xref: /freebsd/sys/kern/kern_shutdown.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1986, 1988, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_shutdown.c	8.3 (Berkeley) 1/21/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_ekcd.h"
44 #include "opt_kdb.h"
45 #include "opt_panic.h"
46 #include "opt_printf.h"
47 #include "opt_sched.h"
48 #include "opt_watchdog.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/bio.h>
53 #include <sys/boottrace.h>
54 #include <sys/buf.h>
55 #include <sys/conf.h>
56 #include <sys/compressor.h>
57 #include <sys/cons.h>
58 #include <sys/disk.h>
59 #include <sys/eventhandler.h>
60 #include <sys/filedesc.h>
61 #include <sys/jail.h>
62 #include <sys/kdb.h>
63 #include <sys/kernel.h>
64 #include <sys/kerneldump.h>
65 #include <sys/kthread.h>
66 #include <sys/ktr.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/mount.h>
70 #include <sys/priv.h>
71 #include <sys/proc.h>
72 #include <sys/reboot.h>
73 #include <sys/resourcevar.h>
74 #include <sys/rwlock.h>
75 #include <sys/sbuf.h>
76 #include <sys/sched.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
80 #include <sys/taskqueue.h>
81 #include <sys/vnode.h>
82 #include <sys/watchdog.h>
83 
84 #include <crypto/chacha20/chacha.h>
85 #include <crypto/rijndael/rijndael-api-fst.h>
86 #include <crypto/sha2/sha256.h>
87 
88 #include <ddb/ddb.h>
89 
90 #include <machine/cpu.h>
91 #include <machine/dump.h>
92 #include <machine/pcb.h>
93 #include <machine/smp.h>
94 
95 #include <security/mac/mac_framework.h>
96 
97 #include <vm/vm.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_pager.h>
101 #include <vm/swap_pager.h>
102 
103 #include <sys/signalvar.h>
104 
105 static MALLOC_DEFINE(M_DUMPER, "dumper", "dumper block buffer");
106 
107 #ifndef PANIC_REBOOT_WAIT_TIME
108 #define PANIC_REBOOT_WAIT_TIME 15 /* default to 15 seconds */
109 #endif
110 static int panic_reboot_wait_time = PANIC_REBOOT_WAIT_TIME;
111 SYSCTL_INT(_kern, OID_AUTO, panic_reboot_wait_time, CTLFLAG_RWTUN,
112     &panic_reboot_wait_time, 0,
113     "Seconds to wait before rebooting after a panic");
114 static int reboot_wait_time = 0;
115 SYSCTL_INT(_kern, OID_AUTO, reboot_wait_time, CTLFLAG_RWTUN,
116     &reboot_wait_time, 0,
117     "Seconds to wait before rebooting");
118 
119 /*
120  * Note that stdarg.h and the ANSI style va_start macro is used for both
121  * ANSI and traditional C compilers.
122  */
123 #include <machine/stdarg.h>
124 
125 #ifdef KDB
126 #ifdef KDB_UNATTENDED
127 int debugger_on_panic = 0;
128 #else
129 int debugger_on_panic = 1;
130 #endif
131 SYSCTL_INT(_debug, OID_AUTO, debugger_on_panic,
132     CTLFLAG_RWTUN, &debugger_on_panic, 0,
133     "Run debugger on kernel panic");
134 
135 static bool debugger_on_recursive_panic = false;
136 SYSCTL_BOOL(_debug, OID_AUTO, debugger_on_recursive_panic,
137     CTLFLAG_RWTUN, &debugger_on_recursive_panic, 0,
138     "Run debugger on recursive kernel panic");
139 
140 int debugger_on_trap = 0;
141 SYSCTL_INT(_debug, OID_AUTO, debugger_on_trap,
142     CTLFLAG_RWTUN, &debugger_on_trap, 0,
143     "Run debugger on kernel trap before panic");
144 
145 #ifdef KDB_TRACE
146 static int trace_on_panic = 1;
147 static bool trace_all_panics = true;
148 #else
149 static int trace_on_panic = 0;
150 static bool trace_all_panics = false;
151 #endif
152 SYSCTL_INT(_debug, OID_AUTO, trace_on_panic,
153     CTLFLAG_RWTUN | CTLFLAG_SECURE,
154     &trace_on_panic, 0, "Print stack trace on kernel panic");
155 SYSCTL_BOOL(_debug, OID_AUTO, trace_all_panics, CTLFLAG_RWTUN,
156     &trace_all_panics, 0, "Print stack traces on secondary kernel panics");
157 #endif /* KDB */
158 
159 static int sync_on_panic = 0;
160 SYSCTL_INT(_kern, OID_AUTO, sync_on_panic, CTLFLAG_RWTUN,
161 	&sync_on_panic, 0, "Do a sync before rebooting from a panic");
162 
163 static bool poweroff_on_panic = 0;
164 SYSCTL_BOOL(_kern, OID_AUTO, poweroff_on_panic, CTLFLAG_RWTUN,
165 	&poweroff_on_panic, 0, "Do a power off instead of a reboot on a panic");
166 
167 static bool powercycle_on_panic = 0;
168 SYSCTL_BOOL(_kern, OID_AUTO, powercycle_on_panic, CTLFLAG_RWTUN,
169 	&powercycle_on_panic, 0, "Do a power cycle instead of a reboot on a panic");
170 
171 static SYSCTL_NODE(_kern, OID_AUTO, shutdown, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
172     "Shutdown environment");
173 
174 #ifndef DIAGNOSTIC
175 static int show_busybufs;
176 #else
177 static int show_busybufs = 1;
178 #endif
179 SYSCTL_INT(_kern_shutdown, OID_AUTO, show_busybufs, CTLFLAG_RW,
180     &show_busybufs, 0,
181     "Show busy buffers during shutdown");
182 
183 int suspend_blocked = 0;
184 SYSCTL_INT(_kern, OID_AUTO, suspend_blocked, CTLFLAG_RW,
185 	&suspend_blocked, 0, "Block suspend due to a pending shutdown");
186 
187 #ifdef EKCD
188 FEATURE(ekcd, "Encrypted kernel crash dumps support");
189 
190 MALLOC_DEFINE(M_EKCD, "ekcd", "Encrypted kernel crash dumps data");
191 
192 struct kerneldumpcrypto {
193 	uint8_t			kdc_encryption;
194 	uint8_t			kdc_iv[KERNELDUMP_IV_MAX_SIZE];
195 	union {
196 		struct {
197 			keyInstance	aes_ki;
198 			cipherInstance	aes_ci;
199 		} u_aes;
200 		struct chacha_ctx	u_chacha;
201 	} u;
202 #define	kdc_ki	u.u_aes.aes_ki
203 #define	kdc_ci	u.u_aes.aes_ci
204 #define	kdc_chacha	u.u_chacha
205 	uint32_t		kdc_dumpkeysize;
206 	struct kerneldumpkey	kdc_dumpkey[];
207 };
208 #endif
209 
210 struct kerneldumpcomp {
211 	uint8_t			kdc_format;
212 	struct compressor	*kdc_stream;
213 	uint8_t			*kdc_buf;
214 	size_t			kdc_resid;
215 };
216 
217 static struct kerneldumpcomp *kerneldumpcomp_create(struct dumperinfo *di,
218 		    uint8_t compression);
219 static void	kerneldumpcomp_destroy(struct dumperinfo *di);
220 static int	kerneldumpcomp_write_cb(void *base, size_t len, off_t off, void *arg);
221 
222 static int kerneldump_gzlevel = 6;
223 SYSCTL_INT(_kern, OID_AUTO, kerneldump_gzlevel, CTLFLAG_RWTUN,
224     &kerneldump_gzlevel, 0,
225     "Kernel crash dump compression level");
226 
227 /*
228  * Variable panicstr contains argument to first call to panic; used as flag
229  * to indicate that the kernel has already called panic.
230  */
231 const char *panicstr;
232 bool __read_frequently panicked;
233 
234 int __read_mostly dumping;		/* system is dumping */
235 int rebooting;				/* system is rebooting */
236 /*
237  * Used to serialize between sysctl kern.shutdown.dumpdevname and list
238  * modifications via ioctl.
239  */
240 static struct mtx dumpconf_list_lk;
241 MTX_SYSINIT(dumper_configs, &dumpconf_list_lk, "dumper config list", MTX_DEF);
242 
243 /* Our selected dumper(s). */
244 static TAILQ_HEAD(dumpconflist, dumperinfo) dumper_configs =
245     TAILQ_HEAD_INITIALIZER(dumper_configs);
246 
247 /* Context information for dump-debuggers, saved by the dump_savectx() macro. */
248 struct pcb dumppcb;			/* Registers. */
249 lwpid_t dumptid;			/* Thread ID. */
250 
251 static struct cdevsw reroot_cdevsw = {
252      .d_version = D_VERSION,
253      .d_name    = "reroot",
254 };
255 
256 static void poweroff_wait(void *, int);
257 static void shutdown_halt(void *junk, int howto);
258 static void shutdown_panic(void *junk, int howto);
259 static void shutdown_reset(void *junk, int howto);
260 static int kern_reroot(void);
261 
262 /* register various local shutdown events */
263 static void
264 shutdown_conf(void *unused)
265 {
266 
267 	EVENTHANDLER_REGISTER(shutdown_final, poweroff_wait, NULL,
268 	    SHUTDOWN_PRI_FIRST);
269 	EVENTHANDLER_REGISTER(shutdown_final, shutdown_halt, NULL,
270 	    SHUTDOWN_PRI_LAST + 100);
271 	EVENTHANDLER_REGISTER(shutdown_final, shutdown_panic, NULL,
272 	    SHUTDOWN_PRI_LAST + 100);
273 }
274 
275 SYSINIT(shutdown_conf, SI_SUB_INTRINSIC, SI_ORDER_ANY, shutdown_conf, NULL);
276 
277 /*
278  * The only reason this exists is to create the /dev/reroot/ directory,
279  * used by reroot code in init(8) as a mountpoint for tmpfs.
280  */
281 static void
282 reroot_conf(void *unused)
283 {
284 	int error;
285 	struct cdev *cdev;
286 
287 	error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK, &cdev,
288 	    &reroot_cdevsw, NULL, UID_ROOT, GID_WHEEL, 0600, "reroot/reroot");
289 	if (error != 0) {
290 		printf("%s: failed to create device node, error %d",
291 		    __func__, error);
292 	}
293 }
294 
295 SYSINIT(reroot_conf, SI_SUB_DEVFS, SI_ORDER_ANY, reroot_conf, NULL);
296 
297 /*
298  * The system call that results in a reboot.
299  */
300 /* ARGSUSED */
301 int
302 sys_reboot(struct thread *td, struct reboot_args *uap)
303 {
304 	int error;
305 
306 	error = 0;
307 #ifdef MAC
308 	error = mac_system_check_reboot(td->td_ucred, uap->opt);
309 #endif
310 	if (error == 0)
311 		error = priv_check(td, PRIV_REBOOT);
312 	if (error == 0) {
313 		if (uap->opt & RB_REROOT)
314 			error = kern_reroot();
315 		else
316 			kern_reboot(uap->opt);
317 	}
318 	return (error);
319 }
320 
321 static void
322 shutdown_nice_task_fn(void *arg, int pending __unused)
323 {
324 	int howto;
325 
326 	howto = (uintptr_t)arg;
327 	/* Send a signal to init(8) and have it shutdown the world. */
328 	PROC_LOCK(initproc);
329 	if ((howto & RB_POWEROFF) != 0) {
330 		BOOTTRACE("SIGUSR2 to init(8)");
331 		kern_psignal(initproc, SIGUSR2);
332 	} else if ((howto & RB_POWERCYCLE) != 0) {
333 		BOOTTRACE("SIGWINCH to init(8)");
334 		kern_psignal(initproc, SIGWINCH);
335 	} else if ((howto & RB_HALT) != 0) {
336 		BOOTTRACE("SIGUSR1 to init(8)");
337 		kern_psignal(initproc, SIGUSR1);
338 	} else {
339 		BOOTTRACE("SIGINT to init(8)");
340 		kern_psignal(initproc, SIGINT);
341 	}
342 	PROC_UNLOCK(initproc);
343 }
344 
345 static struct task shutdown_nice_task = TASK_INITIALIZER(0,
346     &shutdown_nice_task_fn, NULL);
347 
348 /*
349  * Called by events that want to shut down.. e.g  <CTL><ALT><DEL> on a PC
350  */
351 void
352 shutdown_nice(int howto)
353 {
354 
355 	if (initproc != NULL && !SCHEDULER_STOPPED()) {
356 		BOOTTRACE("shutdown initiated");
357 		shutdown_nice_task.ta_context = (void *)(uintptr_t)howto;
358 		taskqueue_enqueue(taskqueue_fast, &shutdown_nice_task);
359 	} else {
360 		/*
361 		 * No init(8) running, or scheduler would not allow it
362 		 * to run, so simply reboot.
363 		 */
364 		kern_reboot(howto | RB_NOSYNC);
365 	}
366 }
367 
368 static void
369 print_uptime(void)
370 {
371 	int f;
372 	struct timespec ts;
373 
374 	getnanouptime(&ts);
375 	printf("Uptime: ");
376 	f = 0;
377 	if (ts.tv_sec >= 86400) {
378 		printf("%ldd", (long)ts.tv_sec / 86400);
379 		ts.tv_sec %= 86400;
380 		f = 1;
381 	}
382 	if (f || ts.tv_sec >= 3600) {
383 		printf("%ldh", (long)ts.tv_sec / 3600);
384 		ts.tv_sec %= 3600;
385 		f = 1;
386 	}
387 	if (f || ts.tv_sec >= 60) {
388 		printf("%ldm", (long)ts.tv_sec / 60);
389 		ts.tv_sec %= 60;
390 		f = 1;
391 	}
392 	printf("%lds\n", (long)ts.tv_sec);
393 }
394 
395 int
396 doadump(boolean_t textdump)
397 {
398 	boolean_t coredump;
399 	int error;
400 
401 	error = 0;
402 	if (dumping)
403 		return (EBUSY);
404 	if (TAILQ_EMPTY(&dumper_configs))
405 		return (ENXIO);
406 
407 	dump_savectx();
408 	dumping++;
409 
410 	coredump = TRUE;
411 #ifdef DDB
412 	if (textdump && textdump_pending) {
413 		coredump = FALSE;
414 		textdump_dumpsys(TAILQ_FIRST(&dumper_configs));
415 	}
416 #endif
417 	if (coredump) {
418 		struct dumperinfo *di;
419 
420 		TAILQ_FOREACH(di, &dumper_configs, di_next) {
421 			error = dumpsys(di);
422 			if (error == 0)
423 				break;
424 		}
425 	}
426 
427 	dumping--;
428 	return (error);
429 }
430 
431 /*
432  * Trace the shutdown reason.
433  */
434 static void
435 reboottrace(int howto)
436 {
437 	if ((howto & RB_DUMP) != 0) {
438 		if ((howto & RB_HALT) != 0)
439 			BOOTTRACE("system panic: halting...");
440 		if ((howto & RB_POWEROFF) != 0)
441 			BOOTTRACE("system panic: powering off...");
442 		if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
443 			BOOTTRACE("system panic: rebooting...");
444 	} else {
445 		if ((howto & RB_HALT) != 0)
446 			BOOTTRACE("system halting...");
447 		if ((howto & RB_POWEROFF) != 0)
448 			BOOTTRACE("system powering off...");
449 		if ((howto & (RB_HALT|RB_POWEROFF)) == 0)
450 			BOOTTRACE("system rebooting...");
451 	}
452 }
453 
454 /*
455  * kern_reboot(9): Shut down the system cleanly to prepare for reboot, halt, or
456  * power off.
457  */
458 void
459 kern_reboot(int howto)
460 {
461 	static int once = 0;
462 
463 	if (initproc != NULL && curproc != initproc)
464 		BOOTTRACE("kernel shutdown (dirty) started");
465 	else
466 		BOOTTRACE("kernel shutdown (clean) started");
467 
468 	/*
469 	 * Normal paths here don't hold Giant, but we can wind up here
470 	 * unexpectedly with it held.  Drop it now so we don't have to
471 	 * drop and pick it up elsewhere. The paths it is locking will
472 	 * never be returned to, and it is preferable to preclude
473 	 * deadlock than to lock against code that won't ever
474 	 * continue.
475 	 */
476 	while (mtx_owned(&Giant))
477 		mtx_unlock(&Giant);
478 
479 #if defined(SMP)
480 	/*
481 	 * Bind us to the first CPU so that all shutdown code runs there.  Some
482 	 * systems don't shutdown properly (i.e., ACPI power off) if we
483 	 * run on another processor.
484 	 */
485 	if (!SCHEDULER_STOPPED()) {
486 		thread_lock(curthread);
487 		sched_bind(curthread, CPU_FIRST());
488 		thread_unlock(curthread);
489 		KASSERT(PCPU_GET(cpuid) == CPU_FIRST(),
490 		    ("%s: not running on cpu 0", __func__));
491 	}
492 #endif
493 	/* We're in the process of rebooting. */
494 	rebooting = 1;
495 	reboottrace(howto);
496 
497 	/* We are out of the debugger now. */
498 	kdb_active = 0;
499 
500 	/*
501 	 * Do any callouts that should be done BEFORE syncing the filesystems.
502 	 */
503 	EVENTHANDLER_INVOKE(shutdown_pre_sync, howto);
504 	BOOTTRACE("shutdown pre sync complete");
505 
506 	/*
507 	 * Now sync filesystems
508 	 */
509 	if (!cold && (howto & RB_NOSYNC) == 0 && once == 0) {
510 		once = 1;
511 		BOOTTRACE("bufshutdown begin");
512 		bufshutdown(show_busybufs);
513 		BOOTTRACE("bufshutdown end");
514 	}
515 
516 	print_uptime();
517 
518 	cngrab();
519 
520 	/*
521 	 * Ok, now do things that assume all filesystem activity has
522 	 * been completed.
523 	 */
524 	EVENTHANDLER_INVOKE(shutdown_post_sync, howto);
525 	BOOTTRACE("shutdown post sync complete");
526 
527 	if ((howto & (RB_HALT|RB_DUMP)) == RB_DUMP && !cold && !dumping)
528 		doadump(TRUE);
529 
530 	/* Now that we're going to really halt the system... */
531 	BOOTTRACE("shutdown final begin");
532 
533 	if (shutdown_trace)
534 		boottrace_dump_console();
535 
536 	EVENTHANDLER_INVOKE(shutdown_final, howto);
537 
538 	/*
539 	 * Call this directly so that reset is attempted even if shutdown
540 	 * handlers are not yet registered.
541 	 */
542 	shutdown_reset(NULL, howto);
543 
544 	for(;;) ;	/* safety against shutdown_reset not working */
545 	/* NOTREACHED */
546 }
547 
548 /*
549  * The system call that results in changing the rootfs.
550  */
551 static int
552 kern_reroot(void)
553 {
554 	struct vnode *oldrootvnode, *vp;
555 	struct mount *mp, *devmp;
556 	int error;
557 
558 	if (curproc != initproc)
559 		return (EPERM);
560 
561 	/*
562 	 * Mark the filesystem containing currently-running executable
563 	 * (the temporary copy of init(8)) busy.
564 	 */
565 	vp = curproc->p_textvp;
566 	error = vn_lock(vp, LK_SHARED);
567 	if (error != 0)
568 		return (error);
569 	mp = vp->v_mount;
570 	error = vfs_busy(mp, MBF_NOWAIT);
571 	if (error != 0) {
572 		vfs_ref(mp);
573 		VOP_UNLOCK(vp);
574 		error = vfs_busy(mp, 0);
575 		vn_lock(vp, LK_SHARED | LK_RETRY);
576 		vfs_rel(mp);
577 		if (error != 0) {
578 			VOP_UNLOCK(vp);
579 			return (ENOENT);
580 		}
581 		if (VN_IS_DOOMED(vp)) {
582 			VOP_UNLOCK(vp);
583 			vfs_unbusy(mp);
584 			return (ENOENT);
585 		}
586 	}
587 	VOP_UNLOCK(vp);
588 
589 	/*
590 	 * Remove the filesystem containing currently-running executable
591 	 * from the mount list, to prevent it from being unmounted
592 	 * by vfs_unmountall(), and to avoid confusing vfs_mountroot().
593 	 *
594 	 * Also preserve /dev - forcibly unmounting it could cause driver
595 	 * reinitialization.
596 	 */
597 
598 	vfs_ref(rootdevmp);
599 	devmp = rootdevmp;
600 	rootdevmp = NULL;
601 
602 	mtx_lock(&mountlist_mtx);
603 	TAILQ_REMOVE(&mountlist, mp, mnt_list);
604 	TAILQ_REMOVE(&mountlist, devmp, mnt_list);
605 	mtx_unlock(&mountlist_mtx);
606 
607 	oldrootvnode = rootvnode;
608 
609 	/*
610 	 * Unmount everything except for the two filesystems preserved above.
611 	 */
612 	vfs_unmountall();
613 
614 	/*
615 	 * Add /dev back; vfs_mountroot() will move it into its new place.
616 	 */
617 	mtx_lock(&mountlist_mtx);
618 	TAILQ_INSERT_HEAD(&mountlist, devmp, mnt_list);
619 	mtx_unlock(&mountlist_mtx);
620 	rootdevmp = devmp;
621 	vfs_rel(rootdevmp);
622 
623 	/*
624 	 * Mount the new rootfs.
625 	 */
626 	vfs_mountroot();
627 
628 	/*
629 	 * Update all references to the old rootvnode.
630 	 */
631 	mountcheckdirs(oldrootvnode, rootvnode);
632 
633 	/*
634 	 * Add the temporary filesystem back and unbusy it.
635 	 */
636 	mtx_lock(&mountlist_mtx);
637 	TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
638 	mtx_unlock(&mountlist_mtx);
639 	vfs_unbusy(mp);
640 
641 	return (0);
642 }
643 
644 /*
645  * If the shutdown was a clean halt, behave accordingly.
646  */
647 static void
648 shutdown_halt(void *junk, int howto)
649 {
650 
651 	if (howto & RB_HALT) {
652 		printf("\n");
653 		printf("The operating system has halted.\n");
654 		printf("Please press any key to reboot.\n\n");
655 
656 		wdog_kern_pat(WD_TO_NEVER);
657 
658 		switch (cngetc()) {
659 		case -1:		/* No console, just die */
660 			cpu_halt();
661 			/* NOTREACHED */
662 		default:
663 			break;
664 		}
665 	}
666 }
667 
668 /*
669  * Check to see if the system panicked, pause and then reboot
670  * according to the specified delay.
671  */
672 static void
673 shutdown_panic(void *junk, int howto)
674 {
675 	int loop;
676 
677 	if (howto & RB_DUMP) {
678 		if (panic_reboot_wait_time != 0) {
679 			if (panic_reboot_wait_time != -1) {
680 				printf("Automatic reboot in %d seconds - "
681 				       "press a key on the console to abort\n",
682 					panic_reboot_wait_time);
683 				for (loop = panic_reboot_wait_time * 10;
684 				     loop > 0; --loop) {
685 					DELAY(1000 * 100); /* 1/10th second */
686 					/* Did user type a key? */
687 					if (cncheckc() != -1)
688 						break;
689 				}
690 				if (!loop)
691 					return;
692 			}
693 		} else { /* zero time specified - reboot NOW */
694 			return;
695 		}
696 		printf("--> Press a key on the console to reboot,\n");
697 		printf("--> or switch off the system now.\n");
698 		cngetc();
699 	}
700 }
701 
702 /*
703  * Everything done, now reset
704  */
705 static void
706 shutdown_reset(void *junk, int howto)
707 {
708 
709 	printf("Rebooting...\n");
710 	DELAY(reboot_wait_time * 1000000);
711 
712 	/*
713 	 * Acquiring smp_ipi_mtx here has a double effect:
714 	 * - it disables interrupts avoiding CPU0 preemption
715 	 *   by fast handlers (thus deadlocking  against other CPUs)
716 	 * - it avoids deadlocks against smp_rendezvous() or, more
717 	 *   generally, threads busy-waiting, with this spinlock held,
718 	 *   and waiting for responses by threads on other CPUs
719 	 *   (ie. smp_tlb_shootdown()).
720 	 *
721 	 * For the !SMP case it just needs to handle the former problem.
722 	 */
723 #ifdef SMP
724 	mtx_lock_spin(&smp_ipi_mtx);
725 #else
726 	spinlock_enter();
727 #endif
728 
729 	cpu_reset();
730 	/* NOTREACHED */ /* assuming reset worked */
731 }
732 
733 #if defined(WITNESS) || defined(INVARIANT_SUPPORT)
734 static int kassert_warn_only = 0;
735 #ifdef KDB
736 static int kassert_do_kdb = 0;
737 #endif
738 #ifdef KTR
739 static int kassert_do_ktr = 0;
740 #endif
741 static int kassert_do_log = 1;
742 static int kassert_log_pps_limit = 4;
743 static int kassert_log_mute_at = 0;
744 static int kassert_log_panic_at = 0;
745 static int kassert_suppress_in_panic = 0;
746 static int kassert_warnings = 0;
747 
748 SYSCTL_NODE(_debug, OID_AUTO, kassert, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
749     "kassert options");
750 
751 #ifdef KASSERT_PANIC_OPTIONAL
752 #define KASSERT_RWTUN	CTLFLAG_RWTUN
753 #else
754 #define KASSERT_RWTUN	CTLFLAG_RDTUN
755 #endif
756 
757 SYSCTL_INT(_debug_kassert, OID_AUTO, warn_only, KASSERT_RWTUN,
758     &kassert_warn_only, 0,
759     "KASSERT triggers a panic (0) or just a warning (1)");
760 
761 #ifdef KDB
762 SYSCTL_INT(_debug_kassert, OID_AUTO, do_kdb, KASSERT_RWTUN,
763     &kassert_do_kdb, 0, "KASSERT will enter the debugger");
764 #endif
765 
766 #ifdef KTR
767 SYSCTL_UINT(_debug_kassert, OID_AUTO, do_ktr, KASSERT_RWTUN,
768     &kassert_do_ktr, 0,
769     "KASSERT does a KTR, set this to the KTRMASK you want");
770 #endif
771 
772 SYSCTL_INT(_debug_kassert, OID_AUTO, do_log, KASSERT_RWTUN,
773     &kassert_do_log, 0,
774     "If warn_only is enabled, log (1) or do not log (0) assertion violations");
775 
776 SYSCTL_INT(_debug_kassert, OID_AUTO, warnings, CTLFLAG_RD | CTLFLAG_STATS,
777     &kassert_warnings, 0, "number of KASSERTs that have been triggered");
778 
779 SYSCTL_INT(_debug_kassert, OID_AUTO, log_panic_at, KASSERT_RWTUN,
780     &kassert_log_panic_at, 0, "max number of KASSERTS before we will panic");
781 
782 SYSCTL_INT(_debug_kassert, OID_AUTO, log_pps_limit, KASSERT_RWTUN,
783     &kassert_log_pps_limit, 0, "limit number of log messages per second");
784 
785 SYSCTL_INT(_debug_kassert, OID_AUTO, log_mute_at, KASSERT_RWTUN,
786     &kassert_log_mute_at, 0, "max number of KASSERTS to log");
787 
788 SYSCTL_INT(_debug_kassert, OID_AUTO, suppress_in_panic, KASSERT_RWTUN,
789     &kassert_suppress_in_panic, 0,
790     "KASSERTs will be suppressed while handling a panic");
791 #undef KASSERT_RWTUN
792 
793 static int kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS);
794 
795 SYSCTL_PROC(_debug_kassert, OID_AUTO, kassert,
796     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_SECURE | CTLFLAG_MPSAFE, NULL, 0,
797     kassert_sysctl_kassert, "I",
798     "set to trigger a test kassert");
799 
800 static int
801 kassert_sysctl_kassert(SYSCTL_HANDLER_ARGS)
802 {
803 	int error, i;
804 
805 	error = sysctl_wire_old_buffer(req, sizeof(int));
806 	if (error == 0) {
807 		i = 0;
808 		error = sysctl_handle_int(oidp, &i, 0, req);
809 	}
810 	if (error != 0 || req->newptr == NULL)
811 		return (error);
812 	KASSERT(0, ("kassert_sysctl_kassert triggered kassert %d", i));
813 	return (0);
814 }
815 
816 #ifdef KASSERT_PANIC_OPTIONAL
817 /*
818  * Called by KASSERT, this decides if we will panic
819  * or if we will log via printf and/or ktr.
820  */
821 void
822 kassert_panic(const char *fmt, ...)
823 {
824 	static char buf[256];
825 	va_list ap;
826 
827 	va_start(ap, fmt);
828 	(void)vsnprintf(buf, sizeof(buf), fmt, ap);
829 	va_end(ap);
830 
831 	/*
832 	 * If we are suppressing secondary panics, log the warning but do not
833 	 * re-enter panic/kdb.
834 	 */
835 	if (KERNEL_PANICKED() && kassert_suppress_in_panic) {
836 		if (kassert_do_log) {
837 			printf("KASSERT failed: %s\n", buf);
838 #ifdef KDB
839 			if (trace_all_panics && trace_on_panic)
840 				kdb_backtrace();
841 #endif
842 		}
843 		return;
844 	}
845 
846 	/*
847 	 * panic if we're not just warning, or if we've exceeded
848 	 * kassert_log_panic_at warnings.
849 	 */
850 	if (!kassert_warn_only ||
851 	    (kassert_log_panic_at > 0 &&
852 	     kassert_warnings >= kassert_log_panic_at)) {
853 		va_start(ap, fmt);
854 		vpanic(fmt, ap);
855 		/* NORETURN */
856 	}
857 #ifdef KTR
858 	if (kassert_do_ktr)
859 		CTR0(ktr_mask, buf);
860 #endif /* KTR */
861 	/*
862 	 * log if we've not yet met the mute limit.
863 	 */
864 	if (kassert_do_log &&
865 	    (kassert_log_mute_at == 0 ||
866 	     kassert_warnings < kassert_log_mute_at)) {
867 		static  struct timeval lasterr;
868 		static  int curerr;
869 
870 		if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
871 			printf("KASSERT failed: %s\n", buf);
872 			kdb_backtrace();
873 		}
874 	}
875 #ifdef KDB
876 	if (kassert_do_kdb) {
877 		kdb_enter(KDB_WHY_KASSERT, buf);
878 	}
879 #endif
880 	atomic_add_int(&kassert_warnings, 1);
881 }
882 #endif /* KASSERT_PANIC_OPTIONAL */
883 #endif
884 
885 /*
886  * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
887  * and then reboots.  If we are called twice, then we avoid trying to sync
888  * the disks as this often leads to recursive panics.
889  */
890 void
891 panic(const char *fmt, ...)
892 {
893 	va_list ap;
894 
895 	va_start(ap, fmt);
896 	vpanic(fmt, ap);
897 }
898 
899 void
900 vpanic(const char *fmt, va_list ap)
901 {
902 #ifdef SMP
903 	cpuset_t other_cpus;
904 #endif
905 	struct thread *td = curthread;
906 	int bootopt, newpanic;
907 	static char buf[256];
908 
909 	spinlock_enter();
910 
911 #ifdef SMP
912 	/*
913 	 * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
914 	 * concurrently entering panic.  Only the winner will proceed
915 	 * further.
916 	 */
917 	if (panicstr == NULL && !kdb_active) {
918 		other_cpus = all_cpus;
919 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
920 		stop_cpus_hard(other_cpus);
921 	}
922 #endif
923 
924 	/*
925 	 * Ensure that the scheduler is stopped while panicking, even if panic
926 	 * has been entered from kdb.
927 	 */
928 	td->td_stopsched = 1;
929 
930 	bootopt = RB_AUTOBOOT;
931 	newpanic = 0;
932 	if (KERNEL_PANICKED())
933 		bootopt |= RB_NOSYNC;
934 	else {
935 		bootopt |= RB_DUMP;
936 		panicstr = fmt;
937 		panicked = true;
938 		newpanic = 1;
939 	}
940 
941 	if (newpanic) {
942 		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
943 		panicstr = buf;
944 		cngrab();
945 		printf("panic: %s\n", buf);
946 	} else {
947 		printf("panic: ");
948 		vprintf(fmt, ap);
949 		printf("\n");
950 	}
951 #ifdef SMP
952 	printf("cpuid = %d\n", PCPU_GET(cpuid));
953 #endif
954 	printf("time = %jd\n", (intmax_t )time_second);
955 #ifdef KDB
956 	if ((newpanic || trace_all_panics) && trace_on_panic)
957 		kdb_backtrace();
958 	if (debugger_on_panic)
959 		kdb_enter(KDB_WHY_PANIC, "panic");
960 	else if (!newpanic && debugger_on_recursive_panic)
961 		kdb_enter(KDB_WHY_PANIC, "re-panic");
962 #endif
963 	/*thread_lock(td); */
964 	td->td_flags |= TDF_INPANIC;
965 	/* thread_unlock(td); */
966 	if (!sync_on_panic)
967 		bootopt |= RB_NOSYNC;
968 	if (poweroff_on_panic)
969 		bootopt |= RB_POWEROFF;
970 	if (powercycle_on_panic)
971 		bootopt |= RB_POWERCYCLE;
972 	kern_reboot(bootopt);
973 }
974 
975 /*
976  * Support for poweroff delay.
977  *
978  * Please note that setting this delay too short might power off your machine
979  * before the write cache on your hard disk has been flushed, leading to
980  * soft-updates inconsistencies.
981  */
982 #ifndef POWEROFF_DELAY
983 # define POWEROFF_DELAY 5000
984 #endif
985 static int poweroff_delay = POWEROFF_DELAY;
986 
987 SYSCTL_INT(_kern_shutdown, OID_AUTO, poweroff_delay, CTLFLAG_RW,
988     &poweroff_delay, 0, "Delay before poweroff to write disk caches (msec)");
989 
990 static void
991 poweroff_wait(void *junk, int howto)
992 {
993 
994 	if ((howto & (RB_POWEROFF | RB_POWERCYCLE)) == 0 || poweroff_delay <= 0)
995 		return;
996 	DELAY(poweroff_delay * 1000);
997 }
998 
999 /*
1000  * Some system processes (e.g. syncer) need to be stopped at appropriate
1001  * points in their main loops prior to a system shutdown, so that they
1002  * won't interfere with the shutdown process (e.g. by holding a disk buf
1003  * to cause sync to fail).  For each of these system processes, register
1004  * shutdown_kproc() as a handler for one of shutdown events.
1005  */
1006 static int kproc_shutdown_wait = 60;
1007 SYSCTL_INT(_kern_shutdown, OID_AUTO, kproc_shutdown_wait, CTLFLAG_RW,
1008     &kproc_shutdown_wait, 0, "Max wait time (sec) to stop for each process");
1009 
1010 void
1011 kproc_shutdown(void *arg, int howto)
1012 {
1013 	struct proc *p;
1014 	int error;
1015 
1016 	if (KERNEL_PANICKED())
1017 		return;
1018 
1019 	p = (struct proc *)arg;
1020 	printf("Waiting (max %d seconds) for system process `%s' to stop... ",
1021 	    kproc_shutdown_wait, p->p_comm);
1022 	error = kproc_suspend(p, kproc_shutdown_wait * hz);
1023 
1024 	if (error == EWOULDBLOCK)
1025 		printf("timed out\n");
1026 	else
1027 		printf("done\n");
1028 }
1029 
1030 void
1031 kthread_shutdown(void *arg, int howto)
1032 {
1033 	struct thread *td;
1034 	int error;
1035 
1036 	if (KERNEL_PANICKED())
1037 		return;
1038 
1039 	td = (struct thread *)arg;
1040 	printf("Waiting (max %d seconds) for system thread `%s' to stop... ",
1041 	    kproc_shutdown_wait, td->td_name);
1042 	error = kthread_suspend(td, kproc_shutdown_wait * hz);
1043 
1044 	if (error == EWOULDBLOCK)
1045 		printf("timed out\n");
1046 	else
1047 		printf("done\n");
1048 }
1049 
1050 static int
1051 dumpdevname_sysctl_handler(SYSCTL_HANDLER_ARGS)
1052 {
1053 	char buf[256];
1054 	struct dumperinfo *di;
1055 	struct sbuf sb;
1056 	int error;
1057 
1058 	error = sysctl_wire_old_buffer(req, 0);
1059 	if (error != 0)
1060 		return (error);
1061 
1062 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
1063 
1064 	mtx_lock(&dumpconf_list_lk);
1065 	TAILQ_FOREACH(di, &dumper_configs, di_next) {
1066 		if (di != TAILQ_FIRST(&dumper_configs))
1067 			sbuf_putc(&sb, ',');
1068 		sbuf_cat(&sb, di->di_devname);
1069 	}
1070 	mtx_unlock(&dumpconf_list_lk);
1071 
1072 	error = sbuf_finish(&sb);
1073 	sbuf_delete(&sb);
1074 	return (error);
1075 }
1076 SYSCTL_PROC(_kern_shutdown, OID_AUTO, dumpdevname,
1077     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &dumper_configs, 0,
1078     dumpdevname_sysctl_handler, "A",
1079     "Device(s) for kernel dumps");
1080 
1081 static int _dump_append(struct dumperinfo *di, void *virtual, size_t length);
1082 
1083 #ifdef EKCD
1084 static struct kerneldumpcrypto *
1085 kerneldumpcrypto_create(size_t blocksize, uint8_t encryption,
1086     const uint8_t *key, uint32_t encryptedkeysize, const uint8_t *encryptedkey)
1087 {
1088 	struct kerneldumpcrypto *kdc;
1089 	struct kerneldumpkey *kdk;
1090 	uint32_t dumpkeysize;
1091 
1092 	dumpkeysize = roundup2(sizeof(*kdk) + encryptedkeysize, blocksize);
1093 	kdc = malloc(sizeof(*kdc) + dumpkeysize, M_EKCD, M_WAITOK | M_ZERO);
1094 
1095 	arc4rand(kdc->kdc_iv, sizeof(kdc->kdc_iv), 0);
1096 
1097 	kdc->kdc_encryption = encryption;
1098 	switch (kdc->kdc_encryption) {
1099 	case KERNELDUMP_ENC_AES_256_CBC:
1100 		if (rijndael_makeKey(&kdc->kdc_ki, DIR_ENCRYPT, 256, key) <= 0)
1101 			goto failed;
1102 		break;
1103 	case KERNELDUMP_ENC_CHACHA20:
1104 		chacha_keysetup(&kdc->kdc_chacha, key, 256);
1105 		break;
1106 	default:
1107 		goto failed;
1108 	}
1109 
1110 	kdc->kdc_dumpkeysize = dumpkeysize;
1111 	kdk = kdc->kdc_dumpkey;
1112 	kdk->kdk_encryption = kdc->kdc_encryption;
1113 	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1114 	kdk->kdk_encryptedkeysize = htod32(encryptedkeysize);
1115 	memcpy(kdk->kdk_encryptedkey, encryptedkey, encryptedkeysize);
1116 
1117 	return (kdc);
1118 failed:
1119 	zfree(kdc, M_EKCD);
1120 	return (NULL);
1121 }
1122 
1123 static int
1124 kerneldumpcrypto_init(struct kerneldumpcrypto *kdc)
1125 {
1126 	uint8_t hash[SHA256_DIGEST_LENGTH];
1127 	SHA256_CTX ctx;
1128 	struct kerneldumpkey *kdk;
1129 	int error;
1130 
1131 	error = 0;
1132 
1133 	if (kdc == NULL)
1134 		return (0);
1135 
1136 	/*
1137 	 * When a user enters ddb it can write a crash dump multiple times.
1138 	 * Each time it should be encrypted using a different IV.
1139 	 */
1140 	SHA256_Init(&ctx);
1141 	SHA256_Update(&ctx, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1142 	SHA256_Final(hash, &ctx);
1143 	bcopy(hash, kdc->kdc_iv, sizeof(kdc->kdc_iv));
1144 
1145 	switch (kdc->kdc_encryption) {
1146 	case KERNELDUMP_ENC_AES_256_CBC:
1147 		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1148 		    kdc->kdc_iv) <= 0) {
1149 			error = EINVAL;
1150 			goto out;
1151 		}
1152 		break;
1153 	case KERNELDUMP_ENC_CHACHA20:
1154 		chacha_ivsetup(&kdc->kdc_chacha, kdc->kdc_iv, NULL);
1155 		break;
1156 	default:
1157 		error = EINVAL;
1158 		goto out;
1159 	}
1160 
1161 	kdk = kdc->kdc_dumpkey;
1162 	memcpy(kdk->kdk_iv, kdc->kdc_iv, sizeof(kdk->kdk_iv));
1163 out:
1164 	explicit_bzero(hash, sizeof(hash));
1165 	return (error);
1166 }
1167 
1168 static uint32_t
1169 kerneldumpcrypto_dumpkeysize(const struct kerneldumpcrypto *kdc)
1170 {
1171 
1172 	if (kdc == NULL)
1173 		return (0);
1174 	return (kdc->kdc_dumpkeysize);
1175 }
1176 #endif /* EKCD */
1177 
1178 static struct kerneldumpcomp *
1179 kerneldumpcomp_create(struct dumperinfo *di, uint8_t compression)
1180 {
1181 	struct kerneldumpcomp *kdcomp;
1182 	int format;
1183 
1184 	switch (compression) {
1185 	case KERNELDUMP_COMP_GZIP:
1186 		format = COMPRESS_GZIP;
1187 		break;
1188 	case KERNELDUMP_COMP_ZSTD:
1189 		format = COMPRESS_ZSTD;
1190 		break;
1191 	default:
1192 		return (NULL);
1193 	}
1194 
1195 	kdcomp = malloc(sizeof(*kdcomp), M_DUMPER, M_WAITOK | M_ZERO);
1196 	kdcomp->kdc_format = compression;
1197 	kdcomp->kdc_stream = compressor_init(kerneldumpcomp_write_cb,
1198 	    format, di->maxiosize, kerneldump_gzlevel, di);
1199 	if (kdcomp->kdc_stream == NULL) {
1200 		free(kdcomp, M_DUMPER);
1201 		return (NULL);
1202 	}
1203 	kdcomp->kdc_buf = malloc(di->maxiosize, M_DUMPER, M_WAITOK | M_NODUMP);
1204 	return (kdcomp);
1205 }
1206 
1207 static void
1208 kerneldumpcomp_destroy(struct dumperinfo *di)
1209 {
1210 	struct kerneldumpcomp *kdcomp;
1211 
1212 	kdcomp = di->kdcomp;
1213 	if (kdcomp == NULL)
1214 		return;
1215 	compressor_fini(kdcomp->kdc_stream);
1216 	zfree(kdcomp->kdc_buf, M_DUMPER);
1217 	free(kdcomp, M_DUMPER);
1218 }
1219 
1220 /*
1221  * Free a dumper. Must not be present on global list.
1222  */
1223 void
1224 dumper_destroy(struct dumperinfo *di)
1225 {
1226 
1227 	if (di == NULL)
1228 		return;
1229 
1230 	zfree(di->blockbuf, M_DUMPER);
1231 	kerneldumpcomp_destroy(di);
1232 #ifdef EKCD
1233 	zfree(di->kdcrypto, M_EKCD);
1234 #endif
1235 	zfree(di, M_DUMPER);
1236 }
1237 
1238 /*
1239  * Allocate and set up a new dumper from the provided template.
1240  */
1241 int
1242 dumper_create(const struct dumperinfo *di_template, const char *devname,
1243     const struct diocskerneldump_arg *kda, struct dumperinfo **dip)
1244 {
1245 	struct dumperinfo *newdi;
1246 	int error = 0;
1247 
1248 	if (dip == NULL)
1249 		return (EINVAL);
1250 
1251 	/* Allocate a new dumper */
1252 	newdi = malloc(sizeof(*newdi) + strlen(devname) + 1, M_DUMPER,
1253 	    M_WAITOK | M_ZERO);
1254 	memcpy(newdi, di_template, sizeof(*newdi));
1255 	newdi->blockbuf = NULL;
1256 	newdi->kdcrypto = NULL;
1257 	newdi->kdcomp = NULL;
1258 	strcpy(newdi->di_devname, devname);
1259 
1260 	if (kda->kda_encryption != KERNELDUMP_ENC_NONE) {
1261 #ifdef EKCD
1262 		newdi->kdcrypto = kerneldumpcrypto_create(newdi->blocksize,
1263 		    kda->kda_encryption, kda->kda_key,
1264 		    kda->kda_encryptedkeysize, kda->kda_encryptedkey);
1265 		if (newdi->kdcrypto == NULL) {
1266 			error = EINVAL;
1267 			goto cleanup;
1268 		}
1269 #else
1270 		error = EOPNOTSUPP;
1271 		goto cleanup;
1272 #endif
1273 	}
1274 	if (kda->kda_compression != KERNELDUMP_COMP_NONE) {
1275 #ifdef EKCD
1276 		/*
1277 		 * We can't support simultaneous unpadded block cipher
1278 		 * encryption and compression because there is no guarantee the
1279 		 * length of the compressed result is exactly a multiple of the
1280 		 * cipher block size.
1281 		 */
1282 		if (kda->kda_encryption == KERNELDUMP_ENC_AES_256_CBC) {
1283 			error = EOPNOTSUPP;
1284 			goto cleanup;
1285 		}
1286 #endif
1287 		newdi->kdcomp = kerneldumpcomp_create(newdi,
1288 		    kda->kda_compression);
1289 		if (newdi->kdcomp == NULL) {
1290 			error = EINVAL;
1291 			goto cleanup;
1292 		}
1293 	}
1294 	newdi->blockbuf = malloc(newdi->blocksize, M_DUMPER, M_WAITOK | M_ZERO);
1295 
1296 	*dip = newdi;
1297 	return (0);
1298 cleanup:
1299 	dumper_destroy(newdi);
1300 	return (error);
1301 }
1302 
1303 /*
1304  * Create a new dumper and register it in the global list.
1305  */
1306 int
1307 dumper_insert(const struct dumperinfo *di_template, const char *devname,
1308     const struct diocskerneldump_arg *kda)
1309 {
1310 	struct dumperinfo *newdi, *listdi;
1311 	bool inserted;
1312 	uint8_t index;
1313 	int error;
1314 
1315 	index = kda->kda_index;
1316 	MPASS(index != KDA_REMOVE && index != KDA_REMOVE_DEV &&
1317 	    index != KDA_REMOVE_ALL);
1318 
1319 	error = priv_check(curthread, PRIV_SETDUMPER);
1320 	if (error != 0)
1321 		return (error);
1322 
1323 	error = dumper_create(di_template, devname, kda, &newdi);
1324 	if (error != 0)
1325 		return (error);
1326 
1327 	/* Add the new configuration to the queue */
1328 	mtx_lock(&dumpconf_list_lk);
1329 	inserted = false;
1330 	TAILQ_FOREACH(listdi, &dumper_configs, di_next) {
1331 		if (index == 0) {
1332 			TAILQ_INSERT_BEFORE(listdi, newdi, di_next);
1333 			inserted = true;
1334 			break;
1335 		}
1336 		index--;
1337 	}
1338 	if (!inserted)
1339 		TAILQ_INSERT_TAIL(&dumper_configs, newdi, di_next);
1340 	mtx_unlock(&dumpconf_list_lk);
1341 
1342 	return (0);
1343 }
1344 
1345 #ifdef DDB
1346 void
1347 dumper_ddb_insert(struct dumperinfo *newdi)
1348 {
1349 	TAILQ_INSERT_HEAD(&dumper_configs, newdi, di_next);
1350 }
1351 
1352 void
1353 dumper_ddb_remove(struct dumperinfo *di)
1354 {
1355 	TAILQ_REMOVE(&dumper_configs, di, di_next);
1356 }
1357 #endif
1358 
1359 static bool
1360 dumper_config_match(const struct dumperinfo *di, const char *devname,
1361     const struct diocskerneldump_arg *kda)
1362 {
1363 	if (kda->kda_index == KDA_REMOVE_ALL)
1364 		return (true);
1365 
1366 	if (strcmp(di->di_devname, devname) != 0)
1367 		return (false);
1368 
1369 	/*
1370 	 * Allow wildcard removal of configs matching a device on g_dev_orphan.
1371 	 */
1372 	if (kda->kda_index == KDA_REMOVE_DEV)
1373 		return (true);
1374 
1375 	if (di->kdcomp != NULL) {
1376 		if (di->kdcomp->kdc_format != kda->kda_compression)
1377 			return (false);
1378 	} else if (kda->kda_compression != KERNELDUMP_COMP_NONE)
1379 		return (false);
1380 #ifdef EKCD
1381 	if (di->kdcrypto != NULL) {
1382 		if (di->kdcrypto->kdc_encryption != kda->kda_encryption)
1383 			return (false);
1384 		/*
1385 		 * Do we care to verify keys match to delete?  It seems weird
1386 		 * to expect multiple fallback dump configurations on the same
1387 		 * device that only differ in crypto key.
1388 		 */
1389 	} else
1390 #endif
1391 		if (kda->kda_encryption != KERNELDUMP_ENC_NONE)
1392 			return (false);
1393 
1394 	return (true);
1395 }
1396 
1397 /*
1398  * Remove and free the requested dumper(s) from the global list.
1399  */
1400 int
1401 dumper_remove(const char *devname, const struct diocskerneldump_arg *kda)
1402 {
1403 	struct dumperinfo *di, *sdi;
1404 	bool found;
1405 	int error;
1406 
1407 	error = priv_check(curthread, PRIV_SETDUMPER);
1408 	if (error != 0)
1409 		return (error);
1410 
1411 	/*
1412 	 * Try to find a matching configuration, and kill it.
1413 	 *
1414 	 * NULL 'kda' indicates remove any configuration matching 'devname',
1415 	 * which may remove multiple configurations in atypical configurations.
1416 	 */
1417 	found = false;
1418 	mtx_lock(&dumpconf_list_lk);
1419 	TAILQ_FOREACH_SAFE(di, &dumper_configs, di_next, sdi) {
1420 		if (dumper_config_match(di, devname, kda)) {
1421 			found = true;
1422 			TAILQ_REMOVE(&dumper_configs, di, di_next);
1423 			dumper_destroy(di);
1424 		}
1425 	}
1426 	mtx_unlock(&dumpconf_list_lk);
1427 
1428 	/* Only produce ENOENT if a more targeted match didn't match. */
1429 	if (!found && kda->kda_index == KDA_REMOVE)
1430 		return (ENOENT);
1431 	return (0);
1432 }
1433 
1434 static int
1435 dump_check_bounds(struct dumperinfo *di, off_t offset, size_t length)
1436 {
1437 
1438 	if (di->mediasize > 0 && length != 0 && (offset < di->mediaoffset ||
1439 	    offset - di->mediaoffset + length > di->mediasize)) {
1440 		if (di->kdcomp != NULL && offset >= di->mediaoffset) {
1441 			printf(
1442 		    "Compressed dump failed to fit in device boundaries.\n");
1443 			return (E2BIG);
1444 		}
1445 
1446 		printf("Attempt to write outside dump device boundaries.\n"
1447 	    "offset(%jd), mediaoffset(%jd), length(%ju), mediasize(%jd).\n",
1448 		    (intmax_t)offset, (intmax_t)di->mediaoffset,
1449 		    (uintmax_t)length, (intmax_t)di->mediasize);
1450 		return (ENOSPC);
1451 	}
1452 	if (length % di->blocksize != 0) {
1453 		printf("Attempt to write partial block of length %ju.\n",
1454 		    (uintmax_t)length);
1455 		return (EINVAL);
1456 	}
1457 	if (offset % di->blocksize != 0) {
1458 		printf("Attempt to write at unaligned offset %jd.\n",
1459 		    (intmax_t)offset);
1460 		return (EINVAL);
1461 	}
1462 
1463 	return (0);
1464 }
1465 
1466 #ifdef EKCD
1467 static int
1468 dump_encrypt(struct kerneldumpcrypto *kdc, uint8_t *buf, size_t size)
1469 {
1470 
1471 	switch (kdc->kdc_encryption) {
1472 	case KERNELDUMP_ENC_AES_256_CBC:
1473 		if (rijndael_blockEncrypt(&kdc->kdc_ci, &kdc->kdc_ki, buf,
1474 		    8 * size, buf) <= 0) {
1475 			return (EIO);
1476 		}
1477 		if (rijndael_cipherInit(&kdc->kdc_ci, MODE_CBC,
1478 		    buf + size - 16 /* IV size for AES-256-CBC */) <= 0) {
1479 			return (EIO);
1480 		}
1481 		break;
1482 	case KERNELDUMP_ENC_CHACHA20:
1483 		chacha_encrypt_bytes(&kdc->kdc_chacha, buf, buf, size);
1484 		break;
1485 	default:
1486 		return (EINVAL);
1487 	}
1488 
1489 	return (0);
1490 }
1491 
1492 /* Encrypt data and call dumper. */
1493 static int
1494 dump_encrypted_write(struct dumperinfo *di, void *virtual, off_t offset,
1495     size_t length)
1496 {
1497 	static uint8_t buf[KERNELDUMP_BUFFER_SIZE];
1498 	struct kerneldumpcrypto *kdc;
1499 	int error;
1500 	size_t nbytes;
1501 
1502 	kdc = di->kdcrypto;
1503 
1504 	while (length > 0) {
1505 		nbytes = MIN(length, sizeof(buf));
1506 		bcopy(virtual, buf, nbytes);
1507 
1508 		if (dump_encrypt(kdc, buf, nbytes) != 0)
1509 			return (EIO);
1510 
1511 		error = dump_write(di, buf, offset, nbytes);
1512 		if (error != 0)
1513 			return (error);
1514 
1515 		offset += nbytes;
1516 		virtual = (void *)((uint8_t *)virtual + nbytes);
1517 		length -= nbytes;
1518 	}
1519 
1520 	return (0);
1521 }
1522 #endif /* EKCD */
1523 
1524 static int
1525 kerneldumpcomp_write_cb(void *base, size_t length, off_t offset, void *arg)
1526 {
1527 	struct dumperinfo *di;
1528 	size_t resid, rlength;
1529 	int error;
1530 
1531 	di = arg;
1532 
1533 	if (length % di->blocksize != 0) {
1534 		/*
1535 		 * This must be the final write after flushing the compression
1536 		 * stream. Write as many full blocks as possible and stash the
1537 		 * residual data in the dumper's block buffer. It will be
1538 		 * padded and written in dump_finish().
1539 		 */
1540 		rlength = rounddown(length, di->blocksize);
1541 		if (rlength != 0) {
1542 			error = _dump_append(di, base, rlength);
1543 			if (error != 0)
1544 				return (error);
1545 		}
1546 		resid = length - rlength;
1547 		memmove(di->blockbuf, (uint8_t *)base + rlength, resid);
1548 		bzero((uint8_t *)di->blockbuf + resid, di->blocksize - resid);
1549 		di->kdcomp->kdc_resid = resid;
1550 		return (EAGAIN);
1551 	}
1552 	return (_dump_append(di, base, length));
1553 }
1554 
1555 /*
1556  * Write kernel dump headers at the beginning and end of the dump extent.
1557  * Write the kernel dump encryption key after the leading header if we were
1558  * configured to do so.
1559  */
1560 static int
1561 dump_write_headers(struct dumperinfo *di, struct kerneldumpheader *kdh)
1562 {
1563 #ifdef EKCD
1564 	struct kerneldumpcrypto *kdc;
1565 #endif
1566 	void *buf;
1567 	size_t hdrsz;
1568 	uint64_t extent;
1569 	uint32_t keysize;
1570 	int error;
1571 
1572 	hdrsz = sizeof(*kdh);
1573 	if (hdrsz > di->blocksize)
1574 		return (ENOMEM);
1575 
1576 #ifdef EKCD
1577 	kdc = di->kdcrypto;
1578 	keysize = kerneldumpcrypto_dumpkeysize(kdc);
1579 #else
1580 	keysize = 0;
1581 #endif
1582 
1583 	/*
1584 	 * If the dump device has special handling for headers, let it take care
1585 	 * of writing them out.
1586 	 */
1587 	if (di->dumper_hdr != NULL)
1588 		return (di->dumper_hdr(di, kdh));
1589 
1590 	if (hdrsz == di->blocksize)
1591 		buf = kdh;
1592 	else {
1593 		buf = di->blockbuf;
1594 		memset(buf, 0, di->blocksize);
1595 		memcpy(buf, kdh, hdrsz);
1596 	}
1597 
1598 	extent = dtoh64(kdh->dumpextent);
1599 #ifdef EKCD
1600 	if (kdc != NULL) {
1601 		error = dump_write(di, kdc->kdc_dumpkey,
1602 		    di->mediaoffset + di->mediasize - di->blocksize - extent -
1603 		    keysize, keysize);
1604 		if (error != 0)
1605 			return (error);
1606 	}
1607 #endif
1608 
1609 	error = dump_write(di, buf,
1610 	    di->mediaoffset + di->mediasize - 2 * di->blocksize - extent -
1611 	    keysize, di->blocksize);
1612 	if (error == 0)
1613 		error = dump_write(di, buf, di->mediaoffset + di->mediasize -
1614 		    di->blocksize, di->blocksize);
1615 	return (error);
1616 }
1617 
1618 /*
1619  * Don't touch the first SIZEOF_METADATA bytes on the dump device.  This is to
1620  * protect us from metadata and metadata from us.
1621  */
1622 #define	SIZEOF_METADATA		(64 * 1024)
1623 
1624 /*
1625  * Do some preliminary setup for a kernel dump: initialize state for encryption,
1626  * if requested, and make sure that we have enough space on the dump device.
1627  *
1628  * We set things up so that the dump ends before the last sector of the dump
1629  * device, at which the trailing header is written.
1630  *
1631  *     +-----------+------+-----+----------------------------+------+
1632  *     |           | lhdr | key |    ... kernel dump ...     | thdr |
1633  *     +-----------+------+-----+----------------------------+------+
1634  *                   1 blk  opt <------- dump extent --------> 1 blk
1635  *
1636  * Dumps written using dump_append() start at the beginning of the extent.
1637  * Uncompressed dumps will use the entire extent, but compressed dumps typically
1638  * will not. The true length of the dump is recorded in the leading and trailing
1639  * headers once the dump has been completed.
1640  *
1641  * The dump device may provide a callback, in which case it will initialize
1642  * dumpoff and take care of laying out the headers.
1643  */
1644 int
1645 dump_start(struct dumperinfo *di, struct kerneldumpheader *kdh)
1646 {
1647 #ifdef EKCD
1648 	struct kerneldumpcrypto *kdc;
1649 #endif
1650 	void *key;
1651 	uint64_t dumpextent, span;
1652 	uint32_t keysize;
1653 	int error;
1654 
1655 #ifdef EKCD
1656 	/* Send the key before the dump so a partial dump is still usable. */
1657 	kdc = di->kdcrypto;
1658 	error = kerneldumpcrypto_init(kdc);
1659 	if (error != 0)
1660 		return (error);
1661 	keysize = kerneldumpcrypto_dumpkeysize(kdc);
1662 	key = keysize > 0 ? kdc->kdc_dumpkey : NULL;
1663 #else
1664 	error = 0;
1665 	keysize = 0;
1666 	key = NULL;
1667 #endif
1668 
1669 	if (di->dumper_start != NULL) {
1670 		error = di->dumper_start(di, key, keysize);
1671 	} else {
1672 		dumpextent = dtoh64(kdh->dumpextent);
1673 		span = SIZEOF_METADATA + dumpextent + 2 * di->blocksize +
1674 		    keysize;
1675 		if (di->mediasize < span) {
1676 			if (di->kdcomp == NULL)
1677 				return (E2BIG);
1678 
1679 			/*
1680 			 * We don't yet know how much space the compressed dump
1681 			 * will occupy, so try to use the whole swap partition
1682 			 * (minus the first 64KB) in the hope that the
1683 			 * compressed dump will fit. If that doesn't turn out to
1684 			 * be enough, the bounds checking in dump_write()
1685 			 * will catch us and cause the dump to fail.
1686 			 */
1687 			dumpextent = di->mediasize - span + dumpextent;
1688 			kdh->dumpextent = htod64(dumpextent);
1689 		}
1690 
1691 		/*
1692 		 * The offset at which to begin writing the dump.
1693 		 */
1694 		di->dumpoff = di->mediaoffset + di->mediasize - di->blocksize -
1695 		    dumpextent;
1696 	}
1697 	di->origdumpoff = di->dumpoff;
1698 	return (error);
1699 }
1700 
1701 static int
1702 _dump_append(struct dumperinfo *di, void *virtual, size_t length)
1703 {
1704 	int error;
1705 
1706 #ifdef EKCD
1707 	if (di->kdcrypto != NULL)
1708 		error = dump_encrypted_write(di, virtual, di->dumpoff, length);
1709 	else
1710 #endif
1711 		error = dump_write(di, virtual, di->dumpoff, length);
1712 	if (error == 0)
1713 		di->dumpoff += length;
1714 	return (error);
1715 }
1716 
1717 /*
1718  * Write to the dump device starting at dumpoff. When compression is enabled,
1719  * writes to the device will be performed using a callback that gets invoked
1720  * when the compression stream's output buffer is full.
1721  */
1722 int
1723 dump_append(struct dumperinfo *di, void *virtual, size_t length)
1724 {
1725 	void *buf;
1726 
1727 	if (di->kdcomp != NULL) {
1728 		/* Bounce through a buffer to avoid CRC errors. */
1729 		if (length > di->maxiosize)
1730 			return (EINVAL);
1731 		buf = di->kdcomp->kdc_buf;
1732 		memmove(buf, virtual, length);
1733 		return (compressor_write(di->kdcomp->kdc_stream, buf, length));
1734 	}
1735 	return (_dump_append(di, virtual, length));
1736 }
1737 
1738 /*
1739  * Write to the dump device at the specified offset.
1740  */
1741 int
1742 dump_write(struct dumperinfo *di, void *virtual, off_t offset, size_t length)
1743 {
1744 	int error;
1745 
1746 	error = dump_check_bounds(di, offset, length);
1747 	if (error != 0)
1748 		return (error);
1749 	return (di->dumper(di->priv, virtual, offset, length));
1750 }
1751 
1752 /*
1753  * Perform kernel dump finalization: flush the compression stream, if necessary,
1754  * write the leading and trailing kernel dump headers now that we know the true
1755  * length of the dump, and optionally write the encryption key following the
1756  * leading header.
1757  */
1758 int
1759 dump_finish(struct dumperinfo *di, struct kerneldumpheader *kdh)
1760 {
1761 	int error;
1762 
1763 	if (di->kdcomp != NULL) {
1764 		error = compressor_flush(di->kdcomp->kdc_stream);
1765 		if (error == EAGAIN) {
1766 			/* We have residual data in di->blockbuf. */
1767 			error = _dump_append(di, di->blockbuf, di->blocksize);
1768 			if (error == 0)
1769 				/* Compensate for _dump_append()'s adjustment. */
1770 				di->dumpoff -= di->blocksize - di->kdcomp->kdc_resid;
1771 			di->kdcomp->kdc_resid = 0;
1772 		}
1773 		if (error != 0)
1774 			return (error);
1775 
1776 		/*
1777 		 * We now know the size of the compressed dump, so update the
1778 		 * header accordingly and recompute parity.
1779 		 */
1780 		kdh->dumplength = htod64(di->dumpoff - di->origdumpoff);
1781 		kdh->parity = 0;
1782 		kdh->parity = kerneldump_parity(kdh);
1783 
1784 		compressor_reset(di->kdcomp->kdc_stream);
1785 	}
1786 
1787 	error = dump_write_headers(di, kdh);
1788 	if (error != 0)
1789 		return (error);
1790 
1791 	(void)dump_write(di, NULL, 0, 0);
1792 	return (0);
1793 }
1794 
1795 void
1796 dump_init_header(const struct dumperinfo *di, struct kerneldumpheader *kdh,
1797     const char *magic, uint32_t archver, uint64_t dumplen)
1798 {
1799 	size_t dstsize;
1800 
1801 	bzero(kdh, sizeof(*kdh));
1802 	strlcpy(kdh->magic, magic, sizeof(kdh->magic));
1803 	strlcpy(kdh->architecture, MACHINE_ARCH, sizeof(kdh->architecture));
1804 	kdh->version = htod32(KERNELDUMPVERSION);
1805 	kdh->architectureversion = htod32(archver);
1806 	kdh->dumplength = htod64(dumplen);
1807 	kdh->dumpextent = kdh->dumplength;
1808 	kdh->dumptime = htod64(time_second);
1809 #ifdef EKCD
1810 	kdh->dumpkeysize = htod32(kerneldumpcrypto_dumpkeysize(di->kdcrypto));
1811 #else
1812 	kdh->dumpkeysize = 0;
1813 #endif
1814 	kdh->blocksize = htod32(di->blocksize);
1815 	strlcpy(kdh->hostname, prison0.pr_hostname, sizeof(kdh->hostname));
1816 	dstsize = sizeof(kdh->versionstring);
1817 	if (strlcpy(kdh->versionstring, version, dstsize) >= dstsize)
1818 		kdh->versionstring[dstsize - 2] = '\n';
1819 	if (panicstr != NULL)
1820 		strlcpy(kdh->panicstring, panicstr, sizeof(kdh->panicstring));
1821 	if (di->kdcomp != NULL)
1822 		kdh->compression = di->kdcomp->kdc_format;
1823 	kdh->parity = kerneldump_parity(kdh);
1824 }
1825 
1826 #ifdef DDB
1827 DB_SHOW_COMMAND_FLAGS(panic, db_show_panic, DB_CMD_MEMSAFE)
1828 {
1829 
1830 	if (panicstr == NULL)
1831 		db_printf("panicstr not set\n");
1832 	else
1833 		db_printf("panic: %s\n", panicstr);
1834 }
1835 #endif
1836