xref: /freebsd/sys/kern/kern_sig.c (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/ctype.h>
46 #include <sys/systm.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/acct.h>
50 #include <sys/bus.h>
51 #include <sys/capsicum.h>
52 #include <sys/compressor.h>
53 #include <sys/condvar.h>
54 #include <sys/event.h>
55 #include <sys/fcntl.h>
56 #include <sys/imgact.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/mutex.h>
64 #include <sys/refcount.h>
65 #include <sys/namei.h>
66 #include <sys/proc.h>
67 #include <sys/procdesc.h>
68 #include <sys/ptrace.h>
69 #include <sys/posix4.h>
70 #include <sys/pioctl.h>
71 #include <sys/racct.h>
72 #include <sys/resourcevar.h>
73 #include <sys/sdt.h>
74 #include <sys/sbuf.h>
75 #include <sys/sleepqueue.h>
76 #include <sys/smp.h>
77 #include <sys/stat.h>
78 #include <sys/sx.h>
79 #include <sys/syscallsubr.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/syslog.h>
83 #include <sys/sysproto.h>
84 #include <sys/timers.h>
85 #include <sys/unistd.h>
86 #include <sys/wait.h>
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/uma.h>
90 
91 #include <sys/jail.h>
92 
93 #include <machine/cpu.h>
94 
95 #include <security/audit/audit.h>
96 
97 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
98 
99 SDT_PROVIDER_DECLARE(proc);
100 SDT_PROBE_DEFINE3(proc, , , signal__send,
101     "struct thread *", "struct proc *", "int");
102 SDT_PROBE_DEFINE2(proc, , , signal__clear,
103     "int", "ksiginfo_t *");
104 SDT_PROBE_DEFINE3(proc, , , signal__discard,
105     "struct thread *", "struct proc *", "int");
106 
107 static int	coredump(struct thread *);
108 static int	killpg1(struct thread *td, int sig, int pgid, int all,
109 		    ksiginfo_t *ksi);
110 static int	issignal(struct thread *td);
111 static int	sigprop(int sig);
112 static void	tdsigwakeup(struct thread *, int, sig_t, int);
113 static int	sig_suspend_threads(struct thread *, struct proc *, int);
114 static int	filt_sigattach(struct knote *kn);
115 static void	filt_sigdetach(struct knote *kn);
116 static int	filt_signal(struct knote *kn, long hint);
117 static struct thread *sigtd(struct proc *p, int sig, int prop);
118 static void	sigqueue_start(void);
119 
120 static uma_zone_t	ksiginfo_zone = NULL;
121 struct filterops sig_filtops = {
122 	.f_isfd = 0,
123 	.f_attach = filt_sigattach,
124 	.f_detach = filt_sigdetach,
125 	.f_event = filt_signal,
126 };
127 
128 static int	kern_logsigexit = 1;
129 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
130     &kern_logsigexit, 0,
131     "Log processes quitting on abnormal signals to syslog(3)");
132 
133 static int	kern_forcesigexit = 1;
134 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
135     &kern_forcesigexit, 0, "Force trap signal to be handled");
136 
137 static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,
138     "POSIX real time signal");
139 
140 static int	max_pending_per_proc = 128;
141 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
142     &max_pending_per_proc, 0, "Max pending signals per proc");
143 
144 static int	preallocate_siginfo = 1024;
145 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,
146     &preallocate_siginfo, 0, "Preallocated signal memory size");
147 
148 static int	signal_overflow = 0;
149 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
150     &signal_overflow, 0, "Number of signals overflew");
151 
152 static int	signal_alloc_fail = 0;
153 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
154     &signal_alloc_fail, 0, "signals failed to be allocated");
155 
156 static int	kern_lognosys = 0;
157 SYSCTL_INT(_kern, OID_AUTO, lognosys, CTLFLAG_RWTUN, &kern_lognosys, 0,
158     "Log invalid syscalls");
159 
160 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
161 
162 /*
163  * Policy -- Can ucred cr1 send SIGIO to process cr2?
164  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
165  * in the right situations.
166  */
167 #define CANSIGIO(cr1, cr2) \
168 	((cr1)->cr_uid == 0 || \
169 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
170 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
171 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
172 	    (cr1)->cr_uid == (cr2)->cr_uid)
173 
174 static int	sugid_coredump;
175 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,
176     &sugid_coredump, 0, "Allow setuid and setgid processes to dump core");
177 
178 static int	capmode_coredump;
179 SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,
180     &capmode_coredump, 0, "Allow processes in capability mode to dump core");
181 
182 static int	do_coredump = 1;
183 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
184 	&do_coredump, 0, "Enable/Disable coredumps");
185 
186 static int	set_core_nodump_flag = 0;
187 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
188 	0, "Enable setting the NODUMP flag on coredump files");
189 
190 static int	coredump_devctl = 0;
191 SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,
192 	0, "Generate a devctl notification when processes coredump");
193 
194 /*
195  * Signal properties and actions.
196  * The array below categorizes the signals and their default actions
197  * according to the following properties:
198  */
199 #define	SIGPROP_KILL		0x01	/* terminates process by default */
200 #define	SIGPROP_CORE		0x02	/* ditto and coredumps */
201 #define	SIGPROP_STOP		0x04	/* suspend process */
202 #define	SIGPROP_TTYSTOP		0x08	/* ditto, from tty */
203 #define	SIGPROP_IGNORE		0x10	/* ignore by default */
204 #define	SIGPROP_CONT		0x20	/* continue if suspended */
205 #define	SIGPROP_CANTMASK	0x40	/* non-maskable, catchable */
206 
207 static int sigproptbl[NSIG] = {
208 	[SIGHUP] =	SIGPROP_KILL,
209 	[SIGINT] =	SIGPROP_KILL,
210 	[SIGQUIT] =	SIGPROP_KILL | SIGPROP_CORE,
211 	[SIGILL] =	SIGPROP_KILL | SIGPROP_CORE,
212 	[SIGTRAP] =	SIGPROP_KILL | SIGPROP_CORE,
213 	[SIGABRT] =	SIGPROP_KILL | SIGPROP_CORE,
214 	[SIGEMT] =	SIGPROP_KILL | SIGPROP_CORE,
215 	[SIGFPE] =	SIGPROP_KILL | SIGPROP_CORE,
216 	[SIGKILL] =	SIGPROP_KILL,
217 	[SIGBUS] =	SIGPROP_KILL | SIGPROP_CORE,
218 	[SIGSEGV] =	SIGPROP_KILL | SIGPROP_CORE,
219 	[SIGSYS] =	SIGPROP_KILL | SIGPROP_CORE,
220 	[SIGPIPE] =	SIGPROP_KILL,
221 	[SIGALRM] =	SIGPROP_KILL,
222 	[SIGTERM] =	SIGPROP_KILL,
223 	[SIGURG] =	SIGPROP_IGNORE,
224 	[SIGSTOP] =	SIGPROP_STOP,
225 	[SIGTSTP] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
226 	[SIGCONT] =	SIGPROP_IGNORE | SIGPROP_CONT,
227 	[SIGCHLD] =	SIGPROP_IGNORE,
228 	[SIGTTIN] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
229 	[SIGTTOU] =	SIGPROP_STOP | SIGPROP_TTYSTOP,
230 	[SIGIO] =	SIGPROP_IGNORE,
231 	[SIGXCPU] =	SIGPROP_KILL,
232 	[SIGXFSZ] =	SIGPROP_KILL,
233 	[SIGVTALRM] =	SIGPROP_KILL,
234 	[SIGPROF] =	SIGPROP_KILL,
235 	[SIGWINCH] =	SIGPROP_IGNORE,
236 	[SIGINFO] =	SIGPROP_IGNORE,
237 	[SIGUSR1] =	SIGPROP_KILL,
238 	[SIGUSR2] =	SIGPROP_KILL,
239 };
240 
241 static void reschedule_signals(struct proc *p, sigset_t block, int flags);
242 
243 static void
244 sigqueue_start(void)
245 {
246 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
247 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
248 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
249 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
250 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
251 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
252 }
253 
254 ksiginfo_t *
255 ksiginfo_alloc(int wait)
256 {
257 	int flags;
258 
259 	flags = M_ZERO;
260 	if (! wait)
261 		flags |= M_NOWAIT;
262 	if (ksiginfo_zone != NULL)
263 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
264 	return (NULL);
265 }
266 
267 void
268 ksiginfo_free(ksiginfo_t *ksi)
269 {
270 	uma_zfree(ksiginfo_zone, ksi);
271 }
272 
273 static __inline int
274 ksiginfo_tryfree(ksiginfo_t *ksi)
275 {
276 	if (!(ksi->ksi_flags & KSI_EXT)) {
277 		uma_zfree(ksiginfo_zone, ksi);
278 		return (1);
279 	}
280 	return (0);
281 }
282 
283 void
284 sigqueue_init(sigqueue_t *list, struct proc *p)
285 {
286 	SIGEMPTYSET(list->sq_signals);
287 	SIGEMPTYSET(list->sq_kill);
288 	SIGEMPTYSET(list->sq_ptrace);
289 	TAILQ_INIT(&list->sq_list);
290 	list->sq_proc = p;
291 	list->sq_flags = SQ_INIT;
292 }
293 
294 /*
295  * Get a signal's ksiginfo.
296  * Return:
297  *	0	-	signal not found
298  *	others	-	signal number
299  */
300 static int
301 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
302 {
303 	struct proc *p = sq->sq_proc;
304 	struct ksiginfo *ksi, *next;
305 	int count = 0;
306 
307 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
308 
309 	if (!SIGISMEMBER(sq->sq_signals, signo))
310 		return (0);
311 
312 	if (SIGISMEMBER(sq->sq_ptrace, signo)) {
313 		count++;
314 		SIGDELSET(sq->sq_ptrace, signo);
315 		si->ksi_flags |= KSI_PTRACE;
316 	}
317 	if (SIGISMEMBER(sq->sq_kill, signo)) {
318 		count++;
319 		if (count == 1)
320 			SIGDELSET(sq->sq_kill, signo);
321 	}
322 
323 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
324 		if (ksi->ksi_signo == signo) {
325 			if (count == 0) {
326 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
327 				ksi->ksi_sigq = NULL;
328 				ksiginfo_copy(ksi, si);
329 				if (ksiginfo_tryfree(ksi) && p != NULL)
330 					p->p_pendingcnt--;
331 			}
332 			if (++count > 1)
333 				break;
334 		}
335 	}
336 
337 	if (count <= 1)
338 		SIGDELSET(sq->sq_signals, signo);
339 	si->ksi_signo = signo;
340 	return (signo);
341 }
342 
343 void
344 sigqueue_take(ksiginfo_t *ksi)
345 {
346 	struct ksiginfo *kp;
347 	struct proc	*p;
348 	sigqueue_t	*sq;
349 
350 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
351 		return;
352 
353 	p = sq->sq_proc;
354 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
355 	ksi->ksi_sigq = NULL;
356 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
357 		p->p_pendingcnt--;
358 
359 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
360 	     kp = TAILQ_NEXT(kp, ksi_link)) {
361 		if (kp->ksi_signo == ksi->ksi_signo)
362 			break;
363 	}
364 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo) &&
365 	    !SIGISMEMBER(sq->sq_ptrace, ksi->ksi_signo))
366 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
367 }
368 
369 static int
370 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
371 {
372 	struct proc *p = sq->sq_proc;
373 	struct ksiginfo *ksi;
374 	int ret = 0;
375 
376 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
377 
378 	/*
379 	 * SIGKILL/SIGSTOP cannot be caught or masked, so take the fast path
380 	 * for these signals.
381 	 */
382 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
383 		SIGADDSET(sq->sq_kill, signo);
384 		goto out_set_bit;
385 	}
386 
387 	/* directly insert the ksi, don't copy it */
388 	if (si->ksi_flags & KSI_INS) {
389 		if (si->ksi_flags & KSI_HEAD)
390 			TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link);
391 		else
392 			TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
393 		si->ksi_sigq = sq;
394 		goto out_set_bit;
395 	}
396 
397 	if (__predict_false(ksiginfo_zone == NULL)) {
398 		SIGADDSET(sq->sq_kill, signo);
399 		goto out_set_bit;
400 	}
401 
402 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
403 		signal_overflow++;
404 		ret = EAGAIN;
405 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
406 		signal_alloc_fail++;
407 		ret = EAGAIN;
408 	} else {
409 		if (p != NULL)
410 			p->p_pendingcnt++;
411 		ksiginfo_copy(si, ksi);
412 		ksi->ksi_signo = signo;
413 		if (si->ksi_flags & KSI_HEAD)
414 			TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link);
415 		else
416 			TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
417 		ksi->ksi_sigq = sq;
418 	}
419 
420 	if (ret != 0) {
421 		if ((si->ksi_flags & KSI_PTRACE) != 0) {
422 			SIGADDSET(sq->sq_ptrace, signo);
423 			ret = 0;
424 			goto out_set_bit;
425 		} else if ((si->ksi_flags & KSI_TRAP) != 0 ||
426 		    (si->ksi_flags & KSI_SIGQ) == 0) {
427 			SIGADDSET(sq->sq_kill, signo);
428 			ret = 0;
429 			goto out_set_bit;
430 		}
431 		return (ret);
432 	}
433 
434 out_set_bit:
435 	SIGADDSET(sq->sq_signals, signo);
436 	return (ret);
437 }
438 
439 void
440 sigqueue_flush(sigqueue_t *sq)
441 {
442 	struct proc *p = sq->sq_proc;
443 	ksiginfo_t *ksi;
444 
445 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
446 
447 	if (p != NULL)
448 		PROC_LOCK_ASSERT(p, MA_OWNED);
449 
450 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
451 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
452 		ksi->ksi_sigq = NULL;
453 		if (ksiginfo_tryfree(ksi) && p != NULL)
454 			p->p_pendingcnt--;
455 	}
456 
457 	SIGEMPTYSET(sq->sq_signals);
458 	SIGEMPTYSET(sq->sq_kill);
459 	SIGEMPTYSET(sq->sq_ptrace);
460 }
461 
462 static void
463 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
464 {
465 	sigset_t tmp;
466 	struct proc *p1, *p2;
467 	ksiginfo_t *ksi, *next;
468 
469 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
470 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
471 	p1 = src->sq_proc;
472 	p2 = dst->sq_proc;
473 	/* Move siginfo to target list */
474 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
475 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
476 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
477 			if (p1 != NULL)
478 				p1->p_pendingcnt--;
479 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
480 			ksi->ksi_sigq = dst;
481 			if (p2 != NULL)
482 				p2->p_pendingcnt++;
483 		}
484 	}
485 
486 	/* Move pending bits to target list */
487 	tmp = src->sq_kill;
488 	SIGSETAND(tmp, *set);
489 	SIGSETOR(dst->sq_kill, tmp);
490 	SIGSETNAND(src->sq_kill, tmp);
491 
492 	tmp = src->sq_ptrace;
493 	SIGSETAND(tmp, *set);
494 	SIGSETOR(dst->sq_ptrace, tmp);
495 	SIGSETNAND(src->sq_ptrace, tmp);
496 
497 	tmp = src->sq_signals;
498 	SIGSETAND(tmp, *set);
499 	SIGSETOR(dst->sq_signals, tmp);
500 	SIGSETNAND(src->sq_signals, tmp);
501 }
502 
503 #if 0
504 static void
505 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
506 {
507 	sigset_t set;
508 
509 	SIGEMPTYSET(set);
510 	SIGADDSET(set, signo);
511 	sigqueue_move_set(src, dst, &set);
512 }
513 #endif
514 
515 static void
516 sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
517 {
518 	struct proc *p = sq->sq_proc;
519 	ksiginfo_t *ksi, *next;
520 
521 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
522 
523 	/* Remove siginfo queue */
524 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
525 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
526 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
527 			ksi->ksi_sigq = NULL;
528 			if (ksiginfo_tryfree(ksi) && p != NULL)
529 				p->p_pendingcnt--;
530 		}
531 	}
532 	SIGSETNAND(sq->sq_kill, *set);
533 	SIGSETNAND(sq->sq_ptrace, *set);
534 	SIGSETNAND(sq->sq_signals, *set);
535 }
536 
537 void
538 sigqueue_delete(sigqueue_t *sq, int signo)
539 {
540 	sigset_t set;
541 
542 	SIGEMPTYSET(set);
543 	SIGADDSET(set, signo);
544 	sigqueue_delete_set(sq, &set);
545 }
546 
547 /* Remove a set of signals for a process */
548 static void
549 sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
550 {
551 	sigqueue_t worklist;
552 	struct thread *td0;
553 
554 	PROC_LOCK_ASSERT(p, MA_OWNED);
555 
556 	sigqueue_init(&worklist, NULL);
557 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
558 
559 	FOREACH_THREAD_IN_PROC(p, td0)
560 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
561 
562 	sigqueue_flush(&worklist);
563 }
564 
565 void
566 sigqueue_delete_proc(struct proc *p, int signo)
567 {
568 	sigset_t set;
569 
570 	SIGEMPTYSET(set);
571 	SIGADDSET(set, signo);
572 	sigqueue_delete_set_proc(p, &set);
573 }
574 
575 static void
576 sigqueue_delete_stopmask_proc(struct proc *p)
577 {
578 	sigset_t set;
579 
580 	SIGEMPTYSET(set);
581 	SIGADDSET(set, SIGSTOP);
582 	SIGADDSET(set, SIGTSTP);
583 	SIGADDSET(set, SIGTTIN);
584 	SIGADDSET(set, SIGTTOU);
585 	sigqueue_delete_set_proc(p, &set);
586 }
587 
588 /*
589  * Determine signal that should be delivered to thread td, the current
590  * thread, 0 if none.  If there is a pending stop signal with default
591  * action, the process stops in issignal().
592  */
593 int
594 cursig(struct thread *td)
595 {
596 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
597 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
598 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
599 	return (SIGPENDING(td) ? issignal(td) : 0);
600 }
601 
602 /*
603  * Arrange for ast() to handle unmasked pending signals on return to user
604  * mode.  This must be called whenever a signal is added to td_sigqueue or
605  * unmasked in td_sigmask.
606  */
607 void
608 signotify(struct thread *td)
609 {
610 
611 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
612 
613 	if (SIGPENDING(td)) {
614 		thread_lock(td);
615 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
616 		thread_unlock(td);
617 	}
618 }
619 
620 /*
621  * Returns 1 (true) if altstack is configured for the thread, and the
622  * passed stack bottom address falls into the altstack range.  Handles
623  * the 43 compat special case where the alt stack size is zero.
624  */
625 int
626 sigonstack(size_t sp)
627 {
628 	struct thread *td;
629 
630 	td = curthread;
631 	if ((td->td_pflags & TDP_ALTSTACK) == 0)
632 		return (0);
633 #if defined(COMPAT_43)
634 	if (SV_PROC_FLAG(td->td_proc, SV_AOUT) && td->td_sigstk.ss_size == 0)
635 		return ((td->td_sigstk.ss_flags & SS_ONSTACK) != 0);
636 #endif
637 	return (sp >= (size_t)td->td_sigstk.ss_sp &&
638 	    sp < td->td_sigstk.ss_size + (size_t)td->td_sigstk.ss_sp);
639 }
640 
641 static __inline int
642 sigprop(int sig)
643 {
644 
645 	if (sig > 0 && sig < nitems(sigproptbl))
646 		return (sigproptbl[sig]);
647 	return (0);
648 }
649 
650 int
651 sig_ffs(sigset_t *set)
652 {
653 	int i;
654 
655 	for (i = 0; i < _SIG_WORDS; i++)
656 		if (set->__bits[i])
657 			return (ffs(set->__bits[i]) + (i * 32));
658 	return (0);
659 }
660 
661 static bool
662 sigact_flag_test(const struct sigaction *act, int flag)
663 {
664 
665 	/*
666 	 * SA_SIGINFO is reset when signal disposition is set to
667 	 * ignore or default.  Other flags are kept according to user
668 	 * settings.
669 	 */
670 	return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO ||
671 	    ((__sighandler_t *)act->sa_sigaction != SIG_IGN &&
672 	    (__sighandler_t *)act->sa_sigaction != SIG_DFL)));
673 }
674 
675 /*
676  * kern_sigaction
677  * sigaction
678  * freebsd4_sigaction
679  * osigaction
680  */
681 int
682 kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
683     struct sigaction *oact, int flags)
684 {
685 	struct sigacts *ps;
686 	struct proc *p = td->td_proc;
687 
688 	if (!_SIG_VALID(sig))
689 		return (EINVAL);
690 	if (act != NULL && act->sa_handler != SIG_DFL &&
691 	    act->sa_handler != SIG_IGN && (act->sa_flags & ~(SA_ONSTACK |
692 	    SA_RESTART | SA_RESETHAND | SA_NOCLDSTOP | SA_NODEFER |
693 	    SA_NOCLDWAIT | SA_SIGINFO)) != 0)
694 		return (EINVAL);
695 
696 	PROC_LOCK(p);
697 	ps = p->p_sigacts;
698 	mtx_lock(&ps->ps_mtx);
699 	if (oact) {
700 		memset(oact, 0, sizeof(*oact));
701 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
702 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
703 			oact->sa_flags |= SA_ONSTACK;
704 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
705 			oact->sa_flags |= SA_RESTART;
706 		if (SIGISMEMBER(ps->ps_sigreset, sig))
707 			oact->sa_flags |= SA_RESETHAND;
708 		if (SIGISMEMBER(ps->ps_signodefer, sig))
709 			oact->sa_flags |= SA_NODEFER;
710 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
711 			oact->sa_flags |= SA_SIGINFO;
712 			oact->sa_sigaction =
713 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
714 		} else
715 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
716 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
717 			oact->sa_flags |= SA_NOCLDSTOP;
718 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
719 			oact->sa_flags |= SA_NOCLDWAIT;
720 	}
721 	if (act) {
722 		if ((sig == SIGKILL || sig == SIGSTOP) &&
723 		    act->sa_handler != SIG_DFL) {
724 			mtx_unlock(&ps->ps_mtx);
725 			PROC_UNLOCK(p);
726 			return (EINVAL);
727 		}
728 
729 		/*
730 		 * Change setting atomically.
731 		 */
732 
733 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
734 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
735 		if (sigact_flag_test(act, SA_SIGINFO)) {
736 			ps->ps_sigact[_SIG_IDX(sig)] =
737 			    (__sighandler_t *)act->sa_sigaction;
738 			SIGADDSET(ps->ps_siginfo, sig);
739 		} else {
740 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
741 			SIGDELSET(ps->ps_siginfo, sig);
742 		}
743 		if (!sigact_flag_test(act, SA_RESTART))
744 			SIGADDSET(ps->ps_sigintr, sig);
745 		else
746 			SIGDELSET(ps->ps_sigintr, sig);
747 		if (sigact_flag_test(act, SA_ONSTACK))
748 			SIGADDSET(ps->ps_sigonstack, sig);
749 		else
750 			SIGDELSET(ps->ps_sigonstack, sig);
751 		if (sigact_flag_test(act, SA_RESETHAND))
752 			SIGADDSET(ps->ps_sigreset, sig);
753 		else
754 			SIGDELSET(ps->ps_sigreset, sig);
755 		if (sigact_flag_test(act, SA_NODEFER))
756 			SIGADDSET(ps->ps_signodefer, sig);
757 		else
758 			SIGDELSET(ps->ps_signodefer, sig);
759 		if (sig == SIGCHLD) {
760 			if (act->sa_flags & SA_NOCLDSTOP)
761 				ps->ps_flag |= PS_NOCLDSTOP;
762 			else
763 				ps->ps_flag &= ~PS_NOCLDSTOP;
764 			if (act->sa_flags & SA_NOCLDWAIT) {
765 				/*
766 				 * Paranoia: since SA_NOCLDWAIT is implemented
767 				 * by reparenting the dying child to PID 1 (and
768 				 * trust it to reap the zombie), PID 1 itself
769 				 * is forbidden to set SA_NOCLDWAIT.
770 				 */
771 				if (p->p_pid == 1)
772 					ps->ps_flag &= ~PS_NOCLDWAIT;
773 				else
774 					ps->ps_flag |= PS_NOCLDWAIT;
775 			} else
776 				ps->ps_flag &= ~PS_NOCLDWAIT;
777 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
778 				ps->ps_flag |= PS_CLDSIGIGN;
779 			else
780 				ps->ps_flag &= ~PS_CLDSIGIGN;
781 		}
782 		/*
783 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
784 		 * and for signals set to SIG_DFL where the default is to
785 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
786 		 * have to restart the process.
787 		 */
788 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
789 		    (sigprop(sig) & SIGPROP_IGNORE &&
790 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
791 			/* never to be seen again */
792 			sigqueue_delete_proc(p, sig);
793 			if (sig != SIGCONT)
794 				/* easier in psignal */
795 				SIGADDSET(ps->ps_sigignore, sig);
796 			SIGDELSET(ps->ps_sigcatch, sig);
797 		} else {
798 			SIGDELSET(ps->ps_sigignore, sig);
799 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
800 				SIGDELSET(ps->ps_sigcatch, sig);
801 			else
802 				SIGADDSET(ps->ps_sigcatch, sig);
803 		}
804 #ifdef COMPAT_FREEBSD4
805 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
806 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
807 		    (flags & KSA_FREEBSD4) == 0)
808 			SIGDELSET(ps->ps_freebsd4, sig);
809 		else
810 			SIGADDSET(ps->ps_freebsd4, sig);
811 #endif
812 #ifdef COMPAT_43
813 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
814 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
815 		    (flags & KSA_OSIGSET) == 0)
816 			SIGDELSET(ps->ps_osigset, sig);
817 		else
818 			SIGADDSET(ps->ps_osigset, sig);
819 #endif
820 	}
821 	mtx_unlock(&ps->ps_mtx);
822 	PROC_UNLOCK(p);
823 	return (0);
824 }
825 
826 #ifndef _SYS_SYSPROTO_H_
827 struct sigaction_args {
828 	int	sig;
829 	struct	sigaction *act;
830 	struct	sigaction *oact;
831 };
832 #endif
833 int
834 sys_sigaction(struct thread *td, struct sigaction_args *uap)
835 {
836 	struct sigaction act, oact;
837 	struct sigaction *actp, *oactp;
838 	int error;
839 
840 	actp = (uap->act != NULL) ? &act : NULL;
841 	oactp = (uap->oact != NULL) ? &oact : NULL;
842 	if (actp) {
843 		error = copyin(uap->act, actp, sizeof(act));
844 		if (error)
845 			return (error);
846 	}
847 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
848 	if (oactp && !error)
849 		error = copyout(oactp, uap->oact, sizeof(oact));
850 	return (error);
851 }
852 
853 #ifdef COMPAT_FREEBSD4
854 #ifndef _SYS_SYSPROTO_H_
855 struct freebsd4_sigaction_args {
856 	int	sig;
857 	struct	sigaction *act;
858 	struct	sigaction *oact;
859 };
860 #endif
861 int
862 freebsd4_sigaction(struct thread *td, struct freebsd4_sigaction_args *uap)
863 {
864 	struct sigaction act, oact;
865 	struct sigaction *actp, *oactp;
866 	int error;
867 
868 
869 	actp = (uap->act != NULL) ? &act : NULL;
870 	oactp = (uap->oact != NULL) ? &oact : NULL;
871 	if (actp) {
872 		error = copyin(uap->act, actp, sizeof(act));
873 		if (error)
874 			return (error);
875 	}
876 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
877 	if (oactp && !error)
878 		error = copyout(oactp, uap->oact, sizeof(oact));
879 	return (error);
880 }
881 #endif	/* COMAPT_FREEBSD4 */
882 
883 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
884 #ifndef _SYS_SYSPROTO_H_
885 struct osigaction_args {
886 	int	signum;
887 	struct	osigaction *nsa;
888 	struct	osigaction *osa;
889 };
890 #endif
891 int
892 osigaction(struct thread *td, struct osigaction_args *uap)
893 {
894 	struct osigaction sa;
895 	struct sigaction nsa, osa;
896 	struct sigaction *nsap, *osap;
897 	int error;
898 
899 	if (uap->signum <= 0 || uap->signum >= ONSIG)
900 		return (EINVAL);
901 
902 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
903 	osap = (uap->osa != NULL) ? &osa : NULL;
904 
905 	if (nsap) {
906 		error = copyin(uap->nsa, &sa, sizeof(sa));
907 		if (error)
908 			return (error);
909 		nsap->sa_handler = sa.sa_handler;
910 		nsap->sa_flags = sa.sa_flags;
911 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
912 	}
913 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
914 	if (osap && !error) {
915 		sa.sa_handler = osap->sa_handler;
916 		sa.sa_flags = osap->sa_flags;
917 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
918 		error = copyout(&sa, uap->osa, sizeof(sa));
919 	}
920 	return (error);
921 }
922 
923 #if !defined(__i386__)
924 /* Avoid replicating the same stub everywhere */
925 int
926 osigreturn(struct thread *td, struct osigreturn_args *uap)
927 {
928 
929 	return (nosys(td, (struct nosys_args *)uap));
930 }
931 #endif
932 #endif /* COMPAT_43 */
933 
934 /*
935  * Initialize signal state for process 0;
936  * set to ignore signals that are ignored by default.
937  */
938 void
939 siginit(struct proc *p)
940 {
941 	int i;
942 	struct sigacts *ps;
943 
944 	PROC_LOCK(p);
945 	ps = p->p_sigacts;
946 	mtx_lock(&ps->ps_mtx);
947 	for (i = 1; i <= NSIG; i++) {
948 		if (sigprop(i) & SIGPROP_IGNORE && i != SIGCONT) {
949 			SIGADDSET(ps->ps_sigignore, i);
950 		}
951 	}
952 	mtx_unlock(&ps->ps_mtx);
953 	PROC_UNLOCK(p);
954 }
955 
956 /*
957  * Reset specified signal to the default disposition.
958  */
959 static void
960 sigdflt(struct sigacts *ps, int sig)
961 {
962 
963 	mtx_assert(&ps->ps_mtx, MA_OWNED);
964 	SIGDELSET(ps->ps_sigcatch, sig);
965 	if ((sigprop(sig) & SIGPROP_IGNORE) != 0 && sig != SIGCONT)
966 		SIGADDSET(ps->ps_sigignore, sig);
967 	ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
968 	SIGDELSET(ps->ps_siginfo, sig);
969 }
970 
971 /*
972  * Reset signals for an exec of the specified process.
973  */
974 void
975 execsigs(struct proc *p)
976 {
977 	sigset_t osigignore;
978 	struct sigacts *ps;
979 	int sig;
980 	struct thread *td;
981 
982 	/*
983 	 * Reset caught signals.  Held signals remain held
984 	 * through td_sigmask (unless they were caught,
985 	 * and are now ignored by default).
986 	 */
987 	PROC_LOCK_ASSERT(p, MA_OWNED);
988 	ps = p->p_sigacts;
989 	mtx_lock(&ps->ps_mtx);
990 	sig_drop_caught(p);
991 
992 	/*
993 	 * As CloudABI processes cannot modify signal handlers, fully
994 	 * reset all signals to their default behavior. Do ignore
995 	 * SIGPIPE, as it would otherwise be impossible to recover from
996 	 * writes to broken pipes and sockets.
997 	 */
998 	if (SV_PROC_ABI(p) == SV_ABI_CLOUDABI) {
999 		osigignore = ps->ps_sigignore;
1000 		while (SIGNOTEMPTY(osigignore)) {
1001 			sig = sig_ffs(&osigignore);
1002 			SIGDELSET(osigignore, sig);
1003 			if (sig != SIGPIPE)
1004 				sigdflt(ps, sig);
1005 		}
1006 		SIGADDSET(ps->ps_sigignore, SIGPIPE);
1007 	}
1008 
1009 	/*
1010 	 * Reset stack state to the user stack.
1011 	 * Clear set of signals caught on the signal stack.
1012 	 */
1013 	td = curthread;
1014 	MPASS(td->td_proc == p);
1015 	td->td_sigstk.ss_flags = SS_DISABLE;
1016 	td->td_sigstk.ss_size = 0;
1017 	td->td_sigstk.ss_sp = 0;
1018 	td->td_pflags &= ~TDP_ALTSTACK;
1019 	/*
1020 	 * Reset no zombies if child dies flag as Solaris does.
1021 	 */
1022 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
1023 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
1024 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
1025 	mtx_unlock(&ps->ps_mtx);
1026 }
1027 
1028 /*
1029  * kern_sigprocmask()
1030  *
1031  *	Manipulate signal mask.
1032  */
1033 int
1034 kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1035     int flags)
1036 {
1037 	sigset_t new_block, oset1;
1038 	struct proc *p;
1039 	int error;
1040 
1041 	p = td->td_proc;
1042 	if ((flags & SIGPROCMASK_PROC_LOCKED) != 0)
1043 		PROC_LOCK_ASSERT(p, MA_OWNED);
1044 	else
1045 		PROC_LOCK(p);
1046 	mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0
1047 	    ? MA_OWNED : MA_NOTOWNED);
1048 	if (oset != NULL)
1049 		*oset = td->td_sigmask;
1050 
1051 	error = 0;
1052 	if (set != NULL) {
1053 		switch (how) {
1054 		case SIG_BLOCK:
1055 			SIG_CANTMASK(*set);
1056 			oset1 = td->td_sigmask;
1057 			SIGSETOR(td->td_sigmask, *set);
1058 			new_block = td->td_sigmask;
1059 			SIGSETNAND(new_block, oset1);
1060 			break;
1061 		case SIG_UNBLOCK:
1062 			SIGSETNAND(td->td_sigmask, *set);
1063 			signotify(td);
1064 			goto out;
1065 		case SIG_SETMASK:
1066 			SIG_CANTMASK(*set);
1067 			oset1 = td->td_sigmask;
1068 			if (flags & SIGPROCMASK_OLD)
1069 				SIGSETLO(td->td_sigmask, *set);
1070 			else
1071 				td->td_sigmask = *set;
1072 			new_block = td->td_sigmask;
1073 			SIGSETNAND(new_block, oset1);
1074 			signotify(td);
1075 			break;
1076 		default:
1077 			error = EINVAL;
1078 			goto out;
1079 		}
1080 
1081 		/*
1082 		 * The new_block set contains signals that were not previously
1083 		 * blocked, but are blocked now.
1084 		 *
1085 		 * In case we block any signal that was not previously blocked
1086 		 * for td, and process has the signal pending, try to schedule
1087 		 * signal delivery to some thread that does not block the
1088 		 * signal, possibly waking it up.
1089 		 */
1090 		if (p->p_numthreads != 1)
1091 			reschedule_signals(p, new_block, flags);
1092 	}
1093 
1094 out:
1095 	if (!(flags & SIGPROCMASK_PROC_LOCKED))
1096 		PROC_UNLOCK(p);
1097 	return (error);
1098 }
1099 
1100 #ifndef _SYS_SYSPROTO_H_
1101 struct sigprocmask_args {
1102 	int	how;
1103 	const sigset_t *set;
1104 	sigset_t *oset;
1105 };
1106 #endif
1107 int
1108 sys_sigprocmask(struct thread *td, struct sigprocmask_args *uap)
1109 {
1110 	sigset_t set, oset;
1111 	sigset_t *setp, *osetp;
1112 	int error;
1113 
1114 	setp = (uap->set != NULL) ? &set : NULL;
1115 	osetp = (uap->oset != NULL) ? &oset : NULL;
1116 	if (setp) {
1117 		error = copyin(uap->set, setp, sizeof(set));
1118 		if (error)
1119 			return (error);
1120 	}
1121 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1122 	if (osetp && !error) {
1123 		error = copyout(osetp, uap->oset, sizeof(oset));
1124 	}
1125 	return (error);
1126 }
1127 
1128 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1129 #ifndef _SYS_SYSPROTO_H_
1130 struct osigprocmask_args {
1131 	int	how;
1132 	osigset_t mask;
1133 };
1134 #endif
1135 int
1136 osigprocmask(struct thread *td, struct osigprocmask_args *uap)
1137 {
1138 	sigset_t set, oset;
1139 	int error;
1140 
1141 	OSIG2SIG(uap->mask, set);
1142 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1143 	SIG2OSIG(oset, td->td_retval[0]);
1144 	return (error);
1145 }
1146 #endif /* COMPAT_43 */
1147 
1148 int
1149 sys_sigwait(struct thread *td, struct sigwait_args *uap)
1150 {
1151 	ksiginfo_t ksi;
1152 	sigset_t set;
1153 	int error;
1154 
1155 	error = copyin(uap->set, &set, sizeof(set));
1156 	if (error) {
1157 		td->td_retval[0] = error;
1158 		return (0);
1159 	}
1160 
1161 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1162 	if (error) {
1163 		if (error == EINTR && td->td_proc->p_osrel < P_OSREL_SIGWAIT)
1164 			error = ERESTART;
1165 		if (error == ERESTART)
1166 			return (error);
1167 		td->td_retval[0] = error;
1168 		return (0);
1169 	}
1170 
1171 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1172 	td->td_retval[0] = error;
1173 	return (0);
1174 }
1175 
1176 int
1177 sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1178 {
1179 	struct timespec ts;
1180 	struct timespec *timeout;
1181 	sigset_t set;
1182 	ksiginfo_t ksi;
1183 	int error;
1184 
1185 	if (uap->timeout) {
1186 		error = copyin(uap->timeout, &ts, sizeof(ts));
1187 		if (error)
1188 			return (error);
1189 
1190 		timeout = &ts;
1191 	} else
1192 		timeout = NULL;
1193 
1194 	error = copyin(uap->set, &set, sizeof(set));
1195 	if (error)
1196 		return (error);
1197 
1198 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1199 	if (error)
1200 		return (error);
1201 
1202 	if (uap->info)
1203 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1204 
1205 	if (error == 0)
1206 		td->td_retval[0] = ksi.ksi_signo;
1207 	return (error);
1208 }
1209 
1210 int
1211 sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1212 {
1213 	ksiginfo_t ksi;
1214 	sigset_t set;
1215 	int error;
1216 
1217 	error = copyin(uap->set, &set, sizeof(set));
1218 	if (error)
1219 		return (error);
1220 
1221 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1222 	if (error)
1223 		return (error);
1224 
1225 	if (uap->info)
1226 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1227 
1228 	if (error == 0)
1229 		td->td_retval[0] = ksi.ksi_signo;
1230 	return (error);
1231 }
1232 
1233 static void
1234 proc_td_siginfo_capture(struct thread *td, siginfo_t *si)
1235 {
1236 	struct thread *thr;
1237 
1238 	FOREACH_THREAD_IN_PROC(td->td_proc, thr) {
1239 		if (thr == td)
1240 			thr->td_si = *si;
1241 		else
1242 			thr->td_si.si_signo = 0;
1243 	}
1244 }
1245 
1246 int
1247 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1248 	struct timespec *timeout)
1249 {
1250 	struct sigacts *ps;
1251 	sigset_t saved_mask, new_block;
1252 	struct proc *p;
1253 	int error, sig, timo, timevalid = 0;
1254 	struct timespec rts, ets, ts;
1255 	struct timeval tv;
1256 	bool traced;
1257 
1258 	p = td->td_proc;
1259 	error = 0;
1260 	ets.tv_sec = 0;
1261 	ets.tv_nsec = 0;
1262 	traced = false;
1263 
1264 	if (timeout != NULL) {
1265 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1266 			timevalid = 1;
1267 			getnanouptime(&rts);
1268 			timespecadd(&rts, timeout, &ets);
1269 		}
1270 	}
1271 	ksiginfo_init(ksi);
1272 	/* Some signals can not be waited for. */
1273 	SIG_CANTMASK(waitset);
1274 	ps = p->p_sigacts;
1275 	PROC_LOCK(p);
1276 	saved_mask = td->td_sigmask;
1277 	SIGSETNAND(td->td_sigmask, waitset);
1278 	for (;;) {
1279 		mtx_lock(&ps->ps_mtx);
1280 		sig = cursig(td);
1281 		mtx_unlock(&ps->ps_mtx);
1282 		KASSERT(sig >= 0, ("sig %d", sig));
1283 		if (sig != 0 && SIGISMEMBER(waitset, sig)) {
1284 			if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1285 			    sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1286 				error = 0;
1287 				break;
1288 			}
1289 		}
1290 
1291 		if (error != 0)
1292 			break;
1293 
1294 		/*
1295 		 * POSIX says this must be checked after looking for pending
1296 		 * signals.
1297 		 */
1298 		if (timeout != NULL) {
1299 			if (!timevalid) {
1300 				error = EINVAL;
1301 				break;
1302 			}
1303 			getnanouptime(&rts);
1304 			if (timespeccmp(&rts, &ets, >=)) {
1305 				error = EAGAIN;
1306 				break;
1307 			}
1308 			timespecsub(&ets, &rts, &ts);
1309 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1310 			timo = tvtohz(&tv);
1311 		} else {
1312 			timo = 0;
1313 		}
1314 
1315 		if (traced) {
1316 			error = EINTR;
1317 			break;
1318 		}
1319 
1320 		error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo);
1321 
1322 		if (timeout != NULL) {
1323 			if (error == ERESTART) {
1324 				/* Timeout can not be restarted. */
1325 				error = EINTR;
1326 			} else if (error == EAGAIN) {
1327 				/* We will calculate timeout by ourself. */
1328 				error = 0;
1329 			}
1330 		}
1331 
1332 		/*
1333 		 * If PTRACE_SCE or PTRACE_SCX were set after
1334 		 * userspace entered the syscall, return spurious
1335 		 * EINTR after wait was done.  Only do this as last
1336 		 * resort after rechecking for possible queued signals
1337 		 * and expired timeouts.
1338 		 */
1339 		if (error == 0 && (p->p_ptevents & PTRACE_SYSCALL) != 0)
1340 			traced = true;
1341 	}
1342 
1343 	new_block = saved_mask;
1344 	SIGSETNAND(new_block, td->td_sigmask);
1345 	td->td_sigmask = saved_mask;
1346 	/*
1347 	 * Fewer signals can be delivered to us, reschedule signal
1348 	 * notification.
1349 	 */
1350 	if (p->p_numthreads != 1)
1351 		reschedule_signals(p, new_block, 0);
1352 
1353 	if (error == 0) {
1354 		SDT_PROBE2(proc, , , signal__clear, sig, ksi);
1355 
1356 		if (ksi->ksi_code == SI_TIMER)
1357 			itimer_accept(p, ksi->ksi_timerid, ksi);
1358 
1359 #ifdef KTRACE
1360 		if (KTRPOINT(td, KTR_PSIG)) {
1361 			sig_t action;
1362 
1363 			mtx_lock(&ps->ps_mtx);
1364 			action = ps->ps_sigact[_SIG_IDX(sig)];
1365 			mtx_unlock(&ps->ps_mtx);
1366 			ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_code);
1367 		}
1368 #endif
1369 		if (sig == SIGKILL) {
1370 			proc_td_siginfo_capture(td, &ksi->ksi_info);
1371 			sigexit(td, sig);
1372 		}
1373 	}
1374 	PROC_UNLOCK(p);
1375 	return (error);
1376 }
1377 
1378 #ifndef _SYS_SYSPROTO_H_
1379 struct sigpending_args {
1380 	sigset_t	*set;
1381 };
1382 #endif
1383 int
1384 sys_sigpending(struct thread *td, struct sigpending_args *uap)
1385 {
1386 	struct proc *p = td->td_proc;
1387 	sigset_t pending;
1388 
1389 	PROC_LOCK(p);
1390 	pending = p->p_sigqueue.sq_signals;
1391 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1392 	PROC_UNLOCK(p);
1393 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1394 }
1395 
1396 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1397 #ifndef _SYS_SYSPROTO_H_
1398 struct osigpending_args {
1399 	int	dummy;
1400 };
1401 #endif
1402 int
1403 osigpending(struct thread *td, struct osigpending_args *uap)
1404 {
1405 	struct proc *p = td->td_proc;
1406 	sigset_t pending;
1407 
1408 	PROC_LOCK(p);
1409 	pending = p->p_sigqueue.sq_signals;
1410 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1411 	PROC_UNLOCK(p);
1412 	SIG2OSIG(pending, td->td_retval[0]);
1413 	return (0);
1414 }
1415 #endif /* COMPAT_43 */
1416 
1417 #if defined(COMPAT_43)
1418 /*
1419  * Generalized interface signal handler, 4.3-compatible.
1420  */
1421 #ifndef _SYS_SYSPROTO_H_
1422 struct osigvec_args {
1423 	int	signum;
1424 	struct	sigvec *nsv;
1425 	struct	sigvec *osv;
1426 };
1427 #endif
1428 /* ARGSUSED */
1429 int
1430 osigvec(struct thread *td, struct osigvec_args *uap)
1431 {
1432 	struct sigvec vec;
1433 	struct sigaction nsa, osa;
1434 	struct sigaction *nsap, *osap;
1435 	int error;
1436 
1437 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1438 		return (EINVAL);
1439 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1440 	osap = (uap->osv != NULL) ? &osa : NULL;
1441 	if (nsap) {
1442 		error = copyin(uap->nsv, &vec, sizeof(vec));
1443 		if (error)
1444 			return (error);
1445 		nsap->sa_handler = vec.sv_handler;
1446 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1447 		nsap->sa_flags = vec.sv_flags;
1448 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1449 	}
1450 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1451 	if (osap && !error) {
1452 		vec.sv_handler = osap->sa_handler;
1453 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1454 		vec.sv_flags = osap->sa_flags;
1455 		vec.sv_flags &= ~SA_NOCLDWAIT;
1456 		vec.sv_flags ^= SA_RESTART;
1457 		error = copyout(&vec, uap->osv, sizeof(vec));
1458 	}
1459 	return (error);
1460 }
1461 
1462 #ifndef _SYS_SYSPROTO_H_
1463 struct osigblock_args {
1464 	int	mask;
1465 };
1466 #endif
1467 int
1468 osigblock(struct thread *td, struct osigblock_args *uap)
1469 {
1470 	sigset_t set, oset;
1471 
1472 	OSIG2SIG(uap->mask, set);
1473 	kern_sigprocmask(td, SIG_BLOCK, &set, &oset, 0);
1474 	SIG2OSIG(oset, td->td_retval[0]);
1475 	return (0);
1476 }
1477 
1478 #ifndef _SYS_SYSPROTO_H_
1479 struct osigsetmask_args {
1480 	int	mask;
1481 };
1482 #endif
1483 int
1484 osigsetmask(struct thread *td, struct osigsetmask_args *uap)
1485 {
1486 	sigset_t set, oset;
1487 
1488 	OSIG2SIG(uap->mask, set);
1489 	kern_sigprocmask(td, SIG_SETMASK, &set, &oset, 0);
1490 	SIG2OSIG(oset, td->td_retval[0]);
1491 	return (0);
1492 }
1493 #endif /* COMPAT_43 */
1494 
1495 /*
1496  * Suspend calling thread until signal, providing mask to be set in the
1497  * meantime.
1498  */
1499 #ifndef _SYS_SYSPROTO_H_
1500 struct sigsuspend_args {
1501 	const sigset_t *sigmask;
1502 };
1503 #endif
1504 /* ARGSUSED */
1505 int
1506 sys_sigsuspend(struct thread *td, struct sigsuspend_args *uap)
1507 {
1508 	sigset_t mask;
1509 	int error;
1510 
1511 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1512 	if (error)
1513 		return (error);
1514 	return (kern_sigsuspend(td, mask));
1515 }
1516 
1517 int
1518 kern_sigsuspend(struct thread *td, sigset_t mask)
1519 {
1520 	struct proc *p = td->td_proc;
1521 	int has_sig, sig;
1522 
1523 	/*
1524 	 * When returning from sigsuspend, we want
1525 	 * the old mask to be restored after the
1526 	 * signal handler has finished.  Thus, we
1527 	 * save it here and mark the sigacts structure
1528 	 * to indicate this.
1529 	 */
1530 	PROC_LOCK(p);
1531 	kern_sigprocmask(td, SIG_SETMASK, &mask, &td->td_oldsigmask,
1532 	    SIGPROCMASK_PROC_LOCKED);
1533 	td->td_pflags |= TDP_OLDMASK;
1534 
1535 	/*
1536 	 * Process signals now. Otherwise, we can get spurious wakeup
1537 	 * due to signal entered process queue, but delivered to other
1538 	 * thread. But sigsuspend should return only on signal
1539 	 * delivery.
1540 	 */
1541 	(p->p_sysent->sv_set_syscall_retval)(td, EINTR);
1542 	for (has_sig = 0; !has_sig;) {
1543 		while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",
1544 			0) == 0)
1545 			/* void */;
1546 		thread_suspend_check(0);
1547 		mtx_lock(&p->p_sigacts->ps_mtx);
1548 		while ((sig = cursig(td)) != 0) {
1549 			KASSERT(sig >= 0, ("sig %d", sig));
1550 			has_sig += postsig(sig);
1551 		}
1552 		mtx_unlock(&p->p_sigacts->ps_mtx);
1553 
1554 		/*
1555 		 * If PTRACE_SCE or PTRACE_SCX were set after
1556 		 * userspace entered the syscall, return spurious
1557 		 * EINTR.
1558 		 */
1559 		if ((p->p_ptevents & PTRACE_SYSCALL) != 0)
1560 			has_sig += 1;
1561 	}
1562 	PROC_UNLOCK(p);
1563 	td->td_errno = EINTR;
1564 	td->td_pflags |= TDP_NERRNO;
1565 	return (EJUSTRETURN);
1566 }
1567 
1568 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1569 /*
1570  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1571  * convention: libc stub passes mask, not pointer, to save a copyin.
1572  */
1573 #ifndef _SYS_SYSPROTO_H_
1574 struct osigsuspend_args {
1575 	osigset_t mask;
1576 };
1577 #endif
1578 /* ARGSUSED */
1579 int
1580 osigsuspend(struct thread *td, struct osigsuspend_args *uap)
1581 {
1582 	sigset_t mask;
1583 
1584 	OSIG2SIG(uap->mask, mask);
1585 	return (kern_sigsuspend(td, mask));
1586 }
1587 #endif /* COMPAT_43 */
1588 
1589 #if defined(COMPAT_43)
1590 #ifndef _SYS_SYSPROTO_H_
1591 struct osigstack_args {
1592 	struct	sigstack *nss;
1593 	struct	sigstack *oss;
1594 };
1595 #endif
1596 /* ARGSUSED */
1597 int
1598 osigstack(struct thread *td, struct osigstack_args *uap)
1599 {
1600 	struct sigstack nss, oss;
1601 	int error = 0;
1602 
1603 	if (uap->nss != NULL) {
1604 		error = copyin(uap->nss, &nss, sizeof(nss));
1605 		if (error)
1606 			return (error);
1607 	}
1608 	oss.ss_sp = td->td_sigstk.ss_sp;
1609 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1610 	if (uap->nss != NULL) {
1611 		td->td_sigstk.ss_sp = nss.ss_sp;
1612 		td->td_sigstk.ss_size = 0;
1613 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1614 		td->td_pflags |= TDP_ALTSTACK;
1615 	}
1616 	if (uap->oss != NULL)
1617 		error = copyout(&oss, uap->oss, sizeof(oss));
1618 
1619 	return (error);
1620 }
1621 #endif /* COMPAT_43 */
1622 
1623 #ifndef _SYS_SYSPROTO_H_
1624 struct sigaltstack_args {
1625 	stack_t	*ss;
1626 	stack_t	*oss;
1627 };
1628 #endif
1629 /* ARGSUSED */
1630 int
1631 sys_sigaltstack(struct thread *td, struct sigaltstack_args *uap)
1632 {
1633 	stack_t ss, oss;
1634 	int error;
1635 
1636 	if (uap->ss != NULL) {
1637 		error = copyin(uap->ss, &ss, sizeof(ss));
1638 		if (error)
1639 			return (error);
1640 	}
1641 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1642 	    (uap->oss != NULL) ? &oss : NULL);
1643 	if (error)
1644 		return (error);
1645 	if (uap->oss != NULL)
1646 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1647 	return (error);
1648 }
1649 
1650 int
1651 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1652 {
1653 	struct proc *p = td->td_proc;
1654 	int oonstack;
1655 
1656 	oonstack = sigonstack(cpu_getstack(td));
1657 
1658 	if (oss != NULL) {
1659 		*oss = td->td_sigstk;
1660 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1661 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1662 	}
1663 
1664 	if (ss != NULL) {
1665 		if (oonstack)
1666 			return (EPERM);
1667 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1668 			return (EINVAL);
1669 		if (!(ss->ss_flags & SS_DISABLE)) {
1670 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1671 				return (ENOMEM);
1672 
1673 			td->td_sigstk = *ss;
1674 			td->td_pflags |= TDP_ALTSTACK;
1675 		} else {
1676 			td->td_pflags &= ~TDP_ALTSTACK;
1677 		}
1678 	}
1679 	return (0);
1680 }
1681 
1682 struct killpg1_ctx {
1683 	struct thread *td;
1684 	ksiginfo_t *ksi;
1685 	int sig;
1686 	bool sent;
1687 	bool found;
1688 	int ret;
1689 };
1690 
1691 static void
1692 killpg1_sendsig(struct proc *p, bool notself, struct killpg1_ctx *arg)
1693 {
1694 	int err;
1695 
1696 	if (p->p_pid <= 1 || (p->p_flag & P_SYSTEM) != 0 ||
1697 	    (notself && p == arg->td->td_proc) || p->p_state == PRS_NEW)
1698 		return;
1699 	PROC_LOCK(p);
1700 	err = p_cansignal(arg->td, p, arg->sig);
1701 	if (err == 0 && arg->sig != 0)
1702 		pksignal(p, arg->sig, arg->ksi);
1703 	PROC_UNLOCK(p);
1704 	if (err != ESRCH)
1705 		arg->found = true;
1706 	if (err == 0)
1707 		arg->sent = true;
1708 	else if (arg->ret == 0 && err != ESRCH && err != EPERM)
1709 		arg->ret = err;
1710 }
1711 
1712 /*
1713  * Common code for kill process group/broadcast kill.
1714  * cp is calling process.
1715  */
1716 static int
1717 killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1718 {
1719 	struct proc *p;
1720 	struct pgrp *pgrp;
1721 	struct killpg1_ctx arg;
1722 
1723 	arg.td = td;
1724 	arg.ksi = ksi;
1725 	arg.sig = sig;
1726 	arg.sent = false;
1727 	arg.found = false;
1728 	arg.ret = 0;
1729 	if (all) {
1730 		/*
1731 		 * broadcast
1732 		 */
1733 		sx_slock(&allproc_lock);
1734 		FOREACH_PROC_IN_SYSTEM(p) {
1735 			killpg1_sendsig(p, true, &arg);
1736 		}
1737 		sx_sunlock(&allproc_lock);
1738 	} else {
1739 		sx_slock(&proctree_lock);
1740 		if (pgid == 0) {
1741 			/*
1742 			 * zero pgid means send to my process group.
1743 			 */
1744 			pgrp = td->td_proc->p_pgrp;
1745 			PGRP_LOCK(pgrp);
1746 		} else {
1747 			pgrp = pgfind(pgid);
1748 			if (pgrp == NULL) {
1749 				sx_sunlock(&proctree_lock);
1750 				return (ESRCH);
1751 			}
1752 		}
1753 		sx_sunlock(&proctree_lock);
1754 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1755 			killpg1_sendsig(p, false, &arg);
1756 		}
1757 		PGRP_UNLOCK(pgrp);
1758 	}
1759 	MPASS(arg.ret != 0 || arg.found || !arg.sent);
1760 	if (arg.ret == 0 && !arg.sent)
1761 		arg.ret = arg.found ? EPERM : ESRCH;
1762 	return (arg.ret);
1763 }
1764 
1765 #ifndef _SYS_SYSPROTO_H_
1766 struct kill_args {
1767 	int	pid;
1768 	int	signum;
1769 };
1770 #endif
1771 /* ARGSUSED */
1772 int
1773 sys_kill(struct thread *td, struct kill_args *uap)
1774 {
1775 
1776 	return (kern_kill(td, uap->pid, uap->signum));
1777 }
1778 
1779 int
1780 kern_kill(struct thread *td, pid_t pid, int signum)
1781 {
1782 	ksiginfo_t ksi;
1783 	struct proc *p;
1784 	int error;
1785 
1786 	/*
1787 	 * A process in capability mode can send signals only to himself.
1788 	 * The main rationale behind this is that abort(3) is implemented as
1789 	 * kill(getpid(), SIGABRT).
1790 	 */
1791 	if (IN_CAPABILITY_MODE(td) && pid != td->td_proc->p_pid)
1792 		return (ECAPMODE);
1793 
1794 	AUDIT_ARG_SIGNUM(signum);
1795 	AUDIT_ARG_PID(pid);
1796 	if ((u_int)signum > _SIG_MAXSIG)
1797 		return (EINVAL);
1798 
1799 	ksiginfo_init(&ksi);
1800 	ksi.ksi_signo = signum;
1801 	ksi.ksi_code = SI_USER;
1802 	ksi.ksi_pid = td->td_proc->p_pid;
1803 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1804 
1805 	if (pid > 0) {
1806 		/* kill single process */
1807 		if ((p = pfind_any(pid)) == NULL)
1808 			return (ESRCH);
1809 		AUDIT_ARG_PROCESS(p);
1810 		error = p_cansignal(td, p, signum);
1811 		if (error == 0 && signum)
1812 			pksignal(p, signum, &ksi);
1813 		PROC_UNLOCK(p);
1814 		return (error);
1815 	}
1816 	switch (pid) {
1817 	case -1:		/* broadcast signal */
1818 		return (killpg1(td, signum, 0, 1, &ksi));
1819 	case 0:			/* signal own process group */
1820 		return (killpg1(td, signum, 0, 0, &ksi));
1821 	default:		/* negative explicit process group */
1822 		return (killpg1(td, signum, -pid, 0, &ksi));
1823 	}
1824 	/* NOTREACHED */
1825 }
1826 
1827 int
1828 sys_pdkill(struct thread *td, struct pdkill_args *uap)
1829 {
1830 	struct proc *p;
1831 	int error;
1832 
1833 	AUDIT_ARG_SIGNUM(uap->signum);
1834 	AUDIT_ARG_FD(uap->fd);
1835 	if ((u_int)uap->signum > _SIG_MAXSIG)
1836 		return (EINVAL);
1837 
1838 	error = procdesc_find(td, uap->fd, &cap_pdkill_rights, &p);
1839 	if (error)
1840 		return (error);
1841 	AUDIT_ARG_PROCESS(p);
1842 	error = p_cansignal(td, p, uap->signum);
1843 	if (error == 0 && uap->signum)
1844 		kern_psignal(p, uap->signum);
1845 	PROC_UNLOCK(p);
1846 	return (error);
1847 }
1848 
1849 #if defined(COMPAT_43)
1850 #ifndef _SYS_SYSPROTO_H_
1851 struct okillpg_args {
1852 	int	pgid;
1853 	int	signum;
1854 };
1855 #endif
1856 /* ARGSUSED */
1857 int
1858 okillpg(struct thread *td, struct okillpg_args *uap)
1859 {
1860 	ksiginfo_t ksi;
1861 
1862 	AUDIT_ARG_SIGNUM(uap->signum);
1863 	AUDIT_ARG_PID(uap->pgid);
1864 	if ((u_int)uap->signum > _SIG_MAXSIG)
1865 		return (EINVAL);
1866 
1867 	ksiginfo_init(&ksi);
1868 	ksi.ksi_signo = uap->signum;
1869 	ksi.ksi_code = SI_USER;
1870 	ksi.ksi_pid = td->td_proc->p_pid;
1871 	ksi.ksi_uid = td->td_ucred->cr_ruid;
1872 	return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1873 }
1874 #endif /* COMPAT_43 */
1875 
1876 #ifndef _SYS_SYSPROTO_H_
1877 struct sigqueue_args {
1878 	pid_t pid;
1879 	int signum;
1880 	/* union sigval */ void *value;
1881 };
1882 #endif
1883 int
1884 sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1885 {
1886 	union sigval sv;
1887 
1888 	sv.sival_ptr = uap->value;
1889 
1890 	return (kern_sigqueue(td, uap->pid, uap->signum, &sv));
1891 }
1892 
1893 int
1894 kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value)
1895 {
1896 	ksiginfo_t ksi;
1897 	struct proc *p;
1898 	int error;
1899 
1900 	if ((u_int)signum > _SIG_MAXSIG)
1901 		return (EINVAL);
1902 
1903 	/*
1904 	 * Specification says sigqueue can only send signal to
1905 	 * single process.
1906 	 */
1907 	if (pid <= 0)
1908 		return (EINVAL);
1909 
1910 	if ((p = pfind_any(pid)) == NULL)
1911 		return (ESRCH);
1912 	error = p_cansignal(td, p, signum);
1913 	if (error == 0 && signum != 0) {
1914 		ksiginfo_init(&ksi);
1915 		ksi.ksi_flags = KSI_SIGQ;
1916 		ksi.ksi_signo = signum;
1917 		ksi.ksi_code = SI_QUEUE;
1918 		ksi.ksi_pid = td->td_proc->p_pid;
1919 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1920 		ksi.ksi_value = *value;
1921 		error = pksignal(p, ksi.ksi_signo, &ksi);
1922 	}
1923 	PROC_UNLOCK(p);
1924 	return (error);
1925 }
1926 
1927 /*
1928  * Send a signal to a process group.
1929  */
1930 void
1931 gsignal(int pgid, int sig, ksiginfo_t *ksi)
1932 {
1933 	struct pgrp *pgrp;
1934 
1935 	if (pgid != 0) {
1936 		sx_slock(&proctree_lock);
1937 		pgrp = pgfind(pgid);
1938 		sx_sunlock(&proctree_lock);
1939 		if (pgrp != NULL) {
1940 			pgsignal(pgrp, sig, 0, ksi);
1941 			PGRP_UNLOCK(pgrp);
1942 		}
1943 	}
1944 }
1945 
1946 /*
1947  * Send a signal to a process group.  If checktty is 1,
1948  * limit to members which have a controlling terminal.
1949  */
1950 void
1951 pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1952 {
1953 	struct proc *p;
1954 
1955 	if (pgrp) {
1956 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1957 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1958 			PROC_LOCK(p);
1959 			if (p->p_state == PRS_NORMAL &&
1960 			    (checkctty == 0 || p->p_flag & P_CONTROLT))
1961 				pksignal(p, sig, ksi);
1962 			PROC_UNLOCK(p);
1963 		}
1964 	}
1965 }
1966 
1967 
1968 /*
1969  * Recalculate the signal mask and reset the signal disposition after
1970  * usermode frame for delivery is formed.  Should be called after
1971  * mach-specific routine, because sysent->sv_sendsig() needs correct
1972  * ps_siginfo and signal mask.
1973  */
1974 static void
1975 postsig_done(int sig, struct thread *td, struct sigacts *ps)
1976 {
1977 	sigset_t mask;
1978 
1979 	mtx_assert(&ps->ps_mtx, MA_OWNED);
1980 	td->td_ru.ru_nsignals++;
1981 	mask = ps->ps_catchmask[_SIG_IDX(sig)];
1982 	if (!SIGISMEMBER(ps->ps_signodefer, sig))
1983 		SIGADDSET(mask, sig);
1984 	kern_sigprocmask(td, SIG_BLOCK, &mask, NULL,
1985 	    SIGPROCMASK_PROC_LOCKED | SIGPROCMASK_PS_LOCKED);
1986 	if (SIGISMEMBER(ps->ps_sigreset, sig))
1987 		sigdflt(ps, sig);
1988 }
1989 
1990 
1991 /*
1992  * Send a signal caused by a trap to the current thread.  If it will be
1993  * caught immediately, deliver it with correct code.  Otherwise, post it
1994  * normally.
1995  */
1996 void
1997 trapsignal(struct thread *td, ksiginfo_t *ksi)
1998 {
1999 	struct sigacts *ps;
2000 	struct proc *p;
2001 	int sig;
2002 	int code;
2003 
2004 	p = td->td_proc;
2005 	sig = ksi->ksi_signo;
2006 	code = ksi->ksi_code;
2007 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
2008 
2009 	PROC_LOCK(p);
2010 	ps = p->p_sigacts;
2011 	mtx_lock(&ps->ps_mtx);
2012 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
2013 	    !SIGISMEMBER(td->td_sigmask, sig)) {
2014 #ifdef KTRACE
2015 		if (KTRPOINT(curthread, KTR_PSIG))
2016 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
2017 			    &td->td_sigmask, code);
2018 #endif
2019 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
2020 				ksi, &td->td_sigmask);
2021 		postsig_done(sig, td, ps);
2022 		mtx_unlock(&ps->ps_mtx);
2023 	} else {
2024 		/*
2025 		 * Avoid a possible infinite loop if the thread
2026 		 * masking the signal or process is ignoring the
2027 		 * signal.
2028 		 */
2029 		if (kern_forcesigexit &&
2030 		    (SIGISMEMBER(td->td_sigmask, sig) ||
2031 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
2032 			SIGDELSET(td->td_sigmask, sig);
2033 			SIGDELSET(ps->ps_sigcatch, sig);
2034 			SIGDELSET(ps->ps_sigignore, sig);
2035 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2036 		}
2037 		mtx_unlock(&ps->ps_mtx);
2038 		p->p_sig = sig;		/* XXX to verify code */
2039 		tdsendsignal(p, td, sig, ksi);
2040 	}
2041 	PROC_UNLOCK(p);
2042 }
2043 
2044 static struct thread *
2045 sigtd(struct proc *p, int sig, int prop)
2046 {
2047 	struct thread *td, *signal_td;
2048 
2049 	PROC_LOCK_ASSERT(p, MA_OWNED);
2050 
2051 	/*
2052 	 * Check if current thread can handle the signal without
2053 	 * switching context to another thread.
2054 	 */
2055 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2056 		return (curthread);
2057 	signal_td = NULL;
2058 	FOREACH_THREAD_IN_PROC(p, td) {
2059 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2060 			signal_td = td;
2061 			break;
2062 		}
2063 	}
2064 	if (signal_td == NULL)
2065 		signal_td = FIRST_THREAD_IN_PROC(p);
2066 	return (signal_td);
2067 }
2068 
2069 /*
2070  * Send the signal to the process.  If the signal has an action, the action
2071  * is usually performed by the target process rather than the caller; we add
2072  * the signal to the set of pending signals for the process.
2073  *
2074  * Exceptions:
2075  *   o When a stop signal is sent to a sleeping process that takes the
2076  *     default action, the process is stopped without awakening it.
2077  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2078  *     regardless of the signal action (eg, blocked or ignored).
2079  *
2080  * Other ignored signals are discarded immediately.
2081  *
2082  * NB: This function may be entered from the debugger via the "kill" DDB
2083  * command.  There is little that can be done to mitigate the possibly messy
2084  * side effects of this unwise possibility.
2085  */
2086 void
2087 kern_psignal(struct proc *p, int sig)
2088 {
2089 	ksiginfo_t ksi;
2090 
2091 	ksiginfo_init(&ksi);
2092 	ksi.ksi_signo = sig;
2093 	ksi.ksi_code = SI_KERNEL;
2094 	(void) tdsendsignal(p, NULL, sig, &ksi);
2095 }
2096 
2097 int
2098 pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2099 {
2100 
2101 	return (tdsendsignal(p, NULL, sig, ksi));
2102 }
2103 
2104 /* Utility function for finding a thread to send signal event to. */
2105 int
2106 sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2107 {
2108 	struct thread *td;
2109 
2110 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2111 		td = tdfind(sigev->sigev_notify_thread_id, p->p_pid);
2112 		if (td == NULL)
2113 			return (ESRCH);
2114 		*ttd = td;
2115 	} else {
2116 		*ttd = NULL;
2117 		PROC_LOCK(p);
2118 	}
2119 	return (0);
2120 }
2121 
2122 void
2123 tdsignal(struct thread *td, int sig)
2124 {
2125 	ksiginfo_t ksi;
2126 
2127 	ksiginfo_init(&ksi);
2128 	ksi.ksi_signo = sig;
2129 	ksi.ksi_code = SI_KERNEL;
2130 	(void) tdsendsignal(td->td_proc, td, sig, &ksi);
2131 }
2132 
2133 void
2134 tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2135 {
2136 
2137 	(void) tdsendsignal(td->td_proc, td, sig, ksi);
2138 }
2139 
2140 int
2141 tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2142 {
2143 	sig_t action;
2144 	sigqueue_t *sigqueue;
2145 	int prop;
2146 	struct sigacts *ps;
2147 	int intrval;
2148 	int ret = 0;
2149 	int wakeup_swapper;
2150 
2151 	MPASS(td == NULL || p == td->td_proc);
2152 	PROC_LOCK_ASSERT(p, MA_OWNED);
2153 
2154 	if (!_SIG_VALID(sig))
2155 		panic("%s(): invalid signal %d", __func__, sig);
2156 
2157 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__));
2158 
2159 	/*
2160 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2161 	 */
2162 	if (p->p_state == PRS_ZOMBIE) {
2163 		if (ksi && (ksi->ksi_flags & KSI_INS))
2164 			ksiginfo_tryfree(ksi);
2165 		return (ret);
2166 	}
2167 
2168 	ps = p->p_sigacts;
2169 	KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig);
2170 	prop = sigprop(sig);
2171 
2172 	if (td == NULL) {
2173 		td = sigtd(p, sig, prop);
2174 		sigqueue = &p->p_sigqueue;
2175 	} else
2176 		sigqueue = &td->td_sigqueue;
2177 
2178 	SDT_PROBE3(proc, , , signal__send, td, p, sig);
2179 
2180 	/*
2181 	 * If the signal is being ignored,
2182 	 * then we forget about it immediately.
2183 	 * (Note: we don't set SIGCONT in ps_sigignore,
2184 	 * and if it is set to SIG_IGN,
2185 	 * action will be SIG_DFL here.)
2186 	 */
2187 	mtx_lock(&ps->ps_mtx);
2188 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2189 		SDT_PROBE3(proc, , , signal__discard, td, p, sig);
2190 
2191 		mtx_unlock(&ps->ps_mtx);
2192 		if (ksi && (ksi->ksi_flags & KSI_INS))
2193 			ksiginfo_tryfree(ksi);
2194 		return (ret);
2195 	}
2196 	if (SIGISMEMBER(td->td_sigmask, sig))
2197 		action = SIG_HOLD;
2198 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2199 		action = SIG_CATCH;
2200 	else
2201 		action = SIG_DFL;
2202 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2203 		intrval = EINTR;
2204 	else
2205 		intrval = ERESTART;
2206 	mtx_unlock(&ps->ps_mtx);
2207 
2208 	if (prop & SIGPROP_CONT)
2209 		sigqueue_delete_stopmask_proc(p);
2210 	else if (prop & SIGPROP_STOP) {
2211 		/*
2212 		 * If sending a tty stop signal to a member of an orphaned
2213 		 * process group, discard the signal here if the action
2214 		 * is default; don't stop the process below if sleeping,
2215 		 * and don't clear any pending SIGCONT.
2216 		 */
2217 		if ((prop & SIGPROP_TTYSTOP) &&
2218 		    (p->p_pgrp->pg_jobc == 0) &&
2219 		    (action == SIG_DFL)) {
2220 			if (ksi && (ksi->ksi_flags & KSI_INS))
2221 				ksiginfo_tryfree(ksi);
2222 			return (ret);
2223 		}
2224 		sigqueue_delete_proc(p, SIGCONT);
2225 		if (p->p_flag & P_CONTINUED) {
2226 			p->p_flag &= ~P_CONTINUED;
2227 			PROC_LOCK(p->p_pptr);
2228 			sigqueue_take(p->p_ksi);
2229 			PROC_UNLOCK(p->p_pptr);
2230 		}
2231 	}
2232 
2233 	ret = sigqueue_add(sigqueue, sig, ksi);
2234 	if (ret != 0)
2235 		return (ret);
2236 	signotify(td);
2237 	/*
2238 	 * Defer further processing for signals which are held,
2239 	 * except that stopped processes must be continued by SIGCONT.
2240 	 */
2241 	if (action == SIG_HOLD &&
2242 	    !((prop & SIGPROP_CONT) && (p->p_flag & P_STOPPED_SIG)))
2243 		return (ret);
2244 
2245 	/* SIGKILL: Remove procfs STOPEVENTs. */
2246 	if (sig == SIGKILL) {
2247 		/* from procfs_ioctl.c: PIOCBIC */
2248 		p->p_stops = 0;
2249 		/* from procfs_ioctl.c: PIOCCONT */
2250 		p->p_step = 0;
2251 		wakeup(&p->p_step);
2252 	}
2253 	wakeup_swapper = 0;
2254 
2255 	/*
2256 	 * Some signals have a process-wide effect and a per-thread
2257 	 * component.  Most processing occurs when the process next
2258 	 * tries to cross the user boundary, however there are some
2259 	 * times when processing needs to be done immediately, such as
2260 	 * waking up threads so that they can cross the user boundary.
2261 	 * We try to do the per-process part here.
2262 	 */
2263 	if (P_SHOULDSTOP(p)) {
2264 		KASSERT(!(p->p_flag & P_WEXIT),
2265 		    ("signal to stopped but exiting process"));
2266 		if (sig == SIGKILL) {
2267 			/*
2268 			 * If traced process is already stopped,
2269 			 * then no further action is necessary.
2270 			 */
2271 			if (p->p_flag & P_TRACED)
2272 				goto out;
2273 			/*
2274 			 * SIGKILL sets process running.
2275 			 * It will die elsewhere.
2276 			 * All threads must be restarted.
2277 			 */
2278 			p->p_flag &= ~P_STOPPED_SIG;
2279 			goto runfast;
2280 		}
2281 
2282 		if (prop & SIGPROP_CONT) {
2283 			/*
2284 			 * If traced process is already stopped,
2285 			 * then no further action is necessary.
2286 			 */
2287 			if (p->p_flag & P_TRACED)
2288 				goto out;
2289 			/*
2290 			 * If SIGCONT is default (or ignored), we continue the
2291 			 * process but don't leave the signal in sigqueue as
2292 			 * it has no further action.  If SIGCONT is held, we
2293 			 * continue the process and leave the signal in
2294 			 * sigqueue.  If the process catches SIGCONT, let it
2295 			 * handle the signal itself.  If it isn't waiting on
2296 			 * an event, it goes back to run state.
2297 			 * Otherwise, process goes back to sleep state.
2298 			 */
2299 			p->p_flag &= ~P_STOPPED_SIG;
2300 			PROC_SLOCK(p);
2301 			if (p->p_numthreads == p->p_suspcount) {
2302 				PROC_SUNLOCK(p);
2303 				p->p_flag |= P_CONTINUED;
2304 				p->p_xsig = SIGCONT;
2305 				PROC_LOCK(p->p_pptr);
2306 				childproc_continued(p);
2307 				PROC_UNLOCK(p->p_pptr);
2308 				PROC_SLOCK(p);
2309 			}
2310 			if (action == SIG_DFL) {
2311 				thread_unsuspend(p);
2312 				PROC_SUNLOCK(p);
2313 				sigqueue_delete(sigqueue, sig);
2314 				goto out;
2315 			}
2316 			if (action == SIG_CATCH) {
2317 				/*
2318 				 * The process wants to catch it so it needs
2319 				 * to run at least one thread, but which one?
2320 				 */
2321 				PROC_SUNLOCK(p);
2322 				goto runfast;
2323 			}
2324 			/*
2325 			 * The signal is not ignored or caught.
2326 			 */
2327 			thread_unsuspend(p);
2328 			PROC_SUNLOCK(p);
2329 			goto out;
2330 		}
2331 
2332 		if (prop & SIGPROP_STOP) {
2333 			/*
2334 			 * If traced process is already stopped,
2335 			 * then no further action is necessary.
2336 			 */
2337 			if (p->p_flag & P_TRACED)
2338 				goto out;
2339 			/*
2340 			 * Already stopped, don't need to stop again
2341 			 * (If we did the shell could get confused).
2342 			 * Just make sure the signal STOP bit set.
2343 			 */
2344 			p->p_flag |= P_STOPPED_SIG;
2345 			sigqueue_delete(sigqueue, sig);
2346 			goto out;
2347 		}
2348 
2349 		/*
2350 		 * All other kinds of signals:
2351 		 * If a thread is sleeping interruptibly, simulate a
2352 		 * wakeup so that when it is continued it will be made
2353 		 * runnable and can look at the signal.  However, don't make
2354 		 * the PROCESS runnable, leave it stopped.
2355 		 * It may run a bit until it hits a thread_suspend_check().
2356 		 */
2357 		PROC_SLOCK(p);
2358 		thread_lock(td);
2359 		if (TD_CAN_ABORT(td))
2360 			wakeup_swapper = sleepq_abort(td, intrval);
2361 		else
2362 			thread_unlock(td);
2363 		PROC_SUNLOCK(p);
2364 		goto out;
2365 		/*
2366 		 * Mutexes are short lived. Threads waiting on them will
2367 		 * hit thread_suspend_check() soon.
2368 		 */
2369 	} else if (p->p_state == PRS_NORMAL) {
2370 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2371 			tdsigwakeup(td, sig, action, intrval);
2372 			goto out;
2373 		}
2374 
2375 		MPASS(action == SIG_DFL);
2376 
2377 		if (prop & SIGPROP_STOP) {
2378 			if (p->p_flag & (P_PPWAIT|P_WEXIT))
2379 				goto out;
2380 			p->p_flag |= P_STOPPED_SIG;
2381 			p->p_xsig = sig;
2382 			PROC_SLOCK(p);
2383 			wakeup_swapper = sig_suspend_threads(td, p, 1);
2384 			if (p->p_numthreads == p->p_suspcount) {
2385 				/*
2386 				 * only thread sending signal to another
2387 				 * process can reach here, if thread is sending
2388 				 * signal to its process, because thread does
2389 				 * not suspend itself here, p_numthreads
2390 				 * should never be equal to p_suspcount.
2391 				 */
2392 				thread_stopped(p);
2393 				PROC_SUNLOCK(p);
2394 				sigqueue_delete_proc(p, p->p_xsig);
2395 			} else
2396 				PROC_SUNLOCK(p);
2397 			goto out;
2398 		}
2399 	} else {
2400 		/* Not in "NORMAL" state. discard the signal. */
2401 		sigqueue_delete(sigqueue, sig);
2402 		goto out;
2403 	}
2404 
2405 	/*
2406 	 * The process is not stopped so we need to apply the signal to all the
2407 	 * running threads.
2408 	 */
2409 runfast:
2410 	tdsigwakeup(td, sig, action, intrval);
2411 	PROC_SLOCK(p);
2412 	thread_unsuspend(p);
2413 	PROC_SUNLOCK(p);
2414 out:
2415 	/* If we jump here, proc slock should not be owned. */
2416 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2417 	if (wakeup_swapper)
2418 		kick_proc0();
2419 
2420 	return (ret);
2421 }
2422 
2423 /*
2424  * The force of a signal has been directed against a single
2425  * thread.  We need to see what we can do about knocking it
2426  * out of any sleep it may be in etc.
2427  */
2428 static void
2429 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2430 {
2431 	struct proc *p = td->td_proc;
2432 	int prop, wakeup_swapper;
2433 
2434 	PROC_LOCK_ASSERT(p, MA_OWNED);
2435 	prop = sigprop(sig);
2436 
2437 	PROC_SLOCK(p);
2438 	thread_lock(td);
2439 	/*
2440 	 * Bring the priority of a thread up if we want it to get
2441 	 * killed in this lifetime.  Be careful to avoid bumping the
2442 	 * priority of the idle thread, since we still allow to signal
2443 	 * kernel processes.
2444 	 */
2445 	if (action == SIG_DFL && (prop & SIGPROP_KILL) != 0 &&
2446 	    td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2447 		sched_prio(td, PUSER);
2448 	if (TD_ON_SLEEPQ(td)) {
2449 		/*
2450 		 * If thread is sleeping uninterruptibly
2451 		 * we can't interrupt the sleep... the signal will
2452 		 * be noticed when the process returns through
2453 		 * trap() or syscall().
2454 		 */
2455 		if ((td->td_flags & TDF_SINTR) == 0)
2456 			goto out;
2457 		/*
2458 		 * If SIGCONT is default (or ignored) and process is
2459 		 * asleep, we are finished; the process should not
2460 		 * be awakened.
2461 		 */
2462 		if ((prop & SIGPROP_CONT) && action == SIG_DFL) {
2463 			thread_unlock(td);
2464 			PROC_SUNLOCK(p);
2465 			sigqueue_delete(&p->p_sigqueue, sig);
2466 			/*
2467 			 * It may be on either list in this state.
2468 			 * Remove from both for now.
2469 			 */
2470 			sigqueue_delete(&td->td_sigqueue, sig);
2471 			return;
2472 		}
2473 
2474 		/*
2475 		 * Don't awaken a sleeping thread for SIGSTOP if the
2476 		 * STOP signal is deferred.
2477 		 */
2478 		if ((prop & SIGPROP_STOP) != 0 && (td->td_flags & (TDF_SBDRY |
2479 		    TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2480 			goto out;
2481 
2482 		/*
2483 		 * Give low priority threads a better chance to run.
2484 		 */
2485 		if (td->td_priority > PUSER && !TD_IS_IDLETHREAD(td))
2486 			sched_prio(td, PUSER);
2487 
2488 		wakeup_swapper = sleepq_abort(td, intrval);
2489 		PROC_SUNLOCK(p);
2490 		if (wakeup_swapper)
2491 			kick_proc0();
2492 		return;
2493 	}
2494 
2495 	/*
2496 	 * Other states do nothing with the signal immediately,
2497 	 * other than kicking ourselves if we are running.
2498 	 * It will either never be noticed, or noticed very soon.
2499 	 */
2500 #ifdef SMP
2501 	if (TD_IS_RUNNING(td) && td != curthread)
2502 		forward_signal(td);
2503 #endif
2504 
2505 out:
2506 	PROC_SUNLOCK(p);
2507 	thread_unlock(td);
2508 }
2509 
2510 static int
2511 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2512 {
2513 	struct thread *td2;
2514 	int wakeup_swapper;
2515 
2516 	PROC_LOCK_ASSERT(p, MA_OWNED);
2517 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2518 	MPASS(sending || td == curthread);
2519 
2520 	wakeup_swapper = 0;
2521 	FOREACH_THREAD_IN_PROC(p, td2) {
2522 		thread_lock(td2);
2523 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2524 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2525 		    (td2->td_flags & TDF_SINTR)) {
2526 			if (td2->td_flags & TDF_SBDRY) {
2527 				/*
2528 				 * Once a thread is asleep with
2529 				 * TDF_SBDRY and without TDF_SERESTART
2530 				 * or TDF_SEINTR set, it should never
2531 				 * become suspended due to this check.
2532 				 */
2533 				KASSERT(!TD_IS_SUSPENDED(td2),
2534 				    ("thread with deferred stops suspended"));
2535 				if (TD_SBDRY_INTR(td2)) {
2536 					wakeup_swapper |= sleepq_abort(td2,
2537 					    TD_SBDRY_ERRNO(td2));
2538 					continue;
2539 				}
2540 			} else if (!TD_IS_SUSPENDED(td2))
2541 				thread_suspend_one(td2);
2542 		} else if (!TD_IS_SUSPENDED(td2)) {
2543 			if (sending || td != td2)
2544 				td2->td_flags |= TDF_ASTPENDING;
2545 #ifdef SMP
2546 			if (TD_IS_RUNNING(td2) && td2 != td)
2547 				forward_signal(td2);
2548 #endif
2549 		}
2550 		thread_unlock(td2);
2551 	}
2552 	return (wakeup_swapper);
2553 }
2554 
2555 /*
2556  * Stop the process for an event deemed interesting to the debugger. If si is
2557  * non-NULL, this is a signal exchange; the new signal requested by the
2558  * debugger will be returned for handling. If si is NULL, this is some other
2559  * type of interesting event. The debugger may request a signal be delivered in
2560  * that case as well, however it will be deferred until it can be handled.
2561  */
2562 int
2563 ptracestop(struct thread *td, int sig, ksiginfo_t *si)
2564 {
2565 	struct proc *p = td->td_proc;
2566 	struct thread *td2;
2567 	ksiginfo_t ksi;
2568 	int prop;
2569 
2570 	PROC_LOCK_ASSERT(p, MA_OWNED);
2571 	KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"));
2572 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2573 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2574 
2575 	td->td_xsig = sig;
2576 
2577 	if (si == NULL || (si->ksi_flags & KSI_PTRACE) == 0) {
2578 		td->td_dbgflags |= TDB_XSIG;
2579 		CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",
2580 		    td->td_tid, p->p_pid, td->td_dbgflags, sig);
2581 		PROC_SLOCK(p);
2582 		while ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_XSIG)) {
2583 			if (P_KILLED(p)) {
2584 				/*
2585 				 * Ensure that, if we've been PT_KILLed, the
2586 				 * exit status reflects that. Another thread
2587 				 * may also be in ptracestop(), having just
2588 				 * received the SIGKILL, but this thread was
2589 				 * unsuspended first.
2590 				 */
2591 				td->td_dbgflags &= ~TDB_XSIG;
2592 				td->td_xsig = SIGKILL;
2593 				p->p_ptevents = 0;
2594 				break;
2595 			}
2596 			if (p->p_flag & P_SINGLE_EXIT &&
2597 			    !(td->td_dbgflags & TDB_EXIT)) {
2598 				/*
2599 				 * Ignore ptrace stops except for thread exit
2600 				 * events when the process exits.
2601 				 */
2602 				td->td_dbgflags &= ~TDB_XSIG;
2603 				PROC_SUNLOCK(p);
2604 				return (0);
2605 			}
2606 
2607 			/*
2608 			 * Make wait(2) work.  Ensure that right after the
2609 			 * attach, the thread which was decided to become the
2610 			 * leader of attach gets reported to the waiter.
2611 			 * Otherwise, just avoid overwriting another thread's
2612 			 * assignment to p_xthread.  If another thread has
2613 			 * already set p_xthread, the current thread will get
2614 			 * a chance to report itself upon the next iteration.
2615 			 */
2616 			if ((td->td_dbgflags & TDB_FSTP) != 0 ||
2617 			    ((p->p_flag2 & P2_PTRACE_FSTP) == 0 &&
2618 			    p->p_xthread == NULL)) {
2619 				p->p_xsig = sig;
2620 				p->p_xthread = td;
2621 
2622 				/*
2623 				 * If we are on sleepqueue already,
2624 				 * let sleepqueue code decide if it
2625 				 * needs to go sleep after attach.
2626 				 */
2627 				if (td->td_wchan == NULL)
2628 					td->td_dbgflags &= ~TDB_FSTP;
2629 
2630 				p->p_flag2 &= ~P2_PTRACE_FSTP;
2631 				p->p_flag |= P_STOPPED_SIG | P_STOPPED_TRACE;
2632 				sig_suspend_threads(td, p, 0);
2633 			}
2634 			if ((td->td_dbgflags & TDB_STOPATFORK) != 0) {
2635 				td->td_dbgflags &= ~TDB_STOPATFORK;
2636 			}
2637 stopme:
2638 			thread_suspend_switch(td, p);
2639 			if (p->p_xthread == td)
2640 				p->p_xthread = NULL;
2641 			if (!(p->p_flag & P_TRACED))
2642 				break;
2643 			if (td->td_dbgflags & TDB_SUSPEND) {
2644 				if (p->p_flag & P_SINGLE_EXIT)
2645 					break;
2646 				goto stopme;
2647 			}
2648 		}
2649 		PROC_SUNLOCK(p);
2650 	}
2651 
2652 	if (si != NULL && sig == td->td_xsig) {
2653 		/* Parent wants us to take the original signal unchanged. */
2654 		si->ksi_flags |= KSI_HEAD;
2655 		if (sigqueue_add(&td->td_sigqueue, sig, si) != 0)
2656 			si->ksi_signo = 0;
2657 	} else if (td->td_xsig != 0) {
2658 		/*
2659 		 * If parent wants us to take a new signal, then it will leave
2660 		 * it in td->td_xsig; otherwise we just look for signals again.
2661 		 */
2662 		ksiginfo_init(&ksi);
2663 		ksi.ksi_signo = td->td_xsig;
2664 		ksi.ksi_flags |= KSI_PTRACE;
2665 		prop = sigprop(td->td_xsig);
2666 		td2 = sigtd(p, td->td_xsig, prop);
2667 		tdsendsignal(p, td2, td->td_xsig, &ksi);
2668 		if (td != td2)
2669 			return (0);
2670 	}
2671 
2672 	return (td->td_xsig);
2673 }
2674 
2675 static void
2676 reschedule_signals(struct proc *p, sigset_t block, int flags)
2677 {
2678 	struct sigacts *ps;
2679 	struct thread *td;
2680 	int sig;
2681 
2682 	PROC_LOCK_ASSERT(p, MA_OWNED);
2683 	ps = p->p_sigacts;
2684 	mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?
2685 	    MA_OWNED : MA_NOTOWNED);
2686 	if (SIGISEMPTY(p->p_siglist))
2687 		return;
2688 	SIGSETAND(block, p->p_siglist);
2689 	while ((sig = sig_ffs(&block)) != 0) {
2690 		SIGDELSET(block, sig);
2691 		td = sigtd(p, sig, 0);
2692 		signotify(td);
2693 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2694 			mtx_lock(&ps->ps_mtx);
2695 		if (p->p_flag & P_TRACED ||
2696 		    (SIGISMEMBER(ps->ps_sigcatch, sig) &&
2697 		    !SIGISMEMBER(td->td_sigmask, sig)))
2698 			tdsigwakeup(td, sig, SIG_CATCH,
2699 			    (SIGISMEMBER(ps->ps_sigintr, sig) ? EINTR :
2700 			     ERESTART));
2701 		if (!(flags & SIGPROCMASK_PS_LOCKED))
2702 			mtx_unlock(&ps->ps_mtx);
2703 	}
2704 }
2705 
2706 void
2707 tdsigcleanup(struct thread *td)
2708 {
2709 	struct proc *p;
2710 	sigset_t unblocked;
2711 
2712 	p = td->td_proc;
2713 	PROC_LOCK_ASSERT(p, MA_OWNED);
2714 
2715 	sigqueue_flush(&td->td_sigqueue);
2716 	if (p->p_numthreads == 1)
2717 		return;
2718 
2719 	/*
2720 	 * Since we cannot handle signals, notify signal post code
2721 	 * about this by filling the sigmask.
2722 	 *
2723 	 * Also, if needed, wake up thread(s) that do not block the
2724 	 * same signals as the exiting thread, since the thread might
2725 	 * have been selected for delivery and woken up.
2726 	 */
2727 	SIGFILLSET(unblocked);
2728 	SIGSETNAND(unblocked, td->td_sigmask);
2729 	SIGFILLSET(td->td_sigmask);
2730 	reschedule_signals(p, unblocked, 0);
2731 
2732 }
2733 
2734 static int
2735 sigdeferstop_curr_flags(int cflags)
2736 {
2737 
2738 	MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||
2739 	    (cflags & TDF_SBDRY) != 0);
2740 	return (cflags & (TDF_SBDRY | TDF_SEINTR | TDF_SERESTART));
2741 }
2742 
2743 /*
2744  * Defer the delivery of SIGSTOP for the current thread, according to
2745  * the requested mode.  Returns previous flags, which must be restored
2746  * by sigallowstop().
2747  *
2748  * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2749  * cleared by the current thread, which allow the lock-less read-only
2750  * accesses below.
2751  */
2752 int
2753 sigdeferstop_impl(int mode)
2754 {
2755 	struct thread *td;
2756 	int cflags, nflags;
2757 
2758 	td = curthread;
2759 	cflags = sigdeferstop_curr_flags(td->td_flags);
2760 	switch (mode) {
2761 	case SIGDEFERSTOP_NOP:
2762 		nflags = cflags;
2763 		break;
2764 	case SIGDEFERSTOP_OFF:
2765 		nflags = 0;
2766 		break;
2767 	case SIGDEFERSTOP_SILENT:
2768 		nflags = (cflags | TDF_SBDRY) & ~(TDF_SEINTR | TDF_SERESTART);
2769 		break;
2770 	case SIGDEFERSTOP_EINTR:
2771 		nflags = (cflags | TDF_SBDRY | TDF_SEINTR) & ~TDF_SERESTART;
2772 		break;
2773 	case SIGDEFERSTOP_ERESTART:
2774 		nflags = (cflags | TDF_SBDRY | TDF_SERESTART) & ~TDF_SEINTR;
2775 		break;
2776 	default:
2777 		panic("sigdeferstop: invalid mode %x", mode);
2778 		break;
2779 	}
2780 	if (cflags == nflags)
2781 		return (SIGDEFERSTOP_VAL_NCHG);
2782 	thread_lock(td);
2783 	td->td_flags = (td->td_flags & ~cflags) | nflags;
2784 	thread_unlock(td);
2785 	return (cflags);
2786 }
2787 
2788 /*
2789  * Restores the STOP handling mode, typically permitting the delivery
2790  * of SIGSTOP for the current thread.  This does not immediately
2791  * suspend if a stop was posted.  Instead, the thread will suspend
2792  * either via ast() or a subsequent interruptible sleep.
2793  */
2794 void
2795 sigallowstop_impl(int prev)
2796 {
2797 	struct thread *td;
2798 	int cflags;
2799 
2800 	KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"));
2801 	KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,
2802 	    ("sigallowstop: incorrect previous mode %x", prev));
2803 	td = curthread;
2804 	cflags = sigdeferstop_curr_flags(td->td_flags);
2805 	if (cflags != prev) {
2806 		thread_lock(td);
2807 		td->td_flags = (td->td_flags & ~cflags) | prev;
2808 		thread_unlock(td);
2809 	}
2810 }
2811 
2812 /*
2813  * If the current process has received a signal (should be caught or cause
2814  * termination, should interrupt current syscall), return the signal number.
2815  * Stop signals with default action are processed immediately, then cleared;
2816  * they aren't returned.  This is checked after each entry to the system for
2817  * a syscall or trap (though this can usually be done without calling issignal
2818  * by checking the pending signal masks in cursig.) The normal call
2819  * sequence is
2820  *
2821  *	while (sig = cursig(curthread))
2822  *		postsig(sig);
2823  */
2824 static int
2825 issignal(struct thread *td)
2826 {
2827 	struct proc *p;
2828 	struct sigacts *ps;
2829 	struct sigqueue *queue;
2830 	sigset_t sigpending;
2831 	ksiginfo_t ksi;
2832 	int prop, sig, traced;
2833 
2834 	p = td->td_proc;
2835 	ps = p->p_sigacts;
2836 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2837 	PROC_LOCK_ASSERT(p, MA_OWNED);
2838 	for (;;) {
2839 		traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2840 
2841 		sigpending = td->td_sigqueue.sq_signals;
2842 		SIGSETOR(sigpending, p->p_sigqueue.sq_signals);
2843 		SIGSETNAND(sigpending, td->td_sigmask);
2844 
2845 		if ((p->p_flag & P_PPWAIT) != 0 || (td->td_flags &
2846 		    (TDF_SBDRY | TDF_SERESTART | TDF_SEINTR)) == TDF_SBDRY)
2847 			SIG_STOPSIGMASK(sigpending);
2848 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2849 			return (0);
2850 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED &&
2851 		    (p->p_flag2 & P2_PTRACE_FSTP) != 0 &&
2852 		    SIGISMEMBER(sigpending, SIGSTOP)) {
2853 			/*
2854 			 * If debugger just attached, always consume
2855 			 * SIGSTOP from ptrace(PT_ATTACH) first, to
2856 			 * execute the debugger attach ritual in
2857 			 * order.
2858 			 */
2859 			sig = SIGSTOP;
2860 			td->td_dbgflags |= TDB_FSTP;
2861 		} else {
2862 			sig = sig_ffs(&sigpending);
2863 		}
2864 
2865 		if (p->p_stops & S_SIG) {
2866 			mtx_unlock(&ps->ps_mtx);
2867 			stopevent(p, S_SIG, sig);
2868 			mtx_lock(&ps->ps_mtx);
2869 		}
2870 
2871 		/*
2872 		 * We should see pending but ignored signals
2873 		 * only if P_TRACED was on when they were posted.
2874 		 */
2875 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2876 			sigqueue_delete(&td->td_sigqueue, sig);
2877 			sigqueue_delete(&p->p_sigqueue, sig);
2878 			continue;
2879 		}
2880 		if ((p->p_flag & (P_TRACED | P_PPTRACE)) == P_TRACED) {
2881 			/*
2882 			 * If traced, always stop.
2883 			 * Remove old signal from queue before the stop.
2884 			 * XXX shrug off debugger, it causes siginfo to
2885 			 * be thrown away.
2886 			 */
2887 			queue = &td->td_sigqueue;
2888 			ksiginfo_init(&ksi);
2889 			if (sigqueue_get(queue, sig, &ksi) == 0) {
2890 				queue = &p->p_sigqueue;
2891 				sigqueue_get(queue, sig, &ksi);
2892 			}
2893 			td->td_si = ksi.ksi_info;
2894 
2895 			mtx_unlock(&ps->ps_mtx);
2896 			sig = ptracestop(td, sig, &ksi);
2897 			mtx_lock(&ps->ps_mtx);
2898 
2899 			td->td_si.si_signo = 0;
2900 
2901 			/*
2902 			 * Keep looking if the debugger discarded or
2903 			 * replaced the signal.
2904 			 */
2905 			if (sig == 0)
2906 				continue;
2907 
2908 			/*
2909 			 * If the signal became masked, re-queue it.
2910 			 */
2911 			if (SIGISMEMBER(td->td_sigmask, sig)) {
2912 				ksi.ksi_flags |= KSI_HEAD;
2913 				sigqueue_add(&p->p_sigqueue, sig, &ksi);
2914 				continue;
2915 			}
2916 
2917 			/*
2918 			 * If the traced bit got turned off, requeue
2919 			 * the signal and go back up to the top to
2920 			 * rescan signals.  This ensures that p_sig*
2921 			 * and p_sigact are consistent.
2922 			 */
2923 			if ((p->p_flag & P_TRACED) == 0) {
2924 				ksi.ksi_flags |= KSI_HEAD;
2925 				sigqueue_add(queue, sig, &ksi);
2926 				continue;
2927 			}
2928 		}
2929 
2930 		prop = sigprop(sig);
2931 
2932 		/*
2933 		 * Decide whether the signal should be returned.
2934 		 * Return the signal's number, or fall through
2935 		 * to clear it from the pending mask.
2936 		 */
2937 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2938 
2939 		case (intptr_t)SIG_DFL:
2940 			/*
2941 			 * Don't take default actions on system processes.
2942 			 */
2943 			if (p->p_pid <= 1) {
2944 #ifdef DIAGNOSTIC
2945 				/*
2946 				 * Are you sure you want to ignore SIGSEGV
2947 				 * in init? XXX
2948 				 */
2949 				printf("Process (pid %lu) got signal %d\n",
2950 					(u_long)p->p_pid, sig);
2951 #endif
2952 				break;		/* == ignore */
2953 			}
2954 			/*
2955 			 * If there is a pending stop signal to process with
2956 			 * default action, stop here, then clear the signal.
2957 			 * Traced or exiting processes should ignore stops.
2958 			 * Additionally, a member of an orphaned process group
2959 			 * should ignore tty stops.
2960 			 */
2961 			if (prop & SIGPROP_STOP) {
2962 				if (p->p_flag &
2963 				    (P_TRACED | P_WEXIT | P_SINGLE_EXIT) ||
2964 				    (p->p_pgrp->pg_jobc == 0 &&
2965 				     prop & SIGPROP_TTYSTOP))
2966 					break;	/* == ignore */
2967 				if (TD_SBDRY_INTR(td)) {
2968 					KASSERT((td->td_flags & TDF_SBDRY) != 0,
2969 					    ("lost TDF_SBDRY"));
2970 					return (-1);
2971 				}
2972 				mtx_unlock(&ps->ps_mtx);
2973 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2974 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2975 				sigqueue_delete(&td->td_sigqueue, sig);
2976 				sigqueue_delete(&p->p_sigqueue, sig);
2977 				p->p_flag |= P_STOPPED_SIG;
2978 				p->p_xsig = sig;
2979 				PROC_SLOCK(p);
2980 				sig_suspend_threads(td, p, 0);
2981 				thread_suspend_switch(td, p);
2982 				PROC_SUNLOCK(p);
2983 				mtx_lock(&ps->ps_mtx);
2984 				goto next;
2985 			} else if (prop & SIGPROP_IGNORE) {
2986 				/*
2987 				 * Except for SIGCONT, shouldn't get here.
2988 				 * Default action is to ignore; drop it.
2989 				 */
2990 				break;		/* == ignore */
2991 			} else
2992 				return (sig);
2993 			/*NOTREACHED*/
2994 
2995 		case (intptr_t)SIG_IGN:
2996 			/*
2997 			 * Masking above should prevent us ever trying
2998 			 * to take action on an ignored signal other
2999 			 * than SIGCONT, unless process is traced.
3000 			 */
3001 			if ((prop & SIGPROP_CONT) == 0 &&
3002 			    (p->p_flag & P_TRACED) == 0)
3003 				printf("issignal\n");
3004 			break;		/* == ignore */
3005 
3006 		default:
3007 			/*
3008 			 * This signal has an action, let
3009 			 * postsig() process it.
3010 			 */
3011 			return (sig);
3012 		}
3013 		sigqueue_delete(&td->td_sigqueue, sig);	/* take the signal! */
3014 		sigqueue_delete(&p->p_sigqueue, sig);
3015 next:;
3016 	}
3017 	/* NOTREACHED */
3018 }
3019 
3020 void
3021 thread_stopped(struct proc *p)
3022 {
3023 	int n;
3024 
3025 	PROC_LOCK_ASSERT(p, MA_OWNED);
3026 	PROC_SLOCK_ASSERT(p, MA_OWNED);
3027 	n = p->p_suspcount;
3028 	if (p == curproc)
3029 		n++;
3030 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
3031 		PROC_SUNLOCK(p);
3032 		p->p_flag &= ~P_WAITED;
3033 		PROC_LOCK(p->p_pptr);
3034 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
3035 			CLD_TRAPPED : CLD_STOPPED);
3036 		PROC_UNLOCK(p->p_pptr);
3037 		PROC_SLOCK(p);
3038 	}
3039 }
3040 
3041 /*
3042  * Take the action for the specified signal
3043  * from the current set of pending signals.
3044  */
3045 int
3046 postsig(int sig)
3047 {
3048 	struct thread *td;
3049 	struct proc *p;
3050 	struct sigacts *ps;
3051 	sig_t action;
3052 	ksiginfo_t ksi;
3053 	sigset_t returnmask;
3054 
3055 	KASSERT(sig != 0, ("postsig"));
3056 
3057 	td = curthread;
3058 	p = td->td_proc;
3059 	PROC_LOCK_ASSERT(p, MA_OWNED);
3060 	ps = p->p_sigacts;
3061 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3062 	ksiginfo_init(&ksi);
3063 	if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
3064 	    sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
3065 		return (0);
3066 	ksi.ksi_signo = sig;
3067 	if (ksi.ksi_code == SI_TIMER)
3068 		itimer_accept(p, ksi.ksi_timerid, &ksi);
3069 	action = ps->ps_sigact[_SIG_IDX(sig)];
3070 #ifdef KTRACE
3071 	if (KTRPOINT(td, KTR_PSIG))
3072 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
3073 		    &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_code);
3074 #endif
3075 	if ((p->p_stops & S_SIG) != 0) {
3076 		mtx_unlock(&ps->ps_mtx);
3077 		stopevent(p, S_SIG, sig);
3078 		mtx_lock(&ps->ps_mtx);
3079 	}
3080 
3081 	if (action == SIG_DFL) {
3082 		/*
3083 		 * Default action, where the default is to kill
3084 		 * the process.  (Other cases were ignored above.)
3085 		 */
3086 		mtx_unlock(&ps->ps_mtx);
3087 		proc_td_siginfo_capture(td, &ksi.ksi_info);
3088 		sigexit(td, sig);
3089 		/* NOTREACHED */
3090 	} else {
3091 		/*
3092 		 * If we get here, the signal must be caught.
3093 		 */
3094 		KASSERT(action != SIG_IGN, ("postsig action %p", action));
3095 		KASSERT(!SIGISMEMBER(td->td_sigmask, sig),
3096 		    ("postsig action: blocked sig %d", sig));
3097 
3098 		/*
3099 		 * Set the new mask value and also defer further
3100 		 * occurrences of this signal.
3101 		 *
3102 		 * Special case: user has done a sigsuspend.  Here the
3103 		 * current mask is not of interest, but rather the
3104 		 * mask from before the sigsuspend is what we want
3105 		 * restored after the signal processing is completed.
3106 		 */
3107 		if (td->td_pflags & TDP_OLDMASK) {
3108 			returnmask = td->td_oldsigmask;
3109 			td->td_pflags &= ~TDP_OLDMASK;
3110 		} else
3111 			returnmask = td->td_sigmask;
3112 
3113 		if (p->p_sig == sig) {
3114 			p->p_sig = 0;
3115 		}
3116 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
3117 		postsig_done(sig, td, ps);
3118 	}
3119 	return (1);
3120 }
3121 
3122 void
3123 proc_wkilled(struct proc *p)
3124 {
3125 
3126 	PROC_LOCK_ASSERT(p, MA_OWNED);
3127 	if ((p->p_flag & P_WKILLED) == 0) {
3128 		p->p_flag |= P_WKILLED;
3129 		/*
3130 		 * Notify swapper that there is a process to swap in.
3131 		 * The notification is racy, at worst it would take 10
3132 		 * seconds for the swapper process to notice.
3133 		 */
3134 		if ((p->p_flag & (P_INMEM | P_SWAPPINGIN)) == 0)
3135 			wakeup(&proc0);
3136 	}
3137 }
3138 
3139 /*
3140  * Kill the current process for stated reason.
3141  */
3142 void
3143 killproc(struct proc *p, char *why)
3144 {
3145 
3146 	PROC_LOCK_ASSERT(p, MA_OWNED);
3147 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,
3148 	    p->p_comm);
3149 	log(LOG_ERR, "pid %d (%s), jid %d, uid %d, was killed: %s\n",
3150 	    p->p_pid, p->p_comm, p->p_ucred->cr_prison->pr_id,
3151 	    p->p_ucred->cr_uid, why);
3152 	proc_wkilled(p);
3153 	kern_psignal(p, SIGKILL);
3154 }
3155 
3156 /*
3157  * Force the current process to exit with the specified signal, dumping core
3158  * if appropriate.  We bypass the normal tests for masked and caught signals,
3159  * allowing unrecoverable failures to terminate the process without changing
3160  * signal state.  Mark the accounting record with the signal termination.
3161  * If dumping core, save the signal number for the debugger.  Calls exit and
3162  * does not return.
3163  */
3164 void
3165 sigexit(struct thread *td, int sig)
3166 {
3167 	struct proc *p = td->td_proc;
3168 
3169 	PROC_LOCK_ASSERT(p, MA_OWNED);
3170 	p->p_acflag |= AXSIG;
3171 	/*
3172 	 * We must be single-threading to generate a core dump.  This
3173 	 * ensures that the registers in the core file are up-to-date.
3174 	 * Also, the ELF dump handler assumes that the thread list doesn't
3175 	 * change out from under it.
3176 	 *
3177 	 * XXX If another thread attempts to single-thread before us
3178 	 *     (e.g. via fork()), we won't get a dump at all.
3179 	 */
3180 	if ((sigprop(sig) & SIGPROP_CORE) &&
3181 	    thread_single(p, SINGLE_NO_EXIT) == 0) {
3182 		p->p_sig = sig;
3183 		/*
3184 		 * Log signals which would cause core dumps
3185 		 * (Log as LOG_INFO to appease those who don't want
3186 		 * these messages.)
3187 		 * XXX : Todo, as well as euid, write out ruid too
3188 		 * Note that coredump() drops proc lock.
3189 		 */
3190 		if (coredump(td) == 0)
3191 			sig |= WCOREFLAG;
3192 		if (kern_logsigexit)
3193 			log(LOG_INFO,
3194 			    "pid %d (%s), jid %d, uid %d: exited on "
3195 			    "signal %d%s\n", p->p_pid, p->p_comm,
3196 			    p->p_ucred->cr_prison->pr_id,
3197 			    td->td_ucred->cr_uid,
3198 			    sig &~ WCOREFLAG,
3199 			    sig & WCOREFLAG ? " (core dumped)" : "");
3200 	} else
3201 		PROC_UNLOCK(p);
3202 	exit1(td, 0, sig);
3203 	/* NOTREACHED */
3204 }
3205 
3206 /*
3207  * Send queued SIGCHLD to parent when child process's state
3208  * is changed.
3209  */
3210 static void
3211 sigparent(struct proc *p, int reason, int status)
3212 {
3213 	PROC_LOCK_ASSERT(p, MA_OWNED);
3214 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3215 
3216 	if (p->p_ksi != NULL) {
3217 		p->p_ksi->ksi_signo  = SIGCHLD;
3218 		p->p_ksi->ksi_code   = reason;
3219 		p->p_ksi->ksi_status = status;
3220 		p->p_ksi->ksi_pid    = p->p_pid;
3221 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
3222 		if (KSI_ONQ(p->p_ksi))
3223 			return;
3224 	}
3225 	pksignal(p->p_pptr, SIGCHLD, p->p_ksi);
3226 }
3227 
3228 static void
3229 childproc_jobstate(struct proc *p, int reason, int sig)
3230 {
3231 	struct sigacts *ps;
3232 
3233 	PROC_LOCK_ASSERT(p, MA_OWNED);
3234 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
3235 
3236 	/*
3237 	 * Wake up parent sleeping in kern_wait(), also send
3238 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
3239 	 * that parent will awake, because parent may masked
3240 	 * the signal.
3241 	 */
3242 	p->p_pptr->p_flag |= P_STATCHILD;
3243 	wakeup(p->p_pptr);
3244 
3245 	ps = p->p_pptr->p_sigacts;
3246 	mtx_lock(&ps->ps_mtx);
3247 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
3248 		mtx_unlock(&ps->ps_mtx);
3249 		sigparent(p, reason, sig);
3250 	} else
3251 		mtx_unlock(&ps->ps_mtx);
3252 }
3253 
3254 void
3255 childproc_stopped(struct proc *p, int reason)
3256 {
3257 
3258 	childproc_jobstate(p, reason, p->p_xsig);
3259 }
3260 
3261 void
3262 childproc_continued(struct proc *p)
3263 {
3264 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
3265 }
3266 
3267 void
3268 childproc_exited(struct proc *p)
3269 {
3270 	int reason, status;
3271 
3272 	if (WCOREDUMP(p->p_xsig)) {
3273 		reason = CLD_DUMPED;
3274 		status = WTERMSIG(p->p_xsig);
3275 	} else if (WIFSIGNALED(p->p_xsig)) {
3276 		reason = CLD_KILLED;
3277 		status = WTERMSIG(p->p_xsig);
3278 	} else {
3279 		reason = CLD_EXITED;
3280 		status = p->p_xexit;
3281 	}
3282 	/*
3283 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3284 	 * done in exit1().
3285 	 */
3286 	sigparent(p, reason, status);
3287 }
3288 
3289 #define	MAX_NUM_CORE_FILES 100000
3290 #ifndef NUM_CORE_FILES
3291 #define	NUM_CORE_FILES 5
3292 #endif
3293 CTASSERT(NUM_CORE_FILES >= 0 && NUM_CORE_FILES <= MAX_NUM_CORE_FILES);
3294 static int num_cores = NUM_CORE_FILES;
3295 
3296 static int
3297 sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGS)
3298 {
3299 	int error;
3300 	int new_val;
3301 
3302 	new_val = num_cores;
3303 	error = sysctl_handle_int(oidp, &new_val, 0, req);
3304 	if (error != 0 || req->newptr == NULL)
3305 		return (error);
3306 	if (new_val > MAX_NUM_CORE_FILES)
3307 		new_val = MAX_NUM_CORE_FILES;
3308 	if (new_val < 0)
3309 		new_val = 0;
3310 	num_cores = new_val;
3311 	return (0);
3312 }
3313 SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,
3314 	    0, sizeof(int), sysctl_debug_num_cores_check, "I",
3315 	    "Maximum number of generated process corefiles while using index format");
3316 
3317 #define	GZIP_SUFFIX	".gz"
3318 #define	ZSTD_SUFFIX	".zst"
3319 
3320 int compress_user_cores = 0;
3321 
3322 static int
3323 sysctl_compress_user_cores(SYSCTL_HANDLER_ARGS)
3324 {
3325 	int error, val;
3326 
3327 	val = compress_user_cores;
3328 	error = sysctl_handle_int(oidp, &val, 0, req);
3329 	if (error != 0 || req->newptr == NULL)
3330 		return (error);
3331 	if (val != 0 && !compressor_avail(val))
3332 		return (EINVAL);
3333 	compress_user_cores = val;
3334 	return (error);
3335 }
3336 SYSCTL_PROC(_kern, OID_AUTO, compress_user_cores, CTLTYPE_INT | CTLFLAG_RWTUN,
3337     0, sizeof(int), sysctl_compress_user_cores, "I",
3338     "Enable compression of user corefiles ("
3339     __XSTRING(COMPRESS_GZIP) " = gzip, "
3340     __XSTRING(COMPRESS_ZSTD) " = zstd)");
3341 
3342 int compress_user_cores_level = 6;
3343 SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_level, CTLFLAG_RWTUN,
3344     &compress_user_cores_level, 0,
3345     "Corefile compression level");
3346 
3347 /*
3348  * Protect the access to corefilename[] by allproc_lock.
3349  */
3350 #define	corefilename_lock	allproc_lock
3351 
3352 static char corefilename[MAXPATHLEN] = {"%N.core"};
3353 TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename));
3354 
3355 static int
3356 sysctl_kern_corefile(SYSCTL_HANDLER_ARGS)
3357 {
3358 	int error;
3359 
3360 	sx_xlock(&corefilename_lock);
3361 	error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3362 	    req);
3363 	sx_xunlock(&corefilename_lock);
3364 
3365 	return (error);
3366 }
3367 SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |
3368     CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",
3369     "Process corefile name format string");
3370 
3371 static void
3372 vnode_close_locked(struct thread *td, struct vnode *vp)
3373 {
3374 
3375 	VOP_UNLOCK(vp);
3376 	vn_close(vp, FWRITE, td->td_ucred, td);
3377 }
3378 
3379 /*
3380  * If the core format has a %I in it, then we need to check
3381  * for existing corefiles before defining a name.
3382  * To do this we iterate over 0..ncores to find a
3383  * non-existing core file name to use. If all core files are
3384  * already used we choose the oldest one.
3385  */
3386 static int
3387 corefile_open_last(struct thread *td, char *name, int indexpos,
3388     int indexlen, int ncores, struct vnode **vpp)
3389 {
3390 	struct vnode *oldvp, *nextvp, *vp;
3391 	struct vattr vattr;
3392 	struct nameidata nd;
3393 	int error, i, flags, oflags, cmode;
3394 	char ch;
3395 	struct timespec lasttime;
3396 
3397 	nextvp = oldvp = NULL;
3398 	cmode = S_IRUSR | S_IWUSR;
3399 	oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3400 	    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3401 
3402 	for (i = 0; i < ncores; i++) {
3403 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3404 
3405 		ch = name[indexpos + indexlen];
3406 		(void)snprintf(name + indexpos, indexlen + 1, "%.*u", indexlen,
3407 		    i);
3408 		name[indexpos + indexlen] = ch;
3409 
3410 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3411 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3412 		    NULL);
3413 		if (error != 0)
3414 			break;
3415 
3416 		vp = nd.ni_vp;
3417 		NDFREE(&nd, NDF_ONLY_PNBUF);
3418 		if ((flags & O_CREAT) == O_CREAT) {
3419 			nextvp = vp;
3420 			break;
3421 		}
3422 
3423 		error = VOP_GETATTR(vp, &vattr, td->td_ucred);
3424 		if (error != 0) {
3425 			vnode_close_locked(td, vp);
3426 			break;
3427 		}
3428 
3429 		if (oldvp == NULL ||
3430 		    lasttime.tv_sec > vattr.va_mtime.tv_sec ||
3431 		    (lasttime.tv_sec == vattr.va_mtime.tv_sec &&
3432 		    lasttime.tv_nsec >= vattr.va_mtime.tv_nsec)) {
3433 			if (oldvp != NULL)
3434 				vnode_close_locked(td, oldvp);
3435 			oldvp = vp;
3436 			lasttime = vattr.va_mtime;
3437 		} else {
3438 			vnode_close_locked(td, vp);
3439 		}
3440 	}
3441 
3442 	if (oldvp != NULL) {
3443 		if (nextvp == NULL) {
3444 			if ((td->td_proc->p_flag & P_SUGID) != 0) {
3445 				error = EFAULT;
3446 				vnode_close_locked(td, oldvp);
3447 			} else {
3448 				nextvp = oldvp;
3449 			}
3450 		} else {
3451 			vnode_close_locked(td, oldvp);
3452 		}
3453 	}
3454 	if (error != 0) {
3455 		if (nextvp != NULL)
3456 			vnode_close_locked(td, oldvp);
3457 	} else {
3458 		*vpp = nextvp;
3459 	}
3460 
3461 	return (error);
3462 }
3463 
3464 /*
3465  * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3466  * Expand the name described in corefilename, using name, uid, and pid
3467  * and open/create core file.
3468  * corefilename is a printf-like string, with three format specifiers:
3469  *	%N	name of process ("name")
3470  *	%P	process id (pid)
3471  *	%U	user id (uid)
3472  * For example, "%N.core" is the default; they can be disabled completely
3473  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3474  * This is controlled by the sysctl variable kern.corefile (see above).
3475  */
3476 static int
3477 corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3478     int compress, int signum, struct vnode **vpp, char **namep)
3479 {
3480 	struct sbuf sb;
3481 	struct nameidata nd;
3482 	const char *format;
3483 	char *hostname, *name;
3484 	int cmode, error, flags, i, indexpos, indexlen, oflags, ncores;
3485 
3486 	hostname = NULL;
3487 	format = corefilename;
3488 	name = malloc(MAXPATHLEN, M_TEMP, M_WAITOK | M_ZERO);
3489 	indexlen = 0;
3490 	indexpos = -1;
3491 	ncores = num_cores;
3492 	(void)sbuf_new(&sb, name, MAXPATHLEN, SBUF_FIXEDLEN);
3493 	sx_slock(&corefilename_lock);
3494 	for (i = 0; format[i] != '\0'; i++) {
3495 		switch (format[i]) {
3496 		case '%':	/* Format character */
3497 			i++;
3498 			switch (format[i]) {
3499 			case '%':
3500 				sbuf_putc(&sb, '%');
3501 				break;
3502 			case 'H':	/* hostname */
3503 				if (hostname == NULL) {
3504 					hostname = malloc(MAXHOSTNAMELEN,
3505 					    M_TEMP, M_WAITOK);
3506 				}
3507 				getcredhostname(td->td_ucred, hostname,
3508 				    MAXHOSTNAMELEN);
3509 				sbuf_printf(&sb, "%s", hostname);
3510 				break;
3511 			case 'I':	/* autoincrementing index */
3512 				if (indexpos != -1) {
3513 					sbuf_printf(&sb, "%%I");
3514 					break;
3515 				}
3516 
3517 				indexpos = sbuf_len(&sb);
3518 				sbuf_printf(&sb, "%u", ncores - 1);
3519 				indexlen = sbuf_len(&sb) - indexpos;
3520 				break;
3521 			case 'N':	/* process name */
3522 				sbuf_printf(&sb, "%s", comm);
3523 				break;
3524 			case 'P':	/* process id */
3525 				sbuf_printf(&sb, "%u", pid);
3526 				break;
3527 			case 'S':	/* signal number */
3528 				sbuf_printf(&sb, "%i", signum);
3529 				break;
3530 			case 'U':	/* user id */
3531 				sbuf_printf(&sb, "%u", uid);
3532 				break;
3533 			default:
3534 				log(LOG_ERR,
3535 				    "Unknown format character %c in "
3536 				    "corename `%s'\n", format[i], format);
3537 				break;
3538 			}
3539 			break;
3540 		default:
3541 			sbuf_putc(&sb, format[i]);
3542 			break;
3543 		}
3544 	}
3545 	sx_sunlock(&corefilename_lock);
3546 	free(hostname, M_TEMP);
3547 	if (compress == COMPRESS_GZIP)
3548 		sbuf_printf(&sb, GZIP_SUFFIX);
3549 	else if (compress == COMPRESS_ZSTD)
3550 		sbuf_printf(&sb, ZSTD_SUFFIX);
3551 	if (sbuf_error(&sb) != 0) {
3552 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
3553 		    "long\n", (long)pid, comm, (u_long)uid);
3554 		sbuf_delete(&sb);
3555 		free(name, M_TEMP);
3556 		return (ENOMEM);
3557 	}
3558 	sbuf_finish(&sb);
3559 	sbuf_delete(&sb);
3560 
3561 	if (indexpos != -1) {
3562 		error = corefile_open_last(td, name, indexpos, indexlen, ncores,
3563 		    vpp);
3564 		if (error != 0) {
3565 			log(LOG_ERR,
3566 			    "pid %d (%s), uid (%u):  Path `%s' failed "
3567 			    "on initial open test, error = %d\n",
3568 			    pid, comm, uid, name, error);
3569 		}
3570 	} else {
3571 		cmode = S_IRUSR | S_IWUSR;
3572 		oflags = VN_OPEN_NOAUDIT | VN_OPEN_NAMECACHE |
3573 		    (capmode_coredump ? VN_OPEN_NOCAPCHECK : 0);
3574 		flags = O_CREAT | FWRITE | O_NOFOLLOW;
3575 		if ((td->td_proc->p_flag & P_SUGID) != 0)
3576 			flags |= O_EXCL;
3577 
3578 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td);
3579 		error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred,
3580 		    NULL);
3581 		if (error == 0) {
3582 			*vpp = nd.ni_vp;
3583 			NDFREE(&nd, NDF_ONLY_PNBUF);
3584 		}
3585 	}
3586 
3587 	if (error != 0) {
3588 #ifdef AUDIT
3589 		audit_proc_coredump(td, name, error);
3590 #endif
3591 		free(name, M_TEMP);
3592 		return (error);
3593 	}
3594 	*namep = name;
3595 	return (0);
3596 }
3597 
3598 /*
3599  * Dump a process' core.  The main routine does some
3600  * policy checking, and creates the name of the coredump;
3601  * then it passes on a vnode and a size limit to the process-specific
3602  * coredump routine if there is one; if there _is not_ one, it returns
3603  * ENOSYS; otherwise it returns the error from the process-specific routine.
3604  */
3605 
3606 static int
3607 coredump(struct thread *td)
3608 {
3609 	struct proc *p = td->td_proc;
3610 	struct ucred *cred = td->td_ucred;
3611 	struct vnode *vp;
3612 	struct flock lf;
3613 	struct vattr vattr;
3614 	int error, error1, locked;
3615 	char *name;			/* name of corefile */
3616 	void *rl_cookie;
3617 	off_t limit;
3618 	char *fullpath, *freepath = NULL;
3619 	struct sbuf *sb;
3620 
3621 	PROC_LOCK_ASSERT(p, MA_OWNED);
3622 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3623 	_STOPEVENT(p, S_CORE, 0);
3624 
3625 	if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID) != 0) ||
3626 	    (p->p_flag2 & P2_NOTRACE) != 0) {
3627 		PROC_UNLOCK(p);
3628 		return (EFAULT);
3629 	}
3630 
3631 	/*
3632 	 * Note that the bulk of limit checking is done after
3633 	 * the corefile is created.  The exception is if the limit
3634 	 * for corefiles is 0, in which case we don't bother
3635 	 * creating the corefile at all.  This layout means that
3636 	 * a corefile is truncated instead of not being created,
3637 	 * if it is larger than the limit.
3638 	 */
3639 	limit = (off_t)lim_cur(td, RLIMIT_CORE);
3640 	if (limit == 0 || racct_get_available(p, RACCT_CORE) == 0) {
3641 		PROC_UNLOCK(p);
3642 		return (EFBIG);
3643 	}
3644 	PROC_UNLOCK(p);
3645 
3646 	error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3647 	    compress_user_cores, p->p_sig, &vp, &name);
3648 	if (error != 0)
3649 		return (error);
3650 
3651 	/*
3652 	 * Don't dump to non-regular files or files with links.
3653 	 * Do not dump into system files. Effective user must own the corefile.
3654 	 */
3655 	if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3656 	    vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM) != 0 ||
3657 	    vattr.va_uid != cred->cr_uid) {
3658 		VOP_UNLOCK(vp);
3659 		error = EFAULT;
3660 		goto out;
3661 	}
3662 
3663 	VOP_UNLOCK(vp);
3664 
3665 	/* Postpone other writers, including core dumps of other processes. */
3666 	rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX);
3667 
3668 	lf.l_whence = SEEK_SET;
3669 	lf.l_start = 0;
3670 	lf.l_len = 0;
3671 	lf.l_type = F_WRLCK;
3672 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3673 
3674 	VATTR_NULL(&vattr);
3675 	vattr.va_size = 0;
3676 	if (set_core_nodump_flag)
3677 		vattr.va_flags = UF_NODUMP;
3678 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3679 	VOP_SETATTR(vp, &vattr, cred);
3680 	VOP_UNLOCK(vp);
3681 	PROC_LOCK(p);
3682 	p->p_acflag |= ACORE;
3683 	PROC_UNLOCK(p);
3684 
3685 	if (p->p_sysent->sv_coredump != NULL) {
3686 		error = p->p_sysent->sv_coredump(td, vp, limit, 0);
3687 	} else {
3688 		error = ENOSYS;
3689 	}
3690 
3691 	if (locked) {
3692 		lf.l_type = F_UNLCK;
3693 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3694 	}
3695 	vn_rangelock_unlock(vp, rl_cookie);
3696 
3697 	/*
3698 	 * Notify the userland helper that a process triggered a core dump.
3699 	 * This allows the helper to run an automated debugging session.
3700 	 */
3701 	if (error != 0 || coredump_devctl == 0)
3702 		goto out;
3703 	sb = sbuf_new_auto();
3704 	if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3705 		goto out2;
3706 	sbuf_printf(sb, "comm=\"");
3707 	devctl_safe_quote_sb(sb, fullpath);
3708 	free(freepath, M_TEMP);
3709 	sbuf_printf(sb, "\" core=\"");
3710 
3711 	/*
3712 	 * We can't lookup core file vp directly. When we're replacing a core, and
3713 	 * other random times, we flush the name cache, so it will fail. Instead,
3714 	 * if the path of the core is relative, add the current dir in front if it.
3715 	 */
3716 	if (name[0] != '/') {
3717 		fullpath = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
3718 		if (kern___getcwd(td, fullpath, UIO_SYSSPACE, MAXPATHLEN, MAXPATHLEN) != 0) {
3719 			free(fullpath, M_TEMP);
3720 			goto out2;
3721 		}
3722 		devctl_safe_quote_sb(sb, fullpath);
3723 		free(fullpath, M_TEMP);
3724 		sbuf_putc(sb, '/');
3725 	}
3726 	devctl_safe_quote_sb(sb, name);
3727 	sbuf_printf(sb, "\"");
3728 	if (sbuf_finish(sb) == 0)
3729 		devctl_notify("kernel", "signal", "coredump", sbuf_data(sb));
3730 out2:
3731 	sbuf_delete(sb);
3732 out:
3733 	error1 = vn_close(vp, FWRITE, cred, td);
3734 	if (error == 0)
3735 		error = error1;
3736 #ifdef AUDIT
3737 	audit_proc_coredump(td, name, error);
3738 #endif
3739 	free(name, M_TEMP);
3740 	return (error);
3741 }
3742 
3743 /*
3744  * Nonexistent system call-- signal process (may want to handle it).  Flag
3745  * error in case process won't see signal immediately (blocked or ignored).
3746  */
3747 #ifndef _SYS_SYSPROTO_H_
3748 struct nosys_args {
3749 	int	dummy;
3750 };
3751 #endif
3752 /* ARGSUSED */
3753 int
3754 nosys(struct thread *td, struct nosys_args *args)
3755 {
3756 	struct proc *p;
3757 
3758 	p = td->td_proc;
3759 
3760 	PROC_LOCK(p);
3761 	tdsignal(td, SIGSYS);
3762 	PROC_UNLOCK(p);
3763 	if (kern_lognosys == 1 || kern_lognosys == 3) {
3764 		uprintf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3765 		    td->td_sa.code);
3766 	}
3767 	if (kern_lognosys == 2 || kern_lognosys == 3) {
3768 		printf("pid %d comm %s: nosys %d\n", p->p_pid, p->p_comm,
3769 		    td->td_sa.code);
3770 	}
3771 	return (ENOSYS);
3772 }
3773 
3774 /*
3775  * Send a SIGIO or SIGURG signal to a process or process group using stored
3776  * credentials rather than those of the current process.
3777  */
3778 void
3779 pgsigio(struct sigio **sigiop, int sig, int checkctty)
3780 {
3781 	ksiginfo_t ksi;
3782 	struct sigio *sigio;
3783 
3784 	ksiginfo_init(&ksi);
3785 	ksi.ksi_signo = sig;
3786 	ksi.ksi_code = SI_KERNEL;
3787 
3788 	SIGIO_LOCK();
3789 	sigio = *sigiop;
3790 	if (sigio == NULL) {
3791 		SIGIO_UNLOCK();
3792 		return;
3793 	}
3794 	if (sigio->sio_pgid > 0) {
3795 		PROC_LOCK(sigio->sio_proc);
3796 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3797 			kern_psignal(sigio->sio_proc, sig);
3798 		PROC_UNLOCK(sigio->sio_proc);
3799 	} else if (sigio->sio_pgid < 0) {
3800 		struct proc *p;
3801 
3802 		PGRP_LOCK(sigio->sio_pgrp);
3803 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3804 			PROC_LOCK(p);
3805 			if (p->p_state == PRS_NORMAL &&
3806 			    CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3807 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3808 				kern_psignal(p, sig);
3809 			PROC_UNLOCK(p);
3810 		}
3811 		PGRP_UNLOCK(sigio->sio_pgrp);
3812 	}
3813 	SIGIO_UNLOCK();
3814 }
3815 
3816 static int
3817 filt_sigattach(struct knote *kn)
3818 {
3819 	struct proc *p = curproc;
3820 
3821 	kn->kn_ptr.p_proc = p;
3822 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3823 
3824 	knlist_add(p->p_klist, kn, 0);
3825 
3826 	return (0);
3827 }
3828 
3829 static void
3830 filt_sigdetach(struct knote *kn)
3831 {
3832 	struct proc *p = kn->kn_ptr.p_proc;
3833 
3834 	knlist_remove(p->p_klist, kn, 0);
3835 }
3836 
3837 /*
3838  * signal knotes are shared with proc knotes, so we apply a mask to
3839  * the hint in order to differentiate them from process hints.  This
3840  * could be avoided by using a signal-specific knote list, but probably
3841  * isn't worth the trouble.
3842  */
3843 static int
3844 filt_signal(struct knote *kn, long hint)
3845 {
3846 
3847 	if (hint & NOTE_SIGNAL) {
3848 		hint &= ~NOTE_SIGNAL;
3849 
3850 		if (kn->kn_id == hint)
3851 			kn->kn_data++;
3852 	}
3853 	return (kn->kn_data != 0);
3854 }
3855 
3856 struct sigacts *
3857 sigacts_alloc(void)
3858 {
3859 	struct sigacts *ps;
3860 
3861 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3862 	refcount_init(&ps->ps_refcnt, 1);
3863 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3864 	return (ps);
3865 }
3866 
3867 void
3868 sigacts_free(struct sigacts *ps)
3869 {
3870 
3871 	if (refcount_release(&ps->ps_refcnt) == 0)
3872 		return;
3873 	mtx_destroy(&ps->ps_mtx);
3874 	free(ps, M_SUBPROC);
3875 }
3876 
3877 struct sigacts *
3878 sigacts_hold(struct sigacts *ps)
3879 {
3880 
3881 	refcount_acquire(&ps->ps_refcnt);
3882 	return (ps);
3883 }
3884 
3885 void
3886 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3887 {
3888 
3889 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3890 	mtx_lock(&src->ps_mtx);
3891 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3892 	mtx_unlock(&src->ps_mtx);
3893 }
3894 
3895 int
3896 sigacts_shared(struct sigacts *ps)
3897 {
3898 
3899 	return (ps->ps_refcnt > 1);
3900 }
3901 
3902 void
3903 sig_drop_caught(struct proc *p)
3904 {
3905 	int sig;
3906 	struct sigacts *ps;
3907 
3908 	ps = p->p_sigacts;
3909 	PROC_LOCK_ASSERT(p, MA_OWNED);
3910 	mtx_assert(&ps->ps_mtx, MA_OWNED);
3911 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
3912 		sig = sig_ffs(&ps->ps_sigcatch);
3913 		sigdflt(ps, sig);
3914 		if ((sigprop(sig) & SIGPROP_IGNORE) != 0)
3915 			sigqueue_delete_proc(p, sig);
3916 	}
3917 }
3918