xref: /freebsd/sys/kern/kern_sig.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/posix4.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 
81 #include <security/audit/audit.h>
82 
83 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
84 
85 static int	coredump(struct thread *);
86 static char	*expand_name(const char *, uid_t, pid_t);
87 static int	killpg1(struct thread *td, int sig, int pgid, int all);
88 static int	issignal(struct thread *p);
89 static int	sigprop(int sig);
90 static void	tdsigwakeup(struct thread *, int, sig_t, int);
91 static void	sig_suspend_threads(struct thread *, struct proc *, int);
92 static int	filt_sigattach(struct knote *kn);
93 static void	filt_sigdetach(struct knote *kn);
94 static int	filt_signal(struct knote *kn, long hint);
95 static struct thread *sigtd(struct proc *p, int sig, int prop);
96 #ifdef KSE
97 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
98 #endif
99 static void	sigqueue_start(void);
100 
101 static uma_zone_t	ksiginfo_zone = NULL;
102 struct filterops sig_filtops =
103 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
104 
105 int	kern_logsigexit = 1;
106 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
107     &kern_logsigexit, 0,
108     "Log processes quitting on abnormal signals to syslog(3)");
109 
110 static int	kern_forcesigexit = 1;
111 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
112     &kern_forcesigexit, 0, "Force trap signal to be handled");
113 
114 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
115 
116 static int	max_pending_per_proc = 128;
117 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
118     &max_pending_per_proc, 0, "Max pending signals per proc");
119 
120 static int	preallocate_siginfo = 1024;
121 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
122 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
123     &preallocate_siginfo, 0, "Preallocated signal memory size");
124 
125 static int	signal_overflow = 0;
126 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
127     &signal_overflow, 0, "Number of signals overflew");
128 
129 static int	signal_alloc_fail = 0;
130 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
131     &signal_alloc_fail, 0, "signals failed to be allocated");
132 
133 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
134 
135 /*
136  * Policy -- Can ucred cr1 send SIGIO to process cr2?
137  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
138  * in the right situations.
139  */
140 #define CANSIGIO(cr1, cr2) \
141 	((cr1)->cr_uid == 0 || \
142 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
143 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
144 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
145 	    (cr1)->cr_uid == (cr2)->cr_uid)
146 
147 int sugid_coredump;
148 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
149     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
150 
151 static int	do_coredump = 1;
152 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
153 	&do_coredump, 0, "Enable/Disable coredumps");
154 
155 static int	set_core_nodump_flag = 0;
156 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
157 	0, "Enable setting the NODUMP flag on coredump files");
158 
159 /*
160  * Signal properties and actions.
161  * The array below categorizes the signals and their default actions
162  * according to the following properties:
163  */
164 #define	SA_KILL		0x01		/* terminates process by default */
165 #define	SA_CORE		0x02		/* ditto and coredumps */
166 #define	SA_STOP		0x04		/* suspend process */
167 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
168 #define	SA_IGNORE	0x10		/* ignore by default */
169 #define	SA_CONT		0x20		/* continue if suspended */
170 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
171 #define	SA_PROC		0x80		/* deliverable to any thread */
172 
173 static int sigproptbl[NSIG] = {
174         SA_KILL|SA_PROC,		/* SIGHUP */
175         SA_KILL|SA_PROC,		/* SIGINT */
176         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
177         SA_KILL|SA_CORE,		/* SIGILL */
178         SA_KILL|SA_CORE,		/* SIGTRAP */
179         SA_KILL|SA_CORE,		/* SIGABRT */
180         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
181         SA_KILL|SA_CORE,		/* SIGFPE */
182         SA_KILL|SA_PROC,		/* SIGKILL */
183         SA_KILL|SA_CORE,		/* SIGBUS */
184         SA_KILL|SA_CORE,		/* SIGSEGV */
185         SA_KILL|SA_CORE,		/* SIGSYS */
186         SA_KILL|SA_PROC,		/* SIGPIPE */
187         SA_KILL|SA_PROC,		/* SIGALRM */
188         SA_KILL|SA_PROC,		/* SIGTERM */
189         SA_IGNORE|SA_PROC,		/* SIGURG */
190         SA_STOP|SA_PROC,		/* SIGSTOP */
191         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
192         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
193         SA_IGNORE|SA_PROC,		/* SIGCHLD */
194         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
195         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
196         SA_IGNORE|SA_PROC,		/* SIGIO */
197         SA_KILL,			/* SIGXCPU */
198         SA_KILL,			/* SIGXFSZ */
199         SA_KILL|SA_PROC,		/* SIGVTALRM */
200         SA_KILL|SA_PROC,		/* SIGPROF */
201         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
202         SA_IGNORE|SA_PROC,		/* SIGINFO */
203         SA_KILL|SA_PROC,		/* SIGUSR1 */
204         SA_KILL|SA_PROC,		/* SIGUSR2 */
205 };
206 
207 static void
208 sigqueue_start(void)
209 {
210 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
211 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
213 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
214 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
215 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
216 }
217 
218 ksiginfo_t *
219 ksiginfo_alloc(int wait)
220 {
221 	int flags;
222 
223 	flags = M_ZERO;
224 	if (! wait)
225 		flags |= M_NOWAIT;
226 	if (ksiginfo_zone != NULL)
227 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
228 	return (NULL);
229 }
230 
231 void
232 ksiginfo_free(ksiginfo_t *ksi)
233 {
234 	uma_zfree(ksiginfo_zone, ksi);
235 }
236 
237 static __inline int
238 ksiginfo_tryfree(ksiginfo_t *ksi)
239 {
240 	if (!(ksi->ksi_flags & KSI_EXT)) {
241 		uma_zfree(ksiginfo_zone, ksi);
242 		return (1);
243 	}
244 	return (0);
245 }
246 
247 void
248 sigqueue_init(sigqueue_t *list, struct proc *p)
249 {
250 	SIGEMPTYSET(list->sq_signals);
251 	SIGEMPTYSET(list->sq_kill);
252 	TAILQ_INIT(&list->sq_list);
253 	list->sq_proc = p;
254 	list->sq_flags = SQ_INIT;
255 }
256 
257 /*
258  * Get a signal's ksiginfo.
259  * Return:
260  * 	0	-	signal not found
261  *	others	-	signal number
262  */
263 int
264 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
265 {
266 	struct proc *p = sq->sq_proc;
267 	struct ksiginfo *ksi, *next;
268 	int count = 0;
269 
270 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
271 
272 	if (!SIGISMEMBER(sq->sq_signals, signo))
273 		return (0);
274 
275 	if (SIGISMEMBER(sq->sq_kill, signo)) {
276 		count++;
277 		SIGDELSET(sq->sq_kill, signo);
278 	}
279 
280 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
281 		if (ksi->ksi_signo == signo) {
282 			if (count == 0) {
283 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
284 				ksi->ksi_sigq = NULL;
285 				ksiginfo_copy(ksi, si);
286 				if (ksiginfo_tryfree(ksi) && p != NULL)
287 					p->p_pendingcnt--;
288 			}
289 			if (++count > 1)
290 				break;
291 		}
292 	}
293 
294 	if (count <= 1)
295 		SIGDELSET(sq->sq_signals, signo);
296 	si->ksi_signo = signo;
297 	return (signo);
298 }
299 
300 void
301 sigqueue_take(ksiginfo_t *ksi)
302 {
303 	struct ksiginfo *kp;
304 	struct proc	*p;
305 	sigqueue_t	*sq;
306 
307 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
308 		return;
309 
310 	p = sq->sq_proc;
311 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
312 	ksi->ksi_sigq = NULL;
313 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
314 		p->p_pendingcnt--;
315 
316 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
317 	     kp = TAILQ_NEXT(kp, ksi_link)) {
318 		if (kp->ksi_signo == ksi->ksi_signo)
319 			break;
320 	}
321 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
322 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
323 }
324 
325 int
326 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
327 {
328 	struct proc *p = sq->sq_proc;
329 	struct ksiginfo *ksi;
330 	int ret = 0;
331 
332 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
333 
334 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
335 		SIGADDSET(sq->sq_kill, signo);
336 		goto out_set_bit;
337 	}
338 
339 	/* directly insert the ksi, don't copy it */
340 	if (si->ksi_flags & KSI_INS) {
341 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
342 		si->ksi_sigq = sq;
343 		goto out_set_bit;
344 	}
345 
346 	if (__predict_false(ksiginfo_zone == NULL)) {
347 		SIGADDSET(sq->sq_kill, signo);
348 		goto out_set_bit;
349 	}
350 
351 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
352 		signal_overflow++;
353 		ret = EAGAIN;
354 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
355 		signal_alloc_fail++;
356 		ret = EAGAIN;
357 	} else {
358 		if (p != NULL)
359 			p->p_pendingcnt++;
360 		ksiginfo_copy(si, ksi);
361 		ksi->ksi_signo = signo;
362 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
363 		ksi->ksi_sigq = sq;
364 	}
365 
366 	if ((si->ksi_flags & KSI_TRAP) != 0) {
367 		if (ret != 0)
368 			SIGADDSET(sq->sq_kill, signo);
369 		ret = 0;
370 		goto out_set_bit;
371 	}
372 
373 	if (ret != 0)
374 		return (ret);
375 
376 out_set_bit:
377 	SIGADDSET(sq->sq_signals, signo);
378 	return (ret);
379 }
380 
381 void
382 sigqueue_flush(sigqueue_t *sq)
383 {
384 	struct proc *p = sq->sq_proc;
385 	ksiginfo_t *ksi;
386 
387 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
388 
389 	if (p != NULL)
390 		PROC_LOCK_ASSERT(p, MA_OWNED);
391 
392 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
393 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
394 		ksi->ksi_sigq = NULL;
395 		if (ksiginfo_tryfree(ksi) && p != NULL)
396 			p->p_pendingcnt--;
397 	}
398 
399 	SIGEMPTYSET(sq->sq_signals);
400 	SIGEMPTYSET(sq->sq_kill);
401 }
402 
403 void
404 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
405 {
406 	ksiginfo_t *ksi;
407 
408 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
409 
410 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
411 		SIGADDSET(*set, ksi->ksi_signo);
412 	SIGSETOR(*set, sq->sq_kill);
413 }
414 
415 void
416 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
417 {
418 	sigset_t tmp, set;
419 	struct proc *p1, *p2;
420 	ksiginfo_t *ksi, *next;
421 
422 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
423 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
424 	/*
425 	 * make a copy, this allows setp to point to src or dst
426 	 * sq_signals without trouble.
427 	 */
428 	set = *setp;
429 	p1 = src->sq_proc;
430 	p2 = dst->sq_proc;
431 	/* Move siginfo to target list */
432 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
433 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
434 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
435 			if (p1 != NULL)
436 				p1->p_pendingcnt--;
437 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
438 			ksi->ksi_sigq = dst;
439 			if (p2 != NULL)
440 				p2->p_pendingcnt++;
441 		}
442 	}
443 
444 	/* Move pending bits to target list */
445 	tmp = src->sq_kill;
446 	SIGSETAND(tmp, set);
447 	SIGSETOR(dst->sq_kill, tmp);
448 	SIGSETNAND(src->sq_kill, tmp);
449 
450 	tmp = src->sq_signals;
451 	SIGSETAND(tmp, set);
452 	SIGSETOR(dst->sq_signals, tmp);
453 	SIGSETNAND(src->sq_signals, tmp);
454 
455 	/* Finally, rescan src queue and set pending bits for it */
456 	sigqueue_collect_set(src, &src->sq_signals);
457 }
458 
459 void
460 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
461 {
462 	sigset_t set;
463 
464 	SIGEMPTYSET(set);
465 	SIGADDSET(set, signo);
466 	sigqueue_move_set(src, dst, &set);
467 }
468 
469 void
470 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
471 {
472 	struct proc *p = sq->sq_proc;
473 	ksiginfo_t *ksi, *next;
474 
475 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
476 
477 	/* Remove siginfo queue */
478 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
479 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
480 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
481 			ksi->ksi_sigq = NULL;
482 			if (ksiginfo_tryfree(ksi) && p != NULL)
483 				p->p_pendingcnt--;
484 		}
485 	}
486 	SIGSETNAND(sq->sq_kill, *set);
487 	SIGSETNAND(sq->sq_signals, *set);
488 	/* Finally, rescan queue and set pending bits for it */
489 	sigqueue_collect_set(sq, &sq->sq_signals);
490 }
491 
492 void
493 sigqueue_delete(sigqueue_t *sq, int signo)
494 {
495 	sigset_t set;
496 
497 	SIGEMPTYSET(set);
498 	SIGADDSET(set, signo);
499 	sigqueue_delete_set(sq, &set);
500 }
501 
502 /* Remove a set of signals for a process */
503 void
504 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
505 {
506 	sigqueue_t worklist;
507 	struct thread *td0;
508 
509 	PROC_LOCK_ASSERT(p, MA_OWNED);
510 
511 	sigqueue_init(&worklist, NULL);
512 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
513 
514 	PROC_SLOCK(p);
515 	FOREACH_THREAD_IN_PROC(p, td0)
516 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
517 	PROC_SUNLOCK(p);
518 
519 	sigqueue_flush(&worklist);
520 }
521 
522 void
523 sigqueue_delete_proc(struct proc *p, int signo)
524 {
525 	sigset_t set;
526 
527 	SIGEMPTYSET(set);
528 	SIGADDSET(set, signo);
529 	sigqueue_delete_set_proc(p, &set);
530 }
531 
532 void
533 sigqueue_delete_stopmask_proc(struct proc *p)
534 {
535 	sigset_t set;
536 
537 	SIGEMPTYSET(set);
538 	SIGADDSET(set, SIGSTOP);
539 	SIGADDSET(set, SIGTSTP);
540 	SIGADDSET(set, SIGTTIN);
541 	SIGADDSET(set, SIGTTOU);
542 	sigqueue_delete_set_proc(p, &set);
543 }
544 
545 /*
546  * Determine signal that should be delivered to process p, the current
547  * process, 0 if none.  If there is a pending stop signal with default
548  * action, the process stops in issignal().
549  */
550 int
551 cursig(struct thread *td)
552 {
553 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
554 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
555 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
556 	return (SIGPENDING(td) ? issignal(td) : 0);
557 }
558 
559 /*
560  * Arrange for ast() to handle unmasked pending signals on return to user
561  * mode.  This must be called whenever a signal is added to td_sigqueue or
562  * unmasked in td_sigmask.
563  */
564 void
565 signotify(struct thread *td)
566 {
567 	struct proc *p;
568 #ifdef KSE
569 	sigset_t set, saved;
570 #else
571 	sigset_t set;
572 #endif
573 
574 	p = td->td_proc;
575 
576 	PROC_LOCK_ASSERT(p, MA_OWNED);
577 
578 	/*
579 	 * If our mask changed we may have to move signal that were
580 	 * previously masked by all threads to our sigqueue.
581 	 */
582 	set = p->p_sigqueue.sq_signals;
583 #ifdef KSE
584 	if (p->p_flag & P_SA)
585 		saved = p->p_sigqueue.sq_signals;
586 #endif
587 	SIGSETNAND(set, td->td_sigmask);
588 	if (! SIGISEMPTY(set))
589 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
590 	if (SIGPENDING(td)) {
591 		thread_lock(td);
592 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
593 		thread_unlock(td);
594 	}
595 #ifdef KSE
596 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
597 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
598 			/* pending set changed */
599 			p->p_flag |= P_SIGEVENT;
600 			wakeup(&p->p_siglist);
601 		}
602 	}
603 #endif
604 }
605 
606 int
607 sigonstack(size_t sp)
608 {
609 	struct thread *td = curthread;
610 
611 	return ((td->td_pflags & TDP_ALTSTACK) ?
612 #if defined(COMPAT_43)
613 	    ((td->td_sigstk.ss_size == 0) ?
614 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
615 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
616 #else
617 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
618 #endif
619 	    : 0);
620 }
621 
622 static __inline int
623 sigprop(int sig)
624 {
625 
626 	if (sig > 0 && sig < NSIG)
627 		return (sigproptbl[_SIG_IDX(sig)]);
628 	return (0);
629 }
630 
631 int
632 sig_ffs(sigset_t *set)
633 {
634 	int i;
635 
636 	for (i = 0; i < _SIG_WORDS; i++)
637 		if (set->__bits[i])
638 			return (ffs(set->__bits[i]) + (i * 32));
639 	return (0);
640 }
641 
642 /*
643  * kern_sigaction
644  * sigaction
645  * freebsd4_sigaction
646  * osigaction
647  */
648 int
649 kern_sigaction(td, sig, act, oact, flags)
650 	struct thread *td;
651 	register int sig;
652 	struct sigaction *act, *oact;
653 	int flags;
654 {
655 	struct sigacts *ps;
656 	struct proc *p = td->td_proc;
657 
658 	if (!_SIG_VALID(sig))
659 		return (EINVAL);
660 
661 	PROC_LOCK(p);
662 	ps = p->p_sigacts;
663 	mtx_lock(&ps->ps_mtx);
664 	if (oact) {
665 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
666 		oact->sa_flags = 0;
667 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
668 			oact->sa_flags |= SA_ONSTACK;
669 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
670 			oact->sa_flags |= SA_RESTART;
671 		if (SIGISMEMBER(ps->ps_sigreset, sig))
672 			oact->sa_flags |= SA_RESETHAND;
673 		if (SIGISMEMBER(ps->ps_signodefer, sig))
674 			oact->sa_flags |= SA_NODEFER;
675 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
676 			oact->sa_flags |= SA_SIGINFO;
677 			oact->sa_sigaction =
678 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
679 		} else
680 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
681 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
682 			oact->sa_flags |= SA_NOCLDSTOP;
683 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
684 			oact->sa_flags |= SA_NOCLDWAIT;
685 	}
686 	if (act) {
687 		if ((sig == SIGKILL || sig == SIGSTOP) &&
688 		    act->sa_handler != SIG_DFL) {
689 			mtx_unlock(&ps->ps_mtx);
690 			PROC_UNLOCK(p);
691 			return (EINVAL);
692 		}
693 
694 		/*
695 		 * Change setting atomically.
696 		 */
697 
698 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
699 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
700 		if (act->sa_flags & SA_SIGINFO) {
701 			ps->ps_sigact[_SIG_IDX(sig)] =
702 			    (__sighandler_t *)act->sa_sigaction;
703 			SIGADDSET(ps->ps_siginfo, sig);
704 		} else {
705 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
706 			SIGDELSET(ps->ps_siginfo, sig);
707 		}
708 		if (!(act->sa_flags & SA_RESTART))
709 			SIGADDSET(ps->ps_sigintr, sig);
710 		else
711 			SIGDELSET(ps->ps_sigintr, sig);
712 		if (act->sa_flags & SA_ONSTACK)
713 			SIGADDSET(ps->ps_sigonstack, sig);
714 		else
715 			SIGDELSET(ps->ps_sigonstack, sig);
716 		if (act->sa_flags & SA_RESETHAND)
717 			SIGADDSET(ps->ps_sigreset, sig);
718 		else
719 			SIGDELSET(ps->ps_sigreset, sig);
720 		if (act->sa_flags & SA_NODEFER)
721 			SIGADDSET(ps->ps_signodefer, sig);
722 		else
723 			SIGDELSET(ps->ps_signodefer, sig);
724 		if (sig == SIGCHLD) {
725 			if (act->sa_flags & SA_NOCLDSTOP)
726 				ps->ps_flag |= PS_NOCLDSTOP;
727 			else
728 				ps->ps_flag &= ~PS_NOCLDSTOP;
729 			if (act->sa_flags & SA_NOCLDWAIT) {
730 				/*
731 				 * Paranoia: since SA_NOCLDWAIT is implemented
732 				 * by reparenting the dying child to PID 1 (and
733 				 * trust it to reap the zombie), PID 1 itself
734 				 * is forbidden to set SA_NOCLDWAIT.
735 				 */
736 				if (p->p_pid == 1)
737 					ps->ps_flag &= ~PS_NOCLDWAIT;
738 				else
739 					ps->ps_flag |= PS_NOCLDWAIT;
740 			} else
741 				ps->ps_flag &= ~PS_NOCLDWAIT;
742 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
743 				ps->ps_flag |= PS_CLDSIGIGN;
744 			else
745 				ps->ps_flag &= ~PS_CLDSIGIGN;
746 		}
747 		/*
748 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
749 		 * and for signals set to SIG_DFL where the default is to
750 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
751 		 * have to restart the process.
752 		 */
753 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
754 		    (sigprop(sig) & SA_IGNORE &&
755 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
756 #ifdef KSE
757 			if ((p->p_flag & P_SA) &&
758 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
759 				p->p_flag |= P_SIGEVENT;
760 				wakeup(&p->p_siglist);
761 			}
762 #endif
763 			/* never to be seen again */
764 			PROC_SLOCK(p);
765 			sigqueue_delete_proc(p, sig);
766 			PROC_SUNLOCK(p);
767 			if (sig != SIGCONT)
768 				/* easier in psignal */
769 				SIGADDSET(ps->ps_sigignore, sig);
770 			SIGDELSET(ps->ps_sigcatch, sig);
771 		} else {
772 			SIGDELSET(ps->ps_sigignore, sig);
773 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
774 				SIGDELSET(ps->ps_sigcatch, sig);
775 			else
776 				SIGADDSET(ps->ps_sigcatch, sig);
777 		}
778 #ifdef COMPAT_FREEBSD4
779 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
780 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
781 		    (flags & KSA_FREEBSD4) == 0)
782 			SIGDELSET(ps->ps_freebsd4, sig);
783 		else
784 			SIGADDSET(ps->ps_freebsd4, sig);
785 #endif
786 #ifdef COMPAT_43
787 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
788 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
789 		    (flags & KSA_OSIGSET) == 0)
790 			SIGDELSET(ps->ps_osigset, sig);
791 		else
792 			SIGADDSET(ps->ps_osigset, sig);
793 #endif
794 	}
795 	mtx_unlock(&ps->ps_mtx);
796 	PROC_UNLOCK(p);
797 	return (0);
798 }
799 
800 #ifndef _SYS_SYSPROTO_H_
801 struct sigaction_args {
802 	int	sig;
803 	struct	sigaction *act;
804 	struct	sigaction *oact;
805 };
806 #endif
807 int
808 sigaction(td, uap)
809 	struct thread *td;
810 	register struct sigaction_args *uap;
811 {
812 	struct sigaction act, oact;
813 	register struct sigaction *actp, *oactp;
814 	int error;
815 
816 	actp = (uap->act != NULL) ? &act : NULL;
817 	oactp = (uap->oact != NULL) ? &oact : NULL;
818 	if (actp) {
819 		error = copyin(uap->act, actp, sizeof(act));
820 		if (error)
821 			return (error);
822 	}
823 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
824 	if (oactp && !error)
825 		error = copyout(oactp, uap->oact, sizeof(oact));
826 	return (error);
827 }
828 
829 #ifdef COMPAT_FREEBSD4
830 #ifndef _SYS_SYSPROTO_H_
831 struct freebsd4_sigaction_args {
832 	int	sig;
833 	struct	sigaction *act;
834 	struct	sigaction *oact;
835 };
836 #endif
837 int
838 freebsd4_sigaction(td, uap)
839 	struct thread *td;
840 	register struct freebsd4_sigaction_args *uap;
841 {
842 	struct sigaction act, oact;
843 	register struct sigaction *actp, *oactp;
844 	int error;
845 
846 
847 	actp = (uap->act != NULL) ? &act : NULL;
848 	oactp = (uap->oact != NULL) ? &oact : NULL;
849 	if (actp) {
850 		error = copyin(uap->act, actp, sizeof(act));
851 		if (error)
852 			return (error);
853 	}
854 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
855 	if (oactp && !error)
856 		error = copyout(oactp, uap->oact, sizeof(oact));
857 	return (error);
858 }
859 #endif	/* COMAPT_FREEBSD4 */
860 
861 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
862 #ifndef _SYS_SYSPROTO_H_
863 struct osigaction_args {
864 	int	signum;
865 	struct	osigaction *nsa;
866 	struct	osigaction *osa;
867 };
868 #endif
869 int
870 osigaction(td, uap)
871 	struct thread *td;
872 	register struct osigaction_args *uap;
873 {
874 	struct osigaction sa;
875 	struct sigaction nsa, osa;
876 	register struct sigaction *nsap, *osap;
877 	int error;
878 
879 	if (uap->signum <= 0 || uap->signum >= ONSIG)
880 		return (EINVAL);
881 
882 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
883 	osap = (uap->osa != NULL) ? &osa : NULL;
884 
885 	if (nsap) {
886 		error = copyin(uap->nsa, &sa, sizeof(sa));
887 		if (error)
888 			return (error);
889 		nsap->sa_handler = sa.sa_handler;
890 		nsap->sa_flags = sa.sa_flags;
891 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
892 	}
893 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
894 	if (osap && !error) {
895 		sa.sa_handler = osap->sa_handler;
896 		sa.sa_flags = osap->sa_flags;
897 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
898 		error = copyout(&sa, uap->osa, sizeof(sa));
899 	}
900 	return (error);
901 }
902 
903 #if !defined(__i386__)
904 /* Avoid replicating the same stub everywhere */
905 int
906 osigreturn(td, uap)
907 	struct thread *td;
908 	struct osigreturn_args *uap;
909 {
910 
911 	return (nosys(td, (struct nosys_args *)uap));
912 }
913 #endif
914 #endif /* COMPAT_43 */
915 
916 /*
917  * Initialize signal state for process 0;
918  * set to ignore signals that are ignored by default.
919  */
920 void
921 siginit(p)
922 	struct proc *p;
923 {
924 	register int i;
925 	struct sigacts *ps;
926 
927 	PROC_LOCK(p);
928 	ps = p->p_sigacts;
929 	mtx_lock(&ps->ps_mtx);
930 	for (i = 1; i <= NSIG; i++)
931 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
932 			SIGADDSET(ps->ps_sigignore, i);
933 	mtx_unlock(&ps->ps_mtx);
934 	PROC_UNLOCK(p);
935 }
936 
937 /*
938  * Reset signals for an exec of the specified process.
939  */
940 void
941 execsigs(struct proc *p)
942 {
943 	struct sigacts *ps;
944 	int sig;
945 	struct thread *td;
946 
947 	/*
948 	 * Reset caught signals.  Held signals remain held
949 	 * through td_sigmask (unless they were caught,
950 	 * and are now ignored by default).
951 	 */
952 	PROC_LOCK_ASSERT(p, MA_OWNED);
953 	td = FIRST_THREAD_IN_PROC(p);
954 	ps = p->p_sigacts;
955 	mtx_lock(&ps->ps_mtx);
956 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
957 		sig = sig_ffs(&ps->ps_sigcatch);
958 		SIGDELSET(ps->ps_sigcatch, sig);
959 		if (sigprop(sig) & SA_IGNORE) {
960 			if (sig != SIGCONT)
961 				SIGADDSET(ps->ps_sigignore, sig);
962 			PROC_SLOCK(p);
963 			sigqueue_delete_proc(p, sig);
964 			PROC_SUNLOCK(p);
965 		}
966 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
967 	}
968 	/*
969 	 * Reset stack state to the user stack.
970 	 * Clear set of signals caught on the signal stack.
971 	 */
972 	td->td_sigstk.ss_flags = SS_DISABLE;
973 	td->td_sigstk.ss_size = 0;
974 	td->td_sigstk.ss_sp = 0;
975 	td->td_pflags &= ~TDP_ALTSTACK;
976 	/*
977 	 * Reset no zombies if child dies flag as Solaris does.
978 	 */
979 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
980 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
981 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
982 	mtx_unlock(&ps->ps_mtx);
983 }
984 
985 /*
986  * kern_sigprocmask()
987  *
988  *	Manipulate signal mask.
989  */
990 int
991 kern_sigprocmask(td, how, set, oset, old)
992 	struct thread *td;
993 	int how;
994 	sigset_t *set, *oset;
995 	int old;
996 {
997 	int error;
998 
999 	PROC_LOCK(td->td_proc);
1000 	if (oset != NULL)
1001 		*oset = td->td_sigmask;
1002 
1003 	error = 0;
1004 	if (set != NULL) {
1005 		switch (how) {
1006 		case SIG_BLOCK:
1007 			SIG_CANTMASK(*set);
1008 			SIGSETOR(td->td_sigmask, *set);
1009 			break;
1010 		case SIG_UNBLOCK:
1011 			SIGSETNAND(td->td_sigmask, *set);
1012 			signotify(td);
1013 			break;
1014 		case SIG_SETMASK:
1015 			SIG_CANTMASK(*set);
1016 			if (old)
1017 				SIGSETLO(td->td_sigmask, *set);
1018 			else
1019 				td->td_sigmask = *set;
1020 			signotify(td);
1021 			break;
1022 		default:
1023 			error = EINVAL;
1024 			break;
1025 		}
1026 	}
1027 	PROC_UNLOCK(td->td_proc);
1028 	return (error);
1029 }
1030 
1031 #ifndef _SYS_SYSPROTO_H_
1032 struct sigprocmask_args {
1033 	int	how;
1034 	const sigset_t *set;
1035 	sigset_t *oset;
1036 };
1037 #endif
1038 int
1039 sigprocmask(td, uap)
1040 	register struct thread *td;
1041 	struct sigprocmask_args *uap;
1042 {
1043 	sigset_t set, oset;
1044 	sigset_t *setp, *osetp;
1045 	int error;
1046 
1047 	setp = (uap->set != NULL) ? &set : NULL;
1048 	osetp = (uap->oset != NULL) ? &oset : NULL;
1049 	if (setp) {
1050 		error = copyin(uap->set, setp, sizeof(set));
1051 		if (error)
1052 			return (error);
1053 	}
1054 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1055 	if (osetp && !error) {
1056 		error = copyout(osetp, uap->oset, sizeof(oset));
1057 	}
1058 	return (error);
1059 }
1060 
1061 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1062 #ifndef _SYS_SYSPROTO_H_
1063 struct osigprocmask_args {
1064 	int	how;
1065 	osigset_t mask;
1066 };
1067 #endif
1068 int
1069 osigprocmask(td, uap)
1070 	register struct thread *td;
1071 	struct osigprocmask_args *uap;
1072 {
1073 	sigset_t set, oset;
1074 	int error;
1075 
1076 	OSIG2SIG(uap->mask, set);
1077 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1078 	SIG2OSIG(oset, td->td_retval[0]);
1079 	return (error);
1080 }
1081 #endif /* COMPAT_43 */
1082 
1083 int
1084 sigwait(struct thread *td, struct sigwait_args *uap)
1085 {
1086 	ksiginfo_t ksi;
1087 	sigset_t set;
1088 	int error;
1089 
1090 	error = copyin(uap->set, &set, sizeof(set));
1091 	if (error) {
1092 		td->td_retval[0] = error;
1093 		return (0);
1094 	}
1095 
1096 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1097 	if (error) {
1098 		if (error == ERESTART)
1099 			return (error);
1100 		td->td_retval[0] = error;
1101 		return (0);
1102 	}
1103 
1104 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1105 	td->td_retval[0] = error;
1106 	return (0);
1107 }
1108 
1109 int
1110 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1111 {
1112 	struct timespec ts;
1113 	struct timespec *timeout;
1114 	sigset_t set;
1115 	ksiginfo_t ksi;
1116 	int error;
1117 
1118 	if (uap->timeout) {
1119 		error = copyin(uap->timeout, &ts, sizeof(ts));
1120 		if (error)
1121 			return (error);
1122 
1123 		timeout = &ts;
1124 	} else
1125 		timeout = NULL;
1126 
1127 	error = copyin(uap->set, &set, sizeof(set));
1128 	if (error)
1129 		return (error);
1130 
1131 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1132 	if (error)
1133 		return (error);
1134 
1135 	if (uap->info)
1136 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1137 
1138 	if (error == 0)
1139 		td->td_retval[0] = ksi.ksi_signo;
1140 	return (error);
1141 }
1142 
1143 int
1144 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1145 {
1146 	ksiginfo_t ksi;
1147 	sigset_t set;
1148 	int error;
1149 
1150 	error = copyin(uap->set, &set, sizeof(set));
1151 	if (error)
1152 		return (error);
1153 
1154 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1155 	if (error)
1156 		return (error);
1157 
1158 	if (uap->info)
1159 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1160 
1161 	if (error == 0)
1162 		td->td_retval[0] = ksi.ksi_signo;
1163 	return (error);
1164 }
1165 
1166 int
1167 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1168 	struct timespec *timeout)
1169 {
1170 	struct sigacts *ps;
1171 	sigset_t savedmask;
1172 	struct proc *p;
1173 	int error, sig, hz, i, timevalid = 0;
1174 	struct timespec rts, ets, ts;
1175 	struct timeval tv;
1176 
1177 	p = td->td_proc;
1178 	error = 0;
1179 	sig = 0;
1180 	ets.tv_sec = 0;
1181 	ets.tv_nsec = 0;
1182 	SIG_CANTMASK(waitset);
1183 
1184 	PROC_LOCK(p);
1185 	ps = p->p_sigacts;
1186 	savedmask = td->td_sigmask;
1187 	if (timeout) {
1188 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1189 			timevalid = 1;
1190 			getnanouptime(&rts);
1191 		 	ets = rts;
1192 			timespecadd(&ets, timeout);
1193 		}
1194 	}
1195 
1196 restart:
1197 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1198 		if (!SIGISMEMBER(waitset, i))
1199 			continue;
1200 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1201 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1202 #ifdef KSE
1203 				if (p->p_flag & P_SA) {
1204 					p->p_flag |= P_SIGEVENT;
1205 					wakeup(&p->p_siglist);
1206 				}
1207 #endif
1208 				sigqueue_move(&p->p_sigqueue,
1209 					&td->td_sigqueue, i);
1210 			} else
1211 				continue;
1212 		}
1213 
1214 		SIGFILLSET(td->td_sigmask);
1215 		SIG_CANTMASK(td->td_sigmask);
1216 		SIGDELSET(td->td_sigmask, i);
1217 		mtx_lock(&ps->ps_mtx);
1218 		sig = cursig(td);
1219 		mtx_unlock(&ps->ps_mtx);
1220 		if (sig)
1221 			goto out;
1222 		else {
1223 			/*
1224 			 * Because cursig() may have stopped current thread,
1225 			 * after it is resumed, things may have already been
1226 			 * changed, it should rescan any pending signals.
1227 			 */
1228 			goto restart;
1229 		}
1230 	}
1231 
1232 	if (error)
1233 		goto out;
1234 
1235 	/*
1236 	 * POSIX says this must be checked after looking for pending
1237 	 * signals.
1238 	 */
1239 	if (timeout) {
1240 		if (!timevalid) {
1241 			error = EINVAL;
1242 			goto out;
1243 		}
1244 		getnanouptime(&rts);
1245 		if (timespeccmp(&rts, &ets, >=)) {
1246 			error = EAGAIN;
1247 			goto out;
1248 		}
1249 		ts = ets;
1250 		timespecsub(&ts, &rts);
1251 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1252 		hz = tvtohz(&tv);
1253 	} else
1254 		hz = 0;
1255 
1256 	td->td_sigmask = savedmask;
1257 	SIGSETNAND(td->td_sigmask, waitset);
1258 	signotify(td);
1259 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1260 	if (timeout) {
1261 		if (error == ERESTART) {
1262 			/* timeout can not be restarted. */
1263 			error = EINTR;
1264 		} else if (error == EAGAIN) {
1265 			/* will calculate timeout by ourself. */
1266 			error = 0;
1267 		}
1268 	}
1269 	goto restart;
1270 
1271 out:
1272 	td->td_sigmask = savedmask;
1273 	signotify(td);
1274 	if (sig) {
1275 		ksiginfo_init(ksi);
1276 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1277 		ksi->ksi_signo = sig;
1278 		if (ksi->ksi_code == SI_TIMER)
1279 			itimer_accept(p, ksi->ksi_timerid, ksi);
1280 		error = 0;
1281 
1282 #ifdef KTRACE
1283 		if (KTRPOINT(td, KTR_PSIG)) {
1284 			sig_t action;
1285 
1286 			mtx_lock(&ps->ps_mtx);
1287 			action = ps->ps_sigact[_SIG_IDX(sig)];
1288 			mtx_unlock(&ps->ps_mtx);
1289 			ktrpsig(sig, action, &td->td_sigmask, 0);
1290 		}
1291 #endif
1292 		if (sig == SIGKILL)
1293 			sigexit(td, sig);
1294 	}
1295 	PROC_UNLOCK(p);
1296 	return (error);
1297 }
1298 
1299 #ifndef _SYS_SYSPROTO_H_
1300 struct sigpending_args {
1301 	sigset_t	*set;
1302 };
1303 #endif
1304 int
1305 sigpending(td, uap)
1306 	struct thread *td;
1307 	struct sigpending_args *uap;
1308 {
1309 	struct proc *p = td->td_proc;
1310 	sigset_t pending;
1311 
1312 	PROC_LOCK(p);
1313 	pending = p->p_sigqueue.sq_signals;
1314 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1315 	PROC_UNLOCK(p);
1316 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1317 }
1318 
1319 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1320 #ifndef _SYS_SYSPROTO_H_
1321 struct osigpending_args {
1322 	int	dummy;
1323 };
1324 #endif
1325 int
1326 osigpending(td, uap)
1327 	struct thread *td;
1328 	struct osigpending_args *uap;
1329 {
1330 	struct proc *p = td->td_proc;
1331 	sigset_t pending;
1332 
1333 	PROC_LOCK(p);
1334 	pending = p->p_sigqueue.sq_signals;
1335 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1336 	PROC_UNLOCK(p);
1337 	SIG2OSIG(pending, td->td_retval[0]);
1338 	return (0);
1339 }
1340 #endif /* COMPAT_43 */
1341 
1342 #if defined(COMPAT_43)
1343 /*
1344  * Generalized interface signal handler, 4.3-compatible.
1345  */
1346 #ifndef _SYS_SYSPROTO_H_
1347 struct osigvec_args {
1348 	int	signum;
1349 	struct	sigvec *nsv;
1350 	struct	sigvec *osv;
1351 };
1352 #endif
1353 /* ARGSUSED */
1354 int
1355 osigvec(td, uap)
1356 	struct thread *td;
1357 	register struct osigvec_args *uap;
1358 {
1359 	struct sigvec vec;
1360 	struct sigaction nsa, osa;
1361 	register struct sigaction *nsap, *osap;
1362 	int error;
1363 
1364 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1365 		return (EINVAL);
1366 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1367 	osap = (uap->osv != NULL) ? &osa : NULL;
1368 	if (nsap) {
1369 		error = copyin(uap->nsv, &vec, sizeof(vec));
1370 		if (error)
1371 			return (error);
1372 		nsap->sa_handler = vec.sv_handler;
1373 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1374 		nsap->sa_flags = vec.sv_flags;
1375 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1376 	}
1377 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1378 	if (osap && !error) {
1379 		vec.sv_handler = osap->sa_handler;
1380 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1381 		vec.sv_flags = osap->sa_flags;
1382 		vec.sv_flags &= ~SA_NOCLDWAIT;
1383 		vec.sv_flags ^= SA_RESTART;
1384 		error = copyout(&vec, uap->osv, sizeof(vec));
1385 	}
1386 	return (error);
1387 }
1388 
1389 #ifndef _SYS_SYSPROTO_H_
1390 struct osigblock_args {
1391 	int	mask;
1392 };
1393 #endif
1394 int
1395 osigblock(td, uap)
1396 	register struct thread *td;
1397 	struct osigblock_args *uap;
1398 {
1399 	struct proc *p = td->td_proc;
1400 	sigset_t set;
1401 
1402 	OSIG2SIG(uap->mask, set);
1403 	SIG_CANTMASK(set);
1404 	PROC_LOCK(p);
1405 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1406 	SIGSETOR(td->td_sigmask, set);
1407 	PROC_UNLOCK(p);
1408 	return (0);
1409 }
1410 
1411 #ifndef _SYS_SYSPROTO_H_
1412 struct osigsetmask_args {
1413 	int	mask;
1414 };
1415 #endif
1416 int
1417 osigsetmask(td, uap)
1418 	struct thread *td;
1419 	struct osigsetmask_args *uap;
1420 {
1421 	struct proc *p = td->td_proc;
1422 	sigset_t set;
1423 
1424 	OSIG2SIG(uap->mask, set);
1425 	SIG_CANTMASK(set);
1426 	PROC_LOCK(p);
1427 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1428 	SIGSETLO(td->td_sigmask, set);
1429 	signotify(td);
1430 	PROC_UNLOCK(p);
1431 	return (0);
1432 }
1433 #endif /* COMPAT_43 */
1434 
1435 /*
1436  * Suspend calling thread until signal, providing mask to be set in the
1437  * meantime.
1438  */
1439 #ifndef _SYS_SYSPROTO_H_
1440 struct sigsuspend_args {
1441 	const sigset_t *sigmask;
1442 };
1443 #endif
1444 /* ARGSUSED */
1445 int
1446 sigsuspend(td, uap)
1447 	struct thread *td;
1448 	struct sigsuspend_args *uap;
1449 {
1450 	sigset_t mask;
1451 	int error;
1452 
1453 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1454 	if (error)
1455 		return (error);
1456 	return (kern_sigsuspend(td, mask));
1457 }
1458 
1459 int
1460 kern_sigsuspend(struct thread *td, sigset_t mask)
1461 {
1462 	struct proc *p = td->td_proc;
1463 
1464 	/*
1465 	 * When returning from sigsuspend, we want
1466 	 * the old mask to be restored after the
1467 	 * signal handler has finished.  Thus, we
1468 	 * save it here and mark the sigacts structure
1469 	 * to indicate this.
1470 	 */
1471 	PROC_LOCK(p);
1472 	td->td_oldsigmask = td->td_sigmask;
1473 	td->td_pflags |= TDP_OLDMASK;
1474 	SIG_CANTMASK(mask);
1475 	td->td_sigmask = mask;
1476 	signotify(td);
1477 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1478 		/* void */;
1479 	PROC_UNLOCK(p);
1480 	/* always return EINTR rather than ERESTART... */
1481 	return (EINTR);
1482 }
1483 
1484 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1485 /*
1486  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1487  * convention: libc stub passes mask, not pointer, to save a copyin.
1488  */
1489 #ifndef _SYS_SYSPROTO_H_
1490 struct osigsuspend_args {
1491 	osigset_t mask;
1492 };
1493 #endif
1494 /* ARGSUSED */
1495 int
1496 osigsuspend(td, uap)
1497 	struct thread *td;
1498 	struct osigsuspend_args *uap;
1499 {
1500 	struct proc *p = td->td_proc;
1501 	sigset_t mask;
1502 
1503 	PROC_LOCK(p);
1504 	td->td_oldsigmask = td->td_sigmask;
1505 	td->td_pflags |= TDP_OLDMASK;
1506 	OSIG2SIG(uap->mask, mask);
1507 	SIG_CANTMASK(mask);
1508 	SIGSETLO(td->td_sigmask, mask);
1509 	signotify(td);
1510 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1511 		/* void */;
1512 	PROC_UNLOCK(p);
1513 	/* always return EINTR rather than ERESTART... */
1514 	return (EINTR);
1515 }
1516 #endif /* COMPAT_43 */
1517 
1518 #if defined(COMPAT_43)
1519 #ifndef _SYS_SYSPROTO_H_
1520 struct osigstack_args {
1521 	struct	sigstack *nss;
1522 	struct	sigstack *oss;
1523 };
1524 #endif
1525 /* ARGSUSED */
1526 int
1527 osigstack(td, uap)
1528 	struct thread *td;
1529 	register struct osigstack_args *uap;
1530 {
1531 	struct sigstack nss, oss;
1532 	int error = 0;
1533 
1534 	if (uap->nss != NULL) {
1535 		error = copyin(uap->nss, &nss, sizeof(nss));
1536 		if (error)
1537 			return (error);
1538 	}
1539 	oss.ss_sp = td->td_sigstk.ss_sp;
1540 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1541 	if (uap->nss != NULL) {
1542 		td->td_sigstk.ss_sp = nss.ss_sp;
1543 		td->td_sigstk.ss_size = 0;
1544 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1545 		td->td_pflags |= TDP_ALTSTACK;
1546 	}
1547 	if (uap->oss != NULL)
1548 		error = copyout(&oss, uap->oss, sizeof(oss));
1549 
1550 	return (error);
1551 }
1552 #endif /* COMPAT_43 */
1553 
1554 #ifndef _SYS_SYSPROTO_H_
1555 struct sigaltstack_args {
1556 	stack_t	*ss;
1557 	stack_t	*oss;
1558 };
1559 #endif
1560 /* ARGSUSED */
1561 int
1562 sigaltstack(td, uap)
1563 	struct thread *td;
1564 	register struct sigaltstack_args *uap;
1565 {
1566 	stack_t ss, oss;
1567 	int error;
1568 
1569 	if (uap->ss != NULL) {
1570 		error = copyin(uap->ss, &ss, sizeof(ss));
1571 		if (error)
1572 			return (error);
1573 	}
1574 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1575 	    (uap->oss != NULL) ? &oss : NULL);
1576 	if (error)
1577 		return (error);
1578 	if (uap->oss != NULL)
1579 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1580 	return (error);
1581 }
1582 
1583 int
1584 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1585 {
1586 	struct proc *p = td->td_proc;
1587 	int oonstack;
1588 
1589 	oonstack = sigonstack(cpu_getstack(td));
1590 
1591 	if (oss != NULL) {
1592 		*oss = td->td_sigstk;
1593 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1594 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1595 	}
1596 
1597 	if (ss != NULL) {
1598 		if (oonstack)
1599 			return (EPERM);
1600 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1601 			return (EINVAL);
1602 		if (!(ss->ss_flags & SS_DISABLE)) {
1603 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1604 				return (ENOMEM);
1605 
1606 			td->td_sigstk = *ss;
1607 			td->td_pflags |= TDP_ALTSTACK;
1608 		} else {
1609 			td->td_pflags &= ~TDP_ALTSTACK;
1610 		}
1611 	}
1612 	return (0);
1613 }
1614 
1615 /*
1616  * Common code for kill process group/broadcast kill.
1617  * cp is calling process.
1618  */
1619 static int
1620 killpg1(td, sig, pgid, all)
1621 	register struct thread *td;
1622 	int sig, pgid, all;
1623 {
1624 	register struct proc *p;
1625 	struct pgrp *pgrp;
1626 	int nfound = 0;
1627 
1628 	if (all) {
1629 		/*
1630 		 * broadcast
1631 		 */
1632 		sx_slock(&allproc_lock);
1633 		FOREACH_PROC_IN_SYSTEM(p) {
1634 			PROC_LOCK(p);
1635 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1636 			    p == td->td_proc || p->p_state == PRS_NEW) {
1637 				PROC_UNLOCK(p);
1638 				continue;
1639 			}
1640 			if (p_cansignal(td, p, sig) == 0) {
1641 				nfound++;
1642 				if (sig)
1643 					psignal(p, sig);
1644 			}
1645 			PROC_UNLOCK(p);
1646 		}
1647 		sx_sunlock(&allproc_lock);
1648 	} else {
1649 		sx_slock(&proctree_lock);
1650 		if (pgid == 0) {
1651 			/*
1652 			 * zero pgid means send to my process group.
1653 			 */
1654 			pgrp = td->td_proc->p_pgrp;
1655 			PGRP_LOCK(pgrp);
1656 		} else {
1657 			pgrp = pgfind(pgid);
1658 			if (pgrp == NULL) {
1659 				sx_sunlock(&proctree_lock);
1660 				return (ESRCH);
1661 			}
1662 		}
1663 		sx_sunlock(&proctree_lock);
1664 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1665 			PROC_LOCK(p);
1666 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1667 				p->p_state == PRS_NEW ) {
1668 				PROC_UNLOCK(p);
1669 				continue;
1670 			}
1671 			if (p_cansignal(td, p, sig) == 0) {
1672 				nfound++;
1673 				if (sig)
1674 					psignal(p, sig);
1675 			}
1676 			PROC_UNLOCK(p);
1677 		}
1678 		PGRP_UNLOCK(pgrp);
1679 	}
1680 	return (nfound ? 0 : ESRCH);
1681 }
1682 
1683 #ifndef _SYS_SYSPROTO_H_
1684 struct kill_args {
1685 	int	pid;
1686 	int	signum;
1687 };
1688 #endif
1689 /* ARGSUSED */
1690 int
1691 kill(td, uap)
1692 	register struct thread *td;
1693 	register struct kill_args *uap;
1694 {
1695 	register struct proc *p;
1696 	int error;
1697 
1698 	AUDIT_ARG(signum, uap->signum);
1699 	AUDIT_ARG(pid, uap->pid);
1700 	if ((u_int)uap->signum > _SIG_MAXSIG)
1701 		return (EINVAL);
1702 
1703 	if (uap->pid > 0) {
1704 		/* kill single process */
1705 		if ((p = pfind(uap->pid)) == NULL) {
1706 			if ((p = zpfind(uap->pid)) == NULL)
1707 				return (ESRCH);
1708 		}
1709 		AUDIT_ARG(process, p);
1710 		error = p_cansignal(td, p, uap->signum);
1711 		if (error == 0 && uap->signum)
1712 			psignal(p, uap->signum);
1713 		PROC_UNLOCK(p);
1714 		return (error);
1715 	}
1716 	switch (uap->pid) {
1717 	case -1:		/* broadcast signal */
1718 		return (killpg1(td, uap->signum, 0, 1));
1719 	case 0:			/* signal own process group */
1720 		return (killpg1(td, uap->signum, 0, 0));
1721 	default:		/* negative explicit process group */
1722 		return (killpg1(td, uap->signum, -uap->pid, 0));
1723 	}
1724 	/* NOTREACHED */
1725 }
1726 
1727 #if defined(COMPAT_43)
1728 #ifndef _SYS_SYSPROTO_H_
1729 struct okillpg_args {
1730 	int	pgid;
1731 	int	signum;
1732 };
1733 #endif
1734 /* ARGSUSED */
1735 int
1736 okillpg(td, uap)
1737 	struct thread *td;
1738 	register struct okillpg_args *uap;
1739 {
1740 
1741 	AUDIT_ARG(signum, uap->signum);
1742 	AUDIT_ARG(pid, uap->pgid);
1743 	if ((u_int)uap->signum > _SIG_MAXSIG)
1744 		return (EINVAL);
1745 
1746 	return (killpg1(td, uap->signum, uap->pgid, 0));
1747 }
1748 #endif /* COMPAT_43 */
1749 
1750 #ifndef _SYS_SYSPROTO_H_
1751 struct sigqueue_args {
1752 	pid_t pid;
1753 	int signum;
1754 	/* union sigval */ void *value;
1755 };
1756 #endif
1757 int
1758 sigqueue(struct thread *td, struct sigqueue_args *uap)
1759 {
1760 	ksiginfo_t ksi;
1761 	struct proc *p;
1762 	int error;
1763 
1764 	if ((u_int)uap->signum > _SIG_MAXSIG)
1765 		return (EINVAL);
1766 
1767 	/*
1768 	 * Specification says sigqueue can only send signal to
1769 	 * single process.
1770 	 */
1771 	if (uap->pid <= 0)
1772 		return (EINVAL);
1773 
1774 	if ((p = pfind(uap->pid)) == NULL) {
1775 		if ((p = zpfind(uap->pid)) == NULL)
1776 			return (ESRCH);
1777 	}
1778 	error = p_cansignal(td, p, uap->signum);
1779 	if (error == 0 && uap->signum != 0) {
1780 		ksiginfo_init(&ksi);
1781 		ksi.ksi_signo = uap->signum;
1782 		ksi.ksi_code = SI_QUEUE;
1783 		ksi.ksi_pid = td->td_proc->p_pid;
1784 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1785 		ksi.ksi_value.sival_ptr = uap->value;
1786 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1787 	}
1788 	PROC_UNLOCK(p);
1789 	return (error);
1790 }
1791 
1792 /*
1793  * Send a signal to a process group.
1794  */
1795 void
1796 gsignal(pgid, sig)
1797 	int pgid, sig;
1798 {
1799 	struct pgrp *pgrp;
1800 
1801 	if (pgid != 0) {
1802 		sx_slock(&proctree_lock);
1803 		pgrp = pgfind(pgid);
1804 		sx_sunlock(&proctree_lock);
1805 		if (pgrp != NULL) {
1806 			pgsignal(pgrp, sig, 0);
1807 			PGRP_UNLOCK(pgrp);
1808 		}
1809 	}
1810 }
1811 
1812 /*
1813  * Send a signal to a process group.  If checktty is 1,
1814  * limit to members which have a controlling terminal.
1815  */
1816 void
1817 pgsignal(pgrp, sig, checkctty)
1818 	struct pgrp *pgrp;
1819 	int sig, checkctty;
1820 {
1821 	register struct proc *p;
1822 
1823 	if (pgrp) {
1824 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1825 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1826 			PROC_LOCK(p);
1827 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1828 				psignal(p, sig);
1829 			PROC_UNLOCK(p);
1830 		}
1831 	}
1832 }
1833 
1834 /*
1835  * Send a signal caused by a trap to the current thread.  If it will be
1836  * caught immediately, deliver it with correct code.  Otherwise, post it
1837  * normally.
1838  */
1839 void
1840 trapsignal(struct thread *td, ksiginfo_t *ksi)
1841 {
1842 	struct sigacts *ps;
1843 	struct proc *p;
1844 #ifdef KSE
1845 	int error;
1846 #endif
1847 	int sig;
1848 	int code;
1849 
1850 	p = td->td_proc;
1851 	sig = ksi->ksi_signo;
1852 	code = ksi->ksi_code;
1853 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1854 
1855 #ifdef KSE
1856 	if (td->td_pflags & TDP_SA) {
1857 		if (td->td_mailbox == NULL)
1858 			thread_user_enter(td);
1859 		PROC_LOCK(p);
1860 		SIGDELSET(td->td_sigmask, sig);
1861 		thread_lock(td);
1862 		/*
1863 		 * Force scheduling an upcall, so UTS has chance to
1864 		 * process the signal before thread runs again in
1865 		 * userland.
1866 		 */
1867 		if (td->td_upcall)
1868 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1869 		thread_unlock(td);
1870 	} else {
1871 		PROC_LOCK(p);
1872 	}
1873 #else
1874 	PROC_LOCK(p);
1875 #endif
1876 	ps = p->p_sigacts;
1877 	mtx_lock(&ps->ps_mtx);
1878 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1879 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1880 		td->td_ru.ru_nsignals++;
1881 #ifdef KTRACE
1882 		if (KTRPOINT(curthread, KTR_PSIG))
1883 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1884 			    &td->td_sigmask, code);
1885 #endif
1886 #ifdef KSE
1887 		if (!(td->td_pflags & TDP_SA))
1888 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1889 				ksi, &td->td_sigmask);
1890 #else
1891 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1892 				ksi, &td->td_sigmask);
1893 #endif
1894 #ifdef KSE
1895 		else if (td->td_mailbox == NULL) {
1896 			mtx_unlock(&ps->ps_mtx);
1897 			/* UTS caused a sync signal */
1898 			p->p_code = code;	/* XXX for core dump/debugger */
1899 			p->p_sig = sig;		/* XXX to verify code */
1900 			sigexit(td, sig);
1901 		} else {
1902 			mtx_unlock(&ps->ps_mtx);
1903 			SIGADDSET(td->td_sigmask, sig);
1904 			PROC_UNLOCK(p);
1905 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1906 			    sizeof(siginfo_t));
1907 			PROC_LOCK(p);
1908 			/* UTS memory corrupted */
1909 			if (error)
1910 				sigexit(td, SIGSEGV);
1911 			mtx_lock(&ps->ps_mtx);
1912 		}
1913 #endif
1914 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1915 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1916 			SIGADDSET(td->td_sigmask, sig);
1917 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1918 			/*
1919 			 * See kern_sigaction() for origin of this code.
1920 			 */
1921 			SIGDELSET(ps->ps_sigcatch, sig);
1922 			if (sig != SIGCONT &&
1923 			    sigprop(sig) & SA_IGNORE)
1924 				SIGADDSET(ps->ps_sigignore, sig);
1925 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1926 		}
1927 		mtx_unlock(&ps->ps_mtx);
1928 	} else {
1929 		/*
1930 		 * Avoid a possible infinite loop if the thread
1931 		 * masking the signal or process is ignoring the
1932 		 * signal.
1933 		 */
1934 		if (kern_forcesigexit &&
1935 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1936 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1937 			SIGDELSET(td->td_sigmask, sig);
1938 			SIGDELSET(ps->ps_sigcatch, sig);
1939 			SIGDELSET(ps->ps_sigignore, sig);
1940 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1941 		}
1942 		mtx_unlock(&ps->ps_mtx);
1943 		p->p_code = code;	/* XXX for core dump/debugger */
1944 		p->p_sig = sig;		/* XXX to verify code */
1945 		tdsignal(p, td, sig, ksi);
1946 	}
1947 	PROC_UNLOCK(p);
1948 }
1949 
1950 static struct thread *
1951 sigtd(struct proc *p, int sig, int prop)
1952 {
1953 	struct thread *td, *signal_td;
1954 
1955 	PROC_LOCK_ASSERT(p, MA_OWNED);
1956 
1957 	/*
1958 	 * Check if current thread can handle the signal without
1959 	 * switching conetxt to another thread.
1960 	 */
1961 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1962 		return (curthread);
1963 	signal_td = NULL;
1964 	PROC_SLOCK(p);
1965 	FOREACH_THREAD_IN_PROC(p, td) {
1966 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1967 			signal_td = td;
1968 			break;
1969 		}
1970 	}
1971 	if (signal_td == NULL)
1972 		signal_td = FIRST_THREAD_IN_PROC(p);
1973 	PROC_SUNLOCK(p);
1974 	return (signal_td);
1975 }
1976 
1977 /*
1978  * Send the signal to the process.  If the signal has an action, the action
1979  * is usually performed by the target process rather than the caller; we add
1980  * the signal to the set of pending signals for the process.
1981  *
1982  * Exceptions:
1983  *   o When a stop signal is sent to a sleeping process that takes the
1984  *     default action, the process is stopped without awakening it.
1985  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1986  *     regardless of the signal action (eg, blocked or ignored).
1987  *
1988  * Other ignored signals are discarded immediately.
1989  *
1990  * NB: This function may be entered from the debugger via the "kill" DDB
1991  * command.  There is little that can be done to mitigate the possibly messy
1992  * side effects of this unwise possibility.
1993  */
1994 void
1995 psignal(struct proc *p, int sig)
1996 {
1997 	(void) tdsignal(p, NULL, sig, NULL);
1998 }
1999 
2000 int
2001 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2002 {
2003 	struct thread *td = NULL;
2004 
2005 	PROC_LOCK_ASSERT(p, MA_OWNED);
2006 
2007 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2008 
2009 	/*
2010 	 * ksi_code and other fields should be set before
2011 	 * calling this function.
2012 	 */
2013 	ksi->ksi_signo = sigev->sigev_signo;
2014 	ksi->ksi_value = sigev->sigev_value;
2015 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2016 		td = thread_find(p, sigev->sigev_notify_thread_id);
2017 		if (td == NULL)
2018 			return (ESRCH);
2019 	}
2020 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2021 }
2022 
2023 int
2024 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2025 {
2026 #ifdef KSE
2027 	sigset_t saved;
2028 	int ret;
2029 
2030 	if (p->p_flag & P_SA)
2031 		saved = p->p_sigqueue.sq_signals;
2032 	ret = do_tdsignal(p, td, sig, ksi);
2033 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2034 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2035 			/* pending set changed */
2036 			p->p_flag |= P_SIGEVENT;
2037 			wakeup(&p->p_siglist);
2038 		}
2039 	}
2040 	return (ret);
2041 }
2042 
2043 static int
2044 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2045 {
2046 #endif
2047 	sig_t action;
2048 	sigqueue_t *sigqueue;
2049 	int prop;
2050 	struct sigacts *ps;
2051 	int intrval;
2052 	int ret = 0;
2053 
2054 	PROC_LOCK_ASSERT(p, MA_OWNED);
2055 
2056 	if (!_SIG_VALID(sig))
2057 #ifdef KSE
2058 		panic("do_tdsignal(): invalid signal %d", sig);
2059 #else
2060 		panic("tdsignal(): invalid signal %d", sig);
2061 #endif
2062 
2063 #ifdef KSE
2064 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2065 #else
2066 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
2067 #endif
2068 
2069 	/*
2070 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2071 	 */
2072 	if (p->p_state == PRS_ZOMBIE) {
2073 		if (ksi && (ksi->ksi_flags & KSI_INS))
2074 			ksiginfo_tryfree(ksi);
2075 		return (ret);
2076 	}
2077 
2078 	ps = p->p_sigacts;
2079 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2080 	prop = sigprop(sig);
2081 
2082 	/*
2083 	 * If the signal is blocked and not destined for this thread, then
2084 	 * assign it to the process so that we can find it later in the first
2085 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2086 	 */
2087 	if (td == NULL) {
2088 		td = sigtd(p, sig, prop);
2089 		if (SIGISMEMBER(td->td_sigmask, sig))
2090 			sigqueue = &p->p_sigqueue;
2091 		else
2092 			sigqueue = &td->td_sigqueue;
2093 	} else {
2094 		KASSERT(td->td_proc == p, ("invalid thread"));
2095 		sigqueue = &td->td_sigqueue;
2096 	}
2097 
2098 	/*
2099 	 * If the signal is being ignored,
2100 	 * then we forget about it immediately.
2101 	 * (Note: we don't set SIGCONT in ps_sigignore,
2102 	 * and if it is set to SIG_IGN,
2103 	 * action will be SIG_DFL here.)
2104 	 */
2105 	mtx_lock(&ps->ps_mtx);
2106 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2107 		mtx_unlock(&ps->ps_mtx);
2108 		if (ksi && (ksi->ksi_flags & KSI_INS))
2109 			ksiginfo_tryfree(ksi);
2110 		return (ret);
2111 	}
2112 	if (SIGISMEMBER(td->td_sigmask, sig))
2113 		action = SIG_HOLD;
2114 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2115 		action = SIG_CATCH;
2116 	else
2117 		action = SIG_DFL;
2118 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2119 		intrval = EINTR;
2120 	else
2121 		intrval = ERESTART;
2122 	mtx_unlock(&ps->ps_mtx);
2123 
2124 	if (prop & SA_CONT)
2125 		sigqueue_delete_stopmask_proc(p);
2126 	else if (prop & SA_STOP) {
2127 		/*
2128 		 * If sending a tty stop signal to a member of an orphaned
2129 		 * process group, discard the signal here if the action
2130 		 * is default; don't stop the process below if sleeping,
2131 		 * and don't clear any pending SIGCONT.
2132 		 */
2133 		if ((prop & SA_TTYSTOP) &&
2134 		    (p->p_pgrp->pg_jobc == 0) &&
2135 		    (action == SIG_DFL)) {
2136 			if (ksi && (ksi->ksi_flags & KSI_INS))
2137 				ksiginfo_tryfree(ksi);
2138 			return (ret);
2139 		}
2140 		PROC_SLOCK(p);
2141 		sigqueue_delete_proc(p, SIGCONT);
2142 		PROC_SUNLOCK(p);
2143 		if (p->p_flag & P_CONTINUED) {
2144 			p->p_flag &= ~P_CONTINUED;
2145 			PROC_LOCK(p->p_pptr);
2146 			sigqueue_take(p->p_ksi);
2147 			PROC_UNLOCK(p->p_pptr);
2148 		}
2149 	}
2150 
2151 	ret = sigqueue_add(sigqueue, sig, ksi);
2152 	if (ret != 0)
2153 		return (ret);
2154 	signotify(td);
2155 	/*
2156 	 * Defer further processing for signals which are held,
2157 	 * except that stopped processes must be continued by SIGCONT.
2158 	 */
2159 	if (action == SIG_HOLD &&
2160 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2161 		return (ret);
2162 	/*
2163 	 * SIGKILL: Remove procfs STOPEVENTs.
2164 	 */
2165 	if (sig == SIGKILL) {
2166 		/* from procfs_ioctl.c: PIOCBIC */
2167 		p->p_stops = 0;
2168 		/* from procfs_ioctl.c: PIOCCONT */
2169 		p->p_step = 0;
2170 		wakeup(&p->p_step);
2171 	}
2172 	/*
2173 	 * Some signals have a process-wide effect and a per-thread
2174 	 * component.  Most processing occurs when the process next
2175 	 * tries to cross the user boundary, however there are some
2176 	 * times when processing needs to be done immediatly, such as
2177 	 * waking up threads so that they can cross the user boundary.
2178 	 * We try do the per-process part here.
2179 	 */
2180 	PROC_SLOCK(p);
2181 	if (P_SHOULDSTOP(p)) {
2182 		/*
2183 		 * The process is in stopped mode. All the threads should be
2184 		 * either winding down or already on the suspended queue.
2185 		 */
2186 		if (p->p_flag & P_TRACED) {
2187 			/*
2188 			 * The traced process is already stopped,
2189 			 * so no further action is necessary.
2190 			 * No signal can restart us.
2191 			 */
2192 			PROC_SUNLOCK(p);
2193 			goto out;
2194 		}
2195 
2196 		if (sig == SIGKILL) {
2197 			/*
2198 			 * SIGKILL sets process running.
2199 			 * It will die elsewhere.
2200 			 * All threads must be restarted.
2201 			 */
2202 			p->p_flag &= ~P_STOPPED_SIG;
2203 			goto runfast;
2204 		}
2205 
2206 		if (prop & SA_CONT) {
2207 			/*
2208 			 * If SIGCONT is default (or ignored), we continue the
2209 			 * process but don't leave the signal in sigqueue as
2210 			 * it has no further action.  If SIGCONT is held, we
2211 			 * continue the process and leave the signal in
2212 			 * sigqueue.  If the process catches SIGCONT, let it
2213 			 * handle the signal itself.  If it isn't waiting on
2214 			 * an event, it goes back to run state.
2215 			 * Otherwise, process goes back to sleep state.
2216 			 */
2217 			p->p_flag &= ~P_STOPPED_SIG;
2218 			if (p->p_numthreads == p->p_suspcount) {
2219 				PROC_SUNLOCK(p);
2220 				p->p_flag |= P_CONTINUED;
2221 				p->p_xstat = SIGCONT;
2222 				PROC_LOCK(p->p_pptr);
2223 				childproc_continued(p);
2224 				PROC_UNLOCK(p->p_pptr);
2225 				PROC_SLOCK(p);
2226 			}
2227 			if (action == SIG_DFL) {
2228 				thread_unsuspend(p);
2229 				PROC_SUNLOCK(p);
2230 				sigqueue_delete(sigqueue, sig);
2231 				goto out;
2232 			}
2233 			if (action == SIG_CATCH) {
2234 #ifdef KSE
2235 				/*
2236 				 * The process wants to catch it so it needs
2237 				 * to run at least one thread, but which one?
2238 				 * It would seem that the answer would be to
2239 				 * run an upcall in the next KSE to run, and
2240 				 * deliver the signal that way. In a NON KSE
2241 				 * process, we need to make sure that the
2242 				 * single thread is runnable asap.
2243 				 * XXXKSE for now however, make them all run.
2244 				 */
2245 #endif
2246 				/*
2247 				 * The process wants to catch it so it needs
2248 				 * to run at least one thread, but which one?
2249 				 */
2250 				goto runfast;
2251 			}
2252 			/*
2253 			 * The signal is not ignored or caught.
2254 			 */
2255 			thread_unsuspend(p);
2256 			PROC_SUNLOCK(p);
2257 			goto out;
2258 		}
2259 
2260 		if (prop & SA_STOP) {
2261 			/*
2262 			 * Already stopped, don't need to stop again
2263 			 * (If we did the shell could get confused).
2264 			 * Just make sure the signal STOP bit set.
2265 			 */
2266 			PROC_SUNLOCK(p);
2267 			p->p_flag |= P_STOPPED_SIG;
2268 			sigqueue_delete(sigqueue, sig);
2269 			goto out;
2270 		}
2271 
2272 		/*
2273 		 * All other kinds of signals:
2274 		 * If a thread is sleeping interruptibly, simulate a
2275 		 * wakeup so that when it is continued it will be made
2276 		 * runnable and can look at the signal.  However, don't make
2277 		 * the PROCESS runnable, leave it stopped.
2278 		 * It may run a bit until it hits a thread_suspend_check().
2279 		 */
2280 		thread_lock(td);
2281 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2282 			sleepq_abort(td, intrval);
2283 		thread_unlock(td);
2284 		PROC_SUNLOCK(p);
2285 		goto out;
2286 		/*
2287 		 * Mutexes are short lived. Threads waiting on them will
2288 		 * hit thread_suspend_check() soon.
2289 		 */
2290 	} else if (p->p_state == PRS_NORMAL) {
2291 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2292 			thread_lock(td);
2293 			tdsigwakeup(td, sig, action, intrval);
2294 			thread_unlock(td);
2295 			PROC_SUNLOCK(p);
2296 			goto out;
2297 		}
2298 
2299 		MPASS(action == SIG_DFL);
2300 
2301 		if (prop & SA_STOP) {
2302 			if (p->p_flag & P_PPWAIT) {
2303 				PROC_SUNLOCK(p);
2304 				goto out;
2305 			}
2306 			p->p_flag |= P_STOPPED_SIG;
2307 			p->p_xstat = sig;
2308 			sig_suspend_threads(td, p, 1);
2309 			if (p->p_numthreads == p->p_suspcount) {
2310 				/*
2311 				 * only thread sending signal to another
2312 				 * process can reach here, if thread is sending
2313 				 * signal to its process, because thread does
2314 				 * not suspend itself here, p_numthreads
2315 				 * should never be equal to p_suspcount.
2316 				 */
2317 				thread_stopped(p);
2318 				PROC_SUNLOCK(p);
2319 				sigqueue_delete_proc(p, p->p_xstat);
2320 			} else
2321 				PROC_SUNLOCK(p);
2322 			goto out;
2323 		}
2324 		else
2325 			goto runfast;
2326 		/* NOTREACHED */
2327 	} else {
2328 		/* Not in "NORMAL" state. discard the signal. */
2329 		PROC_SUNLOCK(p);
2330 		sigqueue_delete(sigqueue, sig);
2331 		goto out;
2332 	}
2333 
2334 	/*
2335 	 * The process is not stopped so we need to apply the signal to all the
2336 	 * running threads.
2337 	 */
2338 
2339 runfast:
2340 	thread_lock(td);
2341 	tdsigwakeup(td, sig, action, intrval);
2342 	thread_unlock(td);
2343 	thread_unsuspend(p);
2344 	PROC_SUNLOCK(p);
2345 out:
2346 	/* If we jump here, proc slock should not be owned. */
2347 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2348 	return (ret);
2349 }
2350 
2351 /*
2352  * The force of a signal has been directed against a single
2353  * thread.  We need to see what we can do about knocking it
2354  * out of any sleep it may be in etc.
2355  */
2356 static void
2357 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2358 {
2359 	struct proc *p = td->td_proc;
2360 	register int prop;
2361 
2362 	PROC_LOCK_ASSERT(p, MA_OWNED);
2363 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2364 	THREAD_LOCK_ASSERT(td, MA_OWNED);
2365 	prop = sigprop(sig);
2366 
2367 	/*
2368 	 * Bring the priority of a thread up if we want it to get
2369 	 * killed in this lifetime.
2370 	 */
2371 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2372 		sched_prio(td, PUSER);
2373 
2374 	if (TD_ON_SLEEPQ(td)) {
2375 		/*
2376 		 * If thread is sleeping uninterruptibly
2377 		 * we can't interrupt the sleep... the signal will
2378 		 * be noticed when the process returns through
2379 		 * trap() or syscall().
2380 		 */
2381 		if ((td->td_flags & TDF_SINTR) == 0)
2382 			return;
2383 		/*
2384 		 * If SIGCONT is default (or ignored) and process is
2385 		 * asleep, we are finished; the process should not
2386 		 * be awakened.
2387 		 */
2388 		if ((prop & SA_CONT) && action == SIG_DFL) {
2389 			thread_unlock(td);
2390 			PROC_SUNLOCK(p);
2391 			sigqueue_delete(&p->p_sigqueue, sig);
2392 			/*
2393 			 * It may be on either list in this state.
2394 			 * Remove from both for now.
2395 			 */
2396 			sigqueue_delete(&td->td_sigqueue, sig);
2397 			PROC_SLOCK(p);
2398 			thread_lock(td);
2399 			return;
2400 		}
2401 
2402 		/*
2403 		 * Give low priority threads a better chance to run.
2404 		 */
2405 		if (td->td_priority > PUSER)
2406 			sched_prio(td, PUSER);
2407 
2408 		sleepq_abort(td, intrval);
2409 	} else {
2410 		/*
2411 		 * Other states do nothing with the signal immediately,
2412 		 * other than kicking ourselves if we are running.
2413 		 * It will either never be noticed, or noticed very soon.
2414 		 */
2415 #ifdef SMP
2416 		if (TD_IS_RUNNING(td) && td != curthread)
2417 			forward_signal(td);
2418 #endif
2419 	}
2420 }
2421 
2422 static void
2423 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2424 {
2425 	struct thread *td2;
2426 
2427 	PROC_LOCK_ASSERT(p, MA_OWNED);
2428 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2429 
2430 	FOREACH_THREAD_IN_PROC(p, td2) {
2431 		thread_lock(td2);
2432 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2433 		    (td2->td_flags & TDF_SINTR) &&
2434 		    !TD_IS_SUSPENDED(td2)) {
2435 			thread_suspend_one(td2);
2436 		} else {
2437 			if (sending || td != td2)
2438 				td2->td_flags |= TDF_ASTPENDING;
2439 #ifdef SMP
2440 			if (TD_IS_RUNNING(td2) && td2 != td)
2441 				forward_signal(td2);
2442 #endif
2443 		}
2444 		thread_unlock(td2);
2445 	}
2446 }
2447 
2448 int
2449 ptracestop(struct thread *td, int sig)
2450 {
2451 	struct proc *p = td->td_proc;
2452 
2453 	PROC_LOCK_ASSERT(p, MA_OWNED);
2454 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2455 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2456 
2457 	thread_lock(td);
2458 	td->td_flags |= TDF_XSIG;
2459 	thread_unlock(td);
2460 	td->td_xsig = sig;
2461 	PROC_SLOCK(p);
2462 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2463 		if (p->p_flag & P_SINGLE_EXIT) {
2464 			thread_lock(td);
2465 			td->td_flags &= ~TDF_XSIG;
2466 			thread_unlock(td);
2467 			PROC_SUNLOCK(p);
2468 			return (sig);
2469 		}
2470 		/*
2471 		 * Just make wait() to work, the last stopped thread
2472 		 * will win.
2473 		 */
2474 		p->p_xstat = sig;
2475 		p->p_xthread = td;
2476 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2477 		sig_suspend_threads(td, p, 0);
2478 stopme:
2479 		thread_suspend_switch(td);
2480 		if (!(p->p_flag & P_TRACED)) {
2481 			break;
2482 		}
2483 		if (td->td_flags & TDF_DBSUSPEND) {
2484 			if (p->p_flag & P_SINGLE_EXIT)
2485 				break;
2486 			goto stopme;
2487 		}
2488 	}
2489 	PROC_SUNLOCK(p);
2490 	return (td->td_xsig);
2491 }
2492 
2493 /*
2494  * If the current process has received a signal (should be caught or cause
2495  * termination, should interrupt current syscall), return the signal number.
2496  * Stop signals with default action are processed immediately, then cleared;
2497  * they aren't returned.  This is checked after each entry to the system for
2498  * a syscall or trap (though this can usually be done without calling issignal
2499  * by checking the pending signal masks in cursig.) The normal call
2500  * sequence is
2501  *
2502  *	while (sig = cursig(curthread))
2503  *		postsig(sig);
2504  */
2505 static int
2506 issignal(td)
2507 	struct thread *td;
2508 {
2509 	struct proc *p;
2510 	struct sigacts *ps;
2511 	sigset_t sigpending;
2512 	int sig, prop, newsig;
2513 
2514 	p = td->td_proc;
2515 	ps = p->p_sigacts;
2516 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2517 	PROC_LOCK_ASSERT(p, MA_OWNED);
2518 	for (;;) {
2519 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2520 
2521 		sigpending = td->td_sigqueue.sq_signals;
2522 		SIGSETNAND(sigpending, td->td_sigmask);
2523 
2524 		if (p->p_flag & P_PPWAIT)
2525 			SIG_STOPSIGMASK(sigpending);
2526 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2527 			return (0);
2528 		sig = sig_ffs(&sigpending);
2529 
2530 		if (p->p_stops & S_SIG) {
2531 			mtx_unlock(&ps->ps_mtx);
2532 			stopevent(p, S_SIG, sig);
2533 			mtx_lock(&ps->ps_mtx);
2534 		}
2535 
2536 		/*
2537 		 * We should see pending but ignored signals
2538 		 * only if P_TRACED was on when they were posted.
2539 		 */
2540 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2541 			sigqueue_delete(&td->td_sigqueue, sig);
2542 #ifdef KSE
2543 			if (td->td_pflags & TDP_SA)
2544 				SIGADDSET(td->td_sigmask, sig);
2545 #endif
2546 			continue;
2547 		}
2548 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2549 			/*
2550 			 * If traced, always stop.
2551 			 */
2552 			mtx_unlock(&ps->ps_mtx);
2553 			newsig = ptracestop(td, sig);
2554 			mtx_lock(&ps->ps_mtx);
2555 
2556 #ifdef KSE
2557 			if (td->td_pflags & TDP_SA)
2558 				SIGADDSET(td->td_sigmask, sig);
2559 
2560 #endif
2561 			if (sig != newsig) {
2562 				ksiginfo_t ksi;
2563 				/*
2564 				 * clear old signal.
2565 				 * XXX shrug off debugger, it causes siginfo to
2566 				 * be thrown away.
2567 				 */
2568 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2569 
2570 				/*
2571 				 * If parent wants us to take the signal,
2572 				 * then it will leave it in p->p_xstat;
2573 				 * otherwise we just look for signals again.
2574 			 	*/
2575 				if (newsig == 0)
2576 					continue;
2577 				sig = newsig;
2578 
2579 				/*
2580 				 * Put the new signal into td_sigqueue. If the
2581 				 * signal is being masked, look for other signals.
2582 				 */
2583 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2584 #ifdef KSE
2585 				if (td->td_pflags & TDP_SA)
2586 					SIGDELSET(td->td_sigmask, sig);
2587 #endif
2588 				if (SIGISMEMBER(td->td_sigmask, sig))
2589 					continue;
2590 				signotify(td);
2591 			}
2592 
2593 			/*
2594 			 * If the traced bit got turned off, go back up
2595 			 * to the top to rescan signals.  This ensures
2596 			 * that p_sig* and p_sigact are consistent.
2597 			 */
2598 			if ((p->p_flag & P_TRACED) == 0)
2599 				continue;
2600 		}
2601 
2602 		prop = sigprop(sig);
2603 
2604 		/*
2605 		 * Decide whether the signal should be returned.
2606 		 * Return the signal's number, or fall through
2607 		 * to clear it from the pending mask.
2608 		 */
2609 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2610 
2611 		case (intptr_t)SIG_DFL:
2612 			/*
2613 			 * Don't take default actions on system processes.
2614 			 */
2615 			if (p->p_pid <= 1) {
2616 #ifdef DIAGNOSTIC
2617 				/*
2618 				 * Are you sure you want to ignore SIGSEGV
2619 				 * in init? XXX
2620 				 */
2621 				printf("Process (pid %lu) got signal %d\n",
2622 					(u_long)p->p_pid, sig);
2623 #endif
2624 				break;		/* == ignore */
2625 			}
2626 			/*
2627 			 * If there is a pending stop signal to process
2628 			 * with default action, stop here,
2629 			 * then clear the signal.  However,
2630 			 * if process is member of an orphaned
2631 			 * process group, ignore tty stop signals.
2632 			 */
2633 			if (prop & SA_STOP) {
2634 				if (p->p_flag & P_TRACED ||
2635 		    		    (p->p_pgrp->pg_jobc == 0 &&
2636 				     prop & SA_TTYSTOP))
2637 					break;	/* == ignore */
2638 				mtx_unlock(&ps->ps_mtx);
2639 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2640 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2641 				p->p_flag |= P_STOPPED_SIG;
2642 				p->p_xstat = sig;
2643 				PROC_SLOCK(p);
2644 				sig_suspend_threads(td, p, 0);
2645 				thread_suspend_switch(td);
2646 				PROC_SUNLOCK(p);
2647 				mtx_lock(&ps->ps_mtx);
2648 				break;
2649 			} else if (prop & SA_IGNORE) {
2650 				/*
2651 				 * Except for SIGCONT, shouldn't get here.
2652 				 * Default action is to ignore; drop it.
2653 				 */
2654 				break;		/* == ignore */
2655 			} else
2656 				return (sig);
2657 			/*NOTREACHED*/
2658 
2659 		case (intptr_t)SIG_IGN:
2660 			/*
2661 			 * Masking above should prevent us ever trying
2662 			 * to take action on an ignored signal other
2663 			 * than SIGCONT, unless process is traced.
2664 			 */
2665 			if ((prop & SA_CONT) == 0 &&
2666 			    (p->p_flag & P_TRACED) == 0)
2667 				printf("issignal\n");
2668 			break;		/* == ignore */
2669 
2670 		default:
2671 			/*
2672 			 * This signal has an action, let
2673 			 * postsig() process it.
2674 			 */
2675 			return (sig);
2676 		}
2677 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2678 	}
2679 	/* NOTREACHED */
2680 }
2681 
2682 void
2683 thread_stopped(struct proc *p)
2684 {
2685 	int n;
2686 
2687 	PROC_LOCK_ASSERT(p, MA_OWNED);
2688 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2689 	n = p->p_suspcount;
2690 	if (p == curproc)
2691 		n++;
2692 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2693 		PROC_SUNLOCK(p);
2694 		p->p_flag &= ~P_WAITED;
2695 		PROC_LOCK(p->p_pptr);
2696 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2697 			CLD_TRAPPED : CLD_STOPPED);
2698 		PROC_UNLOCK(p->p_pptr);
2699 		PROC_SLOCK(p);
2700 	}
2701 }
2702 
2703 /*
2704  * Take the action for the specified signal
2705  * from the current set of pending signals.
2706  */
2707 void
2708 postsig(sig)
2709 	register int sig;
2710 {
2711 	struct thread *td = curthread;
2712 	register struct proc *p = td->td_proc;
2713 	struct sigacts *ps;
2714 	sig_t action;
2715 	ksiginfo_t ksi;
2716 	sigset_t returnmask;
2717 	int code;
2718 
2719 	KASSERT(sig != 0, ("postsig"));
2720 
2721 	PROC_LOCK_ASSERT(p, MA_OWNED);
2722 	ps = p->p_sigacts;
2723 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2724 	ksiginfo_init(&ksi);
2725 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2726 	ksi.ksi_signo = sig;
2727 	if (ksi.ksi_code == SI_TIMER)
2728 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2729 	action = ps->ps_sigact[_SIG_IDX(sig)];
2730 #ifdef KTRACE
2731 	if (KTRPOINT(td, KTR_PSIG))
2732 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2733 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2734 #endif
2735 	if (p->p_stops & S_SIG) {
2736 		mtx_unlock(&ps->ps_mtx);
2737 		stopevent(p, S_SIG, sig);
2738 		mtx_lock(&ps->ps_mtx);
2739 	}
2740 
2741 #ifdef KSE
2742 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2743 #else
2744 	if (action == SIG_DFL) {
2745 #endif
2746 		/*
2747 		 * Default action, where the default is to kill
2748 		 * the process.  (Other cases were ignored above.)
2749 		 */
2750 		mtx_unlock(&ps->ps_mtx);
2751 		sigexit(td, sig);
2752 		/* NOTREACHED */
2753 	} else {
2754 #ifdef KSE
2755 		if (td->td_pflags & TDP_SA) {
2756 			if (sig == SIGKILL) {
2757 				mtx_unlock(&ps->ps_mtx);
2758 				sigexit(td, sig);
2759 			}
2760 		}
2761 
2762 #endif
2763 		/*
2764 		 * If we get here, the signal must be caught.
2765 		 */
2766 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2767 		    ("postsig action"));
2768 		/*
2769 		 * Set the new mask value and also defer further
2770 		 * occurrences of this signal.
2771 		 *
2772 		 * Special case: user has done a sigsuspend.  Here the
2773 		 * current mask is not of interest, but rather the
2774 		 * mask from before the sigsuspend is what we want
2775 		 * restored after the signal processing is completed.
2776 		 */
2777 		if (td->td_pflags & TDP_OLDMASK) {
2778 			returnmask = td->td_oldsigmask;
2779 			td->td_pflags &= ~TDP_OLDMASK;
2780 		} else
2781 			returnmask = td->td_sigmask;
2782 
2783 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2784 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2785 			SIGADDSET(td->td_sigmask, sig);
2786 
2787 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2788 			/*
2789 			 * See kern_sigaction() for origin of this code.
2790 			 */
2791 			SIGDELSET(ps->ps_sigcatch, sig);
2792 			if (sig != SIGCONT &&
2793 			    sigprop(sig) & SA_IGNORE)
2794 				SIGADDSET(ps->ps_sigignore, sig);
2795 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2796 		}
2797 		td->td_ru.ru_nsignals++;
2798 		if (p->p_sig != sig) {
2799 			code = 0;
2800 		} else {
2801 			code = p->p_code;
2802 			p->p_code = 0;
2803 			p->p_sig = 0;
2804 		}
2805 #ifdef KSE
2806 		if (td->td_pflags & TDP_SA)
2807 			thread_signal_add(curthread, &ksi);
2808 		else
2809 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2810 #else
2811 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2812 #endif
2813 	}
2814 }
2815 
2816 /*
2817  * Kill the current process for stated reason.
2818  */
2819 void
2820 killproc(p, why)
2821 	struct proc *p;
2822 	char *why;
2823 {
2824 
2825 	PROC_LOCK_ASSERT(p, MA_OWNED);
2826 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2827 		p, p->p_pid, p->p_comm);
2828 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2829 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2830 	psignal(p, SIGKILL);
2831 }
2832 
2833 /*
2834  * Force the current process to exit with the specified signal, dumping core
2835  * if appropriate.  We bypass the normal tests for masked and caught signals,
2836  * allowing unrecoverable failures to terminate the process without changing
2837  * signal state.  Mark the accounting record with the signal termination.
2838  * If dumping core, save the signal number for the debugger.  Calls exit and
2839  * does not return.
2840  */
2841 void
2842 sigexit(td, sig)
2843 	struct thread *td;
2844 	int sig;
2845 {
2846 	struct proc *p = td->td_proc;
2847 
2848 	PROC_LOCK_ASSERT(p, MA_OWNED);
2849 	p->p_acflag |= AXSIG;
2850 	/*
2851 	 * We must be single-threading to generate a core dump.  This
2852 	 * ensures that the registers in the core file are up-to-date.
2853 	 * Also, the ELF dump handler assumes that the thread list doesn't
2854 	 * change out from under it.
2855 	 *
2856 	 * XXX If another thread attempts to single-thread before us
2857 	 *     (e.g. via fork()), we won't get a dump at all.
2858 	 */
2859 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2860 		p->p_sig = sig;
2861 		/*
2862 		 * Log signals which would cause core dumps
2863 		 * (Log as LOG_INFO to appease those who don't want
2864 		 * these messages.)
2865 		 * XXX : Todo, as well as euid, write out ruid too
2866 		 * Note that coredump() drops proc lock.
2867 		 */
2868 		if (coredump(td) == 0)
2869 			sig |= WCOREFLAG;
2870 		if (kern_logsigexit)
2871 			log(LOG_INFO,
2872 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2873 			    p->p_pid, p->p_comm,
2874 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2875 			    sig &~ WCOREFLAG,
2876 			    sig & WCOREFLAG ? " (core dumped)" : "");
2877 	} else
2878 		PROC_UNLOCK(p);
2879 	exit1(td, W_EXITCODE(0, sig));
2880 	/* NOTREACHED */
2881 }
2882 
2883 /*
2884  * Send queued SIGCHLD to parent when child process's state
2885  * is changed.
2886  */
2887 static void
2888 sigparent(struct proc *p, int reason, int status)
2889 {
2890 	PROC_LOCK_ASSERT(p, MA_OWNED);
2891 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2892 
2893 	if (p->p_ksi != NULL) {
2894 		p->p_ksi->ksi_signo  = SIGCHLD;
2895 		p->p_ksi->ksi_code   = reason;
2896 		p->p_ksi->ksi_status = status;
2897 		p->p_ksi->ksi_pid    = p->p_pid;
2898 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2899 		if (KSI_ONQ(p->p_ksi))
2900 			return;
2901 	}
2902 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2903 }
2904 
2905 static void
2906 childproc_jobstate(struct proc *p, int reason, int status)
2907 {
2908 	struct sigacts *ps;
2909 
2910 	PROC_LOCK_ASSERT(p, MA_OWNED);
2911 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2912 
2913 	/*
2914 	 * Wake up parent sleeping in kern_wait(), also send
2915 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2916 	 * that parent will awake, because parent may masked
2917 	 * the signal.
2918 	 */
2919 	p->p_pptr->p_flag |= P_STATCHILD;
2920 	wakeup(p->p_pptr);
2921 
2922 	ps = p->p_pptr->p_sigacts;
2923 	mtx_lock(&ps->ps_mtx);
2924 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2925 		mtx_unlock(&ps->ps_mtx);
2926 		sigparent(p, reason, status);
2927 	} else
2928 		mtx_unlock(&ps->ps_mtx);
2929 }
2930 
2931 void
2932 childproc_stopped(struct proc *p, int reason)
2933 {
2934 	childproc_jobstate(p, reason, p->p_xstat);
2935 }
2936 
2937 void
2938 childproc_continued(struct proc *p)
2939 {
2940 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2941 }
2942 
2943 void
2944 childproc_exited(struct proc *p)
2945 {
2946 	int reason;
2947 	int status = p->p_xstat; /* convert to int */
2948 
2949 	reason = CLD_EXITED;
2950 	if (WCOREDUMP(status))
2951 		reason = CLD_DUMPED;
2952 	else if (WIFSIGNALED(status))
2953 		reason = CLD_KILLED;
2954 	/*
2955 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2956 	 * done in exit1().
2957 	 */
2958 	sigparent(p, reason, status);
2959 }
2960 
2961 static char corefilename[MAXPATHLEN] = {"%N.core"};
2962 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2963 	      sizeof(corefilename), "process corefile name format string");
2964 
2965 /*
2966  * expand_name(name, uid, pid)
2967  * Expand the name described in corefilename, using name, uid, and pid.
2968  * corefilename is a printf-like string, with three format specifiers:
2969  *	%N	name of process ("name")
2970  *	%P	process id (pid)
2971  *	%U	user id (uid)
2972  * For example, "%N.core" is the default; they can be disabled completely
2973  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2974  * This is controlled by the sysctl variable kern.corefile (see above).
2975  */
2976 
2977 static char *
2978 expand_name(name, uid, pid)
2979 	const char *name;
2980 	uid_t uid;
2981 	pid_t pid;
2982 {
2983 	const char *format, *appendstr;
2984 	char *temp;
2985 	char buf[11];		/* Buffer for pid/uid -- max 4B */
2986 	size_t i, l, n;
2987 
2988 	format = corefilename;
2989 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2990 	if (temp == NULL)
2991 		return (NULL);
2992 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
2993 		switch (format[i]) {
2994 		case '%':	/* Format character */
2995 			i++;
2996 			switch (format[i]) {
2997 			case '%':
2998 				appendstr = "%";
2999 				break;
3000 			case 'N':	/* process name */
3001 				appendstr = name;
3002 				break;
3003 			case 'P':	/* process id */
3004 				sprintf(buf, "%u", pid);
3005 				appendstr = buf;
3006 				break;
3007 			case 'U':	/* user id */
3008 				sprintf(buf, "%u", uid);
3009 				appendstr = buf;
3010 				break;
3011 			default:
3012 				appendstr = "";
3013 			  	log(LOG_ERR,
3014 				    "Unknown format character %c in `%s'\n",
3015 				    format[i], format);
3016 			}
3017 			l = strlen(appendstr);
3018 			if ((n + l) >= MAXPATHLEN)
3019 				goto toolong;
3020 			memcpy(temp + n, appendstr, l);
3021 			n += l;
3022 			break;
3023 		default:
3024 			temp[n++] = format[i];
3025 		}
3026 	}
3027 	if (format[i] != '\0')
3028 		goto toolong;
3029 	return (temp);
3030 toolong:
3031 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3032 	    (long)pid, name, (u_long)uid);
3033 	free(temp, M_TEMP);
3034 	return (NULL);
3035 }
3036 
3037 /*
3038  * Dump a process' core.  The main routine does some
3039  * policy checking, and creates the name of the coredump;
3040  * then it passes on a vnode and a size limit to the process-specific
3041  * coredump routine if there is one; if there _is not_ one, it returns
3042  * ENOSYS; otherwise it returns the error from the process-specific routine.
3043  */
3044 
3045 static int
3046 coredump(struct thread *td)
3047 {
3048 	struct proc *p = td->td_proc;
3049 	register struct vnode *vp;
3050 	register struct ucred *cred = td->td_ucred;
3051 	struct flock lf;
3052 	struct nameidata nd;
3053 	struct vattr vattr;
3054 	int error, error1, flags, locked;
3055 	struct mount *mp;
3056 	char *name;			/* name of corefile */
3057 	off_t limit;
3058 	int vfslocked;
3059 
3060 	PROC_LOCK_ASSERT(p, MA_OWNED);
3061 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3062 	_STOPEVENT(p, S_CORE, 0);
3063 
3064 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3065 	if (name == NULL) {
3066 #ifdef AUDIT
3067 		audit_proc_coredump(td, NULL, EINVAL);
3068 #endif
3069 		return (EINVAL);
3070 	}
3071 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3072 		PROC_UNLOCK(p);
3073 #ifdef AUDIT
3074 		audit_proc_coredump(td, name, EFAULT);
3075 #endif
3076 		free(name, M_TEMP);
3077 		return (EFAULT);
3078 	}
3079 
3080 	/*
3081 	 * Note that the bulk of limit checking is done after
3082 	 * the corefile is created.  The exception is if the limit
3083 	 * for corefiles is 0, in which case we don't bother
3084 	 * creating the corefile at all.  This layout means that
3085 	 * a corefile is truncated instead of not being created,
3086 	 * if it is larger than the limit.
3087 	 */
3088 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3089 	PROC_UNLOCK(p);
3090 	if (limit == 0) {
3091 #ifdef AUDIT
3092 		audit_proc_coredump(td, name, EFBIG);
3093 #endif
3094 		free(name, M_TEMP);
3095 		return (EFBIG);
3096 	}
3097 
3098 restart:
3099 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3100 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3101 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, NULL);
3102 	if (error) {
3103 #ifdef AUDIT
3104 		audit_proc_coredump(td, name, error);
3105 #endif
3106 		free(name, M_TEMP);
3107 		return (error);
3108 	}
3109 	vfslocked = NDHASGIANT(&nd);
3110 	NDFREE(&nd, NDF_ONLY_PNBUF);
3111 	vp = nd.ni_vp;
3112 
3113 	/* Don't dump to non-regular files or files with links. */
3114 	if (vp->v_type != VREG ||
3115 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3116 		VOP_UNLOCK(vp, 0);
3117 		error = EFAULT;
3118 		goto close;
3119 	}
3120 
3121 	VOP_UNLOCK(vp, 0);
3122 	lf.l_whence = SEEK_SET;
3123 	lf.l_start = 0;
3124 	lf.l_len = 0;
3125 	lf.l_type = F_WRLCK;
3126 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3127 
3128 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3129 		lf.l_type = F_UNLCK;
3130 		if (locked)
3131 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3132 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3133 			goto out;
3134 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3135 			goto out;
3136 		VFS_UNLOCK_GIANT(vfslocked);
3137 		goto restart;
3138 	}
3139 
3140 	VATTR_NULL(&vattr);
3141 	vattr.va_size = 0;
3142 	if (set_core_nodump_flag)
3143 		vattr.va_flags = UF_NODUMP;
3144 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3145 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3146 	VOP_SETATTR(vp, &vattr, cred, td);
3147 	VOP_UNLOCK(vp, 0);
3148 	vn_finished_write(mp);
3149 	PROC_LOCK(p);
3150 	p->p_acflag |= ACORE;
3151 	PROC_UNLOCK(p);
3152 
3153 	error = p->p_sysent->sv_coredump ?
3154 	  p->p_sysent->sv_coredump(td, vp, limit) :
3155 	  ENOSYS;
3156 
3157 	if (locked) {
3158 		lf.l_type = F_UNLCK;
3159 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3160 	}
3161 close:
3162 	error1 = vn_close(vp, FWRITE, cred, td);
3163 	if (error == 0)
3164 		error = error1;
3165 out:
3166 #ifdef AUDIT
3167 	audit_proc_coredump(td, name, error);
3168 #endif
3169 	free(name, M_TEMP);
3170 	VFS_UNLOCK_GIANT(vfslocked);
3171 	return (error);
3172 }
3173 
3174 /*
3175  * Nonexistent system call-- signal process (may want to handle it).  Flag
3176  * error in case process won't see signal immediately (blocked or ignored).
3177  */
3178 #ifndef _SYS_SYSPROTO_H_
3179 struct nosys_args {
3180 	int	dummy;
3181 };
3182 #endif
3183 /* ARGSUSED */
3184 int
3185 nosys(td, args)
3186 	struct thread *td;
3187 	struct nosys_args *args;
3188 {
3189 	struct proc *p = td->td_proc;
3190 
3191 	PROC_LOCK(p);
3192 	psignal(p, SIGSYS);
3193 	PROC_UNLOCK(p);
3194 	return (ENOSYS);
3195 }
3196 
3197 /*
3198  * Send a SIGIO or SIGURG signal to a process or process group using stored
3199  * credentials rather than those of the current process.
3200  */
3201 void
3202 pgsigio(sigiop, sig, checkctty)
3203 	struct sigio **sigiop;
3204 	int sig, checkctty;
3205 {
3206 	struct sigio *sigio;
3207 
3208 	SIGIO_LOCK();
3209 	sigio = *sigiop;
3210 	if (sigio == NULL) {
3211 		SIGIO_UNLOCK();
3212 		return;
3213 	}
3214 	if (sigio->sio_pgid > 0) {
3215 		PROC_LOCK(sigio->sio_proc);
3216 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3217 			psignal(sigio->sio_proc, sig);
3218 		PROC_UNLOCK(sigio->sio_proc);
3219 	} else if (sigio->sio_pgid < 0) {
3220 		struct proc *p;
3221 
3222 		PGRP_LOCK(sigio->sio_pgrp);
3223 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3224 			PROC_LOCK(p);
3225 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3226 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3227 				psignal(p, sig);
3228 			PROC_UNLOCK(p);
3229 		}
3230 		PGRP_UNLOCK(sigio->sio_pgrp);
3231 	}
3232 	SIGIO_UNLOCK();
3233 }
3234 
3235 static int
3236 filt_sigattach(struct knote *kn)
3237 {
3238 	struct proc *p = curproc;
3239 
3240 	kn->kn_ptr.p_proc = p;
3241 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3242 
3243 	knlist_add(&p->p_klist, kn, 0);
3244 
3245 	return (0);
3246 }
3247 
3248 static void
3249 filt_sigdetach(struct knote *kn)
3250 {
3251 	struct proc *p = kn->kn_ptr.p_proc;
3252 
3253 	knlist_remove(&p->p_klist, kn, 0);
3254 }
3255 
3256 /*
3257  * signal knotes are shared with proc knotes, so we apply a mask to
3258  * the hint in order to differentiate them from process hints.  This
3259  * could be avoided by using a signal-specific knote list, but probably
3260  * isn't worth the trouble.
3261  */
3262 static int
3263 filt_signal(struct knote *kn, long hint)
3264 {
3265 
3266 	if (hint & NOTE_SIGNAL) {
3267 		hint &= ~NOTE_SIGNAL;
3268 
3269 		if (kn->kn_id == hint)
3270 			kn->kn_data++;
3271 	}
3272 	return (kn->kn_data != 0);
3273 }
3274 
3275 struct sigacts *
3276 sigacts_alloc(void)
3277 {
3278 	struct sigacts *ps;
3279 
3280 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3281 	ps->ps_refcnt = 1;
3282 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3283 	return (ps);
3284 }
3285 
3286 void
3287 sigacts_free(struct sigacts *ps)
3288 {
3289 
3290 	mtx_lock(&ps->ps_mtx);
3291 	ps->ps_refcnt--;
3292 	if (ps->ps_refcnt == 0) {
3293 		mtx_destroy(&ps->ps_mtx);
3294 		free(ps, M_SUBPROC);
3295 	} else
3296 		mtx_unlock(&ps->ps_mtx);
3297 }
3298 
3299 struct sigacts *
3300 sigacts_hold(struct sigacts *ps)
3301 {
3302 	mtx_lock(&ps->ps_mtx);
3303 	ps->ps_refcnt++;
3304 	mtx_unlock(&ps->ps_mtx);
3305 	return (ps);
3306 }
3307 
3308 void
3309 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3310 {
3311 
3312 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3313 	mtx_lock(&src->ps_mtx);
3314 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3315 	mtx_unlock(&src->ps_mtx);
3316 }
3317 
3318 int
3319 sigacts_shared(struct sigacts *ps)
3320 {
3321 	int shared;
3322 
3323 	mtx_lock(&ps->ps_mtx);
3324 	shared = ps->ps_refcnt > 1;
3325 	mtx_unlock(&ps->ps_mtx);
3326 	return (shared);
3327 }
3328