xref: /freebsd/sys/kern/kern_sig.c (revision 2e5b60079b7d8c3ca68f1390cd90f305e651f8d3)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 #include "opt_core.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/signalvar.h>
47 #include <sys/vnode.h>
48 #include <sys/acct.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/event.h>
52 #include <sys/fcntl.h>
53 #include <sys/imgact.h>
54 #include <sys/kernel.h>
55 #include <sys/ktr.h>
56 #include <sys/ktrace.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/refcount.h>
61 #include <sys/namei.h>
62 #include <sys/proc.h>
63 #include <sys/procdesc.h>
64 #include <sys/posix4.h>
65 #include <sys/pioctl.h>
66 #include <sys/racct.h>
67 #include <sys/resourcevar.h>
68 #include <sys/sdt.h>
69 #include <sys/sbuf.h>
70 #include <sys/sleepqueue.h>
71 #include <sys/smp.h>
72 #include <sys/stat.h>
73 #include <sys/sx.h>
74 #include <sys/syscallsubr.h>
75 #include <sys/sysctl.h>
76 #include <sys/sysent.h>
77 #include <sys/syslog.h>
78 #include <sys/sysproto.h>
79 #include <sys/timers.h>
80 #include <sys/unistd.h>
81 #include <sys/wait.h>
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/uma.h>
85 
86 #include <sys/jail.h>
87 
88 #include <machine/cpu.h>
89 
90 #include <security/audit/audit.h>
91 
92 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
93 
94 SDT_PROVIDER_DECLARE(proc);
95 SDT_PROBE_DEFINE3(proc, kernel, , signal__send, "struct thread *",
96     "struct proc *", "int");
97 SDT_PROBE_DEFINE2(proc, kernel, , signal__clear, "int",
98     "ksiginfo_t *");
99 SDT_PROBE_DEFINE3(proc, kernel, , signal__discard,
100     "struct thread *", "struct proc *", "int");
101 
102 static int	coredump(struct thread *);
103 static int	killpg1(struct thread *td, int sig, int pgid, int all,
104 		    ksiginfo_t *ksi);
105 static int	issignal(struct thread *td);
106 static int	sigprop(int sig);
107 static void	tdsigwakeup(struct thread *, int, sig_t, int);
108 static void	sig_suspend_threads(struct thread *, struct proc *, int);
109 static int	filt_sigattach(struct knote *kn);
110 static void	filt_sigdetach(struct knote *kn);
111 static int	filt_signal(struct knote *kn, long hint);
112 static struct thread *sigtd(struct proc *p, int sig, int prop);
113 static void	sigqueue_start(void);
114 
115 static uma_zone_t	ksiginfo_zone = NULL;
116 struct filterops sig_filtops = {
117 	.f_isfd = 0,
118 	.f_attach = filt_sigattach,
119 	.f_detach = filt_sigdetach,
120 	.f_event = filt_signal,
121 };
122 
123 static int	kern_logsigexit = 1;
124 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
125     &kern_logsigexit, 0,
126     "Log processes quitting on abnormal signals to syslog(3)");
127 
128 static int	kern_forcesigexit = 1;
129 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
130     &kern_forcesigexit, 0, "Force trap signal to be handled");
131 
132 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
133     "POSIX real time signal");
134 
135 static int	max_pending_per_proc = 128;
136 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
137     &max_pending_per_proc, 0, "Max pending signals per proc");
138 
139 static int	preallocate_siginfo = 1024;
140 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
141     &preallocate_siginfo, 0, "Preallocated signal memory size");
142 
143 static int	signal_overflow = 0;
144 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
145     &signal_overflow, 0, "Number of signals overflew");
146 
147 static int	signal_alloc_fail = 0;
148 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
149     &signal_alloc_fail, 0, "signals failed to be allocated");
150 
151 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
152 
153 /*
154  * Policy -- Can ucred cr1 send SIGIO to process cr2?
155  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
156  * in the right situations.
157  */
158 #define CANSIGIO(cr1, cr2) \
159 	((cr1)->cr_uid == 0 || \
160 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
161 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
162 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
163 	    (cr1)->cr_uid == (cr2)->cr_uid)
164 
165 static int	sugid_coredump;
166 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
167     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
168 
169 static int	capmode_coredump;
170 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
171     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
172 
173 static int	do_coredump = 1;
174 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
175 	&do_coredump, 0, "Enable/Disable coredumps");
176 
177 static int	set_core_nodump_flag = 0;
178 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
179 	0, "Enable setting the NODUMP flag on coredump files");
180 
181 /*
182  * Signal properties and actions.
183  * The array below categorizes the signals and their default actions
184  * according to the following properties:
185  */
186 #define	SA_KILL		0x01		/* terminates process by default */
187 #define	SA_CORE		0x02		/* ditto and coredumps */
188 #define	SA_STOP		0x04		/* suspend process */
189 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
190 #define	SA_IGNORE	0x10		/* ignore by default */
191 #define	SA_CONT		0x20		/* continue if suspended */
192 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
193 
194 static int sigproptbl[NSIG] = {
195 	SA_KILL,			/* SIGHUP */
196 	SA_KILL,			/* SIGINT */
197 	SA_KILL|SA_CORE,		/* SIGQUIT */
198 	SA_KILL|SA_CORE,		/* SIGILL */
199 	SA_KILL|SA_CORE,		/* SIGTRAP */
200 	SA_KILL|SA_CORE,		/* SIGABRT */
201 	SA_KILL|SA_CORE,		/* SIGEMT */
202 	SA_KILL|SA_CORE,		/* SIGFPE */
203 	SA_KILL,			/* SIGKILL */
204 	SA_KILL|SA_CORE,		/* SIGBUS */
205 	SA_KILL|SA_CORE,		/* SIGSEGV */
206 	SA_KILL|SA_CORE,		/* SIGSYS */
207 	SA_KILL,			/* SIGPIPE */
208 	SA_KILL,			/* SIGALRM */
209 	SA_KILL,			/* SIGTERM */
210 	SA_IGNORE,			/* SIGURG */
211 	SA_STOP,			/* SIGSTOP */
212 	SA_STOP|SA_TTYSTOP,		/* SIGTSTP */
213 	SA_IGNORE|SA_CONT,		/* SIGCONT */
214 	SA_IGNORE,			/* SIGCHLD */
215 	SA_STOP|SA_TTYSTOP,		/* SIGTTIN */
216 	SA_STOP|SA_TTYSTOP,		/* SIGTTOU */
217 	SA_IGNORE,			/* SIGIO */
218 	SA_KILL,			/* SIGXCPU */
219 	SA_KILL,			/* SIGXFSZ */
220 	SA_KILL,			/* SIGVTALRM */
221 	SA_KILL,			/* SIGPROF */
222 	SA_IGNORE,			/* SIGWINCH  */
223 	SA_IGNORE,			/* SIGINFO */
224 	SA_KILL,			/* SIGUSR1 */
225 	SA_KILL,			/* SIGUSR2 */
226 };
227 
228 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
229 
230 static void
231 sigqueue_start(void)
232 {
233 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
234 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
235 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
236 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
237 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
238 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
239 }
240 
241 ksiginfo_t *
242 ksiginfo_alloc(int wait)
243 {
244 	int flags;
245 
246 	flags = M_ZERO;
247 	if (! wait)
248 		flags |= M_NOWAIT;
249 	if (ksiginfo_zone != NULL)
250 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
251 	return (NULL);
252 }
253 
254 void
255 ksiginfo_free(ksiginfo_t *ksi)
256 {
257 	uma_zfree(ksiginfo_zone, ksi);
258 }
259 
260 static __inline int
261 ksiginfo_tryfree(ksiginfo_t *ksi)
262 {
263 	if (!(ksi->ksi_flags & KSI_EXT)) {
264 		uma_zfree(ksiginfo_zone, ksi);
265 		return (1);
266 	}
267 	return (0);
268 }
269 
270 void
271 sigqueue_init(sigqueue_t *list, struct proc *p)
272 {
273 	SIGEMPTYSET(list->sq_signals);
274 	SIGEMPTYSET(list->sq_kill);
275 	TAILQ_INIT(&list->sq_list);
276 	list->sq_proc = p;
277 	list->sq_flags = SQ_INIT;
278 }
279 
280 /*
281  * Get a signal's ksiginfo.
282  * Return:
283  *	0	-	signal not found
284  *	others	-	signal number
285  */
286 static int
287 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
288 {
289 	struct proc *p = sq->sq_proc;
290 	struct ksiginfo *ksi, *next;
291 	int count = 0;
292 
293 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
294 
295 	if (!SIGISMEMBER(sq->sq_signals, signo))
296 		return (0);
297 
298 	if (SIGISMEMBER(sq->sq_kill, signo)) {
299 		count++;
300 		SIGDELSET(sq->sq_kill, signo);
301 	}
302 
303 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
304 		if (ksi->ksi_signo == signo) {
305 			if (count == 0) {
306 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
307 				ksi->ksi_sigq = NULL;
308 				ksiginfo_copy(ksi, si);
309 				if (ksiginfo_tryfree(ksi) && p != NULL)
310 					p->p_pendingcnt--;
311 			}
312 			if (++count > 1)
313 				break;
314 		}
315 	}
316 
317 	if (count <= 1)
318 		SIGDELSET(sq->sq_signals, signo);
319 	si->ksi_signo = signo;
320 	return (signo);
321 }
322 
323 void
324 sigqueue_take(ksiginfo_t *ksi)
325 {
326 	struct ksiginfo *kp;
327 	struct proc	*p;
328 	sigqueue_t	*sq;
329 
330 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
331 		return;
332 
333 	p = sq->sq_proc;
334 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
335 	ksi->ksi_sigq = NULL;
336 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
337 		p->p_pendingcnt--;
338 
339 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
340 	     kp = TAILQ_NEXT(kp, ksi_link)) {
341 		if (kp->ksi_signo == ksi->ksi_signo)
342 			break;
343 	}
344 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
345 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
346 }
347 
348 static int
349 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
350 {
351 	struct proc *p = sq->sq_proc;
352 	struct ksiginfo *ksi;
353 	int ret = 0;
354 
355 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
356 
357 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
358 		SIGADDSET(sq->sq_kill, signo);
359 		goto out_set_bit;
360 	}
361 
362 	/* directly insert the ksi, don't copy it */
363 	if (si->ksi_flags & KSI_INS) {
364 		if (si->ksi_flags & KSI_HEAD)
365 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
366 		else
367 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
368 		si->ksi_sigq = sq;
369 		goto out_set_bit;
370 	}
371 
372 	if (__predict_false(ksiginfo_zone == NULL)) {
373 		SIGADDSET(sq->sq_kill, signo);
374 		goto out_set_bit;
375 	}
376 
377 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
378 		signal_overflow++;
379 		ret = EAGAIN;
380 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
381 		signal_alloc_fail++;
382 		ret = EAGAIN;
383 	} else {
384 		if (p != NULL)
385 			p->p_pendingcnt++;
386 		ksiginfo_copy(si, ksi);
387 		ksi->ksi_signo = signo;
388 		if (si->ksi_flags & KSI_HEAD)
389 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
390 		else
391 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
392 		ksi->ksi_sigq = sq;
393 	}
394 
395 	if ((si->ksi_flags & KSI_TRAP) != 0 ||
396 	    (si->ksi_flags & KSI_SIGQ) == 0) {
397 		if (ret != 0)
398 			SIGADDSET(sq->sq_kill, signo);
399 		ret = 0;
400 		goto out_set_bit;
401 	}
402 
403 	if (ret != 0)
404 		return (ret);
405 
406 out_set_bit:
407 	SIGADDSET(sq->sq_signals, signo);
408 	return (ret);
409 }
410 
411 void
412 sigqueue_flush(sigqueue_t *sq)
413 {
414 	struct proc *p = sq->sq_proc;
415 	ksiginfo_t *ksi;
416 
417 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
418 
419 	if (p != NULL)
420 		PROC_LOCK_ASSERT(p, MA_OWNED);
421 
422 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
423 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
424 		ksi->ksi_sigq = NULL;
425 		if (ksiginfo_tryfree(ksi) && p != NULL)
426 			p->p_pendingcnt--;
427 	}
428 
429 	SIGEMPTYSET(sq->sq_signals);
430 	SIGEMPTYSET(sq->sq_kill);
431 }
432 
433 static void
434 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
435 {
436 	sigset_t tmp;
437 	struct proc *p1, *p2;
438 	ksiginfo_t *ksi, *next;
439 
440 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
441 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
442 	p1 = src->sq_proc;
443 	p2 = dst->sq_proc;
444 	/* Move siginfo to target list */
445 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
446 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
447 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
448 			if (p1 != NULL)
449 				p1->p_pendingcnt--;
450 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
451 			ksi->ksi_sigq = dst;
452 			if (p2 != NULL)
453 				p2->p_pendingcnt++;
454 		}
455 	}
456 
457 	/* Move pending bits to target list */
458 	tmp = src->sq_kill;
459 	SIGSETAND(tmp, *set);
460 	SIGSETOR(dst->sq_kill, tmp);
461 	SIGSETNAND(src->sq_kill, tmp);
462 
463 	tmp = src->sq_signals;
464 	SIGSETAND(tmp, *set);
465 	SIGSETOR(dst->sq_signals, tmp);
466 	SIGSETNAND(src->sq_signals, tmp);
467 }
468 
469 #if 0
470 static void
471 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
472 {
473 	sigset_t set;
474 
475 	SIGEMPTYSET(set);
476 	SIGADDSET(set, signo);
477 	sigqueue_move_set(src, dst, &set);
478 }
479 #endif
480 
481 static void
482 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
483 {
484 	struct proc *p = sq->sq_proc;
485 	ksiginfo_t *ksi, *next;
486 
487 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
488 
489 	/* Remove siginfo queue */
490 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
491 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
492 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
493 			ksi->ksi_sigq = NULL;
494 			if (ksiginfo_tryfree(ksi) && p != NULL)
495 				p->p_pendingcnt--;
496 		}
497 	}
498 	SIGSETNAND(sq->sq_kill, *set);
499 	SIGSETNAND(sq->sq_signals, *set);
500 }
501 
502 void
503 sigqueue_delete(sigqueue_t *sq, int signo)
504 {
505 	sigset_t set;
506 
507 	SIGEMPTYSET(set);
508 	SIGADDSET(set, signo);
509 	sigqueue_delete_set(sq, &set);
510 }
511 
512 /* Remove a set of signals for a process */
513 static void
514 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
515 {
516 	sigqueue_t worklist;
517 	struct thread *td0;
518 
519 	PROC_LOCK_ASSERT(p, MA_OWNED);
520 
521 	sigqueue_init(&worklist, NULL);
522 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
523 
524 	FOREACH_THREAD_IN_PROC(p, td0)
525 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
526 
527 	sigqueue_flush(&worklist);
528 }
529 
530 void
531 sigqueue_delete_proc(struct proc *p, int signo)
532 {
533 	sigset_t set;
534 
535 	SIGEMPTYSET(set);
536 	SIGADDSET(set, signo);
537 	sigqueue_delete_set_proc(p, &set);
538 }
539 
540 static void
541 sigqueue_delete_stopmask_proc(struct proc *p)
542 {
543 	sigset_t set;
544 
545 	SIGEMPTYSET(set);
546 	SIGADDSET(set, SIGSTOP);
547 	SIGADDSET(set, SIGTSTP);
548 	SIGADDSET(set, SIGTTIN);
549 	SIGADDSET(set, SIGTTOU);
550 	sigqueue_delete_set_proc(p, &set);
551 }
552 
553 /*
554  * Determine signal that should be delivered to thread td, the current
555  * thread, 0 if none.  If there is a pending stop signal with default
556  * action, the process stops in issignal().
557  */
558 int
559 cursig(struct thread *td)
560 {
561 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
562 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
563 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
564 	return (SIGPENDING(td) ? issignal(td) : 0);
565 }
566 
567 /*
568  * Arrange for ast() to handle unmasked pending signals on return to user
569  * mode.  This must be called whenever a signal is added to td_sigqueue or
570  * unmasked in td_sigmask.
571  */
572 void
573 signotify(struct thread *td)
574 {
575 	struct proc *p;
576 
577 	p = td->td_proc;
578 
579 	PROC_LOCK_ASSERT(p, MA_OWNED);
580 
581 	if (SIGPENDING(td)) {
582 		thread_lock(td);
583 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
584 		thread_unlock(td);
585 	}
586 }
587 
588 int
589 sigonstack(size_t sp)
590 {
591 	struct thread *td = curthread;
592 
593 	return ((td->td_pflags & TDP_ALTSTACK) ?
594 #if defined(COMPAT_43)
595 	    ((td->td_sigstk.ss_size == 0) ?
596 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
597 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
598 #else
599 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
600 #endif
601 	    : 0);
602 }
603 
604 static __inline int
605 sigprop(int sig)
606 {
607 
608 	if (sig > 0 && sig < NSIG)
609 		return (sigproptbl[_SIG_IDX(sig)]);
610 	return (0);
611 }
612 
613 int
614 sig_ffs(sigset_t *set)
615 {
616 	int i;
617 
618 	for (i = 0; i < _SIG_WORDS; i++)
619 		if (set->__bits[i])
620 			return (ffs(set->__bits[i]) + (i * 32));
621 	return (0);
622 }
623 
624 static bool
625 sigact_flag_test(struct sigaction *act, int flag)
626 {
627 
628 	/*
629 	 * SA_SIGINFO is reset when signal disposition is set to
630 	 * ignore or default.  Other flags are kept according to user
631 	 * settings.
632 	 */
633 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
634 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
635 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
636 }
637 
638 /*
639  * kern_sigaction
640  * sigaction
641  * freebsd4_sigaction
642  * osigaction
643  */
644 int
645 kern_sigaction(td, sig, act, oact, flags)
646 	struct thread *td;
647 	register int sig;
648 	struct sigaction *act, *oact;
649 	int flags;
650 {
651 	struct sigacts *ps;
652 	struct proc *p = td->td_proc;
653 
654 	if (!_SIG_VALID(sig))
655 		return (EINVAL);
656 	if (act != NULL && act->sa_handler != SIG_DFL &&
657 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
658 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
659 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
660 		return (EINVAL);
661 
662 	PROC_LOCK(p);
663 	ps = p->p_sigacts;
664 	mtx_lock(&ps->ps_mtx);
665 	if (oact) {
666 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
667 		oact->sa_flags = 0;
668 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
669 			oact->sa_flags |= SA_ONSTACK;
670 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
671 			oact->sa_flags |= SA_RESTART;
672 		if (SIGISMEMBER(ps->ps_sigreset, sig))
673 			oact->sa_flags |= SA_RESETHAND;
674 		if (SIGISMEMBER(ps->ps_signodefer, sig))
675 			oact->sa_flags |= SA_NODEFER;
676 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
677 			oact->sa_flags |= SA_SIGINFO;
678 			oact->sa_sigaction =
679 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
680 		} else
681 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
682 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
683 			oact->sa_flags |= SA_NOCLDSTOP;
684 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
685 			oact->sa_flags |= SA_NOCLDWAIT;
686 	}
687 	if (act) {
688 		if ((sig == SIGKILL || sig == SIGSTOP) &&
689 		    act->sa_handler != SIG_DFL) {
690 			mtx_unlock(&ps->ps_mtx);
691 			PROC_UNLOCK(p);
692 			return (EINVAL);
693 		}
694 
695 		/*
696 		 * Change setting atomically.
697 		 */
698 
699 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
700 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
701 		if (sigact_flag_test(act, SA_SIGINFO)) {
702 			ps->ps_sigact[_SIG_IDX(sig)] =
703 			    (__sighandler_t *)act->sa_sigaction;
704 			SIGADDSET(ps->ps_siginfo, sig);
705 		} else {
706 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
707 			SIGDELSET(ps->ps_siginfo, sig);
708 		}
709 		if (!sigact_flag_test(act, SA_RESTART))
710 			SIGADDSET(ps->ps_sigintr, sig);
711 		else
712 			SIGDELSET(ps->ps_sigintr, sig);
713 		if (sigact_flag_test(act, SA_ONSTACK))
714 			SIGADDSET(ps->ps_sigonstack, sig);
715 		else
716 			SIGDELSET(ps->ps_sigonstack, sig);
717 		if (sigact_flag_test(act, SA_RESETHAND))
718 			SIGADDSET(ps->ps_sigreset, sig);
719 		else
720 			SIGDELSET(ps->ps_sigreset, sig);
721 		if (sigact_flag_test(act, SA_NODEFER))
722 			SIGADDSET(ps->ps_signodefer, sig);
723 		else
724 			SIGDELSET(ps->ps_signodefer, sig);
725 		if (sig == SIGCHLD) {
726 			if (act->sa_flags & SA_NOCLDSTOP)
727 				ps->ps_flag |= PS_NOCLDSTOP;
728 			else
729 				ps->ps_flag &= ~PS_NOCLDSTOP;
730 			if (act->sa_flags & SA_NOCLDWAIT) {
731 				/*
732 				 * Paranoia: since SA_NOCLDWAIT is implemented
733 				 * by reparenting the dying child to PID 1 (and
734 				 * trust it to reap the zombie), PID 1 itself
735 				 * is forbidden to set SA_NOCLDWAIT.
736 				 */
737 				if (p->p_pid == 1)
738 					ps->ps_flag &= ~PS_NOCLDWAIT;
739 				else
740 					ps->ps_flag |= PS_NOCLDWAIT;
741 			} else
742 				ps->ps_flag &= ~PS_NOCLDWAIT;
743 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
744 				ps->ps_flag |= PS_CLDSIGIGN;
745 			else
746 				ps->ps_flag &= ~PS_CLDSIGIGN;
747 		}
748 		/*
749 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
750 		 * and for signals set to SIG_DFL where the default is to
751 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
752 		 * have to restart the process.
753 		 */
754 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
755 		    (sigprop(sig) & SA_IGNORE &&
756 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
757 			/* never to be seen again */
758 			sigqueue_delete_proc(p, sig);
759 			if (sig != SIGCONT)
760 				/* easier in psignal */
761 				SIGADDSET(ps->ps_sigignore, sig);
762 			SIGDELSET(ps->ps_sigcatch, sig);
763 		} else {
764 			SIGDELSET(ps->ps_sigignore, sig);
765 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
766 				SIGDELSET(ps->ps_sigcatch, sig);
767 			else
768 				SIGADDSET(ps->ps_sigcatch, sig);
769 		}
770 #ifdef COMPAT_FREEBSD4
771 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
772 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
773 		    (flags & KSA_FREEBSD4) == 0)
774 			SIGDELSET(ps->ps_freebsd4, sig);
775 		else
776 			SIGADDSET(ps->ps_freebsd4, sig);
777 #endif
778 #ifdef COMPAT_43
779 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
780 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
781 		    (flags & KSA_OSIGSET) == 0)
782 			SIGDELSET(ps->ps_osigset, sig);
783 		else
784 			SIGADDSET(ps->ps_osigset, sig);
785 #endif
786 	}
787 	mtx_unlock(&ps->ps_mtx);
788 	PROC_UNLOCK(p);
789 	return (0);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct sigaction_args {
794 	int	sig;
795 	struct	sigaction *act;
796 	struct	sigaction *oact;
797 };
798 #endif
799 int
800 sys_sigaction(td, uap)
801 	struct thread *td;
802 	register struct sigaction_args *uap;
803 {
804 	struct sigaction act, oact;
805 	register struct sigaction *actp, *oactp;
806 	int error;
807 
808 	actp = (uap->act != NULL) ? &act : NULL;
809 	oactp = (uap->oact != NULL) ? &oact : NULL;
810 	if (actp) {
811 		error = copyin(uap->act, actp, sizeof(act));
812 		if (error)
813 			return (error);
814 	}
815 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
816 	if (oactp && !error)
817 		error = copyout(oactp, uap->oact, sizeof(oact));
818 	return (error);
819 }
820 
821 #ifdef COMPAT_FREEBSD4
822 #ifndef _SYS_SYSPROTO_H_
823 struct freebsd4_sigaction_args {
824 	int	sig;
825 	struct	sigaction *act;
826 	struct	sigaction *oact;
827 };
828 #endif
829 int
830 freebsd4_sigaction(td, uap)
831 	struct thread *td;
832 	register struct freebsd4_sigaction_args *uap;
833 {
834 	struct sigaction act, oact;
835 	register struct sigaction *actp, *oactp;
836 	int error;
837 
838 
839 	actp = (uap->act != NULL) ? &act : NULL;
840 	oactp = (uap->oact != NULL) ? &oact : NULL;
841 	if (actp) {
842 		error = copyin(uap->act, actp, sizeof(act));
843 		if (error)
844 			return (error);
845 	}
846 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
847 	if (oactp && !error)
848 		error = copyout(oactp, uap->oact, sizeof(oact));
849 	return (error);
850 }
851 #endif	/* COMAPT_FREEBSD4 */
852 
853 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
854 #ifndef _SYS_SYSPROTO_H_
855 struct osigaction_args {
856 	int	signum;
857 	struct	osigaction *nsa;
858 	struct	osigaction *osa;
859 };
860 #endif
861 int
862 osigaction(td, uap)
863 	struct thread *td;
864 	register struct osigaction_args *uap;
865 {
866 	struct osigaction sa;
867 	struct sigaction nsa, osa;
868 	register struct sigaction *nsap, *osap;
869 	int error;
870 
871 	if (uap->signum <= 0 || uap->signum >= ONSIG)
872 		return (EINVAL);
873 
874 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
875 	osap = (uap->osa != NULL) ? &osa : NULL;
876 
877 	if (nsap) {
878 		error = copyin(uap->nsa, &sa, sizeof(sa));
879 		if (error)
880 			return (error);
881 		nsap->sa_handler = sa.sa_handler;
882 		nsap->sa_flags = sa.sa_flags;
883 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
884 	}
885 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
886 	if (osap && !error) {
887 		sa.sa_handler = osap->sa_handler;
888 		sa.sa_flags = osap->sa_flags;
889 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
890 		error = copyout(&sa, uap->osa, sizeof(sa));
891 	}
892 	return (error);
893 }
894 
895 #if !defined(__i386__)
896 /* Avoid replicating the same stub everywhere */
897 int
898 osigreturn(td, uap)
899 	struct thread *td;
900 	struct osigreturn_args *uap;
901 {
902 
903 	return (nosys(td, (struct nosys_args *)uap));
904 }
905 #endif
906 #endif /* COMPAT_43 */
907 
908 /*
909  * Initialize signal state for process 0;
910  * set to ignore signals that are ignored by default.
911  */
912 void
913 siginit(p)
914 	struct proc *p;
915 {
916 	register int i;
917 	struct sigacts *ps;
918 
919 	PROC_LOCK(p);
920 	ps = p->p_sigacts;
921 	mtx_lock(&ps->ps_mtx);
922 	for (i = 1; i <= NSIG; i++) {
923 		if (sigprop(i) & SA_IGNORE && i != SIGCONT) {
924 			SIGADDSET(ps->ps_sigignore, i);
925 		}
926 	}
927 	mtx_unlock(&ps->ps_mtx);
928 	PROC_UNLOCK(p);
929 }
930 
931 /*
932  * Reset specified signal to the default disposition.
933  */
934 static void
935 sigdflt(struct sigacts *ps, int sig)
936 {
937 
938 	mtx_assert(&ps->ps_mtx, MA_OWNED);
939 	SIGDELSET(ps->ps_sigcatch, sig);
940 	if ((sigprop(sig) & SA_IGNORE) != 0 && sig != SIGCONT)
941 		SIGADDSET(ps->ps_sigignore, sig);
942 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
943 	SIGDELSET(ps->ps_siginfo, sig);
944 }
945 
946 /*
947  * Reset signals for an exec of the specified process.
948  */
949 void
950 execsigs(struct proc *p)
951 {
952 	struct sigacts *ps;
953 	int sig;
954 	struct thread *td;
955 
956 	/*
957 	 * Reset caught signals.  Held signals remain held
958 	 * through td_sigmask (unless they were caught,
959 	 * and are now ignored by default).
960 	 */
961 	PROC_LOCK_ASSERT(p, MA_OWNED);
962 	td = FIRST_THREAD_IN_PROC(p);
963 	ps = p->p_sigacts;
964 	mtx_lock(&ps->ps_mtx);
965 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
966 		sig = sig_ffs(&ps->ps_sigcatch);
967 		sigdflt(ps, sig);
968 		if ((sigprop(sig) & SA_IGNORE) != 0)
969 			sigqueue_delete_proc(p, sig);
970 	}
971 	/*
972 	 * Reset stack state to the user stack.
973 	 * Clear set of signals caught on the signal stack.
974 	 */
975 	td->td_sigstk.ss_flags = SS_DISABLE;
976 	td->td_sigstk.ss_size = 0;
977 	td->td_sigstk.ss_sp = 0;
978 	td->td_pflags &= ~TDP_ALTSTACK;
979 	/*
980 	 * Reset no zombies if child dies flag as Solaris does.
981 	 */
982 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
983 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
984 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
985 	mtx_unlock(&ps->ps_mtx);
986 }
987 
988 /*
989  * kern_sigprocmask()
990  *
991  *	Manipulate signal mask.
992  */
993 int
994 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
995     int flags)
996 {
997 	sigset_t new_block, oset1;
998 	struct proc *p;
999 	int error;
1000 
1001 	p = td->td_proc;
1002 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1003 		PROC_LOCK_ASSERT(p, MA_OWNED);
1004 	else
1005 		PROC_LOCK(p);
1006 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1007 	    ? MA_OWNED : MA_NOTOWNED);
1008 	if (oset != NULL)
1009 		*oset = td->td_sigmask;
1010 
1011 	error = 0;
1012 	if (set != NULL) {
1013 		switch (how) {
1014 		case SIG_BLOCK:
1015 			SIG_CANTMASK(*set);
1016 			oset1 = td->td_sigmask;
1017 			SIGSETOR(td->td_sigmask, *set);
1018 			new_block = td->td_sigmask;
1019 			SIGSETNAND(new_block, oset1);
1020 			break;
1021 		case SIG_UNBLOCK:
1022 			SIGSETNAND(td->td_sigmask, *set);
1023 			signotify(td);
1024 			goto out;
1025 		case SIG_SETMASK:
1026 			SIG_CANTMASK(*set);
1027 			oset1 = td->td_sigmask;
1028 			if (flags & SIGPROCMASK_OLD)
1029 				SIGSETLO(td->td_sigmask, *set);
1030 			else
1031 				td->td_sigmask = *set;
1032 			new_block = td->td_sigmask;
1033 			SIGSETNAND(new_block, oset1);
1034 			signotify(td);
1035 			break;
1036 		default:
1037 			error = EINVAL;
1038 			goto out;
1039 		}
1040 
1041 		/*
1042 		 * The new_block set contains signals that were not previously
1043 		 * blocked, but are blocked now.
1044 		 *
1045 		 * In case we block any signal that was not previously blocked
1046 		 * for td, and process has the signal pending, try to schedule
1047 		 * signal delivery to some thread that does not block the
1048 		 * signal, possibly waking it up.
1049 		 */
1050 		if (p->p_numthreads != 1)
1051 			reschedule_signals(p, new_block, flags);
1052 	}
1053 
1054 out:
1055 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1056 		PROC_UNLOCK(p);
1057 	return (error);
1058 }
1059 
1060 #ifndef _SYS_SYSPROTO_H_
1061 struct sigprocmask_args {
1062 	int	how;
1063 	const sigset_t *set;
1064 	sigset_t *oset;
1065 };
1066 #endif
1067 int
1068 sys_sigprocmask(td, uap)
1069 	register struct thread *td;
1070 	struct sigprocmask_args *uap;
1071 {
1072 	sigset_t set, oset;
1073 	sigset_t *setp, *osetp;
1074 	int error;
1075 
1076 	setp = (uap->set != NULL) ? &set : NULL;
1077 	osetp = (uap->oset != NULL) ? &oset : NULL;
1078 	if (setp) {
1079 		error = copyin(uap->set, setp, sizeof(set));
1080 		if (error)
1081 			return (error);
1082 	}
1083 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1084 	if (osetp && !error) {
1085 		error = copyout(osetp, uap->oset, sizeof(oset));
1086 	}
1087 	return (error);
1088 }
1089 
1090 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1091 #ifndef _SYS_SYSPROTO_H_
1092 struct osigprocmask_args {
1093 	int	how;
1094 	osigset_t mask;
1095 };
1096 #endif
1097 int
1098 osigprocmask(td, uap)
1099 	register struct thread *td;
1100 	struct osigprocmask_args *uap;
1101 {
1102 	sigset_t set, oset;
1103 	int error;
1104 
1105 	OSIG2SIG(uap->mask, set);
1106 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1107 	SIG2OSIG(oset, td->td_retval[0]);
1108 	return (error);
1109 }
1110 #endif /* COMPAT_43 */
1111 
1112 int
1113 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1114 {
1115 	ksiginfo_t ksi;
1116 	sigset_t set;
1117 	int error;
1118 
1119 	error = copyin(uap->set, &set, sizeof(set));
1120 	if (error) {
1121 		td->td_retval[0] = error;
1122 		return (0);
1123 	}
1124 
1125 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1126 	if (error) {
1127 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1128 			error = ERESTART;
1129 		if (error == ERESTART)
1130 			return (error);
1131 		td->td_retval[0] = error;
1132 		return (0);
1133 	}
1134 
1135 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1136 	td->td_retval[0] = error;
1137 	return (0);
1138 }
1139 
1140 int
1141 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1142 {
1143 	struct timespec ts;
1144 	struct timespec *timeout;
1145 	sigset_t set;
1146 	ksiginfo_t ksi;
1147 	int error;
1148 
1149 	if (uap->timeout) {
1150 		error = copyin(uap->timeout, &ts, sizeof(ts));
1151 		if (error)
1152 			return (error);
1153 
1154 		timeout = &ts;
1155 	} else
1156 		timeout = NULL;
1157 
1158 	error = copyin(uap->set, &set, sizeof(set));
1159 	if (error)
1160 		return (error);
1161 
1162 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1163 	if (error)
1164 		return (error);
1165 
1166 	if (uap->info)
1167 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1168 
1169 	if (error == 0)
1170 		td->td_retval[0] = ksi.ksi_signo;
1171 	return (error);
1172 }
1173 
1174 int
1175 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1176 {
1177 	ksiginfo_t ksi;
1178 	sigset_t set;
1179 	int error;
1180 
1181 	error = copyin(uap->set, &set, sizeof(set));
1182 	if (error)
1183 		return (error);
1184 
1185 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1186 	if (error)
1187 		return (error);
1188 
1189 	if (uap->info)
1190 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1191 
1192 	if (error == 0)
1193 		td->td_retval[0] = ksi.ksi_signo;
1194 	return (error);
1195 }
1196 
1197 int
1198 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1199 	struct timespec *timeout)
1200 {
1201 	struct sigacts *ps;
1202 	sigset_t saved_mask, new_block;
1203 	struct proc *p;
1204 	int error, sig, timo, timevalid = 0;
1205 	struct timespec rts, ets, ts;
1206 	struct timeval tv;
1207 
1208 	p = td->td_proc;
1209 	error = 0;
1210 	ets.tv_sec = 0;
1211 	ets.tv_nsec = 0;
1212 
1213 	if (timeout != NULL) {
1214 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1215 			timevalid = 1;
1216 			getnanouptime(&rts);
1217 			ets = rts;
1218 			timespecadd(&ets, timeout);
1219 		}
1220 	}
1221 	ksiginfo_init(ksi);
1222 	/* Some signals can not be waited for. */
1223 	SIG_CANTMASK(waitset);
1224 	ps = p->p_sigacts;
1225 	PROC_LOCK(p);
1226 	saved_mask = td->td_sigmask;
1227 	SIGSETNAND(td->td_sigmask, waitset);
1228 	for (;;) {
1229 		mtx_lock(&ps->ps_mtx);
1230 		sig = cursig(td);
1231 		mtx_unlock(&ps->ps_mtx);
1232 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1233 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1234 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1235 				error = 0;
1236 				break;
1237 			}
1238 		}
1239 
1240 		if (error != 0)
1241 			break;
1242 
1243 		/*
1244 		 * POSIX says this must be checked after looking for pending
1245 		 * signals.
1246 		 */
1247 		if (timeout != NULL) {
1248 			if (!timevalid) {
1249 				error = EINVAL;
1250 				break;
1251 			}
1252 			getnanouptime(&rts);
1253 			if (timespeccmp(&rts, &ets, >=)) {
1254 				error = EAGAIN;
1255 				break;
1256 			}
1257 			ts = ets;
1258 			timespecsub(&ts, &rts);
1259 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1260 			timo = tvtohz(&tv);
1261 		} else {
1262 			timo = 0;
1263 		}
1264 
1265 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1266 
1267 		if (timeout != NULL) {
1268 			if (error == ERESTART) {
1269 				/* Timeout can not be restarted. */
1270 				error = EINTR;
1271 			} else if (error == EAGAIN) {
1272 				/* We will calculate timeout by ourself. */
1273 				error = 0;
1274 			}
1275 		}
1276 	}
1277 
1278 	new_block = saved_mask;
1279 	SIGSETNAND(new_block, td->td_sigmask);
1280 	td->td_sigmask = saved_mask;
1281 	/*
1282 	 * Fewer signals can be delivered to us, reschedule signal
1283 	 * notification.
1284 	 */
1285 	if (p->p_numthreads != 1)
1286 		reschedule_signals(p, new_block, 0);
1287 
1288 	if (error == 0) {
1289 		SDT_PROBE(proc, kernel, , signal__clear, sig, ksi, 0, 0, 0);
1290 
1291 		if (ksi->ksi_code == SI_TIMER)
1292 			itimer_accept(p, ksi->ksi_timerid, ksi);
1293 
1294 #ifdef KTRACE
1295 		if (KTRPOINT(td, KTR_PSIG)) {
1296 			sig_t action;
1297 
1298 			mtx_lock(&ps->ps_mtx);
1299 			action = ps->ps_sigact[_SIG_IDX(sig)];
1300 			mtx_unlock(&ps->ps_mtx);
1301 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1302 		}
1303 #endif
1304 		if (sig == SIGKILL)
1305 			sigexit(td, sig);
1306 	}
1307 	PROC_UNLOCK(p);
1308 	return (error);
1309 }
1310 
1311 #ifndef _SYS_SYSPROTO_H_
1312 struct sigpending_args {
1313 	sigset_t	*set;
1314 };
1315 #endif
1316 int
1317 sys_sigpending(td, uap)
1318 	struct thread *td;
1319 	struct sigpending_args *uap;
1320 {
1321 	struct proc *p = td->td_proc;
1322 	sigset_t pending;
1323 
1324 	PROC_LOCK(p);
1325 	pending = p->p_sigqueue.sq_signals;
1326 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1327 	PROC_UNLOCK(p);
1328 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1329 }
1330 
1331 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1332 #ifndef _SYS_SYSPROTO_H_
1333 struct osigpending_args {
1334 	int	dummy;
1335 };
1336 #endif
1337 int
1338 osigpending(td, uap)
1339 	struct thread *td;
1340 	struct osigpending_args *uap;
1341 {
1342 	struct proc *p = td->td_proc;
1343 	sigset_t pending;
1344 
1345 	PROC_LOCK(p);
1346 	pending = p->p_sigqueue.sq_signals;
1347 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1348 	PROC_UNLOCK(p);
1349 	SIG2OSIG(pending, td->td_retval[0]);
1350 	return (0);
1351 }
1352 #endif /* COMPAT_43 */
1353 
1354 #if defined(COMPAT_43)
1355 /*
1356  * Generalized interface signal handler, 4.3-compatible.
1357  */
1358 #ifndef _SYS_SYSPROTO_H_
1359 struct osigvec_args {
1360 	int	signum;
1361 	struct	sigvec *nsv;
1362 	struct	sigvec *osv;
1363 };
1364 #endif
1365 /* ARGSUSED */
1366 int
1367 osigvec(td, uap)
1368 	struct thread *td;
1369 	register struct osigvec_args *uap;
1370 {
1371 	struct sigvec vec;
1372 	struct sigaction nsa, osa;
1373 	register struct sigaction *nsap, *osap;
1374 	int error;
1375 
1376 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1377 		return (EINVAL);
1378 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1379 	osap = (uap->osv != NULL) ? &osa : NULL;
1380 	if (nsap) {
1381 		error = copyin(uap->nsv, &vec, sizeof(vec));
1382 		if (error)
1383 			return (error);
1384 		nsap->sa_handler = vec.sv_handler;
1385 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1386 		nsap->sa_flags = vec.sv_flags;
1387 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1388 	}
1389 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1390 	if (osap && !error) {
1391 		vec.sv_handler = osap->sa_handler;
1392 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1393 		vec.sv_flags = osap->sa_flags;
1394 		vec.sv_flags &= ~SA_NOCLDWAIT;
1395 		vec.sv_flags ^= SA_RESTART;
1396 		error = copyout(&vec, uap->osv, sizeof(vec));
1397 	}
1398 	return (error);
1399 }
1400 
1401 #ifndef _SYS_SYSPROTO_H_
1402 struct osigblock_args {
1403 	int	mask;
1404 };
1405 #endif
1406 int
1407 osigblock(td, uap)
1408 	register struct thread *td;
1409 	struct osigblock_args *uap;
1410 {
1411 	sigset_t set, oset;
1412 
1413 	OSIG2SIG(uap->mask, set);
1414 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1415 	SIG2OSIG(oset, td->td_retval[0]);
1416 	return (0);
1417 }
1418 
1419 #ifndef _SYS_SYSPROTO_H_
1420 struct osigsetmask_args {
1421 	int	mask;
1422 };
1423 #endif
1424 int
1425 osigsetmask(td, uap)
1426 	struct thread *td;
1427 	struct osigsetmask_args *uap;
1428 {
1429 	sigset_t set, oset;
1430 
1431 	OSIG2SIG(uap->mask, set);
1432 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1433 	SIG2OSIG(oset, td->td_retval[0]);
1434 	return (0);
1435 }
1436 #endif /* COMPAT_43 */
1437 
1438 /*
1439  * Suspend calling thread until signal, providing mask to be set in the
1440  * meantime.
1441  */
1442 #ifndef _SYS_SYSPROTO_H_
1443 struct sigsuspend_args {
1444 	const sigset_t *sigmask;
1445 };
1446 #endif
1447 /* ARGSUSED */
1448 int
1449 sys_sigsuspend(td, uap)
1450 	struct thread *td;
1451 	struct sigsuspend_args *uap;
1452 {
1453 	sigset_t mask;
1454 	int error;
1455 
1456 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1457 	if (error)
1458 		return (error);
1459 	return (kern_sigsuspend(td, mask));
1460 }
1461 
1462 int
1463 kern_sigsuspend(struct thread *td, sigset_t mask)
1464 {
1465 	struct proc *p = td->td_proc;
1466 	int has_sig, sig;
1467 
1468 	/*
1469 	 * When returning from sigsuspend, we want
1470 	 * the old mask to be restored after the
1471 	 * signal handler has finished.  Thus, we
1472 	 * save it here and mark the sigacts structure
1473 	 * to indicate this.
1474 	 */
1475 	PROC_LOCK(p);
1476 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1477 	    SIGPROCMASK_PROC_LOCKED);
1478 	td->td_pflags |= TDP_OLDMASK;
1479 
1480 	/*
1481 	 * Process signals now. Otherwise, we can get spurious wakeup
1482 	 * due to signal entered process queue, but delivered to other
1483 	 * thread. But sigsuspend should return only on signal
1484 	 * delivery.
1485 	 */
1486 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1487 	for (has_sig = 0; !has_sig;) {
1488 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1489 			0) == 0)
1490 			/* void */;
1491 		thread_suspend_check(0);
1492 		mtx_lock(&p->p_sigacts->ps_mtx);
1493 		while ((sig = cursig(td)) != 0)
1494 			has_sig += postsig(sig);
1495 		mtx_unlock(&p->p_sigacts->ps_mtx);
1496 	}
1497 	PROC_UNLOCK(p);
1498 	td->td_errno = EINTR;
1499 	td->td_pflags |= TDP_NERRNO;
1500 	return (EJUSTRETURN);
1501 }
1502 
1503 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1504 /*
1505  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1506  * convention: libc stub passes mask, not pointer, to save a copyin.
1507  */
1508 #ifndef _SYS_SYSPROTO_H_
1509 struct osigsuspend_args {
1510 	osigset_t mask;
1511 };
1512 #endif
1513 /* ARGSUSED */
1514 int
1515 osigsuspend(td, uap)
1516 	struct thread *td;
1517 	struct osigsuspend_args *uap;
1518 {
1519 	sigset_t mask;
1520 
1521 	OSIG2SIG(uap->mask, mask);
1522 	return (kern_sigsuspend(td, mask));
1523 }
1524 #endif /* COMPAT_43 */
1525 
1526 #if defined(COMPAT_43)
1527 #ifndef _SYS_SYSPROTO_H_
1528 struct osigstack_args {
1529 	struct	sigstack *nss;
1530 	struct	sigstack *oss;
1531 };
1532 #endif
1533 /* ARGSUSED */
1534 int
1535 osigstack(td, uap)
1536 	struct thread *td;
1537 	register struct osigstack_args *uap;
1538 {
1539 	struct sigstack nss, oss;
1540 	int error = 0;
1541 
1542 	if (uap->nss != NULL) {
1543 		error = copyin(uap->nss, &nss, sizeof(nss));
1544 		if (error)
1545 			return (error);
1546 	}
1547 	oss.ss_sp = td->td_sigstk.ss_sp;
1548 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1549 	if (uap->nss != NULL) {
1550 		td->td_sigstk.ss_sp = nss.ss_sp;
1551 		td->td_sigstk.ss_size = 0;
1552 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1553 		td->td_pflags |= TDP_ALTSTACK;
1554 	}
1555 	if (uap->oss != NULL)
1556 		error = copyout(&oss, uap->oss, sizeof(oss));
1557 
1558 	return (error);
1559 }
1560 #endif /* COMPAT_43 */
1561 
1562 #ifndef _SYS_SYSPROTO_H_
1563 struct sigaltstack_args {
1564 	stack_t	*ss;
1565 	stack_t	*oss;
1566 };
1567 #endif
1568 /* ARGSUSED */
1569 int
1570 sys_sigaltstack(td, uap)
1571 	struct thread *td;
1572 	register struct sigaltstack_args *uap;
1573 {
1574 	stack_t ss, oss;
1575 	int error;
1576 
1577 	if (uap->ss != NULL) {
1578 		error = copyin(uap->ss, &ss, sizeof(ss));
1579 		if (error)
1580 			return (error);
1581 	}
1582 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1583 	    (uap->oss != NULL) ? &oss : NULL);
1584 	if (error)
1585 		return (error);
1586 	if (uap->oss != NULL)
1587 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1588 	return (error);
1589 }
1590 
1591 int
1592 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1593 {
1594 	struct proc *p = td->td_proc;
1595 	int oonstack;
1596 
1597 	oonstack = sigonstack(cpu_getstack(td));
1598 
1599 	if (oss != NULL) {
1600 		*oss = td->td_sigstk;
1601 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1602 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1603 	}
1604 
1605 	if (ss != NULL) {
1606 		if (oonstack)
1607 			return (EPERM);
1608 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1609 			return (EINVAL);
1610 		if (!(ss->ss_flags & SS_DISABLE)) {
1611 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1612 				return (ENOMEM);
1613 
1614 			td->td_sigstk = *ss;
1615 			td->td_pflags |= TDP_ALTSTACK;
1616 		} else {
1617 			td->td_pflags &= ~TDP_ALTSTACK;
1618 		}
1619 	}
1620 	return (0);
1621 }
1622 
1623 /*
1624  * Common code for kill process group/broadcast kill.
1625  * cp is calling process.
1626  */
1627 static int
1628 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1629 {
1630 	struct proc *p;
1631 	struct pgrp *pgrp;
1632 	int err;
1633 	int ret;
1634 
1635 	ret = ESRCH;
1636 	if (all) {
1637 		/*
1638 		 * broadcast
1639 		 */
1640 		sx_slock(&allproc_lock);
1641 		FOREACH_PROC_IN_SYSTEM(p) {
1642 			PROC_LOCK(p);
1643 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1644 			    p == td->td_proc || p->p_state == PRS_NEW) {
1645 				PROC_UNLOCK(p);
1646 				continue;
1647 			}
1648 			err = p_cansignal(td, p, sig);
1649 			if (err == 0) {
1650 				if (sig)
1651 					pksignal(p, sig, ksi);
1652 				ret = err;
1653 			}
1654 			else if (ret == ESRCH)
1655 				ret = err;
1656 			PROC_UNLOCK(p);
1657 		}
1658 		sx_sunlock(&allproc_lock);
1659 	} else {
1660 		sx_slock(&proctree_lock);
1661 		if (pgid == 0) {
1662 			/*
1663 			 * zero pgid means send to my process group.
1664 			 */
1665 			pgrp = td->td_proc->p_pgrp;
1666 			PGRP_LOCK(pgrp);
1667 		} else {
1668 			pgrp = pgfind(pgid);
1669 			if (pgrp == NULL) {
1670 				sx_sunlock(&proctree_lock);
1671 				return (ESRCH);
1672 			}
1673 		}
1674 		sx_sunlock(&proctree_lock);
1675 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1676 			PROC_LOCK(p);
1677 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1678 			    p->p_state == PRS_NEW) {
1679 				PROC_UNLOCK(p);
1680 				continue;
1681 			}
1682 			err = p_cansignal(td, p, sig);
1683 			if (err == 0) {
1684 				if (sig)
1685 					pksignal(p, sig, ksi);
1686 				ret = err;
1687 			}
1688 			else if (ret == ESRCH)
1689 				ret = err;
1690 			PROC_UNLOCK(p);
1691 		}
1692 		PGRP_UNLOCK(pgrp);
1693 	}
1694 	return (ret);
1695 }
1696 
1697 #ifndef _SYS_SYSPROTO_H_
1698 struct kill_args {
1699 	int	pid;
1700 	int	signum;
1701 };
1702 #endif
1703 /* ARGSUSED */
1704 int
1705 sys_kill(struct thread *td, struct kill_args *uap)
1706 {
1707 	ksiginfo_t ksi;
1708 	struct proc *p;
1709 	int error;
1710 
1711 	/*
1712 	 * A process in capability mode can send signals only to himself.
1713 	 * The main rationale behind this is that abort(3) is implemented as
1714 	 * kill(getpid(), SIGABRT).
1715 	 */
1716 	if (IN_CAPABILITY_MODE(td) && uap->pid != td->td_proc->p_pid)
1717 		return (ECAPMODE);
1718 
1719 	AUDIT_ARG_SIGNUM(uap->signum);
1720 	AUDIT_ARG_PID(uap->pid);
1721 	if ((u_int)uap->signum > _SIG_MAXSIG)
1722 		return (EINVAL);
1723 
1724 	ksiginfo_init(&ksi);
1725 	ksi.ksi_signo = uap->signum;
1726 	ksi.ksi_code = SI_USER;
1727 	ksi.ksi_pid = td->td_proc->p_pid;
1728 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1729 
1730 	if (uap->pid > 0) {
1731 		/* kill single process */
1732 		if ((p = pfind(uap->pid)) == NULL) {
1733 			if ((p = zpfind(uap->pid)) == NULL)
1734 				return (ESRCH);
1735 		}
1736 		AUDIT_ARG_PROCESS(p);
1737 		error = p_cansignal(td, p, uap->signum);
1738 		if (error == 0 && uap->signum)
1739 			pksignal(p, uap->signum, &ksi);
1740 		PROC_UNLOCK(p);
1741 		return (error);
1742 	}
1743 	switch (uap->pid) {
1744 	case -1:		/* broadcast signal */
1745 		return (killpg1(td, uap->signum, 0, 1, &ksi));
1746 	case 0:			/* signal own process group */
1747 		return (killpg1(td, uap->signum, 0, 0, &ksi));
1748 	default:		/* negative explicit process group */
1749 		return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1750 	}
1751 	/* NOTREACHED */
1752 }
1753 
1754 int
1755 sys_pdkill(td, uap)
1756 	struct thread *td;
1757 	struct pdkill_args *uap;
1758 {
1759 	struct proc *p;
1760 	cap_rights_t rights;
1761 	int error;
1762 
1763 	AUDIT_ARG_SIGNUM(uap->signum);
1764 	AUDIT_ARG_FD(uap->fd);
1765 	if ((u_int)uap->signum > _SIG_MAXSIG)
1766 		return (EINVAL);
1767 
1768 	error = procdesc_find(td, uap->fd,
1769 	    cap_rights_init(&rights, CAP_PDKILL), &p);
1770 	if (error)
1771 		return (error);
1772 	AUDIT_ARG_PROCESS(p);
1773 	error = p_cansignal(td, p, uap->signum);
1774 	if (error == 0 && uap->signum)
1775 		kern_psignal(p, uap->signum);
1776 	PROC_UNLOCK(p);
1777 	return (error);
1778 }
1779 
1780 #if defined(COMPAT_43)
1781 #ifndef _SYS_SYSPROTO_H_
1782 struct okillpg_args {
1783 	int	pgid;
1784 	int	signum;
1785 };
1786 #endif
1787 /* ARGSUSED */
1788 int
1789 okillpg(struct thread *td, struct okillpg_args *uap)
1790 {
1791 	ksiginfo_t ksi;
1792 
1793 	AUDIT_ARG_SIGNUM(uap->signum);
1794 	AUDIT_ARG_PID(uap->pgid);
1795 	if ((u_int)uap->signum > _SIG_MAXSIG)
1796 		return (EINVAL);
1797 
1798 	ksiginfo_init(&ksi);
1799 	ksi.ksi_signo = uap->signum;
1800 	ksi.ksi_code = SI_USER;
1801 	ksi.ksi_pid = td->td_proc->p_pid;
1802 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1803 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1804 }
1805 #endif /* COMPAT_43 */
1806 
1807 #ifndef _SYS_SYSPROTO_H_
1808 struct sigqueue_args {
1809 	pid_t pid;
1810 	int signum;
1811 	/* union sigval */ void *value;
1812 };
1813 #endif
1814 int
1815 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1816 {
1817 	ksiginfo_t ksi;
1818 	struct proc *p;
1819 	int error;
1820 
1821 	if ((u_int)uap->signum > _SIG_MAXSIG)
1822 		return (EINVAL);
1823 
1824 	/*
1825 	 * Specification says sigqueue can only send signal to
1826 	 * single process.
1827 	 */
1828 	if (uap->pid <= 0)
1829 		return (EINVAL);
1830 
1831 	if ((p = pfind(uap->pid)) == NULL) {
1832 		if ((p = zpfind(uap->pid)) == NULL)
1833 			return (ESRCH);
1834 	}
1835 	error = p_cansignal(td, p, uap->signum);
1836 	if (error == 0 && uap->signum != 0) {
1837 		ksiginfo_init(&ksi);
1838 		ksi.ksi_flags = KSI_SIGQ;
1839 		ksi.ksi_signo = uap->signum;
1840 		ksi.ksi_code = SI_QUEUE;
1841 		ksi.ksi_pid = td->td_proc->p_pid;
1842 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1843 		ksi.ksi_value.sival_ptr = uap->value;
1844 		error = pksignal(p, ksi.ksi_signo, &ksi);
1845 	}
1846 	PROC_UNLOCK(p);
1847 	return (error);
1848 }
1849 
1850 /*
1851  * Send a signal to a process group.
1852  */
1853 void
1854 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1855 {
1856 	struct pgrp *pgrp;
1857 
1858 	if (pgid != 0) {
1859 		sx_slock(&proctree_lock);
1860 		pgrp = pgfind(pgid);
1861 		sx_sunlock(&proctree_lock);
1862 		if (pgrp != NULL) {
1863 			pgsignal(pgrp, sig, 0, ksi);
1864 			PGRP_UNLOCK(pgrp);
1865 		}
1866 	}
1867 }
1868 
1869 /*
1870  * Send a signal to a process group.  If checktty is 1,
1871  * limit to members which have a controlling terminal.
1872  */
1873 void
1874 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1875 {
1876 	struct proc *p;
1877 
1878 	if (pgrp) {
1879 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1880 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1881 			PROC_LOCK(p);
1882 			if (p->p_state == PRS_NORMAL &&
1883 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1884 				pksignal(p, sig, ksi);
1885 			PROC_UNLOCK(p);
1886 		}
1887 	}
1888 }
1889 
1890 
1891 /*
1892  * Recalculate the signal mask and reset the signal disposition after
1893  * usermode frame for delivery is formed.  Should be called after
1894  * mach-specific routine, because sysent->sv_sendsig() needs correct
1895  * ps_siginfo and signal mask.
1896  */
1897 static void
1898 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1899 {
1900 	sigset_t mask;
1901 
1902 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1903 	td->td_ru.ru_nsignals++;
1904 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1905 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1906 		SIGADDSET(mask, sig);
1907 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1908 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1909 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1910 		sigdflt(ps, sig);
1911 }
1912 
1913 
1914 /*
1915  * Send a signal caused by a trap to the current thread.  If it will be
1916  * caught immediately, deliver it with correct code.  Otherwise, post it
1917  * normally.
1918  */
1919 void
1920 trapsignal(struct thread *td, ksiginfo_t *ksi)
1921 {
1922 	struct sigacts *ps;
1923 	struct proc *p;
1924 	int sig;
1925 	int code;
1926 
1927 	p = td->td_proc;
1928 	sig = ksi->ksi_signo;
1929 	code = ksi->ksi_code;
1930 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1931 
1932 	PROC_LOCK(p);
1933 	ps = p->p_sigacts;
1934 	mtx_lock(&ps->ps_mtx);
1935 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1936 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1937 #ifdef KTRACE
1938 		if (KTRPOINT(curthread, KTR_PSIG))
1939 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1940 			    &td->td_sigmask, code);
1941 #endif
1942 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1943 				ksi, &td->td_sigmask);
1944 		postsig_done(sig, td, ps);
1945 		mtx_unlock(&ps->ps_mtx);
1946 	} else {
1947 		/*
1948 		 * Avoid a possible infinite loop if the thread
1949 		 * masking the signal or process is ignoring the
1950 		 * signal.
1951 		 */
1952 		if (kern_forcesigexit &&
1953 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1954 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1955 			SIGDELSET(td->td_sigmask, sig);
1956 			SIGDELSET(ps->ps_sigcatch, sig);
1957 			SIGDELSET(ps->ps_sigignore, sig);
1958 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1959 		}
1960 		mtx_unlock(&ps->ps_mtx);
1961 		p->p_code = code;	/* XXX for core dump/debugger */
1962 		p->p_sig = sig;		/* XXX to verify code */
1963 		tdsendsignal(p, td, sig, ksi);
1964 	}
1965 	PROC_UNLOCK(p);
1966 }
1967 
1968 static struct thread *
1969 sigtd(struct proc *p, int sig, int prop)
1970 {
1971 	struct thread *td, *signal_td;
1972 
1973 	PROC_LOCK_ASSERT(p, MA_OWNED);
1974 
1975 	/*
1976 	 * Check if current thread can handle the signal without
1977 	 * switching context to another thread.
1978 	 */
1979 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1980 		return (curthread);
1981 	signal_td = NULL;
1982 	FOREACH_THREAD_IN_PROC(p, td) {
1983 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1984 			signal_td = td;
1985 			break;
1986 		}
1987 	}
1988 	if (signal_td == NULL)
1989 		signal_td = FIRST_THREAD_IN_PROC(p);
1990 	return (signal_td);
1991 }
1992 
1993 /*
1994  * Send the signal to the process.  If the signal has an action, the action
1995  * is usually performed by the target process rather than the caller; we add
1996  * the signal to the set of pending signals for the process.
1997  *
1998  * Exceptions:
1999  *   o When a stop signal is sent to a sleeping process that takes the
2000  *     default action, the process is stopped without awakening it.
2001  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2002  *     regardless of the signal action (eg, blocked or ignored).
2003  *
2004  * Other ignored signals are discarded immediately.
2005  *
2006  * NB: This function may be entered from the debugger via the "kill" DDB
2007  * command.  There is little that can be done to mitigate the possibly messy
2008  * side effects of this unwise possibility.
2009  */
2010 void
2011 kern_psignal(struct proc *p, int sig)
2012 {
2013 	ksiginfo_t ksi;
2014 
2015 	ksiginfo_init(&ksi);
2016 	ksi.ksi_signo = sig;
2017 	ksi.ksi_code = SI_KERNEL;
2018 	(void) tdsendsignal(p, NULL, sig, &ksi);
2019 }
2020 
2021 int
2022 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2023 {
2024 
2025 	return (tdsendsignal(p, NULL, sig, ksi));
2026 }
2027 
2028 /* Utility function for finding a thread to send signal event to. */
2029 int
2030 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2031 {
2032 	struct thread *td;
2033 
2034 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2035 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2036 		if (td == NULL)
2037 			return (ESRCH);
2038 		*ttd = td;
2039 	} else {
2040 		*ttd = NULL;
2041 		PROC_LOCK(p);
2042 	}
2043 	return (0);
2044 }
2045 
2046 void
2047 tdsignal(struct thread *td, int sig)
2048 {
2049 	ksiginfo_t ksi;
2050 
2051 	ksiginfo_init(&ksi);
2052 	ksi.ksi_signo = sig;
2053 	ksi.ksi_code = SI_KERNEL;
2054 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2055 }
2056 
2057 void
2058 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2059 {
2060 
2061 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2062 }
2063 
2064 int
2065 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2066 {
2067 	sig_t action;
2068 	sigqueue_t *sigqueue;
2069 	int prop;
2070 	struct sigacts *ps;
2071 	int intrval;
2072 	int ret = 0;
2073 	int wakeup_swapper;
2074 
2075 	MPASS(td == NULL || p == td->td_proc);
2076 	PROC_LOCK_ASSERT(p, MA_OWNED);
2077 
2078 	if (!_SIG_VALID(sig))
2079 		panic("%s(): invalid signal %d", __func__, sig);
2080 
2081 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2082 
2083 	/*
2084 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2085 	 */
2086 	if (p->p_state == PRS_ZOMBIE) {
2087 		if (ksi && (ksi->ksi_flags & KSI_INS))
2088 			ksiginfo_tryfree(ksi);
2089 		return (ret);
2090 	}
2091 
2092 	ps = p->p_sigacts;
2093 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2094 	prop = sigprop(sig);
2095 
2096 	if (td == NULL) {
2097 		td = sigtd(p, sig, prop);
2098 		sigqueue = &p->p_sigqueue;
2099 	} else
2100 		sigqueue = &td->td_sigqueue;
2101 
2102 	SDT_PROBE(proc, kernel, , signal__send, td, p, sig, 0, 0 );
2103 
2104 	/*
2105 	 * If the signal is being ignored,
2106 	 * then we forget about it immediately.
2107 	 * (Note: we don't set SIGCONT in ps_sigignore,
2108 	 * and if it is set to SIG_IGN,
2109 	 * action will be SIG_DFL here.)
2110 	 */
2111 	mtx_lock(&ps->ps_mtx);
2112 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2113 		SDT_PROBE(proc, kernel, , signal__discard, td, p, sig, 0, 0 );
2114 
2115 		mtx_unlock(&ps->ps_mtx);
2116 		if (ksi && (ksi->ksi_flags & KSI_INS))
2117 			ksiginfo_tryfree(ksi);
2118 		return (ret);
2119 	}
2120 	if (SIGISMEMBER(td->td_sigmask, sig))
2121 		action = SIG_HOLD;
2122 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2123 		action = SIG_CATCH;
2124 	else
2125 		action = SIG_DFL;
2126 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2127 		intrval = EINTR;
2128 	else
2129 		intrval = ERESTART;
2130 	mtx_unlock(&ps->ps_mtx);
2131 
2132 	if (prop & SA_CONT)
2133 		sigqueue_delete_stopmask_proc(p);
2134 	else if (prop & SA_STOP) {
2135 		/*
2136 		 * If sending a tty stop signal to a member of an orphaned
2137 		 * process group, discard the signal here if the action
2138 		 * is default; don't stop the process below if sleeping,
2139 		 * and don't clear any pending SIGCONT.
2140 		 */
2141 		if ((prop & SA_TTYSTOP) &&
2142 		    (p->p_pgrp->pg_jobc == 0) &&
2143 		    (action == SIG_DFL)) {
2144 			if (ksi && (ksi->ksi_flags & KSI_INS))
2145 				ksiginfo_tryfree(ksi);
2146 			return (ret);
2147 		}
2148 		sigqueue_delete_proc(p, SIGCONT);
2149 		if (p->p_flag & P_CONTINUED) {
2150 			p->p_flag &= ~P_CONTINUED;
2151 			PROC_LOCK(p->p_pptr);
2152 			sigqueue_take(p->p_ksi);
2153 			PROC_UNLOCK(p->p_pptr);
2154 		}
2155 	}
2156 
2157 	ret = sigqueue_add(sigqueue, sig, ksi);
2158 	if (ret != 0)
2159 		return (ret);
2160 	signotify(td);
2161 	/*
2162 	 * Defer further processing for signals which are held,
2163 	 * except that stopped processes must be continued by SIGCONT.
2164 	 */
2165 	if (action == SIG_HOLD &&
2166 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2167 		return (ret);
2168 	/*
2169 	 * SIGKILL: Remove procfs STOPEVENTs.
2170 	 */
2171 	if (sig == SIGKILL) {
2172 		/* from procfs_ioctl.c: PIOCBIC */
2173 		p->p_stops = 0;
2174 		/* from procfs_ioctl.c: PIOCCONT */
2175 		p->p_step = 0;
2176 		wakeup(&p->p_step);
2177 	}
2178 	/*
2179 	 * Some signals have a process-wide effect and a per-thread
2180 	 * component.  Most processing occurs when the process next
2181 	 * tries to cross the user boundary, however there are some
2182 	 * times when processing needs to be done immediately, such as
2183 	 * waking up threads so that they can cross the user boundary.
2184 	 * We try to do the per-process part here.
2185 	 */
2186 	if (P_SHOULDSTOP(p)) {
2187 		KASSERT(!(p->p_flag & P_WEXIT),
2188 		    ("signal to stopped but exiting process"));
2189 		if (sig == SIGKILL) {
2190 			/*
2191 			 * If traced process is already stopped,
2192 			 * then no further action is necessary.
2193 			 */
2194 			if (p->p_flag & P_TRACED)
2195 				goto out;
2196 			/*
2197 			 * SIGKILL sets process running.
2198 			 * It will die elsewhere.
2199 			 * All threads must be restarted.
2200 			 */
2201 			p->p_flag &= ~P_STOPPED_SIG;
2202 			goto runfast;
2203 		}
2204 
2205 		if (prop & SA_CONT) {
2206 			/*
2207 			 * If traced process is already stopped,
2208 			 * then no further action is necessary.
2209 			 */
2210 			if (p->p_flag & P_TRACED)
2211 				goto out;
2212 			/*
2213 			 * If SIGCONT is default (or ignored), we continue the
2214 			 * process but don't leave the signal in sigqueue as
2215 			 * it has no further action.  If SIGCONT is held, we
2216 			 * continue the process and leave the signal in
2217 			 * sigqueue.  If the process catches SIGCONT, let it
2218 			 * handle the signal itself.  If it isn't waiting on
2219 			 * an event, it goes back to run state.
2220 			 * Otherwise, process goes back to sleep state.
2221 			 */
2222 			p->p_flag &= ~P_STOPPED_SIG;
2223 			PROC_SLOCK(p);
2224 			if (p->p_numthreads == p->p_suspcount) {
2225 				PROC_SUNLOCK(p);
2226 				p->p_flag |= P_CONTINUED;
2227 				p->p_xstat = SIGCONT;
2228 				PROC_LOCK(p->p_pptr);
2229 				childproc_continued(p);
2230 				PROC_UNLOCK(p->p_pptr);
2231 				PROC_SLOCK(p);
2232 			}
2233 			if (action == SIG_DFL) {
2234 				thread_unsuspend(p);
2235 				PROC_SUNLOCK(p);
2236 				sigqueue_delete(sigqueue, sig);
2237 				goto out;
2238 			}
2239 			if (action == SIG_CATCH) {
2240 				/*
2241 				 * The process wants to catch it so it needs
2242 				 * to run at least one thread, but which one?
2243 				 */
2244 				PROC_SUNLOCK(p);
2245 				goto runfast;
2246 			}
2247 			/*
2248 			 * The signal is not ignored or caught.
2249 			 */
2250 			thread_unsuspend(p);
2251 			PROC_SUNLOCK(p);
2252 			goto out;
2253 		}
2254 
2255 		if (prop & SA_STOP) {
2256 			/*
2257 			 * If traced process is already stopped,
2258 			 * then no further action is necessary.
2259 			 */
2260 			if (p->p_flag & P_TRACED)
2261 				goto out;
2262 			/*
2263 			 * Already stopped, don't need to stop again
2264 			 * (If we did the shell could get confused).
2265 			 * Just make sure the signal STOP bit set.
2266 			 */
2267 			p->p_flag |= P_STOPPED_SIG;
2268 			sigqueue_delete(sigqueue, sig);
2269 			goto out;
2270 		}
2271 
2272 		/*
2273 		 * All other kinds of signals:
2274 		 * If a thread is sleeping interruptibly, simulate a
2275 		 * wakeup so that when it is continued it will be made
2276 		 * runnable and can look at the signal.  However, don't make
2277 		 * the PROCESS runnable, leave it stopped.
2278 		 * It may run a bit until it hits a thread_suspend_check().
2279 		 */
2280 		wakeup_swapper = 0;
2281 		PROC_SLOCK(p);
2282 		thread_lock(td);
2283 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2284 			wakeup_swapper = sleepq_abort(td, intrval);
2285 		thread_unlock(td);
2286 		PROC_SUNLOCK(p);
2287 		if (wakeup_swapper)
2288 			kick_proc0();
2289 		goto out;
2290 		/*
2291 		 * Mutexes are short lived. Threads waiting on them will
2292 		 * hit thread_suspend_check() soon.
2293 		 */
2294 	} else if (p->p_state == PRS_NORMAL) {
2295 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2296 			tdsigwakeup(td, sig, action, intrval);
2297 			goto out;
2298 		}
2299 
2300 		MPASS(action == SIG_DFL);
2301 
2302 		if (prop & SA_STOP) {
2303 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2304 				goto out;
2305 			p->p_flag |= P_STOPPED_SIG;
2306 			p->p_xstat = sig;
2307 			PROC_SLOCK(p);
2308 			sig_suspend_threads(td, p, 1);
2309 			if (p->p_numthreads == p->p_suspcount) {
2310 				/*
2311 				 * only thread sending signal to another
2312 				 * process can reach here, if thread is sending
2313 				 * signal to its process, because thread does
2314 				 * not suspend itself here, p_numthreads
2315 				 * should never be equal to p_suspcount.
2316 				 */
2317 				thread_stopped(p);
2318 				PROC_SUNLOCK(p);
2319 				sigqueue_delete_proc(p, p->p_xstat);
2320 			} else
2321 				PROC_SUNLOCK(p);
2322 			goto out;
2323 		}
2324 	} else {
2325 		/* Not in "NORMAL" state. discard the signal. */
2326 		sigqueue_delete(sigqueue, sig);
2327 		goto out;
2328 	}
2329 
2330 	/*
2331 	 * The process is not stopped so we need to apply the signal to all the
2332 	 * running threads.
2333 	 */
2334 runfast:
2335 	tdsigwakeup(td, sig, action, intrval);
2336 	PROC_SLOCK(p);
2337 	thread_unsuspend(p);
2338 	PROC_SUNLOCK(p);
2339 out:
2340 	/* If we jump here, proc slock should not be owned. */
2341 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2342 	return (ret);
2343 }
2344 
2345 /*
2346  * The force of a signal has been directed against a single
2347  * thread.  We need to see what we can do about knocking it
2348  * out of any sleep it may be in etc.
2349  */
2350 static void
2351 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2352 {
2353 	struct proc *p = td->td_proc;
2354 	register int prop;
2355 	int wakeup_swapper;
2356 
2357 	wakeup_swapper = 0;
2358 	PROC_LOCK_ASSERT(p, MA_OWNED);
2359 	prop = sigprop(sig);
2360 
2361 	PROC_SLOCK(p);
2362 	thread_lock(td);
2363 	/*
2364 	 * Bring the priority of a thread up if we want it to get
2365 	 * killed in this lifetime.
2366 	 */
2367 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2368 		sched_prio(td, PUSER);
2369 	if (TD_ON_SLEEPQ(td)) {
2370 		/*
2371 		 * If thread is sleeping uninterruptibly
2372 		 * we can't interrupt the sleep... the signal will
2373 		 * be noticed when the process returns through
2374 		 * trap() or syscall().
2375 		 */
2376 		if ((td->td_flags & TDF_SINTR) == 0)
2377 			goto out;
2378 		/*
2379 		 * If SIGCONT is default (or ignored) and process is
2380 		 * asleep, we are finished; the process should not
2381 		 * be awakened.
2382 		 */
2383 		if ((prop & SA_CONT) && action == SIG_DFL) {
2384 			thread_unlock(td);
2385 			PROC_SUNLOCK(p);
2386 			sigqueue_delete(&p->p_sigqueue, sig);
2387 			/*
2388 			 * It may be on either list in this state.
2389 			 * Remove from both for now.
2390 			 */
2391 			sigqueue_delete(&td->td_sigqueue, sig);
2392 			return;
2393 		}
2394 
2395 		/*
2396 		 * Don't awaken a sleeping thread for SIGSTOP if the
2397 		 * STOP signal is deferred.
2398 		 */
2399 		if ((prop & SA_STOP) && (td->td_flags & TDF_SBDRY))
2400 			goto out;
2401 
2402 		/*
2403 		 * Give low priority threads a better chance to run.
2404 		 */
2405 		if (td->td_priority > PUSER)
2406 			sched_prio(td, PUSER);
2407 
2408 		wakeup_swapper = sleepq_abort(td, intrval);
2409 	} else {
2410 		/*
2411 		 * Other states do nothing with the signal immediately,
2412 		 * other than kicking ourselves if we are running.
2413 		 * It will either never be noticed, or noticed very soon.
2414 		 */
2415 #ifdef SMP
2416 		if (TD_IS_RUNNING(td) && td != curthread)
2417 			forward_signal(td);
2418 #endif
2419 	}
2420 out:
2421 	PROC_SUNLOCK(p);
2422 	thread_unlock(td);
2423 	if (wakeup_swapper)
2424 		kick_proc0();
2425 }
2426 
2427 static void
2428 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2429 {
2430 	struct thread *td2;
2431 
2432 	PROC_LOCK_ASSERT(p, MA_OWNED);
2433 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2434 
2435 	FOREACH_THREAD_IN_PROC(p, td2) {
2436 		thread_lock(td2);
2437 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2438 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2439 		    (td2->td_flags & TDF_SINTR)) {
2440 			if (td2->td_flags & TDF_SBDRY) {
2441 				/*
2442 				 * Once a thread is asleep with
2443 				 * TDF_SBDRY set, it should never
2444 				 * become suspended due to this check.
2445 				 */
2446 				KASSERT(!TD_IS_SUSPENDED(td2),
2447 				    ("thread with deferred stops suspended"));
2448 			} else if (!TD_IS_SUSPENDED(td2)) {
2449 				thread_suspend_one(td2);
2450 			}
2451 		} else if (!TD_IS_SUSPENDED(td2)) {
2452 			if (sending || td != td2)
2453 				td2->td_flags |= TDF_ASTPENDING;
2454 #ifdef SMP
2455 			if (TD_IS_RUNNING(td2) && td2 != td)
2456 				forward_signal(td2);
2457 #endif
2458 		}
2459 		thread_unlock(td2);
2460 	}
2461 }
2462 
2463 int
2464 ptracestop(struct thread *td, int sig)
2465 {
2466 	struct proc *p = td->td_proc;
2467 
2468 	PROC_LOCK_ASSERT(p, MA_OWNED);
2469 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2470 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2471 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2472 
2473 	td->td_dbgflags |= TDB_XSIG;
2474 	td->td_xsig = sig;
2475 	PROC_SLOCK(p);
2476 	while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2477 		if (p->p_flag & P_SINGLE_EXIT) {
2478 			td->td_dbgflags &= ~TDB_XSIG;
2479 			PROC_SUNLOCK(p);
2480 			return (sig);
2481 		}
2482 		/*
2483 		 * Just make wait() to work, the last stopped thread
2484 		 * will win.
2485 		 */
2486 		p->p_xstat = sig;
2487 		p->p_xthread = td;
2488 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2489 		sig_suspend_threads(td, p, 0);
2490 		if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2491 			td->td_dbgflags &= ~TDB_STOPATFORK;
2492 			cv_broadcast(&p->p_dbgwait);
2493 		}
2494 stopme:
2495 		thread_suspend_switch(td, p);
2496 		if (p->p_xthread == td)
2497 			p->p_xthread = NULL;
2498 		if (!(p->p_flag & P_TRACED))
2499 			break;
2500 		if (td->td_dbgflags & TDB_SUSPEND) {
2501 			if (p->p_flag & P_SINGLE_EXIT)
2502 				break;
2503 			goto stopme;
2504 		}
2505 	}
2506 	PROC_SUNLOCK(p);
2507 	return (td->td_xsig);
2508 }
2509 
2510 static void
2511 reschedule_signals(struct proc *p, sigset_t block, int flags)
2512 {
2513 	struct sigacts *ps;
2514 	struct thread *td;
2515 	int sig;
2516 
2517 	PROC_LOCK_ASSERT(p, MA_OWNED);
2518 	ps = p->p_sigacts;
2519 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2520 	    MA_OWNED : MA_NOTOWNED);
2521 	if (SIGISEMPTY(p->p_siglist))
2522 		return;
2523 	SIGSETAND(block, p->p_siglist);
2524 	while ((sig = sig_ffs(&block)) != 0) {
2525 		SIGDELSET(block, sig);
2526 		td = sigtd(p, sig, 0);
2527 		signotify(td);
2528 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2529 			mtx_lock(&ps->ps_mtx);
2530 		if (p->p_flag & P_TRACED || SIGISMEMBER(ps->ps_sigcatch, sig))
2531 			tdsigwakeup(td, sig, SIG_CATCH,
2532 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2533 			     ERESTART));
2534 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2535 			mtx_unlock(&ps->ps_mtx);
2536 	}
2537 }
2538 
2539 void
2540 tdsigcleanup(struct thread *td)
2541 {
2542 	struct proc *p;
2543 	sigset_t unblocked;
2544 
2545 	p = td->td_proc;
2546 	PROC_LOCK_ASSERT(p, MA_OWNED);
2547 
2548 	sigqueue_flush(&td->td_sigqueue);
2549 	if (p->p_numthreads == 1)
2550 		return;
2551 
2552 	/*
2553 	 * Since we cannot handle signals, notify signal post code
2554 	 * about this by filling the sigmask.
2555 	 *
2556 	 * Also, if needed, wake up thread(s) that do not block the
2557 	 * same signals as the exiting thread, since the thread might
2558 	 * have been selected for delivery and woken up.
2559 	 */
2560 	SIGFILLSET(unblocked);
2561 	SIGSETNAND(unblocked, td->td_sigmask);
2562 	SIGFILLSET(td->td_sigmask);
2563 	reschedule_signals(p, unblocked, 0);
2564 
2565 }
2566 
2567 /*
2568  * Defer the delivery of SIGSTOP for the current thread.  Returns true
2569  * if stops were deferred and false if they were already deferred.
2570  */
2571 int
2572 sigdeferstop(void)
2573 {
2574 	struct thread *td;
2575 
2576 	td = curthread;
2577 	if (td->td_flags & TDF_SBDRY)
2578 		return (0);
2579 	thread_lock(td);
2580 	td->td_flags |= TDF_SBDRY;
2581 	thread_unlock(td);
2582 	return (1);
2583 }
2584 
2585 /*
2586  * Permit the delivery of SIGSTOP for the current thread.  This does
2587  * not immediately suspend if a stop was posted.  Instead, the thread
2588  * will suspend either via ast() or a subsequent interruptible sleep.
2589  */
2590 int
2591 sigallowstop(void)
2592 {
2593 	struct thread *td;
2594 	int prev;
2595 
2596 	td = curthread;
2597 	thread_lock(td);
2598 	prev = (td->td_flags & TDF_SBDRY) != 0;
2599 	td->td_flags &= ~TDF_SBDRY;
2600 	thread_unlock(td);
2601 	return (prev);
2602 }
2603 
2604 /*
2605  * If the current process has received a signal (should be caught or cause
2606  * termination, should interrupt current syscall), return the signal number.
2607  * Stop signals with default action are processed immediately, then cleared;
2608  * they aren't returned.  This is checked after each entry to the system for
2609  * a syscall or trap (though this can usually be done without calling issignal
2610  * by checking the pending signal masks in cursig.) The normal call
2611  * sequence is
2612  *
2613  *	while (sig = cursig(curthread))
2614  *		postsig(sig);
2615  */
2616 static int
2617 issignal(struct thread *td)
2618 {
2619 	struct proc *p;
2620 	struct sigacts *ps;
2621 	struct sigqueue *queue;
2622 	sigset_t sigpending;
2623 	int sig, prop, newsig;
2624 
2625 	p = td->td_proc;
2626 	ps = p->p_sigacts;
2627 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2628 	PROC_LOCK_ASSERT(p, MA_OWNED);
2629 	for (;;) {
2630 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2631 
2632 		sigpending = td->td_sigqueue.sq_signals;
2633 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2634 		SIGSETNAND(sigpending, td->td_sigmask);
2635 
2636 		if (p->p_flag & P_PPWAIT || td->td_flags & TDF_SBDRY)
2637 			SIG_STOPSIGMASK(sigpending);
2638 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2639 			return (0);
2640 		sig = sig_ffs(&sigpending);
2641 
2642 		if (p->p_stops & S_SIG) {
2643 			mtx_unlock(&ps->ps_mtx);
2644 			stopevent(p, S_SIG, sig);
2645 			mtx_lock(&ps->ps_mtx);
2646 		}
2647 
2648 		/*
2649 		 * We should see pending but ignored signals
2650 		 * only if P_TRACED was on when they were posted.
2651 		 */
2652 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2653 			sigqueue_delete(&td->td_sigqueue, sig);
2654 			sigqueue_delete(&p->p_sigqueue, sig);
2655 			continue;
2656 		}
2657 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPTRACE) == 0) {
2658 			/*
2659 			 * If traced, always stop.
2660 			 * Remove old signal from queue before the stop.
2661 			 * XXX shrug off debugger, it causes siginfo to
2662 			 * be thrown away.
2663 			 */
2664 			queue = &td->td_sigqueue;
2665 			td->td_dbgksi.ksi_signo = 0;
2666 			if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2667 				queue = &p->p_sigqueue;
2668 				sigqueue_get(queue, sig, &td->td_dbgksi);
2669 			}
2670 
2671 			mtx_unlock(&ps->ps_mtx);
2672 			newsig = ptracestop(td, sig);
2673 			mtx_lock(&ps->ps_mtx);
2674 
2675 			if (sig != newsig) {
2676 
2677 				/*
2678 				 * If parent wants us to take the signal,
2679 				 * then it will leave it in p->p_xstat;
2680 				 * otherwise we just look for signals again.
2681 				*/
2682 				if (newsig == 0)
2683 					continue;
2684 				sig = newsig;
2685 
2686 				/*
2687 				 * Put the new signal into td_sigqueue. If the
2688 				 * signal is being masked, look for other
2689 				 * signals.
2690 				 */
2691 				sigqueue_add(queue, sig, NULL);
2692 				if (SIGISMEMBER(td->td_sigmask, sig))
2693 					continue;
2694 				signotify(td);
2695 			} else {
2696 				if (td->td_dbgksi.ksi_signo != 0) {
2697 					td->td_dbgksi.ksi_flags |= KSI_HEAD;
2698 					if (sigqueue_add(&td->td_sigqueue, sig,
2699 					    &td->td_dbgksi) != 0)
2700 						td->td_dbgksi.ksi_signo = 0;
2701 				}
2702 				if (td->td_dbgksi.ksi_signo == 0)
2703 					sigqueue_add(&td->td_sigqueue, sig,
2704 					    NULL);
2705 			}
2706 
2707 			/*
2708 			 * If the traced bit got turned off, go back up
2709 			 * to the top to rescan signals.  This ensures
2710 			 * that p_sig* and p_sigact are consistent.
2711 			 */
2712 			if ((p->p_flag & P_TRACED) == 0)
2713 				continue;
2714 		}
2715 
2716 		prop = sigprop(sig);
2717 
2718 		/*
2719 		 * Decide whether the signal should be returned.
2720 		 * Return the signal's number, or fall through
2721 		 * to clear it from the pending mask.
2722 		 */
2723 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2724 
2725 		case (intptr_t)SIG_DFL:
2726 			/*
2727 			 * Don't take default actions on system processes.
2728 			 */
2729 			if (p->p_pid <= 1) {
2730 #ifdef DIAGNOSTIC
2731 				/*
2732 				 * Are you sure you want to ignore SIGSEGV
2733 				 * in init? XXX
2734 				 */
2735 				printf("Process (pid %lu) got signal %d\n",
2736 					(u_long)p->p_pid, sig);
2737 #endif
2738 				break;		/* == ignore */
2739 			}
2740 			/*
2741 			 * If there is a pending stop signal to process
2742 			 * with default action, stop here,
2743 			 * then clear the signal.  However,
2744 			 * if process is member of an orphaned
2745 			 * process group, ignore tty stop signals.
2746 			 */
2747 			if (prop & SA_STOP) {
2748 				if (p->p_flag & (P_TRACED|P_WEXIT) ||
2749 				    (p->p_pgrp->pg_jobc == 0 &&
2750 				     prop & SA_TTYSTOP))
2751 					break;	/* == ignore */
2752 				mtx_unlock(&ps->ps_mtx);
2753 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2754 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2755 				p->p_flag |= P_STOPPED_SIG;
2756 				p->p_xstat = sig;
2757 				PROC_SLOCK(p);
2758 				sig_suspend_threads(td, p, 0);
2759 				thread_suspend_switch(td, p);
2760 				PROC_SUNLOCK(p);
2761 				mtx_lock(&ps->ps_mtx);
2762 				break;
2763 			} else if (prop & SA_IGNORE) {
2764 				/*
2765 				 * Except for SIGCONT, shouldn't get here.
2766 				 * Default action is to ignore; drop it.
2767 				 */
2768 				break;		/* == ignore */
2769 			} else
2770 				return (sig);
2771 			/*NOTREACHED*/
2772 
2773 		case (intptr_t)SIG_IGN:
2774 			/*
2775 			 * Masking above should prevent us ever trying
2776 			 * to take action on an ignored signal other
2777 			 * than SIGCONT, unless process is traced.
2778 			 */
2779 			if ((prop & SA_CONT) == 0 &&
2780 			    (p->p_flag & P_TRACED) == 0)
2781 				printf("issignal\n");
2782 			break;		/* == ignore */
2783 
2784 		default:
2785 			/*
2786 			 * This signal has an action, let
2787 			 * postsig() process it.
2788 			 */
2789 			return (sig);
2790 		}
2791 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
2792 		sigqueue_delete(&p->p_sigqueue, sig);
2793 	}
2794 	/* NOTREACHED */
2795 }
2796 
2797 void
2798 thread_stopped(struct proc *p)
2799 {
2800 	int n;
2801 
2802 	PROC_LOCK_ASSERT(p, MA_OWNED);
2803 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2804 	n = p->p_suspcount;
2805 	if (p == curproc)
2806 		n++;
2807 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2808 		PROC_SUNLOCK(p);
2809 		p->p_flag &= ~P_WAITED;
2810 		PROC_LOCK(p->p_pptr);
2811 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2812 			CLD_TRAPPED : CLD_STOPPED);
2813 		PROC_UNLOCK(p->p_pptr);
2814 		PROC_SLOCK(p);
2815 	}
2816 }
2817 
2818 /*
2819  * Take the action for the specified signal
2820  * from the current set of pending signals.
2821  */
2822 int
2823 postsig(sig)
2824 	register int sig;
2825 {
2826 	struct thread *td = curthread;
2827 	register struct proc *p = td->td_proc;
2828 	struct sigacts *ps;
2829 	sig_t action;
2830 	ksiginfo_t ksi;
2831 	sigset_t returnmask;
2832 
2833 	KASSERT(sig != 0, ("postsig"));
2834 
2835 	PROC_LOCK_ASSERT(p, MA_OWNED);
2836 	ps = p->p_sigacts;
2837 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2838 	ksiginfo_init(&ksi);
2839 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2840 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2841 		return (0);
2842 	ksi.ksi_signo = sig;
2843 	if (ksi.ksi_code == SI_TIMER)
2844 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2845 	action = ps->ps_sigact[_SIG_IDX(sig)];
2846 #ifdef KTRACE
2847 	if (KTRPOINT(td, KTR_PSIG))
2848 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2849 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
2850 #endif
2851 	if (p->p_stops & S_SIG) {
2852 		mtx_unlock(&ps->ps_mtx);
2853 		stopevent(p, S_SIG, sig);
2854 		mtx_lock(&ps->ps_mtx);
2855 	}
2856 
2857 	if (action == SIG_DFL) {
2858 		/*
2859 		 * Default action, where the default is to kill
2860 		 * the process.  (Other cases were ignored above.)
2861 		 */
2862 		mtx_unlock(&ps->ps_mtx);
2863 		sigexit(td, sig);
2864 		/* NOTREACHED */
2865 	} else {
2866 		/*
2867 		 * If we get here, the signal must be caught.
2868 		 */
2869 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2870 		    ("postsig action"));
2871 		/*
2872 		 * Set the new mask value and also defer further
2873 		 * occurrences of this signal.
2874 		 *
2875 		 * Special case: user has done a sigsuspend.  Here the
2876 		 * current mask is not of interest, but rather the
2877 		 * mask from before the sigsuspend is what we want
2878 		 * restored after the signal processing is completed.
2879 		 */
2880 		if (td->td_pflags & TDP_OLDMASK) {
2881 			returnmask = td->td_oldsigmask;
2882 			td->td_pflags &= ~TDP_OLDMASK;
2883 		} else
2884 			returnmask = td->td_sigmask;
2885 
2886 		if (p->p_sig == sig) {
2887 			p->p_code = 0;
2888 			p->p_sig = 0;
2889 		}
2890 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2891 		postsig_done(sig, td, ps);
2892 	}
2893 	return (1);
2894 }
2895 
2896 /*
2897  * Kill the current process for stated reason.
2898  */
2899 void
2900 killproc(p, why)
2901 	struct proc *p;
2902 	char *why;
2903 {
2904 
2905 	PROC_LOCK_ASSERT(p, MA_OWNED);
2906 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
2907 	    p->p_comm);
2908 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
2909 	    p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2910 	p->p_flag |= P_WKILLED;
2911 	kern_psignal(p, SIGKILL);
2912 }
2913 
2914 /*
2915  * Force the current process to exit with the specified signal, dumping core
2916  * if appropriate.  We bypass the normal tests for masked and caught signals,
2917  * allowing unrecoverable failures to terminate the process without changing
2918  * signal state.  Mark the accounting record with the signal termination.
2919  * If dumping core, save the signal number for the debugger.  Calls exit and
2920  * does not return.
2921  */
2922 void
2923 sigexit(td, sig)
2924 	struct thread *td;
2925 	int sig;
2926 {
2927 	struct proc *p = td->td_proc;
2928 
2929 	PROC_LOCK_ASSERT(p, MA_OWNED);
2930 	p->p_acflag |= AXSIG;
2931 	/*
2932 	 * We must be single-threading to generate a core dump.  This
2933 	 * ensures that the registers in the core file are up-to-date.
2934 	 * Also, the ELF dump handler assumes that the thread list doesn't
2935 	 * change out from under it.
2936 	 *
2937 	 * XXX If another thread attempts to single-thread before us
2938 	 *     (e.g. via fork()), we won't get a dump at all.
2939 	 */
2940 	if ((sigprop(sig) & SA_CORE) && thread_single(p, SINGLE_NO_EXIT) == 0) {
2941 		p->p_sig = sig;
2942 		/*
2943 		 * Log signals which would cause core dumps
2944 		 * (Log as LOG_INFO to appease those who don't want
2945 		 * these messages.)
2946 		 * XXX : Todo, as well as euid, write out ruid too
2947 		 * Note that coredump() drops proc lock.
2948 		 */
2949 		if (coredump(td) == 0)
2950 			sig |= WCOREFLAG;
2951 		if (kern_logsigexit)
2952 			log(LOG_INFO,
2953 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2954 			    p->p_pid, p->p_comm,
2955 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2956 			    sig &~ WCOREFLAG,
2957 			    sig & WCOREFLAG ? " (core dumped)" : "");
2958 	} else
2959 		PROC_UNLOCK(p);
2960 	exit1(td, W_EXITCODE(0, sig));
2961 	/* NOTREACHED */
2962 }
2963 
2964 /*
2965  * Send queued SIGCHLD to parent when child process's state
2966  * is changed.
2967  */
2968 static void
2969 sigparent(struct proc *p, int reason, int status)
2970 {
2971 	PROC_LOCK_ASSERT(p, MA_OWNED);
2972 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2973 
2974 	if (p->p_ksi != NULL) {
2975 		p->p_ksi->ksi_signo  = SIGCHLD;
2976 		p->p_ksi->ksi_code   = reason;
2977 		p->p_ksi->ksi_status = status;
2978 		p->p_ksi->ksi_pid    = p->p_pid;
2979 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2980 		if (KSI_ONQ(p->p_ksi))
2981 			return;
2982 	}
2983 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
2984 }
2985 
2986 static void
2987 childproc_jobstate(struct proc *p, int reason, int sig)
2988 {
2989 	struct sigacts *ps;
2990 
2991 	PROC_LOCK_ASSERT(p, MA_OWNED);
2992 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2993 
2994 	/*
2995 	 * Wake up parent sleeping in kern_wait(), also send
2996 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2997 	 * that parent will awake, because parent may masked
2998 	 * the signal.
2999 	 */
3000 	p->p_pptr->p_flag |= P_STATCHILD;
3001 	wakeup(p->p_pptr);
3002 
3003 	ps = p->p_pptr->p_sigacts;
3004 	mtx_lock(&ps->ps_mtx);
3005 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3006 		mtx_unlock(&ps->ps_mtx);
3007 		sigparent(p, reason, sig);
3008 	} else
3009 		mtx_unlock(&ps->ps_mtx);
3010 }
3011 
3012 void
3013 childproc_stopped(struct proc *p, int reason)
3014 {
3015 	/* p_xstat is a plain signal number, not a full wait() status here. */
3016 	childproc_jobstate(p, reason, p->p_xstat);
3017 }
3018 
3019 void
3020 childproc_continued(struct proc *p)
3021 {
3022 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3023 }
3024 
3025 void
3026 childproc_exited(struct proc *p)
3027 {
3028 	int reason;
3029 	int xstat = p->p_xstat; /* convert to int */
3030 	int status;
3031 
3032 	if (WCOREDUMP(xstat))
3033 		reason = CLD_DUMPED, status = WTERMSIG(xstat);
3034 	else if (WIFSIGNALED(xstat))
3035 		reason = CLD_KILLED, status = WTERMSIG(xstat);
3036 	else
3037 		reason = CLD_EXITED, status = WEXITSTATUS(xstat);
3038 	/*
3039 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3040 	 * done in exit1().
3041 	 */
3042 	sigparent(p, reason, status);
3043 }
3044 
3045 /*
3046  * We only have 1 character for the core count in the format
3047  * string, so the range will be 0-9
3048  */
3049 #define MAX_NUM_CORES 10
3050 static int num_cores = 5;
3051 
3052 static int
3053 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3054 {
3055 	int error;
3056 	int new_val;
3057 
3058 	new_val = num_cores;
3059 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3060 	if (error != 0 || req->newptr == NULL)
3061 		return (error);
3062 	if (new_val > MAX_NUM_CORES)
3063 		new_val = MAX_NUM_CORES;
3064 	if (new_val < 0)
3065 		new_val = 0;
3066 	num_cores = new_val;
3067 	return (0);
3068 }
3069 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3070 	    0, sizeof(int), sysctl_debug_num_cores_check, "I", "");
3071 
3072 #if defined(COMPRESS_USER_CORES)
3073 int compress_user_cores = 1;
3074 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RW,
3075     &compress_user_cores, 0, "Compression of user corefiles");
3076 
3077 int compress_user_cores_gzlevel = -1; /* default level */
3078 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RW,
3079     &compress_user_cores_gzlevel, -1, "Corefile gzip compression level");
3080 
3081 #define GZ_SUFFIX	".gz"
3082 #define GZ_SUFFIX_LEN	3
3083 #endif
3084 
3085 static char corefilename[MAXPATHLEN] = {"%N.core"};
3086 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RWTUN, corefilename,
3087     sizeof(corefilename), "Process corefile name format string");
3088 
3089 /*
3090  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3091  * Expand the name described in corefilename, using name, uid, and pid
3092  * and open/create core file.
3093  * corefilename is a printf-like string, with three format specifiers:
3094  *	%N	name of process ("name")
3095  *	%P	process id (pid)
3096  *	%U	user id (uid)
3097  * For example, "%N.core" is the default; they can be disabled completely
3098  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3099  * This is controlled by the sysctl variable kern.corefile (see above).
3100  */
3101 static int
3102 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3103     int compress, struct vnode **vpp, char **namep)
3104 {
3105 	struct nameidata nd;
3106 	struct sbuf sb;
3107 	const char *format;
3108 	char *hostname, *name;
3109 	int indexpos, i, error, cmode, flags, oflags;
3110 
3111 	hostname = NULL;
3112 	format = corefilename;
3113 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3114 	indexpos = -1;
3115 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3116 	for (i = 0; format[i] != '\0'; i++) {
3117 		switch (format[i]) {
3118 		case '%':	/* Format character */
3119 			i++;
3120 			switch (format[i]) {
3121 			case '%':
3122 				sbuf_putc(&sb, '%');
3123 				break;
3124 			case 'H':	/* hostname */
3125 				if (hostname == NULL) {
3126 					hostname = malloc(MAXHOSTNAMELEN,
3127 					    M_TEMP, M_WAITOK);
3128 				}
3129 				getcredhostname(td->td_ucred, hostname,
3130 				    MAXHOSTNAMELEN);
3131 				sbuf_printf(&sb, "%s", hostname);
3132 				break;
3133 			case 'I':	/* autoincrementing index */
3134 				sbuf_printf(&sb, "0");
3135 				indexpos = sbuf_len(&sb) - 1;
3136 				break;
3137 			case 'N':	/* process name */
3138 				sbuf_printf(&sb, "%s", comm);
3139 				break;
3140 			case 'P':	/* process id */
3141 				sbuf_printf(&sb, "%u", pid);
3142 				break;
3143 			case 'U':	/* user id */
3144 				sbuf_printf(&sb, "%u", uid);
3145 				break;
3146 			default:
3147 				log(LOG_ERR,
3148 				    "Unknown format character %c in "
3149 				    "corename `%s'\n", format[i], format);
3150 				break;
3151 			}
3152 			break;
3153 		default:
3154 			sbuf_putc(&sb, format[i]);
3155 			break;
3156 		}
3157 	}
3158 	free(hostname, M_TEMP);
3159 #ifdef COMPRESS_USER_CORES
3160 	if (compress)
3161 		sbuf_printf(&sb, GZ_SUFFIX);
3162 #endif
3163 	if (sbuf_error(&sb) != 0) {
3164 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3165 		    "long\n", (long)pid, comm, (u_long)uid);
3166 		sbuf_delete(&sb);
3167 		free(name, M_TEMP);
3168 		return (ENOMEM);
3169 	}
3170 	sbuf_finish(&sb);
3171 	sbuf_delete(&sb);
3172 
3173 	cmode = S_IRUSR | S_IWUSR;
3174 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3175 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3176 
3177 	/*
3178 	 * If the core format has a %I in it, then we need to check
3179 	 * for existing corefiles before returning a name.
3180 	 * To do this we iterate over 0..num_cores to find a
3181 	 * non-existing core file name to use.
3182 	 */
3183 	if (indexpos != -1) {
3184 		for (i = 0; i < num_cores; i++) {
3185 			flags = O_CREAT | O_EXCL | FWRITE | O_NOFOLLOW;
3186 			name[indexpos] = '0' + i;
3187 			NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3188 			error = vn_open_cred(&nd, &flags, cmode, oflags,
3189 			    td->td_ucred, NULL);
3190 			if (error) {
3191 				if (error == EEXIST)
3192 					continue;
3193 				log(LOG_ERR,
3194 				    "pid %d (%s), uid (%u):  Path `%s' failed "
3195 				    "on initial open test, error = %d\n",
3196 				    pid, comm, uid, name, error);
3197 			}
3198 			goto out;
3199 		}
3200 	}
3201 
3202 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3203 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3204 	error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL);
3205 out:
3206 	if (error) {
3207 #ifdef AUDIT
3208 		audit_proc_coredump(td, name, error);
3209 #endif
3210 		free(name, M_TEMP);
3211 		return (error);
3212 	}
3213 	NDFREE(&nd, NDF_ONLY_PNBUF);
3214 	*vpp = nd.ni_vp;
3215 	*namep = name;
3216 	return (0);
3217 }
3218 
3219 /*
3220  * Dump a process' core.  The main routine does some
3221  * policy checking, and creates the name of the coredump;
3222  * then it passes on a vnode and a size limit to the process-specific
3223  * coredump routine if there is one; if there _is not_ one, it returns
3224  * ENOSYS; otherwise it returns the error from the process-specific routine.
3225  */
3226 
3227 static int
3228 coredump(struct thread *td)
3229 {
3230 	struct proc *p = td->td_proc;
3231 	struct ucred *cred = td->td_ucred;
3232 	struct vnode *vp;
3233 	struct flock lf;
3234 	struct vattr vattr;
3235 	int error, error1, locked;
3236 	char *name;			/* name of corefile */
3237 	void *rl_cookie;
3238 	off_t limit;
3239 	int compress;
3240 
3241 #ifdef COMPRESS_USER_CORES
3242 	compress = compress_user_cores;
3243 #else
3244 	compress = 0;
3245 #endif
3246 	PROC_LOCK_ASSERT(p, MA_OWNED);
3247 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3248 	_STOPEVENT(p, S_CORE, 0);
3249 
3250 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3251 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3252 		PROC_UNLOCK(p);
3253 		return (EFAULT);
3254 	}
3255 
3256 	/*
3257 	 * Note that the bulk of limit checking is done after
3258 	 * the corefile is created.  The exception is if the limit
3259 	 * for corefiles is 0, in which case we don't bother
3260 	 * creating the corefile at all.  This layout means that
3261 	 * a corefile is truncated instead of not being created,
3262 	 * if it is larger than the limit.
3263 	 */
3264 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3265 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3266 		PROC_UNLOCK(p);
3267 		return (EFBIG);
3268 	}
3269 	PROC_UNLOCK(p);
3270 
3271 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td, compress,
3272 	    &vp, &name);
3273 	if (error != 0)
3274 		return (error);
3275 
3276 	/*
3277 	 * Don't dump to non-regular files or files with links.
3278 	 * Do not dump into system files.
3279 	 */
3280 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3281 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0) {
3282 		VOP_UNLOCK(vp, 0);
3283 		error = EFAULT;
3284 		goto close;
3285 	}
3286 
3287 	VOP_UNLOCK(vp, 0);
3288 
3289 	/* Postpone other writers, including core dumps of other processes. */
3290 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3291 
3292 	lf.l_whence = SEEK_SET;
3293 	lf.l_start = 0;
3294 	lf.l_len = 0;
3295 	lf.l_type = F_WRLCK;
3296 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3297 
3298 	VATTR_NULL(&vattr);
3299 	vattr.va_size = 0;
3300 	if (set_core_nodump_flag)
3301 		vattr.va_flags = UF_NODUMP;
3302 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3303 	VOP_SETATTR(vp, &vattr, cred);
3304 	VOP_UNLOCK(vp, 0);
3305 	PROC_LOCK(p);
3306 	p->p_acflag |= ACORE;
3307 	PROC_UNLOCK(p);
3308 
3309 	if (p->p_sysent->sv_coredump != NULL) {
3310 		error = p->p_sysent->sv_coredump(td, vp, limit,
3311 		    compress ? IMGACT_CORE_COMPRESS : 0);
3312 	} else {
3313 		error = ENOSYS;
3314 	}
3315 
3316 	if (locked) {
3317 		lf.l_type = F_UNLCK;
3318 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3319 	}
3320 	vn_rangelock_unlock(vp, rl_cookie);
3321 close:
3322 	error1 = vn_close(vp, FWRITE, cred, td);
3323 	if (error == 0)
3324 		error = error1;
3325 #ifdef AUDIT
3326 	audit_proc_coredump(td, name, error);
3327 #endif
3328 	free(name, M_TEMP);
3329 	return (error);
3330 }
3331 
3332 /*
3333  * Nonexistent system call-- signal process (may want to handle it).  Flag
3334  * error in case process won't see signal immediately (blocked or ignored).
3335  */
3336 #ifndef _SYS_SYSPROTO_H_
3337 struct nosys_args {
3338 	int	dummy;
3339 };
3340 #endif
3341 /* ARGSUSED */
3342 int
3343 nosys(td, args)
3344 	struct thread *td;
3345 	struct nosys_args *args;
3346 {
3347 	struct proc *p = td->td_proc;
3348 
3349 	PROC_LOCK(p);
3350 	tdsignal(td, SIGSYS);
3351 	PROC_UNLOCK(p);
3352 	return (ENOSYS);
3353 }
3354 
3355 /*
3356  * Send a SIGIO or SIGURG signal to a process or process group using stored
3357  * credentials rather than those of the current process.
3358  */
3359 void
3360 pgsigio(sigiop, sig, checkctty)
3361 	struct sigio **sigiop;
3362 	int sig, checkctty;
3363 {
3364 	ksiginfo_t ksi;
3365 	struct sigio *sigio;
3366 
3367 	ksiginfo_init(&ksi);
3368 	ksi.ksi_signo = sig;
3369 	ksi.ksi_code = SI_KERNEL;
3370 
3371 	SIGIO_LOCK();
3372 	sigio = *sigiop;
3373 	if (sigio == NULL) {
3374 		SIGIO_UNLOCK();
3375 		return;
3376 	}
3377 	if (sigio->sio_pgid > 0) {
3378 		PROC_LOCK(sigio->sio_proc);
3379 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3380 			kern_psignal(sigio->sio_proc, sig);
3381 		PROC_UNLOCK(sigio->sio_proc);
3382 	} else if (sigio->sio_pgid < 0) {
3383 		struct proc *p;
3384 
3385 		PGRP_LOCK(sigio->sio_pgrp);
3386 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3387 			PROC_LOCK(p);
3388 			if (p->p_state == PRS_NORMAL &&
3389 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3390 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3391 				kern_psignal(p, sig);
3392 			PROC_UNLOCK(p);
3393 		}
3394 		PGRP_UNLOCK(sigio->sio_pgrp);
3395 	}
3396 	SIGIO_UNLOCK();
3397 }
3398 
3399 static int
3400 filt_sigattach(struct knote *kn)
3401 {
3402 	struct proc *p = curproc;
3403 
3404 	kn->kn_ptr.p_proc = p;
3405 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3406 
3407 	knlist_add(&p->p_klist, kn, 0);
3408 
3409 	return (0);
3410 }
3411 
3412 static void
3413 filt_sigdetach(struct knote *kn)
3414 {
3415 	struct proc *p = kn->kn_ptr.p_proc;
3416 
3417 	knlist_remove(&p->p_klist, kn, 0);
3418 }
3419 
3420 /*
3421  * signal knotes are shared with proc knotes, so we apply a mask to
3422  * the hint in order to differentiate them from process hints.  This
3423  * could be avoided by using a signal-specific knote list, but probably
3424  * isn't worth the trouble.
3425  */
3426 static int
3427 filt_signal(struct knote *kn, long hint)
3428 {
3429 
3430 	if (hint & NOTE_SIGNAL) {
3431 		hint &= ~NOTE_SIGNAL;
3432 
3433 		if (kn->kn_id == hint)
3434 			kn->kn_data++;
3435 	}
3436 	return (kn->kn_data != 0);
3437 }
3438 
3439 struct sigacts *
3440 sigacts_alloc(void)
3441 {
3442 	struct sigacts *ps;
3443 
3444 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3445 	refcount_init(&ps->ps_refcnt, 1);
3446 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3447 	return (ps);
3448 }
3449 
3450 void
3451 sigacts_free(struct sigacts *ps)
3452 {
3453 
3454 	if (refcount_release(&ps->ps_refcnt) == 0)
3455 		return;
3456 	mtx_destroy(&ps->ps_mtx);
3457 	free(ps, M_SUBPROC);
3458 }
3459 
3460 struct sigacts *
3461 sigacts_hold(struct sigacts *ps)
3462 {
3463 
3464 	refcount_acquire(&ps->ps_refcnt);
3465 	return (ps);
3466 }
3467 
3468 void
3469 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3470 {
3471 
3472 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3473 	mtx_lock(&src->ps_mtx);
3474 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3475 	mtx_unlock(&src->ps_mtx);
3476 }
3477 
3478 int
3479 sigacts_shared(struct sigacts *ps)
3480 {
3481 
3482 	return (ps->ps_refcnt > 1);
3483 }
3484