xref: /freebsd/sys/kern/kern_sig.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sleepqueue.h>
63 #include <sys/smp.h>
64 #include <sys/stat.h>
65 #include <sys/sx.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/sysctl.h>
68 #include <sys/sysent.h>
69 #include <sys/syslog.h>
70 #include <sys/sysproto.h>
71 #include <sys/unistd.h>
72 #include <sys/wait.h>
73 
74 #include <machine/cpu.h>
75 
76 #if defined (__alpha__) && !defined(COMPAT_43)
77 #error "You *really* need COMPAT_43 on the alpha for longjmp(3)"
78 #endif
79 
80 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
81 
82 static int	coredump(struct thread *);
83 static char	*expand_name(const char *, uid_t, pid_t);
84 static int	killpg1(struct thread *td, int sig, int pgid, int all);
85 static int	issignal(struct thread *p);
86 static int	sigprop(int sig);
87 static void	stop(struct proc *);
88 static void	tdsigwakeup(struct thread *td, int sig, sig_t action);
89 static int	filt_sigattach(struct knote *kn);
90 static void	filt_sigdetach(struct knote *kn);
91 static int	filt_signal(struct knote *kn, long hint);
92 static struct thread *sigtd(struct proc *p, int sig, int prop);
93 static int	kern_sigtimedwait(struct thread *td, sigset_t set,
94 				siginfo_t *info, struct timespec *timeout);
95 static void	do_tdsignal(struct thread *td, int sig, sigtarget_t target);
96 
97 struct filterops sig_filtops =
98 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
99 
100 static int	kern_logsigexit = 1;
101 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
102     &kern_logsigexit, 0,
103     "Log processes quitting on abnormal signals to syslog(3)");
104 
105 /*
106  * Policy -- Can ucred cr1 send SIGIO to process cr2?
107  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
108  * in the right situations.
109  */
110 #define CANSIGIO(cr1, cr2) \
111 	((cr1)->cr_uid == 0 || \
112 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
113 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
114 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
115 	    (cr1)->cr_uid == (cr2)->cr_uid)
116 
117 int sugid_coredump;
118 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
119     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
120 
121 static int	do_coredump = 1;
122 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
123 	&do_coredump, 0, "Enable/Disable coredumps");
124 
125 /*
126  * Signal properties and actions.
127  * The array below categorizes the signals and their default actions
128  * according to the following properties:
129  */
130 #define	SA_KILL		0x01		/* terminates process by default */
131 #define	SA_CORE		0x02		/* ditto and coredumps */
132 #define	SA_STOP		0x04		/* suspend process */
133 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
134 #define	SA_IGNORE	0x10		/* ignore by default */
135 #define	SA_CONT		0x20		/* continue if suspended */
136 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
137 #define	SA_PROC		0x80		/* deliverable to any thread */
138 
139 static int sigproptbl[NSIG] = {
140         SA_KILL|SA_PROC,		/* SIGHUP */
141         SA_KILL|SA_PROC,		/* SIGINT */
142         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
143         SA_KILL|SA_CORE,		/* SIGILL */
144         SA_KILL|SA_CORE,		/* SIGTRAP */
145         SA_KILL|SA_CORE,		/* SIGABRT */
146         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
147         SA_KILL|SA_CORE,		/* SIGFPE */
148         SA_KILL|SA_PROC,		/* SIGKILL */
149         SA_KILL|SA_CORE,		/* SIGBUS */
150         SA_KILL|SA_CORE,		/* SIGSEGV */
151         SA_KILL|SA_CORE,		/* SIGSYS */
152         SA_KILL|SA_PROC,		/* SIGPIPE */
153         SA_KILL|SA_PROC,		/* SIGALRM */
154         SA_KILL|SA_PROC,		/* SIGTERM */
155         SA_IGNORE|SA_PROC,		/* SIGURG */
156         SA_STOP|SA_PROC,		/* SIGSTOP */
157         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
158         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
159         SA_IGNORE|SA_PROC,		/* SIGCHLD */
160         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
161         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
162         SA_IGNORE|SA_PROC,		/* SIGIO */
163         SA_KILL,			/* SIGXCPU */
164         SA_KILL,			/* SIGXFSZ */
165         SA_KILL|SA_PROC,		/* SIGVTALRM */
166         SA_KILL|SA_PROC,		/* SIGPROF */
167         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
168         SA_IGNORE|SA_PROC,		/* SIGINFO */
169         SA_KILL|SA_PROC,		/* SIGUSR1 */
170         SA_KILL|SA_PROC,		/* SIGUSR2 */
171 };
172 
173 /*
174  * Determine signal that should be delivered to process p, the current
175  * process, 0 if none.  If there is a pending stop signal with default
176  * action, the process stops in issignal().
177  * XXXKSE   the check for a pending stop is not done under KSE
178  *
179  * MP SAFE.
180  */
181 int
182 cursig(struct thread *td)
183 {
184 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
185 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
186 	mtx_assert(&sched_lock, MA_NOTOWNED);
187 	return (SIGPENDING(td) ? issignal(td) : 0);
188 }
189 
190 /*
191  * Arrange for ast() to handle unmasked pending signals on return to user
192  * mode.  This must be called whenever a signal is added to td_siglist or
193  * unmasked in td_sigmask.
194  */
195 void
196 signotify(struct thread *td)
197 {
198 	struct proc *p;
199 	sigset_t set, saved;
200 
201 	p = td->td_proc;
202 
203 	PROC_LOCK_ASSERT(p, MA_OWNED);
204 
205 	/*
206 	 * If our mask changed we may have to move signal that were
207 	 * previously masked by all threads to our siglist.
208 	 */
209 	set = p->p_siglist;
210 	if (p->p_flag & P_SA)
211 		saved = p->p_siglist;
212 	SIGSETNAND(set, td->td_sigmask);
213 	SIGSETNAND(p->p_siglist, set);
214 	SIGSETOR(td->td_siglist, set);
215 
216 	if (SIGPENDING(td)) {
217 		mtx_lock_spin(&sched_lock);
218 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
219 		mtx_unlock_spin(&sched_lock);
220 	}
221 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
222 		if (!SIGSETEQ(saved, p->p_siglist)) {
223 			/* pending set changed */
224 			p->p_flag |= P_SIGEVENT;
225 			wakeup(&p->p_siglist);
226 		}
227 	}
228 }
229 
230 int
231 sigonstack(size_t sp)
232 {
233 	struct thread *td = curthread;
234 
235 	return ((td->td_pflags & TDP_ALTSTACK) ?
236 #if defined(COMPAT_43)
237 	    ((td->td_sigstk.ss_size == 0) ?
238 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
239 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
240 #else
241 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
242 #endif
243 	    : 0);
244 }
245 
246 static __inline int
247 sigprop(int sig)
248 {
249 
250 	if (sig > 0 && sig < NSIG)
251 		return (sigproptbl[_SIG_IDX(sig)]);
252 	return (0);
253 }
254 
255 int
256 sig_ffs(sigset_t *set)
257 {
258 	int i;
259 
260 	for (i = 0; i < _SIG_WORDS; i++)
261 		if (set->__bits[i])
262 			return (ffs(set->__bits[i]) + (i * 32));
263 	return (0);
264 }
265 
266 /*
267  * kern_sigaction
268  * sigaction
269  * freebsd4_sigaction
270  * osigaction
271  *
272  * MPSAFE
273  */
274 int
275 kern_sigaction(td, sig, act, oact, flags)
276 	struct thread *td;
277 	register int sig;
278 	struct sigaction *act, *oact;
279 	int flags;
280 {
281 	struct sigacts *ps;
282 	struct thread *td0;
283 	struct proc *p = td->td_proc;
284 
285 	if (!_SIG_VALID(sig))
286 		return (EINVAL);
287 
288 	PROC_LOCK(p);
289 	ps = p->p_sigacts;
290 	mtx_lock(&ps->ps_mtx);
291 	if (oact) {
292 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
293 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
294 		oact->sa_flags = 0;
295 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
296 			oact->sa_flags |= SA_ONSTACK;
297 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
298 			oact->sa_flags |= SA_RESTART;
299 		if (SIGISMEMBER(ps->ps_sigreset, sig))
300 			oact->sa_flags |= SA_RESETHAND;
301 		if (SIGISMEMBER(ps->ps_signodefer, sig))
302 			oact->sa_flags |= SA_NODEFER;
303 		if (SIGISMEMBER(ps->ps_siginfo, sig))
304 			oact->sa_flags |= SA_SIGINFO;
305 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
306 			oact->sa_flags |= SA_NOCLDSTOP;
307 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
308 			oact->sa_flags |= SA_NOCLDWAIT;
309 	}
310 	if (act) {
311 		if ((sig == SIGKILL || sig == SIGSTOP) &&
312 		    act->sa_handler != SIG_DFL) {
313 			mtx_unlock(&ps->ps_mtx);
314 			PROC_UNLOCK(p);
315 			return (EINVAL);
316 		}
317 
318 		/*
319 		 * Change setting atomically.
320 		 */
321 
322 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
323 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
324 		if (act->sa_flags & SA_SIGINFO) {
325 			ps->ps_sigact[_SIG_IDX(sig)] =
326 			    (__sighandler_t *)act->sa_sigaction;
327 			SIGADDSET(ps->ps_siginfo, sig);
328 		} else {
329 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
330 			SIGDELSET(ps->ps_siginfo, sig);
331 		}
332 		if (!(act->sa_flags & SA_RESTART))
333 			SIGADDSET(ps->ps_sigintr, sig);
334 		else
335 			SIGDELSET(ps->ps_sigintr, sig);
336 		if (act->sa_flags & SA_ONSTACK)
337 			SIGADDSET(ps->ps_sigonstack, sig);
338 		else
339 			SIGDELSET(ps->ps_sigonstack, sig);
340 		if (act->sa_flags & SA_RESETHAND)
341 			SIGADDSET(ps->ps_sigreset, sig);
342 		else
343 			SIGDELSET(ps->ps_sigreset, sig);
344 		if (act->sa_flags & SA_NODEFER)
345 			SIGADDSET(ps->ps_signodefer, sig);
346 		else
347 			SIGDELSET(ps->ps_signodefer, sig);
348 		if (sig == SIGCHLD) {
349 			if (act->sa_flags & SA_NOCLDSTOP)
350 				ps->ps_flag |= PS_NOCLDSTOP;
351 			else
352 				ps->ps_flag &= ~PS_NOCLDSTOP;
353 			if (act->sa_flags & SA_NOCLDWAIT) {
354 				/*
355 				 * Paranoia: since SA_NOCLDWAIT is implemented
356 				 * by reparenting the dying child to PID 1 (and
357 				 * trust it to reap the zombie), PID 1 itself
358 				 * is forbidden to set SA_NOCLDWAIT.
359 				 */
360 				if (p->p_pid == 1)
361 					ps->ps_flag &= ~PS_NOCLDWAIT;
362 				else
363 					ps->ps_flag |= PS_NOCLDWAIT;
364 			} else
365 				ps->ps_flag &= ~PS_NOCLDWAIT;
366 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
367 				ps->ps_flag |= PS_CLDSIGIGN;
368 			else
369 				ps->ps_flag &= ~PS_CLDSIGIGN;
370 		}
371 		/*
372 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
373 		 * and for signals set to SIG_DFL where the default is to
374 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
375 		 * have to restart the process.
376 		 */
377 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
378 		    (sigprop(sig) & SA_IGNORE &&
379 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
380 			if ((p->p_flag & P_SA) &&
381 			     SIGISMEMBER(p->p_siglist, sig)) {
382 				p->p_flag |= P_SIGEVENT;
383 				wakeup(&p->p_siglist);
384 			}
385 			/* never to be seen again */
386 			SIGDELSET(p->p_siglist, sig);
387 			mtx_lock_spin(&sched_lock);
388 			FOREACH_THREAD_IN_PROC(p, td0)
389 				SIGDELSET(td0->td_siglist, sig);
390 			mtx_unlock_spin(&sched_lock);
391 			if (sig != SIGCONT)
392 				/* easier in psignal */
393 				SIGADDSET(ps->ps_sigignore, sig);
394 			SIGDELSET(ps->ps_sigcatch, sig);
395 		} else {
396 			SIGDELSET(ps->ps_sigignore, sig);
397 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
398 				SIGDELSET(ps->ps_sigcatch, sig);
399 			else
400 				SIGADDSET(ps->ps_sigcatch, sig);
401 		}
402 #ifdef COMPAT_FREEBSD4
403 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
404 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
405 		    (flags & KSA_FREEBSD4) == 0)
406 			SIGDELSET(ps->ps_freebsd4, sig);
407 		else
408 			SIGADDSET(ps->ps_freebsd4, sig);
409 #endif
410 #ifdef COMPAT_43
411 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
412 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
413 		    (flags & KSA_OSIGSET) == 0)
414 			SIGDELSET(ps->ps_osigset, sig);
415 		else
416 			SIGADDSET(ps->ps_osigset, sig);
417 #endif
418 	}
419 	mtx_unlock(&ps->ps_mtx);
420 	PROC_UNLOCK(p);
421 	return (0);
422 }
423 
424 #ifndef _SYS_SYSPROTO_H_
425 struct sigaction_args {
426 	int	sig;
427 	struct	sigaction *act;
428 	struct	sigaction *oact;
429 };
430 #endif
431 /*
432  * MPSAFE
433  */
434 int
435 sigaction(td, uap)
436 	struct thread *td;
437 	register struct sigaction_args *uap;
438 {
439 	struct sigaction act, oact;
440 	register struct sigaction *actp, *oactp;
441 	int error;
442 
443 	actp = (uap->act != NULL) ? &act : NULL;
444 	oactp = (uap->oact != NULL) ? &oact : NULL;
445 	if (actp) {
446 		error = copyin(uap->act, actp, sizeof(act));
447 		if (error)
448 			return (error);
449 	}
450 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
451 	if (oactp && !error)
452 		error = copyout(oactp, uap->oact, sizeof(oact));
453 	return (error);
454 }
455 
456 #ifdef COMPAT_FREEBSD4
457 #ifndef _SYS_SYSPROTO_H_
458 struct freebsd4_sigaction_args {
459 	int	sig;
460 	struct	sigaction *act;
461 	struct	sigaction *oact;
462 };
463 #endif
464 /*
465  * MPSAFE
466  */
467 int
468 freebsd4_sigaction(td, uap)
469 	struct thread *td;
470 	register struct freebsd4_sigaction_args *uap;
471 {
472 	struct sigaction act, oact;
473 	register struct sigaction *actp, *oactp;
474 	int error;
475 
476 
477 	actp = (uap->act != NULL) ? &act : NULL;
478 	oactp = (uap->oact != NULL) ? &oact : NULL;
479 	if (actp) {
480 		error = copyin(uap->act, actp, sizeof(act));
481 		if (error)
482 			return (error);
483 	}
484 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
485 	if (oactp && !error)
486 		error = copyout(oactp, uap->oact, sizeof(oact));
487 	return (error);
488 }
489 #endif	/* COMAPT_FREEBSD4 */
490 
491 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
492 #ifndef _SYS_SYSPROTO_H_
493 struct osigaction_args {
494 	int	signum;
495 	struct	osigaction *nsa;
496 	struct	osigaction *osa;
497 };
498 #endif
499 /*
500  * MPSAFE
501  */
502 int
503 osigaction(td, uap)
504 	struct thread *td;
505 	register struct osigaction_args *uap;
506 {
507 	struct osigaction sa;
508 	struct sigaction nsa, osa;
509 	register struct sigaction *nsap, *osap;
510 	int error;
511 
512 	if (uap->signum <= 0 || uap->signum >= ONSIG)
513 		return (EINVAL);
514 
515 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
516 	osap = (uap->osa != NULL) ? &osa : NULL;
517 
518 	if (nsap) {
519 		error = copyin(uap->nsa, &sa, sizeof(sa));
520 		if (error)
521 			return (error);
522 		nsap->sa_handler = sa.sa_handler;
523 		nsap->sa_flags = sa.sa_flags;
524 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
525 	}
526 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
527 	if (osap && !error) {
528 		sa.sa_handler = osap->sa_handler;
529 		sa.sa_flags = osap->sa_flags;
530 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
531 		error = copyout(&sa, uap->osa, sizeof(sa));
532 	}
533 	return (error);
534 }
535 
536 #if !defined(__i386__) && !defined(__alpha__)
537 /* Avoid replicating the same stub everywhere */
538 int
539 osigreturn(td, uap)
540 	struct thread *td;
541 	struct osigreturn_args *uap;
542 {
543 
544 	return (nosys(td, (struct nosys_args *)uap));
545 }
546 #endif
547 #endif /* COMPAT_43 */
548 
549 /*
550  * Initialize signal state for process 0;
551  * set to ignore signals that are ignored by default.
552  */
553 void
554 siginit(p)
555 	struct proc *p;
556 {
557 	register int i;
558 	struct sigacts *ps;
559 
560 	PROC_LOCK(p);
561 	ps = p->p_sigacts;
562 	mtx_lock(&ps->ps_mtx);
563 	for (i = 1; i <= NSIG; i++)
564 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
565 			SIGADDSET(ps->ps_sigignore, i);
566 	mtx_unlock(&ps->ps_mtx);
567 	PROC_UNLOCK(p);
568 }
569 
570 /*
571  * Reset signals for an exec of the specified process.
572  */
573 void
574 execsigs(struct proc *p)
575 {
576 	struct sigacts *ps;
577 	int sig;
578 	struct thread *td;
579 
580 	/*
581 	 * Reset caught signals.  Held signals remain held
582 	 * through td_sigmask (unless they were caught,
583 	 * and are now ignored by default).
584 	 */
585 	PROC_LOCK_ASSERT(p, MA_OWNED);
586 	td = FIRST_THREAD_IN_PROC(p);
587 	ps = p->p_sigacts;
588 	mtx_lock(&ps->ps_mtx);
589 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
590 		sig = sig_ffs(&ps->ps_sigcatch);
591 		SIGDELSET(ps->ps_sigcatch, sig);
592 		if (sigprop(sig) & SA_IGNORE) {
593 			if (sig != SIGCONT)
594 				SIGADDSET(ps->ps_sigignore, sig);
595 			SIGDELSET(p->p_siglist, sig);
596 			/*
597 			 * There is only one thread at this point.
598 			 */
599 			SIGDELSET(td->td_siglist, sig);
600 		}
601 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
602 	}
603 	/*
604 	 * Reset stack state to the user stack.
605 	 * Clear set of signals caught on the signal stack.
606 	 */
607 	td->td_sigstk.ss_flags = SS_DISABLE;
608 	td->td_sigstk.ss_size = 0;
609 	td->td_sigstk.ss_sp = 0;
610 	td->td_pflags &= ~TDP_ALTSTACK;
611 	/*
612 	 * Reset no zombies if child dies flag as Solaris does.
613 	 */
614 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
615 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
616 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
617 	mtx_unlock(&ps->ps_mtx);
618 }
619 
620 /*
621  * kern_sigprocmask()
622  *
623  *	Manipulate signal mask.
624  */
625 int
626 kern_sigprocmask(td, how, set, oset, old)
627 	struct thread *td;
628 	int how;
629 	sigset_t *set, *oset;
630 	int old;
631 {
632 	int error;
633 
634 	PROC_LOCK(td->td_proc);
635 	if (oset != NULL)
636 		*oset = td->td_sigmask;
637 
638 	error = 0;
639 	if (set != NULL) {
640 		switch (how) {
641 		case SIG_BLOCK:
642 			SIG_CANTMASK(*set);
643 			SIGSETOR(td->td_sigmask, *set);
644 			break;
645 		case SIG_UNBLOCK:
646 			SIGSETNAND(td->td_sigmask, *set);
647 			signotify(td);
648 			break;
649 		case SIG_SETMASK:
650 			SIG_CANTMASK(*set);
651 			if (old)
652 				SIGSETLO(td->td_sigmask, *set);
653 			else
654 				td->td_sigmask = *set;
655 			signotify(td);
656 			break;
657 		default:
658 			error = EINVAL;
659 			break;
660 		}
661 	}
662 	PROC_UNLOCK(td->td_proc);
663 	return (error);
664 }
665 
666 /*
667  * sigprocmask() - MP SAFE
668  */
669 
670 #ifndef _SYS_SYSPROTO_H_
671 struct sigprocmask_args {
672 	int	how;
673 	const sigset_t *set;
674 	sigset_t *oset;
675 };
676 #endif
677 int
678 sigprocmask(td, uap)
679 	register struct thread *td;
680 	struct sigprocmask_args *uap;
681 {
682 	sigset_t set, oset;
683 	sigset_t *setp, *osetp;
684 	int error;
685 
686 	setp = (uap->set != NULL) ? &set : NULL;
687 	osetp = (uap->oset != NULL) ? &oset : NULL;
688 	if (setp) {
689 		error = copyin(uap->set, setp, sizeof(set));
690 		if (error)
691 			return (error);
692 	}
693 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
694 	if (osetp && !error) {
695 		error = copyout(osetp, uap->oset, sizeof(oset));
696 	}
697 	return (error);
698 }
699 
700 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
701 /*
702  * osigprocmask() - MP SAFE
703  */
704 #ifndef _SYS_SYSPROTO_H_
705 struct osigprocmask_args {
706 	int	how;
707 	osigset_t mask;
708 };
709 #endif
710 int
711 osigprocmask(td, uap)
712 	register struct thread *td;
713 	struct osigprocmask_args *uap;
714 {
715 	sigset_t set, oset;
716 	int error;
717 
718 	OSIG2SIG(uap->mask, set);
719 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
720 	SIG2OSIG(oset, td->td_retval[0]);
721 	return (error);
722 }
723 #endif /* COMPAT_43 */
724 
725 #ifndef _SYS_SYSPROTO_H_
726 struct sigpending_args {
727 	sigset_t	*set;
728 };
729 #endif
730 /*
731  * MPSAFE
732  */
733 int
734 sigwait(struct thread *td, struct sigwait_args *uap)
735 {
736 	siginfo_t info;
737 	sigset_t set;
738 	int error;
739 
740 	error = copyin(uap->set, &set, sizeof(set));
741 	if (error) {
742 		td->td_retval[0] = error;
743 		return (0);
744 	}
745 
746 	error = kern_sigtimedwait(td, set, &info, NULL);
747 	if (error) {
748 		if (error == ERESTART)
749 			return (error);
750 		td->td_retval[0] = error;
751 		return (0);
752 	}
753 
754 	error = copyout(&info.si_signo, uap->sig, sizeof(info.si_signo));
755 	/* Repost if we got an error. */
756 	if (error && info.si_signo) {
757 		PROC_LOCK(td->td_proc);
758 		tdsignal(td, info.si_signo, SIGTARGET_TD);
759 		PROC_UNLOCK(td->td_proc);
760 	}
761 	td->td_retval[0] = error;
762 	return (0);
763 }
764 /*
765  * MPSAFE
766  */
767 int
768 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
769 {
770 	struct timespec ts;
771 	struct timespec *timeout;
772 	sigset_t set;
773 	siginfo_t info;
774 	int error;
775 
776 	if (uap->timeout) {
777 		error = copyin(uap->timeout, &ts, sizeof(ts));
778 		if (error)
779 			return (error);
780 
781 		timeout = &ts;
782 	} else
783 		timeout = NULL;
784 
785 	error = copyin(uap->set, &set, sizeof(set));
786 	if (error)
787 		return (error);
788 
789 	error = kern_sigtimedwait(td, set, &info, timeout);
790 	if (error)
791 		return (error);
792 
793 	if (uap->info)
794 		error = copyout(&info, uap->info, sizeof(info));
795 	/* Repost if we got an error. */
796 	if (error && info.si_signo) {
797 		PROC_LOCK(td->td_proc);
798 		tdsignal(td, info.si_signo, SIGTARGET_TD);
799 		PROC_UNLOCK(td->td_proc);
800 	} else {
801 		td->td_retval[0] = info.si_signo;
802 	}
803 	return (error);
804 }
805 
806 /*
807  * MPSAFE
808  */
809 int
810 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
811 {
812 	siginfo_t info;
813 	sigset_t set;
814 	int error;
815 
816 	error = copyin(uap->set, &set, sizeof(set));
817 	if (error)
818 		return (error);
819 
820 	error = kern_sigtimedwait(td, set, &info, NULL);
821 	if (error)
822 		return (error);
823 
824 	if (uap->info)
825 		error = copyout(&info, uap->info, sizeof(info));
826 	/* Repost if we got an error. */
827 	if (error && info.si_signo) {
828 		PROC_LOCK(td->td_proc);
829 		tdsignal(td, info.si_signo, SIGTARGET_TD);
830 		PROC_UNLOCK(td->td_proc);
831 	} else {
832 		td->td_retval[0] = info.si_signo;
833 	}
834 	return (error);
835 }
836 
837 static int
838 kern_sigtimedwait(struct thread *td, sigset_t waitset, siginfo_t *info,
839     struct timespec *timeout)
840 {
841 	struct sigacts *ps;
842 	sigset_t savedmask, sigset;
843 	struct proc *p;
844 	int error;
845 	int sig;
846 	int hz;
847 	int i;
848 
849 	p = td->td_proc;
850 	error = 0;
851 	sig = 0;
852 	SIG_CANTMASK(waitset);
853 
854 	PROC_LOCK(p);
855 	ps = p->p_sigacts;
856 	savedmask = td->td_sigmask;
857 
858 again:
859 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
860 		if (!SIGISMEMBER(waitset, i))
861 			continue;
862 		if (SIGISMEMBER(td->td_siglist, i)) {
863 			SIGFILLSET(td->td_sigmask);
864 			SIG_CANTMASK(td->td_sigmask);
865 			SIGDELSET(td->td_sigmask, i);
866 			mtx_lock(&ps->ps_mtx);
867 			sig = cursig(td);
868 			i = 0;
869 			mtx_unlock(&ps->ps_mtx);
870 		} else if (SIGISMEMBER(p->p_siglist, i)) {
871 			if (p->p_flag & P_SA) {
872 				p->p_flag |= P_SIGEVENT;
873 				wakeup(&p->p_siglist);
874 			}
875 			SIGDELSET(p->p_siglist, i);
876 			SIGADDSET(td->td_siglist, i);
877 			SIGFILLSET(td->td_sigmask);
878 			SIG_CANTMASK(td->td_sigmask);
879 			SIGDELSET(td->td_sigmask, i);
880 			mtx_lock(&ps->ps_mtx);
881 			sig = cursig(td);
882 			i = 0;
883 			mtx_unlock(&ps->ps_mtx);
884 		}
885 		if (sig) {
886 			td->td_sigmask = savedmask;
887 			signotify(td);
888 			goto out;
889 		}
890 	}
891 	if (error)
892 		goto out;
893 
894 	td->td_sigmask = savedmask;
895 	signotify(td);
896 	sigset = td->td_siglist;
897 	SIGSETOR(sigset, p->p_siglist);
898 	SIGSETAND(sigset, waitset);
899 	if (!SIGISEMPTY(sigset))
900 		goto again;
901 
902 	/*
903 	 * POSIX says this must be checked after looking for pending
904 	 * signals.
905 	 */
906 	if (timeout) {
907 		struct timeval tv;
908 
909 		if (timeout->tv_nsec < 0 || timeout->tv_nsec > 1000000000) {
910 			error = EINVAL;
911 			goto out;
912 		}
913 		if (timeout->tv_sec == 0 && timeout->tv_nsec == 0) {
914 			error = EAGAIN;
915 			goto out;
916 		}
917 		TIMESPEC_TO_TIMEVAL(&tv, timeout);
918 		hz = tvtohz(&tv);
919 	} else
920 		hz = 0;
921 
922 	td->td_waitset = &waitset;
923 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
924 	td->td_waitset = NULL;
925 	if (error == 0) /* surplus wakeup ? */
926 		error = EINTR;
927 	goto again;
928 
929 out:
930 	if (sig) {
931 		sig_t action;
932 
933 		error = 0;
934 		mtx_lock(&ps->ps_mtx);
935 		action = ps->ps_sigact[_SIG_IDX(sig)];
936 		mtx_unlock(&ps->ps_mtx);
937 #ifdef KTRACE
938 		if (KTRPOINT(td, KTR_PSIG))
939 			ktrpsig(sig, action, &td->td_sigmask, 0);
940 #endif
941 		_STOPEVENT(p, S_SIG, sig);
942 
943 		SIGDELSET(td->td_siglist, sig);
944 		info->si_signo = sig;
945 		info->si_code = 0;
946 	}
947 	PROC_UNLOCK(p);
948 	return (error);
949 }
950 
951 /*
952  * MPSAFE
953  */
954 int
955 sigpending(td, uap)
956 	struct thread *td;
957 	struct sigpending_args *uap;
958 {
959 	struct proc *p = td->td_proc;
960 	sigset_t siglist;
961 
962 	PROC_LOCK(p);
963 	siglist = p->p_siglist;
964 	SIGSETOR(siglist, td->td_siglist);
965 	PROC_UNLOCK(p);
966 	return (copyout(&siglist, uap->set, sizeof(sigset_t)));
967 }
968 
969 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
970 #ifndef _SYS_SYSPROTO_H_
971 struct osigpending_args {
972 	int	dummy;
973 };
974 #endif
975 /*
976  * MPSAFE
977  */
978 int
979 osigpending(td, uap)
980 	struct thread *td;
981 	struct osigpending_args *uap;
982 {
983 	struct proc *p = td->td_proc;
984 	sigset_t siglist;
985 
986 	PROC_LOCK(p);
987 	siglist = p->p_siglist;
988 	SIGSETOR(siglist, td->td_siglist);
989 	PROC_UNLOCK(p);
990 	SIG2OSIG(siglist, td->td_retval[0]);
991 	return (0);
992 }
993 #endif /* COMPAT_43 */
994 
995 #if defined(COMPAT_43)
996 /*
997  * Generalized interface signal handler, 4.3-compatible.
998  */
999 #ifndef _SYS_SYSPROTO_H_
1000 struct osigvec_args {
1001 	int	signum;
1002 	struct	sigvec *nsv;
1003 	struct	sigvec *osv;
1004 };
1005 #endif
1006 /*
1007  * MPSAFE
1008  */
1009 /* ARGSUSED */
1010 int
1011 osigvec(td, uap)
1012 	struct thread *td;
1013 	register struct osigvec_args *uap;
1014 {
1015 	struct sigvec vec;
1016 	struct sigaction nsa, osa;
1017 	register struct sigaction *nsap, *osap;
1018 	int error;
1019 
1020 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1021 		return (EINVAL);
1022 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1023 	osap = (uap->osv != NULL) ? &osa : NULL;
1024 	if (nsap) {
1025 		error = copyin(uap->nsv, &vec, sizeof(vec));
1026 		if (error)
1027 			return (error);
1028 		nsap->sa_handler = vec.sv_handler;
1029 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1030 		nsap->sa_flags = vec.sv_flags;
1031 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1032 	}
1033 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1034 	if (osap && !error) {
1035 		vec.sv_handler = osap->sa_handler;
1036 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1037 		vec.sv_flags = osap->sa_flags;
1038 		vec.sv_flags &= ~SA_NOCLDWAIT;
1039 		vec.sv_flags ^= SA_RESTART;
1040 		error = copyout(&vec, uap->osv, sizeof(vec));
1041 	}
1042 	return (error);
1043 }
1044 
1045 #ifndef _SYS_SYSPROTO_H_
1046 struct osigblock_args {
1047 	int	mask;
1048 };
1049 #endif
1050 /*
1051  * MPSAFE
1052  */
1053 int
1054 osigblock(td, uap)
1055 	register struct thread *td;
1056 	struct osigblock_args *uap;
1057 {
1058 	struct proc *p = td->td_proc;
1059 	sigset_t set;
1060 
1061 	OSIG2SIG(uap->mask, set);
1062 	SIG_CANTMASK(set);
1063 	PROC_LOCK(p);
1064 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1065 	SIGSETOR(td->td_sigmask, set);
1066 	PROC_UNLOCK(p);
1067 	return (0);
1068 }
1069 
1070 #ifndef _SYS_SYSPROTO_H_
1071 struct osigsetmask_args {
1072 	int	mask;
1073 };
1074 #endif
1075 /*
1076  * MPSAFE
1077  */
1078 int
1079 osigsetmask(td, uap)
1080 	struct thread *td;
1081 	struct osigsetmask_args *uap;
1082 {
1083 	struct proc *p = td->td_proc;
1084 	sigset_t set;
1085 
1086 	OSIG2SIG(uap->mask, set);
1087 	SIG_CANTMASK(set);
1088 	PROC_LOCK(p);
1089 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1090 	SIGSETLO(td->td_sigmask, set);
1091 	signotify(td);
1092 	PROC_UNLOCK(p);
1093 	return (0);
1094 }
1095 #endif /* COMPAT_43 */
1096 
1097 /*
1098  * Suspend process until signal, providing mask to be set
1099  * in the meantime.
1100  ***** XXXKSE this doesn't make sense under KSE.
1101  ***** Do we suspend the thread or all threads in the process?
1102  ***** How do we suspend threads running NOW on another processor?
1103  */
1104 #ifndef _SYS_SYSPROTO_H_
1105 struct sigsuspend_args {
1106 	const sigset_t *sigmask;
1107 };
1108 #endif
1109 /*
1110  * MPSAFE
1111  */
1112 /* ARGSUSED */
1113 int
1114 sigsuspend(td, uap)
1115 	struct thread *td;
1116 	struct sigsuspend_args *uap;
1117 {
1118 	sigset_t mask;
1119 	int error;
1120 
1121 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1122 	if (error)
1123 		return (error);
1124 	return (kern_sigsuspend(td, mask));
1125 }
1126 
1127 int
1128 kern_sigsuspend(struct thread *td, sigset_t mask)
1129 {
1130 	struct proc *p = td->td_proc;
1131 
1132 	/*
1133 	 * When returning from sigsuspend, we want
1134 	 * the old mask to be restored after the
1135 	 * signal handler has finished.  Thus, we
1136 	 * save it here and mark the sigacts structure
1137 	 * to indicate this.
1138 	 */
1139 	PROC_LOCK(p);
1140 	td->td_oldsigmask = td->td_sigmask;
1141 	td->td_pflags |= TDP_OLDMASK;
1142 	SIG_CANTMASK(mask);
1143 	td->td_sigmask = mask;
1144 	signotify(td);
1145 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1146 		/* void */;
1147 	PROC_UNLOCK(p);
1148 	/* always return EINTR rather than ERESTART... */
1149 	return (EINTR);
1150 }
1151 
1152 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1153 /*
1154  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1155  * convention: libc stub passes mask, not pointer, to save a copyin.
1156  */
1157 #ifndef _SYS_SYSPROTO_H_
1158 struct osigsuspend_args {
1159 	osigset_t mask;
1160 };
1161 #endif
1162 /*
1163  * MPSAFE
1164  */
1165 /* ARGSUSED */
1166 int
1167 osigsuspend(td, uap)
1168 	struct thread *td;
1169 	struct osigsuspend_args *uap;
1170 {
1171 	struct proc *p = td->td_proc;
1172 	sigset_t mask;
1173 
1174 	PROC_LOCK(p);
1175 	td->td_oldsigmask = td->td_sigmask;
1176 	td->td_pflags |= TDP_OLDMASK;
1177 	OSIG2SIG(uap->mask, mask);
1178 	SIG_CANTMASK(mask);
1179 	SIGSETLO(td->td_sigmask, mask);
1180 	signotify(td);
1181 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1182 		/* void */;
1183 	PROC_UNLOCK(p);
1184 	/* always return EINTR rather than ERESTART... */
1185 	return (EINTR);
1186 }
1187 #endif /* COMPAT_43 */
1188 
1189 #if defined(COMPAT_43)
1190 #ifndef _SYS_SYSPROTO_H_
1191 struct osigstack_args {
1192 	struct	sigstack *nss;
1193 	struct	sigstack *oss;
1194 };
1195 #endif
1196 /*
1197  * MPSAFE
1198  */
1199 /* ARGSUSED */
1200 int
1201 osigstack(td, uap)
1202 	struct thread *td;
1203 	register struct osigstack_args *uap;
1204 {
1205 	struct sigstack nss, oss;
1206 	int error = 0;
1207 
1208 	if (uap->nss != NULL) {
1209 		error = copyin(uap->nss, &nss, sizeof(nss));
1210 		if (error)
1211 			return (error);
1212 	}
1213 	oss.ss_sp = td->td_sigstk.ss_sp;
1214 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1215 	if (uap->nss != NULL) {
1216 		td->td_sigstk.ss_sp = nss.ss_sp;
1217 		td->td_sigstk.ss_size = 0;
1218 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1219 		td->td_pflags |= TDP_ALTSTACK;
1220 	}
1221 	if (uap->oss != NULL)
1222 		error = copyout(&oss, uap->oss, sizeof(oss));
1223 
1224 	return (error);
1225 }
1226 #endif /* COMPAT_43 */
1227 
1228 #ifndef _SYS_SYSPROTO_H_
1229 struct sigaltstack_args {
1230 	stack_t	*ss;
1231 	stack_t	*oss;
1232 };
1233 #endif
1234 /*
1235  * MPSAFE
1236  */
1237 /* ARGSUSED */
1238 int
1239 sigaltstack(td, uap)
1240 	struct thread *td;
1241 	register struct sigaltstack_args *uap;
1242 {
1243 	stack_t ss, oss;
1244 	int error;
1245 
1246 	if (uap->ss != NULL) {
1247 		error = copyin(uap->ss, &ss, sizeof(ss));
1248 		if (error)
1249 			return (error);
1250 	}
1251 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1252 	    (uap->oss != NULL) ? &oss : NULL);
1253 	if (error)
1254 		return (error);
1255 	if (uap->oss != NULL)
1256 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1257 	return (error);
1258 }
1259 
1260 int
1261 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1262 {
1263 	struct proc *p = td->td_proc;
1264 	int oonstack;
1265 
1266 	oonstack = sigonstack(cpu_getstack(td));
1267 
1268 	if (oss != NULL) {
1269 		*oss = td->td_sigstk;
1270 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1271 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1272 	}
1273 
1274 	if (ss != NULL) {
1275 		if (oonstack)
1276 			return (EPERM);
1277 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1278 			return (EINVAL);
1279 		if (!(ss->ss_flags & SS_DISABLE)) {
1280 			if (ss->ss_size < p->p_sysent->sv_minsigstksz) {
1281 				return (ENOMEM);
1282 			}
1283 			td->td_sigstk = *ss;
1284 			td->td_pflags |= TDP_ALTSTACK;
1285 		} else {
1286 			td->td_pflags &= ~TDP_ALTSTACK;
1287 		}
1288 	}
1289 	return (0);
1290 }
1291 
1292 /*
1293  * Common code for kill process group/broadcast kill.
1294  * cp is calling process.
1295  */
1296 static int
1297 killpg1(td, sig, pgid, all)
1298 	register struct thread *td;
1299 	int sig, pgid, all;
1300 {
1301 	register struct proc *p;
1302 	struct pgrp *pgrp;
1303 	int nfound = 0;
1304 
1305 	if (all) {
1306 		/*
1307 		 * broadcast
1308 		 */
1309 		sx_slock(&allproc_lock);
1310 		LIST_FOREACH(p, &allproc, p_list) {
1311 			PROC_LOCK(p);
1312 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1313 			    p == td->td_proc) {
1314 				PROC_UNLOCK(p);
1315 				continue;
1316 			}
1317 			if (p_cansignal(td, p, sig) == 0) {
1318 				nfound++;
1319 				if (sig)
1320 					psignal(p, sig);
1321 			}
1322 			PROC_UNLOCK(p);
1323 		}
1324 		sx_sunlock(&allproc_lock);
1325 	} else {
1326 		sx_slock(&proctree_lock);
1327 		if (pgid == 0) {
1328 			/*
1329 			 * zero pgid means send to my process group.
1330 			 */
1331 			pgrp = td->td_proc->p_pgrp;
1332 			PGRP_LOCK(pgrp);
1333 		} else {
1334 			pgrp = pgfind(pgid);
1335 			if (pgrp == NULL) {
1336 				sx_sunlock(&proctree_lock);
1337 				return (ESRCH);
1338 			}
1339 		}
1340 		sx_sunlock(&proctree_lock);
1341 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1342 			PROC_LOCK(p);
1343 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM) {
1344 				PROC_UNLOCK(p);
1345 				continue;
1346 			}
1347 			if (p->p_state == PRS_ZOMBIE) {
1348 				PROC_UNLOCK(p);
1349 				continue;
1350 			}
1351 			if (p_cansignal(td, p, sig) == 0) {
1352 				nfound++;
1353 				if (sig)
1354 					psignal(p, sig);
1355 			}
1356 			PROC_UNLOCK(p);
1357 		}
1358 		PGRP_UNLOCK(pgrp);
1359 	}
1360 	return (nfound ? 0 : ESRCH);
1361 }
1362 
1363 #ifndef _SYS_SYSPROTO_H_
1364 struct kill_args {
1365 	int	pid;
1366 	int	signum;
1367 };
1368 #endif
1369 /*
1370  * MPSAFE
1371  */
1372 /* ARGSUSED */
1373 int
1374 kill(td, uap)
1375 	register struct thread *td;
1376 	register struct kill_args *uap;
1377 {
1378 	register struct proc *p;
1379 	int error;
1380 
1381 	if ((u_int)uap->signum > _SIG_MAXSIG)
1382 		return (EINVAL);
1383 
1384 	if (uap->pid > 0) {
1385 		/* kill single process */
1386 		if ((p = pfind(uap->pid)) == NULL) {
1387 			if ((p = zpfind(uap->pid)) != NULL) {
1388 				/*
1389 				 * IEEE Std 1003.1-2001: return success
1390 				 * when killing a zombie.
1391 				 */
1392 				PROC_UNLOCK(p);
1393 				return (0);
1394 			}
1395 			return (ESRCH);
1396 		}
1397 		error = p_cansignal(td, p, uap->signum);
1398 		if (error == 0 && uap->signum)
1399 			psignal(p, uap->signum);
1400 		PROC_UNLOCK(p);
1401 		return (error);
1402 	}
1403 	switch (uap->pid) {
1404 	case -1:		/* broadcast signal */
1405 		return (killpg1(td, uap->signum, 0, 1));
1406 	case 0:			/* signal own process group */
1407 		return (killpg1(td, uap->signum, 0, 0));
1408 	default:		/* negative explicit process group */
1409 		return (killpg1(td, uap->signum, -uap->pid, 0));
1410 	}
1411 	/* NOTREACHED */
1412 }
1413 
1414 #if defined(COMPAT_43)
1415 #ifndef _SYS_SYSPROTO_H_
1416 struct okillpg_args {
1417 	int	pgid;
1418 	int	signum;
1419 };
1420 #endif
1421 /*
1422  * MPSAFE
1423  */
1424 /* ARGSUSED */
1425 int
1426 okillpg(td, uap)
1427 	struct thread *td;
1428 	register struct okillpg_args *uap;
1429 {
1430 
1431 	if ((u_int)uap->signum > _SIG_MAXSIG)
1432 		return (EINVAL);
1433 	return (killpg1(td, uap->signum, uap->pgid, 0));
1434 }
1435 #endif /* COMPAT_43 */
1436 
1437 /*
1438  * Send a signal to a process group.
1439  */
1440 void
1441 gsignal(pgid, sig)
1442 	int pgid, sig;
1443 {
1444 	struct pgrp *pgrp;
1445 
1446 	if (pgid != 0) {
1447 		sx_slock(&proctree_lock);
1448 		pgrp = pgfind(pgid);
1449 		sx_sunlock(&proctree_lock);
1450 		if (pgrp != NULL) {
1451 			pgsignal(pgrp, sig, 0);
1452 			PGRP_UNLOCK(pgrp);
1453 		}
1454 	}
1455 }
1456 
1457 /*
1458  * Send a signal to a process group.  If checktty is 1,
1459  * limit to members which have a controlling terminal.
1460  */
1461 void
1462 pgsignal(pgrp, sig, checkctty)
1463 	struct pgrp *pgrp;
1464 	int sig, checkctty;
1465 {
1466 	register struct proc *p;
1467 
1468 	if (pgrp) {
1469 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1470 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1471 			PROC_LOCK(p);
1472 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1473 				psignal(p, sig);
1474 			PROC_UNLOCK(p);
1475 		}
1476 	}
1477 }
1478 
1479 /*
1480  * Send a signal caused by a trap to the current thread.
1481  * If it will be caught immediately, deliver it with correct code.
1482  * Otherwise, post it normally.
1483  *
1484  * MPSAFE
1485  */
1486 void
1487 trapsignal(struct thread *td, int sig, u_long code)
1488 {
1489 	struct sigacts *ps;
1490 	struct proc *p;
1491 	siginfo_t siginfo;
1492 	int error;
1493 
1494 	p = td->td_proc;
1495 	if (td->td_pflags & TDP_SA) {
1496 		if (td->td_mailbox == NULL)
1497 			thread_user_enter(p, td);
1498 		PROC_LOCK(p);
1499 		SIGDELSET(td->td_sigmask, sig);
1500 		mtx_lock_spin(&sched_lock);
1501 		/*
1502 		 * Force scheduling an upcall, so UTS has chance to
1503 		 * process the signal before thread runs again in
1504 		 * userland.
1505 		 */
1506 		if (td->td_upcall)
1507 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1508 		mtx_unlock_spin(&sched_lock);
1509 	} else {
1510 		PROC_LOCK(p);
1511 	}
1512 	ps = p->p_sigacts;
1513 	mtx_lock(&ps->ps_mtx);
1514 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1515 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1516 		p->p_stats->p_ru.ru_nsignals++;
1517 #ifdef KTRACE
1518 		if (KTRPOINT(curthread, KTR_PSIG))
1519 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1520 			    &td->td_sigmask, code);
1521 #endif
1522 		if (!(td->td_pflags & TDP_SA))
1523 			(*p->p_sysent->sv_sendsig)(
1524 				ps->ps_sigact[_SIG_IDX(sig)], sig,
1525 				&td->td_sigmask, code);
1526 		else if (td->td_mailbox == NULL) {
1527 			mtx_unlock(&ps->ps_mtx);
1528 			/* UTS caused a sync signal */
1529 			p->p_code = code;	/* XXX for core dump/debugger */
1530 			p->p_sig = sig;		/* XXX to verify code */
1531 			sigexit(td, sig);
1532 		} else {
1533 			cpu_thread_siginfo(sig, code, &siginfo);
1534 			mtx_unlock(&ps->ps_mtx);
1535 			SIGADDSET(td->td_sigmask, sig);
1536 			PROC_UNLOCK(p);
1537 			error = copyout(&siginfo, &td->td_mailbox->tm_syncsig,
1538 			    sizeof(siginfo));
1539 			PROC_LOCK(p);
1540 			/* UTS memory corrupted */
1541 			if (error)
1542 				sigexit(td, SIGSEGV);
1543 			mtx_lock(&ps->ps_mtx);
1544 		}
1545 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1546 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1547 			SIGADDSET(td->td_sigmask, sig);
1548 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1549 			/*
1550 			 * See kern_sigaction() for origin of this code.
1551 			 */
1552 			SIGDELSET(ps->ps_sigcatch, sig);
1553 			if (sig != SIGCONT &&
1554 			    sigprop(sig) & SA_IGNORE)
1555 				SIGADDSET(ps->ps_sigignore, sig);
1556 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1557 		}
1558 		mtx_unlock(&ps->ps_mtx);
1559 	} else {
1560 		mtx_unlock(&ps->ps_mtx);
1561 		p->p_code = code;	/* XXX for core dump/debugger */
1562 		p->p_sig = sig;		/* XXX to verify code */
1563 		tdsignal(td, sig, SIGTARGET_TD);
1564 	}
1565 	PROC_UNLOCK(p);
1566 }
1567 
1568 static struct thread *
1569 sigtd(struct proc *p, int sig, int prop)
1570 {
1571 	struct thread *td, *signal_td;
1572 
1573 	PROC_LOCK_ASSERT(p, MA_OWNED);
1574 
1575 	/*
1576 	 * First find a thread in sigwait state and signal belongs to
1577 	 * its wait set. POSIX's arguments is that speed of delivering signal
1578 	 * to sigwait thread is faster than delivering signal to user stack.
1579 	 * If we can not find sigwait thread, then find the first thread in
1580 	 * the proc that doesn't have this signal masked, an exception is
1581 	 * if current thread is sending signal to its process, and it does not
1582 	 * mask the signal, it should get the signal, this is another fast
1583 	 * way to deliver signal.
1584 	 */
1585 	signal_td = NULL;
1586 	mtx_lock_spin(&sched_lock);
1587 	FOREACH_THREAD_IN_PROC(p, td) {
1588 		if (td->td_waitset != NULL &&
1589 		    SIGISMEMBER(*(td->td_waitset), sig)) {
1590 				mtx_unlock_spin(&sched_lock);
1591 				return (td);
1592 		}
1593 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1594 			if (td == curthread)
1595 				signal_td = curthread;
1596 			else if (signal_td == NULL)
1597 				signal_td = td;
1598 		}
1599 	}
1600 	if (signal_td == NULL)
1601 		signal_td = FIRST_THREAD_IN_PROC(p);
1602 	mtx_unlock_spin(&sched_lock);
1603 	return (signal_td);
1604 }
1605 
1606 /*
1607  * Send the signal to the process.  If the signal has an action, the action
1608  * is usually performed by the target process rather than the caller; we add
1609  * the signal to the set of pending signals for the process.
1610  *
1611  * Exceptions:
1612  *   o When a stop signal is sent to a sleeping process that takes the
1613  *     default action, the process is stopped without awakening it.
1614  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1615  *     regardless of the signal action (eg, blocked or ignored).
1616  *
1617  * Other ignored signals are discarded immediately.
1618  *
1619  * MPSAFE
1620  */
1621 void
1622 psignal(struct proc *p, int sig)
1623 {
1624 	struct thread *td;
1625 	int prop;
1626 
1627 	if (!_SIG_VALID(sig))
1628 		panic("psignal(): invalid signal");
1629 
1630 	PROC_LOCK_ASSERT(p, MA_OWNED);
1631 	prop = sigprop(sig);
1632 
1633 	/*
1634 	 * Find a thread to deliver the signal to.
1635 	 */
1636 	td = sigtd(p, sig, prop);
1637 
1638 	tdsignal(td, sig, SIGTARGET_P);
1639 }
1640 
1641 /*
1642  * MPSAFE
1643  */
1644 void
1645 tdsignal(struct thread *td, int sig, sigtarget_t target)
1646 {
1647 	sigset_t saved;
1648 	struct proc *p = td->td_proc;
1649 
1650 	if (p->p_flag & P_SA)
1651 		saved = p->p_siglist;
1652 	do_tdsignal(td, sig, target);
1653 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
1654 		if (!SIGSETEQ(saved, p->p_siglist)) {
1655 			/* pending set changed */
1656 			p->p_flag |= P_SIGEVENT;
1657 			wakeup(&p->p_siglist);
1658 		}
1659 	}
1660 }
1661 
1662 static void
1663 do_tdsignal(struct thread *td, int sig, sigtarget_t target)
1664 {
1665 	struct proc *p;
1666 	register sig_t action;
1667 	sigset_t *siglist;
1668 	struct thread *td0;
1669 	register int prop;
1670 	struct sigacts *ps;
1671 
1672 	if (!_SIG_VALID(sig))
1673 		panic("do_tdsignal(): invalid signal");
1674 
1675 	p = td->td_proc;
1676 	ps = p->p_sigacts;
1677 
1678 	PROC_LOCK_ASSERT(p, MA_OWNED);
1679 	KNOTE(&p->p_klist, NOTE_SIGNAL | sig);
1680 
1681 	prop = sigprop(sig);
1682 
1683 	/*
1684 	 * If the signal is blocked and not destined for this thread, then
1685 	 * assign it to the process so that we can find it later in the first
1686 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1687 	 */
1688 	if (target == SIGTARGET_TD) {
1689 		siglist = &td->td_siglist;
1690 	} else {
1691 		if (!SIGISMEMBER(td->td_sigmask, sig))
1692 			siglist = &td->td_siglist;
1693 		else if (td->td_waitset != NULL &&
1694 			SIGISMEMBER(*(td->td_waitset), sig))
1695 			siglist = &td->td_siglist;
1696 		else
1697 			siglist = &p->p_siglist;
1698 	}
1699 
1700 	/*
1701 	 * If proc is traced, always give parent a chance;
1702 	 * if signal event is tracked by procfs, give *that*
1703 	 * a chance, as well.
1704 	 */
1705 	if ((p->p_flag & P_TRACED) || (p->p_stops & S_SIG)) {
1706 		action = SIG_DFL;
1707 	} else {
1708 		/*
1709 		 * If the signal is being ignored,
1710 		 * then we forget about it immediately.
1711 		 * (Note: we don't set SIGCONT in ps_sigignore,
1712 		 * and if it is set to SIG_IGN,
1713 		 * action will be SIG_DFL here.)
1714 		 */
1715 		mtx_lock(&ps->ps_mtx);
1716 		if (SIGISMEMBER(ps->ps_sigignore, sig) ||
1717 		    (p->p_flag & P_WEXIT)) {
1718 			mtx_unlock(&ps->ps_mtx);
1719 			return;
1720 		}
1721 		if (((td->td_waitset == NULL) &&
1722 		     SIGISMEMBER(td->td_sigmask, sig)) ||
1723 		    ((td->td_waitset != NULL) &&
1724 		     SIGISMEMBER(td->td_sigmask, sig) &&
1725 		     !SIGISMEMBER(*(td->td_waitset), sig)))
1726 			action = SIG_HOLD;
1727 		else if (SIGISMEMBER(ps->ps_sigcatch, sig))
1728 			action = SIG_CATCH;
1729 		else
1730 			action = SIG_DFL;
1731 		mtx_unlock(&ps->ps_mtx);
1732 	}
1733 
1734 	if (prop & SA_CONT) {
1735 		SIG_STOPSIGMASK(p->p_siglist);
1736 		/*
1737 		 * XXX Should investigate leaving STOP and CONT sigs only in
1738 		 * the proc's siglist.
1739 		 */
1740 		mtx_lock_spin(&sched_lock);
1741 		FOREACH_THREAD_IN_PROC(p, td0)
1742 			SIG_STOPSIGMASK(td0->td_siglist);
1743 		mtx_unlock_spin(&sched_lock);
1744 	}
1745 
1746 	if (prop & SA_STOP) {
1747 		/*
1748 		 * If sending a tty stop signal to a member of an orphaned
1749 		 * process group, discard the signal here if the action
1750 		 * is default; don't stop the process below if sleeping,
1751 		 * and don't clear any pending SIGCONT.
1752 		 */
1753 		if ((prop & SA_TTYSTOP) &&
1754 		    (p->p_pgrp->pg_jobc == 0) &&
1755 		    (action == SIG_DFL))
1756 		        return;
1757 		SIG_CONTSIGMASK(p->p_siglist);
1758 		mtx_lock_spin(&sched_lock);
1759 		FOREACH_THREAD_IN_PROC(p, td0)
1760 			SIG_CONTSIGMASK(td0->td_siglist);
1761 		mtx_unlock_spin(&sched_lock);
1762 		p->p_flag &= ~P_CONTINUED;
1763 	}
1764 
1765 	SIGADDSET(*siglist, sig);
1766 	signotify(td);			/* uses schedlock */
1767 	if (siglist == &td->td_siglist && (td->td_waitset != NULL) &&
1768 	    action != SIG_HOLD) {
1769 		td->td_waitset = NULL;
1770 	}
1771 
1772 	/*
1773 	 * Defer further processing for signals which are held,
1774 	 * except that stopped processes must be continued by SIGCONT.
1775 	 */
1776 	if (action == SIG_HOLD &&
1777 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
1778 		return;
1779 	/*
1780 	 * Some signals have a process-wide effect and a per-thread
1781 	 * component.  Most processing occurs when the process next
1782 	 * tries to cross the user boundary, however there are some
1783 	 * times when processing needs to be done immediatly, such as
1784 	 * waking up threads so that they can cross the user boundary.
1785 	 * We try do the per-process part here.
1786 	 */
1787 	if (P_SHOULDSTOP(p)) {
1788 		/*
1789 		 * The process is in stopped mode. All the threads should be
1790 		 * either winding down or already on the suspended queue.
1791 		 */
1792 		if (p->p_flag & P_TRACED) {
1793 			/*
1794 			 * The traced process is already stopped,
1795 			 * so no further action is necessary.
1796 			 * No signal can restart us.
1797 			 */
1798 			goto out;
1799 		}
1800 
1801 		if (sig == SIGKILL) {
1802 			/*
1803 			 * SIGKILL sets process running.
1804 			 * It will die elsewhere.
1805 			 * All threads must be restarted.
1806 			 */
1807 			p->p_flag &= ~P_STOPPED;
1808 			goto runfast;
1809 		}
1810 
1811 		if (prop & SA_CONT) {
1812 			/*
1813 			 * If SIGCONT is default (or ignored), we continue the
1814 			 * process but don't leave the signal in siglist as
1815 			 * it has no further action.  If SIGCONT is held, we
1816 			 * continue the process and leave the signal in
1817 			 * siglist.  If the process catches SIGCONT, let it
1818 			 * handle the signal itself.  If it isn't waiting on
1819 			 * an event, it goes back to run state.
1820 			 * Otherwise, process goes back to sleep state.
1821 			 */
1822 			p->p_flag &= ~P_STOPPED_SIG;
1823 			p->p_flag |= P_CONTINUED;
1824 			if (action == SIG_DFL) {
1825 				SIGDELSET(*siglist, sig);
1826 			} else if (action == SIG_CATCH) {
1827 				/*
1828 				 * The process wants to catch it so it needs
1829 				 * to run at least one thread, but which one?
1830 				 * It would seem that the answer would be to
1831 				 * run an upcall in the next KSE to run, and
1832 				 * deliver the signal that way. In a NON KSE
1833 				 * process, we need to make sure that the
1834 				 * single thread is runnable asap.
1835 				 * XXXKSE for now however, make them all run.
1836 				 */
1837 				goto runfast;
1838 			}
1839 			/*
1840 			 * The signal is not ignored or caught.
1841 			 */
1842 			mtx_lock_spin(&sched_lock);
1843 			thread_unsuspend(p);
1844 			mtx_unlock_spin(&sched_lock);
1845 			goto out;
1846 		}
1847 
1848 		if (prop & SA_STOP) {
1849 			/*
1850 			 * Already stopped, don't need to stop again
1851 			 * (If we did the shell could get confused).
1852 			 * Just make sure the signal STOP bit set.
1853 			 */
1854 			p->p_flag |= P_STOPPED_SIG;
1855 			SIGDELSET(*siglist, sig);
1856 			goto out;
1857 		}
1858 
1859 		/*
1860 		 * All other kinds of signals:
1861 		 * If a thread is sleeping interruptibly, simulate a
1862 		 * wakeup so that when it is continued it will be made
1863 		 * runnable and can look at the signal.  However, don't make
1864 		 * the PROCESS runnable, leave it stopped.
1865 		 * It may run a bit until it hits a thread_suspend_check().
1866 		 */
1867 		mtx_lock_spin(&sched_lock);
1868 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
1869 			sleepq_abort(td);
1870 		mtx_unlock_spin(&sched_lock);
1871 		goto out;
1872 		/*
1873 		 * Mutexes are short lived. Threads waiting on them will
1874 		 * hit thread_suspend_check() soon.
1875 		 */
1876 	}  else if (p->p_state == PRS_NORMAL) {
1877 		if ((p->p_flag & P_TRACED) || (action != SIG_DFL) ||
1878 			!(prop & SA_STOP)) {
1879 			mtx_lock_spin(&sched_lock);
1880 			tdsigwakeup(td, sig, action);
1881 			mtx_unlock_spin(&sched_lock);
1882 			goto out;
1883 		}
1884 		if (prop & SA_STOP) {
1885 			if (p->p_flag & P_PPWAIT)
1886 				goto out;
1887 			p->p_flag |= P_STOPPED_SIG;
1888 			p->p_xstat = sig;
1889 			p->p_xthread = td;
1890 			mtx_lock_spin(&sched_lock);
1891 			FOREACH_THREAD_IN_PROC(p, td0) {
1892 				if (TD_IS_SLEEPING(td0) &&
1893 				    (td0->td_flags & TDF_SINTR) &&
1894 				    !TD_IS_SUSPENDED(td0)) {
1895 					thread_suspend_one(td0);
1896 				} else if (td != td0) {
1897 					td0->td_flags |= TDF_ASTPENDING;
1898 				}
1899 			}
1900 			thread_stopped(p);
1901 			if (p->p_numthreads == p->p_suspcount) {
1902 				SIGDELSET(p->p_siglist, p->p_xstat);
1903 				FOREACH_THREAD_IN_PROC(p, td0)
1904 					SIGDELSET(td0->td_siglist, p->p_xstat);
1905 			}
1906 			mtx_unlock_spin(&sched_lock);
1907 			goto out;
1908 		}
1909 		else
1910 			goto runfast;
1911 		/* NOTREACHED */
1912 	} else {
1913 		/* Not in "NORMAL" state. discard the signal. */
1914 		SIGDELSET(*siglist, sig);
1915 		goto out;
1916 	}
1917 
1918 	/*
1919 	 * The process is not stopped so we need to apply the signal to all the
1920 	 * running threads.
1921 	 */
1922 
1923 runfast:
1924 	mtx_lock_spin(&sched_lock);
1925 	tdsigwakeup(td, sig, action);
1926 	thread_unsuspend(p);
1927 	mtx_unlock_spin(&sched_lock);
1928 out:
1929 	/* If we jump here, sched_lock should not be owned. */
1930 	mtx_assert(&sched_lock, MA_NOTOWNED);
1931 }
1932 
1933 /*
1934  * The force of a signal has been directed against a single
1935  * thread.  We need to see what we can do about knocking it
1936  * out of any sleep it may be in etc.
1937  */
1938 static void
1939 tdsigwakeup(struct thread *td, int sig, sig_t action)
1940 {
1941 	struct proc *p = td->td_proc;
1942 	register int prop;
1943 
1944 	PROC_LOCK_ASSERT(p, MA_OWNED);
1945 	mtx_assert(&sched_lock, MA_OWNED);
1946 	prop = sigprop(sig);
1947 
1948 	/*
1949 	 * Bring the priority of a thread up if we want it to get
1950 	 * killed in this lifetime.
1951 	 */
1952 	if (action == SIG_DFL && (prop & SA_KILL)) {
1953 		if (td->td_priority > PUSER)
1954 			td->td_priority = PUSER;
1955 	}
1956 
1957 	if (TD_ON_SLEEPQ(td)) {
1958 		/*
1959 		 * If thread is sleeping uninterruptibly
1960 		 * we can't interrupt the sleep... the signal will
1961 		 * be noticed when the process returns through
1962 		 * trap() or syscall().
1963 		 */
1964 		if ((td->td_flags & TDF_SINTR) == 0)
1965 			return;
1966 		/*
1967 		 * Process is sleeping and traced.  Make it runnable
1968 		 * so it can discover the signal in issignal() and stop
1969 		 * for its parent.
1970 		 */
1971 		if (p->p_flag & P_TRACED) {
1972 			p->p_flag &= ~P_STOPPED_TRACE;
1973 		} else {
1974 			/*
1975 			 * If SIGCONT is default (or ignored) and process is
1976 			 * asleep, we are finished; the process should not
1977 			 * be awakened.
1978 			 */
1979 			if ((prop & SA_CONT) && action == SIG_DFL) {
1980 				SIGDELSET(p->p_siglist, sig);
1981 				/*
1982 				 * It may be on either list in this state.
1983 				 * Remove from both for now.
1984 				 */
1985 				SIGDELSET(td->td_siglist, sig);
1986 				return;
1987 			}
1988 
1989 			/*
1990 			 * Give low priority threads a better chance to run.
1991 			 */
1992 			if (td->td_priority > PUSER)
1993 				td->td_priority = PUSER;
1994 		}
1995 		sleepq_abort(td);
1996 	} else {
1997 		/*
1998 		 * Other states do nothing with the signal immediately,
1999 		 * other than kicking ourselves if we are running.
2000 		 * It will either never be noticed, or noticed very soon.
2001 		 */
2002 #ifdef SMP
2003 		if (TD_IS_RUNNING(td) && td != curthread)
2004 			forward_signal(td);
2005 #endif
2006 	}
2007 }
2008 
2009 int
2010 ptracestop(struct thread *td, int sig)
2011 {
2012 	struct proc *p = td->td_proc;
2013 	struct thread *td0;
2014 
2015 	PROC_LOCK_ASSERT(p, MA_OWNED);
2016 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2017 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2018 
2019 	mtx_lock_spin(&sched_lock);
2020 	td->td_flags |= TDF_XSIG;
2021 	mtx_unlock_spin(&sched_lock);
2022 	td->td_xsig = sig;
2023 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2024 		if (p->p_flag & P_SINGLE_EXIT) {
2025 			mtx_lock_spin(&sched_lock);
2026 			td->td_flags &= ~TDF_XSIG;
2027 			mtx_unlock_spin(&sched_lock);
2028 			return (sig);
2029 		}
2030 		/*
2031 		 * Just make wait() to work, the last stopped thread
2032 		 * will win.
2033 		 */
2034 		p->p_xstat = sig;
2035 		p->p_xthread = td;
2036 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2037 		mtx_lock_spin(&sched_lock);
2038 		FOREACH_THREAD_IN_PROC(p, td0) {
2039 			if (TD_IS_SLEEPING(td0) &&
2040 			    (td0->td_flags & TDF_SINTR) &&
2041 			    !TD_IS_SUSPENDED(td0)) {
2042 				thread_suspend_one(td0);
2043 			} else if (td != td0) {
2044 				td0->td_flags |= TDF_ASTPENDING;
2045 			}
2046 		}
2047 stopme:
2048 		thread_stopped(p);
2049 		thread_suspend_one(td);
2050 		PROC_UNLOCK(p);
2051 		DROP_GIANT();
2052 		mi_switch(SW_VOL, NULL);
2053 		mtx_unlock_spin(&sched_lock);
2054 		PICKUP_GIANT();
2055 		PROC_LOCK(p);
2056 		if (!(p->p_flag & P_TRACED))
2057 			break;
2058 		if (td->td_flags & TDF_DBSUSPEND) {
2059 			if (p->p_flag & P_SINGLE_EXIT)
2060 				break;
2061 			mtx_lock_spin(&sched_lock);
2062 			goto stopme;
2063 		}
2064 	}
2065 	return (td->td_xsig);
2066 }
2067 
2068 /*
2069  * If the current process has received a signal (should be caught or cause
2070  * termination, should interrupt current syscall), return the signal number.
2071  * Stop signals with default action are processed immediately, then cleared;
2072  * they aren't returned.  This is checked after each entry to the system for
2073  * a syscall or trap (though this can usually be done without calling issignal
2074  * by checking the pending signal masks in cursig.) The normal call
2075  * sequence is
2076  *
2077  *	while (sig = cursig(curthread))
2078  *		postsig(sig);
2079  */
2080 static int
2081 issignal(td)
2082 	struct thread *td;
2083 {
2084 	struct proc *p;
2085 	struct sigacts *ps;
2086 	sigset_t sigpending;
2087 	int sig, prop, newsig;
2088 	struct thread *td0;
2089 
2090 	p = td->td_proc;
2091 	ps = p->p_sigacts;
2092 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2093 	PROC_LOCK_ASSERT(p, MA_OWNED);
2094 	for (;;) {
2095 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2096 
2097 		sigpending = td->td_siglist;
2098 		SIGSETNAND(sigpending, td->td_sigmask);
2099 
2100 		if (p->p_flag & P_PPWAIT)
2101 			SIG_STOPSIGMASK(sigpending);
2102 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2103 			return (0);
2104 		sig = sig_ffs(&sigpending);
2105 
2106 		if (p->p_stops & S_SIG) {
2107 			mtx_unlock(&ps->ps_mtx);
2108 			stopevent(p, S_SIG, sig);
2109 			mtx_lock(&ps->ps_mtx);
2110 		}
2111 
2112 		/*
2113 		 * We should see pending but ignored signals
2114 		 * only if P_TRACED was on when they were posted.
2115 		 */
2116 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2117 			SIGDELSET(td->td_siglist, sig);
2118 			if (td->td_pflags & TDP_SA)
2119 				SIGADDSET(td->td_sigmask, sig);
2120 			continue;
2121 		}
2122 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2123 			/*
2124 			 * If traced, always stop.
2125 			 */
2126 			mtx_unlock(&ps->ps_mtx);
2127 			newsig = ptracestop(td, sig);
2128 			mtx_lock(&ps->ps_mtx);
2129 
2130 			/*
2131 			 * If parent wants us to take the signal,
2132 			 * then it will leave it in p->p_xstat;
2133 			 * otherwise we just look for signals again.
2134 			 */
2135 			SIGDELSET(td->td_siglist, sig);	/* clear old signal */
2136 			if (td->td_pflags & TDP_SA)
2137 				SIGADDSET(td->td_sigmask, sig);
2138 			if (newsig == 0)
2139 				continue;
2140 			sig = newsig;
2141 			/*
2142 			 * If the traced bit got turned off, go back up
2143 			 * to the top to rescan signals.  This ensures
2144 			 * that p_sig* and p_sigact are consistent.
2145 			 */
2146 			if ((p->p_flag & P_TRACED) == 0)
2147 				continue;
2148 
2149 			/*
2150 			 * Put the new signal into td_siglist.  If the
2151 			 * signal is being masked, look for other signals.
2152 			 */
2153 			SIGADDSET(td->td_siglist, sig);
2154 			if (td->td_pflags & TDP_SA)
2155 				SIGDELSET(td->td_sigmask, sig);
2156 			if (SIGISMEMBER(td->td_sigmask, sig))
2157 				continue;
2158 			signotify(td);
2159 		}
2160 
2161 		prop = sigprop(sig);
2162 
2163 		/*
2164 		 * Decide whether the signal should be returned.
2165 		 * Return the signal's number, or fall through
2166 		 * to clear it from the pending mask.
2167 		 */
2168 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2169 
2170 		case (intptr_t)SIG_DFL:
2171 			/*
2172 			 * Don't take default actions on system processes.
2173 			 */
2174 			if (p->p_pid <= 1) {
2175 #ifdef DIAGNOSTIC
2176 				/*
2177 				 * Are you sure you want to ignore SIGSEGV
2178 				 * in init? XXX
2179 				 */
2180 				printf("Process (pid %lu) got signal %d\n",
2181 					(u_long)p->p_pid, sig);
2182 #endif
2183 				break;		/* == ignore */
2184 			}
2185 			/*
2186 			 * If there is a pending stop signal to process
2187 			 * with default action, stop here,
2188 			 * then clear the signal.  However,
2189 			 * if process is member of an orphaned
2190 			 * process group, ignore tty stop signals.
2191 			 */
2192 			if (prop & SA_STOP) {
2193 				if (p->p_flag & P_TRACED ||
2194 		    		    (p->p_pgrp->pg_jobc == 0 &&
2195 				     prop & SA_TTYSTOP))
2196 					break;	/* == ignore */
2197 				mtx_unlock(&ps->ps_mtx);
2198 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2199 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2200 				p->p_flag |= P_STOPPED_SIG;
2201 				p->p_xstat = sig;
2202 				p->p_xthread = td;
2203 				mtx_lock_spin(&sched_lock);
2204 				FOREACH_THREAD_IN_PROC(p, td0) {
2205 					if (TD_IS_SLEEPING(td0) &&
2206 					    (td0->td_flags & TDF_SINTR) &&
2207 					    !TD_IS_SUSPENDED(td0)) {
2208 						thread_suspend_one(td0);
2209 					} else if (td != td0) {
2210 						td0->td_flags |= TDF_ASTPENDING;
2211 					}
2212 				}
2213 				thread_stopped(p);
2214 				thread_suspend_one(td);
2215 				PROC_UNLOCK(p);
2216 				DROP_GIANT();
2217 				mi_switch(SW_INVOL, NULL);
2218 				mtx_unlock_spin(&sched_lock);
2219 				PICKUP_GIANT();
2220 				PROC_LOCK(p);
2221 				mtx_lock(&ps->ps_mtx);
2222 				break;
2223 			} else if (prop & SA_IGNORE) {
2224 				/*
2225 				 * Except for SIGCONT, shouldn't get here.
2226 				 * Default action is to ignore; drop it.
2227 				 */
2228 				break;		/* == ignore */
2229 			} else
2230 				return (sig);
2231 			/*NOTREACHED*/
2232 
2233 		case (intptr_t)SIG_IGN:
2234 			/*
2235 			 * Masking above should prevent us ever trying
2236 			 * to take action on an ignored signal other
2237 			 * than SIGCONT, unless process is traced.
2238 			 */
2239 			if ((prop & SA_CONT) == 0 &&
2240 			    (p->p_flag & P_TRACED) == 0)
2241 				printf("issignal\n");
2242 			break;		/* == ignore */
2243 
2244 		default:
2245 			/*
2246 			 * This signal has an action, let
2247 			 * postsig() process it.
2248 			 */
2249 			return (sig);
2250 		}
2251 		SIGDELSET(td->td_siglist, sig);		/* take the signal! */
2252 	}
2253 	/* NOTREACHED */
2254 }
2255 
2256 /*
2257  * Put the argument process into the stopped state and notify the parent
2258  * via wakeup.  Signals are handled elsewhere.  The process must not be
2259  * on the run queue.  Must be called with the proc p locked.
2260  */
2261 static void
2262 stop(struct proc *p)
2263 {
2264 
2265 	PROC_LOCK_ASSERT(p, MA_OWNED);
2266 	p->p_flag |= P_STOPPED_SIG;
2267 	p->p_flag &= ~P_WAITED;
2268 	wakeup(p->p_pptr);
2269 }
2270 
2271 /*
2272  * MPSAFE
2273  */
2274 void
2275 thread_stopped(struct proc *p)
2276 {
2277 	struct proc *p1 = curthread->td_proc;
2278 	struct sigacts *ps;
2279 	int n;
2280 
2281 	PROC_LOCK_ASSERT(p, MA_OWNED);
2282 	mtx_assert(&sched_lock, MA_OWNED);
2283 	n = p->p_suspcount;
2284 	if (p == p1)
2285 		n++;
2286 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2287 		mtx_unlock_spin(&sched_lock);
2288 		stop(p);
2289 		PROC_LOCK(p->p_pptr);
2290 		ps = p->p_pptr->p_sigacts;
2291 		mtx_lock(&ps->ps_mtx);
2292 		if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2293 			mtx_unlock(&ps->ps_mtx);
2294 			psignal(p->p_pptr, SIGCHLD);
2295 		} else
2296 			mtx_unlock(&ps->ps_mtx);
2297 		PROC_UNLOCK(p->p_pptr);
2298 		mtx_lock_spin(&sched_lock);
2299 	}
2300 }
2301 
2302 /*
2303  * Take the action for the specified signal
2304  * from the current set of pending signals.
2305  */
2306 void
2307 postsig(sig)
2308 	register int sig;
2309 {
2310 	struct thread *td = curthread;
2311 	register struct proc *p = td->td_proc;
2312 	struct sigacts *ps;
2313 	sig_t action;
2314 	sigset_t returnmask;
2315 	int code;
2316 
2317 	KASSERT(sig != 0, ("postsig"));
2318 
2319 	PROC_LOCK_ASSERT(p, MA_OWNED);
2320 	ps = p->p_sigacts;
2321 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2322 	SIGDELSET(td->td_siglist, sig);
2323 	action = ps->ps_sigact[_SIG_IDX(sig)];
2324 #ifdef KTRACE
2325 	if (KTRPOINT(td, KTR_PSIG))
2326 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2327 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2328 #endif
2329 	if (p->p_stops & S_SIG) {
2330 		mtx_unlock(&ps->ps_mtx);
2331 		stopevent(p, S_SIG, sig);
2332 		mtx_lock(&ps->ps_mtx);
2333 	}
2334 
2335 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2336 		/*
2337 		 * Default action, where the default is to kill
2338 		 * the process.  (Other cases were ignored above.)
2339 		 */
2340 		mtx_unlock(&ps->ps_mtx);
2341 		sigexit(td, sig);
2342 		/* NOTREACHED */
2343 	} else {
2344 		if (td->td_pflags & TDP_SA) {
2345 			if (sig == SIGKILL) {
2346 				mtx_unlock(&ps->ps_mtx);
2347 				sigexit(td, sig);
2348 			}
2349 		}
2350 
2351 		/*
2352 		 * If we get here, the signal must be caught.
2353 		 */
2354 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2355 		    ("postsig action"));
2356 		/*
2357 		 * Set the new mask value and also defer further
2358 		 * occurrences of this signal.
2359 		 *
2360 		 * Special case: user has done a sigsuspend.  Here the
2361 		 * current mask is not of interest, but rather the
2362 		 * mask from before the sigsuspend is what we want
2363 		 * restored after the signal processing is completed.
2364 		 */
2365 		if (td->td_pflags & TDP_OLDMASK) {
2366 			returnmask = td->td_oldsigmask;
2367 			td->td_pflags &= ~TDP_OLDMASK;
2368 		} else
2369 			returnmask = td->td_sigmask;
2370 
2371 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2372 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2373 			SIGADDSET(td->td_sigmask, sig);
2374 
2375 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2376 			/*
2377 			 * See kern_sigaction() for origin of this code.
2378 			 */
2379 			SIGDELSET(ps->ps_sigcatch, sig);
2380 			if (sig != SIGCONT &&
2381 			    sigprop(sig) & SA_IGNORE)
2382 				SIGADDSET(ps->ps_sigignore, sig);
2383 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2384 		}
2385 		p->p_stats->p_ru.ru_nsignals++;
2386 		if (p->p_sig != sig) {
2387 			code = 0;
2388 		} else {
2389 			code = p->p_code;
2390 			p->p_code = 0;
2391 			p->p_sig = 0;
2392 		}
2393 		if (td->td_pflags & TDP_SA)
2394 			thread_signal_add(curthread, sig);
2395 		else
2396 			(*p->p_sysent->sv_sendsig)(action, sig,
2397 			    &returnmask, code);
2398 	}
2399 }
2400 
2401 /*
2402  * Kill the current process for stated reason.
2403  */
2404 void
2405 killproc(p, why)
2406 	struct proc *p;
2407 	char *why;
2408 {
2409 
2410 	PROC_LOCK_ASSERT(p, MA_OWNED);
2411 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2412 		p, p->p_pid, p->p_comm);
2413 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2414 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2415 	psignal(p, SIGKILL);
2416 }
2417 
2418 /*
2419  * Force the current process to exit with the specified signal, dumping core
2420  * if appropriate.  We bypass the normal tests for masked and caught signals,
2421  * allowing unrecoverable failures to terminate the process without changing
2422  * signal state.  Mark the accounting record with the signal termination.
2423  * If dumping core, save the signal number for the debugger.  Calls exit and
2424  * does not return.
2425  *
2426  * MPSAFE
2427  */
2428 void
2429 sigexit(td, sig)
2430 	struct thread *td;
2431 	int sig;
2432 {
2433 	struct proc *p = td->td_proc;
2434 
2435 	PROC_LOCK_ASSERT(p, MA_OWNED);
2436 	p->p_acflag |= AXSIG;
2437 	if (sigprop(sig) & SA_CORE) {
2438 		p->p_sig = sig;
2439 		/*
2440 		 * Log signals which would cause core dumps
2441 		 * (Log as LOG_INFO to appease those who don't want
2442 		 * these messages.)
2443 		 * XXX : Todo, as well as euid, write out ruid too
2444 		 * Note that coredump() drops proc lock.
2445 		 */
2446 		if (coredump(td) == 0)
2447 			sig |= WCOREFLAG;
2448 		if (kern_logsigexit)
2449 			log(LOG_INFO,
2450 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2451 			    p->p_pid, p->p_comm,
2452 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2453 			    sig &~ WCOREFLAG,
2454 			    sig & WCOREFLAG ? " (core dumped)" : "");
2455 	} else
2456 		PROC_UNLOCK(p);
2457 	exit1(td, W_EXITCODE(0, sig));
2458 	/* NOTREACHED */
2459 }
2460 
2461 static char corefilename[MAXPATHLEN+1] = {"%N.core"};
2462 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2463 	      sizeof(corefilename), "process corefile name format string");
2464 
2465 /*
2466  * expand_name(name, uid, pid)
2467  * Expand the name described in corefilename, using name, uid, and pid.
2468  * corefilename is a printf-like string, with three format specifiers:
2469  *	%N	name of process ("name")
2470  *	%P	process id (pid)
2471  *	%U	user id (uid)
2472  * For example, "%N.core" is the default; they can be disabled completely
2473  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2474  * This is controlled by the sysctl variable kern.corefile (see above).
2475  */
2476 
2477 static char *
2478 expand_name(name, uid, pid)
2479 	const char *name;
2480 	uid_t uid;
2481 	pid_t pid;
2482 {
2483 	const char *format, *appendstr;
2484 	char *temp;
2485 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2486 	size_t i, l, n;
2487 
2488 	format = corefilename;
2489 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2490 	if (temp == NULL)
2491 		return (NULL);
2492 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2493 		switch (format[i]) {
2494 		case '%':	/* Format character */
2495 			i++;
2496 			switch (format[i]) {
2497 			case '%':
2498 				appendstr = "%";
2499 				break;
2500 			case 'N':	/* process name */
2501 				appendstr = name;
2502 				break;
2503 			case 'P':	/* process id */
2504 				sprintf(buf, "%u", pid);
2505 				appendstr = buf;
2506 				break;
2507 			case 'U':	/* user id */
2508 				sprintf(buf, "%u", uid);
2509 				appendstr = buf;
2510 				break;
2511 			default:
2512 				appendstr = "";
2513 			  	log(LOG_ERR,
2514 				    "Unknown format character %c in `%s'\n",
2515 				    format[i], format);
2516 			}
2517 			l = strlen(appendstr);
2518 			if ((n + l) >= MAXPATHLEN)
2519 				goto toolong;
2520 			memcpy(temp + n, appendstr, l);
2521 			n += l;
2522 			break;
2523 		default:
2524 			temp[n++] = format[i];
2525 		}
2526 	}
2527 	if (format[i] != '\0')
2528 		goto toolong;
2529 	return (temp);
2530 toolong:
2531 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
2532 	    (long)pid, name, (u_long)uid);
2533 	free(temp, M_TEMP);
2534 	return (NULL);
2535 }
2536 
2537 /*
2538  * Dump a process' core.  The main routine does some
2539  * policy checking, and creates the name of the coredump;
2540  * then it passes on a vnode and a size limit to the process-specific
2541  * coredump routine if there is one; if there _is not_ one, it returns
2542  * ENOSYS; otherwise it returns the error from the process-specific routine.
2543  */
2544 
2545 static int
2546 coredump(struct thread *td)
2547 {
2548 	struct proc *p = td->td_proc;
2549 	register struct vnode *vp;
2550 	register struct ucred *cred = td->td_ucred;
2551 	struct flock lf;
2552 	struct nameidata nd;
2553 	struct vattr vattr;
2554 	int error, error1, flags, locked;
2555 	struct mount *mp;
2556 	char *name;			/* name of corefile */
2557 	off_t limit;
2558 
2559 	PROC_LOCK_ASSERT(p, MA_OWNED);
2560 	_STOPEVENT(p, S_CORE, 0);
2561 
2562 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2563 		PROC_UNLOCK(p);
2564 		return (EFAULT);
2565 	}
2566 
2567 	/*
2568 	 * Note that the bulk of limit checking is done after
2569 	 * the corefile is created.  The exception is if the limit
2570 	 * for corefiles is 0, in which case we don't bother
2571 	 * creating the corefile at all.  This layout means that
2572 	 * a corefile is truncated instead of not being created,
2573 	 * if it is larger than the limit.
2574 	 */
2575 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2576 	PROC_UNLOCK(p);
2577 	if (limit == 0)
2578 		return (EFBIG);
2579 
2580 	mtx_lock(&Giant);
2581 restart:
2582 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2583 	if (name == NULL) {
2584 		mtx_unlock(&Giant);
2585 		return (EINVAL);
2586 	}
2587 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td); /* XXXKSE */
2588 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2589 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
2590 	free(name, M_TEMP);
2591 	if (error) {
2592 		mtx_unlock(&Giant);
2593 		return (error);
2594 	}
2595 	NDFREE(&nd, NDF_ONLY_PNBUF);
2596 	vp = nd.ni_vp;
2597 
2598 	/* Don't dump to non-regular files or files with links. */
2599 	if (vp->v_type != VREG ||
2600 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
2601 		VOP_UNLOCK(vp, 0, td);
2602 		error = EFAULT;
2603 		goto out;
2604 	}
2605 
2606 	VOP_UNLOCK(vp, 0, td);
2607 	lf.l_whence = SEEK_SET;
2608 	lf.l_start = 0;
2609 	lf.l_len = 0;
2610 	lf.l_type = F_WRLCK;
2611 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2612 
2613 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2614 		lf.l_type = F_UNLCK;
2615 		if (locked)
2616 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2617 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2618 			return (error);
2619 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2620 			return (error);
2621 		goto restart;
2622 	}
2623 
2624 	VATTR_NULL(&vattr);
2625 	vattr.va_size = 0;
2626 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
2627 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2628 	VOP_SETATTR(vp, &vattr, cred, td);
2629 	VOP_UNLOCK(vp, 0, td);
2630 	PROC_LOCK(p);
2631 	p->p_acflag |= ACORE;
2632 	PROC_UNLOCK(p);
2633 
2634 	error = p->p_sysent->sv_coredump ?
2635 	  p->p_sysent->sv_coredump(td, vp, limit) :
2636 	  ENOSYS;
2637 
2638 	if (locked) {
2639 		lf.l_type = F_UNLCK;
2640 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2641 	}
2642 	vn_finished_write(mp);
2643 out:
2644 	error1 = vn_close(vp, FWRITE, cred, td);
2645 	mtx_unlock(&Giant);
2646 	if (error == 0)
2647 		error = error1;
2648 	return (error);
2649 }
2650 
2651 /*
2652  * Nonexistent system call-- signal process (may want to handle it).
2653  * Flag error in case process won't see signal immediately (blocked or ignored).
2654  */
2655 #ifndef _SYS_SYSPROTO_H_
2656 struct nosys_args {
2657 	int	dummy;
2658 };
2659 #endif
2660 /*
2661  * MPSAFE
2662  */
2663 /* ARGSUSED */
2664 int
2665 nosys(td, args)
2666 	struct thread *td;
2667 	struct nosys_args *args;
2668 {
2669 	struct proc *p = td->td_proc;
2670 
2671 	PROC_LOCK(p);
2672 	psignal(p, SIGSYS);
2673 	PROC_UNLOCK(p);
2674 	return (ENOSYS);
2675 }
2676 
2677 /*
2678  * Send a SIGIO or SIGURG signal to a process or process group using
2679  * stored credentials rather than those of the current process.
2680  */
2681 void
2682 pgsigio(sigiop, sig, checkctty)
2683 	struct sigio **sigiop;
2684 	int sig, checkctty;
2685 {
2686 	struct sigio *sigio;
2687 
2688 	SIGIO_LOCK();
2689 	sigio = *sigiop;
2690 	if (sigio == NULL) {
2691 		SIGIO_UNLOCK();
2692 		return;
2693 	}
2694 	if (sigio->sio_pgid > 0) {
2695 		PROC_LOCK(sigio->sio_proc);
2696 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
2697 			psignal(sigio->sio_proc, sig);
2698 		PROC_UNLOCK(sigio->sio_proc);
2699 	} else if (sigio->sio_pgid < 0) {
2700 		struct proc *p;
2701 
2702 		PGRP_LOCK(sigio->sio_pgrp);
2703 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
2704 			PROC_LOCK(p);
2705 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
2706 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
2707 				psignal(p, sig);
2708 			PROC_UNLOCK(p);
2709 		}
2710 		PGRP_UNLOCK(sigio->sio_pgrp);
2711 	}
2712 	SIGIO_UNLOCK();
2713 }
2714 
2715 static int
2716 filt_sigattach(struct knote *kn)
2717 {
2718 	struct proc *p = curproc;
2719 
2720 	kn->kn_ptr.p_proc = p;
2721 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
2722 
2723 	PROC_LOCK(p);
2724 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
2725 	PROC_UNLOCK(p);
2726 
2727 	return (0);
2728 }
2729 
2730 static void
2731 filt_sigdetach(struct knote *kn)
2732 {
2733 	struct proc *p = kn->kn_ptr.p_proc;
2734 
2735 	PROC_LOCK(p);
2736 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
2737 	PROC_UNLOCK(p);
2738 }
2739 
2740 /*
2741  * signal knotes are shared with proc knotes, so we apply a mask to
2742  * the hint in order to differentiate them from process hints.  This
2743  * could be avoided by using a signal-specific knote list, but probably
2744  * isn't worth the trouble.
2745  */
2746 static int
2747 filt_signal(struct knote *kn, long hint)
2748 {
2749 
2750 	if (hint & NOTE_SIGNAL) {
2751 		hint &= ~NOTE_SIGNAL;
2752 
2753 		if (kn->kn_id == hint)
2754 			kn->kn_data++;
2755 	}
2756 	return (kn->kn_data != 0);
2757 }
2758 
2759 struct sigacts *
2760 sigacts_alloc(void)
2761 {
2762 	struct sigacts *ps;
2763 
2764 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
2765 	ps->ps_refcnt = 1;
2766 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
2767 	return (ps);
2768 }
2769 
2770 void
2771 sigacts_free(struct sigacts *ps)
2772 {
2773 
2774 	mtx_lock(&ps->ps_mtx);
2775 	ps->ps_refcnt--;
2776 	if (ps->ps_refcnt == 0) {
2777 		mtx_destroy(&ps->ps_mtx);
2778 		free(ps, M_SUBPROC);
2779 	} else
2780 		mtx_unlock(&ps->ps_mtx);
2781 }
2782 
2783 struct sigacts *
2784 sigacts_hold(struct sigacts *ps)
2785 {
2786 	mtx_lock(&ps->ps_mtx);
2787 	ps->ps_refcnt++;
2788 	mtx_unlock(&ps->ps_mtx);
2789 	return (ps);
2790 }
2791 
2792 void
2793 sigacts_copy(struct sigacts *dest, struct sigacts *src)
2794 {
2795 
2796 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
2797 	mtx_lock(&src->ps_mtx);
2798 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
2799 	mtx_unlock(&src->ps_mtx);
2800 }
2801 
2802 int
2803 sigacts_shared(struct sigacts *ps)
2804 {
2805 	int shared;
2806 
2807 	mtx_lock(&ps->ps_mtx);
2808 	shared = ps->ps_refcnt > 1;
2809 	mtx_unlock(&ps->ps_mtx);
2810 	return (shared);
2811 }
2812