xref: /freebsd/sys/kern/kern_sig.c (revision 0efd6615cd5f39b67cec82a7034e655f3b5801e3)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/signalvar.h>
46 #include <sys/vnode.h>
47 #include <sys/acct.h>
48 #include <sys/condvar.h>
49 #include <sys/event.h>
50 #include <sys/fcntl.h>
51 #include <sys/kernel.h>
52 #include <sys/kse.h>
53 #include <sys/ktr.h>
54 #include <sys/ktrace.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/posix4.h>
61 #include <sys/pioctl.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sleepqueue.h>
64 #include <sys/smp.h>
65 #include <sys/stat.h>
66 #include <sys/sx.h>
67 #include <sys/syscallsubr.h>
68 #include <sys/sysctl.h>
69 #include <sys/sysent.h>
70 #include <sys/syslog.h>
71 #include <sys/sysproto.h>
72 #include <sys/timers.h>
73 #include <sys/unistd.h>
74 #include <sys/wait.h>
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/uma.h>
78 
79 #include <machine/cpu.h>
80 
81 #include <security/audit/audit.h>
82 
83 #define	ONSIG	32		/* NSIG for osig* syscalls.  XXX. */
84 
85 static int	coredump(struct thread *);
86 static char	*expand_name(const char *, uid_t, pid_t);
87 static int	killpg1(struct thread *td, int sig, int pgid, int all);
88 static int	issignal(struct thread *p);
89 static int	sigprop(int sig);
90 static void	tdsigwakeup(struct thread *, int, sig_t, int);
91 static void	sig_suspend_threads(struct thread *, struct proc *, int);
92 static int	filt_sigattach(struct knote *kn);
93 static void	filt_sigdetach(struct knote *kn);
94 static int	filt_signal(struct knote *kn, long hint);
95 static struct thread *sigtd(struct proc *p, int sig, int prop);
96 #ifdef KSE
97 static int	do_tdsignal(struct proc *, struct thread *, int, ksiginfo_t *);
98 #endif
99 static void	sigqueue_start(void);
100 
101 static uma_zone_t	ksiginfo_zone = NULL;
102 struct filterops sig_filtops =
103 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
104 
105 static int	kern_logsigexit = 1;
106 SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,
107     &kern_logsigexit, 0,
108     "Log processes quitting on abnormal signals to syslog(3)");
109 
110 static int	kern_forcesigexit = 1;
111 SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,
112     &kern_forcesigexit, 0, "Force trap signal to be handled");
113 
114 SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0, "POSIX real time signal");
115 
116 static int	max_pending_per_proc = 128;
117 SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,
118     &max_pending_per_proc, 0, "Max pending signals per proc");
119 
120 static int	preallocate_siginfo = 1024;
121 TUNABLE_INT("kern.sigqueue.preallocate", &preallocate_siginfo);
122 SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RD,
123     &preallocate_siginfo, 0, "Preallocated signal memory size");
124 
125 static int	signal_overflow = 0;
126 SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,
127     &signal_overflow, 0, "Number of signals overflew");
128 
129 static int	signal_alloc_fail = 0;
130 SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,
131     &signal_alloc_fail, 0, "signals failed to be allocated");
132 
133 SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL);
134 
135 /*
136  * Policy -- Can ucred cr1 send SIGIO to process cr2?
137  * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
138  * in the right situations.
139  */
140 #define CANSIGIO(cr1, cr2) \
141 	((cr1)->cr_uid == 0 || \
142 	    (cr1)->cr_ruid == (cr2)->cr_ruid || \
143 	    (cr1)->cr_uid == (cr2)->cr_ruid || \
144 	    (cr1)->cr_ruid == (cr2)->cr_uid || \
145 	    (cr1)->cr_uid == (cr2)->cr_uid)
146 
147 int sugid_coredump;
148 SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RW,
149     &sugid_coredump, 0, "Enable coredumping set user/group ID processes");
150 
151 static int	do_coredump = 1;
152 SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,
153 	&do_coredump, 0, "Enable/Disable coredumps");
154 
155 static int	set_core_nodump_flag = 0;
156 SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,
157 	0, "Enable setting the NODUMP flag on coredump files");
158 
159 /*
160  * Signal properties and actions.
161  * The array below categorizes the signals and their default actions
162  * according to the following properties:
163  */
164 #define	SA_KILL		0x01		/* terminates process by default */
165 #define	SA_CORE		0x02		/* ditto and coredumps */
166 #define	SA_STOP		0x04		/* suspend process */
167 #define	SA_TTYSTOP	0x08		/* ditto, from tty */
168 #define	SA_IGNORE	0x10		/* ignore by default */
169 #define	SA_CONT		0x20		/* continue if suspended */
170 #define	SA_CANTMASK	0x40		/* non-maskable, catchable */
171 #define	SA_PROC		0x80		/* deliverable to any thread */
172 
173 static int sigproptbl[NSIG] = {
174         SA_KILL|SA_PROC,		/* SIGHUP */
175         SA_KILL|SA_PROC,		/* SIGINT */
176         SA_KILL|SA_CORE|SA_PROC,	/* SIGQUIT */
177         SA_KILL|SA_CORE,		/* SIGILL */
178         SA_KILL|SA_CORE,		/* SIGTRAP */
179         SA_KILL|SA_CORE,		/* SIGABRT */
180         SA_KILL|SA_CORE|SA_PROC,	/* SIGEMT */
181         SA_KILL|SA_CORE,		/* SIGFPE */
182         SA_KILL|SA_PROC,		/* SIGKILL */
183         SA_KILL|SA_CORE,		/* SIGBUS */
184         SA_KILL|SA_CORE,		/* SIGSEGV */
185         SA_KILL|SA_CORE,		/* SIGSYS */
186         SA_KILL|SA_PROC,		/* SIGPIPE */
187         SA_KILL|SA_PROC,		/* SIGALRM */
188         SA_KILL|SA_PROC,		/* SIGTERM */
189         SA_IGNORE|SA_PROC,		/* SIGURG */
190         SA_STOP|SA_PROC,		/* SIGSTOP */
191         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTSTP */
192         SA_IGNORE|SA_CONT|SA_PROC,	/* SIGCONT */
193         SA_IGNORE|SA_PROC,		/* SIGCHLD */
194         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTIN */
195         SA_STOP|SA_TTYSTOP|SA_PROC,	/* SIGTTOU */
196         SA_IGNORE|SA_PROC,		/* SIGIO */
197         SA_KILL,			/* SIGXCPU */
198         SA_KILL,			/* SIGXFSZ */
199         SA_KILL|SA_PROC,		/* SIGVTALRM */
200         SA_KILL|SA_PROC,		/* SIGPROF */
201         SA_IGNORE|SA_PROC,		/* SIGWINCH  */
202         SA_IGNORE|SA_PROC,		/* SIGINFO */
203         SA_KILL|SA_PROC,		/* SIGUSR1 */
204         SA_KILL|SA_PROC,		/* SIGUSR2 */
205 };
206 
207 static void
208 sigqueue_start(void)
209 {
210 	ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
211 		NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
212 	uma_prealloc(ksiginfo_zone, preallocate_siginfo);
213 	p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS, _POSIX_REALTIME_SIGNALS);
214 	p31b_setcfg(CTL_P1003_1B_RTSIG_MAX, SIGRTMAX - SIGRTMIN + 1);
215 	p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX, max_pending_per_proc);
216 }
217 
218 ksiginfo_t *
219 ksiginfo_alloc(int wait)
220 {
221 	int flags;
222 
223 	flags = M_ZERO;
224 	if (! wait)
225 		flags |= M_NOWAIT;
226 	if (ksiginfo_zone != NULL)
227 		return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
228 	return (NULL);
229 }
230 
231 void
232 ksiginfo_free(ksiginfo_t *ksi)
233 {
234 	uma_zfree(ksiginfo_zone, ksi);
235 }
236 
237 static __inline int
238 ksiginfo_tryfree(ksiginfo_t *ksi)
239 {
240 	if (!(ksi->ksi_flags & KSI_EXT)) {
241 		uma_zfree(ksiginfo_zone, ksi);
242 		return (1);
243 	}
244 	return (0);
245 }
246 
247 void
248 sigqueue_init(sigqueue_t *list, struct proc *p)
249 {
250 	SIGEMPTYSET(list->sq_signals);
251 	SIGEMPTYSET(list->sq_kill);
252 	TAILQ_INIT(&list->sq_list);
253 	list->sq_proc = p;
254 	list->sq_flags = SQ_INIT;
255 }
256 
257 /*
258  * Get a signal's ksiginfo.
259  * Return:
260  * 	0	-	signal not found
261  *	others	-	signal number
262  */
263 int
264 sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
265 {
266 	struct proc *p = sq->sq_proc;
267 	struct ksiginfo *ksi, *next;
268 	int count = 0;
269 
270 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
271 
272 	if (!SIGISMEMBER(sq->sq_signals, signo))
273 		return (0);
274 
275 	if (SIGISMEMBER(sq->sq_kill, signo)) {
276 		count++;
277 		SIGDELSET(sq->sq_kill, signo);
278 	}
279 
280 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
281 		if (ksi->ksi_signo == signo) {
282 			if (count == 0) {
283 				TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
284 				ksi->ksi_sigq = NULL;
285 				ksiginfo_copy(ksi, si);
286 				if (ksiginfo_tryfree(ksi) && p != NULL)
287 					p->p_pendingcnt--;
288 			}
289 			count++;
290 		}
291 	}
292 
293 	if (count <= 1)
294 		SIGDELSET(sq->sq_signals, signo);
295 	si->ksi_signo = signo;
296 	return (signo);
297 }
298 
299 void
300 sigqueue_take(ksiginfo_t *ksi)
301 {
302 	struct ksiginfo *kp;
303 	struct proc	*p;
304 	sigqueue_t	*sq;
305 
306 	if (ksi == NULL || (sq = ksi->ksi_sigq) == NULL)
307 		return;
308 
309 	p = sq->sq_proc;
310 	TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
311 	ksi->ksi_sigq = NULL;
312 	if (!(ksi->ksi_flags & KSI_EXT) && p != NULL)
313 		p->p_pendingcnt--;
314 
315 	for (kp = TAILQ_FIRST(&sq->sq_list); kp != NULL;
316 	     kp = TAILQ_NEXT(kp, ksi_link)) {
317 		if (kp->ksi_signo == ksi->ksi_signo)
318 			break;
319 	}
320 	if (kp == NULL && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo))
321 		SIGDELSET(sq->sq_signals, ksi->ksi_signo);
322 }
323 
324 int
325 sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
326 {
327 	struct proc *p = sq->sq_proc;
328 	struct ksiginfo *ksi;
329 	int ret = 0;
330 
331 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
332 
333 	if (signo == SIGKILL || signo == SIGSTOP || si == NULL) {
334 		SIGADDSET(sq->sq_kill, signo);
335 		goto out_set_bit;
336 	}
337 
338 	/* directly insert the ksi, don't copy it */
339 	if (si->ksi_flags & KSI_INS) {
340 		TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link);
341 		si->ksi_sigq = sq;
342 		goto out_set_bit;
343 	}
344 
345 	if (__predict_false(ksiginfo_zone == NULL)) {
346 		SIGADDSET(sq->sq_kill, signo);
347 		goto out_set_bit;
348 	}
349 
350 	if (p != NULL && p->p_pendingcnt >= max_pending_per_proc) {
351 		signal_overflow++;
352 		ret = EAGAIN;
353 	} else if ((ksi = ksiginfo_alloc(0)) == NULL) {
354 		signal_alloc_fail++;
355 		ret = EAGAIN;
356 	} else {
357 		if (p != NULL)
358 			p->p_pendingcnt++;
359 		ksiginfo_copy(si, ksi);
360 		ksi->ksi_signo = signo;
361 		TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link);
362 		ksi->ksi_sigq = sq;
363 	}
364 
365 	if ((si->ksi_flags & KSI_TRAP) != 0) {
366 		if (ret != 0)
367 			SIGADDSET(sq->sq_kill, signo);
368 		ret = 0;
369 		goto out_set_bit;
370 	}
371 
372 	if (ret != 0)
373 		return (ret);
374 
375 out_set_bit:
376 	SIGADDSET(sq->sq_signals, signo);
377 	return (ret);
378 }
379 
380 void
381 sigqueue_flush(sigqueue_t *sq)
382 {
383 	struct proc *p = sq->sq_proc;
384 	ksiginfo_t *ksi;
385 
386 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
387 
388 	if (p != NULL)
389 		PROC_LOCK_ASSERT(p, MA_OWNED);
390 
391 	while ((ksi = TAILQ_FIRST(&sq->sq_list)) != NULL) {
392 		TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
393 		ksi->ksi_sigq = NULL;
394 		if (ksiginfo_tryfree(ksi) && p != NULL)
395 			p->p_pendingcnt--;
396 	}
397 
398 	SIGEMPTYSET(sq->sq_signals);
399 	SIGEMPTYSET(sq->sq_kill);
400 }
401 
402 void
403 sigqueue_collect_set(sigqueue_t *sq, sigset_t *set)
404 {
405 	ksiginfo_t *ksi;
406 
407 	KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"));
408 
409 	TAILQ_FOREACH(ksi, &sq->sq_list, ksi_link)
410 		SIGADDSET(*set, ksi->ksi_signo);
411 	SIGSETOR(*set, sq->sq_kill);
412 }
413 
414 void
415 sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, sigset_t *setp)
416 {
417 	sigset_t tmp, set;
418 	struct proc *p1, *p2;
419 	ksiginfo_t *ksi, *next;
420 
421 	KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"));
422 	KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"));
423 	/*
424 	 * make a copy, this allows setp to point to src or dst
425 	 * sq_signals without trouble.
426 	 */
427 	set = *setp;
428 	p1 = src->sq_proc;
429 	p2 = dst->sq_proc;
430 	/* Move siginfo to target list */
431 	TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next) {
432 		if (SIGISMEMBER(set, ksi->ksi_signo)) {
433 			TAILQ_REMOVE(&src->sq_list, ksi, ksi_link);
434 			if (p1 != NULL)
435 				p1->p_pendingcnt--;
436 			TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link);
437 			ksi->ksi_sigq = dst;
438 			if (p2 != NULL)
439 				p2->p_pendingcnt++;
440 		}
441 	}
442 
443 	/* Move pending bits to target list */
444 	tmp = src->sq_kill;
445 	SIGSETAND(tmp, set);
446 	SIGSETOR(dst->sq_kill, tmp);
447 	SIGSETNAND(src->sq_kill, tmp);
448 
449 	tmp = src->sq_signals;
450 	SIGSETAND(tmp, set);
451 	SIGSETOR(dst->sq_signals, tmp);
452 	SIGSETNAND(src->sq_signals, tmp);
453 
454 	/* Finally, rescan src queue and set pending bits for it */
455 	sigqueue_collect_set(src, &src->sq_signals);
456 }
457 
458 void
459 sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
460 {
461 	sigset_t set;
462 
463 	SIGEMPTYSET(set);
464 	SIGADDSET(set, signo);
465 	sigqueue_move_set(src, dst, &set);
466 }
467 
468 void
469 sigqueue_delete_set(sigqueue_t *sq, sigset_t *set)
470 {
471 	struct proc *p = sq->sq_proc;
472 	ksiginfo_t *ksi, *next;
473 
474 	KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"));
475 
476 	/* Remove siginfo queue */
477 	TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next) {
478 		if (SIGISMEMBER(*set, ksi->ksi_signo)) {
479 			TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link);
480 			ksi->ksi_sigq = NULL;
481 			if (ksiginfo_tryfree(ksi) && p != NULL)
482 				p->p_pendingcnt--;
483 		}
484 	}
485 	SIGSETNAND(sq->sq_kill, *set);
486 	SIGSETNAND(sq->sq_signals, *set);
487 	/* Finally, rescan queue and set pending bits for it */
488 	sigqueue_collect_set(sq, &sq->sq_signals);
489 }
490 
491 void
492 sigqueue_delete(sigqueue_t *sq, int signo)
493 {
494 	sigset_t set;
495 
496 	SIGEMPTYSET(set);
497 	SIGADDSET(set, signo);
498 	sigqueue_delete_set(sq, &set);
499 }
500 
501 /* Remove a set of signals for a process */
502 void
503 sigqueue_delete_set_proc(struct proc *p, sigset_t *set)
504 {
505 	sigqueue_t worklist;
506 	struct thread *td0;
507 
508 	PROC_LOCK_ASSERT(p, MA_OWNED);
509 
510 	sigqueue_init(&worklist, NULL);
511 	sigqueue_move_set(&p->p_sigqueue, &worklist, set);
512 
513 	mtx_lock_spin(&sched_lock);
514 	FOREACH_THREAD_IN_PROC(p, td0)
515 		sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
516 	mtx_unlock_spin(&sched_lock);
517 
518 	sigqueue_flush(&worklist);
519 }
520 
521 void
522 sigqueue_delete_proc(struct proc *p, int signo)
523 {
524 	sigset_t set;
525 
526 	SIGEMPTYSET(set);
527 	SIGADDSET(set, signo);
528 	sigqueue_delete_set_proc(p, &set);
529 }
530 
531 void
532 sigqueue_delete_stopmask_proc(struct proc *p)
533 {
534 	sigset_t set;
535 
536 	SIGEMPTYSET(set);
537 	SIGADDSET(set, SIGSTOP);
538 	SIGADDSET(set, SIGTSTP);
539 	SIGADDSET(set, SIGTTIN);
540 	SIGADDSET(set, SIGTTOU);
541 	sigqueue_delete_set_proc(p, &set);
542 }
543 
544 /*
545  * Determine signal that should be delivered to process p, the current
546  * process, 0 if none.  If there is a pending stop signal with default
547  * action, the process stops in issignal().
548  *
549  * MP SAFE.
550  */
551 int
552 cursig(struct thread *td)
553 {
554 	PROC_LOCK_ASSERT(td->td_proc, MA_OWNED);
555 	mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED);
556 	mtx_assert(&sched_lock, MA_NOTOWNED);
557 	return (SIGPENDING(td) ? issignal(td) : 0);
558 }
559 
560 /*
561  * Arrange for ast() to handle unmasked pending signals on return to user
562  * mode.  This must be called whenever a signal is added to td_sigqueue or
563  * unmasked in td_sigmask.
564  */
565 void
566 signotify(struct thread *td)
567 {
568 	struct proc *p;
569 #ifdef KSE
570 	sigset_t set, saved;
571 #else
572 	sigset_t set;
573 #endif
574 
575 	p = td->td_proc;
576 
577 	PROC_LOCK_ASSERT(p, MA_OWNED);
578 
579 	/*
580 	 * If our mask changed we may have to move signal that were
581 	 * previously masked by all threads to our sigqueue.
582 	 */
583 	set = p->p_sigqueue.sq_signals;
584 #ifdef KSE
585 	if (p->p_flag & P_SA)
586 		saved = p->p_sigqueue.sq_signals;
587 #endif
588 	SIGSETNAND(set, td->td_sigmask);
589 	if (! SIGISEMPTY(set))
590 		sigqueue_move_set(&p->p_sigqueue, &td->td_sigqueue, &set);
591 	if (SIGPENDING(td)) {
592 		mtx_lock_spin(&sched_lock);
593 		td->td_flags |= TDF_NEEDSIGCHK | TDF_ASTPENDING;
594 		mtx_unlock_spin(&sched_lock);
595 	}
596 #ifdef KSE
597 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
598 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
599 			/* pending set changed */
600 			p->p_flag |= P_SIGEVENT;
601 			wakeup(&p->p_siglist);
602 		}
603 	}
604 #endif
605 }
606 
607 int
608 sigonstack(size_t sp)
609 {
610 	struct thread *td = curthread;
611 
612 	return ((td->td_pflags & TDP_ALTSTACK) ?
613 #if defined(COMPAT_43)
614 	    ((td->td_sigstk.ss_size == 0) ?
615 		(td->td_sigstk.ss_flags & SS_ONSTACK) :
616 		((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
617 #else
618 	    ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
619 #endif
620 	    : 0);
621 }
622 
623 static __inline int
624 sigprop(int sig)
625 {
626 
627 	if (sig > 0 && sig < NSIG)
628 		return (sigproptbl[_SIG_IDX(sig)]);
629 	return (0);
630 }
631 
632 int
633 sig_ffs(sigset_t *set)
634 {
635 	int i;
636 
637 	for (i = 0; i < _SIG_WORDS; i++)
638 		if (set->__bits[i])
639 			return (ffs(set->__bits[i]) + (i * 32));
640 	return (0);
641 }
642 
643 /*
644  * kern_sigaction
645  * sigaction
646  * freebsd4_sigaction
647  * osigaction
648  *
649  * MPSAFE
650  */
651 int
652 kern_sigaction(td, sig, act, oact, flags)
653 	struct thread *td;
654 	register int sig;
655 	struct sigaction *act, *oact;
656 	int flags;
657 {
658 	struct sigacts *ps;
659 	struct proc *p = td->td_proc;
660 
661 	if (!_SIG_VALID(sig))
662 		return (EINVAL);
663 
664 	PROC_LOCK(p);
665 	ps = p->p_sigacts;
666 	mtx_lock(&ps->ps_mtx);
667 	if (oact) {
668 		oact->sa_handler = ps->ps_sigact[_SIG_IDX(sig)];
669 		oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)];
670 		oact->sa_flags = 0;
671 		if (SIGISMEMBER(ps->ps_sigonstack, sig))
672 			oact->sa_flags |= SA_ONSTACK;
673 		if (!SIGISMEMBER(ps->ps_sigintr, sig))
674 			oact->sa_flags |= SA_RESTART;
675 		if (SIGISMEMBER(ps->ps_sigreset, sig))
676 			oact->sa_flags |= SA_RESETHAND;
677 		if (SIGISMEMBER(ps->ps_signodefer, sig))
678 			oact->sa_flags |= SA_NODEFER;
679 		if (SIGISMEMBER(ps->ps_siginfo, sig))
680 			oact->sa_flags |= SA_SIGINFO;
681 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDSTOP)
682 			oact->sa_flags |= SA_NOCLDSTOP;
683 		if (sig == SIGCHLD && ps->ps_flag & PS_NOCLDWAIT)
684 			oact->sa_flags |= SA_NOCLDWAIT;
685 	}
686 	if (act) {
687 		if ((sig == SIGKILL || sig == SIGSTOP) &&
688 		    act->sa_handler != SIG_DFL) {
689 			mtx_unlock(&ps->ps_mtx);
690 			PROC_UNLOCK(p);
691 			return (EINVAL);
692 		}
693 
694 		/*
695 		 * Change setting atomically.
696 		 */
697 
698 		ps->ps_catchmask[_SIG_IDX(sig)] = act->sa_mask;
699 		SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)]);
700 		if (act->sa_flags & SA_SIGINFO) {
701 			ps->ps_sigact[_SIG_IDX(sig)] =
702 			    (__sighandler_t *)act->sa_sigaction;
703 			SIGADDSET(ps->ps_siginfo, sig);
704 		} else {
705 			ps->ps_sigact[_SIG_IDX(sig)] = act->sa_handler;
706 			SIGDELSET(ps->ps_siginfo, sig);
707 		}
708 		if (!(act->sa_flags & SA_RESTART))
709 			SIGADDSET(ps->ps_sigintr, sig);
710 		else
711 			SIGDELSET(ps->ps_sigintr, sig);
712 		if (act->sa_flags & SA_ONSTACK)
713 			SIGADDSET(ps->ps_sigonstack, sig);
714 		else
715 			SIGDELSET(ps->ps_sigonstack, sig);
716 		if (act->sa_flags & SA_RESETHAND)
717 			SIGADDSET(ps->ps_sigreset, sig);
718 		else
719 			SIGDELSET(ps->ps_sigreset, sig);
720 		if (act->sa_flags & SA_NODEFER)
721 			SIGADDSET(ps->ps_signodefer, sig);
722 		else
723 			SIGDELSET(ps->ps_signodefer, sig);
724 		if (sig == SIGCHLD) {
725 			if (act->sa_flags & SA_NOCLDSTOP)
726 				ps->ps_flag |= PS_NOCLDSTOP;
727 			else
728 				ps->ps_flag &= ~PS_NOCLDSTOP;
729 			if (act->sa_flags & SA_NOCLDWAIT) {
730 				/*
731 				 * Paranoia: since SA_NOCLDWAIT is implemented
732 				 * by reparenting the dying child to PID 1 (and
733 				 * trust it to reap the zombie), PID 1 itself
734 				 * is forbidden to set SA_NOCLDWAIT.
735 				 */
736 				if (p->p_pid == 1)
737 					ps->ps_flag &= ~PS_NOCLDWAIT;
738 				else
739 					ps->ps_flag |= PS_NOCLDWAIT;
740 			} else
741 				ps->ps_flag &= ~PS_NOCLDWAIT;
742 			if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
743 				ps->ps_flag |= PS_CLDSIGIGN;
744 			else
745 				ps->ps_flag &= ~PS_CLDSIGIGN;
746 		}
747 		/*
748 		 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
749 		 * and for signals set to SIG_DFL where the default is to
750 		 * ignore. However, don't put SIGCONT in ps_sigignore, as we
751 		 * have to restart the process.
752 		 */
753 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
754 		    (sigprop(sig) & SA_IGNORE &&
755 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)) {
756 #ifdef KSE
757 			if ((p->p_flag & P_SA) &&
758 			     SIGISMEMBER(p->p_sigqueue.sq_signals, sig)) {
759 				p->p_flag |= P_SIGEVENT;
760 				wakeup(&p->p_siglist);
761 			}
762 #endif
763 			/* never to be seen again */
764 			sigqueue_delete_proc(p, sig);
765 			if (sig != SIGCONT)
766 				/* easier in psignal */
767 				SIGADDSET(ps->ps_sigignore, sig);
768 			SIGDELSET(ps->ps_sigcatch, sig);
769 		} else {
770 			SIGDELSET(ps->ps_sigignore, sig);
771 			if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL)
772 				SIGDELSET(ps->ps_sigcatch, sig);
773 			else
774 				SIGADDSET(ps->ps_sigcatch, sig);
775 		}
776 #ifdef COMPAT_FREEBSD4
777 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
778 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
779 		    (flags & KSA_FREEBSD4) == 0)
780 			SIGDELSET(ps->ps_freebsd4, sig);
781 		else
782 			SIGADDSET(ps->ps_freebsd4, sig);
783 #endif
784 #ifdef COMPAT_43
785 		if (ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN ||
786 		    ps->ps_sigact[_SIG_IDX(sig)] == SIG_DFL ||
787 		    (flags & KSA_OSIGSET) == 0)
788 			SIGDELSET(ps->ps_osigset, sig);
789 		else
790 			SIGADDSET(ps->ps_osigset, sig);
791 #endif
792 	}
793 	mtx_unlock(&ps->ps_mtx);
794 	PROC_UNLOCK(p);
795 	return (0);
796 }
797 
798 #ifndef _SYS_SYSPROTO_H_
799 struct sigaction_args {
800 	int	sig;
801 	struct	sigaction *act;
802 	struct	sigaction *oact;
803 };
804 #endif
805 /*
806  * MPSAFE
807  */
808 int
809 sigaction(td, uap)
810 	struct thread *td;
811 	register struct sigaction_args *uap;
812 {
813 	struct sigaction act, oact;
814 	register struct sigaction *actp, *oactp;
815 	int error;
816 
817 	actp = (uap->act != NULL) ? &act : NULL;
818 	oactp = (uap->oact != NULL) ? &oact : NULL;
819 	if (actp) {
820 		error = copyin(uap->act, actp, sizeof(act));
821 		if (error)
822 			return (error);
823 	}
824 	error = kern_sigaction(td, uap->sig, actp, oactp, 0);
825 	if (oactp && !error)
826 		error = copyout(oactp, uap->oact, sizeof(oact));
827 	return (error);
828 }
829 
830 #ifdef COMPAT_FREEBSD4
831 #ifndef _SYS_SYSPROTO_H_
832 struct freebsd4_sigaction_args {
833 	int	sig;
834 	struct	sigaction *act;
835 	struct	sigaction *oact;
836 };
837 #endif
838 /*
839  * MPSAFE
840  */
841 int
842 freebsd4_sigaction(td, uap)
843 	struct thread *td;
844 	register struct freebsd4_sigaction_args *uap;
845 {
846 	struct sigaction act, oact;
847 	register struct sigaction *actp, *oactp;
848 	int error;
849 
850 
851 	actp = (uap->act != NULL) ? &act : NULL;
852 	oactp = (uap->oact != NULL) ? &oact : NULL;
853 	if (actp) {
854 		error = copyin(uap->act, actp, sizeof(act));
855 		if (error)
856 			return (error);
857 	}
858 	error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD4);
859 	if (oactp && !error)
860 		error = copyout(oactp, uap->oact, sizeof(oact));
861 	return (error);
862 }
863 #endif	/* COMAPT_FREEBSD4 */
864 
865 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
866 #ifndef _SYS_SYSPROTO_H_
867 struct osigaction_args {
868 	int	signum;
869 	struct	osigaction *nsa;
870 	struct	osigaction *osa;
871 };
872 #endif
873 /*
874  * MPSAFE
875  */
876 int
877 osigaction(td, uap)
878 	struct thread *td;
879 	register struct osigaction_args *uap;
880 {
881 	struct osigaction sa;
882 	struct sigaction nsa, osa;
883 	register struct sigaction *nsap, *osap;
884 	int error;
885 
886 	if (uap->signum <= 0 || uap->signum >= ONSIG)
887 		return (EINVAL);
888 
889 	nsap = (uap->nsa != NULL) ? &nsa : NULL;
890 	osap = (uap->osa != NULL) ? &osa : NULL;
891 
892 	if (nsap) {
893 		error = copyin(uap->nsa, &sa, sizeof(sa));
894 		if (error)
895 			return (error);
896 		nsap->sa_handler = sa.sa_handler;
897 		nsap->sa_flags = sa.sa_flags;
898 		OSIG2SIG(sa.sa_mask, nsap->sa_mask);
899 	}
900 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
901 	if (osap && !error) {
902 		sa.sa_handler = osap->sa_handler;
903 		sa.sa_flags = osap->sa_flags;
904 		SIG2OSIG(osap->sa_mask, sa.sa_mask);
905 		error = copyout(&sa, uap->osa, sizeof(sa));
906 	}
907 	return (error);
908 }
909 
910 #if !defined(__i386__)
911 /* Avoid replicating the same stub everywhere */
912 int
913 osigreturn(td, uap)
914 	struct thread *td;
915 	struct osigreturn_args *uap;
916 {
917 
918 	return (nosys(td, (struct nosys_args *)uap));
919 }
920 #endif
921 #endif /* COMPAT_43 */
922 
923 /*
924  * Initialize signal state for process 0;
925  * set to ignore signals that are ignored by default.
926  */
927 void
928 siginit(p)
929 	struct proc *p;
930 {
931 	register int i;
932 	struct sigacts *ps;
933 
934 	PROC_LOCK(p);
935 	ps = p->p_sigacts;
936 	mtx_lock(&ps->ps_mtx);
937 	for (i = 1; i <= NSIG; i++)
938 		if (sigprop(i) & SA_IGNORE && i != SIGCONT)
939 			SIGADDSET(ps->ps_sigignore, i);
940 	mtx_unlock(&ps->ps_mtx);
941 	PROC_UNLOCK(p);
942 }
943 
944 /*
945  * Reset signals for an exec of the specified process.
946  */
947 void
948 execsigs(struct proc *p)
949 {
950 	struct sigacts *ps;
951 	int sig;
952 	struct thread *td;
953 
954 	/*
955 	 * Reset caught signals.  Held signals remain held
956 	 * through td_sigmask (unless they were caught,
957 	 * and are now ignored by default).
958 	 */
959 	PROC_LOCK_ASSERT(p, MA_OWNED);
960 	td = FIRST_THREAD_IN_PROC(p);
961 	ps = p->p_sigacts;
962 	mtx_lock(&ps->ps_mtx);
963 	while (SIGNOTEMPTY(ps->ps_sigcatch)) {
964 		sig = sig_ffs(&ps->ps_sigcatch);
965 		SIGDELSET(ps->ps_sigcatch, sig);
966 		if (sigprop(sig) & SA_IGNORE) {
967 			if (sig != SIGCONT)
968 				SIGADDSET(ps->ps_sigignore, sig);
969 			sigqueue_delete_proc(p, sig);
970 		}
971 		ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
972 	}
973 	/*
974 	 * Reset stack state to the user stack.
975 	 * Clear set of signals caught on the signal stack.
976 	 */
977 	td->td_sigstk.ss_flags = SS_DISABLE;
978 	td->td_sigstk.ss_size = 0;
979 	td->td_sigstk.ss_sp = 0;
980 	td->td_pflags &= ~TDP_ALTSTACK;
981 	/*
982 	 * Reset no zombies if child dies flag as Solaris does.
983 	 */
984 	ps->ps_flag &= ~(PS_NOCLDWAIT | PS_CLDSIGIGN);
985 	if (ps->ps_sigact[_SIG_IDX(SIGCHLD)] == SIG_IGN)
986 		ps->ps_sigact[_SIG_IDX(SIGCHLD)] = SIG_DFL;
987 	mtx_unlock(&ps->ps_mtx);
988 }
989 
990 /*
991  * kern_sigprocmask()
992  *
993  *	Manipulate signal mask.
994  */
995 int
996 kern_sigprocmask(td, how, set, oset, old)
997 	struct thread *td;
998 	int how;
999 	sigset_t *set, *oset;
1000 	int old;
1001 {
1002 	int error;
1003 
1004 	PROC_LOCK(td->td_proc);
1005 	if (oset != NULL)
1006 		*oset = td->td_sigmask;
1007 
1008 	error = 0;
1009 	if (set != NULL) {
1010 		switch (how) {
1011 		case SIG_BLOCK:
1012 			SIG_CANTMASK(*set);
1013 			SIGSETOR(td->td_sigmask, *set);
1014 			break;
1015 		case SIG_UNBLOCK:
1016 			SIGSETNAND(td->td_sigmask, *set);
1017 			signotify(td);
1018 			break;
1019 		case SIG_SETMASK:
1020 			SIG_CANTMASK(*set);
1021 			if (old)
1022 				SIGSETLO(td->td_sigmask, *set);
1023 			else
1024 				td->td_sigmask = *set;
1025 			signotify(td);
1026 			break;
1027 		default:
1028 			error = EINVAL;
1029 			break;
1030 		}
1031 	}
1032 	PROC_UNLOCK(td->td_proc);
1033 	return (error);
1034 }
1035 
1036 /*
1037  * sigprocmask() - MP SAFE
1038  */
1039 
1040 #ifndef _SYS_SYSPROTO_H_
1041 struct sigprocmask_args {
1042 	int	how;
1043 	const sigset_t *set;
1044 	sigset_t *oset;
1045 };
1046 #endif
1047 int
1048 sigprocmask(td, uap)
1049 	register struct thread *td;
1050 	struct sigprocmask_args *uap;
1051 {
1052 	sigset_t set, oset;
1053 	sigset_t *setp, *osetp;
1054 	int error;
1055 
1056 	setp = (uap->set != NULL) ? &set : NULL;
1057 	osetp = (uap->oset != NULL) ? &oset : NULL;
1058 	if (setp) {
1059 		error = copyin(uap->set, setp, sizeof(set));
1060 		if (error)
1061 			return (error);
1062 	}
1063 	error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1064 	if (osetp && !error) {
1065 		error = copyout(osetp, uap->oset, sizeof(oset));
1066 	}
1067 	return (error);
1068 }
1069 
1070 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1071 /*
1072  * osigprocmask() - MP SAFE
1073  */
1074 #ifndef _SYS_SYSPROTO_H_
1075 struct osigprocmask_args {
1076 	int	how;
1077 	osigset_t mask;
1078 };
1079 #endif
1080 int
1081 osigprocmask(td, uap)
1082 	register struct thread *td;
1083 	struct osigprocmask_args *uap;
1084 {
1085 	sigset_t set, oset;
1086 	int error;
1087 
1088 	OSIG2SIG(uap->mask, set);
1089 	error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1090 	SIG2OSIG(oset, td->td_retval[0]);
1091 	return (error);
1092 }
1093 #endif /* COMPAT_43 */
1094 
1095 /*
1096  * MPSAFE
1097  */
1098 int
1099 sigwait(struct thread *td, struct sigwait_args *uap)
1100 {
1101 	ksiginfo_t ksi;
1102 	sigset_t set;
1103 	int error;
1104 
1105 	error = copyin(uap->set, &set, sizeof(set));
1106 	if (error) {
1107 		td->td_retval[0] = error;
1108 		return (0);
1109 	}
1110 
1111 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1112 	if (error) {
1113 		if (error == ERESTART)
1114 			return (error);
1115 		td->td_retval[0] = error;
1116 		return (0);
1117 	}
1118 
1119 	error = copyout(&ksi.ksi_signo, uap->sig, sizeof(ksi.ksi_signo));
1120 	td->td_retval[0] = error;
1121 	return (0);
1122 }
1123 /*
1124  * MPSAFE
1125  */
1126 int
1127 sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1128 {
1129 	struct timespec ts;
1130 	struct timespec *timeout;
1131 	sigset_t set;
1132 	ksiginfo_t ksi;
1133 	int error;
1134 
1135 	if (uap->timeout) {
1136 		error = copyin(uap->timeout, &ts, sizeof(ts));
1137 		if (error)
1138 			return (error);
1139 
1140 		timeout = &ts;
1141 	} else
1142 		timeout = NULL;
1143 
1144 	error = copyin(uap->set, &set, sizeof(set));
1145 	if (error)
1146 		return (error);
1147 
1148 	error = kern_sigtimedwait(td, set, &ksi, timeout);
1149 	if (error)
1150 		return (error);
1151 
1152 	if (uap->info)
1153 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1154 
1155 	if (error == 0)
1156 		td->td_retval[0] = ksi.ksi_signo;
1157 	return (error);
1158 }
1159 
1160 /*
1161  * MPSAFE
1162  */
1163 int
1164 sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1165 {
1166 	ksiginfo_t ksi;
1167 	sigset_t set;
1168 	int error;
1169 
1170 	error = copyin(uap->set, &set, sizeof(set));
1171 	if (error)
1172 		return (error);
1173 
1174 	error = kern_sigtimedwait(td, set, &ksi, NULL);
1175 	if (error)
1176 		return (error);
1177 
1178 	if (uap->info)
1179 		error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1180 
1181 	if (error == 0)
1182 		td->td_retval[0] = ksi.ksi_signo;
1183 	return (error);
1184 }
1185 
1186 int
1187 kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1188 	struct timespec *timeout)
1189 {
1190 	struct sigacts *ps;
1191 	sigset_t savedmask;
1192 	struct proc *p;
1193 	int error, sig, hz, i, timevalid = 0;
1194 	struct timespec rts, ets, ts;
1195 	struct timeval tv;
1196 
1197 	p = td->td_proc;
1198 	error = 0;
1199 	sig = 0;
1200 	SIG_CANTMASK(waitset);
1201 
1202 	PROC_LOCK(p);
1203 	ps = p->p_sigacts;
1204 	savedmask = td->td_sigmask;
1205 	if (timeout) {
1206 		if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1207 			timevalid = 1;
1208 			getnanouptime(&rts);
1209 		 	ets = rts;
1210 			timespecadd(&ets, timeout);
1211 		}
1212 	}
1213 
1214 restart:
1215 	for (i = 1; i <= _SIG_MAXSIG; ++i) {
1216 		if (!SIGISMEMBER(waitset, i))
1217 			continue;
1218 		if (!SIGISMEMBER(td->td_sigqueue.sq_signals, i)) {
1219 			if (SIGISMEMBER(p->p_sigqueue.sq_signals, i)) {
1220 #ifdef KSE
1221 				if (p->p_flag & P_SA) {
1222 					p->p_flag |= P_SIGEVENT;
1223 					wakeup(&p->p_siglist);
1224 				}
1225 #endif
1226 				sigqueue_move(&p->p_sigqueue,
1227 					&td->td_sigqueue, i);
1228 			} else
1229 				continue;
1230 		}
1231 
1232 		SIGFILLSET(td->td_sigmask);
1233 		SIG_CANTMASK(td->td_sigmask);
1234 		SIGDELSET(td->td_sigmask, i);
1235 		mtx_lock(&ps->ps_mtx);
1236 		sig = cursig(td);
1237 		mtx_unlock(&ps->ps_mtx);
1238 		if (sig)
1239 			goto out;
1240 		else {
1241 			/*
1242 			 * Because cursig() may have stopped current thread,
1243 			 * after it is resumed, things may have already been
1244 			 * changed, it should rescan any pending signals.
1245 			 */
1246 			goto restart;
1247 		}
1248 	}
1249 
1250 	if (error)
1251 		goto out;
1252 
1253 	/*
1254 	 * POSIX says this must be checked after looking for pending
1255 	 * signals.
1256 	 */
1257 	if (timeout) {
1258 		if (!timevalid) {
1259 			error = EINVAL;
1260 			goto out;
1261 		}
1262 		getnanouptime(&rts);
1263 		if (timespeccmp(&rts, &ets, >=)) {
1264 			error = EAGAIN;
1265 			goto out;
1266 		}
1267 		ts = ets;
1268 		timespecsub(&ts, &rts);
1269 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1270 		hz = tvtohz(&tv);
1271 	} else
1272 		hz = 0;
1273 
1274 	td->td_sigmask = savedmask;
1275 	SIGSETNAND(td->td_sigmask, waitset);
1276 	signotify(td);
1277 	error = msleep(&ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", hz);
1278 	if (timeout) {
1279 		if (error == ERESTART) {
1280 			/* timeout can not be restarted. */
1281 			error = EINTR;
1282 		} else if (error == EAGAIN) {
1283 			/* will calculate timeout by ourself. */
1284 			error = 0;
1285 		}
1286 	}
1287 	goto restart;
1288 
1289 out:
1290 	td->td_sigmask = savedmask;
1291 	signotify(td);
1292 	if (sig) {
1293 		ksiginfo_init(ksi);
1294 		sigqueue_get(&td->td_sigqueue, sig, ksi);
1295 		ksi->ksi_signo = sig;
1296 		if (ksi->ksi_code == SI_TIMER)
1297 			itimer_accept(p, ksi->ksi_timerid, ksi);
1298 		error = 0;
1299 
1300 #ifdef KTRACE
1301 		if (KTRPOINT(td, KTR_PSIG)) {
1302 			sig_t action;
1303 
1304 			mtx_lock(&ps->ps_mtx);
1305 			action = ps->ps_sigact[_SIG_IDX(sig)];
1306 			mtx_unlock(&ps->ps_mtx);
1307 			ktrpsig(sig, action, &td->td_sigmask, 0);
1308 		}
1309 #endif
1310 		if (sig == SIGKILL)
1311 			sigexit(td, sig);
1312 	}
1313 	PROC_UNLOCK(p);
1314 	return (error);
1315 }
1316 
1317 #ifndef _SYS_SYSPROTO_H_
1318 struct sigpending_args {
1319 	sigset_t	*set;
1320 };
1321 #endif
1322 /*
1323  * MPSAFE
1324  */
1325 int
1326 sigpending(td, uap)
1327 	struct thread *td;
1328 	struct sigpending_args *uap;
1329 {
1330 	struct proc *p = td->td_proc;
1331 	sigset_t pending;
1332 
1333 	PROC_LOCK(p);
1334 	pending = p->p_sigqueue.sq_signals;
1335 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1336 	PROC_UNLOCK(p);
1337 	return (copyout(&pending, uap->set, sizeof(sigset_t)));
1338 }
1339 
1340 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1341 #ifndef _SYS_SYSPROTO_H_
1342 struct osigpending_args {
1343 	int	dummy;
1344 };
1345 #endif
1346 /*
1347  * MPSAFE
1348  */
1349 int
1350 osigpending(td, uap)
1351 	struct thread *td;
1352 	struct osigpending_args *uap;
1353 {
1354 	struct proc *p = td->td_proc;
1355 	sigset_t pending;
1356 
1357 	PROC_LOCK(p);
1358 	pending = p->p_sigqueue.sq_signals;
1359 	SIGSETOR(pending, td->td_sigqueue.sq_signals);
1360 	PROC_UNLOCK(p);
1361 	SIG2OSIG(pending, td->td_retval[0]);
1362 	return (0);
1363 }
1364 #endif /* COMPAT_43 */
1365 
1366 #if defined(COMPAT_43)
1367 /*
1368  * Generalized interface signal handler, 4.3-compatible.
1369  */
1370 #ifndef _SYS_SYSPROTO_H_
1371 struct osigvec_args {
1372 	int	signum;
1373 	struct	sigvec *nsv;
1374 	struct	sigvec *osv;
1375 };
1376 #endif
1377 /*
1378  * MPSAFE
1379  */
1380 /* ARGSUSED */
1381 int
1382 osigvec(td, uap)
1383 	struct thread *td;
1384 	register struct osigvec_args *uap;
1385 {
1386 	struct sigvec vec;
1387 	struct sigaction nsa, osa;
1388 	register struct sigaction *nsap, *osap;
1389 	int error;
1390 
1391 	if (uap->signum <= 0 || uap->signum >= ONSIG)
1392 		return (EINVAL);
1393 	nsap = (uap->nsv != NULL) ? &nsa : NULL;
1394 	osap = (uap->osv != NULL) ? &osa : NULL;
1395 	if (nsap) {
1396 		error = copyin(uap->nsv, &vec, sizeof(vec));
1397 		if (error)
1398 			return (error);
1399 		nsap->sa_handler = vec.sv_handler;
1400 		OSIG2SIG(vec.sv_mask, nsap->sa_mask);
1401 		nsap->sa_flags = vec.sv_flags;
1402 		nsap->sa_flags ^= SA_RESTART;	/* opposite of SV_INTERRUPT */
1403 	}
1404 	error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET);
1405 	if (osap && !error) {
1406 		vec.sv_handler = osap->sa_handler;
1407 		SIG2OSIG(osap->sa_mask, vec.sv_mask);
1408 		vec.sv_flags = osap->sa_flags;
1409 		vec.sv_flags &= ~SA_NOCLDWAIT;
1410 		vec.sv_flags ^= SA_RESTART;
1411 		error = copyout(&vec, uap->osv, sizeof(vec));
1412 	}
1413 	return (error);
1414 }
1415 
1416 #ifndef _SYS_SYSPROTO_H_
1417 struct osigblock_args {
1418 	int	mask;
1419 };
1420 #endif
1421 /*
1422  * MPSAFE
1423  */
1424 int
1425 osigblock(td, uap)
1426 	register struct thread *td;
1427 	struct osigblock_args *uap;
1428 {
1429 	struct proc *p = td->td_proc;
1430 	sigset_t set;
1431 
1432 	OSIG2SIG(uap->mask, set);
1433 	SIG_CANTMASK(set);
1434 	PROC_LOCK(p);
1435 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1436 	SIGSETOR(td->td_sigmask, set);
1437 	PROC_UNLOCK(p);
1438 	return (0);
1439 }
1440 
1441 #ifndef _SYS_SYSPROTO_H_
1442 struct osigsetmask_args {
1443 	int	mask;
1444 };
1445 #endif
1446 /*
1447  * MPSAFE
1448  */
1449 int
1450 osigsetmask(td, uap)
1451 	struct thread *td;
1452 	struct osigsetmask_args *uap;
1453 {
1454 	struct proc *p = td->td_proc;
1455 	sigset_t set;
1456 
1457 	OSIG2SIG(uap->mask, set);
1458 	SIG_CANTMASK(set);
1459 	PROC_LOCK(p);
1460 	SIG2OSIG(td->td_sigmask, td->td_retval[0]);
1461 	SIGSETLO(td->td_sigmask, set);
1462 	signotify(td);
1463 	PROC_UNLOCK(p);
1464 	return (0);
1465 }
1466 #endif /* COMPAT_43 */
1467 
1468 /*
1469  * Suspend calling thread until signal, providing mask to be set
1470  * in the meantime.
1471  */
1472 #ifndef _SYS_SYSPROTO_H_
1473 struct sigsuspend_args {
1474 	const sigset_t *sigmask;
1475 };
1476 #endif
1477 /*
1478  * MPSAFE
1479  */
1480 /* ARGSUSED */
1481 int
1482 sigsuspend(td, uap)
1483 	struct thread *td;
1484 	struct sigsuspend_args *uap;
1485 {
1486 	sigset_t mask;
1487 	int error;
1488 
1489 	error = copyin(uap->sigmask, &mask, sizeof(mask));
1490 	if (error)
1491 		return (error);
1492 	return (kern_sigsuspend(td, mask));
1493 }
1494 
1495 int
1496 kern_sigsuspend(struct thread *td, sigset_t mask)
1497 {
1498 	struct proc *p = td->td_proc;
1499 
1500 	/*
1501 	 * When returning from sigsuspend, we want
1502 	 * the old mask to be restored after the
1503 	 * signal handler has finished.  Thus, we
1504 	 * save it here and mark the sigacts structure
1505 	 * to indicate this.
1506 	 */
1507 	PROC_LOCK(p);
1508 	td->td_oldsigmask = td->td_sigmask;
1509 	td->td_pflags |= TDP_OLDMASK;
1510 	SIG_CANTMASK(mask);
1511 	td->td_sigmask = mask;
1512 	signotify(td);
1513 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause", 0) == 0)
1514 		/* void */;
1515 	PROC_UNLOCK(p);
1516 	/* always return EINTR rather than ERESTART... */
1517 	return (EINTR);
1518 }
1519 
1520 #ifdef COMPAT_43	/* XXX - COMPAT_FBSD3 */
1521 /*
1522  * Compatibility sigsuspend call for old binaries.  Note nonstandard calling
1523  * convention: libc stub passes mask, not pointer, to save a copyin.
1524  */
1525 #ifndef _SYS_SYSPROTO_H_
1526 struct osigsuspend_args {
1527 	osigset_t mask;
1528 };
1529 #endif
1530 /*
1531  * MPSAFE
1532  */
1533 /* ARGSUSED */
1534 int
1535 osigsuspend(td, uap)
1536 	struct thread *td;
1537 	struct osigsuspend_args *uap;
1538 {
1539 	struct proc *p = td->td_proc;
1540 	sigset_t mask;
1541 
1542 	PROC_LOCK(p);
1543 	td->td_oldsigmask = td->td_sigmask;
1544 	td->td_pflags |= TDP_OLDMASK;
1545 	OSIG2SIG(uap->mask, mask);
1546 	SIG_CANTMASK(mask);
1547 	SIGSETLO(td->td_sigmask, mask);
1548 	signotify(td);
1549 	while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "opause", 0) == 0)
1550 		/* void */;
1551 	PROC_UNLOCK(p);
1552 	/* always return EINTR rather than ERESTART... */
1553 	return (EINTR);
1554 }
1555 #endif /* COMPAT_43 */
1556 
1557 #if defined(COMPAT_43)
1558 #ifndef _SYS_SYSPROTO_H_
1559 struct osigstack_args {
1560 	struct	sigstack *nss;
1561 	struct	sigstack *oss;
1562 };
1563 #endif
1564 /*
1565  * MPSAFE
1566  */
1567 /* ARGSUSED */
1568 int
1569 osigstack(td, uap)
1570 	struct thread *td;
1571 	register struct osigstack_args *uap;
1572 {
1573 	struct sigstack nss, oss;
1574 	int error = 0;
1575 
1576 	if (uap->nss != NULL) {
1577 		error = copyin(uap->nss, &nss, sizeof(nss));
1578 		if (error)
1579 			return (error);
1580 	}
1581 	oss.ss_sp = td->td_sigstk.ss_sp;
1582 	oss.ss_onstack = sigonstack(cpu_getstack(td));
1583 	if (uap->nss != NULL) {
1584 		td->td_sigstk.ss_sp = nss.ss_sp;
1585 		td->td_sigstk.ss_size = 0;
1586 		td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK;
1587 		td->td_pflags |= TDP_ALTSTACK;
1588 	}
1589 	if (uap->oss != NULL)
1590 		error = copyout(&oss, uap->oss, sizeof(oss));
1591 
1592 	return (error);
1593 }
1594 #endif /* COMPAT_43 */
1595 
1596 #ifndef _SYS_SYSPROTO_H_
1597 struct sigaltstack_args {
1598 	stack_t	*ss;
1599 	stack_t	*oss;
1600 };
1601 #endif
1602 /*
1603  * MPSAFE
1604  */
1605 /* ARGSUSED */
1606 int
1607 sigaltstack(td, uap)
1608 	struct thread *td;
1609 	register struct sigaltstack_args *uap;
1610 {
1611 	stack_t ss, oss;
1612 	int error;
1613 
1614 	if (uap->ss != NULL) {
1615 		error = copyin(uap->ss, &ss, sizeof(ss));
1616 		if (error)
1617 			return (error);
1618 	}
1619 	error = kern_sigaltstack(td, (uap->ss != NULL) ? &ss : NULL,
1620 	    (uap->oss != NULL) ? &oss : NULL);
1621 	if (error)
1622 		return (error);
1623 	if (uap->oss != NULL)
1624 		error = copyout(&oss, uap->oss, sizeof(stack_t));
1625 	return (error);
1626 }
1627 
1628 int
1629 kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1630 {
1631 	struct proc *p = td->td_proc;
1632 	int oonstack;
1633 
1634 	oonstack = sigonstack(cpu_getstack(td));
1635 
1636 	if (oss != NULL) {
1637 		*oss = td->td_sigstk;
1638 		oss->ss_flags = (td->td_pflags & TDP_ALTSTACK)
1639 		    ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
1640 	}
1641 
1642 	if (ss != NULL) {
1643 		if (oonstack)
1644 			return (EPERM);
1645 		if ((ss->ss_flags & ~SS_DISABLE) != 0)
1646 			return (EINVAL);
1647 		if (!(ss->ss_flags & SS_DISABLE)) {
1648 			if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1649 				return (ENOMEM);
1650 
1651 			td->td_sigstk = *ss;
1652 			td->td_pflags |= TDP_ALTSTACK;
1653 		} else {
1654 			td->td_pflags &= ~TDP_ALTSTACK;
1655 		}
1656 	}
1657 	return (0);
1658 }
1659 
1660 /*
1661  * Common code for kill process group/broadcast kill.
1662  * cp is calling process.
1663  */
1664 static int
1665 killpg1(td, sig, pgid, all)
1666 	register struct thread *td;
1667 	int sig, pgid, all;
1668 {
1669 	register struct proc *p;
1670 	struct pgrp *pgrp;
1671 	int nfound = 0;
1672 
1673 	if (all) {
1674 		/*
1675 		 * broadcast
1676 		 */
1677 		sx_slock(&allproc_lock);
1678 		LIST_FOREACH(p, &allproc, p_list) {
1679 			PROC_LOCK(p);
1680 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1681 			    p == td->td_proc || p->p_state == PRS_NEW) {
1682 				PROC_UNLOCK(p);
1683 				continue;
1684 			}
1685 			if (p_cansignal(td, p, sig) == 0) {
1686 				nfound++;
1687 				if (sig)
1688 					psignal(p, sig);
1689 			}
1690 			PROC_UNLOCK(p);
1691 		}
1692 		sx_sunlock(&allproc_lock);
1693 	} else {
1694 		sx_slock(&proctree_lock);
1695 		if (pgid == 0) {
1696 			/*
1697 			 * zero pgid means send to my process group.
1698 			 */
1699 			pgrp = td->td_proc->p_pgrp;
1700 			PGRP_LOCK(pgrp);
1701 		} else {
1702 			pgrp = pgfind(pgid);
1703 			if (pgrp == NULL) {
1704 				sx_sunlock(&proctree_lock);
1705 				return (ESRCH);
1706 			}
1707 		}
1708 		sx_sunlock(&proctree_lock);
1709 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1710 			PROC_LOCK(p);
1711 			if (p->p_pid <= 1 || p->p_flag & P_SYSTEM ||
1712 				p->p_state == PRS_NEW ) {
1713 				PROC_UNLOCK(p);
1714 				continue;
1715 			}
1716 			if (p_cansignal(td, p, sig) == 0) {
1717 				nfound++;
1718 				if (sig)
1719 					psignal(p, sig);
1720 			}
1721 			PROC_UNLOCK(p);
1722 		}
1723 		PGRP_UNLOCK(pgrp);
1724 	}
1725 	return (nfound ? 0 : ESRCH);
1726 }
1727 
1728 #ifndef _SYS_SYSPROTO_H_
1729 struct kill_args {
1730 	int	pid;
1731 	int	signum;
1732 };
1733 #endif
1734 /*
1735  * MPSAFE
1736  */
1737 /* ARGSUSED */
1738 int
1739 kill(td, uap)
1740 	register struct thread *td;
1741 	register struct kill_args *uap;
1742 {
1743 	register struct proc *p;
1744 	int error;
1745 
1746 	AUDIT_ARG(signum, uap->signum);
1747 	if ((u_int)uap->signum > _SIG_MAXSIG)
1748 		return (EINVAL);
1749 
1750 	if (uap->pid > 0) {
1751 		/* kill single process */
1752 		if ((p = pfind(uap->pid)) == NULL) {
1753 			if ((p = zpfind(uap->pid)) == NULL)
1754 				return (ESRCH);
1755 		}
1756 		AUDIT_ARG(process, p);
1757 		error = p_cansignal(td, p, uap->signum);
1758 		if (error == 0 && uap->signum)
1759 			psignal(p, uap->signum);
1760 		PROC_UNLOCK(p);
1761 		return (error);
1762 	}
1763 	AUDIT_ARG(pid, uap->pid);
1764 	switch (uap->pid) {
1765 	case -1:		/* broadcast signal */
1766 		return (killpg1(td, uap->signum, 0, 1));
1767 	case 0:			/* signal own process group */
1768 		return (killpg1(td, uap->signum, 0, 0));
1769 	default:		/* negative explicit process group */
1770 		return (killpg1(td, uap->signum, -uap->pid, 0));
1771 	}
1772 	/* NOTREACHED */
1773 }
1774 
1775 #if defined(COMPAT_43)
1776 #ifndef _SYS_SYSPROTO_H_
1777 struct okillpg_args {
1778 	int	pgid;
1779 	int	signum;
1780 };
1781 #endif
1782 /*
1783  * MPSAFE
1784  */
1785 /* ARGSUSED */
1786 int
1787 okillpg(td, uap)
1788 	struct thread *td;
1789 	register struct okillpg_args *uap;
1790 {
1791 
1792 	AUDIT_ARG(signum, uap->signum);
1793 	AUDIT_ARG(pid, uap->pgid);
1794 	if ((u_int)uap->signum > _SIG_MAXSIG)
1795 		return (EINVAL);
1796 
1797 	return (killpg1(td, uap->signum, uap->pgid, 0));
1798 }
1799 #endif /* COMPAT_43 */
1800 
1801 #ifndef _SYS_SYSPROTO_H_
1802 struct sigqueue_args {
1803 	pid_t pid;
1804 	int signum;
1805 	/* union sigval */ void *value;
1806 };
1807 #endif
1808 
1809 int
1810 sigqueue(struct thread *td, struct sigqueue_args *uap)
1811 {
1812 	ksiginfo_t ksi;
1813 	struct proc *p;
1814 	int error;
1815 
1816 	if ((u_int)uap->signum > _SIG_MAXSIG)
1817 		return (EINVAL);
1818 
1819 	/*
1820 	 * Specification says sigqueue can only send signal to
1821 	 * single process.
1822 	 */
1823 	if (uap->pid <= 0)
1824 		return (EINVAL);
1825 
1826 	if ((p = pfind(uap->pid)) == NULL) {
1827 		if ((p = zpfind(uap->pid)) == NULL)
1828 			return (ESRCH);
1829 	}
1830 	error = p_cansignal(td, p, uap->signum);
1831 	if (error == 0 && uap->signum != 0) {
1832 		ksiginfo_init(&ksi);
1833 		ksi.ksi_signo = uap->signum;
1834 		ksi.ksi_code = SI_QUEUE;
1835 		ksi.ksi_pid = td->td_proc->p_pid;
1836 		ksi.ksi_uid = td->td_ucred->cr_ruid;
1837 		ksi.ksi_value.sival_ptr = uap->value;
1838 		error = tdsignal(p, NULL, ksi.ksi_signo, &ksi);
1839 	}
1840 	PROC_UNLOCK(p);
1841 	return (error);
1842 }
1843 
1844 /*
1845  * Send a signal to a process group.
1846  */
1847 void
1848 gsignal(pgid, sig)
1849 	int pgid, sig;
1850 {
1851 	struct pgrp *pgrp;
1852 
1853 	if (pgid != 0) {
1854 		sx_slock(&proctree_lock);
1855 		pgrp = pgfind(pgid);
1856 		sx_sunlock(&proctree_lock);
1857 		if (pgrp != NULL) {
1858 			pgsignal(pgrp, sig, 0);
1859 			PGRP_UNLOCK(pgrp);
1860 		}
1861 	}
1862 }
1863 
1864 /*
1865  * Send a signal to a process group.  If checktty is 1,
1866  * limit to members which have a controlling terminal.
1867  */
1868 void
1869 pgsignal(pgrp, sig, checkctty)
1870 	struct pgrp *pgrp;
1871 	int sig, checkctty;
1872 {
1873 	register struct proc *p;
1874 
1875 	if (pgrp) {
1876 		PGRP_LOCK_ASSERT(pgrp, MA_OWNED);
1877 		LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1878 			PROC_LOCK(p);
1879 			if (checkctty == 0 || p->p_flag & P_CONTROLT)
1880 				psignal(p, sig);
1881 			PROC_UNLOCK(p);
1882 		}
1883 	}
1884 }
1885 
1886 /*
1887  * Send a signal caused by a trap to the current thread.
1888  * If it will be caught immediately, deliver it with correct code.
1889  * Otherwise, post it normally.
1890  *
1891  * MPSAFE
1892  */
1893 void
1894 trapsignal(struct thread *td, ksiginfo_t *ksi)
1895 {
1896 	struct sigacts *ps;
1897 	struct proc *p;
1898 #ifdef KSE
1899 	int error;
1900 #endif
1901 	int sig;
1902 	int code;
1903 
1904 	p = td->td_proc;
1905 	sig = ksi->ksi_signo;
1906 	code = ksi->ksi_code;
1907 	KASSERT(_SIG_VALID(sig), ("invalid signal"));
1908 
1909 #ifdef KSE
1910 	if (td->td_pflags & TDP_SA) {
1911 		if (td->td_mailbox == NULL)
1912 			thread_user_enter(td);
1913 		PROC_LOCK(p);
1914 		SIGDELSET(td->td_sigmask, sig);
1915 		mtx_lock_spin(&sched_lock);
1916 		/*
1917 		 * Force scheduling an upcall, so UTS has chance to
1918 		 * process the signal before thread runs again in
1919 		 * userland.
1920 		 */
1921 		if (td->td_upcall)
1922 			td->td_upcall->ku_flags |= KUF_DOUPCALL;
1923 		mtx_unlock_spin(&sched_lock);
1924 	} else {
1925 		PROC_LOCK(p);
1926 	}
1927 #else
1928 	PROC_LOCK(p);
1929 #endif
1930 	ps = p->p_sigacts;
1931 	mtx_lock(&ps->ps_mtx);
1932 	if ((p->p_flag & P_TRACED) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig) &&
1933 	    !SIGISMEMBER(td->td_sigmask, sig)) {
1934 		p->p_stats->p_ru.ru_nsignals++;
1935 #ifdef KTRACE
1936 		if (KTRPOINT(curthread, KTR_PSIG))
1937 			ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)],
1938 			    &td->td_sigmask, code);
1939 #endif
1940 #ifdef KSE
1941 		if (!(td->td_pflags & TDP_SA))
1942 			(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1943 				ksi, &td->td_sigmask);
1944 #else
1945 		(*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)],
1946 				ksi, &td->td_sigmask);
1947 #endif
1948 #ifdef KSE
1949 		else if (td->td_mailbox == NULL) {
1950 			mtx_unlock(&ps->ps_mtx);
1951 			/* UTS caused a sync signal */
1952 			p->p_code = code;	/* XXX for core dump/debugger */
1953 			p->p_sig = sig;		/* XXX to verify code */
1954 			sigexit(td, sig);
1955 		} else {
1956 			mtx_unlock(&ps->ps_mtx);
1957 			SIGADDSET(td->td_sigmask, sig);
1958 			PROC_UNLOCK(p);
1959 			error = copyout(&ksi->ksi_info, &td->td_mailbox->tm_syncsig,
1960 			    sizeof(siginfo_t));
1961 			PROC_LOCK(p);
1962 			/* UTS memory corrupted */
1963 			if (error)
1964 				sigexit(td, SIGSEGV);
1965 			mtx_lock(&ps->ps_mtx);
1966 		}
1967 #endif
1968 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
1969 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
1970 			SIGADDSET(td->td_sigmask, sig);
1971 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
1972 			/*
1973 			 * See kern_sigaction() for origin of this code.
1974 			 */
1975 			SIGDELSET(ps->ps_sigcatch, sig);
1976 			if (sig != SIGCONT &&
1977 			    sigprop(sig) & SA_IGNORE)
1978 				SIGADDSET(ps->ps_sigignore, sig);
1979 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1980 		}
1981 		mtx_unlock(&ps->ps_mtx);
1982 	} else {
1983 		/*
1984 		 * Avoid a possible infinite loop if the thread
1985 		 * masking the signal or process is ignoring the
1986 		 * signal.
1987 		 */
1988 		if (kern_forcesigexit &&
1989 		    (SIGISMEMBER(td->td_sigmask, sig) ||
1990 		     ps->ps_sigact[_SIG_IDX(sig)] == SIG_IGN)) {
1991 			SIGDELSET(td->td_sigmask, sig);
1992 			SIGDELSET(ps->ps_sigcatch, sig);
1993 			SIGDELSET(ps->ps_sigignore, sig);
1994 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
1995 		}
1996 		mtx_unlock(&ps->ps_mtx);
1997 		p->p_code = code;	/* XXX for core dump/debugger */
1998 		p->p_sig = sig;		/* XXX to verify code */
1999 		tdsignal(p, td, sig, ksi);
2000 	}
2001 	PROC_UNLOCK(p);
2002 }
2003 
2004 static struct thread *
2005 sigtd(struct proc *p, int sig, int prop)
2006 {
2007 	struct thread *td, *signal_td;
2008 
2009 	PROC_LOCK_ASSERT(p, MA_OWNED);
2010 
2011 	/*
2012 	 * Check if current thread can handle the signal without
2013 	 * switching conetxt to another thread.
2014 	 */
2015 	if (curproc == p && !SIGISMEMBER(curthread->td_sigmask, sig))
2016 		return (curthread);
2017 	signal_td = NULL;
2018 	mtx_lock_spin(&sched_lock);
2019 	FOREACH_THREAD_IN_PROC(p, td) {
2020 		if (!SIGISMEMBER(td->td_sigmask, sig)) {
2021 			signal_td = td;
2022 			break;
2023 		}
2024 	}
2025 	if (signal_td == NULL)
2026 		signal_td = FIRST_THREAD_IN_PROC(p);
2027 	mtx_unlock_spin(&sched_lock);
2028 	return (signal_td);
2029 }
2030 
2031 /*
2032  * Send the signal to the process.  If the signal has an action, the action
2033  * is usually performed by the target process rather than the caller; we add
2034  * the signal to the set of pending signals for the process.
2035  *
2036  * Exceptions:
2037  *   o When a stop signal is sent to a sleeping process that takes the
2038  *     default action, the process is stopped without awakening it.
2039  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
2040  *     regardless of the signal action (eg, blocked or ignored).
2041  *
2042  * Other ignored signals are discarded immediately.
2043  *
2044  * MPSAFE
2045  */
2046 void
2047 psignal(struct proc *p, int sig)
2048 {
2049 	(void) tdsignal(p, NULL, sig, NULL);
2050 }
2051 
2052 int
2053 psignal_event(struct proc *p, struct sigevent *sigev, ksiginfo_t *ksi)
2054 {
2055 	struct thread *td = NULL;
2056 
2057 	PROC_LOCK_ASSERT(p, MA_OWNED);
2058 
2059 	KASSERT(!KSI_ONQ(ksi), ("psignal_event: ksi on queue"));
2060 
2061 	/*
2062 	 * ksi_code and other fields should be set before
2063 	 * calling this function.
2064 	 */
2065 	ksi->ksi_signo = sigev->sigev_signo;
2066 	ksi->ksi_value = sigev->sigev_value;
2067 	if (sigev->sigev_notify == SIGEV_THREAD_ID) {
2068 		td = thread_find(p, sigev->sigev_notify_thread_id);
2069 		if (td == NULL)
2070 			return (ESRCH);
2071 	}
2072 	return (tdsignal(p, td, ksi->ksi_signo, ksi));
2073 }
2074 
2075 /*
2076  * MPSAFE
2077  */
2078 int
2079 tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2080 {
2081 #ifdef KSE
2082 	sigset_t saved;
2083 	int ret;
2084 
2085 	if (p->p_flag & P_SA)
2086 		saved = p->p_sigqueue.sq_signals;
2087 	ret = do_tdsignal(p, td, sig, ksi);
2088 	if ((p->p_flag & P_SA) && !(p->p_flag & P_SIGEVENT)) {
2089 		if (!SIGSETEQ(saved, p->p_sigqueue.sq_signals)) {
2090 			/* pending set changed */
2091 			p->p_flag |= P_SIGEVENT;
2092 			wakeup(&p->p_siglist);
2093 		}
2094 	}
2095 	return (ret);
2096 }
2097 
2098 static int
2099 do_tdsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2100 {
2101 #endif
2102 	sig_t action;
2103 	sigqueue_t *sigqueue;
2104 	int prop;
2105 	struct sigacts *ps;
2106 	int intrval;
2107 	int ret = 0;
2108 
2109 	PROC_LOCK_ASSERT(p, MA_OWNED);
2110 
2111 	if (!_SIG_VALID(sig))
2112 #ifdef KSE
2113 		panic("do_tdsignal(): invalid signal");
2114 #else
2115 		panic("tdsignal(): invalid signal");
2116 #endif
2117 
2118 #ifdef KSE
2119 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("do_tdsignal: ksi on queue"));
2120 #else
2121 	KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("tdsignal: ksi on queue"));
2122 #endif
2123 
2124 	/*
2125 	 * IEEE Std 1003.1-2001: return success when killing a zombie.
2126 	 */
2127 	if (p->p_state == PRS_ZOMBIE) {
2128 		if (ksi && (ksi->ksi_flags & KSI_INS))
2129 			ksiginfo_tryfree(ksi);
2130 		return (ret);
2131 	}
2132 
2133 	ps = p->p_sigacts;
2134 	KNOTE_LOCKED(&p->p_klist, NOTE_SIGNAL | sig);
2135 	prop = sigprop(sig);
2136 
2137 	/*
2138 	 * If the signal is blocked and not destined for this thread, then
2139 	 * assign it to the process so that we can find it later in the first
2140 	 * thread that unblocks it.  Otherwise, assign it to this thread now.
2141 	 */
2142 	if (td == NULL) {
2143 		td = sigtd(p, sig, prop);
2144 		if (SIGISMEMBER(td->td_sigmask, sig))
2145 			sigqueue = &p->p_sigqueue;
2146 		else
2147 			sigqueue = &td->td_sigqueue;
2148 	} else {
2149 		KASSERT(td->td_proc == p, ("invalid thread"));
2150 		sigqueue = &td->td_sigqueue;
2151 	}
2152 
2153 	/*
2154 	 * If the signal is being ignored,
2155 	 * then we forget about it immediately.
2156 	 * (Note: we don't set SIGCONT in ps_sigignore,
2157 	 * and if it is set to SIG_IGN,
2158 	 * action will be SIG_DFL here.)
2159 	 */
2160 	mtx_lock(&ps->ps_mtx);
2161 	if (SIGISMEMBER(ps->ps_sigignore, sig)) {
2162 		mtx_unlock(&ps->ps_mtx);
2163 		if (ksi && (ksi->ksi_flags & KSI_INS))
2164 			ksiginfo_tryfree(ksi);
2165 		return (ret);
2166 	}
2167 	if (SIGISMEMBER(td->td_sigmask, sig))
2168 		action = SIG_HOLD;
2169 	else if (SIGISMEMBER(ps->ps_sigcatch, sig))
2170 		action = SIG_CATCH;
2171 	else
2172 		action = SIG_DFL;
2173 	if (SIGISMEMBER(ps->ps_sigintr, sig))
2174 		intrval = EINTR;
2175 	else
2176 		intrval = ERESTART;
2177 	mtx_unlock(&ps->ps_mtx);
2178 
2179 	if (prop & SA_CONT)
2180 		sigqueue_delete_stopmask_proc(p);
2181 	else if (prop & SA_STOP) {
2182 		/*
2183 		 * If sending a tty stop signal to a member of an orphaned
2184 		 * process group, discard the signal here if the action
2185 		 * is default; don't stop the process below if sleeping,
2186 		 * and don't clear any pending SIGCONT.
2187 		 */
2188 		if ((prop & SA_TTYSTOP) &&
2189 		    (p->p_pgrp->pg_jobc == 0) &&
2190 		    (action == SIG_DFL)) {
2191 			if (ksi && (ksi->ksi_flags & KSI_INS))
2192 				ksiginfo_tryfree(ksi);
2193 			return (ret);
2194 		}
2195 		sigqueue_delete_proc(p, SIGCONT);
2196 		if (p->p_flag & P_CONTINUED) {
2197 			p->p_flag &= ~P_CONTINUED;
2198 			PROC_LOCK(p->p_pptr);
2199 			sigqueue_take(p->p_ksi);
2200 			PROC_UNLOCK(p->p_pptr);
2201 		}
2202 	}
2203 
2204 	ret = sigqueue_add(sigqueue, sig, ksi);
2205 	if (ret != 0)
2206 		return (ret);
2207 	signotify(td);
2208 	/*
2209 	 * Defer further processing for signals which are held,
2210 	 * except that stopped processes must be continued by SIGCONT.
2211 	 */
2212 	if (action == SIG_HOLD &&
2213 	    !((prop & SA_CONT) && (p->p_flag & P_STOPPED_SIG)))
2214 		return (ret);
2215 	/*
2216 	 * SIGKILL: Remove procfs STOPEVENTs.
2217 	 */
2218 	if (sig == SIGKILL) {
2219 		/* from procfs_ioctl.c: PIOCBIC */
2220 		p->p_stops = 0;
2221 		/* from procfs_ioctl.c: PIOCCONT */
2222 		p->p_step = 0;
2223 		wakeup(&p->p_step);
2224 	}
2225 	/*
2226 	 * Some signals have a process-wide effect and a per-thread
2227 	 * component.  Most processing occurs when the process next
2228 	 * tries to cross the user boundary, however there are some
2229 	 * times when processing needs to be done immediatly, such as
2230 	 * waking up threads so that they can cross the user boundary.
2231 	 * We try do the per-process part here.
2232 	 */
2233 	if (P_SHOULDSTOP(p)) {
2234 		/*
2235 		 * The process is in stopped mode. All the threads should be
2236 		 * either winding down or already on the suspended queue.
2237 		 */
2238 		if (p->p_flag & P_TRACED) {
2239 			/*
2240 			 * The traced process is already stopped,
2241 			 * so no further action is necessary.
2242 			 * No signal can restart us.
2243 			 */
2244 			goto out;
2245 		}
2246 
2247 		if (sig == SIGKILL) {
2248 			/*
2249 			 * SIGKILL sets process running.
2250 			 * It will die elsewhere.
2251 			 * All threads must be restarted.
2252 			 */
2253 			p->p_flag &= ~P_STOPPED_SIG;
2254 			goto runfast;
2255 		}
2256 
2257 		if (prop & SA_CONT) {
2258 			/*
2259 			 * If SIGCONT is default (or ignored), we continue the
2260 			 * process but don't leave the signal in sigqueue as
2261 			 * it has no further action.  If SIGCONT is held, we
2262 			 * continue the process and leave the signal in
2263 			 * sigqueue.  If the process catches SIGCONT, let it
2264 			 * handle the signal itself.  If it isn't waiting on
2265 			 * an event, it goes back to run state.
2266 			 * Otherwise, process goes back to sleep state.
2267 			 */
2268 			p->p_flag &= ~P_STOPPED_SIG;
2269 			if (p->p_numthreads == p->p_suspcount) {
2270 				p->p_flag |= P_CONTINUED;
2271 				p->p_xstat = SIGCONT;
2272 				PROC_LOCK(p->p_pptr);
2273 				childproc_continued(p);
2274 				PROC_UNLOCK(p->p_pptr);
2275 			}
2276 			if (action == SIG_DFL) {
2277 				sigqueue_delete(sigqueue, sig);
2278 			} else if (action == SIG_CATCH) {
2279 #ifdef KSE
2280 				/*
2281 				 * The process wants to catch it so it needs
2282 				 * to run at least one thread, but which one?
2283 				 * It would seem that the answer would be to
2284 				 * run an upcall in the next KSE to run, and
2285 				 * deliver the signal that way. In a NON KSE
2286 				 * process, we need to make sure that the
2287 				 * single thread is runnable asap.
2288 				 * XXXKSE for now however, make them all run.
2289 				 */
2290 #else
2291 				/*
2292 				 * The process wants to catch it so it needs
2293 				 * to run at least one thread, but which one?
2294 				 */
2295 #endif
2296 				goto runfast;
2297 			}
2298 			/*
2299 			 * The signal is not ignored or caught.
2300 			 */
2301 			mtx_lock_spin(&sched_lock);
2302 			thread_unsuspend(p);
2303 			mtx_unlock_spin(&sched_lock);
2304 			goto out;
2305 		}
2306 
2307 		if (prop & SA_STOP) {
2308 			/*
2309 			 * Already stopped, don't need to stop again
2310 			 * (If we did the shell could get confused).
2311 			 * Just make sure the signal STOP bit set.
2312 			 */
2313 			p->p_flag |= P_STOPPED_SIG;
2314 			sigqueue_delete(sigqueue, sig);
2315 			goto out;
2316 		}
2317 
2318 		/*
2319 		 * All other kinds of signals:
2320 		 * If a thread is sleeping interruptibly, simulate a
2321 		 * wakeup so that when it is continued it will be made
2322 		 * runnable and can look at the signal.  However, don't make
2323 		 * the PROCESS runnable, leave it stopped.
2324 		 * It may run a bit until it hits a thread_suspend_check().
2325 		 */
2326 		mtx_lock_spin(&sched_lock);
2327 		if (TD_ON_SLEEPQ(td) && (td->td_flags & TDF_SINTR))
2328 			sleepq_abort(td, intrval);
2329 		mtx_unlock_spin(&sched_lock);
2330 		goto out;
2331 		/*
2332 		 * Mutexes are short lived. Threads waiting on them will
2333 		 * hit thread_suspend_check() soon.
2334 		 */
2335 	} else if (p->p_state == PRS_NORMAL) {
2336 		if (p->p_flag & P_TRACED || action == SIG_CATCH) {
2337 			mtx_lock_spin(&sched_lock);
2338 			tdsigwakeup(td, sig, action, intrval);
2339 			mtx_unlock_spin(&sched_lock);
2340 			goto out;
2341 		}
2342 
2343 		MPASS(action == SIG_DFL);
2344 
2345 		if (prop & SA_STOP) {
2346 			if (p->p_flag & P_PPWAIT)
2347 				goto out;
2348 			p->p_flag |= P_STOPPED_SIG;
2349 			p->p_xstat = sig;
2350 			mtx_lock_spin(&sched_lock);
2351 			sig_suspend_threads(td, p, 1);
2352 			if (p->p_numthreads == p->p_suspcount) {
2353 				/*
2354 				 * only thread sending signal to another
2355 				 * process can reach here, if thread is sending
2356 				 * signal to its process, because thread does
2357 				 * not suspend itself here, p_numthreads
2358 				 * should never be equal to p_suspcount.
2359 				 */
2360 				thread_stopped(p);
2361 				mtx_unlock_spin(&sched_lock);
2362 				sigqueue_delete_proc(p, p->p_xstat);
2363 			} else
2364 				mtx_unlock_spin(&sched_lock);
2365 			goto out;
2366 		}
2367 		else
2368 			goto runfast;
2369 		/* NOTREACHED */
2370 	} else {
2371 		/* Not in "NORMAL" state. discard the signal. */
2372 		sigqueue_delete(sigqueue, sig);
2373 		goto out;
2374 	}
2375 
2376 	/*
2377 	 * The process is not stopped so we need to apply the signal to all the
2378 	 * running threads.
2379 	 */
2380 
2381 runfast:
2382 	mtx_lock_spin(&sched_lock);
2383 	tdsigwakeup(td, sig, action, intrval);
2384 	thread_unsuspend(p);
2385 	mtx_unlock_spin(&sched_lock);
2386 out:
2387 	/* If we jump here, sched_lock should not be owned. */
2388 	mtx_assert(&sched_lock, MA_NOTOWNED);
2389 	return (ret);
2390 }
2391 
2392 /*
2393  * The force of a signal has been directed against a single
2394  * thread.  We need to see what we can do about knocking it
2395  * out of any sleep it may be in etc.
2396  */
2397 static void
2398 tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2399 {
2400 	struct proc *p = td->td_proc;
2401 	register int prop;
2402 
2403 	PROC_LOCK_ASSERT(p, MA_OWNED);
2404 	mtx_assert(&sched_lock, MA_OWNED);
2405 	prop = sigprop(sig);
2406 
2407 	/*
2408 	 * Bring the priority of a thread up if we want it to get
2409 	 * killed in this lifetime.
2410 	 */
2411 	if (action == SIG_DFL && (prop & SA_KILL)) {
2412 		if (p->p_nice > 0)
2413 			sched_nice(td->td_proc, 0);
2414 		if (td->td_priority > PUSER)
2415 			sched_prio(td, PUSER);
2416 	}
2417 
2418 	if (TD_ON_SLEEPQ(td)) {
2419 		/*
2420 		 * If thread is sleeping uninterruptibly
2421 		 * we can't interrupt the sleep... the signal will
2422 		 * be noticed when the process returns through
2423 		 * trap() or syscall().
2424 		 */
2425 		if ((td->td_flags & TDF_SINTR) == 0)
2426 			return;
2427 		/*
2428 		 * If SIGCONT is default (or ignored) and process is
2429 		 * asleep, we are finished; the process should not
2430 		 * be awakened.
2431 		 */
2432 		if ((prop & SA_CONT) && action == SIG_DFL) {
2433 			mtx_unlock_spin(&sched_lock);
2434 			sigqueue_delete(&p->p_sigqueue, sig);
2435 			/*
2436 			 * It may be on either list in this state.
2437 			 * Remove from both for now.
2438 			 */
2439 			sigqueue_delete(&td->td_sigqueue, sig);
2440 			mtx_lock_spin(&sched_lock);
2441 			return;
2442 		}
2443 
2444 		/*
2445 		 * Give low priority threads a better chance to run.
2446 		 */
2447 		if (td->td_priority > PUSER)
2448 			sched_prio(td, PUSER);
2449 
2450 		sleepq_abort(td, intrval);
2451 	} else {
2452 		/*
2453 		 * Other states do nothing with the signal immediately,
2454 		 * other than kicking ourselves if we are running.
2455 		 * It will either never be noticed, or noticed very soon.
2456 		 */
2457 #ifdef SMP
2458 		if (TD_IS_RUNNING(td) && td != curthread)
2459 			forward_signal(td);
2460 #endif
2461 	}
2462 }
2463 
2464 static void
2465 sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2466 {
2467 	struct thread *td2;
2468 
2469 	PROC_LOCK_ASSERT(p, MA_OWNED);
2470 	mtx_assert(&sched_lock, MA_OWNED);
2471 
2472 	FOREACH_THREAD_IN_PROC(p, td2) {
2473 		if ((TD_IS_SLEEPING(td2) || TD_IS_SWAPPED(td2)) &&
2474 		    (td2->td_flags & TDF_SINTR) &&
2475 		    !TD_IS_SUSPENDED(td2)) {
2476 			thread_suspend_one(td2);
2477 		} else {
2478 			if (sending || td != td2)
2479 				td2->td_flags |= TDF_ASTPENDING;
2480 #ifdef SMP
2481 			if (TD_IS_RUNNING(td2) && td2 != td)
2482 				forward_signal(td2);
2483 #endif
2484 		}
2485 	}
2486 }
2487 
2488 int
2489 ptracestop(struct thread *td, int sig)
2490 {
2491 	struct proc *p = td->td_proc;
2492 
2493 	PROC_LOCK_ASSERT(p, MA_OWNED);
2494 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2495 	    &p->p_mtx.mtx_object, "Stopping for traced signal");
2496 
2497 	mtx_lock_spin(&sched_lock);
2498 	td->td_flags |= TDF_XSIG;
2499 	mtx_unlock_spin(&sched_lock);
2500 	td->td_xsig = sig;
2501 	while ((p->p_flag & P_TRACED) && (td->td_flags & TDF_XSIG)) {
2502 		if (p->p_flag & P_SINGLE_EXIT) {
2503 			mtx_lock_spin(&sched_lock);
2504 			td->td_flags &= ~TDF_XSIG;
2505 			mtx_unlock_spin(&sched_lock);
2506 			return (sig);
2507 		}
2508 		/*
2509 		 * Just make wait() to work, the last stopped thread
2510 		 * will win.
2511 		 */
2512 		p->p_xstat = sig;
2513 		p->p_xthread = td;
2514 		p->p_flag |= (P_STOPPED_SIG|P_STOPPED_TRACE);
2515 		mtx_lock_spin(&sched_lock);
2516 		sig_suspend_threads(td, p, 0);
2517 stopme:
2518 		thread_stopped(p);
2519 		thread_suspend_one(td);
2520 		PROC_UNLOCK(p);
2521 		DROP_GIANT();
2522 		mi_switch(SW_VOL, NULL);
2523 		mtx_unlock_spin(&sched_lock);
2524 		PICKUP_GIANT();
2525 		PROC_LOCK(p);
2526 		if (!(p->p_flag & P_TRACED))
2527 			break;
2528 		if (td->td_flags & TDF_DBSUSPEND) {
2529 			if (p->p_flag & P_SINGLE_EXIT)
2530 				break;
2531 			mtx_lock_spin(&sched_lock);
2532 			goto stopme;
2533 		}
2534 	}
2535 	return (td->td_xsig);
2536 }
2537 
2538 /*
2539  * If the current process has received a signal (should be caught or cause
2540  * termination, should interrupt current syscall), return the signal number.
2541  * Stop signals with default action are processed immediately, then cleared;
2542  * they aren't returned.  This is checked after each entry to the system for
2543  * a syscall or trap (though this can usually be done without calling issignal
2544  * by checking the pending signal masks in cursig.) The normal call
2545  * sequence is
2546  *
2547  *	while (sig = cursig(curthread))
2548  *		postsig(sig);
2549  */
2550 static int
2551 issignal(td)
2552 	struct thread *td;
2553 {
2554 	struct proc *p;
2555 	struct sigacts *ps;
2556 	sigset_t sigpending;
2557 	int sig, prop, newsig;
2558 
2559 	p = td->td_proc;
2560 	ps = p->p_sigacts;
2561 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2562 	PROC_LOCK_ASSERT(p, MA_OWNED);
2563 	for (;;) {
2564 		int traced = (p->p_flag & P_TRACED) || (p->p_stops & S_SIG);
2565 
2566 		sigpending = td->td_sigqueue.sq_signals;
2567 		SIGSETNAND(sigpending, td->td_sigmask);
2568 
2569 		if (p->p_flag & P_PPWAIT)
2570 			SIG_STOPSIGMASK(sigpending);
2571 		if (SIGISEMPTY(sigpending))	/* no signal to send */
2572 			return (0);
2573 		sig = sig_ffs(&sigpending);
2574 
2575 		if (p->p_stops & S_SIG) {
2576 			mtx_unlock(&ps->ps_mtx);
2577 			stopevent(p, S_SIG, sig);
2578 			mtx_lock(&ps->ps_mtx);
2579 		}
2580 
2581 		/*
2582 		 * We should see pending but ignored signals
2583 		 * only if P_TRACED was on when they were posted.
2584 		 */
2585 		if (SIGISMEMBER(ps->ps_sigignore, sig) && (traced == 0)) {
2586 			sigqueue_delete(&td->td_sigqueue, sig);
2587 #ifdef KSE
2588 			if (td->td_pflags & TDP_SA)
2589 				SIGADDSET(td->td_sigmask, sig);
2590 #endif
2591 			continue;
2592 		}
2593 		if (p->p_flag & P_TRACED && (p->p_flag & P_PPWAIT) == 0) {
2594 			/*
2595 			 * If traced, always stop.
2596 			 */
2597 			mtx_unlock(&ps->ps_mtx);
2598 			newsig = ptracestop(td, sig);
2599 			mtx_lock(&ps->ps_mtx);
2600 
2601 #ifdef KSE
2602 			if (td->td_pflags & TDP_SA)
2603 				SIGADDSET(td->td_sigmask, sig);
2604 
2605 #endif
2606 			if (sig != newsig) {
2607 				ksiginfo_t ksi;
2608 				/*
2609 				 * clear old signal.
2610 				 * XXX shrug off debugger, it causes siginfo to
2611 				 * be thrown away.
2612 				 */
2613 				sigqueue_get(&td->td_sigqueue, sig, &ksi);
2614 
2615 				/*
2616 				 * If parent wants us to take the signal,
2617 				 * then it will leave it in p->p_xstat;
2618 				 * otherwise we just look for signals again.
2619 			 	*/
2620 				if (newsig == 0)
2621 					continue;
2622 				sig = newsig;
2623 
2624 				/*
2625 				 * Put the new signal into td_sigqueue. If the
2626 				 * signal is being masked, look for other signals.
2627 				 */
2628 				SIGADDSET(td->td_sigqueue.sq_signals, sig);
2629 #ifdef KSE
2630 				if (td->td_pflags & TDP_SA)
2631 					SIGDELSET(td->td_sigmask, sig);
2632 #endif
2633 				if (SIGISMEMBER(td->td_sigmask, sig))
2634 					continue;
2635 				signotify(td);
2636 			}
2637 
2638 			/*
2639 			 * If the traced bit got turned off, go back up
2640 			 * to the top to rescan signals.  This ensures
2641 			 * that p_sig* and p_sigact are consistent.
2642 			 */
2643 			if ((p->p_flag & P_TRACED) == 0)
2644 				continue;
2645 		}
2646 
2647 		prop = sigprop(sig);
2648 
2649 		/*
2650 		 * Decide whether the signal should be returned.
2651 		 * Return the signal's number, or fall through
2652 		 * to clear it from the pending mask.
2653 		 */
2654 		switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)]) {
2655 
2656 		case (intptr_t)SIG_DFL:
2657 			/*
2658 			 * Don't take default actions on system processes.
2659 			 */
2660 			if (p->p_pid <= 1) {
2661 #ifdef DIAGNOSTIC
2662 				/*
2663 				 * Are you sure you want to ignore SIGSEGV
2664 				 * in init? XXX
2665 				 */
2666 				printf("Process (pid %lu) got signal %d\n",
2667 					(u_long)p->p_pid, sig);
2668 #endif
2669 				break;		/* == ignore */
2670 			}
2671 			/*
2672 			 * If there is a pending stop signal to process
2673 			 * with default action, stop here,
2674 			 * then clear the signal.  However,
2675 			 * if process is member of an orphaned
2676 			 * process group, ignore tty stop signals.
2677 			 */
2678 			if (prop & SA_STOP) {
2679 				if (p->p_flag & P_TRACED ||
2680 		    		    (p->p_pgrp->pg_jobc == 0 &&
2681 				     prop & SA_TTYSTOP))
2682 					break;	/* == ignore */
2683 				mtx_unlock(&ps->ps_mtx);
2684 				WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,
2685 				    &p->p_mtx.mtx_object, "Catching SIGSTOP");
2686 				p->p_flag |= P_STOPPED_SIG;
2687 				p->p_xstat = sig;
2688 				mtx_lock_spin(&sched_lock);
2689 				sig_suspend_threads(td, p, 0);
2690 				thread_stopped(p);
2691 				thread_suspend_one(td);
2692 				PROC_UNLOCK(p);
2693 				DROP_GIANT();
2694 				mi_switch(SW_INVOL, NULL);
2695 				mtx_unlock_spin(&sched_lock);
2696 				PICKUP_GIANT();
2697 				PROC_LOCK(p);
2698 				mtx_lock(&ps->ps_mtx);
2699 				break;
2700 			} else if (prop & SA_IGNORE) {
2701 				/*
2702 				 * Except for SIGCONT, shouldn't get here.
2703 				 * Default action is to ignore; drop it.
2704 				 */
2705 				break;		/* == ignore */
2706 			} else
2707 				return (sig);
2708 			/*NOTREACHED*/
2709 
2710 		case (intptr_t)SIG_IGN:
2711 			/*
2712 			 * Masking above should prevent us ever trying
2713 			 * to take action on an ignored signal other
2714 			 * than SIGCONT, unless process is traced.
2715 			 */
2716 			if ((prop & SA_CONT) == 0 &&
2717 			    (p->p_flag & P_TRACED) == 0)
2718 				printf("issignal\n");
2719 			break;		/* == ignore */
2720 
2721 		default:
2722 			/*
2723 			 * This signal has an action, let
2724 			 * postsig() process it.
2725 			 */
2726 			return (sig);
2727 		}
2728 		sigqueue_delete(&td->td_sigqueue, sig);		/* take the signal! */
2729 	}
2730 	/* NOTREACHED */
2731 }
2732 
2733 /*
2734  * MPSAFE
2735  */
2736 void
2737 thread_stopped(struct proc *p)
2738 {
2739 	int n;
2740 
2741 	PROC_LOCK_ASSERT(p, MA_OWNED);
2742 	mtx_assert(&sched_lock, MA_OWNED);
2743 	n = p->p_suspcount;
2744 	if (p == curproc)
2745 		n++;
2746 	if ((p->p_flag & P_STOPPED_SIG) && (n == p->p_numthreads)) {
2747 		mtx_unlock_spin(&sched_lock);
2748 		p->p_flag &= ~P_WAITED;
2749 		PROC_LOCK(p->p_pptr);
2750 		childproc_stopped(p, (p->p_flag & P_TRACED) ?
2751 			CLD_TRAPPED : CLD_STOPPED);
2752 		PROC_UNLOCK(p->p_pptr);
2753 		mtx_lock_spin(&sched_lock);
2754 	}
2755 }
2756 
2757 /*
2758  * Take the action for the specified signal
2759  * from the current set of pending signals.
2760  */
2761 void
2762 postsig(sig)
2763 	register int sig;
2764 {
2765 	struct thread *td = curthread;
2766 	register struct proc *p = td->td_proc;
2767 	struct sigacts *ps;
2768 	sig_t action;
2769 	ksiginfo_t ksi;
2770 	sigset_t returnmask;
2771 	int code;
2772 
2773 	KASSERT(sig != 0, ("postsig"));
2774 
2775 	PROC_LOCK_ASSERT(p, MA_OWNED);
2776 	ps = p->p_sigacts;
2777 	mtx_assert(&ps->ps_mtx, MA_OWNED);
2778 	ksiginfo_init(&ksi);
2779 	sigqueue_get(&td->td_sigqueue, sig, &ksi);
2780 	ksi.ksi_signo = sig;
2781 	if (ksi.ksi_code == SI_TIMER)
2782 		itimer_accept(p, ksi.ksi_timerid, &ksi);
2783 	action = ps->ps_sigact[_SIG_IDX(sig)];
2784 #ifdef KTRACE
2785 	if (KTRPOINT(td, KTR_PSIG))
2786 		ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK ?
2787 		    &td->td_oldsigmask : &td->td_sigmask, 0);
2788 #endif
2789 	if (p->p_stops & S_SIG) {
2790 		mtx_unlock(&ps->ps_mtx);
2791 		stopevent(p, S_SIG, sig);
2792 		mtx_lock(&ps->ps_mtx);
2793 	}
2794 
2795 #ifdef KSE
2796 	if (!(td->td_pflags & TDP_SA) && action == SIG_DFL) {
2797 #else
2798 	if (action == SIG_DFL) {
2799 #endif
2800 		/*
2801 		 * Default action, where the default is to kill
2802 		 * the process.  (Other cases were ignored above.)
2803 		 */
2804 		mtx_unlock(&ps->ps_mtx);
2805 		sigexit(td, sig);
2806 		/* NOTREACHED */
2807 	} else {
2808 #ifdef KSE
2809 		if (td->td_pflags & TDP_SA) {
2810 			if (sig == SIGKILL) {
2811 				mtx_unlock(&ps->ps_mtx);
2812 				sigexit(td, sig);
2813 			}
2814 		}
2815 
2816 #endif
2817 		/*
2818 		 * If we get here, the signal must be caught.
2819 		 */
2820 		KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),
2821 		    ("postsig action"));
2822 		/*
2823 		 * Set the new mask value and also defer further
2824 		 * occurrences of this signal.
2825 		 *
2826 		 * Special case: user has done a sigsuspend.  Here the
2827 		 * current mask is not of interest, but rather the
2828 		 * mask from before the sigsuspend is what we want
2829 		 * restored after the signal processing is completed.
2830 		 */
2831 		if (td->td_pflags & TDP_OLDMASK) {
2832 			returnmask = td->td_oldsigmask;
2833 			td->td_pflags &= ~TDP_OLDMASK;
2834 		} else
2835 			returnmask = td->td_sigmask;
2836 
2837 		SIGSETOR(td->td_sigmask, ps->ps_catchmask[_SIG_IDX(sig)]);
2838 		if (!SIGISMEMBER(ps->ps_signodefer, sig))
2839 			SIGADDSET(td->td_sigmask, sig);
2840 
2841 		if (SIGISMEMBER(ps->ps_sigreset, sig)) {
2842 			/*
2843 			 * See kern_sigaction() for origin of this code.
2844 			 */
2845 			SIGDELSET(ps->ps_sigcatch, sig);
2846 			if (sig != SIGCONT &&
2847 			    sigprop(sig) & SA_IGNORE)
2848 				SIGADDSET(ps->ps_sigignore, sig);
2849 			ps->ps_sigact[_SIG_IDX(sig)] = SIG_DFL;
2850 		}
2851 		p->p_stats->p_ru.ru_nsignals++;
2852 		if (p->p_sig != sig) {
2853 			code = 0;
2854 		} else {
2855 			code = p->p_code;
2856 			p->p_code = 0;
2857 			p->p_sig = 0;
2858 		}
2859 #ifdef KSE
2860 		if (td->td_pflags & TDP_SA)
2861 			thread_signal_add(curthread, &ksi);
2862 		else
2863 			(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2864 #else
2865 		(*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2866 #endif
2867 	}
2868 }
2869 
2870 /*
2871  * Kill the current process for stated reason.
2872  */
2873 void
2874 killproc(p, why)
2875 	struct proc *p;
2876 	char *why;
2877 {
2878 
2879 	PROC_LOCK_ASSERT(p, MA_OWNED);
2880 	CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)",
2881 		p, p->p_pid, p->p_comm);
2882 	log(LOG_ERR, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid, p->p_comm,
2883 		p->p_ucred ? p->p_ucred->cr_uid : -1, why);
2884 	psignal(p, SIGKILL);
2885 }
2886 
2887 /*
2888  * Force the current process to exit with the specified signal, dumping core
2889  * if appropriate.  We bypass the normal tests for masked and caught signals,
2890  * allowing unrecoverable failures to terminate the process without changing
2891  * signal state.  Mark the accounting record with the signal termination.
2892  * If dumping core, save the signal number for the debugger.  Calls exit and
2893  * does not return.
2894  *
2895  * MPSAFE
2896  */
2897 void
2898 sigexit(td, sig)
2899 	struct thread *td;
2900 	int sig;
2901 {
2902 	struct proc *p = td->td_proc;
2903 
2904 	PROC_LOCK_ASSERT(p, MA_OWNED);
2905 	p->p_acflag |= AXSIG;
2906 	/*
2907 	 * We must be single-threading to generate a core dump.  This
2908 	 * ensures that the registers in the core file are up-to-date.
2909 	 * Also, the ELF dump handler assumes that the thread list doesn't
2910 	 * change out from under it.
2911 	 *
2912 	 * XXX If another thread attempts to single-thread before us
2913 	 *     (e.g. via fork()), we won't get a dump at all.
2914 	 */
2915 	if ((sigprop(sig) & SA_CORE) && (thread_single(SINGLE_NO_EXIT) == 0)) {
2916 		p->p_sig = sig;
2917 		/*
2918 		 * Log signals which would cause core dumps
2919 		 * (Log as LOG_INFO to appease those who don't want
2920 		 * these messages.)
2921 		 * XXX : Todo, as well as euid, write out ruid too
2922 		 * Note that coredump() drops proc lock.
2923 		 */
2924 		if (coredump(td) == 0)
2925 			sig |= WCOREFLAG;
2926 		if (kern_logsigexit)
2927 			log(LOG_INFO,
2928 			    "pid %d (%s), uid %d: exited on signal %d%s\n",
2929 			    p->p_pid, p->p_comm,
2930 			    td->td_ucred ? td->td_ucred->cr_uid : -1,
2931 			    sig &~ WCOREFLAG,
2932 			    sig & WCOREFLAG ? " (core dumped)" : "");
2933 	} else
2934 		PROC_UNLOCK(p);
2935 	exit1(td, W_EXITCODE(0, sig));
2936 	/* NOTREACHED */
2937 }
2938 
2939 /*
2940  * Send queued SIGCHLD to parent when child process's state
2941  * is changed.
2942  */
2943 static void
2944 sigparent(struct proc *p, int reason, int status)
2945 {
2946 	PROC_LOCK_ASSERT(p, MA_OWNED);
2947 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2948 
2949 	if (p->p_ksi != NULL) {
2950 		p->p_ksi->ksi_signo  = SIGCHLD;
2951 		p->p_ksi->ksi_code   = reason;
2952 		p->p_ksi->ksi_status = status;
2953 		p->p_ksi->ksi_pid    = p->p_pid;
2954 		p->p_ksi->ksi_uid    = p->p_ucred->cr_ruid;
2955 		if (KSI_ONQ(p->p_ksi))
2956 			return;
2957 	}
2958 	tdsignal(p->p_pptr, NULL, SIGCHLD, p->p_ksi);
2959 }
2960 
2961 static void
2962 childproc_jobstate(struct proc *p, int reason, int status)
2963 {
2964 	struct sigacts *ps;
2965 
2966 	PROC_LOCK_ASSERT(p, MA_OWNED);
2967 	PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED);
2968 
2969 	/*
2970 	 * Wake up parent sleeping in kern_wait(), also send
2971 	 * SIGCHLD to parent, but SIGCHLD does not guarantee
2972 	 * that parent will awake, because parent may masked
2973 	 * the signal.
2974 	 */
2975 	p->p_pptr->p_flag |= P_STATCHILD;
2976 	wakeup(p->p_pptr);
2977 
2978 	ps = p->p_pptr->p_sigacts;
2979 	mtx_lock(&ps->ps_mtx);
2980 	if ((ps->ps_flag & PS_NOCLDSTOP) == 0) {
2981 		mtx_unlock(&ps->ps_mtx);
2982 		sigparent(p, reason, status);
2983 	} else
2984 		mtx_unlock(&ps->ps_mtx);
2985 }
2986 
2987 void
2988 childproc_stopped(struct proc *p, int reason)
2989 {
2990 	childproc_jobstate(p, reason, p->p_xstat);
2991 }
2992 
2993 void
2994 childproc_continued(struct proc *p)
2995 {
2996 	childproc_jobstate(p, CLD_CONTINUED, SIGCONT);
2997 }
2998 
2999 void
3000 childproc_exited(struct proc *p)
3001 {
3002 	int reason;
3003 	int status = p->p_xstat; /* convert to int */
3004 
3005 	reason = CLD_EXITED;
3006 	if (WCOREDUMP(status))
3007 		reason = CLD_DUMPED;
3008 	else if (WIFSIGNALED(status))
3009 		reason = CLD_KILLED;
3010 	/*
3011 	 * XXX avoid calling wakeup(p->p_pptr), the work is
3012 	 * done in exit1().
3013 	 */
3014 	sigparent(p, reason, status);
3015 }
3016 
3017 static char corefilename[MAXPATHLEN] = {"%N.core"};
3018 SYSCTL_STRING(_kern, OID_AUTO, corefile, CTLFLAG_RW, corefilename,
3019 	      sizeof(corefilename), "process corefile name format string");
3020 
3021 /*
3022  * expand_name(name, uid, pid)
3023  * Expand the name described in corefilename, using name, uid, and pid.
3024  * corefilename is a printf-like string, with three format specifiers:
3025  *	%N	name of process ("name")
3026  *	%P	process id (pid)
3027  *	%U	user id (uid)
3028  * For example, "%N.core" is the default; they can be disabled completely
3029  * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3030  * This is controlled by the sysctl variable kern.corefile (see above).
3031  */
3032 
3033 static char *
3034 expand_name(name, uid, pid)
3035 	const char *name;
3036 	uid_t uid;
3037 	pid_t pid;
3038 {
3039 	const char *format, *appendstr;
3040 	char *temp;
3041 	char buf[11];		/* Buffer for pid/uid -- max 4B */
3042 	size_t i, l, n;
3043 
3044 	format = corefilename;
3045 	temp = malloc(MAXPATHLEN, M_TEMP, M_NOWAIT | M_ZERO);
3046 	if (temp == NULL)
3047 		return (NULL);
3048 	for (i = 0, n = 0; n < MAXPATHLEN && format[i]; i++) {
3049 		switch (format[i]) {
3050 		case '%':	/* Format character */
3051 			i++;
3052 			switch (format[i]) {
3053 			case '%':
3054 				appendstr = "%";
3055 				break;
3056 			case 'N':	/* process name */
3057 				appendstr = name;
3058 				break;
3059 			case 'P':	/* process id */
3060 				sprintf(buf, "%u", pid);
3061 				appendstr = buf;
3062 				break;
3063 			case 'U':	/* user id */
3064 				sprintf(buf, "%u", uid);
3065 				appendstr = buf;
3066 				break;
3067 			default:
3068 				appendstr = "";
3069 			  	log(LOG_ERR,
3070 				    "Unknown format character %c in `%s'\n",
3071 				    format[i], format);
3072 			}
3073 			l = strlen(appendstr);
3074 			if ((n + l) >= MAXPATHLEN)
3075 				goto toolong;
3076 			memcpy(temp + n, appendstr, l);
3077 			n += l;
3078 			break;
3079 		default:
3080 			temp[n++] = format[i];
3081 		}
3082 	}
3083 	if (format[i] != '\0')
3084 		goto toolong;
3085 	return (temp);
3086 toolong:
3087 	log(LOG_ERR, "pid %ld (%s), uid (%lu): corename is too long\n",
3088 	    (long)pid, name, (u_long)uid);
3089 	free(temp, M_TEMP);
3090 	return (NULL);
3091 }
3092 
3093 /*
3094  * Dump a process' core.  The main routine does some
3095  * policy checking, and creates the name of the coredump;
3096  * then it passes on a vnode and a size limit to the process-specific
3097  * coredump routine if there is one; if there _is not_ one, it returns
3098  * ENOSYS; otherwise it returns the error from the process-specific routine.
3099  */
3100 
3101 static int
3102 coredump(struct thread *td)
3103 {
3104 	struct proc *p = td->td_proc;
3105 	register struct vnode *vp;
3106 	register struct ucred *cred = td->td_ucred;
3107 	struct flock lf;
3108 	struct nameidata nd;
3109 	struct vattr vattr;
3110 	int error, error1, flags, locked;
3111 	struct mount *mp;
3112 	char *name;			/* name of corefile */
3113 	off_t limit;
3114 	int vfslocked;
3115 
3116 	PROC_LOCK_ASSERT(p, MA_OWNED);
3117 	MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td);
3118 	_STOPEVENT(p, S_CORE, 0);
3119 
3120 	if (((sugid_coredump == 0) && p->p_flag & P_SUGID) || do_coredump == 0) {
3121 		PROC_UNLOCK(p);
3122 		return (EFAULT);
3123 	}
3124 
3125 	/*
3126 	 * Note that the bulk of limit checking is done after
3127 	 * the corefile is created.  The exception is if the limit
3128 	 * for corefiles is 0, in which case we don't bother
3129 	 * creating the corefile at all.  This layout means that
3130 	 * a corefile is truncated instead of not being created,
3131 	 * if it is larger than the limit.
3132 	 */
3133 	limit = (off_t)lim_cur(p, RLIMIT_CORE);
3134 	PROC_UNLOCK(p);
3135 	if (limit == 0)
3136 		return (EFBIG);
3137 
3138 restart:
3139 	name = expand_name(p->p_comm, td->td_ucred->cr_uid, p->p_pid);
3140 	if (name == NULL)
3141 		return (EINVAL);
3142 	NDINIT(&nd, LOOKUP, NOFOLLOW | MPSAFE, UIO_SYSSPACE, name, td);
3143 	flags = O_CREAT | FWRITE | O_NOFOLLOW;
3144 	error = vn_open(&nd, &flags, S_IRUSR | S_IWUSR, -1);
3145 	free(name, M_TEMP);
3146 	if (error)
3147 		return (error);
3148 	vfslocked = NDHASGIANT(&nd);
3149 	NDFREE(&nd, NDF_ONLY_PNBUF);
3150 	vp = nd.ni_vp;
3151 
3152 	/* Don't dump to non-regular files or files with links. */
3153 	if (vp->v_type != VREG ||
3154 	    VOP_GETATTR(vp, &vattr, cred, td) || vattr.va_nlink != 1) {
3155 		VOP_UNLOCK(vp, 0, td);
3156 		error = EFAULT;
3157 		goto close;
3158 	}
3159 
3160 	VOP_UNLOCK(vp, 0, td);
3161 	lf.l_whence = SEEK_SET;
3162 	lf.l_start = 0;
3163 	lf.l_len = 0;
3164 	lf.l_type = F_WRLCK;
3165 	locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK, &lf, F_FLOCK) == 0);
3166 
3167 	if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3168 		lf.l_type = F_UNLCK;
3169 		if (locked)
3170 			VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3171 		if ((error = vn_close(vp, FWRITE, cred, td)) != 0)
3172 			goto out;
3173 		if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0)
3174 			goto out;
3175 		VFS_UNLOCK_GIANT(vfslocked);
3176 		goto restart;
3177 	}
3178 
3179 	VATTR_NULL(&vattr);
3180 	vattr.va_size = 0;
3181 	if (set_core_nodump_flag)
3182 		vattr.va_flags = UF_NODUMP;
3183 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
3184 	VOP_LEASE(vp, td, cred, LEASE_WRITE);
3185 	VOP_SETATTR(vp, &vattr, cred, td);
3186 	VOP_UNLOCK(vp, 0, td);
3187 	vn_finished_write(mp);
3188 	PROC_LOCK(p);
3189 	p->p_acflag |= ACORE;
3190 	PROC_UNLOCK(p);
3191 
3192 	error = p->p_sysent->sv_coredump ?
3193 	  p->p_sysent->sv_coredump(td, vp, limit) :
3194 	  ENOSYS;
3195 
3196 	if (locked) {
3197 		lf.l_type = F_UNLCK;
3198 		VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK, &lf, F_FLOCK);
3199 	}
3200 close:
3201 	error1 = vn_close(vp, FWRITE, cred, td);
3202 	if (error == 0)
3203 		error = error1;
3204 out:
3205 	VFS_UNLOCK_GIANT(vfslocked);
3206 	return (error);
3207 }
3208 
3209 /*
3210  * Nonexistent system call-- signal process (may want to handle it).
3211  * Flag error in case process won't see signal immediately (blocked or ignored).
3212  */
3213 #ifndef _SYS_SYSPROTO_H_
3214 struct nosys_args {
3215 	int	dummy;
3216 };
3217 #endif
3218 /*
3219  * MPSAFE
3220  */
3221 /* ARGSUSED */
3222 int
3223 nosys(td, args)
3224 	struct thread *td;
3225 	struct nosys_args *args;
3226 {
3227 	struct proc *p = td->td_proc;
3228 
3229 	PROC_LOCK(p);
3230 	psignal(p, SIGSYS);
3231 	PROC_UNLOCK(p);
3232 	return (ENOSYS);
3233 }
3234 
3235 /*
3236  * Send a SIGIO or SIGURG signal to a process or process group using
3237  * stored credentials rather than those of the current process.
3238  */
3239 void
3240 pgsigio(sigiop, sig, checkctty)
3241 	struct sigio **sigiop;
3242 	int sig, checkctty;
3243 {
3244 	struct sigio *sigio;
3245 
3246 	SIGIO_LOCK();
3247 	sigio = *sigiop;
3248 	if (sigio == NULL) {
3249 		SIGIO_UNLOCK();
3250 		return;
3251 	}
3252 	if (sigio->sio_pgid > 0) {
3253 		PROC_LOCK(sigio->sio_proc);
3254 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred))
3255 			psignal(sigio->sio_proc, sig);
3256 		PROC_UNLOCK(sigio->sio_proc);
3257 	} else if (sigio->sio_pgid < 0) {
3258 		struct proc *p;
3259 
3260 		PGRP_LOCK(sigio->sio_pgrp);
3261 		LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist) {
3262 			PROC_LOCK(p);
3263 			if (CANSIGIO(sigio->sio_ucred, p->p_ucred) &&
3264 			    (checkctty == 0 || (p->p_flag & P_CONTROLT)))
3265 				psignal(p, sig);
3266 			PROC_UNLOCK(p);
3267 		}
3268 		PGRP_UNLOCK(sigio->sio_pgrp);
3269 	}
3270 	SIGIO_UNLOCK();
3271 }
3272 
3273 static int
3274 filt_sigattach(struct knote *kn)
3275 {
3276 	struct proc *p = curproc;
3277 
3278 	kn->kn_ptr.p_proc = p;
3279 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
3280 
3281 	knlist_add(&p->p_klist, kn, 0);
3282 
3283 	return (0);
3284 }
3285 
3286 static void
3287 filt_sigdetach(struct knote *kn)
3288 {
3289 	struct proc *p = kn->kn_ptr.p_proc;
3290 
3291 	knlist_remove(&p->p_klist, kn, 0);
3292 }
3293 
3294 /*
3295  * signal knotes are shared with proc knotes, so we apply a mask to
3296  * the hint in order to differentiate them from process hints.  This
3297  * could be avoided by using a signal-specific knote list, but probably
3298  * isn't worth the trouble.
3299  */
3300 static int
3301 filt_signal(struct knote *kn, long hint)
3302 {
3303 
3304 	if (hint & NOTE_SIGNAL) {
3305 		hint &= ~NOTE_SIGNAL;
3306 
3307 		if (kn->kn_id == hint)
3308 			kn->kn_data++;
3309 	}
3310 	return (kn->kn_data != 0);
3311 }
3312 
3313 struct sigacts *
3314 sigacts_alloc(void)
3315 {
3316 	struct sigacts *ps;
3317 
3318 	ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK | M_ZERO);
3319 	ps->ps_refcnt = 1;
3320 	mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF);
3321 	return (ps);
3322 }
3323 
3324 void
3325 sigacts_free(struct sigacts *ps)
3326 {
3327 
3328 	mtx_lock(&ps->ps_mtx);
3329 	ps->ps_refcnt--;
3330 	if (ps->ps_refcnt == 0) {
3331 		mtx_destroy(&ps->ps_mtx);
3332 		free(ps, M_SUBPROC);
3333 	} else
3334 		mtx_unlock(&ps->ps_mtx);
3335 }
3336 
3337 struct sigacts *
3338 sigacts_hold(struct sigacts *ps)
3339 {
3340 	mtx_lock(&ps->ps_mtx);
3341 	ps->ps_refcnt++;
3342 	mtx_unlock(&ps->ps_mtx);
3343 	return (ps);
3344 }
3345 
3346 void
3347 sigacts_copy(struct sigacts *dest, struct sigacts *src)
3348 {
3349 
3350 	KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"));
3351 	mtx_lock(&src->ps_mtx);
3352 	bcopy(src, dest, offsetof(struct sigacts, ps_refcnt));
3353 	mtx_unlock(&src->ps_mtx);
3354 }
3355 
3356 int
3357 sigacts_shared(struct sigacts *ps)
3358 {
3359 	int shared;
3360 
3361 	mtx_lock(&ps->ps_mtx);
3362 	shared = ps->ps_refcnt > 1;
3363 	mtx_unlock(&ps->ps_mtx);
3364 	return (shared);
3365 }
3366