xref: /freebsd/sys/kern/kern_sig.c (revision 10f0bcab61ef441cb5af32fb706688d8cbd55dc0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/ktr.h>
53 #include <sys/ktrace.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/proc.h>
59 #include <sys/posix4.h>
60 #include <sys/pioctl.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sbuf.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 
81 #include <security/audit/audit.h>
82 
83 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
84 
85 static int	coredump(struct thread *);
86 static char	*expand_name(const char *, uid_t, pid_t);
87 static int	killpg1(struct thread *td, int sig, int pgid, int all);
88 static int	issignal(struct thread *p);
89 static int	sigprop(int sig);
90 static void	tdsigwakeup(struct thread *, int, sig_t, int);
91 static void	sig_suspend_threads(struct thread *, struct proc *, int);
92 static int	filt_sigattach(struct knote *kn);
93 static void	filt_sigdetach(struct knote *kn);
94 static int	filt_signal(struct knote *kn, long hint);
95 static struct thread *sigtd(struct proc *p, int sig, int prop);
96 static void	sigqueue_start(void);
97 
98 static uma_zone_t	ksiginfo_zone = NULL;
99 struct filterops sig_filtops =
100 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
101 
102 int	kern_logsigexit = 1;
103 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
104     &kern_logsigexit, 0,
105     "Log processes quitting on abnormal signals to syslog(3)");
106 
107 static int	kern_forcesigexit = 1;
108 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
109     &kern_forcesigexit, 0, "Force trap signal to be handled");
110 
111 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
112 
113 static int	max_pending_per_proc = 128;
114 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
115     &max_pending_per_proc, 0, "Max pending signals per proc");
116 
117 static int	preallocate_siginfo = 1024;
118 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
119 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
120     &preallocate_siginfo, 0, "Preallocated signal memory size");
121 
122 static int	signal_overflow = 0;
123 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
124     &signal_overflow, 0, "Number of signals overflew");
125 
126 static int	signal_alloc_fail = 0;
127 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
128     &signal_alloc_fail, 0, "signals failed to be allocated");
129 
130 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
131 
132 /*
133  * Policy -- Can ucred cr1 send SIGIO to process cr2?
134  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
135  * in the right situations.
136  */
137 #define CANSIGIO(cr1, cr2) \
138 	((cr1)->cr_uid == 0 || \
139 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
140 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
141 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
142 	    (cr1)->cr_uid == (cr2)->cr_uid)
143 
144 int sugid_coredump;
145 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
146     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
147 
148 static int	do_coredump = 1;
149 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
150 	&do_coredump, 0, "Enable/Disable coredumps");
151 
152 static int	set_core_nodump_flag = 0;
153 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
154 	0, "Enable setting the NODUMP flag on coredump files");
155 
156 /*
157  * Signal properties and actions.
158  * The array below categorizes the signals and their default actions
159  * according to the following properties:
160  */
161 #define	SA_KILL		0x01		/* terminates process by default */
162 #define	SA_CORE		0x02		/* ditto and coredumps */
163 #define	SA_STOP		0x04		/* suspend process */
164 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
165 #define	SA_IGNORE	0x10		/* ignore by default */
166 #define	SA_CONT		0x20		/* continue if suspended */
167 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
168 #define	SA_PROC		0x80		/* deliverable to any thread */
169 
170 static int sigproptbl[NSIG] = {
171         SA_KILL|SA_PROC,		/* SIGHUP */
172         SA_KILL|SA_PROC,		/* SIGINT */
173         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
174         SA_KILL|SA_CORE,		/* SIGILL */
175         SA_KILL|SA_CORE,		/* SIGTRAP */
176         SA_KILL|SA_CORE,		/* SIGABRT */
177         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
178         SA_KILL|SA_CORE,		/* SIGFPE */
179         SA_KILL|SA_PROC,		/* SIGKILL */
180         SA_KILL|SA_CORE,		/* SIGBUS */
181         SA_KILL|SA_CORE,		/* SIGSEGV */
182         SA_KILL|SA_CORE,		/* SIGSYS */
183         SA_KILL|SA_PROC,		/* SIGPIPE */
184         SA_KILL|SA_PROC,		/* SIGALRM */
185         SA_KILL|SA_PROC,		/* SIGTERM */
186         SA_IGNORE|SA_PROC,		/* SIGURG */
187         SA_STOP|SA_PROC,		/* SIGSTOP */
188         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
189         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
190         SA_IGNORE|SA_PROC,		/* SIGCHLD */
191         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
192         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
193         SA_IGNORE|SA_PROC,		/* SIGIO */
194         SA_KILL,			/* SIGXCPU */
195         SA_KILL,			/* SIGXFSZ */
196         SA_KILL|SA_PROC,		/* SIGVTALRM */
197         SA_KILL|SA_PROC,		/* SIGPROF */
198         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
199         SA_IGNORE|SA_PROC,		/* SIGINFO */
200         SA_KILL|SA_PROC,		/* SIGUSR1 */
201         SA_KILL|SA_PROC,		/* SIGUSR2 */
202 };
203 
204 static void
205 sigqueue_start(void)
206 {
207 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
208 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
209 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
210 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
211 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
212 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
213 }
214 
215 ksiginfo_t *
216 ksiginfo_alloc(int wait)
217 {
218 	int flags;
219 
220 	flags = M_ZERO;
221 	if (! wait)
222 		flags |= M_NOWAIT;
223 	if (ksiginfo_zone != NULL)
224 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
225 	return (NULL);
226 }
227 
228 void
229 ksiginfo_free(ksiginfo_t *ksi)
230 {
231 	uma_zfree(ksiginfo_zone, ksi);
232 }
233 
234 static __inline int
235 ksiginfo_tryfree(ksiginfo_t *ksi)
236 {
237 	if (!(ksi->ksi_flags & KSI_EXT)) {
238 		uma_zfree(ksiginfo_zone, ksi);
239 		return (1);
240 	}
241 	return (0);
242 }
243 
244 void
245 sigqueue_init(sigqueue_t *list, struct proc *p)
246 {
247 	SIGEMPTYSET(list->sq_signals);
248 	SIGEMPTYSET(list->sq_kill);
249 	TAILQ_INIT(&list->sq_list);
250 	list->sq_proc = p;
251 	list->sq_flags = SQ_INIT;
252 }
253 
254 /*
255  * Get a signal's ksiginfo.
256  * Return:
257  * 	0	-	signal not found
258  *	others	-	signal number
259  */
260 int
261 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
262 {
263 	struct proc *p = sq->sq_proc;
264 	struct ksiginfo *ksi, *next;
265 	int count = 0;
266 
267 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
268 
269 	if (!SIGISMEMBER(sq->sq_signals, signo))
270 		return (0);
271 
272 	if (SIGISMEMBER(sq->sq_kill, signo)) {
273 		count++;
274 		SIGDELSET(sq->sq_kill, signo);
275 	}
276 
277 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
278 		if (ksi->ksi_signo == signo) {
279 			if (count == 0) {
280 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
281 				ksi->ksi_sigq = NULL;
282 				ksiginfo_copy(ksi, si);
283 				if (ksiginfo_tryfree(ksi) && p != NULL)
284 					p->p_pendingcnt--;
285 			}
286 			if (++count > 1)
287 				break;
288 		}
289 	}
290 
291 	if (count <= 1)
292 		SIGDELSET(sq->sq_signals, signo);
293 	si->ksi_signo = signo;
294 	return (signo);
295 }
296 
297 void
298 sigqueue_take(ksiginfo_t *ksi)
299 {
300 	struct ksiginfo *kp;
301 	struct proc	*p;
302 	sigqueue_t	*sq;
303 
304 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
305 		return;
306 
307 	p = sq->sq_proc;
308 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
309 	ksi->ksi_sigq = NULL;
310 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
311 		p->p_pendingcnt--;
312 
313 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
314 	     kp = TAILQ_NEXT(kp, ksi_link)) {
315 		if (kp->ksi_signo == ksi->ksi_signo)
316 			break;
317 	}
318 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
319 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
320 }
321 
322 int
323 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
324 {
325 	struct proc *p = sq->sq_proc;
326 	struct ksiginfo *ksi;
327 	int ret = 0;
328 
329 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
330 
331 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
332 		SIGADDSET(sq->sq_kill, signo);
333 		goto out_set_bit;
334 	}
335 
336 	/* directly insert the ksi, don't copy it */
337 	if (si->ksi_flags & KSI_INS) {
338 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
339 		si->ksi_sigq = sq;
340 		goto out_set_bit;
341 	}
342 
343 	if (__predict_false(ksiginfo_zone == NULL)) {
344 		SIGADDSET(sq->sq_kill, signo);
345 		goto out_set_bit;
346 	}
347 
348 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
349 		signal_overflow++;
350 		ret = EAGAIN;
351 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
352 		signal_alloc_fail++;
353 		ret = EAGAIN;
354 	} else {
355 		if (p != NULL)
356 			p->p_pendingcnt++;
357 		ksiginfo_copy(si, ksi);
358 		ksi->ksi_signo = signo;
359 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
360 		ksi->ksi_sigq = sq;
361 	}
362 
363 	if ((si->ksi_flags & KSI_TRAP) != 0) {
364 		if (ret != 0)
365 			SIGADDSET(sq->sq_kill, signo);
366 		ret = 0;
367 		goto out_set_bit;
368 	}
369 
370 	if (ret != 0)
371 		return (ret);
372 
373 out_set_bit:
374 	SIGADDSET(sq->sq_signals, signo);
375 	return (ret);
376 }
377 
378 void
379 sigqueue_flush(sigqueue_t *sq)
380 {
381 	struct proc *p = sq->sq_proc;
382 	ksiginfo_t *ksi;
383 
384 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
385 
386 	if (p != NULL)
387 		PROC_LOCK_ASSERT(p, MA_OWNED);
388 
389 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
390 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
391 		ksi->ksi_sigq = NULL;
392 		if (ksiginfo_tryfree(ksi) && p != NULL)
393 			p->p_pendingcnt--;
394 	}
395 
396 	SIGEMPTYSET(sq->sq_signals);
397 	SIGEMPTYSET(sq->sq_kill);
398 }
399 
400 void
401 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
402 {
403 	ksiginfo_t *ksi;
404 
405 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
406 
407 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
408 		SIGADDSET(*set, ksi->ksi_signo);
409 	SIGSETOR(*set, sq->sq_kill);
410 }
411 
412 void
413 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
414 {
415 	sigset_t tmp, set;
416 	struct proc *p1, *p2;
417 	ksiginfo_t *ksi, *next;
418 
419 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
420 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
421 	/*
422 	 * make a copy, this allows setp to point to src or dst
423 	 * sq_signals without trouble.
424 	 */
425 	set = *setp;
426 	p1 = src->sq_proc;
427 	p2 = dst->sq_proc;
428 	/* Move siginfo to target list */
429 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
430 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
431 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
432 			if (p1 != NULL)
433 				p1->p_pendingcnt--;
434 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
435 			ksi->ksi_sigq = dst;
436 			if (p2 != NULL)
437 				p2->p_pendingcnt++;
438 		}
439 	}
440 
441 	/* Move pending bits to target list */
442 	tmp = src->sq_kill;
443 	SIGSETAND(tmp, set);
444 	SIGSETOR(dst->sq_kill, tmp);
445 	SIGSETNAND(src->sq_kill, tmp);
446 
447 	tmp = src->sq_signals;
448 	SIGSETAND(tmp, set);
449 	SIGSETOR(dst->sq_signals, tmp);
450 	SIGSETNAND(src->sq_signals, tmp);
451 
452 	/* Finally, rescan src queue and set pending bits for it */
453 	sigqueue_collect_set(src, &src->sq_signals);
454 }
455 
456 void
457 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
458 {
459 	sigset_t set;
460 
461 	SIGEMPTYSET(set);
462 	SIGADDSET(set, signo);
463 	sigqueue_move_set(src, dst, &set);
464 }
465 
466 void
467 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
468 {
469 	struct proc *p = sq->sq_proc;
470 	ksiginfo_t *ksi, *next;
471 
472 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
473 
474 	/* Remove siginfo queue */
475 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
476 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
477 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
478 			ksi->ksi_sigq = NULL;
479 			if (ksiginfo_tryfree(ksi) && p != NULL)
480 				p->p_pendingcnt--;
481 		}
482 	}
483 	SIGSETNAND(sq->sq_kill, *set);
484 	SIGSETNAND(sq->sq_signals, *set);
485 	/* Finally, rescan queue and set pending bits for it */
486 	sigqueue_collect_set(sq, &sq->sq_signals);
487 }
488 
489 void
490 sigqueue_delete(sigqueue_t *sq, int signo)
491 {
492 	sigset_t set;
493 
494 	SIGEMPTYSET(set);
495 	SIGADDSET(set, signo);
496 	sigqueue_delete_set(sq, &set);
497 }
498 
499 /* Remove a set of signals for a process */
500 void
501 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
502 {
503 	sigqueue_t worklist;
504 	struct thread *td0;
505 
506 	PROC_LOCK_ASSERT(p, MA_OWNED);
507 
508 	sigqueue_init(&worklist, NULL);
509 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
510 
511 	FOREACH_THREAD_IN_PROC(p, td0)
512 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
513 
514 	sigqueue_flush(&worklist);
515 }
516 
517 void
518 sigqueue_delete_proc(struct proc *p, int signo)
519 {
520 	sigset_t set;
521 
522 	SIGEMPTYSET(set);
523 	SIGADDSET(set, signo);
524 	sigqueue_delete_set_proc(p, &set);
525 }
526 
527 void
528 sigqueue_delete_stopmask_proc(struct proc *p)
529 {
530 	sigset_t set;
531 
532 	SIGEMPTYSET(set);
533 	SIGADDSET(set, SIGSTOP);
534 	SIGADDSET(set, SIGTSTP);
535 	SIGADDSET(set, SIGTTIN);
536 	SIGADDSET(set, SIGTTOU);
537 	sigqueue_delete_set_proc(p, &set);
538 }
539 
540 /*
541  * Determine signal that should be delivered to process p, the current
542  * process, 0 if none.  If there is a pending stop signal with default
543  * action, the process stops in issignal().
544  */
545 int
546 cursig(struct thread *td)
547 {
548 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
549 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
550 	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
551 	return (SIGPENDING(td) ? issignal(td) : 0);
552 }
553 
554 /*
555  * Arrange for ast() to handle unmasked pending signals on return to user
556  * mode.  This must be called whenever a signal is added to td_sigqueue or
557  * unmasked in td_sigmask.
558  */
559 void
560 signotify(struct thread *td)
561 {
562 	struct proc *p;
563 	sigset_t set;
564 
565 	p = td->td_proc;
566 
567 	PROC_LOCK_ASSERT(p, MA_OWNED);
568 
569 	/*
570 	 * If our mask changed we may have to move signal that were
571 	 * previously masked by all threads to our sigqueue.
572 	 */
573 	set = p->p_sigqueue.sq_signals;
574 	SIGSETNAND(set, td->td_sigmask);
575 	if (! SIGISEMPTY(set))
576 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
577 	if (SIGPENDING(td)) {
578 		thread_lock(td);
579 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
580 		thread_unlock(td);
581 	}
582 }
583 
584 int
585 sigonstack(size_t sp)
586 {
587 	struct thread *td = curthread;
588 
589 	return ((td->td_pflags & TDP_ALTSTACK) ?
590 #if defined(COMPAT_43)
591 	    ((td->td_sigstk.ss_size == 0) ?
592 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
593 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
594 #else
595 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
596 #endif
597 	    : 0);
598 }
599 
600 static __inline int
601 sigprop(int sig)
602 {
603 
604 	if (sig > 0 && sig < NSIG)
605 		return (sigproptbl[_SIG_IDX(sig)]);
606 	return (0);
607 }
608 
609 int
610 sig_ffs(sigset_t *set)
611 {
612 	int i;
613 
614 	for (i = 0; i < _SIG_WORDS; i++)
615 		if (set->__bits[i])
616 			return (ffs(set->__bits[i]) + (i * 32));
617 	return (0);
618 }
619 
620 /*
621  * kern_sigaction
622  * sigaction
623  * freebsd4_sigaction
624  * osigaction
625  */
626 int
627 kern_sigaction(td, sig, act, oact, flags)
628 	struct thread *td;
629 	register int sig;
630 	struct sigaction *act, *oact;
631 	int flags;
632 {
633 	struct sigacts *ps;
634 	struct proc *p = td->td_proc;
635 
636 	if (!_SIG_VALID(sig))
637 		return (EINVAL);
638 
639 	PROC_LOCK(p);
640 	ps = p->p_sigacts;
641 	mtx_lock(&ps->ps_mtx);
642 	if (oact) {
643 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
644 		oact->sa_flags = 0;
645 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
646 			oact->sa_flags |= SA_ONSTACK;
647 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
648 			oact->sa_flags |= SA_RESTART;
649 		if (SIGISMEMBER(ps->ps_sigreset, sig))
650 			oact->sa_flags |= SA_RESETHAND;
651 		if (SIGISMEMBER(ps->ps_signodefer, sig))
652 			oact->sa_flags |= SA_NODEFER;
653 		if (SIGISMEMBER(ps->ps_siginfo, sig)) {
654 			oact->sa_flags |= SA_SIGINFO;
655 			oact->sa_sigaction =
656 			    (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)];
657 		} else
658 			oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
659 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
660 			oact->sa_flags |= SA_NOCLDSTOP;
661 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
662 			oact->sa_flags |= SA_NOCLDWAIT;
663 	}
664 	if (act) {
665 		if ((sig == SIGKILL || sig == SIGSTOP) &&
666 		    act->sa_handler != SIG_DFL) {
667 			mtx_unlock(&ps->ps_mtx);
668 			PROC_UNLOCK(p);
669 			return (EINVAL);
670 		}
671 
672 		/*
673 		 * Change setting atomically.
674 		 */
675 
676 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
677 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
678 		if (act->sa_flags & SA_SIGINFO) {
679 			ps->ps_sigact[_SIG_IDX(sig)] =
680 			    (__sighandler_t *)act->sa_sigaction;
681 			SIGADDSET(ps->ps_siginfo, sig);
682 		} else {
683 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
684 			SIGDELSET(ps->ps_siginfo, sig);
685 		}
686 		if (!(act->sa_flags & SA_RESTART))
687 			SIGADDSET(ps->ps_sigintr, sig);
688 		else
689 			SIGDELSET(ps->ps_sigintr, sig);
690 		if (act->sa_flags & SA_ONSTACK)
691 			SIGADDSET(ps->ps_sigonstack, sig);
692 		else
693 			SIGDELSET(ps->ps_sigonstack, sig);
694 		if (act->sa_flags & SA_RESETHAND)
695 			SIGADDSET(ps->ps_sigreset, sig);
696 		else
697 			SIGDELSET(ps->ps_sigreset, sig);
698 		if (act->sa_flags & SA_NODEFER)
699 			SIGADDSET(ps->ps_signodefer, sig);
700 		else
701 			SIGDELSET(ps->ps_signodefer, sig);
702 		if (sig == SIGCHLD) {
703 			if (act->sa_flags & SA_NOCLDSTOP)
704 				ps->ps_flag |= PS_NOCLDSTOP;
705 			else
706 				ps->ps_flag &= ~PS_NOCLDSTOP;
707 			if (act->sa_flags & SA_NOCLDWAIT) {
708 				/*
709 				 * Paranoia: since SA_NOCLDWAIT is implemented
710 				 * by reparenting the dying child to PID 1 (and
711 				 * trust it to reap the zombie), PID 1 itself
712 				 * is forbidden to set SA_NOCLDWAIT.
713 				 */
714 				if (p->p_pid == 1)
715 					ps->ps_flag &= ~PS_NOCLDWAIT;
716 				else
717 					ps->ps_flag |= PS_NOCLDWAIT;
718 			} else
719 				ps->ps_flag &= ~PS_NOCLDWAIT;
720 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
721 				ps->ps_flag |= PS_CLDSIGIGN;
722 			else
723 				ps->ps_flag &= ~PS_CLDSIGIGN;
724 		}
725 		/*
726 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
727 		 * and for signals set to SIG_DFL where the default is to
728 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
729 		 * have to restart the process.
730 		 */
731 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
732 		    (sigprop(sig) & SA_IGNORE &&
733 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
734 			/* never to be seen again */
735 			sigqueue_delete_proc(p, sig);
736 			if (sig != SIGCONT)
737 				/* easier in psignal */
738 				SIGADDSET(ps->ps_sigignore, sig);
739 			SIGDELSET(ps->ps_sigcatch, sig);
740 		} else {
741 			SIGDELSET(ps->ps_sigignore, sig);
742 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
743 				SIGDELSET(ps->ps_sigcatch, sig);
744 			else
745 				SIGADDSET(ps->ps_sigcatch, sig);
746 		}
747 #ifdef COMPAT_FREEBSD4
748 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
749 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
750 		    (flags & KSA_FREEBSD4) == 0)
751 			SIGDELSET(ps->ps_freebsd4, sig);
752 		else
753 			SIGADDSET(ps->ps_freebsd4, sig);
754 #endif
755 #ifdef COMPAT_43
756 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
757 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
758 		    (flags & KSA_OSIGSET) == 0)
759 			SIGDELSET(ps->ps_osigset, sig);
760 		else
761 			SIGADDSET(ps->ps_osigset, sig);
762 #endif
763 	}
764 	mtx_unlock(&ps->ps_mtx);
765 	PROC_UNLOCK(p);
766 	return (0);
767 }
768 
769 #ifndef _SYS_SYSPROTO_H_
770 struct sigaction_args {
771 	int	sig;
772 	struct	sigaction *act;
773 	struct	sigaction *oact;
774 };
775 #endif
776 int
777 sigaction(td, uap)
778 	struct thread *td;
779 	register struct sigaction_args *uap;
780 {
781 	struct sigaction act, oact;
782 	register struct sigaction *actp, *oactp;
783 	int error;
784 
785 	actp = (uap->act != NULL) ? &act : NULL;
786 	oactp = (uap->oact != NULL) ? &oact : NULL;
787 	if (actp) {
788 		error = copyin(uap->act, actp, sizeof(act));
789 		if (error)
790 			return (error);
791 	}
792 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
793 	if (oactp && !error)
794 		error = copyout(oactp, uap->oact, sizeof(oact));
795 	return (error);
796 }
797 
798 #ifdef COMPAT_FREEBSD4
799 #ifndef _SYS_SYSPROTO_H_
800 struct freebsd4_sigaction_args {
801 	int	sig;
802 	struct	sigaction *act;
803 	struct	sigaction *oact;
804 };
805 #endif
806 int
807 freebsd4_sigaction(td, uap)
808 	struct thread *td;
809 	register struct freebsd4_sigaction_args *uap;
810 {
811 	struct sigaction act, oact;
812 	register struct sigaction *actp, *oactp;
813 	int error;
814 
815 
816 	actp = (uap->act != NULL) ? &act : NULL;
817 	oactp = (uap->oact != NULL) ? &oact : NULL;
818 	if (actp) {
819 		error = copyin(uap->act, actp, sizeof(act));
820 		if (error)
821 			return (error);
822 	}
823 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
824 	if (oactp && !error)
825 		error = copyout(oactp, uap->oact, sizeof(oact));
826 	return (error);
827 }
828 #endif	/* COMAPT_FREEBSD4 */
829 
830 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
831 #ifndef _SYS_SYSPROTO_H_
832 struct osigaction_args {
833 	int	signum;
834 	struct	osigaction *nsa;
835 	struct	osigaction *osa;
836 };
837 #endif
838 int
839 osigaction(td, uap)
840 	struct thread *td;
841 	register struct osigaction_args *uap;
842 {
843 	struct osigaction sa;
844 	struct sigaction nsa, osa;
845 	register struct sigaction *nsap, *osap;
846 	int error;
847 
848 	if (uap->signum <= 0 || uap->signum >= ONSIG)
849 		return (EINVAL);
850 
851 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
852 	osap = (uap->osa != NULL) ? &osa : NULL;
853 
854 	if (nsap) {
855 		error = copyin(uap->nsa, &sa, sizeof(sa));
856 		if (error)
857 			return (error);
858 		nsap->sa_handler = sa.sa_handler;
859 		nsap->sa_flags = sa.sa_flags;
860 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
861 	}
862 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
863 	if (osap && !error) {
864 		sa.sa_handler = osap->sa_handler;
865 		sa.sa_flags = osap->sa_flags;
866 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
867 		error = copyout(&sa, uap->osa, sizeof(sa));
868 	}
869 	return (error);
870 }
871 
872 #if !defined(__i386__)
873 /* Avoid replicating the same stub everywhere */
874 int
875 osigreturn(td, uap)
876 	struct thread *td;
877 	struct osigreturn_args *uap;
878 {
879 
880 	return (nosys(td, (struct nosys_args *)uap));
881 }
882 #endif
883 #endif /* COMPAT_43 */
884 
885 /*
886  * Initialize signal state for process 0;
887  * set to ignore signals that are ignored by default.
888  */
889 void
890 siginit(p)
891 	struct proc *p;
892 {
893 	register int i;
894 	struct sigacts *ps;
895 
896 	PROC_LOCK(p);
897 	ps = p->p_sigacts;
898 	mtx_lock(&ps->ps_mtx);
899 	for (i = 1; i <= NSIG; i++)
900 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
901 			SIGADDSET(ps->ps_sigignore, i);
902 	mtx_unlock(&ps->ps_mtx);
903 	PROC_UNLOCK(p);
904 }
905 
906 /*
907  * Reset signals for an exec of the specified process.
908  */
909 void
910 execsigs(struct proc *p)
911 {
912 	struct sigacts *ps;
913 	int sig;
914 	struct thread *td;
915 
916 	/*
917 	 * Reset caught signals.  Held signals remain held
918 	 * through td_sigmask (unless they were caught,
919 	 * and are now ignored by default).
920 	 */
921 	PROC_LOCK_ASSERT(p, MA_OWNED);
922 	td = FIRST_THREAD_IN_PROC(p);
923 	ps = p->p_sigacts;
924 	mtx_lock(&ps->ps_mtx);
925 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
926 		sig = sig_ffs(&ps->ps_sigcatch);
927 		SIGDELSET(ps->ps_sigcatch, sig);
928 		if (sigprop(sig) & SA_IGNORE) {
929 			if (sig != SIGCONT)
930 				SIGADDSET(ps->ps_sigignore, sig);
931 			sigqueue_delete_proc(p, sig);
932 		}
933 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
934 	}
935 	/*
936 	 * Reset stack state to the user stack.
937 	 * Clear set of signals caught on the signal stack.
938 	 */
939 	td->td_sigstk.ss_flags = SS_DISABLE;
940 	td->td_sigstk.ss_size = 0;
941 	td->td_sigstk.ss_sp = 0;
942 	td->td_pflags &= ~TDP_ALTSTACK;
943 	/*
944 	 * Reset no zombies if child dies flag as Solaris does.
945 	 */
946 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
947 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
948 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
949 	mtx_unlock(&ps->ps_mtx);
950 }
951 
952 /*
953  * kern_sigprocmask()
954  *
955  *	Manipulate signal mask.
956  */
957 int
958 kern_sigprocmask(td, how, set, oset, old)
959 	struct thread *td;
960 	int how;
961 	sigset_t *set, *oset;
962 	int old;
963 {
964 	int error;
965 
966 	PROC_LOCK(td->td_proc);
967 	if (oset != NULL)
968 		*oset = td->td_sigmask;
969 
970 	error = 0;
971 	if (set != NULL) {
972 		switch (how) {
973 		case SIG_BLOCK:
974 			SIG_CANTMASK(*set);
975 			SIGSETOR(td->td_sigmask, *set);
976 			break;
977 		case SIG_UNBLOCK:
978 			SIGSETNAND(td->td_sigmask, *set);
979 			signotify(td);
980 			break;
981 		case SIG_SETMASK:
982 			SIG_CANTMASK(*set);
983 			if (old)
984 				SIGSETLO(td->td_sigmask, *set);
985 			else
986 				td->td_sigmask = *set;
987 			signotify(td);
988 			break;
989 		default:
990 			error = EINVAL;
991 			break;
992 		}
993 	}
994 	PROC_UNLOCK(td->td_proc);
995 	return (error);
996 }
997 
998 #ifndef _SYS_SYSPROTO_H_
999 struct sigprocmask_args {
1000 	int	how;
1001 	const sigset_t *set;
1002 	sigset_t *oset;
1003 };
1004 #endif
1005 int
1006 sigprocmask(td, uap)
1007 	register struct thread *td;
1008 	struct sigprocmask_args *uap;
1009 {
1010 	sigset_t set, oset;
1011 	sigset_t *setp, *osetp;
1012 	int error;
1013 
1014 	setp = (uap->set != NULL) ? &set : NULL;
1015 	osetp = (uap->oset != NULL) ? &oset : NULL;
1016 	if (setp) {
1017 		error = copyin(uap->set, setp, sizeof(set));
1018 		if (error)
1019 			return (error);
1020 	}
1021 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1022 	if (osetp && !error) {
1023 		error = copyout(osetp, uap->oset, sizeof(oset));
1024 	}
1025 	return (error);
1026 }
1027 
1028 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1029 #ifndef _SYS_SYSPROTO_H_
1030 struct osigprocmask_args {
1031 	int	how;
1032 	osigset_t mask;
1033 };
1034 #endif
1035 int
1036 osigprocmask(td, uap)
1037 	register struct thread *td;
1038 	struct osigprocmask_args *uap;
1039 {
1040 	sigset_t set, oset;
1041 	int error;
1042 
1043 	OSIG2SIG(uap->mask, set);
1044 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1045 	SIG2OSIG(oset, td->td_retval[0]);
1046 	return (error);
1047 }
1048 #endif /* COMPAT_43 */
1049 
1050 int
1051 sigwait(struct thread *td, struct sigwait_args *uap)
1052 {
1053 	ksiginfo_t ksi;
1054 	sigset_t set;
1055 	int error;
1056 
1057 	error = copyin(uap->set, &set, sizeof(set));
1058 	if (error) {
1059 		td->td_retval[0] = error;
1060 		return (0);
1061 	}
1062 
1063 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1064 	if (error) {
1065 		if (error == ERESTART)
1066 			return (error);
1067 		td->td_retval[0] = error;
1068 		return (0);
1069 	}
1070 
1071 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1072 	td->td_retval[0] = error;
1073 	return (0);
1074 }
1075 
1076 int
1077 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1078 {
1079 	struct timespec ts;
1080 	struct timespec *timeout;
1081 	sigset_t set;
1082 	ksiginfo_t ksi;
1083 	int error;
1084 
1085 	if (uap->timeout) {
1086 		error = copyin(uap->timeout, &ts, sizeof(ts));
1087 		if (error)
1088 			return (error);
1089 
1090 		timeout = &ts;
1091 	} else
1092 		timeout = NULL;
1093 
1094 	error = copyin(uap->set, &set, sizeof(set));
1095 	if (error)
1096 		return (error);
1097 
1098 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1099 	if (error)
1100 		return (error);
1101 
1102 	if (uap->info)
1103 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1104 
1105 	if (error == 0)
1106 		td->td_retval[0] = ksi.ksi_signo;
1107 	return (error);
1108 }
1109 
1110 int
1111 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1112 {
1113 	ksiginfo_t ksi;
1114 	sigset_t set;
1115 	int error;
1116 
1117 	error = copyin(uap->set, &set, sizeof(set));
1118 	if (error)
1119 		return (error);
1120 
1121 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1122 	if (error)
1123 		return (error);
1124 
1125 	if (uap->info)
1126 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1127 
1128 	if (error == 0)
1129 		td->td_retval[0] = ksi.ksi_signo;
1130 	return (error);
1131 }
1132 
1133 int
1134 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1135 	struct timespec *timeout)
1136 {
1137 	struct sigacts *ps;
1138 	sigset_t savedmask;
1139 	struct proc *p;
1140 	int error, sig, hz, i, timevalid = 0;
1141 	struct timespec rts, ets, ts;
1142 	struct timeval tv;
1143 
1144 	p = td->td_proc;
1145 	error = 0;
1146 	sig = 0;
1147 	ets.tv_sec = 0;
1148 	ets.tv_nsec = 0;
1149 	SIG_CANTMASK(waitset);
1150 
1151 	PROC_LOCK(p);
1152 	ps = p->p_sigacts;
1153 	savedmask = td->td_sigmask;
1154 	if (timeout) {
1155 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1156 			timevalid = 1;
1157 			getnanouptime(&rts);
1158 		 	ets = rts;
1159 			timespecadd(&ets, timeout);
1160 		}
1161 	}
1162 
1163 restart:
1164 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1165 		if (!SIGISMEMBER(waitset, i))
1166 			continue;
1167 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1168 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1169 				sigqueue_move(&p->p_sigqueue,
1170 					&td->td_sigqueue, i);
1171 			} else
1172 				continue;
1173 		}
1174 
1175 		SIGFILLSET(td->td_sigmask);
1176 		SIG_CANTMASK(td->td_sigmask);
1177 		SIGDELSET(td->td_sigmask, i);
1178 		mtx_lock(&ps->ps_mtx);
1179 		sig = cursig(td);
1180 		mtx_unlock(&ps->ps_mtx);
1181 		if (sig)
1182 			goto out;
1183 		else {
1184 			/*
1185 			 * Because cursig() may have stopped current thread,
1186 			 * after it is resumed, things may have already been
1187 			 * changed, it should rescan any pending signals.
1188 			 */
1189 			goto restart;
1190 		}
1191 	}
1192 
1193 	if (error)
1194 		goto out;
1195 
1196 	/*
1197 	 * POSIX says this must be checked after looking for pending
1198 	 * signals.
1199 	 */
1200 	if (timeout) {
1201 		if (!timevalid) {
1202 			error = EINVAL;
1203 			goto out;
1204 		}
1205 		getnanouptime(&rts);
1206 		if (timespeccmp(&rts, &ets, >=)) {
1207 			error = EAGAIN;
1208 			goto out;
1209 		}
1210 		ts = ets;
1211 		timespecsub(&ts, &rts);
1212 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1213 		hz = tvtohz(&tv);
1214 	} else
1215 		hz = 0;
1216 
1217 	td->td_sigmask = savedmask;
1218 	SIGSETNAND(td->td_sigmask, waitset);
1219 	signotify(td);
1220 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1221 	if (timeout) {
1222 		if (error == ERESTART) {
1223 			/* timeout can not be restarted. */
1224 			error = EINTR;
1225 		} else if (error == EAGAIN) {
1226 			/* will calculate timeout by ourself. */
1227 			error = 0;
1228 		}
1229 	}
1230 	goto restart;
1231 
1232 out:
1233 	td->td_sigmask = savedmask;
1234 	signotify(td);
1235 	if (sig) {
1236 		ksiginfo_init(ksi);
1237 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1238 		ksi->ksi_signo = sig;
1239 		if (ksi->ksi_code == SI_TIMER)
1240 			itimer_accept(p, ksi->ksi_timerid, ksi);
1241 		error = 0;
1242 
1243 #ifdef KTRACE
1244 		if (KTRPOINT(td, KTR_PSIG)) {
1245 			sig_t action;
1246 
1247 			mtx_lock(&ps->ps_mtx);
1248 			action = ps->ps_sigact[_SIG_IDX(sig)];
1249 			mtx_unlock(&ps->ps_mtx);
1250 			ktrpsig(sig, action, &td->td_sigmask, 0);
1251 		}
1252 #endif
1253 		if (sig == SIGKILL)
1254 			sigexit(td, sig);
1255 	}
1256 	PROC_UNLOCK(p);
1257 	return (error);
1258 }
1259 
1260 #ifndef _SYS_SYSPROTO_H_
1261 struct sigpending_args {
1262 	sigset_t	*set;
1263 };
1264 #endif
1265 int
1266 sigpending(td, uap)
1267 	struct thread *td;
1268 	struct sigpending_args *uap;
1269 {
1270 	struct proc *p = td->td_proc;
1271 	sigset_t pending;
1272 
1273 	PROC_LOCK(p);
1274 	pending = p->p_sigqueue.sq_signals;
1275 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1276 	PROC_UNLOCK(p);
1277 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1278 }
1279 
1280 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1281 #ifndef _SYS_SYSPROTO_H_
1282 struct osigpending_args {
1283 	int	dummy;
1284 };
1285 #endif
1286 int
1287 osigpending(td, uap)
1288 	struct thread *td;
1289 	struct osigpending_args *uap;
1290 {
1291 	struct proc *p = td->td_proc;
1292 	sigset_t pending;
1293 
1294 	PROC_LOCK(p);
1295 	pending = p->p_sigqueue.sq_signals;
1296 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1297 	PROC_UNLOCK(p);
1298 	SIG2OSIG(pending, td->td_retval[0]);
1299 	return (0);
1300 }
1301 #endif /* COMPAT_43 */
1302 
1303 #if defined(COMPAT_43)
1304 /*
1305  * Generalized interface signal handler, 4.3-compatible.
1306  */
1307 #ifndef _SYS_SYSPROTO_H_
1308 struct osigvec_args {
1309 	int	signum;
1310 	struct	sigvec *nsv;
1311 	struct	sigvec *osv;
1312 };
1313 #endif
1314 /* ARGSUSED */
1315 int
1316 osigvec(td, uap)
1317 	struct thread *td;
1318 	register struct osigvec_args *uap;
1319 {
1320 	struct sigvec vec;
1321 	struct sigaction nsa, osa;
1322 	register struct sigaction *nsap, *osap;
1323 	int error;
1324 
1325 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1326 		return (EINVAL);
1327 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1328 	osap = (uap->osv != NULL) ? &osa : NULL;
1329 	if (nsap) {
1330 		error = copyin(uap->nsv, &vec, sizeof(vec));
1331 		if (error)
1332 			return (error);
1333 		nsap->sa_handler = vec.sv_handler;
1334 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1335 		nsap->sa_flags = vec.sv_flags;
1336 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1337 	}
1338 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1339 	if (osap && !error) {
1340 		vec.sv_handler = osap->sa_handler;
1341 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1342 		vec.sv_flags = osap->sa_flags;
1343 		vec.sv_flags &= ~SA_NOCLDWAIT;
1344 		vec.sv_flags ^= SA_RESTART;
1345 		error = copyout(&vec, uap->osv, sizeof(vec));
1346 	}
1347 	return (error);
1348 }
1349 
1350 #ifndef _SYS_SYSPROTO_H_
1351 struct osigblock_args {
1352 	int	mask;
1353 };
1354 #endif
1355 int
1356 osigblock(td, uap)
1357 	register struct thread *td;
1358 	struct osigblock_args *uap;
1359 {
1360 	struct proc *p = td->td_proc;
1361 	sigset_t set;
1362 
1363 	OSIG2SIG(uap->mask, set);
1364 	SIG_CANTMASK(set);
1365 	PROC_LOCK(p);
1366 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1367 	SIGSETOR(td->td_sigmask, set);
1368 	PROC_UNLOCK(p);
1369 	return (0);
1370 }
1371 
1372 #ifndef _SYS_SYSPROTO_H_
1373 struct osigsetmask_args {
1374 	int	mask;
1375 };
1376 #endif
1377 int
1378 osigsetmask(td, uap)
1379 	struct thread *td;
1380 	struct osigsetmask_args *uap;
1381 {
1382 	struct proc *p = td->td_proc;
1383 	sigset_t set;
1384 
1385 	OSIG2SIG(uap->mask, set);
1386 	SIG_CANTMASK(set);
1387 	PROC_LOCK(p);
1388 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1389 	SIGSETLO(td->td_sigmask, set);
1390 	signotify(td);
1391 	PROC_UNLOCK(p);
1392 	return (0);
1393 }
1394 #endif /* COMPAT_43 */
1395 
1396 /*
1397  * Suspend calling thread until signal, providing mask to be set in the
1398  * meantime.
1399  */
1400 #ifndef _SYS_SYSPROTO_H_
1401 struct sigsuspend_args {
1402 	const sigset_t *sigmask;
1403 };
1404 #endif
1405 /* ARGSUSED */
1406 int
1407 sigsuspend(td, uap)
1408 	struct thread *td;
1409 	struct sigsuspend_args *uap;
1410 {
1411 	sigset_t mask;
1412 	int error;
1413 
1414 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1415 	if (error)
1416 		return (error);
1417 	return (kern_sigsuspend(td, mask));
1418 }
1419 
1420 int
1421 kern_sigsuspend(struct thread *td, sigset_t mask)
1422 {
1423 	struct proc *p = td->td_proc;
1424 
1425 	/*
1426 	 * When returning from sigsuspend, we want
1427 	 * the old mask to be restored after the
1428 	 * signal handler has finished.  Thus, we
1429 	 * save it here and mark the sigacts structure
1430 	 * to indicate this.
1431 	 */
1432 	PROC_LOCK(p);
1433 	td->td_oldsigmask = td->td_sigmask;
1434 	td->td_pflags |= TDP_OLDMASK;
1435 	SIG_CANTMASK(mask);
1436 	td->td_sigmask = mask;
1437 	signotify(td);
1438 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1439 		/* void */;
1440 	PROC_UNLOCK(p);
1441 	/* always return EINTR rather than ERESTART... */
1442 	return (EINTR);
1443 }
1444 
1445 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1446 /*
1447  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1448  * convention: libc stub passes mask, not pointer, to save a copyin.
1449  */
1450 #ifndef _SYS_SYSPROTO_H_
1451 struct osigsuspend_args {
1452 	osigset_t mask;
1453 };
1454 #endif
1455 /* ARGSUSED */
1456 int
1457 osigsuspend(td, uap)
1458 	struct thread *td;
1459 	struct osigsuspend_args *uap;
1460 {
1461 	struct proc *p = td->td_proc;
1462 	sigset_t mask;
1463 
1464 	PROC_LOCK(p);
1465 	td->td_oldsigmask = td->td_sigmask;
1466 	td->td_pflags |= TDP_OLDMASK;
1467 	OSIG2SIG(uap->mask, mask);
1468 	SIG_CANTMASK(mask);
1469 	SIGSETLO(td->td_sigmask, mask);
1470 	signotify(td);
1471 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1472 		/* void */;
1473 	PROC_UNLOCK(p);
1474 	/* always return EINTR rather than ERESTART... */
1475 	return (EINTR);
1476 }
1477 #endif /* COMPAT_43 */
1478 
1479 #if defined(COMPAT_43)
1480 #ifndef _SYS_SYSPROTO_H_
1481 struct osigstack_args {
1482 	struct	sigstack *nss;
1483 	struct	sigstack *oss;
1484 };
1485 #endif
1486 /* ARGSUSED */
1487 int
1488 osigstack(td, uap)
1489 	struct thread *td;
1490 	register struct osigstack_args *uap;
1491 {
1492 	struct sigstack nss, oss;
1493 	int error = 0;
1494 
1495 	if (uap->nss != NULL) {
1496 		error = copyin(uap->nss, &nss, sizeof(nss));
1497 		if (error)
1498 			return (error);
1499 	}
1500 	oss.ss_sp = td->td_sigstk.ss_sp;
1501 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1502 	if (uap->nss != NULL) {
1503 		td->td_sigstk.ss_sp = nss.ss_sp;
1504 		td->td_sigstk.ss_size = 0;
1505 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1506 		td->td_pflags |= TDP_ALTSTACK;
1507 	}
1508 	if (uap->oss != NULL)
1509 		error = copyout(&oss, uap->oss, sizeof(oss));
1510 
1511 	return (error);
1512 }
1513 #endif /* COMPAT_43 */
1514 
1515 #ifndef _SYS_SYSPROTO_H_
1516 struct sigaltstack_args {
1517 	stack_t	*ss;
1518 	stack_t	*oss;
1519 };
1520 #endif
1521 /* ARGSUSED */
1522 int
1523 sigaltstack(td, uap)
1524 	struct thread *td;
1525 	register struct sigaltstack_args *uap;
1526 {
1527 	stack_t ss, oss;
1528 	int error;
1529 
1530 	if (uap->ss != NULL) {
1531 		error = copyin(uap->ss, &ss, sizeof(ss));
1532 		if (error)
1533 			return (error);
1534 	}
1535 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1536 	    (uap->oss != NULL) ? &oss : NULL);
1537 	if (error)
1538 		return (error);
1539 	if (uap->oss != NULL)
1540 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1541 	return (error);
1542 }
1543 
1544 int
1545 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1546 {
1547 	struct proc *p = td->td_proc;
1548 	int oonstack;
1549 
1550 	oonstack = sigonstack(cpu_getstack(td));
1551 
1552 	if (oss != NULL) {
1553 		*oss = td->td_sigstk;
1554 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1555 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1556 	}
1557 
1558 	if (ss != NULL) {
1559 		if (oonstack)
1560 			return (EPERM);
1561 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1562 			return (EINVAL);
1563 		if (!(ss->ss_flags & SS_DISABLE)) {
1564 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1565 				return (ENOMEM);
1566 
1567 			td->td_sigstk = *ss;
1568 			td->td_pflags |= TDP_ALTSTACK;
1569 		} else {
1570 			td->td_pflags &= ~TDP_ALTSTACK;
1571 		}
1572 	}
1573 	return (0);
1574 }
1575 
1576 /*
1577  * Common code for kill process group/broadcast kill.
1578  * cp is calling process.
1579  */
1580 static int
1581 killpg1(td, sig, pgid, all)
1582 	register struct thread *td;
1583 	int sig, pgid, all;
1584 {
1585 	register struct proc *p;
1586 	struct pgrp *pgrp;
1587 	int nfound = 0;
1588 
1589 	if (all) {
1590 		/*
1591 		 * broadcast
1592 		 */
1593 		sx_slock(&allproc_lock);
1594 		FOREACH_PROC_IN_SYSTEM(p) {
1595 			PROC_LOCK(p);
1596 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1597 			    p == td->td_proc || p->p_state == PRS_NEW) {
1598 				PROC_UNLOCK(p);
1599 				continue;
1600 			}
1601 			if (p_cansignal(td, p, sig) == 0) {
1602 				nfound++;
1603 				if (sig)
1604 					psignal(p, sig);
1605 			}
1606 			PROC_UNLOCK(p);
1607 		}
1608 		sx_sunlock(&allproc_lock);
1609 	} else {
1610 		sx_slock(&proctree_lock);
1611 		if (pgid == 0) {
1612 			/*
1613 			 * zero pgid means send to my process group.
1614 			 */
1615 			pgrp = td->td_proc->p_pgrp;
1616 			PGRP_LOCK(pgrp);
1617 		} else {
1618 			pgrp = pgfind(pgid);
1619 			if (pgrp == NULL) {
1620 				sx_sunlock(&proctree_lock);
1621 				return (ESRCH);
1622 			}
1623 		}
1624 		sx_sunlock(&proctree_lock);
1625 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1626 			PROC_LOCK(p);
1627 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1628 				p->p_state == PRS_NEW ) {
1629 				PROC_UNLOCK(p);
1630 				continue;
1631 			}
1632 			if (p_cansignal(td, p, sig) == 0) {
1633 				nfound++;
1634 				if (sig)
1635 					psignal(p, sig);
1636 			}
1637 			PROC_UNLOCK(p);
1638 		}
1639 		PGRP_UNLOCK(pgrp);
1640 	}
1641 	return (nfound ? 0 : ESRCH);
1642 }
1643 
1644 #ifndef _SYS_SYSPROTO_H_
1645 struct kill_args {
1646 	int	pid;
1647 	int	signum;
1648 };
1649 #endif
1650 /* ARGSUSED */
1651 int
1652 kill(td, uap)
1653 	register struct thread *td;
1654 	register struct kill_args *uap;
1655 {
1656 	register struct proc *p;
1657 	int error;
1658 
1659 	AUDIT_ARG(signum, uap->signum);
1660 	AUDIT_ARG(pid, uap->pid);
1661 	if ((u_int)uap->signum > _SIG_MAXSIG)
1662 		return (EINVAL);
1663 
1664 	if (uap->pid > 0) {
1665 		/* kill single process */
1666 		if ((p = pfind(uap->pid)) == NULL) {
1667 			if ((p = zpfind(uap->pid)) == NULL)
1668 				return (ESRCH);
1669 		}
1670 		AUDIT_ARG(process, p);
1671 		error = p_cansignal(td, p, uap->signum);
1672 		if (error == 0 && uap->signum)
1673 			psignal(p, uap->signum);
1674 		PROC_UNLOCK(p);
1675 		return (error);
1676 	}
1677 	switch (uap->pid) {
1678 	case -1:		/* broadcast signal */
1679 		return (killpg1(td, uap->signum, 0, 1));
1680 	case 0:			/* signal own process group */
1681 		return (killpg1(td, uap->signum, 0, 0));
1682 	default:		/* negative explicit process group */
1683 		return (killpg1(td, uap->signum, -uap->pid, 0));
1684 	}
1685 	/* NOTREACHED */
1686 }
1687 
1688 #if defined(COMPAT_43)
1689 #ifndef _SYS_SYSPROTO_H_
1690 struct okillpg_args {
1691 	int	pgid;
1692 	int	signum;
1693 };
1694 #endif
1695 /* ARGSUSED */
1696 int
1697 okillpg(td, uap)
1698 	struct thread *td;
1699 	register struct okillpg_args *uap;
1700 {
1701 
1702 	AUDIT_ARG(signum, uap->signum);
1703 	AUDIT_ARG(pid, uap->pgid);
1704 	if ((u_int)uap->signum > _SIG_MAXSIG)
1705 		return (EINVAL);
1706 
1707 	return (killpg1(td, uap->signum, uap->pgid, 0));
1708 }
1709 #endif /* COMPAT_43 */
1710 
1711 #ifndef _SYS_SYSPROTO_H_
1712 struct sigqueue_args {
1713 	pid_t pid;
1714 	int signum;
1715 	/* union sigval */ void *value;
1716 };
1717 #endif
1718 int
1719 sigqueue(struct thread *td, struct sigqueue_args *uap)
1720 {
1721 	ksiginfo_t ksi;
1722 	struct proc *p;
1723 	int error;
1724 
1725 	if ((u_int)uap->signum > _SIG_MAXSIG)
1726 		return (EINVAL);
1727 
1728 	/*
1729 	 * Specification says sigqueue can only send signal to
1730 	 * single process.
1731 	 */
1732 	if (uap->pid <= 0)
1733 		return (EINVAL);
1734 
1735 	if ((p = pfind(uap->pid)) == NULL) {
1736 		if ((p = zpfind(uap->pid)) == NULL)
1737 			return (ESRCH);
1738 	}
1739 	error = p_cansignal(td, p, uap->signum);
1740 	if (error == 0 && uap->signum != 0) {
1741 		ksiginfo_init(&ksi);
1742 		ksi.ksi_signo = uap->signum;
1743 		ksi.ksi_code = SI_QUEUE;
1744 		ksi.ksi_pid = td->td_proc->p_pid;
1745 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1746 		ksi.ksi_value.sival_ptr = uap->value;
1747 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1748 	}
1749 	PROC_UNLOCK(p);
1750 	return (error);
1751 }
1752 
1753 /*
1754  * Send a signal to a process group.
1755  */
1756 void
1757 gsignal(pgid, sig)
1758 	int pgid, sig;
1759 {
1760 	struct pgrp *pgrp;
1761 
1762 	if (pgid != 0) {
1763 		sx_slock(&proctree_lock);
1764 		pgrp = pgfind(pgid);
1765 		sx_sunlock(&proctree_lock);
1766 		if (pgrp != NULL) {
1767 			pgsignal(pgrp, sig, 0);
1768 			PGRP_UNLOCK(pgrp);
1769 		}
1770 	}
1771 }
1772 
1773 /*
1774  * Send a signal to a process group.  If checktty is 1,
1775  * limit to members which have a controlling terminal.
1776  */
1777 void
1778 pgsignal(pgrp, sig, checkctty)
1779 	struct pgrp *pgrp;
1780 	int sig, checkctty;
1781 {
1782 	register struct proc *p;
1783 
1784 	if (pgrp) {
1785 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1786 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1787 			PROC_LOCK(p);
1788 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1789 				psignal(p, sig);
1790 			PROC_UNLOCK(p);
1791 		}
1792 	}
1793 }
1794 
1795 /*
1796  * Send a signal caused by a trap to the current thread.  If it will be
1797  * caught immediately, deliver it with correct code.  Otherwise, post it
1798  * normally.
1799  */
1800 void
1801 trapsignal(struct thread *td, ksiginfo_t *ksi)
1802 {
1803 	struct sigacts *ps;
1804 	struct proc *p;
1805 	int sig;
1806 	int code;
1807 
1808 	p = td->td_proc;
1809 	sig = ksi->ksi_signo;
1810 	code = ksi->ksi_code;
1811 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1812 
1813 	PROC_LOCK(p);
1814 	ps = p->p_sigacts;
1815 	mtx_lock(&ps->ps_mtx);
1816 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1817 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1818 		td->td_ru.ru_nsignals++;
1819 #ifdef KTRACE
1820 		if (KTRPOINT(curthread, KTR_PSIG))
1821 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1822 			    &td->td_sigmask, code);
1823 #endif
1824 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1825 				ksi, &td->td_sigmask);
1826 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1827 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1828 			SIGADDSET(td->td_sigmask, sig);
1829 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1830 			/*
1831 			 * See kern_sigaction() for origin of this code.
1832 			 */
1833 			SIGDELSET(ps->ps_sigcatch, sig);
1834 			if (sig != SIGCONT &&
1835 			    sigprop(sig) & SA_IGNORE)
1836 				SIGADDSET(ps->ps_sigignore, sig);
1837 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1838 		}
1839 		mtx_unlock(&ps->ps_mtx);
1840 	} else {
1841 		/*
1842 		 * Avoid a possible infinite loop if the thread
1843 		 * masking the signal or process is ignoring the
1844 		 * signal.
1845 		 */
1846 		if (kern_forcesigexit &&
1847 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1848 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1849 			SIGDELSET(td->td_sigmask, sig);
1850 			SIGDELSET(ps->ps_sigcatch, sig);
1851 			SIGDELSET(ps->ps_sigignore, sig);
1852 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1853 		}
1854 		mtx_unlock(&ps->ps_mtx);
1855 		p->p_code = code;	/* XXX for core dump/debugger */
1856 		p->p_sig = sig;		/* XXX to verify code */
1857 		tdsignal(p, td, sig, ksi);
1858 	}
1859 	PROC_UNLOCK(p);
1860 }
1861 
1862 static struct thread *
1863 sigtd(struct proc *p, int sig, int prop)
1864 {
1865 	struct thread *td, *signal_td;
1866 
1867 	PROC_LOCK_ASSERT(p, MA_OWNED);
1868 
1869 	/*
1870 	 * Check if current thread can handle the signal without
1871 	 * switching conetxt to another thread.
1872 	 */
1873 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
1874 		return (curthread);
1875 	signal_td = NULL;
1876 	FOREACH_THREAD_IN_PROC(p, td) {
1877 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
1878 			signal_td = td;
1879 			break;
1880 		}
1881 	}
1882 	if (signal_td == NULL)
1883 		signal_td = FIRST_THREAD_IN_PROC(p);
1884 	return (signal_td);
1885 }
1886 
1887 /*
1888  * Send the signal to the process.  If the signal has an action, the action
1889  * is usually performed by the target process rather than the caller; we add
1890  * the signal to the set of pending signals for the process.
1891  *
1892  * Exceptions:
1893  *   o When a stop signal is sent to a sleeping process that takes the
1894  *     default action, the process is stopped without awakening it.
1895  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
1896  *     regardless of the signal action (eg, blocked or ignored).
1897  *
1898  * Other ignored signals are discarded immediately.
1899  *
1900  * NB: This function may be entered from the debugger via the "kill" DDB
1901  * command.  There is little that can be done to mitigate the possibly messy
1902  * side effects of this unwise possibility.
1903  */
1904 void
1905 psignal(struct proc *p, int sig)
1906 {
1907 	(void) tdsignal(p, NULL, sig, NULL);
1908 }
1909 
1910 int
1911 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
1912 {
1913 	struct thread *td = NULL;
1914 
1915 	PROC_LOCK_ASSERT(p, MA_OWNED);
1916 
1917 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
1918 
1919 	/*
1920 	 * ksi_code and other fields should be set before
1921 	 * calling this function.
1922 	 */
1923 	ksi->ksi_signo = sigev->sigev_signo;
1924 	ksi->ksi_value = sigev->sigev_value;
1925 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
1926 		td = thread_find(p, sigev->sigev_notify_thread_id);
1927 		if (td == NULL)
1928 			return (ESRCH);
1929 	}
1930 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
1931 }
1932 
1933 int
1934 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
1935 {
1936 	sig_t action;
1937 	sigqueue_t *sigqueue;
1938 	int prop;
1939 	struct sigacts *ps;
1940 	int intrval;
1941 	int ret = 0;
1942 
1943 	PROC_LOCK_ASSERT(p, MA_OWNED);
1944 
1945 	if (!_SIG_VALID(sig))
1946 		panic("tdsignal(): invalid signal %d", sig);
1947 
1948 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
1949 
1950 	/*
1951 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
1952 	 */
1953 	if (p->p_state == PRS_ZOMBIE) {
1954 		if (ksi && (ksi->ksi_flags & KSI_INS))
1955 			ksiginfo_tryfree(ksi);
1956 		return (ret);
1957 	}
1958 
1959 	ps = p->p_sigacts;
1960 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
1961 	prop = sigprop(sig);
1962 
1963 	/*
1964 	 * If the signal is blocked and not destined for this thread, then
1965 	 * assign it to the process so that we can find it later in the first
1966 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
1967 	 */
1968 	if (td == NULL) {
1969 		td = sigtd(p, sig, prop);
1970 		if (SIGISMEMBER(td->td_sigmask, sig))
1971 			sigqueue = &p->p_sigqueue;
1972 		else
1973 			sigqueue = &td->td_sigqueue;
1974 	} else {
1975 		KASSERT(td->td_proc == p, ("invalid thread"));
1976 		sigqueue = &td->td_sigqueue;
1977 	}
1978 
1979 	/*
1980 	 * If the signal is being ignored,
1981 	 * then we forget about it immediately.
1982 	 * (Note: we don't set SIGCONT in ps_sigignore,
1983 	 * and if it is set to SIG_IGN,
1984 	 * action will be SIG_DFL here.)
1985 	 */
1986 	mtx_lock(&ps->ps_mtx);
1987 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
1988 		mtx_unlock(&ps->ps_mtx);
1989 		if (ksi && (ksi->ksi_flags & KSI_INS))
1990 			ksiginfo_tryfree(ksi);
1991 		return (ret);
1992 	}
1993 	if (SIGISMEMBER(td->td_sigmask, sig))
1994 		action = SIG_HOLD;
1995 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
1996 		action = SIG_CATCH;
1997 	else
1998 		action = SIG_DFL;
1999 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2000 		intrval = EINTR;
2001 	else
2002 		intrval = ERESTART;
2003 	mtx_unlock(&ps->ps_mtx);
2004 
2005 	if (prop & SA_CONT)
2006 		sigqueue_delete_stopmask_proc(p);
2007 	else if (prop & SA_STOP) {
2008 		/*
2009 		 * If sending a tty stop signal to a member of an orphaned
2010 		 * process group, discard the signal here if the action
2011 		 * is default; don't stop the process below if sleeping,
2012 		 * and don't clear any pending SIGCONT.
2013 		 */
2014 		if ((prop & SA_TTYSTOP) &&
2015 		    (p->p_pgrp->pg_jobc == 0) &&
2016 		    (action == SIG_DFL)) {
2017 			if (ksi && (ksi->ksi_flags & KSI_INS))
2018 				ksiginfo_tryfree(ksi);
2019 			return (ret);
2020 		}
2021 		sigqueue_delete_proc(p, SIGCONT);
2022 		if (p->p_flag & P_CONTINUED) {
2023 			p->p_flag &= ~P_CONTINUED;
2024 			PROC_LOCK(p->p_pptr);
2025 			sigqueue_take(p->p_ksi);
2026 			PROC_UNLOCK(p->p_pptr);
2027 		}
2028 	}
2029 
2030 	ret = sigqueue_add(sigqueue, sig, ksi);
2031 	if (ret != 0)
2032 		return (ret);
2033 	signotify(td);
2034 	/*
2035 	 * Defer further processing for signals which are held,
2036 	 * except that stopped processes must be continued by SIGCONT.
2037 	 */
2038 	if (action == SIG_HOLD &&
2039 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2040 		return (ret);
2041 	/*
2042 	 * SIGKILL: Remove procfs STOPEVENTs.
2043 	 */
2044 	if (sig == SIGKILL) {
2045 		/* from procfs_ioctl.c: PIOCBIC */
2046 		p->p_stops = 0;
2047 		/* from procfs_ioctl.c: PIOCCONT */
2048 		p->p_step = 0;
2049 		wakeup(&p->p_step);
2050 	}
2051 	/*
2052 	 * Some signals have a process-wide effect and a per-thread
2053 	 * component.  Most processing occurs when the process next
2054 	 * tries to cross the user boundary, however there are some
2055 	 * times when processing needs to be done immediatly, such as
2056 	 * waking up threads so that they can cross the user boundary.
2057 	 * We try do the per-process part here.
2058 	 */
2059 	if (P_SHOULDSTOP(p)) {
2060 		/*
2061 		 * The process is in stopped mode. All the threads should be
2062 		 * either winding down or already on the suspended queue.
2063 		 */
2064 		if (p->p_flag & P_TRACED) {
2065 			/*
2066 			 * The traced process is already stopped,
2067 			 * so no further action is necessary.
2068 			 * No signal can restart us.
2069 			 */
2070 			goto out;
2071 		}
2072 
2073 		if (sig == SIGKILL) {
2074 			/*
2075 			 * SIGKILL sets process running.
2076 			 * It will die elsewhere.
2077 			 * All threads must be restarted.
2078 			 */
2079 			p->p_flag &= ~P_STOPPED_SIG;
2080 			goto runfast;
2081 		}
2082 
2083 		if (prop & SA_CONT) {
2084 			/*
2085 			 * If SIGCONT is default (or ignored), we continue the
2086 			 * process but don't leave the signal in sigqueue as
2087 			 * it has no further action.  If SIGCONT is held, we
2088 			 * continue the process and leave the signal in
2089 			 * sigqueue.  If the process catches SIGCONT, let it
2090 			 * handle the signal itself.  If it isn't waiting on
2091 			 * an event, it goes back to run state.
2092 			 * Otherwise, process goes back to sleep state.
2093 			 */
2094 			p->p_flag &= ~P_STOPPED_SIG;
2095 			PROC_SLOCK(p);
2096 			if (p->p_numthreads == p->p_suspcount) {
2097 				PROC_SUNLOCK(p);
2098 				p->p_flag |= P_CONTINUED;
2099 				p->p_xstat = SIGCONT;
2100 				PROC_LOCK(p->p_pptr);
2101 				childproc_continued(p);
2102 				PROC_UNLOCK(p->p_pptr);
2103 				PROC_SLOCK(p);
2104 			}
2105 			if (action == SIG_DFL) {
2106 				thread_unsuspend(p);
2107 				PROC_SUNLOCK(p);
2108 				sigqueue_delete(sigqueue, sig);
2109 				goto out;
2110 			}
2111 			if (action == SIG_CATCH) {
2112 				/*
2113 				 * The process wants to catch it so it needs
2114 				 * to run at least one thread, but which one?
2115 				 */
2116 				PROC_SUNLOCK(p);
2117 				goto runfast;
2118 			}
2119 			/*
2120 			 * The signal is not ignored or caught.
2121 			 */
2122 			thread_unsuspend(p);
2123 			PROC_SUNLOCK(p);
2124 			goto out;
2125 		}
2126 
2127 		if (prop & SA_STOP) {
2128 			/*
2129 			 * Already stopped, don't need to stop again
2130 			 * (If we did the shell could get confused).
2131 			 * Just make sure the signal STOP bit set.
2132 			 */
2133 			p->p_flag |= P_STOPPED_SIG;
2134 			sigqueue_delete(sigqueue, sig);
2135 			goto out;
2136 		}
2137 
2138 		/*
2139 		 * All other kinds of signals:
2140 		 * If a thread is sleeping interruptibly, simulate a
2141 		 * wakeup so that when it is continued it will be made
2142 		 * runnable and can look at the signal.  However, don't make
2143 		 * the PROCESS runnable, leave it stopped.
2144 		 * It may run a bit until it hits a thread_suspend_check().
2145 		 */
2146 		PROC_SLOCK(p);
2147 		thread_lock(td);
2148 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2149 			sleepq_abort(td, intrval);
2150 		thread_unlock(td);
2151 		PROC_SUNLOCK(p);
2152 		goto out;
2153 		/*
2154 		 * Mutexes are short lived. Threads waiting on them will
2155 		 * hit thread_suspend_check() soon.
2156 		 */
2157 	} else if (p->p_state == PRS_NORMAL) {
2158 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2159 			tdsigwakeup(td, sig, action, intrval);
2160 			goto out;
2161 		}
2162 
2163 		MPASS(action == SIG_DFL);
2164 
2165 		if (prop & SA_STOP) {
2166 			if (p->p_flag & P_PPWAIT)
2167 				goto out;
2168 			p->p_flag |= P_STOPPED_SIG;
2169 			p->p_xstat = sig;
2170 			PROC_SLOCK(p);
2171 			sig_suspend_threads(td, p, 1);
2172 			if (p->p_numthreads == p->p_suspcount) {
2173 				/*
2174 				 * only thread sending signal to another
2175 				 * process can reach here, if thread is sending
2176 				 * signal to its process, because thread does
2177 				 * not suspend itself here, p_numthreads
2178 				 * should never be equal to p_suspcount.
2179 				 */
2180 				thread_stopped(p);
2181 				PROC_SUNLOCK(p);
2182 				sigqueue_delete_proc(p, p->p_xstat);
2183 			} else
2184 				PROC_SUNLOCK(p);
2185 			goto out;
2186 		}
2187 	} else {
2188 		/* Not in "NORMAL" state. discard the signal. */
2189 		sigqueue_delete(sigqueue, sig);
2190 		goto out;
2191 	}
2192 
2193 	/*
2194 	 * The process is not stopped so we need to apply the signal to all the
2195 	 * running threads.
2196 	 */
2197 runfast:
2198 	tdsigwakeup(td, sig, action, intrval);
2199 	PROC_SLOCK(p);
2200 	thread_unsuspend(p);
2201 	PROC_SUNLOCK(p);
2202 out:
2203 	/* If we jump here, proc slock should not be owned. */
2204 	PROC_SLOCK_ASSERT(p, MA_NOTOWNED);
2205 	return (ret);
2206 }
2207 
2208 /*
2209  * The force of a signal has been directed against a single
2210  * thread.  We need to see what we can do about knocking it
2211  * out of any sleep it may be in etc.
2212  */
2213 static void
2214 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2215 {
2216 	struct proc *p = td->td_proc;
2217 	register int prop;
2218 
2219 	PROC_LOCK_ASSERT(p, MA_OWNED);
2220 	prop = sigprop(sig);
2221 
2222 	PROC_SLOCK(p);
2223 	thread_lock(td);
2224 	/*
2225 	 * Bring the priority of a thread up if we want it to get
2226 	 * killed in this lifetime.
2227 	 */
2228 	if (action == SIG_DFL && (prop & SA_KILL) && td->td_priority > PUSER)
2229 		sched_prio(td, PUSER);
2230 	if (TD_ON_SLEEPQ(td)) {
2231 		/*
2232 		 * If thread is sleeping uninterruptibly
2233 		 * we can't interrupt the sleep... the signal will
2234 		 * be noticed when the process returns through
2235 		 * trap() or syscall().
2236 		 */
2237 		if ((td->td_flags & TDF_SINTR) == 0)
2238 			goto out;
2239 		/*
2240 		 * If SIGCONT is default (or ignored) and process is
2241 		 * asleep, we are finished; the process should not
2242 		 * be awakened.
2243 		 */
2244 		if ((prop & SA_CONT) && action == SIG_DFL) {
2245 			thread_unlock(td);
2246 			PROC_SUNLOCK(p);
2247 			sigqueue_delete(&p->p_sigqueue, sig);
2248 			/*
2249 			 * It may be on either list in this state.
2250 			 * Remove from both for now.
2251 			 */
2252 			sigqueue_delete(&td->td_sigqueue, sig);
2253 			return;
2254 		}
2255 
2256 		/*
2257 		 * Give low priority threads a better chance to run.
2258 		 */
2259 		if (td->td_priority > PUSER)
2260 			sched_prio(td, PUSER);
2261 
2262 		sleepq_abort(td, intrval);
2263 	} else {
2264 		/*
2265 		 * Other states do nothing with the signal immediately,
2266 		 * other than kicking ourselves if we are running.
2267 		 * It will either never be noticed, or noticed very soon.
2268 		 */
2269 #ifdef SMP
2270 		if (TD_IS_RUNNING(td) && td != curthread)
2271 			forward_signal(td);
2272 #endif
2273 	}
2274 out:
2275 	PROC_SUNLOCK(p);
2276 	thread_unlock(td);
2277 }
2278 
2279 static void
2280 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2281 {
2282 	struct thread *td2;
2283 
2284 	PROC_LOCK_ASSERT(p, MA_OWNED);
2285 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2286 
2287 	FOREACH_THREAD_IN_PROC(p, td2) {
2288 		thread_lock(td2);
2289 		td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
2290 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2291 		    (td2->td_flags & TDF_SINTR) &&
2292 		    !TD_IS_SUSPENDED(td2)) {
2293 			thread_suspend_one(td2);
2294 		} else {
2295 			if (sending || td != td2)
2296 				td2->td_flags |= TDF_ASTPENDING;
2297 #ifdef SMP
2298 			if (TD_IS_RUNNING(td2) && td2 != td)
2299 				forward_signal(td2);
2300 #endif
2301 		}
2302 		thread_unlock(td2);
2303 	}
2304 }
2305 
2306 int
2307 ptracestop(struct thread *td, int sig)
2308 {
2309 	struct proc *p = td->td_proc;
2310 
2311 	PROC_LOCK_ASSERT(p, MA_OWNED);
2312 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2313 	    &p->p_mtx.lock_object, "Stopping for traced signal");
2314 
2315 	thread_lock(td);
2316 	td->td_flags |= TDF_XSIG;
2317 	thread_unlock(td);
2318 	td->td_xsig = sig;
2319 	PROC_SLOCK(p);
2320 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2321 		if (p->p_flag & P_SINGLE_EXIT) {
2322 			thread_lock(td);
2323 			td->td_flags &= ~TDF_XSIG;
2324 			thread_unlock(td);
2325 			PROC_SUNLOCK(p);
2326 			return (sig);
2327 		}
2328 		/*
2329 		 * Just make wait() to work, the last stopped thread
2330 		 * will win.
2331 		 */
2332 		p->p_xstat = sig;
2333 		p->p_xthread = td;
2334 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2335 		sig_suspend_threads(td, p, 0);
2336 stopme:
2337 		thread_suspend_switch(td);
2338 		if (!(p->p_flag & P_TRACED)) {
2339 			break;
2340 		}
2341 		if (td->td_flags & TDF_DBSUSPEND) {
2342 			if (p->p_flag & P_SINGLE_EXIT)
2343 				break;
2344 			goto stopme;
2345 		}
2346 	}
2347 	PROC_SUNLOCK(p);
2348 	return (td->td_xsig);
2349 }
2350 
2351 /*
2352  * If the current process has received a signal (should be caught or cause
2353  * termination, should interrupt current syscall), return the signal number.
2354  * Stop signals with default action are processed immediately, then cleared;
2355  * they aren't returned.  This is checked after each entry to the system for
2356  * a syscall or trap (though this can usually be done without calling issignal
2357  * by checking the pending signal masks in cursig.) The normal call
2358  * sequence is
2359  *
2360  *	while (sig = cursig(curthread))
2361  *		postsig(sig);
2362  */
2363 static int
2364 issignal(td)
2365 	struct thread *td;
2366 {
2367 	struct proc *p;
2368 	struct sigacts *ps;
2369 	sigset_t sigpending;
2370 	int sig, prop, newsig;
2371 
2372 	p = td->td_proc;
2373 	ps = p->p_sigacts;
2374 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2375 	PROC_LOCK_ASSERT(p, MA_OWNED);
2376 	for (;;) {
2377 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2378 
2379 		sigpending = td->td_sigqueue.sq_signals;
2380 		SIGSETNAND(sigpending, td->td_sigmask);
2381 
2382 		if (p->p_flag & P_PPWAIT)
2383 			SIG_STOPSIGMASK(sigpending);
2384 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2385 			return (0);
2386 		sig = sig_ffs(&sigpending);
2387 
2388 		if (p->p_stops & S_SIG) {
2389 			mtx_unlock(&ps->ps_mtx);
2390 			stopevent(p, S_SIG, sig);
2391 			mtx_lock(&ps->ps_mtx);
2392 		}
2393 
2394 		/*
2395 		 * We should see pending but ignored signals
2396 		 * only if P_TRACED was on when they were posted.
2397 		 */
2398 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2399 			sigqueue_delete(&td->td_sigqueue, sig);
2400 			continue;
2401 		}
2402 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2403 			/*
2404 			 * If traced, always stop.
2405 			 */
2406 			mtx_unlock(&ps->ps_mtx);
2407 			newsig = ptracestop(td, sig);
2408 			mtx_lock(&ps->ps_mtx);
2409 
2410 			if (sig != newsig) {
2411 				ksiginfo_t ksi;
2412 				/*
2413 				 * clear old signal.
2414 				 * XXX shrug off debugger, it causes siginfo to
2415 				 * be thrown away.
2416 				 */
2417 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2418 
2419 				/*
2420 				 * If parent wants us to take the signal,
2421 				 * then it will leave it in p->p_xstat;
2422 				 * otherwise we just look for signals again.
2423 			 	*/
2424 				if (newsig == 0)
2425 					continue;
2426 				sig = newsig;
2427 
2428 				/*
2429 				 * Put the new signal into td_sigqueue. If the
2430 				 * signal is being masked, look for other signals.
2431 				 */
2432 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2433 				if (SIGISMEMBER(td->td_sigmask, sig))
2434 					continue;
2435 				signotify(td);
2436 			}
2437 
2438 			/*
2439 			 * If the traced bit got turned off, go back up
2440 			 * to the top to rescan signals.  This ensures
2441 			 * that p_sig* and p_sigact are consistent.
2442 			 */
2443 			if ((p->p_flag & P_TRACED) == 0)
2444 				continue;
2445 		}
2446 
2447 		prop = sigprop(sig);
2448 
2449 		/*
2450 		 * Decide whether the signal should be returned.
2451 		 * Return the signal's number, or fall through
2452 		 * to clear it from the pending mask.
2453 		 */
2454 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2455 
2456 		case (intptr_t)SIG_DFL:
2457 			/*
2458 			 * Don't take default actions on system processes.
2459 			 */
2460 			if (p->p_pid <= 1) {
2461 #ifdef DIAGNOSTIC
2462 				/*
2463 				 * Are you sure you want to ignore SIGSEGV
2464 				 * in init? XXX
2465 				 */
2466 				printf("Process (pid %lu) got signal %d\n",
2467 					(u_long)p->p_pid, sig);
2468 #endif
2469 				break;		/* == ignore */
2470 			}
2471 			/*
2472 			 * If there is a pending stop signal to process
2473 			 * with default action, stop here,
2474 			 * then clear the signal.  However,
2475 			 * if process is member of an orphaned
2476 			 * process group, ignore tty stop signals.
2477 			 */
2478 			if (prop & SA_STOP) {
2479 				if (p->p_flag & P_TRACED ||
2480 		    		    (p->p_pgrp->pg_jobc == 0 &&
2481 				     prop & SA_TTYSTOP))
2482 					break;	/* == ignore */
2483 				mtx_unlock(&ps->ps_mtx);
2484 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2485 				    &p->p_mtx.lock_object, "Catching SIGSTOP");
2486 				p->p_flag |= P_STOPPED_SIG;
2487 				p->p_xstat = sig;
2488 				PROC_SLOCK(p);
2489 				sig_suspend_threads(td, p, 0);
2490 				thread_suspend_switch(td);
2491 				PROC_SUNLOCK(p);
2492 				mtx_lock(&ps->ps_mtx);
2493 				break;
2494 			} else if (prop & SA_IGNORE) {
2495 				/*
2496 				 * Except for SIGCONT, shouldn't get here.
2497 				 * Default action is to ignore; drop it.
2498 				 */
2499 				break;		/* == ignore */
2500 			} else
2501 				return (sig);
2502 			/*NOTREACHED*/
2503 
2504 		case (intptr_t)SIG_IGN:
2505 			/*
2506 			 * Masking above should prevent us ever trying
2507 			 * to take action on an ignored signal other
2508 			 * than SIGCONT, unless process is traced.
2509 			 */
2510 			if ((prop & SA_CONT) == 0 &&
2511 			    (p->p_flag & P_TRACED) == 0)
2512 				printf("issignal\n");
2513 			break;		/* == ignore */
2514 
2515 		default:
2516 			/*
2517 			 * This signal has an action, let
2518 			 * postsig() process it.
2519 			 */
2520 			return (sig);
2521 		}
2522 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2523 	}
2524 	/* NOTREACHED */
2525 }
2526 
2527 void
2528 thread_stopped(struct proc *p)
2529 {
2530 	int n;
2531 
2532 	PROC_LOCK_ASSERT(p, MA_OWNED);
2533 	PROC_SLOCK_ASSERT(p, MA_OWNED);
2534 	n = p->p_suspcount;
2535 	if (p == curproc)
2536 		n++;
2537 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2538 		PROC_SUNLOCK(p);
2539 		p->p_flag &= ~P_WAITED;
2540 		PROC_LOCK(p->p_pptr);
2541 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2542 			CLD_TRAPPED : CLD_STOPPED);
2543 		PROC_UNLOCK(p->p_pptr);
2544 		PROC_SLOCK(p);
2545 	}
2546 }
2547 
2548 /*
2549  * Take the action for the specified signal
2550  * from the current set of pending signals.
2551  */
2552 void
2553 postsig(sig)
2554 	register int sig;
2555 {
2556 	struct thread *td = curthread;
2557 	register struct proc *p = td->td_proc;
2558 	struct sigacts *ps;
2559 	sig_t action;
2560 	ksiginfo_t ksi;
2561 	sigset_t returnmask;
2562 	int code;
2563 
2564 	KASSERT(sig != 0, ("postsig"));
2565 
2566 	PROC_LOCK_ASSERT(p, MA_OWNED);
2567 	ps = p->p_sigacts;
2568 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2569 	ksiginfo_init(&ksi);
2570 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2571 	ksi.ksi_signo = sig;
2572 	if (ksi.ksi_code == SI_TIMER)
2573 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2574 	action = ps->ps_sigact[_SIG_IDX(sig)];
2575 #ifdef KTRACE
2576 	if (KTRPOINT(td, KTR_PSIG))
2577 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2578 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2579 #endif
2580 	if (p->p_stops & S_SIG) {
2581 		mtx_unlock(&ps->ps_mtx);
2582 		stopevent(p, S_SIG, sig);
2583 		mtx_lock(&ps->ps_mtx);
2584 	}
2585 
2586 	if (action == SIG_DFL) {
2587 		/*
2588 		 * Default action, where the default is to kill
2589 		 * the process.  (Other cases were ignored above.)
2590 		 */
2591 		mtx_unlock(&ps->ps_mtx);
2592 		sigexit(td, sig);
2593 		/* NOTREACHED */
2594 	} else {
2595 		/*
2596 		 * If we get here, the signal must be caught.
2597 		 */
2598 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2599 		    ("postsig action"));
2600 		/*
2601 		 * Set the new mask value and also defer further
2602 		 * occurrences of this signal.
2603 		 *
2604 		 * Special case: user has done a sigsuspend.  Here the
2605 		 * current mask is not of interest, but rather the
2606 		 * mask from before the sigsuspend is what we want
2607 		 * restored after the signal processing is completed.
2608 		 */
2609 		if (td->td_pflags & TDP_OLDMASK) {
2610 			returnmask = td->td_oldsigmask;
2611 			td->td_pflags &= ~TDP_OLDMASK;
2612 		} else
2613 			returnmask = td->td_sigmask;
2614 
2615 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2616 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2617 			SIGADDSET(td->td_sigmask, sig);
2618 
2619 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2620 			/*
2621 			 * See kern_sigaction() for origin of this code.
2622 			 */
2623 			SIGDELSET(ps->ps_sigcatch, sig);
2624 			if (sig != SIGCONT &&
2625 			    sigprop(sig) & SA_IGNORE)
2626 				SIGADDSET(ps->ps_sigignore, sig);
2627 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2628 		}
2629 		td->td_ru.ru_nsignals++;
2630 		if (p->p_sig != sig) {
2631 			code = 0;
2632 		} else {
2633 			code = p->p_code;
2634 			p->p_code = 0;
2635 			p->p_sig = 0;
2636 		}
2637 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2638 	}
2639 }
2640 
2641 /*
2642  * Kill the current process for stated reason.
2643  */
2644 void
2645 killproc(p, why)
2646 	struct proc *p;
2647 	char *why;
2648 {
2649 
2650 	PROC_LOCK_ASSERT(p, MA_OWNED);
2651 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2652 		p, p->p_pid, p->p_comm);
2653 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2654 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2655 	psignal(p, SIGKILL);
2656 }
2657 
2658 /*
2659  * Force the current process to exit with the specified signal, dumping core
2660  * if appropriate.  We bypass the normal tests for masked and caught signals,
2661  * allowing unrecoverable failures to terminate the process without changing
2662  * signal state.  Mark the accounting record with the signal termination.
2663  * If dumping core, save the signal number for the debugger.  Calls exit and
2664  * does not return.
2665  */
2666 void
2667 sigexit(td, sig)
2668 	struct thread *td;
2669 	int sig;
2670 {
2671 	struct proc *p = td->td_proc;
2672 
2673 	PROC_LOCK_ASSERT(p, MA_OWNED);
2674 	p->p_acflag |= AXSIG;
2675 	/*
2676 	 * We must be single-threading to generate a core dump.  This
2677 	 * ensures that the registers in the core file are up-to-date.
2678 	 * Also, the ELF dump handler assumes that the thread list doesn't
2679 	 * change out from under it.
2680 	 *
2681 	 * XXX If another thread attempts to single-thread before us
2682 	 *     (e.g. via fork()), we won't get a dump at all.
2683 	 */
2684 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2685 		p->p_sig = sig;
2686 		/*
2687 		 * Log signals which would cause core dumps
2688 		 * (Log as LOG_INFO to appease those who don't want
2689 		 * these messages.)
2690 		 * XXX : Todo, as well as euid, write out ruid too
2691 		 * Note that coredump() drops proc lock.
2692 		 */
2693 		if (coredump(td) == 0)
2694 			sig |= WCOREFLAG;
2695 		if (kern_logsigexit)
2696 			log(LOG_INFO,
2697 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2698 			    p->p_pid, p->p_comm,
2699 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2700 			    sig &~ WCOREFLAG,
2701 			    sig & WCOREFLAG ? " (core dumped)" : "");
2702 	} else
2703 		PROC_UNLOCK(p);
2704 	exit1(td, W_EXITCODE(0, sig));
2705 	/* NOTREACHED */
2706 }
2707 
2708 /*
2709  * Send queued SIGCHLD to parent when child process's state
2710  * is changed.
2711  */
2712 static void
2713 sigparent(struct proc *p, int reason, int status)
2714 {
2715 	PROC_LOCK_ASSERT(p, MA_OWNED);
2716 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2717 
2718 	if (p->p_ksi != NULL) {
2719 		p->p_ksi->ksi_signo  = SIGCHLD;
2720 		p->p_ksi->ksi_code   = reason;
2721 		p->p_ksi->ksi_status = status;
2722 		p->p_ksi->ksi_pid    = p->p_pid;
2723 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2724 		if (KSI_ONQ(p->p_ksi))
2725 			return;
2726 	}
2727 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2728 }
2729 
2730 static void
2731 childproc_jobstate(struct proc *p, int reason, int status)
2732 {
2733 	struct sigacts *ps;
2734 
2735 	PROC_LOCK_ASSERT(p, MA_OWNED);
2736 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2737 
2738 	/*
2739 	 * Wake up parent sleeping in kern_wait(), also send
2740 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2741 	 * that parent will awake, because parent may masked
2742 	 * the signal.
2743 	 */
2744 	p->p_pptr->p_flag |= P_STATCHILD;
2745 	wakeup(p->p_pptr);
2746 
2747 	ps = p->p_pptr->p_sigacts;
2748 	mtx_lock(&ps->ps_mtx);
2749 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2750 		mtx_unlock(&ps->ps_mtx);
2751 		sigparent(p, reason, status);
2752 	} else
2753 		mtx_unlock(&ps->ps_mtx);
2754 }
2755 
2756 void
2757 childproc_stopped(struct proc *p, int reason)
2758 {
2759 	childproc_jobstate(p, reason, p->p_xstat);
2760 }
2761 
2762 void
2763 childproc_continued(struct proc *p)
2764 {
2765 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2766 }
2767 
2768 void
2769 childproc_exited(struct proc *p)
2770 {
2771 	int reason;
2772 	int status = p->p_xstat; /* convert to int */
2773 
2774 	reason = CLD_EXITED;
2775 	if (WCOREDUMP(status))
2776 		reason = CLD_DUMPED;
2777 	else if (WIFSIGNALED(status))
2778 		reason = CLD_KILLED;
2779 	/*
2780 	 * XXX avoid calling wakeup(p->p_pptr), the work is
2781 	 * done in exit1().
2782 	 */
2783 	sigparent(p, reason, status);
2784 }
2785 
2786 static char corefilename[MAXPATHLEN] = {"%N.core"};
2787 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
2788 	      sizeof(corefilename), "process corefile name format string");
2789 
2790 /*
2791  * expand_name(name, uid, pid)
2792  * Expand the name described in corefilename, using name, uid, and pid.
2793  * corefilename is a printf-like string, with three format specifiers:
2794  *	%N	name of process ("name")
2795  *	%P	process id (pid)
2796  *	%U	user id (uid)
2797  * For example, "%N.core" is the default; they can be disabled completely
2798  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
2799  * This is controlled by the sysctl variable kern.corefile (see above).
2800  */
2801 static char *
2802 expand_name(name, uid, pid)
2803 	const char *name;
2804 	uid_t uid;
2805 	pid_t pid;
2806 {
2807 	struct sbuf sb;
2808 	const char *format;
2809 	char *temp;
2810 	size_t i;
2811 
2812 	format = corefilename;
2813 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
2814 	if (temp == NULL)
2815 		return (NULL);
2816 	(void)sbuf_new(&sb, temp, MAXPATHLEN, SBUF_FIXEDLEN);
2817 	for (i = 0; format[i]; i++) {
2818 		switch (format[i]) {
2819 		case '%':	/* Format character */
2820 			i++;
2821 			switch (format[i]) {
2822 			case '%':
2823 				sbuf_putc(&sb, '%');
2824 				break;
2825 			case 'N':	/* process name */
2826 				sbuf_printf(&sb, "%s", name);
2827 				break;
2828 			case 'P':	/* process id */
2829 				sbuf_printf(&sb, "%u", pid);
2830 				break;
2831 			case 'U':	/* user id */
2832 				sbuf_printf(&sb, "%u", uid);
2833 				break;
2834 			default:
2835 			  	log(LOG_ERR,
2836 				    "Unknown format character %c in "
2837 				    "corename `%s'\n", format[i], format);
2838 			}
2839 			break;
2840 		default:
2841 			sbuf_putc(&sb, format[i]);
2842 		}
2843 	}
2844 	if (sbuf_overflowed(&sb)) {
2845 		sbuf_delete(&sb);
2846 		log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too "
2847 		    "long\n", (long)pid, name, (u_long)uid);
2848 		free(temp, M_TEMP);
2849 		return (NULL);
2850 	}
2851 	sbuf_finish(&sb);
2852 	sbuf_delete(&sb);
2853 	return (temp);
2854 }
2855 
2856 /*
2857  * Dump a process' core.  The main routine does some
2858  * policy checking, and creates the name of the coredump;
2859  * then it passes on a vnode and a size limit to the process-specific
2860  * coredump routine if there is one; if there _is not_ one, it returns
2861  * ENOSYS; otherwise it returns the error from the process-specific routine.
2862  */
2863 
2864 static int
2865 coredump(struct thread *td)
2866 {
2867 	struct proc *p = td->td_proc;
2868 	register struct vnode *vp;
2869 	register struct ucred *cred = td->td_ucred;
2870 	struct flock lf;
2871 	struct nameidata nd;
2872 	struct vattr vattr;
2873 	int error, error1, flags, locked;
2874 	struct mount *mp;
2875 	char *name;			/* name of corefile */
2876 	off_t limit;
2877 	int vfslocked;
2878 
2879 	PROC_LOCK_ASSERT(p, MA_OWNED);
2880 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
2881 	_STOPEVENT(p, S_CORE, 0);
2882 
2883 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
2884 	if (name == NULL) {
2885 		PROC_UNLOCK(p);
2886 #ifdef AUDIT
2887 		audit_proc_coredump(td, NULL, EINVAL);
2888 #endif
2889 		return (EINVAL);
2890 	}
2891 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
2892 		PROC_UNLOCK(p);
2893 #ifdef AUDIT
2894 		audit_proc_coredump(td, name, EFAULT);
2895 #endif
2896 		free(name, M_TEMP);
2897 		return (EFAULT);
2898 	}
2899 
2900 	/*
2901 	 * Note that the bulk of limit checking is done after
2902 	 * the corefile is created.  The exception is if the limit
2903 	 * for corefiles is 0, in which case we don't bother
2904 	 * creating the corefile at all.  This layout means that
2905 	 * a corefile is truncated instead of not being created,
2906 	 * if it is larger than the limit.
2907 	 */
2908 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
2909 	PROC_UNLOCK(p);
2910 	if (limit == 0) {
2911 #ifdef AUDIT
2912 		audit_proc_coredump(td, name, EFBIG);
2913 #endif
2914 		free(name, M_TEMP);
2915 		return (EFBIG);
2916 	}
2917 
2918 restart:
2919 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
2920 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
2921 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, NULL);
2922 	if (error) {
2923 #ifdef AUDIT
2924 		audit_proc_coredump(td, name, error);
2925 #endif
2926 		free(name, M_TEMP);
2927 		return (error);
2928 	}
2929 	vfslocked = NDHASGIANT(&nd);
2930 	NDFREE(&nd, NDF_ONLY_PNBUF);
2931 	vp = nd.ni_vp;
2932 
2933 	/* Don't dump to non-regular files or files with links. */
2934 	if (vp->v_type != VREG ||
2935 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
2936 		VOP_UNLOCK(vp, 0);
2937 		error = EFAULT;
2938 		goto close;
2939 	}
2940 
2941 	VOP_UNLOCK(vp, 0);
2942 	lf.l_whence = SEEK_SET;
2943 	lf.l_start = 0;
2944 	lf.l_len = 0;
2945 	lf.l_type = F_WRLCK;
2946 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
2947 
2948 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2949 		lf.l_type = F_UNLCK;
2950 		if (locked)
2951 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2952 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
2953 			goto out;
2954 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
2955 			goto out;
2956 		VFS_UNLOCK_GIANT(vfslocked);
2957 		goto restart;
2958 	}
2959 
2960 	VATTR_NULL(&vattr);
2961 	vattr.va_size = 0;
2962 	if (set_core_nodump_flag)
2963 		vattr.va_flags = UF_NODUMP;
2964 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2965 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
2966 	VOP_SETATTR(vp, &vattr, cred, td);
2967 	VOP_UNLOCK(vp, 0);
2968 	vn_finished_write(mp);
2969 	PROC_LOCK(p);
2970 	p->p_acflag |= ACORE;
2971 	PROC_UNLOCK(p);
2972 
2973 	error = p->p_sysent->sv_coredump ?
2974 	  p->p_sysent->sv_coredump(td, vp, limit) :
2975 	  ENOSYS;
2976 
2977 	if (locked) {
2978 		lf.l_type = F_UNLCK;
2979 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
2980 	}
2981 close:
2982 	error1 = vn_close(vp, FWRITE, cred, td);
2983 	if (error == 0)
2984 		error = error1;
2985 out:
2986 #ifdef AUDIT
2987 	audit_proc_coredump(td, name, error);
2988 #endif
2989 	free(name, M_TEMP);
2990 	VFS_UNLOCK_GIANT(vfslocked);
2991 	return (error);
2992 }
2993 
2994 /*
2995  * Nonexistent system call-- signal process (may want to handle it).  Flag
2996  * error in case process won't see signal immediately (blocked or ignored).
2997  */
2998 #ifndef _SYS_SYSPROTO_H_
2999 struct nosys_args {
3000 	int	dummy;
3001 };
3002 #endif
3003 /* ARGSUSED */
3004 int
3005 nosys(td, args)
3006 	struct thread *td;
3007 	struct nosys_args *args;
3008 {
3009 	struct proc *p = td->td_proc;
3010 
3011 	PROC_LOCK(p);
3012 	psignal(p, SIGSYS);
3013 	PROC_UNLOCK(p);
3014 	return (ENOSYS);
3015 }
3016 
3017 /*
3018  * Send a SIGIO or SIGURG signal to a process or process group using stored
3019  * credentials rather than those of the current process.
3020  */
3021 void
3022 pgsigio(sigiop, sig, checkctty)
3023 	struct sigio **sigiop;
3024 	int sig, checkctty;
3025 {
3026 	struct sigio *sigio;
3027 
3028 	SIGIO_LOCK();
3029 	sigio = *sigiop;
3030 	if (sigio == NULL) {
3031 		SIGIO_UNLOCK();
3032 		return;
3033 	}
3034 	if (sigio->sio_pgid > 0) {
3035 		PROC_LOCK(sigio->sio_proc);
3036 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3037 			psignal(sigio->sio_proc, sig);
3038 		PROC_UNLOCK(sigio->sio_proc);
3039 	} else if (sigio->sio_pgid < 0) {
3040 		struct proc *p;
3041 
3042 		PGRP_LOCK(sigio->sio_pgrp);
3043 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3044 			PROC_LOCK(p);
3045 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3046 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3047 				psignal(p, sig);
3048 			PROC_UNLOCK(p);
3049 		}
3050 		PGRP_UNLOCK(sigio->sio_pgrp);
3051 	}
3052 	SIGIO_UNLOCK();
3053 }
3054 
3055 static int
3056 filt_sigattach(struct knote *kn)
3057 {
3058 	struct proc *p = curproc;
3059 
3060 	kn->kn_ptr.p_proc = p;
3061 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3062 
3063 	knlist_add(&p->p_klist, kn, 0);
3064 
3065 	return (0);
3066 }
3067 
3068 static void
3069 filt_sigdetach(struct knote *kn)
3070 {
3071 	struct proc *p = kn->kn_ptr.p_proc;
3072 
3073 	knlist_remove(&p->p_klist, kn, 0);
3074 }
3075 
3076 /*
3077  * signal knotes are shared with proc knotes, so we apply a mask to
3078  * the hint in order to differentiate them from process hints.  This
3079  * could be avoided by using a signal-specific knote list, but probably
3080  * isn't worth the trouble.
3081  */
3082 static int
3083 filt_signal(struct knote *kn, long hint)
3084 {
3085 
3086 	if (hint & NOTE_SIGNAL) {
3087 		hint &= ~NOTE_SIGNAL;
3088 
3089 		if (kn->kn_id == hint)
3090 			kn->kn_data++;
3091 	}
3092 	return (kn->kn_data != 0);
3093 }
3094 
3095 struct sigacts *
3096 sigacts_alloc(void)
3097 {
3098 	struct sigacts *ps;
3099 
3100 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3101 	ps->ps_refcnt = 1;
3102 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3103 	return (ps);
3104 }
3105 
3106 void
3107 sigacts_free(struct sigacts *ps)
3108 {
3109 
3110 	mtx_lock(&ps->ps_mtx);
3111 	ps->ps_refcnt--;
3112 	if (ps->ps_refcnt == 0) {
3113 		mtx_destroy(&ps->ps_mtx);
3114 		free(ps, M_SUBPROC);
3115 	} else
3116 		mtx_unlock(&ps->ps_mtx);
3117 }
3118 
3119 struct sigacts *
3120 sigacts_hold(struct sigacts *ps)
3121 {
3122 	mtx_lock(&ps->ps_mtx);
3123 	ps->ps_refcnt++;
3124 	mtx_unlock(&ps->ps_mtx);
3125 	return (ps);
3126 }
3127 
3128 void
3129 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3130 {
3131 
3132 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3133 	mtx_lock(&src->ps_mtx);
3134 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3135 	mtx_unlock(&src->ps_mtx);
3136 }
3137 
3138 int
3139 sigacts_shared(struct sigacts *ps)
3140 {
3141 	int shared;
3142 
3143 	mtx_lock(&ps->ps_mtx);
3144 	shared = ps->ps_refcnt > 1;
3145 	mtx_unlock(&ps->ps_mtx);
3146 	return (shared);
3147 }
3148