xref: /freebsd/sys/kern/kern_sig.c (revision 262e143bd46171a6415a5b28af260a5efa2a3db8)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <posix4/posix4.h>
80 #include <machine/cpu.h>
81 
82 #if defined (__alpha__) && !defined(COMPAT_43)
83 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
84 #endif
85 
86 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
87 
88 static int	coredump(struct thread *);
89 static char	*expand_name(const char *, uid_t, pid_t);
90 static int	killpg1(struct thread *td, int sig, int pgid, int all);
91 static int	issignal(struct thread *p);
92 static int	sigprop(int sig);
93 static void	tdsigwakeup(struct thread *td, int sig, sig_t action);
94 static int	filt_sigattach(struct knote *kn);
95 static void	filt_sigdetach(struct knote *kn);
96 static int	filt_signal(struct knote *kn, long hint);
97 static struct thread *sigtd(struct proc *p, int sig, int prop);
98 static int	kern_sigtimedwait(struct thread *, sigset_t,
99 			ksiginfo_t *, struct timespec *);
100 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
101 static void	sigqueue_start(void);
102 
103 static uma_zone_t	ksiginfo_zone = NULL;
104 struct filterops sig_filtops =
105 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
106 
107 static int	kern_logsigexit = 1;
108 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
109     &kern_logsigexit, 0,
110     "Log processes quitting on abnormal signals to syslog(3)");
111 
112 static int	kern_forcesigexit = 1;
113 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
114     &kern_forcesigexit, 0, "Force trap signal to be handled");
115 
116 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
117 
118 static int	max_pending_per_proc = 128;
119 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
120     &max_pending_per_proc, 0, "Max pending signals per proc");
121 
122 static int	preallocate_siginfo = 1024;
123 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
124 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
125     &preallocate_siginfo, 0, "Preallocated signal memory size");
126 
127 static int	signal_overflow = 0;
128 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
129     &signal_overflow, 0, "Number of signals overflew");
130 
131 static int	signal_alloc_fail = 0;
132 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
133     &signal_alloc_fail, 0, "signals failed to be allocated");
134 
135 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
136 
137 /*
138  * Policy -- Can ucred cr1 send SIGIO to process cr2?
139  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
140  * in the right situations.
141  */
142 #define CANSIGIO(cr1, cr2) \
143 	((cr1)->cr_uid == 0 || \
144 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
145 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
146 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
147 	    (cr1)->cr_uid == (cr2)->cr_uid)
148 
149 int sugid_coredump;
150 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
151     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
152 
153 static int	do_coredump = 1;
154 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
155 	&do_coredump, 0, "Enable/Disable coredumps");
156 
157 static int	set_core_nodump_flag = 0;
158 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
159 	0, "Enable setting the NODUMP flag on coredump files");
160 
161 /*
162  * Signal properties and actions.
163  * The array below categorizes the signals and their default actions
164  * according to the following properties:
165  */
166 #define	SA_KILL		0x01		/* terminates process by default */
167 #define	SA_CORE		0x02		/* ditto and coredumps */
168 #define	SA_STOP		0x04		/* suspend process */
169 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
170 #define	SA_IGNORE	0x10		/* ignore by default */
171 #define	SA_CONT		0x20		/* continue if suspended */
172 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
173 #define	SA_PROC		0x80		/* deliverable to any thread */
174 
175 static int sigproptbl[NSIG] = {
176         SA_KILL|SA_PROC,		/* SIGHUP */
177         SA_KILL|SA_PROC,		/* SIGINT */
178         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
179         SA_KILL|SA_CORE,		/* SIGILL */
180         SA_KILL|SA_CORE,		/* SIGTRAP */
181         SA_KILL|SA_CORE,		/* SIGABRT */
182         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
183         SA_KILL|SA_CORE,		/* SIGFPE */
184         SA_KILL|SA_PROC,		/* SIGKILL */
185         SA_KILL|SA_CORE,		/* SIGBUS */
186         SA_KILL|SA_CORE,		/* SIGSEGV */
187         SA_KILL|SA_CORE,		/* SIGSYS */
188         SA_KILL|SA_PROC,		/* SIGPIPE */
189         SA_KILL|SA_PROC,		/* SIGALRM */
190         SA_KILL|SA_PROC,		/* SIGTERM */
191         SA_IGNORE|SA_PROC,		/* SIGURG */
192         SA_STOP|SA_PROC,		/* SIGSTOP */
193         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
194         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
195         SA_IGNORE|SA_PROC,		/* SIGCHLD */
196         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
197         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
198         SA_IGNORE|SA_PROC,		/* SIGIO */
199         SA_KILL,			/* SIGXCPU */
200         SA_KILL,			/* SIGXFSZ */
201         SA_KILL|SA_PROC,		/* SIGVTALRM */
202         SA_KILL|SA_PROC,		/* SIGPROF */
203         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
204         SA_IGNORE|SA_PROC,		/* SIGINFO */
205         SA_KILL|SA_PROC,		/* SIGUSR1 */
206         SA_KILL|SA_PROC,		/* SIGUSR2 */
207 };
208 
209 static void
210 sigqueue_start(void)
211 {
212 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
213 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
215 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
216 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
217 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
218 }
219 
220 ksiginfo_t *
221 ksiginfo_alloc(int wait)
222 {
223 	int flags;
224 
225 	flags = M_ZERO;
226 	if (! wait)
227 		flags |= M_NOWAIT;
228 	if (ksiginfo_zone != NULL)
229 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
230 	return (NULL);
231 }
232 
233 void
234 ksiginfo_free(ksiginfo_t *ksi)
235 {
236 	uma_zfree(ksiginfo_zone, ksi);
237 }
238 
239 static __inline int
240 ksiginfo_tryfree(ksiginfo_t *ksi)
241 {
242 	if (!(ksi->ksi_flags & KSI_EXT)) {
243 		uma_zfree(ksiginfo_zone, ksi);
244 		return (1);
245 	}
246 	return (0);
247 }
248 
249 void
250 sigqueue_init(sigqueue_t *list, struct proc *p)
251 {
252 	SIGEMPTYSET(list->sq_signals);
253 	TAILQ_INIT(&list->sq_list);
254 	list->sq_proc = p;
255 	list->sq_flags = SQ_INIT;
256 }
257 
258 /*
259  * Get a signal's ksiginfo.
260  * Return:
261  * 	0	-	signal not found
262  *	others	-	signal number
263  */
264 int
265 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
266 {
267 	struct proc *p = sq->sq_proc;
268 	struct ksiginfo *ksi, *next;
269 	int count = 0;
270 
271 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
272 
273 	if (!SIGISMEMBER(sq->sq_signals, signo))
274 		return (0);
275 
276 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
277 		next = TAILQ_NEXT(ksi, ksi_link);
278 		if (ksi->ksi_signo == signo) {
279 			if (count == 0) {
280 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
281 				ksi->ksi_sigq = NULL;
282 				ksiginfo_copy(ksi, si);
283 				if (ksiginfo_tryfree(ksi) && p != NULL)
284 					p->p_pendingcnt--;
285 			}
286 			count++;
287 		}
288 	}
289 
290 	if (count <= 1)
291 		SIGDELSET(sq->sq_signals, signo);
292 	si->ksi_signo = signo;
293 	return (signo);
294 }
295 
296 void
297 sigqueue_take(ksiginfo_t *ksi)
298 {
299 	struct ksiginfo *kp;
300 	struct proc	*p;
301 	sigqueue_t	*sq;
302 
303 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
304 		return;
305 
306 	p = sq->sq_proc;
307 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
308 	ksi->ksi_sigq = NULL;
309 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
310 		p->p_pendingcnt--;
311 
312 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
313 	     kp = TAILQ_NEXT(kp, ksi_link)) {
314 		if (kp->ksi_signo == ksi->ksi_signo)
315 			break;
316 	}
317 	if (kp == NULL)
318 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
319 }
320 
321 int
322 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
323 {
324 	struct proc *p = sq->sq_proc;
325 	struct ksiginfo *ksi;
326 	int ret = 0;
327 
328 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
329 
330 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL)
331 		goto out_set_bit;
332 
333 	/* directly insert the ksi, don't copy it */
334 	if (si->ksi_flags & KSI_INS) {
335 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
336 		si->ksi_sigq = sq;
337 		goto out_set_bit;
338 	}
339 
340 	if (__predict_false(ksiginfo_zone == NULL))
341 		goto out_set_bit;
342 
343 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
344 		signal_overflow++;
345 		ret = EAGAIN;
346 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
347 		signal_alloc_fail++;
348 		ret = EAGAIN;
349 	} else {
350 		if (p != NULL)
351 			p->p_pendingcnt++;
352 		ksiginfo_copy(si, ksi);
353 		ksi->ksi_signo = signo;
354 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
355 		ksi->ksi_sigq = sq;
356 	}
357 
358 	if ((si->ksi_flags & KSI_TRAP) != 0) {
359 		ret = 0;
360 		goto out_set_bit;
361 	}
362 
363 	if (ret != 0)
364 		return (ret);
365 
366 out_set_bit:
367 	SIGADDSET(sq->sq_signals, signo);
368 	return (ret);
369 }
370 
371 void
372 sigqueue_flush(sigqueue_t *sq)
373 {
374 	struct proc *p = sq->sq_proc;
375 	ksiginfo_t *ksi;
376 
377 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
378 
379 	if (p != NULL)
380 		PROC_LOCK_ASSERT(p, MA_OWNED);
381 
382 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
383 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
384 		ksi->ksi_sigq = NULL;
385 		if (ksiginfo_tryfree(ksi) && p != NULL)
386 			p->p_pendingcnt--;
387 	}
388 
389 	SIGEMPTYSET(sq->sq_signals);
390 }
391 
392 void
393 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
394 {
395 	ksiginfo_t *ksi;
396 
397 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
398 
399 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
400 		SIGADDSET(*set, ksi->ksi_signo);
401 }
402 
403 void
404 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
405 {
406 	sigset_t tmp, set;
407 	struct proc *p1, *p2;
408 	ksiginfo_t *ksi, *next;
409 
410 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
411 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
412 	/*
413 	 * make a copy, this allows setp to point to src or dst
414 	 * sq_signals without trouble.
415 	 */
416 	set = *setp;
417 	p1 = src->sq_proc;
418 	p2 = dst->sq_proc;
419 	/* Move siginfo to target list */
420 	for (ksi = TAILQ_FIRST(&src->sq_list); ksi != NULL; ksi = next) {
421 		next = TAILQ_NEXT(ksi, ksi_link);
422 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
423 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
424 			if (p1 != NULL)
425 				p1->p_pendingcnt--;
426 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
427 			ksi->ksi_sigq = dst;
428 			if (p2 != NULL)
429 				p2->p_pendingcnt++;
430 		}
431 	}
432 
433 	/* Move pending bits to target list */
434 	tmp = src->sq_signals;
435 	SIGSETAND(tmp, set);
436 	SIGSETOR(dst->sq_signals, tmp);
437 	SIGSETNAND(src->sq_signals, tmp);
438 
439 	/* Finally, rescan src queue and set pending bits for it */
440 	sigqueue_collect_set(src, &src->sq_signals);
441 }
442 
443 void
444 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
445 {
446 	sigset_t set;
447 
448 	SIGEMPTYSET(set);
449 	SIGADDSET(set, signo);
450 	sigqueue_move_set(src, dst, &set);
451 }
452 
453 void
454 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
455 {
456 	struct proc *p = sq->sq_proc;
457 	ksiginfo_t *ksi, *next;
458 
459 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
460 
461 	/* Remove siginfo queue */
462 	for (ksi = TAILQ_FIRST(&sq->sq_list); ksi != NULL; ksi = next) {
463 		next = TAILQ_NEXT(ksi, ksi_link);
464 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
465 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
466 			ksi->ksi_sigq = NULL;
467 			if (ksiginfo_tryfree(ksi) && p != NULL)
468 				p->p_pendingcnt--;
469 		}
470 	}
471 	SIGSETNAND(sq->sq_signals, *set);
472 	/* Finally, rescan queue and set pending bits for it */
473 	sigqueue_collect_set(sq, &sq->sq_signals);
474 }
475 
476 void
477 sigqueue_delete(sigqueue_t *sq, int signo)
478 {
479 	sigset_t set;
480 
481 	SIGEMPTYSET(set);
482 	SIGADDSET(set, signo);
483 	sigqueue_delete_set(sq, &set);
484 }
485 
486 /* Remove a set of signals for a process */
487 void
488 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
489 {
490 	sigqueue_t worklist;
491 	struct thread *td0;
492 
493 	PROC_LOCK_ASSERT(p, MA_OWNED);
494 
495 	sigqueue_init(&worklist, NULL);
496 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
497 
498 	mtx_lock_spin(&sched_lock);
499 	FOREACH_THREAD_IN_PROC(p, td0)
500 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
501 	mtx_unlock_spin(&sched_lock);
502 
503 	sigqueue_flush(&worklist);
504 }
505 
506 void
507 sigqueue_delete_proc(struct proc *p, int signo)
508 {
509 	sigset_t set;
510 
511 	SIGEMPTYSET(set);
512 	SIGADDSET(set, signo);
513 	sigqueue_delete_set_proc(p, &set);
514 }
515 
516 void
517 sigqueue_delete_stopmask_proc(struct proc *p)
518 {
519 	sigset_t set;
520 
521 	SIGEMPTYSET(set);
522 	SIGADDSET(set, SIGSTOP);
523 	SIGADDSET(set, SIGTSTP);
524 	SIGADDSET(set, SIGTTIN);
525 	SIGADDSET(set, SIGTTOU);
526 	sigqueue_delete_set_proc(p, &set);
527 }
528 
529 /*
530  * Determine signal that should be delivered to process p, the current
531  * process, 0 if none.  If there is a pending stop signal with default
532  * action, the process stops in issignal().
533  *
534  * MP SAFE.
535  */
536 int
537 cursig(struct thread *td)
538 {
539 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
540 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
541 	mtx_assert(&sched_lock, MA_NOTOWNED);
542 	return (SIGPENDING(td) ? issignal(td) : 0);
543 }
544 
545 /*
546  * Arrange for ast() to handle unmasked pending signals on return to user
547  * mode.  This must be called whenever a signal is added to td_sigqueue or
548  * unmasked in td_sigmask.
549  */
550 void
551 signotify(struct thread *td)
552 {
553 	struct proc *p;
554 	sigset_t set, saved;
555 
556 	p = td->td_proc;
557 
558 	PROC_LOCK_ASSERT(p, MA_OWNED);
559 
560 	/*
561 	 * If our mask changed we may have to move signal that were
562 	 * previously masked by all threads to our sigqueue.
563 	 */
564 	set = p->p_sigqueue.sq_signals;
565 	if (p->p_flag & P_SA)
566 		saved = p->p_sigqueue.sq_signals;
567 	SIGSETNAND(set, td->td_sigmask);
568 	if (! SIGISEMPTY(set))
569 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
570 	if (SIGPENDING(td)) {
571 		mtx_lock_spin(&sched_lock);
572 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
573 		mtx_unlock_spin(&sched_lock);
574 	}
575 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
576 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
577 			/* pending set changed */
578 			p->p_flag |= P_SIGEVENT;
579 			wakeup(&p->p_siglist);
580 		}
581 	}
582 }
583 
584 int
585 sigonstack(size_t sp)
586 {
587 	struct thread *td = curthread;
588 
589 	return ((td->td_pflags & TDP_ALTSTACK) ?
590 #if defined(COMPAT_43)
591 	    ((td->td_sigstk.ss_size == 0) ?
592 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
593 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
594 #else
595 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
596 #endif
597 	    : 0);
598 }
599 
600 static __inline int
601 sigprop(int sig)
602 {
603 
604 	if (sig > 0 && sig < NSIG)
605 		return (sigproptbl[_SIG_IDX(sig)]);
606 	return (0);
607 }
608 
609 int
610 sig_ffs(sigset_t *set)
611 {
612 	int i;
613 
614 	for (i = 0; i < _SIG_WORDS; i++)
615 		if (set->__bits[i])
616 			return (ffs(set->__bits[i]) + (i * 32));
617 	return (0);
618 }
619 
620 /*
621  * kern_sigaction
622  * sigaction
623  * freebsd4_sigaction
624  * osigaction
625  *
626  * MPSAFE
627  */
628 int
629 kern_sigaction(td, sig, act, oact, flags)
630 	struct thread *td;
631 	register int sig;
632 	struct sigaction *act, *oact;
633 	int flags;
634 {
635 	struct sigacts *ps;
636 	struct proc *p = td->td_proc;
637 
638 	if (!_SIG_VALID(sig))
639 		return (EINVAL);
640 
641 	PROC_LOCK(p);
642 	ps = p->p_sigacts;
643 	mtx_lock(&ps->ps_mtx);
644 	if (oact) {
645 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
646 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
647 		oact->sa_flags = 0;
648 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
649 			oact->sa_flags |= SA_ONSTACK;
650 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
651 			oact->sa_flags |= SA_RESTART;
652 		if (SIGISMEMBER(ps->ps_sigreset, sig))
653 			oact->sa_flags |= SA_RESETHAND;
654 		if (SIGISMEMBER(ps->ps_signodefer, sig))
655 			oact->sa_flags |= SA_NODEFER;
656 		if (SIGISMEMBER(ps->ps_siginfo, sig))
657 			oact->sa_flags |= SA_SIGINFO;
658 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
659 			oact->sa_flags |= SA_NOCLDSTOP;
660 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
661 			oact->sa_flags |= SA_NOCLDWAIT;
662 	}
663 	if (act) {
664 		if ((sig == SIGKILL || sig == SIGSTOP) &&
665 		    act->sa_handler != SIG_DFL) {
666 			mtx_unlock(&ps->ps_mtx);
667 			PROC_UNLOCK(p);
668 			return (EINVAL);
669 		}
670 
671 		/*
672 		 * Change setting atomically.
673 		 */
674 
675 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
676 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
677 		if (act->sa_flags & SA_SIGINFO) {
678 			ps->ps_sigact[_SIG_IDX(sig)] =
679 			    (__sighandler_t *)act->sa_sigaction;
680 			SIGADDSET(ps->ps_siginfo, sig);
681 		} else {
682 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
683 			SIGDELSET(ps->ps_siginfo, sig);
684 		}
685 		if (!(act->sa_flags & SA_RESTART))
686 			SIGADDSET(ps->ps_sigintr, sig);
687 		else
688 			SIGDELSET(ps->ps_sigintr, sig);
689 		if (act->sa_flags & SA_ONSTACK)
690 			SIGADDSET(ps->ps_sigonstack, sig);
691 		else
692 			SIGDELSET(ps->ps_sigonstack, sig);
693 		if (act->sa_flags & SA_RESETHAND)
694 			SIGADDSET(ps->ps_sigreset, sig);
695 		else
696 			SIGDELSET(ps->ps_sigreset, sig);
697 		if (act->sa_flags & SA_NODEFER)
698 			SIGADDSET(ps->ps_signodefer, sig);
699 		else
700 			SIGDELSET(ps->ps_signodefer, sig);
701 		if (sig == SIGCHLD) {
702 			if (act->sa_flags & SA_NOCLDSTOP)
703 				ps->ps_flag |= PS_NOCLDSTOP;
704 			else
705 				ps->ps_flag &= ~PS_NOCLDSTOP;
706 			if (act->sa_flags & SA_NOCLDWAIT) {
707 				/*
708 				 * Paranoia: since SA_NOCLDWAIT is implemented
709 				 * by reparenting the dying child to PID 1 (and
710 				 * trust it to reap the zombie), PID 1 itself
711 				 * is forbidden to set SA_NOCLDWAIT.
712 				 */
713 				if (p->p_pid == 1)
714 					ps->ps_flag &= ~PS_NOCLDWAIT;
715 				else
716 					ps->ps_flag |= PS_NOCLDWAIT;
717 			} else
718 				ps->ps_flag &= ~PS_NOCLDWAIT;
719 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
720 				ps->ps_flag |= PS_CLDSIGIGN;
721 			else
722 				ps->ps_flag &= ~PS_CLDSIGIGN;
723 		}
724 		/*
725 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
726 		 * and for signals set to SIG_DFL where the default is to
727 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
728 		 * have to restart the process.
729 		 */
730 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
731 		    (sigprop(sig) & SA_IGNORE &&
732 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
733 			if ((p->p_flag & P_SA) &&
734 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
735 				p->p_flag |= P_SIGEVENT;
736 				wakeup(&p->p_siglist);
737 			}
738 			/* never to be seen again */
739 			sigqueue_delete_proc(p, sig);
740 			if (sig != SIGCONT)
741 				/* easier in psignal */
742 				SIGADDSET(ps->ps_sigignore, sig);
743 			SIGDELSET(ps->ps_sigcatch, sig);
744 		} else {
745 			SIGDELSET(ps->ps_sigignore, sig);
746 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
747 				SIGDELSET(ps->ps_sigcatch, sig);
748 			else
749 				SIGADDSET(ps->ps_sigcatch, sig);
750 		}
751 #ifdef COMPAT_FREEBSD4
752 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
753 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
754 		    (flags & KSA_FREEBSD4) == 0)
755 			SIGDELSET(ps->ps_freebsd4, sig);
756 		else
757 			SIGADDSET(ps->ps_freebsd4, sig);
758 #endif
759 #ifdef COMPAT_43
760 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
761 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
762 		    (flags & KSA_OSIGSET) == 0)
763 			SIGDELSET(ps->ps_osigset, sig);
764 		else
765 			SIGADDSET(ps->ps_osigset, sig);
766 #endif
767 	}
768 	mtx_unlock(&ps->ps_mtx);
769 	PROC_UNLOCK(p);
770 	return (0);
771 }
772 
773 #ifndef _SYS_SYSPROTO_H_
774 struct sigaction_args {
775 	int	sig;
776 	struct	sigaction *act;
777 	struct	sigaction *oact;
778 };
779 #endif
780 /*
781  * MPSAFE
782  */
783 int
784 sigaction(td, uap)
785 	struct thread *td;
786 	register struct sigaction_args *uap;
787 {
788 	struct sigaction act, oact;
789 	register struct sigaction *actp, *oactp;
790 	int error;
791 
792 	actp = (uap->act != NULL) ? &act : NULL;
793 	oactp = (uap->oact != NULL) ? &oact : NULL;
794 	if (actp) {
795 		error = copyin(uap->act, actp, sizeof(act));
796 		if (error)
797 			return (error);
798 	}
799 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
800 	if (oactp && !error)
801 		error = copyout(oactp, uap->oact, sizeof(oact));
802 	return (error);
803 }
804 
805 #ifdef COMPAT_FREEBSD4
806 #ifndef _SYS_SYSPROTO_H_
807 struct freebsd4_sigaction_args {
808 	int	sig;
809 	struct	sigaction *act;
810 	struct	sigaction *oact;
811 };
812 #endif
813 /*
814  * MPSAFE
815  */
816 int
817 freebsd4_sigaction(td, uap)
818 	struct thread *td;
819 	register struct freebsd4_sigaction_args *uap;
820 {
821 	struct sigaction act, oact;
822 	register struct sigaction *actp, *oactp;
823 	int error;
824 
825 
826 	actp = (uap->act != NULL) ? &act : NULL;
827 	oactp = (uap->oact != NULL) ? &oact : NULL;
828 	if (actp) {
829 		error = copyin(uap->act, actp, sizeof(act));
830 		if (error)
831 			return (error);
832 	}
833 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
834 	if (oactp && !error)
835 		error = copyout(oactp, uap->oact, sizeof(oact));
836 	return (error);
837 }
838 #endif	/* COMAPT_FREEBSD4 */
839 
840 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
841 #ifndef _SYS_SYSPROTO_H_
842 struct osigaction_args {
843 	int	signum;
844 	struct	osigaction *nsa;
845 	struct	osigaction *osa;
846 };
847 #endif
848 /*
849  * MPSAFE
850  */
851 int
852 osigaction(td, uap)
853 	struct thread *td;
854 	register struct osigaction_args *uap;
855 {
856 	struct osigaction sa;
857 	struct sigaction nsa, osa;
858 	register struct sigaction *nsap, *osap;
859 	int error;
860 
861 	if (uap->signum <= 0 || uap->signum >= ONSIG)
862 		return (EINVAL);
863 
864 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
865 	osap = (uap->osa != NULL) ? &osa : NULL;
866 
867 	if (nsap) {
868 		error = copyin(uap->nsa, &sa, sizeof(sa));
869 		if (error)
870 			return (error);
871 		nsap->sa_handler = sa.sa_handler;
872 		nsap->sa_flags = sa.sa_flags;
873 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
874 	}
875 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
876 	if (osap && !error) {
877 		sa.sa_handler = osap->sa_handler;
878 		sa.sa_flags = osap->sa_flags;
879 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
880 		error = copyout(&sa, uap->osa, sizeof(sa));
881 	}
882 	return (error);
883 }
884 
885 #if !defined(__i386__) && !defined(__alpha__)
886 /* Avoid replicating the same stub everywhere */
887 int
888 osigreturn(td, uap)
889 	struct thread *td;
890 	struct osigreturn_args *uap;
891 {
892 
893 	return (nosys(td, (struct nosys_args *)uap));
894 }
895 #endif
896 #endif /* COMPAT_43 */
897 
898 /*
899  * Initialize signal state for process 0;
900  * set to ignore signals that are ignored by default.
901  */
902 void
903 siginit(p)
904 	struct proc *p;
905 {
906 	register int i;
907 	struct sigacts *ps;
908 
909 	PROC_LOCK(p);
910 	ps = p->p_sigacts;
911 	mtx_lock(&ps->ps_mtx);
912 	for (i = 1; i <= NSIG; i++)
913 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
914 			SIGADDSET(ps->ps_sigignore, i);
915 	mtx_unlock(&ps->ps_mtx);
916 	PROC_UNLOCK(p);
917 }
918 
919 /*
920  * Reset signals for an exec of the specified process.
921  */
922 void
923 execsigs(struct proc *p)
924 {
925 	struct sigacts *ps;
926 	int sig;
927 	struct thread *td;
928 
929 	/*
930 	 * Reset caught signals.  Held signals remain held
931 	 * through td_sigmask (unless they were caught,
932 	 * and are now ignored by default).
933 	 */
934 	PROC_LOCK_ASSERT(p, MA_OWNED);
935 	td = FIRST_THREAD_IN_PROC(p);
936 	ps = p->p_sigacts;
937 	mtx_lock(&ps->ps_mtx);
938 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
939 		sig = sig_ffs(&ps->ps_sigcatch);
940 		SIGDELSET(ps->ps_sigcatch, sig);
941 		if (sigprop(sig) & SA_IGNORE) {
942 			if (sig != SIGCONT)
943 				SIGADDSET(ps->ps_sigignore, sig);
944 			sigqueue_delete_proc(p, sig);
945 		}
946 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
947 	}
948 	/*
949 	 * Reset stack state to the user stack.
950 	 * Clear set of signals caught on the signal stack.
951 	 */
952 	td->td_sigstk.ss_flags = SS_DISABLE;
953 	td->td_sigstk.ss_size = 0;
954 	td->td_sigstk.ss_sp = 0;
955 	td->td_pflags &= ~TDP_ALTSTACK;
956 	/*
957 	 * Reset no zombies if child dies flag as Solaris does.
958 	 */
959 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
960 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
961 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
962 	mtx_unlock(&ps->ps_mtx);
963 }
964 
965 /*
966  * kern_sigprocmask()
967  *
968  *	Manipulate signal mask.
969  */
970 int
971 kern_sigprocmask(td, how, set, oset, old)
972 	struct thread *td;
973 	int how;
974 	sigset_t *set, *oset;
975 	int old;
976 {
977 	int error;
978 
979 	PROC_LOCK(td->td_proc);
980 	if (oset != NULL)
981 		*oset = td->td_sigmask;
982 
983 	error = 0;
984 	if (set != NULL) {
985 		switch (how) {
986 		case SIG_BLOCK:
987 			SIG_CANTMASK(*set);
988 			SIGSETOR(td->td_sigmask, *set);
989 			break;
990 		case SIG_UNBLOCK:
991 			SIGSETNAND(td->td_sigmask, *set);
992 			signotify(td);
993 			break;
994 		case SIG_SETMASK:
995 			SIG_CANTMASK(*set);
996 			if (old)
997 				SIGSETLO(td->td_sigmask, *set);
998 			else
999 				td->td_sigmask = *set;
1000 			signotify(td);
1001 			break;
1002 		default:
1003 			error = EINVAL;
1004 			break;
1005 		}
1006 	}
1007 	PROC_UNLOCK(td->td_proc);
1008 	return (error);
1009 }
1010 
1011 /*
1012  * sigprocmask() - MP SAFE
1013  */
1014 
1015 #ifndef _SYS_SYSPROTO_H_
1016 struct sigprocmask_args {
1017 	int	how;
1018 	const sigset_t *set;
1019 	sigset_t *oset;
1020 };
1021 #endif
1022 int
1023 sigprocmask(td, uap)
1024 	register struct thread *td;
1025 	struct sigprocmask_args *uap;
1026 {
1027 	sigset_t set, oset;
1028 	sigset_t *setp, *osetp;
1029 	int error;
1030 
1031 	setp = (uap->set != NULL) ? &set : NULL;
1032 	osetp = (uap->oset != NULL) ? &oset : NULL;
1033 	if (setp) {
1034 		error = copyin(uap->set, setp, sizeof(set));
1035 		if (error)
1036 			return (error);
1037 	}
1038 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1039 	if (osetp && !error) {
1040 		error = copyout(osetp, uap->oset, sizeof(oset));
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1046 /*
1047  * osigprocmask() - MP SAFE
1048  */
1049 #ifndef _SYS_SYSPROTO_H_
1050 struct osigprocmask_args {
1051 	int	how;
1052 	osigset_t mask;
1053 };
1054 #endif
1055 int
1056 osigprocmask(td, uap)
1057 	register struct thread *td;
1058 	struct osigprocmask_args *uap;
1059 {
1060 	sigset_t set, oset;
1061 	int error;
1062 
1063 	OSIG2SIG(uap->mask, set);
1064 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1065 	SIG2OSIG(oset, td->td_retval[0]);
1066 	return (error);
1067 }
1068 #endif /* COMPAT_43 */
1069 
1070 /*
1071  * MPSAFE
1072  */
1073 int
1074 sigwait(struct thread *td, struct sigwait_args *uap)
1075 {
1076 	ksiginfo_t ksi;
1077 	sigset_t set;
1078 	int error;
1079 
1080 	error = copyin(uap->set, &set, sizeof(set));
1081 	if (error) {
1082 		td->td_retval[0] = error;
1083 		return (0);
1084 	}
1085 
1086 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1087 	if (error) {
1088 		if (error == ERESTART)
1089 			return (error);
1090 		td->td_retval[0] = error;
1091 		return (0);
1092 	}
1093 
1094 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1095 	td->td_retval[0] = error;
1096 	return (0);
1097 }
1098 /*
1099  * MPSAFE
1100  */
1101 int
1102 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1103 {
1104 	struct timespec ts;
1105 	struct timespec *timeout;
1106 	sigset_t set;
1107 	ksiginfo_t ksi;
1108 	int error;
1109 
1110 	if (uap->timeout) {
1111 		error = copyin(uap->timeout, &ts, sizeof(ts));
1112 		if (error)
1113 			return (error);
1114 
1115 		timeout = &ts;
1116 	} else
1117 		timeout = NULL;
1118 
1119 	error = copyin(uap->set, &set, sizeof(set));
1120 	if (error)
1121 		return (error);
1122 
1123 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1124 	if (error)
1125 		return (error);
1126 
1127 	if (uap->info)
1128 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1129 
1130 	if (error == 0)
1131 		td->td_retval[0] = ksi.ksi_signo;
1132 	return (error);
1133 }
1134 
1135 /*
1136  * MPSAFE
1137  */
1138 int
1139 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1140 {
1141 	ksiginfo_t ksi;
1142 	sigset_t set;
1143 	int error;
1144 
1145 	error = copyin(uap->set, &set, sizeof(set));
1146 	if (error)
1147 		return (error);
1148 
1149 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1150 	if (error)
1151 		return (error);
1152 
1153 	if (uap->info)
1154 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1155 
1156 	if (error == 0)
1157 		td->td_retval[0] = ksi.ksi_signo;
1158 	return (error);
1159 }
1160 
1161 static int
1162 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1163 	struct timespec *timeout)
1164 {
1165 	struct sigacts *ps;
1166 	sigset_t savedmask;
1167 	struct proc *p;
1168 	int error, sig, hz, i, timevalid = 0;
1169 	struct timespec rts, ets, ts;
1170 	struct timeval tv;
1171 
1172 	p = td->td_proc;
1173 	error = 0;
1174 	sig = 0;
1175 	SIG_CANTMASK(waitset);
1176 
1177 	PROC_LOCK(p);
1178 	ps = p->p_sigacts;
1179 	savedmask = td->td_sigmask;
1180 	if (timeout) {
1181 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1182 			timevalid = 1;
1183 			getnanouptime(&rts);
1184 		 	ets = rts;
1185 			timespecadd(&ets, timeout);
1186 		}
1187 	}
1188 
1189 again:
1190 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1191 		if (!SIGISMEMBER(waitset, i))
1192 			continue;
1193 		if (SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1194 			SIGFILLSET(td->td_sigmask);
1195 			SIG_CANTMASK(td->td_sigmask);
1196 			SIGDELSET(td->td_sigmask, i);
1197 			mtx_lock(&ps->ps_mtx);
1198 			sig = cursig(td);
1199 			i = 0;
1200 			mtx_unlock(&ps->ps_mtx);
1201 		} else if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1202 			if (p->p_flag & P_SA) {
1203 				p->p_flag |= P_SIGEVENT;
1204 				wakeup(&p->p_siglist);
1205 			}
1206 			sigqueue_move(&p->p_sigqueue, &td->td_sigqueue, i);
1207 			SIGFILLSET(td->td_sigmask);
1208 			SIG_CANTMASK(td->td_sigmask);
1209 			SIGDELSET(td->td_sigmask, i);
1210 			mtx_lock(&ps->ps_mtx);
1211 			sig = cursig(td);
1212 			i = 0;
1213 			mtx_unlock(&ps->ps_mtx);
1214 		}
1215 		if (sig)
1216 			goto out;
1217 	}
1218 	if (error)
1219 		goto out;
1220 
1221 	/*
1222 	 * POSIX says this must be checked after looking for pending
1223 	 * signals.
1224 	 */
1225 	if (timeout) {
1226 		if (!timevalid) {
1227 			error = EINVAL;
1228 			goto out;
1229 		}
1230 		getnanouptime(&rts);
1231 		if (timespeccmp(&rts, &ets, >=)) {
1232 			error = EAGAIN;
1233 			goto out;
1234 		}
1235 		ts = ets;
1236 		timespecsub(&ts, &rts);
1237 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1238 		hz = tvtohz(&tv);
1239 	} else
1240 		hz = 0;
1241 
1242 	td->td_sigmask = savedmask;
1243 	SIGSETNAND(td->td_sigmask, waitset);
1244 	signotify(td);
1245 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1246 	if (timeout) {
1247 		if (error == ERESTART) {
1248 			/* timeout can not be restarted. */
1249 			error = EINTR;
1250 		} else if (error == EAGAIN) {
1251 			/* will calculate timeout by ourself. */
1252 			error = 0;
1253 		}
1254 	}
1255 	goto again;
1256 
1257 out:
1258 	if (sig) {
1259 		sig_t action;
1260 
1261 		ksiginfo_init(ksi);
1262 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1263 		ksi->ksi_signo = sig;
1264 		if (ksi->ksi_code == SI_TIMER)
1265 			itimer_accept(p, ksi->ksi_timerid, ksi);
1266 		error = 0;
1267 		mtx_lock(&ps->ps_mtx);
1268 		action = ps->ps_sigact[_SIG_IDX(sig)];
1269 		mtx_unlock(&ps->ps_mtx);
1270 #ifdef KTRACE
1271 		if (KTRPOINT(td, KTR_PSIG))
1272 			ktrpsig(sig, action, &td->td_sigmask, 0);
1273 #endif
1274 		_STOPEVENT(p, S_SIG, sig);
1275 
1276 	}
1277 	td->td_sigmask = savedmask;
1278 	signotify(td);
1279 	PROC_UNLOCK(p);
1280 	return (error);
1281 }
1282 
1283 #ifndef _SYS_SYSPROTO_H_
1284 struct sigpending_args {
1285 	sigset_t	*set;
1286 };
1287 #endif
1288 /*
1289  * MPSAFE
1290  */
1291 int
1292 sigpending(td, uap)
1293 	struct thread *td;
1294 	struct sigpending_args *uap;
1295 {
1296 	struct proc *p = td->td_proc;
1297 	sigset_t pending;
1298 
1299 	PROC_LOCK(p);
1300 	pending = p->p_sigqueue.sq_signals;
1301 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1302 	PROC_UNLOCK(p);
1303 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1304 }
1305 
1306 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1307 #ifndef _SYS_SYSPROTO_H_
1308 struct osigpending_args {
1309 	int	dummy;
1310 };
1311 #endif
1312 /*
1313  * MPSAFE
1314  */
1315 int
1316 osigpending(td, uap)
1317 	struct thread *td;
1318 	struct osigpending_args *uap;
1319 {
1320 	struct proc *p = td->td_proc;
1321 	sigset_t pending;
1322 
1323 	PROC_LOCK(p);
1324 	pending = p->p_sigqueue.sq_signals;
1325 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1326 	PROC_UNLOCK(p);
1327 	SIG2OSIG(pending, td->td_retval[0]);
1328 	return (0);
1329 }
1330 #endif /* COMPAT_43 */
1331 
1332 #if defined(COMPAT_43)
1333 /*
1334  * Generalized interface signal handler, 4.3-compatible.
1335  */
1336 #ifndef _SYS_SYSPROTO_H_
1337 struct osigvec_args {
1338 	int	signum;
1339 	struct	sigvec *nsv;
1340 	struct	sigvec *osv;
1341 };
1342 #endif
1343 /*
1344  * MPSAFE
1345  */
1346 /* ARGSUSED */
1347 int
1348 osigvec(td, uap)
1349 	struct thread *td;
1350 	register struct osigvec_args *uap;
1351 {
1352 	struct sigvec vec;
1353 	struct sigaction nsa, osa;
1354 	register struct sigaction *nsap, *osap;
1355 	int error;
1356 
1357 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1358 		return (EINVAL);
1359 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1360 	osap = (uap->osv != NULL) ? &osa : NULL;
1361 	if (nsap) {
1362 		error = copyin(uap->nsv, &vec, sizeof(vec));
1363 		if (error)
1364 			return (error);
1365 		nsap->sa_handler = vec.sv_handler;
1366 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1367 		nsap->sa_flags = vec.sv_flags;
1368 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1369 	}
1370 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1371 	if (osap && !error) {
1372 		vec.sv_handler = osap->sa_handler;
1373 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1374 		vec.sv_flags = osap->sa_flags;
1375 		vec.sv_flags &= ~SA_NOCLDWAIT;
1376 		vec.sv_flags ^= SA_RESTART;
1377 		error = copyout(&vec, uap->osv, sizeof(vec));
1378 	}
1379 	return (error);
1380 }
1381 
1382 #ifndef _SYS_SYSPROTO_H_
1383 struct osigblock_args {
1384 	int	mask;
1385 };
1386 #endif
1387 /*
1388  * MPSAFE
1389  */
1390 int
1391 osigblock(td, uap)
1392 	register struct thread *td;
1393 	struct osigblock_args *uap;
1394 {
1395 	struct proc *p = td->td_proc;
1396 	sigset_t set;
1397 
1398 	OSIG2SIG(uap->mask, set);
1399 	SIG_CANTMASK(set);
1400 	PROC_LOCK(p);
1401 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1402 	SIGSETOR(td->td_sigmask, set);
1403 	PROC_UNLOCK(p);
1404 	return (0);
1405 }
1406 
1407 #ifndef _SYS_SYSPROTO_H_
1408 struct osigsetmask_args {
1409 	int	mask;
1410 };
1411 #endif
1412 /*
1413  * MPSAFE
1414  */
1415 int
1416 osigsetmask(td, uap)
1417 	struct thread *td;
1418 	struct osigsetmask_args *uap;
1419 {
1420 	struct proc *p = td->td_proc;
1421 	sigset_t set;
1422 
1423 	OSIG2SIG(uap->mask, set);
1424 	SIG_CANTMASK(set);
1425 	PROC_LOCK(p);
1426 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1427 	SIGSETLO(td->td_sigmask, set);
1428 	signotify(td);
1429 	PROC_UNLOCK(p);
1430 	return (0);
1431 }
1432 #endif /* COMPAT_43 */
1433 
1434 /*
1435  * Suspend calling thread until signal, providing mask to be set
1436  * in the meantime.
1437  */
1438 #ifndef _SYS_SYSPROTO_H_
1439 struct sigsuspend_args {
1440 	const sigset_t *sigmask;
1441 };
1442 #endif
1443 /*
1444  * MPSAFE
1445  */
1446 /* ARGSUSED */
1447 int
1448 sigsuspend(td, uap)
1449 	struct thread *td;
1450 	struct sigsuspend_args *uap;
1451 {
1452 	sigset_t mask;
1453 	int error;
1454 
1455 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1456 	if (error)
1457 		return (error);
1458 	return (kern_sigsuspend(td, mask));
1459 }
1460 
1461 int
1462 kern_sigsuspend(struct thread *td, sigset_t mask)
1463 {
1464 	struct proc *p = td->td_proc;
1465 
1466 	/*
1467 	 * When returning from sigsuspend, we want
1468 	 * the old mask to be restored after the
1469 	 * signal handler has finished.  Thus, we
1470 	 * save it here and mark the sigacts structure
1471 	 * to indicate this.
1472 	 */
1473 	PROC_LOCK(p);
1474 	td->td_oldsigmask = td->td_sigmask;
1475 	td->td_pflags |= TDP_OLDMASK;
1476 	SIG_CANTMASK(mask);
1477 	td->td_sigmask = mask;
1478 	signotify(td);
1479 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1480 		/* void */;
1481 	PROC_UNLOCK(p);
1482 	/* always return EINTR rather than ERESTART... */
1483 	return (EINTR);
1484 }
1485 
1486 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1487 /*
1488  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1489  * convention: libc stub passes mask, not pointer, to save a copyin.
1490  */
1491 #ifndef _SYS_SYSPROTO_H_
1492 struct osigsuspend_args {
1493 	osigset_t mask;
1494 };
1495 #endif
1496 /*
1497  * MPSAFE
1498  */
1499 /* ARGSUSED */
1500 int
1501 osigsuspend(td, uap)
1502 	struct thread *td;
1503 	struct osigsuspend_args *uap;
1504 {
1505 	struct proc *p = td->td_proc;
1506 	sigset_t mask;
1507 
1508 	PROC_LOCK(p);
1509 	td->td_oldsigmask = td->td_sigmask;
1510 	td->td_pflags |= TDP_OLDMASK;
1511 	OSIG2SIG(uap->mask, mask);
1512 	SIG_CANTMASK(mask);
1513 	SIGSETLO(td->td_sigmask, mask);
1514 	signotify(td);
1515 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1516 		/* void */;
1517 	PROC_UNLOCK(p);
1518 	/* always return EINTR rather than ERESTART... */
1519 	return (EINTR);
1520 }
1521 #endif /* COMPAT_43 */
1522 
1523 #if defined(COMPAT_43)
1524 #ifndef _SYS_SYSPROTO_H_
1525 struct osigstack_args {
1526 	struct	sigstack *nss;
1527 	struct	sigstack *oss;
1528 };
1529 #endif
1530 /*
1531  * MPSAFE
1532  */
1533 /* ARGSUSED */
1534 int
1535 osigstack(td, uap)
1536 	struct thread *td;
1537 	register struct osigstack_args *uap;
1538 {
1539 	struct sigstack nss, oss;
1540 	int error = 0;
1541 
1542 	if (uap->nss != NULL) {
1543 		error = copyin(uap->nss, &nss, sizeof(nss));
1544 		if (error)
1545 			return (error);
1546 	}
1547 	oss.ss_sp = td->td_sigstk.ss_sp;
1548 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1549 	if (uap->nss != NULL) {
1550 		td->td_sigstk.ss_sp = nss.ss_sp;
1551 		td->td_sigstk.ss_size = 0;
1552 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1553 		td->td_pflags |= TDP_ALTSTACK;
1554 	}
1555 	if (uap->oss != NULL)
1556 		error = copyout(&oss, uap->oss, sizeof(oss));
1557 
1558 	return (error);
1559 }
1560 #endif /* COMPAT_43 */
1561 
1562 #ifndef _SYS_SYSPROTO_H_
1563 struct sigaltstack_args {
1564 	stack_t	*ss;
1565 	stack_t	*oss;
1566 };
1567 #endif
1568 /*
1569  * MPSAFE
1570  */
1571 /* ARGSUSED */
1572 int
1573 sigaltstack(td, uap)
1574 	struct thread *td;
1575 	register struct sigaltstack_args *uap;
1576 {
1577 	stack_t ss, oss;
1578 	int error;
1579 
1580 	if (uap->ss != NULL) {
1581 		error = copyin(uap->ss, &ss, sizeof(ss));
1582 		if (error)
1583 			return (error);
1584 	}
1585 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1586 	    (uap->oss != NULL) ? &oss : NULL);
1587 	if (error)
1588 		return (error);
1589 	if (uap->oss != NULL)
1590 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1591 	return (error);
1592 }
1593 
1594 int
1595 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1596 {
1597 	struct proc *p = td->td_proc;
1598 	int oonstack;
1599 
1600 	oonstack = sigonstack(cpu_getstack(td));
1601 
1602 	if (oss != NULL) {
1603 		*oss = td->td_sigstk;
1604 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1605 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1606 	}
1607 
1608 	if (ss != NULL) {
1609 		if (oonstack)
1610 			return (EPERM);
1611 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1612 			return (EINVAL);
1613 		if (!(ss->ss_flags & SS_DISABLE)) {
1614 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1615 				return (ENOMEM);
1616 
1617 			td->td_sigstk = *ss;
1618 			td->td_pflags |= TDP_ALTSTACK;
1619 		} else {
1620 			td->td_pflags &= ~TDP_ALTSTACK;
1621 		}
1622 	}
1623 	return (0);
1624 }
1625 
1626 /*
1627  * Common code for kill process group/broadcast kill.
1628  * cp is calling process.
1629  */
1630 static int
1631 killpg1(td, sig, pgid, all)
1632 	register struct thread *td;
1633 	int sig, pgid, all;
1634 {
1635 	register struct proc *p;
1636 	struct pgrp *pgrp;
1637 	int nfound = 0;
1638 
1639 	if (all) {
1640 		/*
1641 		 * broadcast
1642 		 */
1643 		sx_slock(&allproc_lock);
1644 		LIST_FOREACH(p, &allproc, p_list) {
1645 			PROC_LOCK(p);
1646 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1647 			    p == td->td_proc) {
1648 				PROC_UNLOCK(p);
1649 				continue;
1650 			}
1651 			if (p_cansignal(td, p, sig) == 0) {
1652 				nfound++;
1653 				if (sig)
1654 					psignal(p, sig);
1655 			}
1656 			PROC_UNLOCK(p);
1657 		}
1658 		sx_sunlock(&allproc_lock);
1659 	} else {
1660 		sx_slock(&proctree_lock);
1661 		if (pgid == 0) {
1662 			/*
1663 			 * zero pgid means send to my process group.
1664 			 */
1665 			pgrp = td->td_proc->p_pgrp;
1666 			PGRP_LOCK(pgrp);
1667 		} else {
1668 			pgrp = pgfind(pgid);
1669 			if (pgrp == NULL) {
1670 				sx_sunlock(&proctree_lock);
1671 				return (ESRCH);
1672 			}
1673 		}
1674 		sx_sunlock(&proctree_lock);
1675 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1676 			PROC_LOCK(p);
1677 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1678 				PROC_UNLOCK(p);
1679 				continue;
1680 			}
1681 			if (p_cansignal(td, p, sig) == 0) {
1682 				nfound++;
1683 				if (sig)
1684 					psignal(p, sig);
1685 			}
1686 			PROC_UNLOCK(p);
1687 		}
1688 		PGRP_UNLOCK(pgrp);
1689 	}
1690 	return (nfound ? 0 : ESRCH);
1691 }
1692 
1693 #ifndef _SYS_SYSPROTO_H_
1694 struct kill_args {
1695 	int	pid;
1696 	int	signum;
1697 };
1698 #endif
1699 /*
1700  * MPSAFE
1701  */
1702 /* ARGSUSED */
1703 int
1704 kill(td, uap)
1705 	register struct thread *td;
1706 	register struct kill_args *uap;
1707 {
1708 	register struct proc *p;
1709 	int error;
1710 
1711 	if ((u_int)uap->signum > _SIG_MAXSIG)
1712 		return (EINVAL);
1713 
1714 	if (uap->pid > 0) {
1715 		/* kill single process */
1716 		if ((p = pfind(uap->pid)) == NULL) {
1717 			if ((p = zpfind(uap->pid)) == NULL)
1718 				return (ESRCH);
1719 		}
1720 		error = p_cansignal(td, p, uap->signum);
1721 		if (error == 0 && uap->signum)
1722 			psignal(p, uap->signum);
1723 		PROC_UNLOCK(p);
1724 		return (error);
1725 	}
1726 	switch (uap->pid) {
1727 	case -1:		/* broadcast signal */
1728 		return (killpg1(td, uap->signum, 0, 1));
1729 	case 0:			/* signal own process group */
1730 		return (killpg1(td, uap->signum, 0, 0));
1731 	default:		/* negative explicit process group */
1732 		return (killpg1(td, uap->signum, -uap->pid, 0));
1733 	}
1734 	/* NOTREACHED */
1735 }
1736 
1737 #if defined(COMPAT_43)
1738 #ifndef _SYS_SYSPROTO_H_
1739 struct okillpg_args {
1740 	int	pgid;
1741 	int	signum;
1742 };
1743 #endif
1744 /*
1745  * MPSAFE
1746  */
1747 /* ARGSUSED */
1748 int
1749 okillpg(td, uap)
1750 	struct thread *td;
1751 	register struct okillpg_args *uap;
1752 {
1753 
1754 	if ((u_int)uap->signum > _SIG_MAXSIG)
1755 		return (EINVAL);
1756 
1757 	return (killpg1(td, uap->signum, uap->pgid, 0));
1758 }
1759 #endif /* COMPAT_43 */
1760 
1761 #ifndef _SYS_SYSPROTO_H_
1762 struct sigqueue_args {
1763 	pid_t pid;
1764 	int signum;
1765 	/* union sigval */ void *value;
1766 };
1767 #endif
1768 
1769 int
1770 sigqueue(struct thread *td, struct sigqueue_args *uap)
1771 {
1772 	ksiginfo_t ksi;
1773 	struct proc *p;
1774 	int error;
1775 
1776 	if ((u_int)uap->signum > _SIG_MAXSIG)
1777 		return (EINVAL);
1778 
1779 	/*
1780 	 * Specification says sigqueue can only send signal to
1781 	 * single process.
1782 	 */
1783 	if (uap->pid <= 0)
1784 		return (EINVAL);
1785 
1786 	if ((p = pfind(uap->pid)) == NULL) {
1787 		if ((p = zpfind(uap->pid)) == NULL)
1788 			return (ESRCH);
1789 	}
1790 	error = p_cansignal(td, p, uap->signum);
1791 	if (error == 0 && uap->signum != 0) {
1792 		ksiginfo_init(&ksi);
1793 		ksi.ksi_signo = uap->signum;
1794 		ksi.ksi_code = SI_QUEUE;
1795 		ksi.ksi_pid = td->td_proc->p_pid;
1796 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1797 		ksi.ksi_value.sival_ptr = uap->value;
1798 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1799 	}
1800 	PROC_UNLOCK(p);
1801 	return (error);
1802 }
1803 
1804 /*
1805  * Send a signal to a process group.
1806  */
1807 void
1808 gsignal(pgid, sig)
1809 	int pgid, sig;
1810 {
1811 	struct pgrp *pgrp;
1812 
1813 	if (pgid != 0) {
1814 		sx_slock(&proctree_lock);
1815 		pgrp = pgfind(pgid);
1816 		sx_sunlock(&proctree_lock);
1817 		if (pgrp != NULL) {
1818 			pgsignal(pgrp, sig, 0);
1819 			PGRP_UNLOCK(pgrp);
1820 		}
1821 	}
1822 }
1823 
1824 /*
1825  * Send a signal to a process group.  If checktty is 1,
1826  * limit to members which have a controlling terminal.
1827  */
1828 void
1829 pgsignal(pgrp, sig, checkctty)
1830 	struct pgrp *pgrp;
1831 	int sig, checkctty;
1832 {
1833 	register struct proc *p;
1834 
1835 	if (pgrp) {
1836 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1837 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1838 			PROC_LOCK(p);
1839 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1840 				psignal(p, sig);
1841 			PROC_UNLOCK(p);
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  * Send a signal caused by a trap to the current thread.
1848  * If it will be caught immediately, deliver it with correct code.
1849  * Otherwise, post it normally.
1850  *
1851  * MPSAFE
1852  */
1853 void
1854 trapsignal(struct thread *td, ksiginfo_t *ksi)
1855 {
1856 	struct sigacts *ps;
1857 	struct proc *p;
1858 	int error;
1859 	int sig;
1860 	int code;
1861 
1862 	p = td->td_proc;
1863 	sig = ksi->ksi_signo;
1864 	code = ksi->ksi_code;
1865 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1866 
1867 	if (td->td_pflags & TDP_SA) {
1868 		if (td->td_mailbox == NULL)
1869 			thread_user_enter(td);
1870 		PROC_LOCK(p);
1871 		SIGDELSET(td->td_sigmask, sig);
1872 		mtx_lock_spin(&sched_lock);
1873 		/*
1874 		 * Force scheduling an upcall, so UTS has chance to
1875 		 * process the signal before thread runs again in
1876 		 * userland.
1877 		 */
1878 		if (td->td_upcall)
1879 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1880 		mtx_unlock_spin(&sched_lock);
1881 	} else {
1882 		PROC_LOCK(p);
1883 	}
1884 	ps = p->p_sigacts;
1885 	mtx_lock(&ps->ps_mtx);
1886 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1887 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1888 		p->p_stats->p_ru.ru_nsignals++;
1889 #ifdef KTRACE
1890 		if (KTRPOINT(curthread, KTR_PSIG))
1891 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1892 			    &td->td_sigmask, code);
1893 #endif
1894 		if (!(td->td_pflags & TDP_SA))
1895 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1896 				ksi, &td->td_sigmask);
1897 		else if (td->td_mailbox == NULL) {
1898 			mtx_unlock(&ps->ps_mtx);
1899 			/* UTS caused a sync signal */
1900 			p->p_code = code;	/* XXX for core dump/debugger */
1901 			p->p_sig = sig;		/* XXX to verify code */
1902 			sigexit(td, sig);
1903 		} else {
1904 			mtx_unlock(&ps->ps_mtx);
1905 			SIGADDSET(td->td_sigmask, sig);
1906 			PROC_UNLOCK(p);
1907 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1908 			    sizeof(siginfo_t));
1909 			PROC_LOCK(p);
1910 			/* UTS memory corrupted */
1911 			if (error)
1912 				sigexit(td, SIGSEGV);
1913 			mtx_lock(&ps->ps_mtx);
1914 		}
1915 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1916 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1917 			SIGADDSET(td->td_sigmask, sig);
1918 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1919 			/*
1920 			 * See kern_sigaction() for origin of this code.
1921 			 */
1922 			SIGDELSET(ps->ps_sigcatch, sig);
1923 			if (sig != SIGCONT &&
1924 			    sigprop(sig) & SA_IGNORE)
1925 				SIGADDSET(ps->ps_sigignore, sig);
1926 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1927 		}
1928 		mtx_unlock(&ps->ps_mtx);
1929 	} else {
1930 		/*
1931 		 * Avoid a possible infinite loop if the thread
1932 		 * masking the signal or process is ignoring the
1933 		 * signal.
1934 		 */
1935 		if (kern_forcesigexit &&
1936 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1937 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1938 			SIGDELSET(td->td_sigmask, sig);
1939 			SIGDELSET(ps->ps_sigcatch, sig);
1940 			SIGDELSET(ps->ps_sigignore, sig);
1941 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1942 		}
1943 		mtx_unlock(&ps->ps_mtx);
1944 		p->p_code = code;	/* XXX for core dump/debugger */
1945 		p->p_sig = sig;		/* XXX to verify code */
1946 		tdsignal(p, td, sig, ksi);
1947 	}
1948 	PROC_UNLOCK(p);
1949 }
1950 
1951 static struct thread *
1952 sigtd(struct proc *p, int sig, int prop)
1953 {
1954 	struct thread *td, *signal_td;
1955 
1956 	PROC_LOCK_ASSERT(p, MA_OWNED);
1957 
1958 	/*
1959 	 * Check if current thread can handle the signal without
1960 	 * switching conetxt to another thread.
1961 	 */
1962 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1963 		return (curthread);
1964 	signal_td = NULL;
1965 	mtx_lock_spin(&sched_lock);
1966 	FOREACH_THREAD_IN_PROC(p, td) {
1967 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1968 			signal_td = td;
1969 			break;
1970 		}
1971 	}
1972 	if (signal_td == NULL)
1973 		signal_td = FIRST_THREAD_IN_PROC(p);
1974 	mtx_unlock_spin(&sched_lock);
1975 	return (signal_td);
1976 }
1977 
1978 /*
1979  * Send the signal to the process.  If the signal has an action, the action
1980  * is usually performed by the target process rather than the caller; we add
1981  * the signal to the set of pending signals for the process.
1982  *
1983  * Exceptions:
1984  *   o When a stop signal is sent to a sleeping process that takes the
1985  *     default action, the process is stopped without awakening it.
1986  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1987  *     regardless of the signal action (eg, blocked or ignored).
1988  *
1989  * Other ignored signals are discarded immediately.
1990  *
1991  * MPSAFE
1992  */
1993 void
1994 psignal(struct proc *p, int sig)
1995 {
1996 	(void) tdsignal(p, NULL, sig, NULL);
1997 }
1998 
1999 int
2000 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2001 {
2002 	struct thread *td = NULL;
2003 
2004 	PROC_LOCK_ASSERT(p, MA_OWNED);
2005 
2006 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2007 
2008 	/*
2009 	 * ksi_code and other fields should be set before
2010 	 * calling this function.
2011 	 */
2012 	ksi->ksi_signo = sigev->sigev_signo;
2013 	ksi->ksi_value = sigev->sigev_value;
2014 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2015 		td = thread_find(p, sigev->sigev_notify_thread_id);
2016 		if (td == NULL)
2017 			return (ESRCH);
2018 	}
2019 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2020 }
2021 
2022 /*
2023  * MPSAFE
2024  */
2025 int
2026 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2027 {
2028 	sigset_t saved;
2029 	int ret;
2030 
2031 	if (p->p_flag & P_SA)
2032 		saved = p->p_sigqueue.sq_signals;
2033 	ret = do_tdsignal(p, td, sig, ksi);
2034 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2035 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2036 			/* pending set changed */
2037 			p->p_flag |= P_SIGEVENT;
2038 			wakeup(&p->p_siglist);
2039 		}
2040 	}
2041 	return (ret);
2042 }
2043 
2044 static int
2045 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2046 {
2047 	sig_t action;
2048 	sigqueue_t *sigqueue;
2049 	struct thread *td0;
2050 	int prop;
2051 	struct sigacts *ps;
2052 	int ret = 0;
2053 
2054 	PROC_LOCK_ASSERT(p, MA_OWNED);
2055 
2056 	if (!_SIG_VALID(sig))
2057 		panic("do_tdsignal(): invalid signal");
2058 
2059 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2060 
2061 	/*
2062 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2063 	 */
2064 	if (p->p_state == PRS_ZOMBIE) {
2065 		if (ksi && (ksi->ksi_flags & KSI_INS))
2066 			ksiginfo_tryfree(ksi);
2067 		return (ret);
2068 	}
2069 
2070 	ps = p->p_sigacts;
2071 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2072 	prop = sigprop(sig);
2073 
2074 	/*
2075 	 * If the signal is blocked and not destined for this thread, then
2076 	 * assign it to the process so that we can find it later in the first
2077 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2078 	 */
2079 	if (td == NULL) {
2080 		td = sigtd(p, sig, prop);
2081 		if (SIGISMEMBER(td->td_sigmask, sig))
2082 			sigqueue = &p->p_sigqueue;
2083 		else
2084 			sigqueue = &td->td_sigqueue;
2085 	} else {
2086 		KASSERT(td->td_proc == p, ("invalid thread"));
2087 		sigqueue = &td->td_sigqueue;
2088 	}
2089 
2090 	/*
2091 	 * If the signal is being ignored,
2092 	 * or process is exiting or thread is exiting,
2093 	 * then we forget about it immediately.
2094 	 * (Note: we don't set SIGCONT in ps_sigignore,
2095 	 * and if it is set to SIG_IGN,
2096 	 * action will be SIG_DFL here.)
2097 	 */
2098 	mtx_lock(&ps->ps_mtx);
2099 	if (SIGISMEMBER(ps->ps_sigignore, sig) ||
2100 	    (p->p_flag & P_WEXIT)) {
2101 		mtx_unlock(&ps->ps_mtx);
2102 		if (ksi && (ksi->ksi_flags & KSI_INS))
2103 			ksiginfo_tryfree(ksi);
2104 		return (ret);
2105 	}
2106 	if (SIGISMEMBER(td->td_sigmask, sig))
2107 		action = SIG_HOLD;
2108 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2109 		action = SIG_CATCH;
2110 	else
2111 		action = SIG_DFL;
2112 	mtx_unlock(&ps->ps_mtx);
2113 
2114 	if (prop & SA_CONT)
2115 		sigqueue_delete_stopmask_proc(p);
2116 	else if (prop & SA_STOP) {
2117 		/*
2118 		 * If sending a tty stop signal to a member of an orphaned
2119 		 * process group, discard the signal here if the action
2120 		 * is default; don't stop the process below if sleeping,
2121 		 * and don't clear any pending SIGCONT.
2122 		 */
2123 		if ((prop & SA_TTYSTOP) &&
2124 		    (p->p_pgrp->pg_jobc == 0) &&
2125 		    (action == SIG_DFL)) {
2126 			if (ksi && (ksi->ksi_flags & KSI_INS))
2127 				ksiginfo_tryfree(ksi);
2128 			return (ret);
2129 		}
2130 		sigqueue_delete_proc(p, SIGCONT);
2131 		if (p->p_flag & P_CONTINUED) {
2132 			p->p_flag &= ~P_CONTINUED;
2133 			PROC_LOCK(p->p_pptr);
2134 			sigqueue_take(p->p_ksi);
2135 			PROC_UNLOCK(p->p_pptr);
2136 		}
2137 	}
2138 
2139 	ret = sigqueue_add(sigqueue, sig, ksi);
2140 	if (ret != 0)
2141 		return (ret);
2142 	signotify(td);
2143 	/*
2144 	 * Defer further processing for signals which are held,
2145 	 * except that stopped processes must be continued by SIGCONT.
2146 	 */
2147 	if (action == SIG_HOLD &&
2148 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2149 		return (ret);
2150 	/*
2151 	 * SIGKILL: Remove procfs STOPEVENTs.
2152 	 */
2153 	if (sig == SIGKILL) {
2154 		/* from procfs_ioctl.c: PIOCBIC */
2155 		p->p_stops = 0;
2156 		/* from procfs_ioctl.c: PIOCCONT */
2157 		p->p_step = 0;
2158 		wakeup(&p->p_step);
2159 	}
2160 	/*
2161 	 * Some signals have a process-wide effect and a per-thread
2162 	 * component.  Most processing occurs when the process next
2163 	 * tries to cross the user boundary, however there are some
2164 	 * times when processing needs to be done immediatly, such as
2165 	 * waking up threads so that they can cross the user boundary.
2166 	 * We try do the per-process part here.
2167 	 */
2168 	if (P_SHOULDSTOP(p)) {
2169 		/*
2170 		 * The process is in stopped mode. All the threads should be
2171 		 * either winding down or already on the suspended queue.
2172 		 */
2173 		if (p->p_flag & P_TRACED) {
2174 			/*
2175 			 * The traced process is already stopped,
2176 			 * so no further action is necessary.
2177 			 * No signal can restart us.
2178 			 */
2179 			goto out;
2180 		}
2181 
2182 		if (sig == SIGKILL) {
2183 			/*
2184 			 * SIGKILL sets process running.
2185 			 * It will die elsewhere.
2186 			 * All threads must be restarted.
2187 			 */
2188 			p->p_flag &= ~P_STOPPED_SIG;
2189 			goto runfast;
2190 		}
2191 
2192 		if (prop & SA_CONT) {
2193 			/*
2194 			 * If SIGCONT is default (or ignored), we continue the
2195 			 * process but don't leave the signal in sigqueue as
2196 			 * it has no further action.  If SIGCONT is held, we
2197 			 * continue the process and leave the signal in
2198 			 * sigqueue.  If the process catches SIGCONT, let it
2199 			 * handle the signal itself.  If it isn't waiting on
2200 			 * an event, it goes back to run state.
2201 			 * Otherwise, process goes back to sleep state.
2202 			 */
2203 			p->p_flag &= ~P_STOPPED_SIG;
2204 			if (p->p_numthreads == p->p_suspcount) {
2205 				p->p_flag |= P_CONTINUED;
2206 				childproc_continued(p);
2207 			}
2208 			if (action == SIG_DFL) {
2209 				sigqueue_delete(sigqueue, sig);
2210 			} else if (action == SIG_CATCH) {
2211 				/*
2212 				 * The process wants to catch it so it needs
2213 				 * to run at least one thread, but which one?
2214 				 * It would seem that the answer would be to
2215 				 * run an upcall in the next KSE to run, and
2216 				 * deliver the signal that way. In a NON KSE
2217 				 * process, we need to make sure that the
2218 				 * single thread is runnable asap.
2219 				 * XXXKSE for now however, make them all run.
2220 				 */
2221 				goto runfast;
2222 			}
2223 			/*
2224 			 * The signal is not ignored or caught.
2225 			 */
2226 			mtx_lock_spin(&sched_lock);
2227 			thread_unsuspend(p);
2228 			mtx_unlock_spin(&sched_lock);
2229 			goto out;
2230 		}
2231 
2232 		if (prop & SA_STOP) {
2233 			/*
2234 			 * Already stopped, don't need to stop again
2235 			 * (If we did the shell could get confused).
2236 			 * Just make sure the signal STOP bit set.
2237 			 */
2238 			p->p_flag |= P_STOPPED_SIG;
2239 			sigqueue_delete(sigqueue, sig);
2240 			goto out;
2241 		}
2242 
2243 		/*
2244 		 * All other kinds of signals:
2245 		 * If a thread is sleeping interruptibly, simulate a
2246 		 * wakeup so that when it is continued it will be made
2247 		 * runnable and can look at the signal.  However, don't make
2248 		 * the PROCESS runnable, leave it stopped.
2249 		 * It may run a bit until it hits a thread_suspend_check().
2250 		 */
2251 		mtx_lock_spin(&sched_lock);
2252 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2253 			sleepq_abort(td);
2254 		mtx_unlock_spin(&sched_lock);
2255 		goto out;
2256 		/*
2257 		 * Mutexes are short lived. Threads waiting on them will
2258 		 * hit thread_suspend_check() soon.
2259 		 */
2260 	} else if (p->p_state == PRS_NORMAL) {
2261 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2262 			mtx_lock_spin(&sched_lock);
2263 			tdsigwakeup(td, sig, action);
2264 			mtx_unlock_spin(&sched_lock);
2265 			goto out;
2266 		}
2267 
2268 		MPASS(action == SIG_DFL);
2269 
2270 		if (prop & SA_STOP) {
2271 			if (p->p_flag & P_PPWAIT)
2272 				goto out;
2273 			p->p_flag |= P_STOPPED_SIG;
2274 			p->p_xstat = sig;
2275 			p->p_xthread = td;
2276 			mtx_lock_spin(&sched_lock);
2277 			FOREACH_THREAD_IN_PROC(p, td0) {
2278 				if (TD_IS_SLEEPING(td0) &&
2279 				    (td0->td_flags & TDF_SINTR) &&
2280 				    !TD_IS_SUSPENDED(td0)) {
2281 					thread_suspend_one(td0);
2282 				} else {
2283 					td0->td_flags |= TDF_ASTPENDING;
2284 				}
2285 			}
2286 			if (p->p_numthreads == p->p_suspcount) {
2287 				/*
2288 				 * only thread sending signal to another
2289 				 * process can reach here, if thread is sending
2290 				 * signal to its process, because thread does
2291 				 * not suspend itself here, p_numthreads
2292 				 * should never be equal to p_suspcount.
2293 				 */
2294 				thread_stopped(p);
2295 				mtx_unlock_spin(&sched_lock);
2296 				sigqueue_delete_proc(p, p->p_xstat);
2297 			} else
2298 				mtx_unlock_spin(&sched_lock);
2299 			goto out;
2300 		}
2301 		else
2302 			goto runfast;
2303 		/* NOTREACHED */
2304 	} else {
2305 		/* Not in "NORMAL" state. discard the signal. */
2306 		sigqueue_delete(sigqueue, sig);
2307 		goto out;
2308 	}
2309 
2310 	/*
2311 	 * The process is not stopped so we need to apply the signal to all the
2312 	 * running threads.
2313 	 */
2314 
2315 runfast:
2316 	mtx_lock_spin(&sched_lock);
2317 	tdsigwakeup(td, sig, action);
2318 	thread_unsuspend(p);
2319 	mtx_unlock_spin(&sched_lock);
2320 out:
2321 	/* If we jump here, sched_lock should not be owned. */
2322 	mtx_assert(&sched_lock, MA_NOTOWNED);
2323 	return (ret);
2324 }
2325 
2326 /*
2327  * The force of a signal has been directed against a single
2328  * thread.  We need to see what we can do about knocking it
2329  * out of any sleep it may be in etc.
2330  */
2331 static void
2332 tdsigwakeup(struct thread *td, int sig, sig_t action)
2333 {
2334 	struct proc *p = td->td_proc;
2335 	register int prop;
2336 
2337 	PROC_LOCK_ASSERT(p, MA_OWNED);
2338 	mtx_assert(&sched_lock, MA_OWNED);
2339 	prop = sigprop(sig);
2340 
2341 	/*
2342 	 * Bring the priority of a thread up if we want it to get
2343 	 * killed in this lifetime.
2344 	 */
2345 	if (action == SIG_DFL && (prop & SA_KILL)) {
2346 		if (p->p_nice > 0)
2347 			sched_nice(td->td_proc, 0);
2348 		if (td->td_priority > PUSER)
2349 			sched_prio(td, PUSER);
2350 	}
2351 
2352 	if (TD_ON_SLEEPQ(td)) {
2353 		/*
2354 		 * If thread is sleeping uninterruptibly
2355 		 * we can't interrupt the sleep... the signal will
2356 		 * be noticed when the process returns through
2357 		 * trap() or syscall().
2358 		 */
2359 		if ((td->td_flags & TDF_SINTR) == 0)
2360 			return;
2361 		/*
2362 		 * If SIGCONT is default (or ignored) and process is
2363 		 * asleep, we are finished; the process should not
2364 		 * be awakened.
2365 		 */
2366 		if ((prop & SA_CONT) && action == SIG_DFL) {
2367 			mtx_unlock_spin(&sched_lock);
2368 			sigqueue_delete(&p->p_sigqueue, sig);
2369 			/*
2370 			 * It may be on either list in this state.
2371 			 * Remove from both for now.
2372 			 */
2373 			sigqueue_delete(&td->td_sigqueue, sig);
2374 			mtx_lock_spin(&sched_lock);
2375 			return;
2376 		}
2377 
2378 		/*
2379 		 * Give low priority threads a better chance to run.
2380 		 */
2381 		if (td->td_priority > PUSER)
2382 			sched_prio(td, PUSER);
2383 
2384 		sleepq_abort(td);
2385 	} else {
2386 		/*
2387 		 * Other states do nothing with the signal immediately,
2388 		 * other than kicking ourselves if we are running.
2389 		 * It will either never be noticed, or noticed very soon.
2390 		 */
2391 #ifdef SMP
2392 		if (TD_IS_RUNNING(td) && td != curthread)
2393 			forward_signal(td);
2394 #endif
2395 	}
2396 }
2397 
2398 int
2399 ptracestop(struct thread *td, int sig)
2400 {
2401 	struct proc *p = td->td_proc;
2402 	struct thread *td0;
2403 
2404 	PROC_LOCK_ASSERT(p, MA_OWNED);
2405 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2406 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2407 
2408 	mtx_lock_spin(&sched_lock);
2409 	td->td_flags |= TDF_XSIG;
2410 	mtx_unlock_spin(&sched_lock);
2411 	td->td_xsig = sig;
2412 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2413 		if (p->p_flag & P_SINGLE_EXIT) {
2414 			mtx_lock_spin(&sched_lock);
2415 			td->td_flags &= ~TDF_XSIG;
2416 			mtx_unlock_spin(&sched_lock);
2417 			return (sig);
2418 		}
2419 		/*
2420 		 * Just make wait() to work, the last stopped thread
2421 		 * will win.
2422 		 */
2423 		p->p_xstat = sig;
2424 		p->p_xthread = td;
2425 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2426 		mtx_lock_spin(&sched_lock);
2427 		FOREACH_THREAD_IN_PROC(p, td0) {
2428 			if (TD_IS_SLEEPING(td0) &&
2429 			    (td0->td_flags & TDF_SINTR) &&
2430 			    !TD_IS_SUSPENDED(td0)) {
2431 				thread_suspend_one(td0);
2432 			} else if (td != td0) {
2433 				td0->td_flags |= TDF_ASTPENDING;
2434 			}
2435 		}
2436 stopme:
2437 		thread_stopped(p);
2438 		thread_suspend_one(td);
2439 		PROC_UNLOCK(p);
2440 		DROP_GIANT();
2441 		mi_switch(SW_VOL, NULL);
2442 		mtx_unlock_spin(&sched_lock);
2443 		PICKUP_GIANT();
2444 		PROC_LOCK(p);
2445 		if (!(p->p_flag & P_TRACED))
2446 			break;
2447 		if (td->td_flags & TDF_DBSUSPEND) {
2448 			if (p->p_flag & P_SINGLE_EXIT)
2449 				break;
2450 			mtx_lock_spin(&sched_lock);
2451 			goto stopme;
2452 		}
2453 	}
2454 	return (td->td_xsig);
2455 }
2456 
2457 /*
2458  * If the current process has received a signal (should be caught or cause
2459  * termination, should interrupt current syscall), return the signal number.
2460  * Stop signals with default action are processed immediately, then cleared;
2461  * they aren't returned.  This is checked after each entry to the system for
2462  * a syscall or trap (though this can usually be done without calling issignal
2463  * by checking the pending signal masks in cursig.) The normal call
2464  * sequence is
2465  *
2466  *	while (sig = cursig(curthread))
2467  *		postsig(sig);
2468  */
2469 static int
2470 issignal(td)
2471 	struct thread *td;
2472 {
2473 	struct proc *p;
2474 	struct sigacts *ps;
2475 	sigset_t sigpending;
2476 	int sig, prop, newsig;
2477 	struct thread *td0;
2478 
2479 	p = td->td_proc;
2480 	ps = p->p_sigacts;
2481 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2482 	PROC_LOCK_ASSERT(p, MA_OWNED);
2483 	for (;;) {
2484 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2485 
2486 		sigpending = td->td_sigqueue.sq_signals;
2487 		SIGSETNAND(sigpending, td->td_sigmask);
2488 
2489 		if (p->p_flag & P_PPWAIT)
2490 			SIG_STOPSIGMASK(sigpending);
2491 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2492 			return (0);
2493 		sig = sig_ffs(&sigpending);
2494 
2495 		if (p->p_stops & S_SIG) {
2496 			mtx_unlock(&ps->ps_mtx);
2497 			stopevent(p, S_SIG, sig);
2498 			mtx_lock(&ps->ps_mtx);
2499 		}
2500 
2501 		/*
2502 		 * We should see pending but ignored signals
2503 		 * only if P_TRACED was on when they were posted.
2504 		 */
2505 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2506 			sigqueue_delete(&td->td_sigqueue, sig);
2507 			if (td->td_pflags & TDP_SA)
2508 				SIGADDSET(td->td_sigmask, sig);
2509 			continue;
2510 		}
2511 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2512 			/*
2513 			 * If traced, always stop.
2514 			 */
2515 			mtx_unlock(&ps->ps_mtx);
2516 			newsig = ptracestop(td, sig);
2517 			mtx_lock(&ps->ps_mtx);
2518 
2519 			if (td->td_pflags & TDP_SA)
2520 				SIGADDSET(td->td_sigmask, sig);
2521 
2522 			if (sig != newsig) {
2523 				ksiginfo_t ksi;
2524 				/*
2525 				 * clear old signal.
2526 				 * XXX shrug off debugger, it causes siginfo to
2527 				 * be thrown away.
2528 				 */
2529 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2530 
2531 				/*
2532 				 * If parent wants us to take the signal,
2533 				 * then it will leave it in p->p_xstat;
2534 				 * otherwise we just look for signals again.
2535 			 	*/
2536 				if (newsig == 0)
2537 					continue;
2538 				sig = newsig;
2539 
2540 				/*
2541 				 * Put the new signal into td_sigqueue. If the
2542 				 * signal is being masked, look for other signals.
2543 				 */
2544 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2545 				if (td->td_pflags & TDP_SA)
2546 					SIGDELSET(td->td_sigmask, sig);
2547 				if (SIGISMEMBER(td->td_sigmask, sig))
2548 					continue;
2549 				signotify(td);
2550 			}
2551 
2552 			/*
2553 			 * If the traced bit got turned off, go back up
2554 			 * to the top to rescan signals.  This ensures
2555 			 * that p_sig* and p_sigact are consistent.
2556 			 */
2557 			if ((p->p_flag & P_TRACED) == 0)
2558 				continue;
2559 		}
2560 
2561 		prop = sigprop(sig);
2562 
2563 		/*
2564 		 * Decide whether the signal should be returned.
2565 		 * Return the signal's number, or fall through
2566 		 * to clear it from the pending mask.
2567 		 */
2568 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2569 
2570 		case (intptr_t)SIG_DFL:
2571 			/*
2572 			 * Don't take default actions on system processes.
2573 			 */
2574 			if (p->p_pid <= 1) {
2575 #ifdef DIAGNOSTIC
2576 				/*
2577 				 * Are you sure you want to ignore SIGSEGV
2578 				 * in init? XXX
2579 				 */
2580 				printf("Process (pid %lu) got signal %d\n",
2581 					(u_long)p->p_pid, sig);
2582 #endif
2583 				break;		/* == ignore */
2584 			}
2585 			/*
2586 			 * If there is a pending stop signal to process
2587 			 * with default action, stop here,
2588 			 * then clear the signal.  However,
2589 			 * if process is member of an orphaned
2590 			 * process group, ignore tty stop signals.
2591 			 */
2592 			if (prop & SA_STOP) {
2593 				if (p->p_flag & P_TRACED ||
2594 		    		    (p->p_pgrp->pg_jobc == 0 &&
2595 				     prop & SA_TTYSTOP))
2596 					break;	/* == ignore */
2597 				mtx_unlock(&ps->ps_mtx);
2598 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2599 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2600 				p->p_flag |= P_STOPPED_SIG;
2601 				p->p_xstat = sig;
2602 				p->p_xthread = td;
2603 				mtx_lock_spin(&sched_lock);
2604 				FOREACH_THREAD_IN_PROC(p, td0) {
2605 					if (TD_IS_SLEEPING(td0) &&
2606 					    (td0->td_flags & TDF_SINTR) &&
2607 					    !TD_IS_SUSPENDED(td0)) {
2608 						thread_suspend_one(td0);
2609 					} else if (td != td0) {
2610 						td0->td_flags |= TDF_ASTPENDING;
2611 					}
2612 				}
2613 				thread_stopped(p);
2614 				thread_suspend_one(td);
2615 				PROC_UNLOCK(p);
2616 				DROP_GIANT();
2617 				mi_switch(SW_INVOL, NULL);
2618 				mtx_unlock_spin(&sched_lock);
2619 				PICKUP_GIANT();
2620 				PROC_LOCK(p);
2621 				mtx_lock(&ps->ps_mtx);
2622 				break;
2623 			} else if (prop & SA_IGNORE) {
2624 				/*
2625 				 * Except for SIGCONT, shouldn't get here.
2626 				 * Default action is to ignore; drop it.
2627 				 */
2628 				break;		/* == ignore */
2629 			} else
2630 				return (sig);
2631 			/*NOTREACHED*/
2632 
2633 		case (intptr_t)SIG_IGN:
2634 			/*
2635 			 * Masking above should prevent us ever trying
2636 			 * to take action on an ignored signal other
2637 			 * than SIGCONT, unless process is traced.
2638 			 */
2639 			if ((prop & SA_CONT) == 0 &&
2640 			    (p->p_flag & P_TRACED) == 0)
2641 				printf("issignal\n");
2642 			break;		/* == ignore */
2643 
2644 		default:
2645 			/*
2646 			 * This signal has an action, let
2647 			 * postsig() process it.
2648 			 */
2649 			return (sig);
2650 		}
2651 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2652 	}
2653 	/* NOTREACHED */
2654 }
2655 
2656 /*
2657  * MPSAFE
2658  */
2659 void
2660 thread_stopped(struct proc *p)
2661 {
2662 	struct proc *p1 = curthread->td_proc;
2663 	struct sigacts *ps;
2664 	int n;
2665 
2666 	PROC_LOCK_ASSERT(p, MA_OWNED);
2667 	mtx_assert(&sched_lock, MA_OWNED);
2668 	n = p->p_suspcount;
2669 	if (p == p1)
2670 		n++;
2671 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2672 		mtx_unlock_spin(&sched_lock);
2673 		p->p_flag &= ~P_WAITED;
2674 		PROC_LOCK(p->p_pptr);
2675 		/*
2676 		 * Wake up parent sleeping in kern_wait(), also send
2677 		 * SIGCHLD to parent, but SIGCHLD does not guarantee
2678 		 * that parent will awake, because parent may masked
2679 		 * the signal.
2680 		 */
2681 		p->p_pptr->p_flag |= P_STATCHILD;
2682 		wakeup(p->p_pptr);
2683 		ps = p->p_pptr->p_sigacts;
2684 		mtx_lock(&ps->ps_mtx);
2685 		if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2686 			mtx_unlock(&ps->ps_mtx);
2687 			childproc_stopped(p,
2688 				(p->p_flag & P_TRACED) ?
2689 					CLD_TRAPPED : CLD_STOPPED);
2690 		} else
2691 			mtx_unlock(&ps->ps_mtx);
2692 		PROC_UNLOCK(p->p_pptr);
2693 		mtx_lock_spin(&sched_lock);
2694 	}
2695 }
2696 
2697 /*
2698  * Take the action for the specified signal
2699  * from the current set of pending signals.
2700  */
2701 void
2702 postsig(sig)
2703 	register int sig;
2704 {
2705 	struct thread *td = curthread;
2706 	register struct proc *p = td->td_proc;
2707 	struct sigacts *ps;
2708 	sig_t action;
2709 	ksiginfo_t ksi;
2710 	sigset_t returnmask;
2711 	int code;
2712 
2713 	KASSERT(sig != 0, ("postsig"));
2714 
2715 	PROC_LOCK_ASSERT(p, MA_OWNED);
2716 	ps = p->p_sigacts;
2717 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2718 	ksiginfo_init(&ksi);
2719 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2720 	ksi.ksi_signo = sig;
2721 	if (ksi.ksi_code == SI_TIMER)
2722 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2723 	action = ps->ps_sigact[_SIG_IDX(sig)];
2724 #ifdef KTRACE
2725 	if (KTRPOINT(td, KTR_PSIG))
2726 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2727 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2728 #endif
2729 	if (p->p_stops & S_SIG) {
2730 		mtx_unlock(&ps->ps_mtx);
2731 		stopevent(p, S_SIG, sig);
2732 		mtx_lock(&ps->ps_mtx);
2733 	}
2734 
2735 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2736 		/*
2737 		 * Default action, where the default is to kill
2738 		 * the process.  (Other cases were ignored above.)
2739 		 */
2740 		mtx_unlock(&ps->ps_mtx);
2741 		sigexit(td, sig);
2742 		/* NOTREACHED */
2743 	} else {
2744 		if (td->td_pflags & TDP_SA) {
2745 			if (sig == SIGKILL) {
2746 				mtx_unlock(&ps->ps_mtx);
2747 				sigexit(td, sig);
2748 			}
2749 		}
2750 
2751 		/*
2752 		 * If we get here, the signal must be caught.
2753 		 */
2754 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2755 		    ("postsig action"));
2756 		/*
2757 		 * Set the new mask value and also defer further
2758 		 * occurrences of this signal.
2759 		 *
2760 		 * Special case: user has done a sigsuspend.  Here the
2761 		 * current mask is not of interest, but rather the
2762 		 * mask from before the sigsuspend is what we want
2763 		 * restored after the signal processing is completed.
2764 		 */
2765 		if (td->td_pflags & TDP_OLDMASK) {
2766 			returnmask = td->td_oldsigmask;
2767 			td->td_pflags &= ~TDP_OLDMASK;
2768 		} else
2769 			returnmask = td->td_sigmask;
2770 
2771 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2772 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2773 			SIGADDSET(td->td_sigmask, sig);
2774 
2775 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2776 			/*
2777 			 * See kern_sigaction() for origin of this code.
2778 			 */
2779 			SIGDELSET(ps->ps_sigcatch, sig);
2780 			if (sig != SIGCONT &&
2781 			    sigprop(sig) & SA_IGNORE)
2782 				SIGADDSET(ps->ps_sigignore, sig);
2783 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2784 		}
2785 		p->p_stats->p_ru.ru_nsignals++;
2786 		if (p->p_sig != sig) {
2787 			code = 0;
2788 		} else {
2789 			code = p->p_code;
2790 			p->p_code = 0;
2791 			p->p_sig = 0;
2792 		}
2793 		if (td->td_pflags & TDP_SA)
2794 			thread_signal_add(curthread, &ksi);
2795 		else
2796 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2797 	}
2798 }
2799 
2800 /*
2801  * Kill the current process for stated reason.
2802  */
2803 void
2804 killproc(p, why)
2805 	struct proc *p;
2806 	char *why;
2807 {
2808 
2809 	PROC_LOCK_ASSERT(p, MA_OWNED);
2810 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2811 		p, p->p_pid, p->p_comm);
2812 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2813 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2814 	psignal(p, SIGKILL);
2815 }
2816 
2817 /*
2818  * Force the current process to exit with the specified signal, dumping core
2819  * if appropriate.  We bypass the normal tests for masked and caught signals,
2820  * allowing unrecoverable failures to terminate the process without changing
2821  * signal state.  Mark the accounting record with the signal termination.
2822  * If dumping core, save the signal number for the debugger.  Calls exit and
2823  * does not return.
2824  *
2825  * MPSAFE
2826  */
2827 void
2828 sigexit(td, sig)
2829 	struct thread *td;
2830 	int sig;
2831 {
2832 	struct proc *p = td->td_proc;
2833 
2834 	PROC_LOCK_ASSERT(p, MA_OWNED);
2835 	p->p_acflag |= AXSIG;
2836 	/*
2837 	 * We must be single-threading to generate a core dump.  This
2838 	 * ensures that the registers in the core file are up-to-date.
2839 	 * Also, the ELF dump handler assumes that the thread list doesn't
2840 	 * change out from under it.
2841 	 *
2842 	 * XXX If another thread attempts to single-thread before us
2843 	 *     (e.g. via fork()), we won't get a dump at all.
2844 	 */
2845 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2846 		p->p_sig = sig;
2847 		/*
2848 		 * Log signals which would cause core dumps
2849 		 * (Log as LOG_INFO to appease those who don't want
2850 		 * these messages.)
2851 		 * XXX : Todo, as well as euid, write out ruid too
2852 		 * Note that coredump() drops proc lock.
2853 		 */
2854 		if (coredump(td) == 0)
2855 			sig |= WCOREFLAG;
2856 		if (kern_logsigexit)
2857 			log(LOG_INFO,
2858 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2859 			    p->p_pid, p->p_comm,
2860 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2861 			    sig &~ WCOREFLAG,
2862 			    sig & WCOREFLAG ? " (core dumped)" : "");
2863 	} else
2864 		PROC_UNLOCK(p);
2865 	exit1(td, W_EXITCODE(0, sig));
2866 	/* NOTREACHED */
2867 }
2868 
2869 /*
2870  * Send queued SIGCHLD to parent when child process is stopped
2871  * or exited.
2872  */
2873 void
2874 childproc_stopped(struct proc *p, int reason)
2875 {
2876 	PROC_LOCK_ASSERT(p, MA_OWNED);
2877 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2878 
2879 	if (p->p_ksi != NULL) {
2880 		p->p_ksi->ksi_signo  = SIGCHLD;
2881 		p->p_ksi->ksi_code   = reason;
2882 		p->p_ksi->ksi_status = p->p_xstat;
2883 		p->p_ksi->ksi_pid    = p->p_pid;
2884 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2885 		if (KSI_ONQ(p->p_ksi))
2886 			return;
2887 	}
2888 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2889 }
2890 
2891 void
2892 childproc_continued(struct proc *p)
2893 {
2894 	PROC_LOCK_ASSERT(p, MA_OWNED);
2895 	PROC_LOCK_ASSERT(p->p_pptr, MA_NOTOWNED);
2896 
2897 	PROC_LOCK(p->p_pptr);
2898 	if (p->p_ksi != NULL) {
2899 		p->p_ksi->ksi_signo  = SIGCHLD;
2900 		p->p_ksi->ksi_code   = CLD_CONTINUED;
2901 		p->p_ksi->ksi_status = SIGCONT;
2902 		p->p_ksi->ksi_pid    = p->p_pid;
2903 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2904 		if (KSI_ONQ(p->p_ksi)) {
2905 			PROC_UNLOCK(p->p_pptr);
2906 			return;
2907 		}
2908 	}
2909 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2910 	PROC_UNLOCK(p->p_pptr);
2911 }
2912 
2913 void
2914 childproc_exited(struct proc *p)
2915 {
2916 	int reason;
2917 	int status = p->p_xstat; /* convert to int */
2918 
2919 	reason = CLD_EXITED;
2920 	if (WCOREDUMP(status))
2921 		reason = CLD_DUMPED;
2922 	else if (WIFSIGNALED(status))
2923 		reason = CLD_KILLED;
2924 	childproc_stopped(p, reason);
2925 }
2926 
2927 static char corefilename[MAXPATHLEN] = {"%N.core"};
2928 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2929 	      sizeof(corefilename), "process corefile name format string");
2930 
2931 /*
2932  * expand_name(name, uid, pid)
2933  * Expand the name described in corefilename, using name, uid, and pid.
2934  * corefilename is a printf-like string, with three format specifiers:
2935  *	%N	name of process ("name")
2936  *	%P	process id (pid)
2937  *	%U	user id (uid)
2938  * For example, "%N.core" is the default; they can be disabled completely
2939  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2940  * This is controlled by the sysctl variable kern.corefile (see above).
2941  */
2942 
2943 static char *
2944 expand_name(name, uid, pid)
2945 	const char *name;
2946 	uid_t uid;
2947 	pid_t pid;
2948 {
2949 	const char *format, *appendstr;
2950 	char *temp;
2951 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2952 	size_t i, l, n;
2953 
2954 	format = corefilename;
2955 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2956 	if (temp == NULL)
2957 		return (NULL);
2958 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2959 		switch (format[i]) {
2960 		case '%':	/* Format character */
2961 			i++;
2962 			switch (format[i]) {
2963 			case '%':
2964 				appendstr = "%";
2965 				break;
2966 			case 'N':	/* process name */
2967 				appendstr = name;
2968 				break;
2969 			case 'P':	/* process id */
2970 				sprintf(buf, "%u", pid);
2971 				appendstr = buf;
2972 				break;
2973 			case 'U':	/* user id */
2974 				sprintf(buf, "%u", uid);
2975 				appendstr = buf;
2976 				break;
2977 			default:
2978 				appendstr = "";
2979 			  	log(LOG_ERR,
2980 				    "Unknown format character %c in `%s'\n",
2981 				    format[i], format);
2982 			}
2983 			l = strlen(appendstr);
2984 			if ((n + l) >= MAXPATHLEN)
2985 				goto toolong;
2986 			memcpy(temp + n, appendstr, l);
2987 			n += l;
2988 			break;
2989 		default:
2990 			temp[n++] = format[i];
2991 		}
2992 	}
2993 	if (format[i] != '\0')
2994 		goto toolong;
2995 	return (temp);
2996 toolong:
2997 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
2998 	    (long)pid, name, (u_long)uid);
2999 	free(temp, M_TEMP);
3000 	return (NULL);
3001 }
3002 
3003 /*
3004  * Dump a process' core.  The main routine does some
3005  * policy checking, and creates the name of the coredump;
3006  * then it passes on a vnode and a size limit to the process-specific
3007  * coredump routine if there is one; if there _is not_ one, it returns
3008  * ENOSYS; otherwise it returns the error from the process-specific routine.
3009  */
3010 
3011 static int
3012 coredump(struct thread *td)
3013 {
3014 	struct proc *p = td->td_proc;
3015 	register struct vnode *vp;
3016 	register struct ucred *cred = td->td_ucred;
3017 	struct flock lf;
3018 	struct nameidata nd;
3019 	struct vattr vattr;
3020 	int error, error1, flags, locked;
3021 	struct mount *mp;
3022 	char *name;			/* name of corefile */
3023 	off_t limit;
3024 
3025 	PROC_LOCK_ASSERT(p, MA_OWNED);
3026 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3027 	_STOPEVENT(p, S_CORE, 0);
3028 
3029 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3030 		PROC_UNLOCK(p);
3031 		return (EFAULT);
3032 	}
3033 
3034 	/*
3035 	 * Note that the bulk of limit checking is done after
3036 	 * the corefile is created.  The exception is if the limit
3037 	 * for corefiles is 0, in which case we don't bother
3038 	 * creating the corefile at all.  This layout means that
3039 	 * a corefile is truncated instead of not being created,
3040 	 * if it is larger than the limit.
3041 	 */
3042 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3043 	PROC_UNLOCK(p);
3044 	if (limit == 0)
3045 		return (EFBIG);
3046 
3047 	mtx_lock(&Giant);
3048 restart:
3049 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3050 	if (name == NULL) {
3051 		mtx_unlock(&Giant);
3052 		return (EINVAL);
3053 	}
3054 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
3055 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3056 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3057 	free(name, M_TEMP);
3058 	if (error) {
3059 		mtx_unlock(&Giant);
3060 		return (error);
3061 	}
3062 	NDFREE(&nd, NDF_ONLY_PNBUF);
3063 	vp = nd.ni_vp;
3064 
3065 	/* Don't dump to non-regular files or files with links. */
3066 	if (vp->v_type != VREG ||
3067 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3068 		VOP_UNLOCK(vp, 0, td);
3069 		error = EFAULT;
3070 		goto out;
3071 	}
3072 
3073 	VOP_UNLOCK(vp, 0, td);
3074 	lf.l_whence = SEEK_SET;
3075 	lf.l_start = 0;
3076 	lf.l_len = 0;
3077 	lf.l_type = F_WRLCK;
3078 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3079 
3080 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3081 		lf.l_type = F_UNLCK;
3082 		if (locked)
3083 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3084 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3085 			return (error);
3086 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3087 			return (error);
3088 		goto restart;
3089 	}
3090 
3091 	VATTR_NULL(&vattr);
3092 	vattr.va_size = 0;
3093 	if (set_core_nodump_flag)
3094 		vattr.va_flags = UF_NODUMP;
3095 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3096 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3097 	VOP_SETATTR(vp, &vattr, cred, td);
3098 	VOP_UNLOCK(vp, 0, td);
3099 	PROC_LOCK(p);
3100 	p->p_acflag |= ACORE;
3101 	PROC_UNLOCK(p);
3102 
3103 	error = p->p_sysent->sv_coredump ?
3104 	  p->p_sysent->sv_coredump(td, vp, limit) :
3105 	  ENOSYS;
3106 
3107 	if (locked) {
3108 		lf.l_type = F_UNLCK;
3109 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3110 	}
3111 	vn_finished_write(mp);
3112 out:
3113 	error1 = vn_close(vp, FWRITE, cred, td);
3114 	mtx_unlock(&Giant);
3115 	if (error == 0)
3116 		error = error1;
3117 	return (error);
3118 }
3119 
3120 /*
3121  * Nonexistent system call-- signal process (may want to handle it).
3122  * Flag error in case process won't see signal immediately (blocked or ignored).
3123  */
3124 #ifndef _SYS_SYSPROTO_H_
3125 struct nosys_args {
3126 	int	dummy;
3127 };
3128 #endif
3129 /*
3130  * MPSAFE
3131  */
3132 /* ARGSUSED */
3133 int
3134 nosys(td, args)
3135 	struct thread *td;
3136 	struct nosys_args *args;
3137 {
3138 	struct proc *p = td->td_proc;
3139 
3140 	PROC_LOCK(p);
3141 	psignal(p, SIGSYS);
3142 	PROC_UNLOCK(p);
3143 	return (ENOSYS);
3144 }
3145 
3146 /*
3147  * Send a SIGIO or SIGURG signal to a process or process group using
3148  * stored credentials rather than those of the current process.
3149  */
3150 void
3151 pgsigio(sigiop, sig, checkctty)
3152 	struct sigio **sigiop;
3153 	int sig, checkctty;
3154 {
3155 	struct sigio *sigio;
3156 
3157 	SIGIO_LOCK();
3158 	sigio = *sigiop;
3159 	if (sigio == NULL) {
3160 		SIGIO_UNLOCK();
3161 		return;
3162 	}
3163 	if (sigio->sio_pgid > 0) {
3164 		PROC_LOCK(sigio->sio_proc);
3165 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3166 			psignal(sigio->sio_proc, sig);
3167 		PROC_UNLOCK(sigio->sio_proc);
3168 	} else if (sigio->sio_pgid < 0) {
3169 		struct proc *p;
3170 
3171 		PGRP_LOCK(sigio->sio_pgrp);
3172 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3173 			PROC_LOCK(p);
3174 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3175 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3176 				psignal(p, sig);
3177 			PROC_UNLOCK(p);
3178 		}
3179 		PGRP_UNLOCK(sigio->sio_pgrp);
3180 	}
3181 	SIGIO_UNLOCK();
3182 }
3183 
3184 static int
3185 filt_sigattach(struct knote *kn)
3186 {
3187 	struct proc *p = curproc;
3188 
3189 	kn->kn_ptr.p_proc = p;
3190 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3191 
3192 	knlist_add(&p->p_klist, kn, 0);
3193 
3194 	return (0);
3195 }
3196 
3197 static void
3198 filt_sigdetach(struct knote *kn)
3199 {
3200 	struct proc *p = kn->kn_ptr.p_proc;
3201 
3202 	knlist_remove(&p->p_klist, kn, 0);
3203 }
3204 
3205 /*
3206  * signal knotes are shared with proc knotes, so we apply a mask to
3207  * the hint in order to differentiate them from process hints.  This
3208  * could be avoided by using a signal-specific knote list, but probably
3209  * isn't worth the trouble.
3210  */
3211 static int
3212 filt_signal(struct knote *kn, long hint)
3213 {
3214 
3215 	if (hint & NOTE_SIGNAL) {
3216 		hint &= ~NOTE_SIGNAL;
3217 
3218 		if (kn->kn_id == hint)
3219 			kn->kn_data++;
3220 	}
3221 	return (kn->kn_data != 0);
3222 }
3223 
3224 struct sigacts *
3225 sigacts_alloc(void)
3226 {
3227 	struct sigacts *ps;
3228 
3229 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3230 	ps->ps_refcnt = 1;
3231 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3232 	return (ps);
3233 }
3234 
3235 void
3236 sigacts_free(struct sigacts *ps)
3237 {
3238 
3239 	mtx_lock(&ps->ps_mtx);
3240 	ps->ps_refcnt--;
3241 	if (ps->ps_refcnt == 0) {
3242 		mtx_destroy(&ps->ps_mtx);
3243 		free(ps, M_SUBPROC);
3244 	} else
3245 		mtx_unlock(&ps->ps_mtx);
3246 }
3247 
3248 struct sigacts *
3249 sigacts_hold(struct sigacts *ps)
3250 {
3251 	mtx_lock(&ps->ps_mtx);
3252 	ps->ps_refcnt++;
3253 	mtx_unlock(&ps->ps_mtx);
3254 	return (ps);
3255 }
3256 
3257 void
3258 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3259 {
3260 
3261 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3262 	mtx_lock(&src->ps_mtx);
3263 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3264 	mtx_unlock(&src->ps_mtx);
3265 }
3266 
3267 int
3268 sigacts_shared(struct sigacts *ps)
3269 {
3270 	int shared;
3271 
3272 	mtx_lock(&ps->ps_mtx);
3273 	shared = ps->ps_refcnt > 1;
3274 	mtx_unlock(&ps->ps_mtx);
3275 	return (shared);
3276 }
3277