_handler != SIG_DFL) {
318 			mtx_unlock(&ps->ps_mtx);
319 			PROC_UNLOCK(p);
320 			return (EINVAL);
321 		}
322 
323 		/*
324 		 * Change setting atomically.
325 		 */
326 
327 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
328 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
329 		if (act->sa_flags & SA_SIGINFO) {
330 			ps->ps_sigact[_SIG_IDX(sig)] =
331 			    (__sighandler_t *)act->sa_sigaction;
332 			SIGADDSET(ps->ps_siginfo, sig);
333 		} else {
334 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
335 			SIGDELSET(ps->ps_siginfo, sig);
336 		}
337 		if (!(act->sa_flags & SA_RESTART))
338 			SIGADDSET(ps->ps_sigintr, sig);
339 		else
340 			SIGDELSET(ps->ps_sigintr, sig);
341 		if (act->sa_flags & SA_ONSTACK)
342 			SIGADDSET(ps->ps_sigonstack, sig);
343 		else
344 			SIGDELSET(ps->ps_sigonstack, sig);
345 		if (act->sa_flags & SA_RESETHAND)
346 			SIGADDSET(ps->ps_sigreset, sig);
347 		else
348 			SIGDELSET(ps->ps_sigreset, sig);
349 		if (act->sa_flags & SA_NODEFER)
350 			SIGADDSET(ps->ps_signodefer, sig);
351 		else
352 			SIGDELSET(ps->ps_signodefer, sig);
353 #ifdef COMPAT_SUNOS
354 		if (act->sa_flags & SA_USERTRAMP)
355 			SIGADDSET(ps->ps_usertramp, sig);
356 		else
357 			SIGDELSET(ps->ps_usertramp, sig);
358 #endif
359 		if (sig == SIGCHLD) {
360 			if (act->sa_flags & SA_NOCLDSTOP)
361 				ps->ps_flag |= PS_NOCLDSTOP;
362 			else
363 				ps->ps_flag &= ~PS_NOCLDSTOP;
364 			if (act->sa_flags & SA_NOCLDWAIT) {
365 				/*
366 				 * Paranoia: since SA_NOCLDWAIT is implemented
367 				 * by reparenting the dying child to PID 1 (and
368 				 * trust it to reap the zombie), PID 1 itself
369 				 * is forbidden to set SA_NOCLDWAIT.
370 				 */
371 				if (p->p_pid == 1)
372 					ps->ps_flag &= ~PS_NOCLDWAIT;
373 				else
374 					ps->ps_flag |= PS_NOCLDWAIT;
375 			} else
376 				ps->ps_flag &= ~PS_NOCLDWAIT;
377 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
378 				ps->ps_flag |= PS_CLDSIGIGN;
379 			else
380 				ps->ps_flag &= ~PS_CLDSIGIGN;
381 		}
382 		/*
383 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
384 		 * and for signals set to SIG_DFL where the default is to
385 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
386 		 * have to restart the process.
387 		 */
388 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
389 		    (sigprop(sig) & SA_IGNORE &&
390 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
391 			if ((p->p_flag & P_SA) &&
392 			     SIGISMEMBER(p->p_siglist, sig)) {
393 				p->p_flag |= P_SIGEVENT;
394 				wakeup(&p->p_siglist);
395 			}
396 			/* never to be seen again */
397 			SIGDELSET(p->p_siglist, sig);
398 			FOREACH_THREAD_IN_PROC(p, td0)
399 				SIGDELSET(td0->td_siglist, sig);
400 			if (sig != SIGCONT)
401 				/* easier in psignal */
402 				SIGADDSET(ps->ps_sigignore, sig);
403 			SIGDELSET(ps->ps_sigcatch, sig);
404 		} else {
405 			SIGDELSET(ps->ps_sigignore, sig);
406 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
407 				SIGDELSET(ps->ps_sigcatch, sig);
408 			else
409 				SIGADDSET(ps->ps_sigcatch, sig);
410 		}
411 #ifdef COMPAT_FREEBSD4
412 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
413 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
414 		    (flags & KSA_FREEBSD4) == 0)
415 			SIGDELSET(ps->ps_freebsd4, sig);
416 		else
417 			SIGADDSET(ps->ps_freebsd4, sig);
418 #endif
419 #ifdef COMPAT_43
420 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
421 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
422 		    (flags & KSA_OSIGSET) == 0)
423 			SIGDELSET(ps->ps_osigset, sig);
424 		else
425 			SIGADDSET(ps->ps_osigset, sig);
426 #endif
427 	}
428 	mtx_unlock(&ps->ps_mtx);
429 	PROC_UNLOCK(p);
430 	return (0);
431 }
432 
433 #ifndef _SYS_SYSPROTO_H_
434 struct sigaction_args {
435 	int	sig;
436 	struct	sigaction *act;
437 	struct	sigaction *oact;
438 };
439 #endif
440 /*
441  * MPSAFE
442  */
443 int
444 sigaction(td, uap)
445 	struct thread *td;
446 	register struct sigaction_args *uap;
447 {
448 	struct sigaction act, oact;
449 	register struct sigaction *actp, *oactp;
450 	int error;
451 
452 	actp = (uap->act != NULL) ? &act : NULL;
453 	oactp = (uap->oact != NULL) ? &oact : NULL;
454 	if (actp) {
455 		error = copyin(uap->act, actp, sizeof(act));
456 		if (error)
457 			return (error);
458 	}
459 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
460 	if (oactp && !error)
461 		error = copyout(oactp, uap->oact, sizeof(oact));
462 	return (error);
463 }
464 
465 #ifdef COMPAT_FREEBSD4
466 #ifndef _SYS_SYSPROTO_H_
467 struct freebsd4_sigaction_args {
468 	int	sig;
469 	struct	sigaction *act;
470 	struct	sigaction *oact;
471 };
472 #endif
473 /*
474  * MPSAFE
475  */
476 int
477 freebsd4_sigaction(td, uap)
478 	struct thread *td;
479 	register struct freebsd4_sigaction_args *uap;
480 {
481 	struct sigaction act, oact;
482 	register struct sigaction *actp, *oactp;
483 	int error;
484 
485 
486 	actp = (uap->act != NULL) ? &act : NULL;
487 	oactp = (uap->oact != NULL) ? &oact : NULL;
488 	if (actp) {
489 		error = copyin(uap->act, actp, sizeof(act));
490 		if (error)
491 			return (error);
492 	}
493 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
494 	if (oactp && !error)
495 		error = copyout(oactp, uap->oact, sizeof(oact));
496 	return (error);
497 }
498 #endif	/* COMAPT_FREEBSD4 */
499 
500 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
501 #ifndef _SYS_SYSPROTO_H_
502 struct osigaction_args {
503 	int	signum;
504 	struct	osigaction *nsa;
505 	struct	osigaction *osa;
506 };
507 #endif
508 /*
509  * MPSAFE
510  */
511 int
512 osigaction(td, uap)
513 	struct thread *td;
514 	register struct osigaction_args *uap;
515 {
516 	struct osigaction sa;
517 	struct sigaction nsa, osa;
518 	register struct sigaction *nsap, *osap;
519 	int error;
520 
521 	if (uap->signum <= 0 || uap->signum >= ONSIG)
522 		return (EINVAL);
523 
524 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
525 	osap = (uap->osa != NULL) ? &osa : NULL;
526 
527 	if (nsap) {
528 		error = copyin(uap->nsa, &sa, sizeof(sa));
529 		if (error)
530 			return (error);
531 		nsap->sa_handler = sa.sa_handler;
532 		nsap->sa_flags = sa.sa_flags;
533 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
534 	}
535 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
536 	if (osap && !error) {
537 		sa.sa_handler = osap->sa_handler;
538 		sa.sa_flags = osap->sa_flags;
539 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
540 		error = copyout(&sa, uap->osa, sizeof(sa));
541 	}
542 	return (error);
543 }
544 
545 #if !defined(__i386__) && !defined(__alpha__)
546 /* Avoid replicating the same stub everywhere */
547 int
548 osigreturn(td, uap)
549 	struct thread *td;
550 	struct osigreturn_args *uap;
551 {
552 
553 	return (nosys(td, (struct nosys_args *)uap));
554 }
555 #endif
556 #endif /* COMPAT_43 */
557 
558 /*
559  * Initialize signal state for process 0;
560  * set to ignore signals that are ignored by default.
561  */
562 void
563 siginit(p)
564 	struct proc *p;
565 {
566 	register int i;
567 	struct sigacts *ps;
568 
569 	PROC_LOCK(p);
570 	ps = p->p_sigacts;
571 	mtx_lock(&ps->ps_mtx);
572 	for (i = 1; i <= NSIG; i++)
573 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
574 			SIGADDSET(ps->ps_sigignore, i);
575 	mtx_unlock(&ps->ps_mtx);
576 	PROC_UNLOCK(p);
577 }
578 
579 /*
580  * Reset signals for an exec of the specified process.
581  */
582 void
583 execsigs(p)
584 	register struct proc *p;
585 {
586 	register struct sigacts *ps;
587 	register int sig;
588 
589 	/*
590 	 * Reset caught signals.  Held signals remain held
591 	 * through td_sigmask (unless they were caught,
592 	 * and are now ignored by default).
593 	 */
594 	PROC_LOCK_ASSERT(p, MA_OWNED);
595 	ps = p->p_sigacts;
596 	mtx_lock(&ps->ps_mtx);
597 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
598 		sig = sig_ffs(&ps->ps_sigcatch);
599 		SIGDELSET(ps->ps_sigcatch, sig);
600 		if (sigprop(sig) & SA_IGNORE) {
601 			if (sig != SIGCONT)
602 				SIGADDSET(ps->ps_sigignore, sig);
603 			SIGDELSET(p->p_siglist, sig);
604 			/*
605 			 * There is only one thread at this point.
606 			 */
607 			SIGDELSET(FIRST_THREAD_IN_PROC(p)->td_siglist, sig);
608 		}
609 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
610 	}
611 	/*
612 	 * Reset stack state to the user stack.
613 	 * Clear set of signals caught on the signal stack.
614 	 */
615 	p->p_sigstk.ss_flags = SS_DISABLE;
616 	p->p_sigstk.ss_size = 0;
617 	p->p_sigstk.ss_sp = 0;
618 	p->p_flag &= ~P_ALTSTACK;
619 	/*
620 	 * Reset no zombies if child dies flag as Solaris does.
621 	 */
622 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
623 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
624 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
625 	mtx_unlock(&ps->ps_mtx);
626 }
627 
628 /*
629  * kern_sigprocmask()
630  *
631  *	Manipulate signal mask.
632  */
633 int
634 kern_sigprocmask(td, how, set, oset, old)
635 	struct thread *td;
636 	int how;
637 	sigset_t *set, *oset;
638 	int old;
639 {
640 	int error;
641 
642 	PROC_LOCK(td->td_proc);
643 	if (oset != NULL)
644 		*oset = td->td_sigmask;
645 
646 	error = 0;
647 	if (set != NULL) {
648 		switch (how) {
649 		case SIG_BLOCK:
650 			SIG_CANTMASK(*set);
651 			SIGSETOR(td->td_sigmask, *set);
652 			break;
653 		case SIG_UNBLOCK:
654 			SIGSETNAND(td->td_sigmask, *set);
655 			signotify(td);
656 			break;
657 		case SIG_SETMASK:
658 			SIG_CANTMASK(*set);
659 			if (old)
660 				SIGSETLO(td->td_sigmask, *set);
661 			else
662 				td->td_sigmask = *set;
663 			signotify(td);
664 			break;
665 		default:
666 			error = EINVAL;
667 			break;
668 		}
669 	}
670 	PROC_UNLOCK(td->td_proc);
671 	return (error);
672 }
673 
674 /*
675  * sigprocmask() - MP SAFE
676  */
677 
678 #ifndef _SYS_SYSPROTO_H_
679 struct sigprocmask_args {
680 	int	how;
681 	const sigset_t *set;
682 	sigset_t *oset;
683 };
684 #endif
685 int
686 sigprocmask(td, uap)
687 	register struct thread *td;
688 	struct sigprocmask_args *uap;
689 {
690 	sigset_t set, oset;
691 	sigset_t *setp, *osetp;
692 	int error;
693 
694 	setp = (uap->set != NULL) ? &set : NULL;
695 	osetp = (uap->oset != NULL) ? &oset : NULL;
696 	if (setp) {
697 		error = copyin(uap->set, setp, sizeof(set));
698 		if (error)
699 			return (error);
700 	}
701 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
702 	if (osetp && !error) {
703 		error = copyout(osetp, uap->oset, sizeof(oset));
704 	}
705 	return (error);
706 }
707 
708 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
709 /*
710  * osigprocmask() - MP SAFE
711  */
712 #ifndef _SYS_SYSPROTO_H_
713 struct osigprocmask_args {
714 	int	how;
715 	osigset_t mask;
716 };
717 #endif
718 int
719 osigprocmask(td, uap)
720 	register struct thread *td;
721 	struct osigprocmask_args *uap;
722 {
723 	sigset_t set, oset;
724 	int error;
725 
726 	OSIG2SIG(uap->mask, set);
727 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
728 	SIG2OSIG(oset, td->td_retval[0]);
729 	return (error);
730 }
731 #endif /* COMPAT_43 */
732 
733 #ifndef _SYS_SYSPROTO_H_
734 struct sigpending_args {
735 	sigset_t	*set;
736 };
737 #endif
738 /*
739  * MPSAFE
740  */
741 int
742 sigwait(struct thread *td, struct sigwait_args *uap)
743 {
744 	siginfo_t info;
745 	sigset_t set;
746 	int error;
747 
748 	error = copyin(uap->set, &set, sizeof(set));
749 	if (error)
750 		return (error);
751 
752 	error = kern_sigtimedwait(td, set, &info, NULL);
753 	if (error)
754 		return (error);
755 
756 	error = copyout(&info.si_signo, uap->sig, sizeof(info.si_signo));
757 	/* Repost if we got an error. */
758 	if (error && info.si_signo) {
759 		PROC_LOCK(td->td_proc);
760 		tdsignal(td, info.si_signo, SIGTARGET_TD);
761 		PROC_UNLOCK(td->td_proc);
762 	}
763 	return (error);
764 }
765 /*
766  * MPSAFE
767  */
768 int
769 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
770 {
771 	struct timespec ts;
772 	struct timespec *timeout;
773 	sigset_t set;
774 	siginfo_t info;
775 	int error;
776 
777 	if (uap->timeout) {
778 		error = copyin(uap->timeout, &ts, sizeof(ts));
779 		if (error)
780 			return (error);
781 
782 		timeout = &ts;
783 	} else
784 		timeout = NULL;
785 
786 	error = copyin(uap->set, &set, sizeof(set));
787 	if (error)
788 		return (error);
789 
790 	error = kern_sigtimedwait(td, set, &info, timeout);
791 	if (error)
792 		return (error);
793 
794 	if (uap->info)
795 		error = copyout(&info, uap->info, sizeof(info));
796 	/* Repost if we got an error. */
797 	if (error && info.si_signo) {
798 		PROC_LOCK(td->td_proc);
799 		tdsignal(td, info.si_signo, SIGTARGET_TD);
800 		PROC_UNLOCK(td->td_proc);
801 	} else {
802 		td->td_retval[0] = info.si_signo;
803 	}
804 	return (error);
805 }
806 
807 /*
808  * MPSAFE
809  */
810 int
811 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
812 {
813 	siginfo_t info;
814 	sigset_t set;
815 	int error;
816 
817 	error = copyin(uap->set, &set, sizeof(set));
818 	if (error)
819 		return (error);
820 
821 	error = kern_sigtimedwait(td, set, &info, NULL);
822 	if (error)
823 		return (error);
824 
825 	if (uap->info)
826 		error = copyout(&info, uap->info, sizeof(info));
827 	/* Repost if we got an error. */
828 	if (error && info.si_signo) {
829 		PROC_LOCK(td->td_proc);
830 		tdsignal(td, info.si_signo, SIGTARGET_TD);
831 		PROC_UNLOCK(td->td_proc);
832 	} else {
833 		td->td_retval[0] = info.si_signo;
834 	}
835 	return (error);
836 }
837 
838 static int
839 kern_sigtimedwait(struct thread *td, sigset_t waitset, siginfo_t *info,
840     struct timespec *timeout)
841 {
842 	struct sigacts *ps;
843 	sigset_t savedmask, sigset;
844 	struct proc *p;
845 	int error;
846 	int sig;
847 	int hz;
848 	int i;
849 
850 	p = td->td_proc;
851 	error = 0;
852 	sig = 0;
853 	SIG_CANTMASK(waitset);
854 
855 	PROC_LOCK(p);
856 	ps = p->p_sigacts;
857 	savedmask = td->td_sigmask;
858 
859 again:
860 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
861 		if (!SIGISMEMBER(waitset, i))
862 			continue;
863 		if (SIGISMEMBER(td->td_siglist, i)) {
864 			SIGFILLSET(td->td_sigmask);
865 			SIG_CANTMASK(td->td_sigmask);
866 			SIGDELSET(td->td_sigmask, i);
867 			mtx_lock(&ps->ps_mtx);
868 			sig = cursig(td);
869 			i = 0;
870 			mtx_unlock(&ps->ps_mtx);
871 		} else if (SIGISMEMBER(p->p_siglist, i)) {
872 			if (p->p_flag & P_SA) {
873 				p->p_flag |= P_SIGEVENT;
874 				wakeup(&p->p_siglist);
875 			}
876 			SIGDELSET(p->p_siglist, i);
877 			SIGADDSET(td->td_siglist, i);
878 			SIGFILLSET(td->td_sigmask);
879 			SIG_CANTMASK(td->td_sigmask);
880 			SIGDELSET(td->td_sigmask, i);
881 			mtx_lock(&ps->ps_mtx);
882 			sig = cursig(td);
883 			i = 0;
884 			mtx_unlock(&ps->ps_mtx);
885 		}
886 		if (sig) {
887 			td->td_sigmask = savedmask;
888 			signotify(td);
889 			goto out;
890 		}
891 	}
892 	if (error)
893 		goto out;
894 
895 	td->td_sigmask = savedmask;
896 	signotify(td);
897 	sigset = td->td_siglist;
898 	SIGSETOR(sigset, p->p_siglist);
899 	SIGSETAND(sigset, waitset);
900 	if (!SIGISEMPTY(sigset))
901 		goto again;
902 
903 	/*
904 	 * POSIX says this must be checked after looking for pending
905 	 * signals.
906 	 */
907 	if (timeout) {
908 		struct timeval tv;
909 
910 		if (timeout->tv_nsec < 0 || timeout->tv_nsec > 1000000000) {
911 			error = EINVAL;
912 			goto out;
913 		}
914 		if (timeout->tv_sec == 0 && timeout->tv_nsec == 0) {
915 			error = EAGAIN;
916 			goto out;
917 		}
918 		TIMESPEC_TO_TIMEVAL(&tv, timeout);
919 		hz = tvtohz(&tv);
920 	} else
921 		hz = 0;
922 
923 	td->td_waitset = &waitset;
924 	error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
925 	td->td_waitset = NULL;
926 	if (error == 0) /* surplus wakeup ? */
927 		error = EINTR;
928 	goto again;
929 
930 out:
931 	if (sig) {
932 		sig_t action;
933 
934 		error = 0;
935 		mtx_lock(&ps->ps_mtx);
936 		action = ps->ps_sigact[_SIG_IDX(sig)];
937 		mtx_unlock(&ps->ps_mtx);
938 #ifdef KTRACE
939 		if (KTRPOINT(td, KTR_PSIG))
940 			ktrpsig(sig, action, &td->td_sigmask, 0);
941 #endif
942 		_STOPEVENT(p, S_SIG, sig);
943 
944 		SIGDELSET(td->td_siglist, sig);
945 		info->si_signo = sig;
946 		info->si_code = 0;
947 	}
948 	PROC_UNLOCK(p);
949 	return (error);
950 }
951 
952 /*
953  * MPSAFE
954  */
955 int
956 sigpending(td, uap)
957 	struct thread *td;
958 	struct sigpending_args *uap;
959 {
960 	struct proc *p = td->td_proc;
961 	sigset_t siglist;
962 
963 	PROC_LOCK(p);
964 	siglist = p->p_siglist;
965 	SIGSETOR(siglist, td->td_siglist);
966 	PROC_UNLOCK(p);
967 	return (copyout(&siglist, uap->set, sizeof(sigset_t)));
968 }
969 
970 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
971 #ifndef _SYS_SYSPROTO_H_
972 struct osigpending_args {
973 	int	dummy;
974 };
975 #endif
976 /*
977  * MPSAFE
978  */
979 int
980 osigpending(td, uap)
981 	struct thread *td;
982 	struct osigpending_args *uap;
983 {
984 	struct proc *p = td->td_proc;
985 	sigset_t siglist;
986 
987 	PROC_LOCK(p);
988 	siglist = p->p_siglist;
989 	SIGSETOR(siglist, td->td_siglist);
990 	PROC_UNLOCK(p);
991 	SIG2OSIG(siglist, td->td_retval[0]);
992 	return (0);
993 }
994 #endif /* COMPAT_43 */
995 
996 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
997 /*
998  * Generalized interface signal handler, 4.3-compatible.
999  */
1000 #ifndef _SYS_SYSPROTO_H_
1001 struct osigvec_args {
1002 	int	signum;
1003 	struct	sigvec *nsv;
1004 	struct	sigvec *osv;
1005 };
1006 #endif
1007 /*
1008  * MPSAFE
1009  */
1010 /* ARGSUSED */
1011 int
1012 osigvec(td, uap)
1013 	struct thread *td;
1014 	register struct osigvec_args *uap;
1015 {
1016 	struct sigvec vec;
1017 	struct sigaction nsa, osa;
1018 	register struct sigaction *nsap, *osap;
1019 	int error;
1020 
1021 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1022 		return (EINVAL);
1023 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1024 	osap = (uap->osv != NULL) ? &osa : NULL;
1025 	if (nsap) {
1026 		error = copyin(uap->nsv, &vec, sizeof(vec));
1027 		if (error)
1028 			return (error);
1029 		nsap->sa_handler = vec.sv_handler;
1030 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1031 		nsap->sa_flags = vec.sv_flags;
1032 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1033 #ifdef COMPAT_SUNOS
1034 		nsap->sa_flags |= SA_USERTRAMP;
1035 #endif
1036 	}
1037 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1038 	if (osap && !error) {
1039 		vec.sv_handler = osap->sa_handler;
1040 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1041 		vec.sv_flags = osap->sa_flags;
1042 		vec.sv_flags &= ~SA_NOCLDWAIT;
1043 		vec.sv_flags ^= SA_RESTART;
1044 #ifdef COMPAT_SUNOS
1045 		vec.sv_flags &= ~SA_NOCLDSTOP;
1046 #endif
1047 		error = copyout(&vec, uap->osv, sizeof(vec));
1048 	}
1049 	return (error);
1050 }
1051 
1052 #ifndef _SYS_SYSPROTO_H_
1053 struct osigblock_args {
1054 	int	mask;
1055 };
1056 #endif
1057 /*
1058  * MPSAFE
1059  */
1060 int
1061 osigblock(td, uap)
1062 	register struct thread *td;
1063 	struct osigblock_args *uap;
1064 {
1065 	struct proc *p = td->td_proc;
1066 	sigset_t set;
1067 
1068 	OSIG2SIG(uap->mask, set);
1069 	SIG_CANTMASK(set);
1070 	PROC_LOCK(p);
1071 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1072 	SIGSETOR(td->td_sigmask, set);
1073 	PROC_UNLOCK(p);
1074 	return (0);
1075 }
1076 
1077 #ifndef _SYS_SYSPROTO_H_
1078 struct osigsetmask_args {
1079 	int	mask;
1080 };
1081 #endif
1082 /*
1083  * MPSAFE
1084  */
1085 int
1086 osigsetmask(td, uap)
1087 	struct thread *td;
1088 	struct osigsetmask_args *uap;
1089 {
1090 	struct proc *p = td->td_proc;
1091 	sigset_t set;
1092 
1093 	OSIG2SIG(uap->mask, set);
1094 	SIG_CANTMASK(set);
1095 	PROC_LOCK(p);
1096 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1097 	SIGSETLO(td->td_sigmask, set);
1098 	signotify(td);
1099 	PROC_UNLOCK(p);
1100 	return (0);
1101 }
1102 #endif /* COMPAT_43 || COMPAT_SUNOS */
1103 
1104 /*
1105  * Suspend process until signal, providing mask to be set
1106  * in the meantime.  Note nonstandard calling convention:
1107  * libc stub passes mask, not pointer, to save a copyin.
1108  ***** XXXKSE this doesn't make sense under KSE.
1109  ***** Do we suspend the thread or all threads in the process?
1110  ***** How do we suspend threads running NOW on another processor?
1111  */
1112 #ifndef _SYS_SYSPROTO_H_
1113 struct sigsuspend_args {
1114 	const sigset_t *sigmask;
1115 };
1116 #endif
1117 /*
1118  * MPSAFE
1119  */
1120 /* ARGSUSED */
1121 int
1122 sigsuspend(td, uap)
1123 	struct thread *td;
1124 	struct sigsuspend_args *uap;
1125 {
1126 	sigset_t mask;
1127 	int error;
1128 
1129 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1130 	if (error)
1131 		return (error);
1132 	return (kern_sigsuspend(td, mask));
1133 }
1134 
1135 int
1136 kern_sigsuspend(struct thread *td, sigset_t mask)
1137 {
1138 	struct proc *p = td->td_proc;
1139 
1140 	/*
1141 	 * When returning from sigsuspend, we want
1142 	 * the old mask to be restored after the
1143 	 * signal handler has finished.  Thus, we
1144 	 * save it here and mark the sigacts structure
1145 	 * to indicate this.
1146 	 */
1147 	PROC_LOCK(p);
1148 	td->td_oldsigmask = td->td_sigmask;
1149 	td->td_pflags |= TDP_OLDMASK;
1150 	SIG_CANTMASK(mask);
1151 	td->td_sigmask = mask;
1152 	signotify(td);
1153 	while (msleep(p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1154 		/* void */;
1155 	PROC_UNLOCK(p);
1156 	/* always return EINTR rather than ERESTART... */
1157 	return (EINTR);
1158 }
1159 
1160 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1161 #ifndef _SYS_SYSPROTO_H_
1162 struct osigsuspend_args {
1163 	osigset_t mask;
1164 };
1165 #endif
1166 /*
1167  * MPSAFE
1168  */
1169 /* ARGSUSED */
1170 int
1171 osigsuspend(td, uap)
1172 	struct thread *td;
1173 	struct osigsuspend_args *uap;
1174 {
1175 	struct proc *p = td->td_proc;
1176 	sigset_t mask;
1177 
1178 	PROC_LOCK(p);
1179 	td->td_oldsigmask = td->td_sigmask;
1180 	td->td_pflags |= TDP_OLDMASK;
1181 	OSIG2SIG(uap->mask, mask);
1182 	SIG_CANTMASK(mask);
1183 	SIGSETLO(td->td_sigmask, mask);
1184 	signotify(td);
1185 	while (msleep(p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1186 		/* void */;
1187 	PROC_UNLOCK(p);
1188 	/* always return EINTR rather than ERESTART... */
1189 	return (EINTR);
1190 }
1191 #endif /* COMPAT_43 */
1192 
1193 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
1194 #ifndef _SYS_SYSPROTO_H_
1195 struct osigstack_args {
1196 	struct	sigstack *nss;
1197 	struct	sigstack *oss;
1198 };
1199 #endif
1200 /*
1201  * MPSAFE
1202  */
1203 /* ARGSUSED */
1204 int
1205 osigstack(td, uap)
1206 	struct thread *td;
1207 	register struct osigstack_args *uap;
1208 {
1209 	struct proc *p = td->td_proc;
1210 	struct sigstack nss, oss;
1211 	int error = 0;
1212 
1213 	if (uap->nss != NULL) {
1214 		error = copyin(uap->nss, &nss, sizeof(nss));
1215 		if (error)
1216 			return (error);
1217 	}
1218 	PROC_LOCK(p);
1219 	oss.ss_sp = p->p_sigstk.ss_sp;
1220 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1221 	if (uap->nss != NULL) {
1222 		p->p_sigstk.ss_sp = nss.ss_sp;
1223 		p->p_sigstk.ss_size = 0;
1224 		p->p_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1225 		p->p_flag |= P_ALTSTACK;
1226 	}
1227 	PROC_UNLOCK(p);
1228 	if (uap->oss != NULL)
1229 		error = copyout(&oss, uap->oss, sizeof(oss));
1230 
1231 	return (error);
1232 }
1233 #endif /* COMPAT_43 || COMPAT_SUNOS */
1234 
1235 #ifndef _SYS_SYSPROTO_H_
1236 struct sigaltstack_args {
1237 	stack_t	*ss;
1238 	stack_t	*oss;
1239 };
1240 #endif
1241 /*
1242  * MPSAFE
1243  */
1244 /* ARGSUSED */
1245 int
1246 sigaltstack(td, uap)
1247 	struct thread *td;
1248 	register struct sigaltstack_args *uap;
1249 {
1250 	stack_t ss, oss;
1251 	int error;
1252 
1253 	if (uap->ss != NULL) {
1254 		error = copyin(uap->ss, &ss, sizeof(ss));
1255 		if (error)
1256 			return (error);
1257 	}
1258 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1259 	    (uap->oss != NULL) ? &oss : NULL);
1260 	if (error)
1261 		return (error);
1262 	if (uap->oss != NULL)
1263 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1264 	return (error);
1265 }
1266 
1267 int
1268 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1269 {
1270 	struct proc *p = td->td_proc;
1271 	int oonstack;
1272 
1273 	PROC_LOCK(p);
1274 	oonstack = sigonstack(cpu_getstack(td));
1275 
1276 	if (oss != NULL) {
1277 		*oss = p->p_sigstk;
1278 		oss->ss_flags = (p->p_flag & P_ALTSTACK)
1279 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1280 	}
1281 
1282 	if (ss != NULL) {
1283 		if (oonstack) {
1284 			PROC_UNLOCK(p);
1285 			return (EPERM);
1286 		}
1287 		if ((ss->ss_flags & ~SS_DISABLE) != 0) {
1288 			PROC_UNLOCK(p);
1289 			return (EINVAL);
1290 		}
1291 		if (!(ss->ss_flags & SS_DISABLE)) {
1292 			if (ss->ss_size < p->p_sysent->sv_minsigstksz) {
1293 				PROC_UNLOCK(p);
1294 				return (ENOMEM);
1295 			}
1296 			p->p_sigstk = *ss;
1297 			p->p_flag |= P_ALTSTACK;
1298 		} else {
1299 			p->p_flag &= ~P_ALTSTACK;
1300 		}
1301 	}
1302 	PROC_UNLOCK(p);
1303 	return (0);
1304 }
1305 
1306 /*
1307  * Common code for kill process group/broadcast kill.
1308  * cp is calling process.
1309  */
1310 static int
1311 killpg1(td, sig, pgid, all)
1312 	register struct thread *td;
1313 	int sig, pgid, all;
1314 {
1315 	register struct proc *p;
1316 	struct pgrp *pgrp;
1317 	int nfound = 0;
1318 
1319 	if (all) {
1320 		/*
1321 		 * broadcast
1322 		 */
1323 		sx_slock(&allproc_lock);
1324 		LIST_FOREACH(p, &allproc, p_list) {
1325 			PROC_LOCK(p);
1326 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1327 			    p == td->td_proc) {
1328 				PROC_UNLOCK(p);
1329 				continue;
1330 			}
1331 			if (p_cansignal(td, p, sig) == 0) {
1332 				nfound++;
1333 				if (sig)
1334 					psignal(p, sig);
1335 			}
1336 			PROC_UNLOCK(p);
1337 		}
1338 		sx_sunlock(&allproc_lock);
1339 	} else {
1340 		sx_slock(&proctree_lock);
1341 		if (pgid == 0) {
1342 			/*
1343 			 * zero pgid means send to my process group.
1344 			 */
1345 			pgrp = td->td_proc->p_pgrp;
1346 			PGRP_LOCK(pgrp);
1347 		} else {
1348 			pgrp = pgfind(pgid);
1349 			if (pgrp == NULL) {
1350 				sx_sunlock(&proctree_lock);
1351 				return (ESRCH);
1352 			}
1353 		}
1354 		sx_sunlock(&proctree_lock);
1355 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1356 			PROC_LOCK(p);
1357 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1358 				PROC_UNLOCK(p);
1359 				continue;
1360 			}
1361 			if (p->p_state == PRS_ZOMBIE) {
1362 				PROC_UNLOCK(p);
1363 				continue;
1364 			}
1365 			if (p_cansignal(td, p, sig) == 0) {
1366 				nfound++;
1367 				if (sig)
1368 					psignal(p, sig);
1369 			}
1370 			PROC_UNLOCK(p);
1371 		}
1372 		PGRP_UNLOCK(pgrp);
1373 	}
1374 	return (nfound ? 0 : ESRCH);
1375 }
1376 
1377 #ifndef _SYS_SYSPROTO_H_
1378 struct kill_args {
1379 	int	pid;
1380 	int	signum;
1381 };
1382 #endif
1383 /*
1384  * MPSAFE
1385  */
1386 /* ARGSUSED */
1387 int
1388 kill(td, uap)
1389 	register struct thread *td;
1390 	register struct kill_args *uap;
1391 {
1392 	register struct proc *p;
1393 	int error;
1394 
1395 	if ((u_int)uap->signum > _SIG_MAXSIG)
1396 		return (EINVAL);
1397 
1398 	if (uap->pid > 0) {
1399 		/* kill single process */
1400 		if ((p = pfind(uap->pid)) == NULL)
1401 			return (ESRCH);
1402 		error = p_cansignal(td, p, uap->signum);
1403 		if (error == 0 && uap->signum)
1404 			psignal(p, uap->signum);
1405 		PROC_UNLOCK(p);
1406 		return (error);
1407 	}
1408 	switch (uap->pid) {
1409 	case -1:		/* broadcast signal */
1410 		return (killpg1(td, uap->signum, 0, 1));
1411 	case 0:			/* signal own process group */
1412 		return (killpg1(td, uap->signum, 0, 0));
1413 	default:		/* negative explicit process group */
1414 		return (killpg1(td, uap->signum, -uap->pid, 0));
1415 	}
1416 	/* NOTREACHED */
1417 }
1418 
1419 #if defined(COMPAT_43) || defined(COMPAT_SUNOS)
1420 #ifndef _SYS_SYSPROTO_H_
1421 struct okillpg_args {
1422 	int	pgid;
1423 	int	signum;
1424 };
1425 #endif
1426 /*
1427  * MPSAFE
1428  */
1429 /* ARGSUSED */
1430 int
1431 okillpg(td, uap)
1432 	struct thread *td;
1433 	register struct okillpg_args *uap;
1434 {
1435 
1436 	if ((u_int)uap->signum > _SIG_MAXSIG)
1437 		return (EINVAL);
1438 	return (killpg1(td, uap->signum, uap->pgid, 0));
1439 }
1440 #endif /* COMPAT_43 || COMPAT_SUNOS */
1441 
1442 /*
1443  * Send a signal to a process group.
1444  */
1445 void
1446 gsignal(pgid, sig)
1447 	int pgid, sig;
1448 {
1449 	struct pgrp *pgrp;
1450 
1451 	if (pgid != 0) {
1452 		sx_slock(&proctree_lock);
1453 		pgrp = pgfind(pgid);
1454 		sx_sunlock(&proctree_lock);
1455 		if (pgrp != NULL) {
1456 			pgsignal(pgrp, sig, 0);
1457 			PGRP_UNLOCK(pgrp);
1458 		}
1459 	}
1460 }
1461 
1462 /*
1463  * Send a signal to a process group.  If checktty is 1,
1464  * limit to members which have a controlling terminal.
1465  */
1466 void
1467 pgsignal(pgrp, sig, checkctty)
1468 	struct pgrp *pgrp;
1469 	int sig, checkctty;
1470 {
1471 	register struct proc *p;
1472 
1473 	if (pgrp) {
1474 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1475 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1476 			PROC_LOCK(p);
1477 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1478 				psignal(p, sig);
1479 			PROC_UNLOCK(p);
1480 		}
1481 	}
1482 }
1483 
1484 /*
1485  * Send a signal caused by a trap to the current thread.
1486  * If it will be caught immediately, deliver it with correct code.
1487  * Otherwise, post it normally.
1488  *
1489  * MPSAFE
1490  */
1491 void
1492 trapsignal(struct thread *td, int sig, u_long code)
1493 {
1494 	struct sigacts *ps;
1495 	struct proc *p;
1496 	siginfo_t siginfo;
1497 	int error;
1498 
1499 	p = td->td_proc;
1500 	if (td->td_flags & TDF_SA) {
1501 		if (td->td_mailbox == NULL)
1502 			thread_user_enter(p, td);
1503 		PROC_LOCK(p);
1504 		if (td->td_mailbox) {
1505 			SIGDELSET(td->td_sigmask, sig);
1506 			mtx_lock_spin(&sched_lock);
1507 			/*
1508 			 * Force scheduling an upcall, so UTS has chance to
1509 			 * process the signal before thread runs again in
1510 			 * userland.
1511 			 */
1512 			if (td->td_upcall)
1513 				td->td_upcall->ku_flags |= KUF_DOUPCALL;
1514 			mtx_unlock_spin(&sched_lock);
1515 		} else {
1516 			/* UTS caused a sync signal */
1517 			p->p_code = code;	/* XXX for core dump/debugger */
1518 			p->p_sig = sig;		/* XXX to verify code */
1519 			sigexit(td, sig);
1520 		}
1521 	} else {
1522 		PROC_LOCK(p);
1523 	}
1524 	ps = p->p_sigacts;
1525 	mtx_lock(&ps->ps_mtx);
1526 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1527 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1528 		p->p_stats->p_ru.ru_nsignals++;
1529 #ifdef KTRACE
1530 		if (KTRPOINT(curthread, KTR_PSIG))
1531 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1532 			    &td->td_sigmask, code);
1533 #endif
1534 		if (!(td->td_flags & TDF_SA))
1535 			(*p->p_sysent->sv_sendsig)(
1536 				ps->ps_sigact[_SIG_IDX(sig)], sig,
1537 				&td->td_sigmask, code);
1538 		else {
1539 			cpu_thread_siginfo(sig, code, &siginfo);
1540 			mtx_unlock(&ps->ps_mtx);
1541 			PROC_UNLOCK(p);
1542 			error = copyout(&siginfo, &td->td_mailbox->tm_syncsig,
1543 			    sizeof(siginfo));
1544 			PROC_LOCK(p);
1545 			/* UTS memory corrupted */
1546 			if (error)
1547 				sigexit(td, SIGILL);
1548 			SIGADDSET(td->td_sigmask, sig);
1549 			mtx_lock(&ps->ps_mtx);
1550 		}
1551 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1552 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1553 			SIGADDSET(td->td_sigmask, sig);
1554 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1555 			/*
1556 			 * See kern_sigaction() for origin of this code.
1557 			 */
1558 			SIGDELSET(ps->ps_sigcatch, sig);
1559 			if (sig != SIGCONT &&
1560 			    sigprop(sig) & SA_IGNORE)
1561 				SIGADDSET(ps->ps_sigignore, sig);
1562 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1563 		}
1564 		mtx_unlock(&ps->ps_mtx);
1565 	} else {
1566 		mtx_unlock(&ps->ps_mtx);
1567 		p->p_code = code;	/* XXX for core dump/debugger */
1568 		p->p_sig = sig;		/* XXX to verify code */
1569 		tdsignal(td, sig, SIGTARGET_TD);
1570 	}
1571 	PROC_UNLOCK(p);
1572 }
1573 
1574 static struct thread *
1575 sigtd(struct proc *p, int sig, int prop)
1576 {
1577 	struct thread *td, *signal_td;
1578 
1579 	PROC_LOCK_ASSERT(p, MA_OWNED);
1580 
1581 	/*
1582 	 * First find a thread in sigwait state and signal belongs to
1583 	 * its wait set. POSIX's arguments is that speed of delivering signal
1584 	 * to sigwait thread is faster than delivering signal to user stack.
1585 	 * If we can not find sigwait thread, then find the first thread in
1586 	 * the proc that doesn't have this signal masked, an exception is
1587 	 * if current thread is sending signal to its process, and it does not
1588 	 * mask the signal, it should get the signal, this is another fast
1589 	 * way to deliver signal.
1590 	 */
1591 	signal_td = NULL;
1592 	FOREACH_THREAD_IN_PROC(p, td) {
1593 		if (td->td_waitset != NULL &&
1594 		    SIGISMEMBER(*(td->td_waitset), sig))
1595 				return (td);
1596 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1597 			if (td == curthread)
1598 				signal_td = curthread;
1599 			else if (signal_td == NULL)
1600 				signal_td = td;
1601 		}
1602 	}
1603 	if (signal_td == NULL)
1604 		signal_td = FIRST_THREAD_IN_PROC(p);
1605 	return (signal_td);
1606 }
1607 
1608 /*
1609  * Send the signal to the process.  If the signal has an action, the action
1610  * is usually performed by the target process rather than the caller; we add
1611  * the signal to the set of pending signals for the process.
1612  *
1613  * Exceptions:
1614  *   o When a stop signal is sent to a sleeping process that takes the
1615  *     default action, the process is stopped without awakening it.
1616  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1617  *     regardless of the signal action (eg, blocked or ignored).
1618  *
1619  * Other ignored signals are discarded immediately.
1620  *
1621  * MPSAFE
1622  */
1623 void
1624 psignal(struct proc *p, int sig)
1625 {
1626 	struct thread *td;
1627 	int prop;
1628 
1629 	if (!_SIG_VALID(sig))
1630 		panic("psignal(): invalid signal");
1631 
1632 	PROC_LOCK_ASSERT(p, MA_OWNED);
1633 	prop = sigprop(sig);
1634 
1635 	/*
1636 	 * Find a thread to deliver the signal to.
1637 	 */
1638 	td = sigtd(p, sig, prop);
1639 
1640 	tdsignal(td, sig, SIGTARGET_P);
1641 }
1642 
1643 /*
1644  * MPSAFE
1645  */
1646 void
1647 tdsignal(struct thread *td, int sig, sigtarget_t target)
1648 {
1649 	sigset_t saved;
1650 	struct proc *p = td->td_proc;
1651 
1652 	if (p->p_flag & P_SA)
1653 		saved = p->p_siglist;
1654 	do_tdsignal(td, sig, target);
1655 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
1656 		if (SIGSETEQ(saved, p->p_siglist))
1657 			return;
1658 		else {
1659 			/* pending set changed */
1660 			p->p_flag |= P_SIGEVENT;
1661 			wakeup(&p->p_siglist);
1662 		}
1663 	}
1664 }
1665 
1666 static void
1667 do_tdsignal(struct thread *td, int sig, sigtarget_t target)
1668 {
1669 	struct proc *p;
1670 	register sig_t action;
1671 	sigset_t *siglist;
1672 	struct thread *td0;
1673 	register int prop;
1674 	struct sigacts *ps;
1675 
1676 	if (!_SIG_VALID(sig))
1677 		panic("do_tdsignal(): invalid signal");
1678 
1679 	p = td->td_proc;
1680 	ps = p->p_sigacts;
1681 
1682 	PROC_LOCK_ASSERT(p, MA_OWNED);
1683 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1684 
1685 	prop = sigprop(sig);
1686 
1687 	/*
1688 	 * If the signal is blocked and not destined for this thread, then
1689 	 * assign it to the process so that we can find it later in the first
1690 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1691 	 */
1692 	if (target == SIGTARGET_TD) {
1693 		siglist = &td->td_siglist;
1694 	} else {
1695 		if (!SIGISMEMBER(td->td_sigmask, sig))
1696 			siglist = &td->td_siglist;
1697 		else if (td->td_waitset != NULL &&
1698 			SIGISMEMBER(*(td->td_waitset), sig))
1699 			siglist = &td->td_siglist;
1700 		else
1701 			siglist = &p->p_siglist;
1702 	}
1703 
1704 	/*
1705 	 * If proc is traced, always give parent a chance;
1706 	 * if signal event is tracked by procfs, give *that*
1707 	 * a chance, as well.
1708 	 */
1709 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
1710 		action = SIG_DFL;
1711 	} else {
1712 		/*
1713 		 * If the signal is being ignored,
1714 		 * then we forget about it immediately.
1715 		 * (Note: we don't set SIGCONT in ps_sigignore,
1716 		 * and if it is set to SIG_IGN,
1717 		 * action will be SIG_DFL here.)
1718 		 */
1719 		mtx_lock(&ps->ps_mtx);
1720 		if (SIGISMEMBER(ps->ps_sigignore, sig) ||
1721 		    (p->p_flag & P_WEXIT)) {
1722 			mtx_unlock(&ps->ps_mtx);
1723 			return;
1724 		}
1725 		if (((td->td_waitset == NULL) &&
1726 		     SIGISMEMBER(td->td_sigmask, sig)) ||
1727 		    ((td->td_waitset != NULL) &&
1728 		     SIGISMEMBER(td->td_sigmask, sig) &&
1729 		     !SIGISMEMBER(*(td->td_waitset), sig)))
1730 			action = SIG_HOLD;
1731 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
1732 			action = SIG_CATCH;
1733 		else
1734 			action = SIG_DFL;
1735 		mtx_unlock(&ps->ps_mtx);
1736 	}
1737 
1738 	if (prop & SA_CONT) {
1739 		SIG_STOPSIGMASK(p->p_siglist);
1740 		/*
1741 		 * XXX Should investigate leaving STOP and CONT sigs only in
1742 		 * the proc's siglist.
1743 		 */
1744 		FOREACH_THREAD_IN_PROC(p, td0)
1745 			SIG_STOPSIGMASK(td0->td_siglist);
1746 	}
1747 
1748 	if (prop & SA_STOP) {
1749 		/*
1750 		 * If sending a tty stop signal to a member of an orphaned
1751 		 * process group, discard the signal here if the action
1752 		 * is default; don't stop the process below if sleeping,
1753 		 * and don't clear any pending SIGCONT.
1754 		 */
1755 		if ((prop & SA_TTYSTOP) &&
1756 		    (p->p_pgrp->pg_jobc == 0) &&
1757 		    (action == SIG_DFL))
1758 		        return;
1759 		SIG_CONTSIGMASK(p->p_siglist);
1760 		FOREACH_THREAD_IN_PROC(p, td0)
1761 			SIG_CONTSIGMASK(td0->td_siglist);
1762 		p->p_flag &= ~P_CONTINUED;
1763 	}
1764 
1765 	SIGADDSET(*siglist, sig);
1766 	signotify(td);			/* uses schedlock */
1767 	if (siglist == &td->td_siglist && (td->td_waitset != NULL) &&
1768 	    action != SIG_HOLD) {
1769 		td->td_waitset = NULL;
1770 	}
1771 
1772 	/*
1773 	 * Defer further processing for signals which are held,
1774 	 * except that stopped processes must be continued by SIGCONT.
1775 	 */
1776 	if (action == SIG_HOLD &&
1777 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
1778 		return;
1779 	/*
1780 	 * Some signals have a process-wide effect and a per-thread
1781 	 * component.  Most processing occurs when the process next
1782 	 * tries to cross the user boundary, however there are some
1783 	 * times when processing needs to be done immediatly, such as
1784 	 * waking up threads so that they can cross the user boundary.
1785 	 * We try do the per-process part here.
1786 	 */
1787 	if (P_SHOULDSTOP(p)) {
1788 		/*
1789 		 * The process is in stopped mode. All the threads should be
1790 		 * either winding down or already on the suspended queue.
1791 		 */
1792 		if (p->p_flag & P_TRACED) {
1793 			/*
1794 			 * The traced process is already stopped,
1795 			 * so no further action is necessary.
1796 			 * No signal can restart us.
1797 			 */
1798 			goto out;
1799 		}
1800 
1801 		if (sig == SIGKILL) {
1802 			/*
1803 			 * SIGKILL sets process running.
1804 			 * It will die elsewhere.
1805 			 * All threads must be restarted.
1806 			 */
1807 			p->p_flag &= ~P_STOPPED;
1808 			goto runfast;
1809 		}
1810 
1811 		if (prop & SA_CONT) {
1812 			/*
1813 			 * If SIGCONT is default (or ignored), we continue the
1814 			 * process but don't leave the signal in siglist as
1815 			 * it has no further action.  If SIGCONT is held, we
1816 			 * continue the process and leave the signal in
1817 			 * siglist.  If the process catches SIGCONT, let it
1818 			 * handle the signal itself.  If it isn't waiting on
1819 			 * an event, it goes back to run state.
1820 			 * Otherwise, process goes back to sleep state.
1821 			 */
1822 			p->p_flag &= ~P_STOPPED_SIG;
1823 			p->p_flag |= P_CONTINUED;
1824 			if (action == SIG_DFL) {
1825 				SIGDELSET(*siglist, sig);
1826 			} else if (action == SIG_CATCH) {
1827 				/*
1828 				 * The process wants to catch it so it needs
1829 				 * to run at least one thread, but which one?
1830 				 * It would seem that the answer would be to
1831 				 * run an upcall in the next KSE to run, and
1832 				 * deliver the signal that way. In a NON KSE
1833 				 * process, we need to make sure that the
1834 				 * single thread is runnable asap.
1835 				 * XXXKSE for now however, make them all run.
1836 				 */
1837 				goto runfast;
1838 			}
1839 			/*
1840 			 * The signal is not ignored or caught.
1841 			 */
1842 			mtx_lock_spin(&sched_lock);
1843 			thread_unsuspend(p);
1844 			mtx_unlock_spin(&sched_lock);
1845 			goto out;
1846 		}
1847 
1848 		if (prop & SA_STOP) {
1849 			/*
1850 			 * Already stopped, don't need to stop again
1851 			 * (If we did the shell could get confused).
1852 			 * Just make sure the signal STOP bit set.
1853 			 */
1854 			p->p_flag |= P_STOPPED_SIG;
1855 			SIGDELSET(*siglist, sig);
1856 			goto out;
1857 		}
1858 
1859 		/*
1860 		 * All other kinds of signals:
1861 		 * If a thread is sleeping interruptibly, simulate a
1862 		 * wakeup so that when it is continued it will be made
1863 		 * runnable and can look at the signal.  However, don't make
1864 		 * the PROCESS runnable, leave it stopped.
1865 		 * It may run a bit until it hits a thread_suspend_check().
1866 		 */
1867 		mtx_lock_spin(&sched_lock);
1868 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR)) {
1869 			if (td->td_flags & TDF_CVWAITQ)
1870 				cv_abort(td);
1871 			else
1872 				abortsleep(td);
1873 		}
1874 		mtx_unlock_spin(&sched_lock);
1875 		goto out;
1876 		/*
1877 		 * XXXKSE  What about threads that are waiting on mutexes?
1878 		 * Shouldn't they abort too?
1879 		 * No, hopefully mutexes are short lived.. They'll
1880 		 * eventually hit thread_suspend_check().
1881 		 */
1882 	}  else if (p->p_state == PRS_NORMAL) {
1883 		if ((p->p_flag & P_TRACED) || (action != SIG_DFL) ||
1884 			!(prop & SA_STOP)) {
1885 			mtx_lock_spin(&sched_lock);
1886 			tdsigwakeup(td, sig, action);
1887 			mtx_unlock_spin(&sched_lock);
1888 			goto out;
1889 		}
1890 		if (prop & SA_STOP) {
1891 			if (p->p_flag & P_PPWAIT)
1892 				goto out;
1893 			p->p_flag |= P_STOPPED_SIG;
1894 			p->p_xstat = sig;
1895 			mtx_lock_spin(&sched_lock);
1896 			FOREACH_THREAD_IN_PROC(p, td0) {
1897 				if (TD_IS_SLEEPING(td0) &&
1898 				    (td0->td_flags & TDF_SINTR) &&
1899 				    !TD_IS_SUSPENDED(td0)) {
1900 					thread_suspend_one(td0);
1901 				} else if (td != td0) {
1902 					td0->td_flags |= TDF_ASTPENDING;
1903 				}
1904 			}
1905 			thread_stopped(p);
1906 			if (p->p_numthreads == p->p_suspcount) {
1907 				SIGDELSET(p->p_siglist, p->p_xstat);
1908 				FOREACH_THREAD_IN_PROC(p, td0)
1909 					SIGDELSET(td0->td_siglist, p->p_xstat);
1910 			}
1911 			mtx_unlock_spin(&sched_lock);
1912 			goto out;
1913 		}
1914 		else
1915 			goto runfast;
1916 		/* NOTREACHED */
1917 	} else {
1918 		/* Not in "NORMAL" state. discard the signal. */
1919 		SIGDELSET(*siglist, sig);
1920 		goto out;
1921 	}
1922 
1923 	/*
1924 	 * The process is not stopped so we need to apply the signal to all the
1925 	 * running threads.
1926 	 */
1927 
1928 runfast:
1929 	mtx_lock_spin(&sched_lock);
1930 	tdsigwakeup(td, sig, action);
1931 	thread_unsuspend(p);
1932 	mtx_unlock_spin(&sched_lock);
1933 out:
1934 	/* If we jump here, sched_lock should not be owned. */
1935 	mtx_assert(&sched_lock, MA_NOTOWNED);
1936 }
1937 
1938 /*
1939  * The force of a signal has been directed against a single
1940  * thread. We need to see what we can do about knocking it
1941  * out of any sleep it may be in etc.
1942  */
1943 static void
1944 tdsigwakeup(struct thread *td, int sig, sig_t action)
1945 {
1946 	struct proc *p = td->td_proc;
1947 	register int prop;
1948 
1949 	PROC_LOCK_ASSERT(p, MA_OWNED);
1950 	mtx_assert(&sched_lock, MA_OWNED);
1951 	prop = sigprop(sig);
1952 	/*
1953 	 * Bring the priority of a thread up if we want it to get
1954 	 * killed in this lifetime.
1955 	 */
1956 	if ((action == SIG_DFL) && (prop & SA_KILL)) {
1957 		if (td->td_priority > PUSER) {
1958 			td->td_priority = PUSER;
1959 		}
1960 	}
1961 	if (TD_IS_SLEEPING(td)) {
1962 		/*
1963 		 * If thread is sleeping uninterruptibly
1964 		 * we can't interrupt the sleep... the signal will
1965 		 * be noticed when the process returns through
1966 		 * trap() or syscall().
1967 		 */
1968 		if ((td->td_flags & TDF_SINTR) == 0) {
1969 			return;
1970 		}
1971 		/*
1972 		 * Process is sleeping and traced.  Make it runnable
1973 		 * so it can discover the signal in issignal() and stop
1974 		 * for its parent.
1975 		 */
1976 		if (p->p_flag & P_TRACED) {
1977 			p->p_flag &= ~P_STOPPED_TRACE;
1978 		} else {
1979 
1980 			/*
1981 			 * If SIGCONT is default (or ignored) and process is
1982 			 * asleep, we are finished; the process should not
1983 			 * be awakened.
1984 			 */
1985 			if ((prop & SA_CONT) && action == SIG_DFL) {
1986 				SIGDELSET(p->p_siglist, sig);
1987 				/*
1988 				 * It may be on either list in this state.
1989 				 * Remove from both for now.
1990 				 */
1991 				SIGDELSET(td->td_siglist, sig);
1992 				return;
1993 			}
1994 
1995 			/*
1996 			 * Raise priority to at least PUSER.
1997 			 */
1998 			if (td->td_priority > PUSER) {
1999 				td->td_priority = PUSER;
2000 			}
2001 		}
2002 		if (td->td_flags & TDF_CVWAITQ)
2003 			cv_abort(td);
2004 		else
2005 			abortsleep(td);
2006 	}
2007 #ifdef SMP
2008 	  else {
2009 		/*
2010 		 * Other states do nothing with the signal immediatly,
2011 		 * other than kicking ourselves if we are running.
2012 		 * It will either never be noticed, or noticed very soon.
2013 		 */
2014 		if (TD_IS_RUNNING(td) && td != curthread) {
2015 			forward_signal(td);
2016 		}
2017 	  }
2018 #endif
2019 }
2020 
2021 void
2022 ptracestop(struct thread *td, int sig)
2023 {
2024 	struct proc *p = td->td_proc;
2025 
2026 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2027 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2028 
2029 	p->p_xstat = sig;
2030 	PROC_LOCK(p->p_pptr);
2031 	psignal(p->p_pptr, SIGCHLD);
2032 	PROC_UNLOCK(p->p_pptr);
2033 	mtx_lock_spin(&sched_lock);
2034 	stop(p);	/* uses schedlock too eventually */
2035 	thread_suspend_one(td);
2036 	PROC_UNLOCK(p);
2037 	DROP_GIANT();
2038 	p->p_stats->p_ru.ru_nivcsw++;
2039 	mi_switch();
2040 	mtx_unlock_spin(&sched_lock);
2041 	PICKUP_GIANT();
2042 }
2043 
2044 /*
2045  * If the current process has received a signal (should be caught or cause
2046  * termination, should interrupt current syscall), return the signal number.
2047  * Stop signals with default action are processed immediately, then cleared;
2048  * they aren't returned.  This is checked after each entry to the system for
2049  * a syscall or trap (though this can usually be done without calling issignal
2050  * by checking the pending signal masks in cursig.) The normal call
2051  * sequence is
2052  *
2053  *	while (sig = cursig(curthread))
2054  *		postsig(sig);
2055  */
2056 static int
2057 issignal(td)
2058 	struct thread *td;
2059 {
2060 	struct proc *p;
2061 	struct sigacts *ps;
2062 	sigset_t sigpending;
2063 	int sig, prop;
2064 	struct thread *td0;
2065 
2066 	p = td->td_proc;
2067 	ps = p->p_sigacts;
2068 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2069 	PROC_LOCK_ASSERT(p, MA_OWNED);
2070 	for (;;) {
2071 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2072 
2073 		sigpending = td->td_siglist;
2074 		SIGSETNAND(sigpending, td->td_sigmask);
2075 
2076 		if (p->p_flag & P_PPWAIT)
2077 			SIG_STOPSIGMASK(sigpending);
2078 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2079 			return (0);
2080 		sig = sig_ffs(&sigpending);
2081 
2082 		_STOPEVENT(p, S_SIG, sig);
2083 
2084 		/*
2085 		 * We should see pending but ignored signals
2086 		 * only if P_TRACED was on when they were posted.
2087 		 */
2088 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2089 			SIGDELSET(td->td_siglist, sig);
2090 			continue;
2091 		}
2092 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2093 			/*
2094 			 * If traced, always stop.
2095 			 */
2096 			mtx_unlock(&ps->ps_mtx);
2097 			ptracestop(td, sig);
2098 			PROC_LOCK(p);
2099 			mtx_lock(&ps->ps_mtx);
2100 
2101 			/*
2102 			 * If parent wants us to take the signal,
2103 			 * then it will leave it in p->p_xstat;
2104 			 * otherwise we just look for signals again.
2105 			 */
2106 			SIGDELSET(td->td_siglist, sig);	/* clear old signal */
2107 			sig = p->p_xstat;
2108 			if (sig == 0)
2109 				continue;
2110 
2111 			/*
2112 			 * If the traced bit got turned off, go back up
2113 			 * to the top to rescan signals.  This ensures
2114 			 * that p_sig* and p_sigact are consistent.
2115 			 */
2116 			if ((p->p_flag & P_TRACED) == 0)
2117 				continue;
2118 
2119 			/*
2120 			 * Put the new signal into td_siglist.  If the
2121 			 * signal is being masked, look for other signals.
2122 			 */
2123 			SIGADDSET(td->td_siglist, sig);
2124 			if (SIGISMEMBER(td->td_sigmask, sig))
2125 				continue;
2126 			signotify(td);
2127 		}
2128 
2129 		prop = sigprop(sig);
2130 
2131 		/*
2132 		 * Decide whether the signal should be returned.
2133 		 * Return the signal's number, or fall through
2134 		 * to clear it from the pending mask.
2135 		 */
2136 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2137 
2138 		case (intptr_t)SIG_DFL:
2139 			/*
2140 			 * Don't take default actions on system processes.
2141 			 */
2142 			if (p->p_pid <= 1) {
2143 #ifdef DIAGNOSTIC
2144 				/*
2145 				 * Are you sure you want to ignore SIGSEGV
2146 				 * in init? XXX
2147 				 */
2148 				printf("Process (pid %lu) got signal %d\n",
2149 					(u_long)p->p_pid, sig);
2150 #endif
2151 				break;		/* == ignore */
2152 			}
2153 			/*
2154 			 * If there is a pending stop signal to process
2155 			 * with default action, stop here,
2156 			 * then clear the signal.  However,
2157 			 * if process is member of an orphaned
2158 			 * process group, ignore tty stop signals.
2159 			 */
2160 			if (prop & SA_STOP) {
2161 				if (p->p_flag & P_TRACED ||
2162 		    		    (p->p_pgrp->pg_jobc == 0 &&
2163 				     prop & SA_TTYSTOP))
2164 					break;	/* == ignore */
2165 				mtx_unlock(&ps->ps_mtx);
2166 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2167 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2168 				p->p_flag |= P_STOPPED_SIG;
2169 				p->p_xstat = sig;
2170 				mtx_lock_spin(&sched_lock);
2171 				FOREACH_THREAD_IN_PROC(p, td0) {
2172 					if (TD_IS_SLEEPING(td0) &&
2173 					    (td0->td_flags & TDF_SINTR) &&
2174 					    !TD_IS_SUSPENDED(td0)) {
2175 						thread_suspend_one(td0);
2176 					} else if (td != td0) {
2177 						td0->td_flags |= TDF_ASTPENDING;
2178 					}
2179 				}
2180 				thread_stopped(p);
2181 				thread_suspend_one(td);
2182 				PROC_UNLOCK(p);
2183 				DROP_GIANT();
2184 				p->p_stats->p_ru.ru_nivcsw++;
2185 				mi_switch();
2186 				mtx_unlock_spin(&sched_lock);
2187 				PICKUP_GIANT();
2188 				PROC_LOCK(p);
2189 				mtx_lock(&ps->ps_mtx);
2190 				break;
2191 			} else if (prop & SA_IGNORE) {
2192 				/*
2193 				 * Except for SIGCONT, shouldn't get here.
2194 				 * Default action is to ignore; drop it.
2195 				 */
2196 				break;		/* == ignore */
2197 			} else
2198 				return (sig);
2199 			/*NOTREACHED*/
2200 
2201 		case (intptr_t)SIG_IGN:
2202 			/*
2203 			 * Masking above should prevent us ever trying
2204 			 * to take action on an ignored signal other
2205 			 * than SIGCONT, unless process is traced.
2206 			 */
2207 			if ((prop & SA_CONT) == 0 &&
2208 			    (p->p_flag & P_TRACED) == 0)
2209 				printf("issignal\n");
2210 			break;		/* == ignore */
2211 
2212 		default:
2213 			/*
2214 			 * This signal has an action, let
2215 			 * postsig() process it.
2216 			 */
2217 			return (sig);
2218 		}
2219 		SIGDELSET(td->td_siglist, sig);		/* take the signal! */
2220 	}
2221 	/* NOTREACHED */
2222 }
2223 
2224 /*
2225  * Put the argument process into the stopped state and notify the parent
2226  * via wakeup.  Signals are handled elsewhere.  The process must not be
2227  * on the run queue.  Must be called with the proc p locked and the scheduler
2228  * lock held.
2229  */
2230 static void
2231 stop(struct proc *p)
2232 {
2233 
2234 	PROC_LOCK_ASSERT(p, MA_OWNED);
2235 	p->p_flag |= P_STOPPED_SIG;
2236 	p->p_flag &= ~P_WAITED;
2237 	wakeup(p->p_pptr);
2238 }
2239 
2240 /*
2241  * MPSAFE
2242  */
2243 void
2244 thread_stopped(struct proc *p)
2245 {
2246 	struct proc *p1 = curthread->td_proc;
2247 	struct sigacts *ps;
2248 	int n;
2249 
2250 	PROC_LOCK_ASSERT(p, MA_OWNED);
2251 	mtx_assert(&sched_lock, MA_OWNED);
2252 	n = p->p_suspcount;
2253 	if (p == p1)
2254 		n++;
2255 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2256 		mtx_unlock_spin(&sched_lock);
2257 		stop(p);
2258 		PROC_LOCK(p->p_pptr);
2259 		ps = p->p_pptr->p_sigacts;
2260 		mtx_lock(&ps->ps_mtx);
2261 		if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2262 			mtx_unlock(&ps->ps_mtx);
2263 			psignal(p->p_pptr, SIGCHLD);
2264 		} else
2265 			mtx_unlock(&ps->ps_mtx);
2266 		PROC_UNLOCK(p->p_pptr);
2267 		mtx_lock_spin(&sched_lock);
2268 	}
2269 }
2270 
2271 /*
2272  * Take the action for the specified signal
2273  * from the current set of pending signals.
2274  */
2275 void
2276 postsig(sig)
2277 	register int sig;
2278 {
2279 	struct thread *td = curthread;
2280 	register struct proc *p = td->td_proc;
2281 	struct sigacts *ps;
2282 	sig_t action;
2283 	sigset_t returnmask;
2284 	int code;
2285 
2286 	KASSERT(sig != 0, ("postsig"));
2287 
2288 	PROC_LOCK_ASSERT(p, MA_OWNED);
2289 	ps = p->p_sigacts;
2290 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2291 	SIGDELSET(td->td_siglist, sig);
2292 	action = ps->ps_sigact[_SIG_IDX(sig)];
2293 #ifdef KTRACE
2294 	if (KTRPOINT(td, KTR_PSIG))
2295 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2296 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2297 #endif
2298 	_STOPEVENT(p, S_SIG, sig);
2299 
2300 	if (!(td->td_flags & TDF_SA && td->td_mailbox) &&
2301 	    action == SIG_DFL) {
2302 		/*
2303 		 * Default action, where the default is to kill
2304 		 * the process.  (Other cases were ignored above.)
2305 		 */
2306 		mtx_unlock(&ps->ps_mtx);
2307 		sigexit(td, sig);
2308 		/* NOTREACHED */
2309 	} else {
2310 		if (td->td_flags & TDF_SA && td->td_mailbox) {
2311 			if (sig == SIGKILL) {
2312 				mtx_unlock(&ps->ps_mtx);
2313 				sigexit(td, sig);
2314 			}
2315 		}
2316 
2317 		/*
2318 		 * If we get here, the signal must be caught.
2319 		 */
2320 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2321 		    ("postsig action"));
2322 		/*
2323 		 * Set the new mask value and also defer further
2324 		 * occurrences of this signal.
2325 		 *
2326 		 * Special case: user has done a sigsuspend.  Here the
2327 		 * current mask is not of interest, but rather the
2328 		 * mask from before the sigsuspend is what we want
2329 		 * restored after the signal processing is completed.
2330 		 */
2331 		if (td->td_pflags & TDP_OLDMASK) {
2332 			returnmask = td->td_oldsigmask;
2333 			td->td_pflags &= ~TDP_OLDMASK;
2334 		} else
2335 			returnmask = td->td_sigmask;
2336 
2337 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2338 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2339 			SIGADDSET(td->td_sigmask, sig);
2340 
2341 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2342 			/*
2343 			 * See kern_sigaction() for origin of this code.
2344 			 */
2345 			SIGDELSET(ps->ps_sigcatch, sig);
2346 			if (sig != SIGCONT &&
2347 			    sigprop(sig) & SA_IGNORE)
2348 				SIGADDSET(ps->ps_sigignore, sig);
2349 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2350 		}
2351 		p->p_stats->p_ru.ru_nsignals++;
2352 		if (p->p_sig != sig) {
2353 			code = 0;
2354 		} else {
2355 			code = p->p_code;
2356 			p->p_code = 0;
2357 			p->p_sig = 0;
2358 		}
2359 		if (td->td_flags & TDF_SA && td->td_mailbox)
2360 			thread_signal_add(curthread, sig);
2361 		else
2362 			(*p->p_sysent->sv_sendsig)(action, sig,
2363 			    &returnmask, code);
2364 	}
2365 }
2366 
2367 /*
2368  * Kill the current process for stated reason.
2369  */
2370 void
2371 killproc(p, why)
2372 	struct proc *p;
2373 	char *why;
2374 {
2375 
2376 	PROC_LOCK_ASSERT(p, MA_OWNED);
2377 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2378 		p, p->p_pid, p->p_comm);
2379 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2380 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2381 	psignal(p, SIGKILL);
2382 }
2383 
2384 /*
2385  * Force the current process to exit with the specified signal, dumping core
2386  * if appropriate.  We bypass the normal tests for masked and caught signals,
2387  * allowing unrecoverable failures to terminate the process without changing
2388  * signal state.  Mark the accounting record with the signal termination.
2389  * If dumping core, save the signal number for the debugger.  Calls exit and
2390  * does not return.
2391  *
2392  * MPSAFE
2393  */
2394 void
2395 sigexit(td, sig)
2396 	struct thread *td;
2397 	int sig;
2398 {
2399 	struct proc *p = td->td_proc;
2400 
2401 	PROC_LOCK_ASSERT(p, MA_OWNED);
2402 	p->p_acflag |= AXSIG;
2403 	if (sigprop(sig) & SA_CORE) {
2404 		p->p_sig = sig;
2405 		/*
2406 		 * Log signals which would cause core dumps
2407 		 * (Log as LOG_INFO to appease those who don't want
2408 		 * these messages.)
2409 		 * XXX : Todo, as well as euid, write out ruid too
2410 		 */
2411 		PROC_UNLOCK(p);
2412 		if (!mtx_owned(&Giant))
2413 			mtx_lock(&Giant);
2414 		if (coredump(td) == 0)
2415 			sig |= WCOREFLAG;
2416 		if (kern_logsigexit)
2417 			log(LOG_INFO,
2418 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2419 			    p->p_pid, p->p_comm,
2420 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2421 			    sig &~ WCOREFLAG,
2422 			    sig & WCOREFLAG ? " (core dumped)" : "");
2423 	} else {
2424 		PROC_UNLOCK(p);
2425 		if (!mtx_owned(&Giant))
2426 			mtx_lock(&Giant);
2427 	}
2428 	exit1(td, W_EXITCODE(0, sig));
2429 	/* NOTREACHED */
2430 }
2431 
2432 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2433 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2434 	      sizeof(corefilename), "process corefile name format string");
2435 
2436 /*
2437  * expand_name(name, uid, pid)
2438  * Expand the name described in corefilename, using name, uid, and pid.
2439  * corefilename is a printf-like string, with three format specifiers:
2440  *	%N	name of process ("name")
2441  *	%P	process id (pid)
2442  *	%U	user id (uid)
2443  * For example, "%N.core" is the default; they can be disabled completely
2444  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2445  * This is controlled by the sysctl variable kern.corefile (see above).
2446  */
2447 
2448 static char *
2449 expand_name(name, uid, pid)
2450 	const char *name;
2451 	uid_t uid;
2452 	pid_t pid;
2453 {
2454 	const char *format, *appendstr;
2455 	char *temp;
2456 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2457 	size_t i, l, n;
2458 
2459 	format = corefilename;
2460 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2461 	if (temp == NULL)
2462 		return (NULL);
2463 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2464 		switch (format[i]) {
2465 		case '%':	/* Format character */
2466 			i++;
2467 			switch (format[i]) {
2468 			case '%':
2469 				appendstr = "%";
2470 				break;
2471 			case 'N':	/* process name */
2472 				appendstr = name;
2473 				break;
2474 			case 'P':	/* process id */
2475 				sprintf(buf, "%u", pid);
2476 				appendstr = buf;
2477 				break;
2478 			case 'U':	/* user id */
2479 				sprintf(buf, "%u", uid);
2480 				appendstr = buf;
2481 				break;
2482 			default:
2483 				appendstr = "";
2484 			  	log(LOG_ERR,
2485 				    "Unknown format character %c in `%s'\n",
2486 				    format[i], format);
2487 			}
2488 			l = strlen(appendstr);
2489 			if ((n + l) >= MAXPATHLEN)
2490 				goto toolong;
2491 			memcpy(temp + n, appendstr, l);
2492 			n += l;
2493 			break;
2494 		default:
2495 			temp[n++] = format[i];
2496 		}
2497 	}
2498 	if (format[i] != '\0')
2499 		goto toolong;
2500 	return (temp);
2501 toolong:
2502 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
2503 	    (long)pid, name, (u_long)uid);
2504 	free(temp, M_TEMP);
2505 	return (NULL);
2506 }
2507 
2508 /*
2509  * Dump a process' core.  The main routine does some
2510  * policy checking, and creates the name of the coredump;
2511  * then it passes on a vnode and a size limit to the process-specific
2512  * coredump routine if there is one; if there _is not_ one, it returns
2513  * ENOSYS; otherwise it returns the error from the process-specific routine.
2514  */
2515 
2516 static int
2517 coredump(struct thread *td)
2518 {
2519 	struct proc *p = td->td_proc;
2520 	register struct vnode *vp;
2521 	register struct ucred *cred = td->td_ucred;
2522 	struct flock lf;
2523 	struct nameidata nd;
2524 	struct vattr vattr;
2525 	int error, error1, flags, locked;
2526 	struct mount *mp;
2527 	char *name;			/* name of corefile */
2528 	off_t limit;
2529 
2530 	PROC_LOCK(p);
2531 	_STOPEVENT(p, S_CORE, 0);
2532 
2533 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2534 		PROC_UNLOCK(p);
2535 		return (EFAULT);
2536 	}
2537 
2538 	/*
2539 	 * Note that the bulk of limit checking is done after
2540 	 * the corefile is created.  The exception is if the limit
2541 	 * for corefiles is 0, in which case we don't bother
2542 	 * creating the corefile at all.  This layout means that
2543 	 * a corefile is truncated instead of not being created,
2544 	 * if it is larger than the limit.
2545 	 */
2546 	limit = p->p_rlimit[RLIMIT_CORE].rlim_cur;
2547 	if (limit == 0) {
2548 		PROC_UNLOCK(p);
2549 		return 0;
2550 	}
2551 	PROC_UNLOCK(p);
2552 
2553 restart:
2554 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2555 	if (name == NULL)
2556 		return (EINVAL);
2557 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
2558 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2559 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
2560 	free(name, M_TEMP);
2561 	if (error)
2562 		return (error);
2563 	NDFREE(&nd, NDF_ONLY_PNBUF);
2564 	vp = nd.ni_vp;
2565 
2566 	/* Don't dump to non-regular files or files with links. */
2567 	if (vp->v_type != VREG ||
2568 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
2569 		VOP_UNLOCK(vp, 0, td);
2570 		error = EFAULT;
2571 		goto out2;
2572 	}
2573 
2574 	VOP_UNLOCK(vp, 0, td);
2575 	lf.l_whence = SEEK_SET;
2576 	lf.l_start = 0;
2577 	lf.l_len = 0;
2578 	lf.l_type = F_WRLCK;
2579 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2580 
2581 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2582 		lf.l_type = F_UNLCK;
2583 		if (locked)
2584 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2585 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2586 			return (error);
2587 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2588 			return (error);
2589 		goto restart;
2590 	}
2591 
2592 	VATTR_NULL(&vattr);
2593 	vattr.va_size = 0;
2594 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2595 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2596 	VOP_SETATTR(vp, &vattr, cred, td);
2597 	VOP_UNLOCK(vp, 0, td);
2598 	PROC_LOCK(p);
2599 	p->p_acflag |= ACORE;
2600 	PROC_UNLOCK(p);
2601 
2602 	error = p->p_sysent->sv_coredump ?
2603 	  p->p_sysent->sv_coredump(td, vp, limit) :
2604 	  ENOSYS;
2605 
2606 	if (locked) {
2607 		lf.l_type = F_UNLCK;
2608 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2609 	}
2610 	vn_finished_write(mp);
2611 out2:
2612 	error1 = vn_close(vp, FWRITE, cred, td);
2613 	if (error == 0)
2614 		error = error1;
2615 	return (error);
2616 }
2617 
2618 /*
2619  * Nonexistent system call-- signal process (may want to handle it).
2620  * Flag error in case process won't see signal immediately (blocked or ignored).
2621  */
2622 #ifndef _SYS_SYSPROTO_H_
2623 struct nosys_args {
2624 	int	dummy;
2625 };
2626 #endif
2627 /*
2628  * MPSAFE
2629  */
2630 /* ARGSUSED */
2631 int
2632 nosys(td, args)
2633 	struct thread *td;
2634 	struct nosys_args *args;
2635 {
2636 	struct proc *p = td->td_proc;
2637 
2638 	PROC_LOCK(p);
2639 	psignal(p, SIGSYS);
2640 	PROC_UNLOCK(p);
2641 	return (ENOSYS);
2642 }
2643 
2644 /*
2645  * Send a SIGIO or SIGURG signal to a process or process group using
2646  * stored credentials rather than those of the current process.
2647  */
2648 void
2649 pgsigio(sigiop, sig, checkctty)
2650 	struct sigio **sigiop;
2651 	int sig, checkctty;
2652 {
2653 	struct sigio *sigio;
2654 
2655 	SIGIO_LOCK();
2656 	sigio = *sigiop;
2657 	if (sigio == NULL) {
2658 		SIGIO_UNLOCK();
2659 		return;
2660 	}
2661 	if (sigio->sio_pgid > 0) {
2662 		PROC_LOCK(sigio->sio_proc);
2663 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
2664 			psignal(sigio->sio_proc, sig);
2665 		PROC_UNLOCK(sigio->sio_proc);
2666 	} else if (sigio->sio_pgid < 0) {
2667 		struct proc *p;
2668 
2669 		PGRP_LOCK(sigio->sio_pgrp);
2670 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
2671 			PROC_LOCK(p);
2672 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
2673 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
2674 				psignal(p, sig);
2675 			PROC_UNLOCK(p);
2676 		}
2677 		PGRP_UNLOCK(sigio->sio_pgrp);
2678 	}
2679 	SIGIO_UNLOCK();
2680 }
2681 
2682 static int
2683 filt_sigattach(struct knote *kn)
2684 {
2685 	struct proc *p = curproc;
2686 
2687 	kn->kn_ptr.p_proc = p;
2688 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2689 
2690 	PROC_LOCK(p);
2691 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2692 	PROC_UNLOCK(p);
2693 
2694 	return (0);
2695 }
2696 
2697 static void
2698 filt_sigdetach(struct knote *kn)
2699 {
2700 	struct proc *p = kn->kn_ptr.p_proc;
2701 
2702 	PROC_LOCK(p);
2703 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2704 	PROC_UNLOCK(p);
2705 }
2706 
2707 /*
2708  * signal knotes are shared with proc knotes, so we apply a mask to
2709  * the hint in order to differentiate them from process hints.  This
2710  * could be avoided by using a signal-specific knote list, but probably
2711  * isn't worth the trouble.
2712  */
2713 static int
2714 filt_signal(struct knote *kn, long hint)
2715 {
2716 
2717 	if (hint & NOTE_SIGNAL) {
2718 		hint &= ~NOTE_SIGNAL;
2719 
2720 		if (kn->kn_id == hint)
2721 			kn->kn_data++;
2722 	}
2723 	return (kn->kn_data != 0);
2724 }
2725 
2726 struct sigacts *
2727 sigacts_alloc(void)
2728 {
2729 	struct sigacts *ps;
2730 
2731 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
2732 	ps->ps_refcnt = 1;
2733 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
2734 	return (ps);
2735 }
2736 
2737 void
2738 sigacts_free(struct sigacts *ps)
2739 {
2740 
2741 	mtx_lock(&ps->ps_mtx);
2742 	ps->ps_refcnt--;
2743 	if (ps->ps_refcnt == 0) {
2744 		mtx_destroy(&ps->ps_mtx);
2745 		free(ps, M_SUBPROC);
2746 	} else
2747 		mtx_unlock(&ps->ps_mtx);
2748 }
2749 
2750 struct sigacts *
2751 sigacts_hold(struct sigacts *ps)
2752 {
2753 	mtx_lock(&ps->ps_mtx);
2754 	ps->ps_refcnt++;
2755 	mtx_unlock(&ps->ps_mtx);
2756 	return (ps);
2757 }
2758 
2759 void
2760 sigacts_copy(struct sigacts *dest, struct sigacts *src)
2761 {
2762 
2763 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
2764 	mtx_lock(&src->ps_mtx);
2765 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
2766 	mtx_unlock(&src->ps_mtx);
2767 }
2768 
2769 int
2770 sigacts_shared(struct sigacts *ps)
2771 {
2772 	int shared;
2773 
2774 	mtx_lock(&ps->ps_mtx);
2775 	shared = ps->ps_refcnt > 1;
2776 	mtx_unlock(&ps->ps_mtx);
2777 	return (shared);
2778 }
2779